Science.gov

Sample records for natural radionuclides distribution

  1. Differences between the activity size distributions of the different natural radionuclide aerosols in outdoor air

    NASA Astrophysics Data System (ADS)

    Gründel, M.; Porstendörfer, J.

    The results of the activity size distribution of the short-lived ( 218Po, 214Bi/ 214Po) and long-lived ( 210Pb, 210Po) radon decay product aerosols, the thoron decay product aerosols ( 212Pb, 212Po) and 7Be of the outdoor atmosphere are presented. The results were obtained from measurements averaged over an extended period (4 weeks) and were carried out with a low-pressure On-Line Alpha Cascade Impactor (OLACI). The size distributions of the radionuclides were obtained from the same measurement run with the OLACI, so that the size classification technique and the atmospheric and weather conditions for all radionuclides were identical. This measurement technique made it possible to measure the correct differences between the size distributions of the different natural radionuclides in the environmental air. The differences between the activity size distributions of the long- and short-lived radionuclides could be explained by coagulation with aerosol particles of the atmosphere as for instance 210Pb was shown.

  2. Factors affecting the distribution of natural and anthropogenic radionuclides in the coastal Burullus Lake.

    PubMed

    El-Reefy, H I; Badran, H M; Sharshar, T; Hilal, M A; Elnimr, T

    2014-08-01

    In the present study, measurements of naturally occurring radioactive materials and (137)Cs activity in sediment were conducted for locations covering the entire Burullus Lake in order to gather information about radionuclides mobility and distribution. Low-background γ-spectrometry was employed to determine the activity concentrations of water and sediment samples. The activity concentrations of (226)Ra and (232)Th are close to uniform distribution in the lake environment. Among the different physical and chemical characteristics measured for water and sediment, only salinity and total organic matter content have the potential to affect the mobility of (137)Cs and (40)K. The results suggest that these two radionuclides are attached to different mobile particulates. Increasing salinity tends to strengthen the adsorption of (137)Cs and solubilization of (40)K in sediment. On the other hand, sediment with high organic matter content traps (137)Cs and (40)K associated particulates to bottom sediment. PMID:24657852

  3. Some geological characteristics in a regolith-limey shale rock profile through natural radionuclides distribution.

    PubMed

    Ferreira, Ademar de O; Bastos, Rodrigo O; Appoloni, Carlos R

    2010-09-01

    The objective of this work is to study some geological characteristics in a regolith-rock profile by analyzing the distribution of natural radionuclides along the profile by high resolution gamma ray spectrometry. The concentrations of radionuclides reflect some mineralogical characteristics of the rock matrix and also more recent events, such as weathering and erosion. The samples were collected in an abandoned limestone mine, in the city of Sapopema, Paraná State, Brazil. The stratigraphy is represented by an alternation of decimetric limestone layers, bituminous shale and some rhythmite layers. The ratios eTh/K obtained for all samples of the studied profile have equivalent values, indicating similar mineralogical characteristics of their detritic components. The ratio eTh/eU corroborates the fact that regolith samples belong to a much more oxidized environment, favoring the leaching of uranium. These results show that the measurement of radionuclide distribution in rocks and soils may be an important tool for the analysis of geological characteristics, such as mineralogy and oxidizing conditions. PMID:20304660

  4. Evaluation of occurrence and distribution of natural radionuclides in groundwater of Korea

    NASA Astrophysics Data System (ADS)

    Yun, S. W.; Lee, J. Y.; Park, Y. C.

    2015-12-01

    This study was conducted to evaluate the occurrence and distribution of natural radionuclides in groundwater of Korea. For this purpose, we collected the groundwater radionuclides data of 2000-2011 from National Institute of Environmental Research and available literatures. The sample data were classified into five groups according to the rock types and radionuclide levels were used to construct detailed concentration maps. Radon, uranium, gross-α and radium concentrations ranged from 0.4 to 64,688 pCi/L (mean: 4,907 pCi/L), 0 to 2,297 µg/L (mean: 27.5 µg/L), 0 to 312.0 (mean: 3.9 pCi/L) and 0 to 17.4 pCi/L (mean: 0.2 pCi/L), respectively. Radon concentrations in 562 (53.5%) of 1,501 wells exceeded 4,000 pCi/L, which is the maximum contaminant level by the US environmental protection agency. Uranium, gross-α, and radium concentrations in 121 (11.9%) of 1,031 wells, 34 (3.5%) of 978 wells and 4 (4.5%) of 89 wells exceeded 30 µg/L, 15 pCi/L and 5 pCi/L, respectively. Radionuclide mean concentration in igneous and metamorphic rocks showed higher levels than those of other rocks such as volcanic, carbonate and sedimentary rocks. However, we found that correlations among radionuclides were weak or not significant. This subject is supported by Korea Ministry of Environment as "the GAIA project".

  5. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco).

    PubMed

    Galindo, C; Mougin, L; Fakhi, S; Nourreddine, A; Lamghari, A; Hannache, H

    2007-01-01

    Attention has been focused recently on the use of Moroccan black oil shale as the raw material for production of a new type of adsorbent and its application to U and Th removal from contaminated wastewaters. The purpose of the present work is to provide a better understanding of the composition and structure of this shale and to determine its natural content in uranium and thorium. A black shale collected from Timahdit (Morocco) was analyzed by powder X-ray diffraction and SEM techniques. It was found that calcite, dolomite, quartz and clays constitute the main composition of the inorganic matrix. Pyrite crystals are also present. A selective leaching procedure, followed by radiochemical purification and alpha-counting, was performed to assess the distribution of naturally occurring radionuclides. Leaching results indicate that 238U, 235U, 234U, 232Th, 230Th and 228Th have multiple modes of occurrence in the shale. U is interpreted to have been concentrated under anaerobic conditions. An integrated isotopic approach showed the preferential mobilization of uranium carried by humic acids to carbonate and apatite phases. Th is partitioned between silicate minerals and pyrite. PMID:17098337

  6. Assessment of the vertical distribution of natural radionuclides in a mineralized uranium area in south-west Spain.

    PubMed

    Blanco Rodríguez, P; Vera Tomé, F; Lozano, J C

    2014-01-01

    Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation (LKB Quantulus 1220™) were used to determine the activity concentration of (238)U, (234)U, (230)Th, (226)Ra, (232)Th, and (210)Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were sampled from areas with different levels of influence from the installation and hence had different levels of contamination. The vertical profiles of the soils (down to 40 cm depth) were studied in order to evaluate the vertical distribution of the natural radionuclides. To determine the origin of these natural radionuclides the Enrichment Factor was used. Also, study of the activity ratios between radionuclides belonging to the same radioactive series allowed us to assess the different types of behaviors of the radionuclides involved. The vertical profiles for the radionuclide members of the (238)U series were different at each sampling point, depending on the level of influence of the installation. However, the profiles of each point were similar for the long-lived radionuclides of the (238)U series ((238)U, (234)U, (230)Th, and (226)Ra). Moreover, a major imbalance was observed between (210)Pb and (226)Ra in the surface layer, due to (222)Rn exhalation and the subsequent surface deposition of (210)Pb. PMID:24182407

  7. Distribution of natural radionuclides in soils and beach sands of Abana-Çatalzeytin (Kastamonu)

    NASA Astrophysics Data System (ADS)

    Kurnaz, Aslı; Özcan, Murat; ćetiner, M. Atıf

    2016-03-01

    A gamma spectrometric study of distribution of natural radionuclides in soil and beach sand samples collected from the terrestrial and coastal environment of Abana and Çatalzeytin counties of Kastamonu Province in Turkey was performed with the aim of estimating the radiation hazard of the tourist area and the concentrations of 238U, 232Th and 40K were determined. The activity concentrations of 238U, 232Th and 40K were determined in the ranges 14.95-56.0, 46.5-99.4 and 357.5-871.3 Bqkg-1 for soil samples and the mean concentrations were ascertained as 42.34, 71.24 and 624.18 Bqkg-1, respectively. In sand samples, 238U, 232Th and 40K contents were varied in the ranges of 13.35-41.6, 30.9-53.4 and 275.5-601.3 Bqkg-1 and the mean concentrations were ascertained as 20.57, 45.05 and 411.71 Bqkg-1, respectively. The mean annual effective doses were calculated as 113.08 and 69.16 µSvy-1 for the soil and sand samples, respectively.

  8. Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil.

    PubMed

    Saueia, C H R; Mazzilli, B P

    2006-01-01

    The Brazilian phosphate fertilizer is obtained by wet reaction of igneous phosphate rock with concentrated sulphuric acid, giving as final product, phosphoric acid and dehydrated calcium sulphate (phosphogypsum) as by-products. Phosphoric acid is the starting material for triple superphosphate (TSP), single superphosphate (SSP), monoammonium phosphate (MAP) and diammonium phosphate (DAP). The phosphate rock used as raw material presents in its composition radionuclides of the U and Th natural series. Taking this into account, the main aim of this paper is to evaluate the fluxes of natural radionuclides and radioactive disequilibria involved in the Brazilian industrial process of phosphoric acid production; to determine the content of radioactivity in several commercial fertilizers produced by this industry; to estimate their radiological impact in crop soils and the long term exposure due to their application. Radiological characterization of phosphate rock, phosphogypsum and phosphate fertilizers was performed by alpha and gamma spectrometry. The fertilizer samples, which are derived directly from phosphoric acid, MAP and DAP, presented in their composition low activity concentrations for 226Ra, 228Ra and 210Pb. As for U and Th, the concentrations found in MAP and DAP are more significant, up to 822 and 850Bqkg(-1), respectively. SSP and TSP, which are obtained by mixing phosphoric acid with different amounts of phosphate rock, presented higher concentrations of radionuclides, up to 1158Bqkg(-1) for (238)U, 1167Bqkg(-1) for (234)U, 1169Bqkg(-1) for 230Th, 879Bqkg(-1) for 226Ra, 1255Bqkg(-1) for 210Pb, 521Bqkg(-1) for 232Th, 246Bqkg(-1) for 228Ra and 302Bqkg(-1) for 228Th. Long term exposure due to successive fertilizer applications was evaluated. Internal doses due to the application of phosphate fertilizer for 10, 50 and 100 years were below 1mSvy(-1), showing that the radiological impact of such practice is negligible. PMID:16849030

  9. Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India.

    PubMed

    Ramasamy, V; Sundarrajan, M; Paramasivam, K; Meenakshisundaram, V; Suresh, G

    2013-03-01

    The concentration and distribution of the natural radionuclides ((238)U, (232)Th and (40)K) have been analyzed for the beach sediments of Kerala with an aim of evaluating the radiation hazards. The ranges of activity concentrations of (238)U, (232)Th and (40)K are BDL-1187 ± 21.7 Bq/kg, BDL-5328 ± 23.2 Bq/kg and BDL-693 ± 31.2 Bq/kg respectively. Radiological parameters such as absorbed dose rate, annual effective dose equivalent, annual gonadal dose equivalent, radium equivalent, hazard index, gamma Index, activity utilization index and excess lifetime cancer risk are calculated to know the complete radiological hazardous nature. Concentration of radionuclides ((238)U and (232)Th) and all the calculated radiological parameters are higher in site number S(23) (Chavara beach) due to the presence of rich deposits of black sands. Average concentrations of radionuclides ((238)U and (232)Th) and all calculated radiological parameters are higher than the recommended level. Both univariate and multivariate statistical analyses were applied effectively to assess the distribution of the radionuclides. Univariate statistical analysis shows that the confirmation of infrequent extreme deviations of all radioactive variables. Cluster analysis shows that light minerals play a role in cluster I sampling sites and heavy minerals may be played in sampling sites of other clusters. Calculated activity ratio confirmed the presence of light and heavy minerals in above mentioned sampling sites. The Kerala beach sediments pose significant radiological threat to the people living in the area and tourists going to the beaches for recreation or to the sailors and fishermen involved in their activities in the study area. PMID:23262126

  10. Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey

    NASA Astrophysics Data System (ADS)

    Özmen, S. F.; Cesur, A.; Boztosun, I.; Yavuz, M.

    2014-10-01

    Following Fukushima Dai-ichi Nuclear Power Plant accident, a huge amount of radionuclides were released in atmosphere and ocean. It's impact on the environment is of great concern to the good of the public at large. In this regard environmental radioactivity monitoring such as external dose rate and radioactivity measurements in environmental samples has been carried out. For this purpose, several beach sand samples were collected from south coast of the Turkey in September 2011 and radioactivity concentrations of 226Ra (238U), 228Ac (232Th), 40K, 134Cs and 137Cs were determined by gamma spectrometry using a high-purity Germanium detector. The measured activity concentrations in beach sand samples ranged from 4.0±0.5 to 21.5±1.8 Bq/kg, 1.8±0.4 to 27.9±2.4 Bq/kg, 19.0±2.2 to 590.3±28.6 Bq/kg and 0.1±0.0 to 1.0±0.1 Bq/kg for 226Ra, 232Th, 40K and 137Cs, respectively. However there was no sign of 134Cs in the sample spectrum after Fukushima Dai-ichi Nuclear Power Plant accident. Hence we can safely conclude that there was no significant material transfer from Fukushima to Turkey. The other activities are in good agreement with the published results of neighboring areas. The absorbed gamma dose rate (D) and the annual effective dose (AED) of beach sand samples were below the world wide average implying that the radiation hazard is insignificant. The data presented in this study would also be very useful to determine the possible future effects of the nuclear power plant to the environment.

  11. Activity size distributions of some naturally occurring radionuclides 7Be, 40K and 212Pb in indoor and outdoor environments.

    PubMed

    Mohamed, A

    2005-05-01

    The activity size distributions of natural radionuclides (7)Be and (40)K were measured outdoor in El-Minia city, Egypt by means of gamma spectroscopy. A low-pressure Berner cascade impactor was used as a sampling device. The activity size distribution of both (7)Be and (40)K was described by one log-normal distribution, which was represented by the accumulation mode. The activity median aerodynamic diameter (AMAD) of (7)Be and (40)K was determined to be 530 and 1550 nm with a relative geometric standard deviation (delta, which was defined as the dispersion of the peak) of 2.4 and 2, respectively. The same sampling device (Berner impactor) and a screen diffusion battery were used to measure the activity size distribution, activity concentration and unattached fraction (f(P)) of (212)Pb in indoor air of El-Minia City, Egypt. The mean activity median aerodynamic diameter (AMAD) of the accumulation mode for attached (212)Pb was determined to be 250 nm with a mean geometric standard deviation (delta) of 2.6. The mean value of the specific concentration of (212)Pb associated with that mode was determined to be 460+/-20 mBq m(-3). The activity median thermodynamic diameter (AMTD) of unattached (212)Pb was determined to be 1.25 nm with delta of 1.4. A mean unattached fraction (f(p)) of 0.13+/-0.02 was obtained at a mean aerosol particle concentration of 1.8 x 10(3) cm(-3). The mean activity concentration of unattached (212)Pb was found to be 19+/-3 mBq m(-3). It was found that the aerosol concentration played an important role in varying the unattached, attached activity concentration and unattached fraction (f(P)). PMID:15763482

  12. Distribution of Natural (U-238, Th-232, Ra-226) and Technogenic (Sr-90, Cs-137) Radionuclides in Soil-Plants Complex Near Issyk-Kul Lake, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Jovanovic, L.; Kaldybaev, B.; Djenbaev, B.; Tilenbaev, A.

    2012-04-01

    Researches on radionuclides distribution in the soil-plants complex provide essential information in understanding human exposure to natural and technogenic sources of radiation. It is necessary in establishing regulation relating to radiation protection. The aim of this study was the radiochemical analysis of the content natural radionuclides 238U, 232Th,226Ra and technogenic radionuclides content (90Sr, 137Cs) in soils near Issyk-Kul lake (Kyrgyzstan). Results of radiochemical analyses have shown, that the concentrations of thorium-232 are fluctuating in the limits (11.7-84.1)-10-4% in the soils. The greatest concentration of thorium-232 has been found in the light chestnut soils. The content of uranium-238 in the soils near Issyk-Kul lake is fluctuating from 2.8 up to 12.7-10-4%. Radium-226 has more migration ability in comparison with other heavy natural radionuclides. According to our research the concentrations of radium-226 are fluctuating in the limits (9.4-43.0)-10-11%. The greatest concentration of radium-226 (43,0±2,8)-10-11% has been determined in the light chestnut soil. In connection with global migration of contaminating substances, including radioactive, the special attention is given long-lived radionuclides strontium-90 and caesium-137 in food-chains, and agroecosystems. Results of radiochemical analyses have shown, that specific activity of strontium-90 is fluctuating in the range of 2.9 up to 11.1 Bq/kg, and caesium-137 from 3.7 up to 14,3 Bq/kg in the soil of agroecosystems in the region of Issyk-Kul. In soil samples down to 1 meter we have observed vertical migration of these radionuclides, they were found to accumulate on the surface of soil horizon (0-5 cm) and their specific activity sharply decreases with depth. In addition in high-mountain pastures characterized by horizontal migration of cattle in profiles of soil, it was discovered that specific activity of radionuclides are lower on the slope than at the foot of the mountain. The

  13. Natural radionuclide accumulation by raindrops

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Martin, Inacio; Shkevov, Rumen; Alves, Mauro

    2016-07-01

    The laboratory of environmental radiation of ITA (São José dos Campos, 23°11'11″S, 45°52'43″W, 650 MAMSL) performs simultaneous monitoring of a natural radiation background and meteorological parameters. A time resolution of up to 1 minute allows a detailed comparison of changes in meteorological parameters with those of a concentration of ambient radon progenies in the atmosphere. Results of a study of variation of a fallout of radon progenies ^{214}Pb and ^{214}Bi concomitanting rainfalls are present. The radionuclide fallout rate is reconstructed from the observed gamma rate through a simulation of the first kind Volterra integral equation with difference kernel, determined by ratio of precipitating rates of 214Pb and 214Bi and their decay half times. An original straightforward step-by-step procedure was used for the numerical solution of the equation. The radionuclide concentration in the rainwater is calculated as a ratio of the reconstructed fallout to the measured rainfall. It was observed that the radionuclide fallout rate increases as the rainfall one in approximately power 0.6, i.e. the same as the mean raindrop volume. The concentration thereafter decreases as the rainfall rate in power 0.4. A numerical simulation of the process of accumulation of the radionuclides during diffusion and coalescence drop growth and aerosol scavenging during a passage from a cloud to the ground was performed. The results of the simulations agree with the experimental data.

  14. Distribution and inventories of some artificial and naturally occurring radionuclides in medium to coarse-grained sediments of the channel

    NASA Astrophysics Data System (ADS)

    Boust, Dominique

    1999-12-01

    Concentrations of artificial ( 60Co, 137Cs, 238Pu and 239,240Pu) and naturally occurring radionuclides ( 40K, 212Pb and 214Pb, daughter nuclides of the 232Th and 238U series) in bottom sediments of the Channel are reported. They are grain-size modulated but usual grain-size normalisation methods fail due to the strong heterogeneity of the sediment admixture and/or the occurrence of rock debris in the area of concern. When plotted versus distance from Cap La Hague, 60Co and Pu isotope concentrations display a maximum in the Central Channel, but 137Cs do not. This is further explained by the contribution of the releases from the La Hague plant relative to other radionuclide inputs, especially Atlantic inflow and direct atmospheric fallout. Apparent transit times from Cap La Hague are derived from Pu isotopic ratios and yield average sediment velocities ranging from some kilometres to some tens of kilometres per year. Sediment inventories of artificial radionuclides show that a significant part of the input of 60Co and Pu isotopes is immobilised in the Channel seabed while most of the 137Cs input has been evacuated by water mass circulation.

  15. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  16. Illicit Trafficking of Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  17. Estimation of distribution coefficient of natural radionuclides in soil around uranium mines and its effect with ionic strength of water.

    PubMed

    Mishra, S; Maity, S; Pandit, G G

    2012-11-01

    The distribution coefficient, K(d) in soil is an important parameter to predict the migration of contaminants. In this study, uranium (U) and its decay products thorium (Th), radium (Ra), bismuth (Bi), lead (Pb) and polonium (Po), which may contaminate the soil and ground water around uranium mining areas, have been considered. Soil and ground water samples were collected from a proposed uranium mining site in India. The soil samples were characterised for different parameters affecting the K(d) values. The batch sorption method was employed to measure the K(d) of different radionuclides. The important factors affecting the batch method for K(d) estimation were identified and optimised. The variation of K(d) was observed with different ionic strength water samples. Results showed high K(d) values for Th(IV), Po(IV) and Pb(II) (log K(d) ∼4) and low K(d) (log K(d) ∼2-3) for U(VI), Ra(II) and Bi(III) in all three types of water with different ionic strength. PMID:22927651

  18. Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast.

    PubMed

    el-Taher, A; Madkour, H A

    2011-02-01

    Forty-four marine sediment samples were collected in-front of wadis mouth along the Egyptian Red Sea coast: Wadi El-Hamra, Wadi El-Esh, Wadi Abu-Shaar, Wadi El-Gemal and Wadi Khashir (Hamata). Several investigations of natural activity and trace metals of surface sediments were carried out. Distributions of naturally occurring radioactive materials (NORM) of (226)Ra, (232)Th and (40)K in the marine sediments were determined using NaI (Tl) γ-ray spectrometry. The average activities (range) of natural radionuclides in all wadis in the studied areas are 27.38 (18-48) Bq kg(-1) for (226)Ra, 38.45 (34-110) Bq kg(-1) for (232)Th and 419.4 (214-641) Bq kg(-1) for (40)K. These results are in agreement with earlier reported data. A comparison of radionuclide activities in the sediment of the studied areas and in other coastal and aquatic environments is given. The radiation hazard parameters (absorbed dose rate, radium equivalent activity and external hazard index) are calculated and compared with the reported data. The results of measurements will serve as base line data and background reference level for Egyptian coastlines. PMID:21123076

  19. Spatial and vertical distribution and risk assessment of natural radionuclides in soils surrounding the lignite-fired power plants in Megalopolis basin, Greece.

    PubMed

    Papaefthymiou, H V; Manousakas, M; Fouskas, A; Siavalas, G

    2013-01-01

    Twenty soil profile samples and fourteen surface soil samples collected from the vicinity of the lignite-fired power plants in the Megalopolis basin (Greece) were analysed for their natural radionuclide concentration and (137)Cs, since fossil fuels are associated with naturally occurring radioactive materials and hence with radiological impact. No significant enhancement of surface soil radioactivity levels in the vicinity of lignite-fired plants was observed. A downcore decreasing trend of (137)Cs was observed in a number of cores reflecting its atmospheric origin, whereas the uniform distribution observed in a number of other cores gave information on the mechanical alteration of the soil. The average dose rate value was found to be 63 ± 22 nGy h(-1), while the annual average effective dose from the terrestrial gamma radiation was found to be 0.08 ± 0.03 mSv. PMID:23511709

  20. Natural radionuclides in ground waters and cores

    SciTech Connect

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  1. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  2. State of radionuclides in natural waters

    SciTech Connect

    Kulmatov, R.A.; Rakhmatov, U.; Kist, A.A.; Volkov, A.A.

    1987-03-01

    This work is devoted to a study of the kinetics of attainment of equilibrium between various forms of the radionuclide mercury-203 and to an evaluation of the part played by isotope exchange in this process. The radionuclide mercury-203 was added without a carrier to natural waters of the Syr-Dar'ya and Amu-Dar'ya Rivers and the Aral Sea in the cationic form (3). In order to determine the time of attainment of equilibrium between the forms of the radionuclide mercury-203 and the stable nuclide analogs, they used the methods of sorption on L-36 glass, AV-17 anion-exchanger, KU-2 cation-exchanger, extraction with chloroform plus isobutyl alcohol, and filtration.

  3. Distribution of radionuclides in Dardanelle Reservoir sediments.

    PubMed

    Forgy, J R; Epperson, C E; Swindle, D L

    1984-02-01

    Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively. PMID:6693264

  4. Distribution, enrichment and principal component analysis for possible sources of naturally occurring and anthropogenic radionuclides in the agricultural soil of Punjab state, India.

    PubMed

    Kumar, Ajay; Joshi, Vikram M; Mishra, Manish K; Karpe, Rupali; Rout, Sabyasachi; Narayanan, Usha; Tripathi, Raj M; Singh, Jaspal; Kumar, Sanjeev; Hegde, Ashok G; Kushwaha, Hari S

    2012-06-01

    Enrichment factor (EF) of elements including geo-accumulation indices for soil quality and principal component analysis (PCA) were used to identify the contributions of the origin of sources in the studied area. Results of (40)K, (137)Cs, (238)U and (232)Th including their decay series isotopes in the agricultural soil of Mansa and Bathinda districts in the state of Punjab were presented and discussed. The measured mean radioactivity concentrations for (238)U, (232)Th and (40)K in the agricultural soil of the studied area differed from nationwide average crustal abundances by 51, 17 and 43 %, respectively. The sequence of the EFs of radionuclides in soil from the greatest to the least was found to be (238)U > (40)K > (226)Ra > (137)Cs > (232)Th > (228)Ra. Even though the enrichment of naturally occurring radionuclides was found to be higher, they remained to be in I(geo) class of '0', indicating that the soil is uncontaminated with respect to these radionuclides. Among non-metals, N showed the highest EF and belonged to I(geo) class of '2', indicating that soil is moderately contaminated due to intrusion of fertiliser. The resulting data set of elemental contents in soil was also interpreted by PCA, which facilitates identification of the different groups of correlated elements. The levels of the (40)K, (238)U and (232)Th radionuclides showed a significant positive correlation with each other, suggesting a similar origin of their geochemical sources and identical behaviour during transport in the soil system. PMID:21893521

  5. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  6. Traces of natural radionuclides in animal food

    SciTech Connect

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  7. Reuse of Material Containing Natural Radionuclides - 12444

    SciTech Connect

    Metlyaev, E.G.; Novikova, N.J.

    2012-07-01

    Disposal of and use of wastes containing natural radioactive material (NORM) or technologically enhanced natural radioactive material (TENORM) with excessive natural background as a building material is very important in the supervision body activity. At the present time, the residents of Octyabrsky village are under resettlement. This village is located just near the Priargunsky mining and chemical combine (Ltd. 'PPGHO'), one of the oldest uranium mines in our country. The vacated wooden houses in the village are demolished and partly used as a building material. To address the issue of potential radiation hazard of the wooden beams originating from demolition of houses in Octyabrsky village, the contents of the natural radionuclides (K-40, Th-232, Ra-226, U- 238) are being determined in samples of the wooden beams of houses. The NORM contents in the wooden house samples are higher, on average, than their content in the reference sample of the fresh wood shavings, but the range of values is rather large. According to the classification of waste containing the natural radionuclides, its evaluation is based on the effective specific activity. At the effective specific activity lower 1.5 kBq/kg and gamma dose rate lower 70 μR/h, the material is not considered as waste and can be used in building by 1 - 3 classes depending upon A{sub eff} value. At 1.5 kBq/kg < A{sub eff} ≤ 4 kBq/kg (4 class), the wooden beams might be used for the purpose of the industrial building, if sum of ratios between the radionuclide specific activity and its specific activity of minimum significance is lower than unit. The material classified as the waste containing the natural radionuclides has A{sub eff} higher 1.5 kBq /kg, and its usage for the purpose of house-building and road construction is forbidden. As for the ash classification and its future usage, such usage is unreasonable, because, according to the provided material, more than 50% of ash samples are considered as radioactive

  8. Natural radionuclide analysis in chattarpur area of southeastern coastal area of Odisha, India

    NASA Astrophysics Data System (ADS)

    Rautela, Bhagwat; Gusain, Gurupad; Yadav, Manjulata; Sahoo, Sarat; Tokonami, Shinji; Ramola, Rakesh

    2013-08-01

    The energy released in a spontaneous decay process of natural radionuclides is the main source of the total radiation dose to human beings. Natural radionuclides are widely distributed in soil, rocks, air, and groundwater. In present investigation, the analysis of terrestrial radionuclides such as 226Ra, 232Th, and 40K in soil and sand of Chattarpur area of southeastern coast of Odisha has been carried out using NaI(Tl) gamma ray detector. The higher activity concentrations of naturally occurring radionuclides have been reported from the study area. The gamma radiationdose originating from the terrestrial radionuclides was found to vary from 95 to 1813 nGy/h with an average of 700 nGy/h. This study is important to generate a baseline data of radiation exposure in the area. Health hazard effects due to natural radiation exposure are discussed in details.

  9. Natural Radionuclide Activity Concentrations In Spas Of Argentina

    SciTech Connect

    Gnoni, G.; Czerniczyniec, M.; Canoba, A.; Palacios, M.

    2008-08-07

    Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

  10. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  11. Nevada test site radionuclide inventory and distribution: project operations plan

    SciTech Connect

    Kordas, J.F.; Anspaugh, L.R.

    1982-06-01

    This document is the operational plan for conducting the Radionuclide Inventory and Distribution Program (RIDP) at the Nevada Test Site (NTS). The basic objective of this program is to inventory the significant radionuclides of NTS origin in NTS surface soil. The expected duration of the program is five years. This plan includes the program objectives, methods, organization, and schedules.

  12. The geochemical behavior of natural radionuclides in coastal waters: A modeling study for the Huelva estuary

    NASA Astrophysics Data System (ADS)

    Periáñez, Raúl; Hierro, Almudena; Bolívar, Juan Pedro; Vaca, Federico

    2013-10-01

    A numerical model to study the behavior and distribution of natural radionuclides in sediments of an estuary (Odiel and Tinto rivers, SW Spain) affected by acid mine drainage and industrial activities has been developed. The model solves water circulation due to tides and river stream flows. The dispersion model includes uptake/release reactions of radionuclides between the dissolved phase and bed sediments in a dynamic way, using kinetic transfer coefficients. Seasonal pH and chlorinity distributions are simulated, and a formulation has been developed to consider these seasonal variations on kinetic coefficients. Calculated concentrations of 226Ra and 238U in sediments have been compared with measurements from four seasonal sampling campaigns. Numerical experiments have been carried out to study the relative significance of the different radionuclides sources into the estuary as well as the effect of the two components of water circulation (tides are river flows) on radionuclide dispersion patterns.

  13. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  14. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1985-06-11

    This invention relates to the production of metal-binding compounds useful for the therapy of heavy metal poisoning, for biological mining and for decorporation of radionuclides. The present invention deals with an orderly and effective method of producing new therapeutically effective chelating agents. This method uses challenge biosynthesis for the production of chelating agents that are specific for a particular metal. In this approach, the desired chelating agents are prepared from microorganisms challenged by the metal that the chelating agent is designed to detoxify. This challenge induces the formation of specific or highly selective chelating agents. The present invention involves the use of the challenge biosynthetic method to produce new complexing/chelating agents that are therapeutically useful to detoxify uranium, plutonium, thorium and other toxic metals. The Pseudomonas aeruginosa family of organisms is the referred family of microorganisms to be used in the present invention to produce the new chelating agent because this family is known to elaborate strains resistant to toxic metals.

  15. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.

    PubMed

    Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L

    2009-02-01

    In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year. PMID:19064324

  16. Distribution of artificial radionuclides in lacustrine sediments in China.

    PubMed

    Wu, Fengchang; Zheng, Jian; Liao, Haiqing; Yamada, Masatoshi

    2011-07-01

    Establishing accurate historical records of the distribution, inventory and source of artificial radionuclides in the environment is important for environmental monitoring and radiological health protection due to their potential toxicity, and is also useful for identification and risk assessment of possible future environmental inputs of radionuclides from nuclear weapons tests and accidental release from the nuclear fuel reprocessing facilities or nuclear power reactors. A sector-field inductively coupled plasma mass spectrometer was used to study the recent sedimentation of Pu isotopes in 11 lakes in China. The distribution of (137)Cs was investigated using the conventional radiometric analytical methods. Based on the isotopic compositions of Pu and the activity ratio of (137)Cs/(239+240)Pu, the sources of artificial radionuclides were identified. The potential applications of Pu isotopes for sediment dating and for regional and global environmental change studies were discussed. PMID:21498412

  17. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  18. Analytical evaluation of natural radionuclides and their radioactive equilibrium in raw materials and by-products.

    PubMed

    Ji, Young-Yong; Chung, Kun Ho; Lim, Jong-Myoung; Kim, Chang-Jong; Jang, Mee; Kang, Mun Ja; Park, Sang Tae

    2015-03-01

    An investigation into the distribution of natural radionuclides and radioactive secular equilibrium in raw materials and by-products in a domestic distribution was conducted to deduce the optimum conditions for the analytical evaluation of natural radionuclides for (238)U, (226)Ra, and (232)Th using a gamma-ray spectrometer and inductively coupled plasma mass spectrometer (ICP-MS). The range of the specific activities of natural radionuclides was first evaluated by analyzing (228)Ac and (214)Bi, which are (232)Th and (226)Ra indicators, respectively, in about 100 samples of raw materials and by-products through a gamma-ray spectrometer. From further experiments using several samples selected based on the results of the distribution of natural radionuclides, the validation of their analytical evaluations for the indirect measurements using a gamma-ray spectrometer and direct measurements using ICP-MS was assured by comparing their results. Chemically processed products from the raw materials, such as Zr sand and ceramic balls, were generally shown for the type of bead and particularly analyzed showing a definite disequilibrium with above a 50% difference between (238)U and (226)Ra in the uranium series and (232)Th and (228)Ra in the thorium series. PMID:25527894

  19. Natural and man-made radionuclides in sediments of an inlet in Rio de Janeiro State, Brazil.

    PubMed

    Carvalho, Franciane Martins de; Lauria, Dejanira da Costa; Ribeiro, Fernando Carlos Araújo; Fonseca, Rafael Tonelli; Peres, Sueli da Silva; Martins, Nádia Soido Falcão

    2016-06-15

    The distribution of natural radionuclides (226)Ra, (228)Ra, (40)K and man-made radionuclides ((54)Mn, (60)Co and (137) Cs) in the surface sediments of an inlet of Ribeira Bay were investigated. Sediment samples were collected and analyzed for radionuclides, organic matter, carbonate, sulfate, cationic exchange capacity and grain size composition. The natural radionuclide concentrations ranged from 4.4 to 45, from 10 to 93, from 66 to 1347Bq·kg(-1) dry weight for (226)Ra, (228)Ra and (40)K, respectively. Natural radionuclide concentrations tend to be higher in the silt fraction, which determines their pattern distributions. Only one sample presented measurable concentration for (137)Cs, while (54)Mn was detected in two samples and (60)Co in four sediment samples. Man-made radionuclides present a maximum value of dose external four times lower than the normal background and the potential risk due to the presence of man-made radionuclides in sediments is lower than the risk provided by the natural radionuclides. PMID:27084201

  20. Natural chelating agents for radionuclide decorporation

    DOEpatents

    Premuzic, Eugene T.

    1988-01-01

    This invention relates to the preparation of new, naturally produced chelating agents as well as to the method and resulting chelates of desorbing cultures in a bioavailable form involving Pseudomonas species or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 100-1,000 and also forms chelates with uranium of molecular weight in the area of 100-1,000 and 1,000-2,000.

  1. Empirical distributions of radionuclides, from RWMIS data

    SciTech Connect

    Atwood, C.L.; Schlafman, M.J.

    1993-04-01

    The RWMIS data base gives data on each shipment of waste received at the Transuranic Storage Area, including the total volume of the shipment and the activity (Ci) of each nuclide in the shipment. This report assumes that the RWMIS numbers are correct, and considers the waste containers now retrievably stored at the Transuranic Storage Area. The total decay-corrected activities are summarized for several classes, such as for transuranic (TRU) waste and non-TRU waste, for {alpha}-emitters and {beta}/{gamma}-emitters, by waste originator and by current storage location. The total activity for each nuclide is also given. The empirical distributions are then given for a number of classes and individual nuclides, reflecting the variability between waste shipments. They are expressed in terms of mCi/cu-ft; for fissionable nuclides, the same information is also expressed in terms of mg/cu-ft; finally, the distribution is also given for the committed effective dose equivalent from inhalation, expressed in Mrem/cu-ft. The empirical distributions can be used for simulating the contents of a random waste container with a postulated volume. Examples are given illustrating the uses and limitations of the results.

  2. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    SciTech Connect

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.

  3. Review of Distribution Coefficients for Radionuclides in Carbonate Minerals

    SciTech Connect

    Sutton, M

    2009-08-14

    An understanding of the transport of radionuclides in carbonate minerals is necessary to be able to predict the fate of (and potentially remediate) radionuclides in the environment. In some environments, carbonate minerals such as calciate, aragonite, dolomite and limestone are present and an understanding of the sorption of radionuclides in these carbonate minerals is therefore advantageous. A list of the radionuclides of interest is given in Table 1. The distribution coefficient, K{sub d} is defined as the ratio of the contaminant concentration bound on the solid phase to the contaminant concentration remaining in the liquid phase at equilibrium. Some authors report distribution coefficients and other report partition coefficients, the data presented in this work assumes equality between these two terms, and data are presented and summarized in this work as logarithmic distribution coefficient (log K{sub D}). Published literature was searched using two methods. Firstly, the JNC Sorption Database, namely Shubutani et al (1999), and Suyama and Sasamoto (2004) was used to select elements of interest and a number of carbonate minerals. Secondly, on-line literature search tools were used to locate relevant published articles from 1900 to 2009. Over 300 data points covering 16 elements (hydrogen, carbon, calcium, nickel, strontium, technetium, palladium, iodine, cesium, samarium, europium, holmium, uranium, neptunium, plutonium and americium) were used to calculate an average and range of log K{sub d} values for each element. Unfortunately, no data could be found for chlorine, argon, krypton, zirconium, niobium, tin, thorium and curium. A description of the data is given below, together with the average, standard deviation, minimum, maximum and number of inputs for radionuclide K{sub d} values for calcite, aragonate, limestone, dolomite and unidentified carbonate rocks in Table 2. Finally, the data are condensed into one group (carbonate minerals) of data for each

  4. Radionuclide Inventory Distribution Project Data Evaluation and Verification White Paper

    SciTech Connect

    NSTec Environmental Restoration

    2010-05-17

    Testing of nuclear explosives caused widespread contamination of surface soils on the Nevada Test Site (NTS). Atmospheric tests produced the majority of this contamination. The Radionuclide Inventory and Distribution Program (RIDP) was developed to determine distribution and total inventory of radionuclides in surface soils at the NTS to evaluate areas that may present long-term health hazards. The RIDP achieved this objective with aerial radiological surveys, soil sample results, and in situ gamma spectroscopy. This white paper presents the justification to support the use of RIDP data as a guide for future evaluation and to support closure of Soils Sub-Project sites under the purview of the Federal Facility Agreement and Consent Order. Use of the RIDP data as part of the Data Quality Objective process is expected to provide considerable cost savings and accelerate site closures. The following steps were completed: - Summarize the RIDP data set and evaluate the quality of the data. - Determine the current uses of the RIDP data and cautions associated with its use. - Provide recommendations for enhancing data use through field verification or other methods. The data quality is sufficient to utilize RIDP data during the planning process for site investigation and closure. Project planning activities may include estimating 25-millirem per industrial access year dose rate boundaries, optimizing characterization efforts, projecting final end states, and planning remedial actions. In addition, RIDP data may be used to identify specific radionuclide distributions, and augment other non-radionuclide dose rate data. Finally, the RIDP data can be used to estimate internal and external dose rates. The data quality is sufficient to utilize RIDP data during the planning process for site investigation and closure. Project planning activities may include estimating 25-millirem per industrial access year dose rate boundaries, optimizing characterization efforts, projecting final

  5. Distribution of radionuclides during melting of carbon steel

    SciTech Connect

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  6. Naturally-occurring chemical analogues for repository-derived radionuclides

    SciTech Connect

    Miller, B.

    1996-12-01

    Studies of natural systems are a valuable means of gaining information on the behavior of elements and radionuclides in the geosphere or biosphere that may be used to support performance assessments for radioactive waste repositories. However, these natural system studies face the problem that some of the chemical and isotopic species that occur in radioactive wastes do not occur naturally. Therefore, when attempting to study transport processes for these species other, naturally-occurring species must be examined as {open_quote}chemical analogues{close_quote} for the waste species. Chemical analogues are chosen on the basis of some similarity with the chemical behavior of the waste species in relevant physico-chemical environments. This is a tricky procedure and each system must be considered on a case-by-case basis, although some guidelines can be established and these are given here.

  7. Carotenoid Distribution in Nature.

    PubMed

    Alcaíno, Jennifer; Baeza, Marcelo; Cifuentes, Víctor

    2016-01-01

    Carotenoids are naturally occurring red, orange and yellow pigments that are synthesized by plants and some microorganisms and fulfill many important physiological functions. This chapter describes the distribution of carotenoid in microorganisms, including bacteria, archaea, microalgae, filamentous fungi and yeasts. We will also focus on their functional aspects and applications, such as their nutritional value, their benefits for human and animal health and their potential protection against free radicals. The central metabolic pathway leading to the synthesis of carotenoids is described as the three following principal steps: (i) the synthesis of isopentenyl pyrophosphate and the formation of dimethylallyl pyrophosphate, (ii) the synthesis of geranylgeranyl pyrophosphate and (iii) the synthesis of carotenoids per se, highlighting the differences that have been found in several carotenogenic organisms and providing an evolutionary perspective. Finally, as an example, the synthesis of the xanthophyll astaxanthin is discussed. PMID:27485217

  8. Natural radionuclide concentrations in two phosphate ores of east Algeria.

    PubMed

    Lakehal, Ch; Ramdhane, M; Boucenna, A

    2010-05-01

    Ore is considered as an important source of many elements such as the iron, phosphorus, and uranium. Concerning the natural radionuclides, their concentrations vary from an ore to other depending on the chemical composition of each site. In this work, two phosphate ores found in East of Algeria have been chosen to assess the activity concentration of natural radionuclides represented mainly by three natural radioactive series (238)U, (235)U and (232)Th, and the primordial radionuclide (40)K where they were determined using ultra-low background, high-resolution gamma-ray spectroscopy. The measured activity concentrations of radioactive series ranged from 6.2 +/- 0.4 to 733 +/- 33 Bq.kg(-1) for the (232)Th series, from 249 +/- 16 to 547 +/- 39 Bq.kg(-1) for the (238)U series, around 24.2 +/- 2.5 Bq.kg(-1) for the (235)U series, and from 1.4 +/- 0.2 to 6.7 +/- 0.7 Bq.kg(-1) for (40)K. To assess exposure to gamma radiation in the two ores, from specific activities of (232)Th, (40)K and (226)Ra, three indexes were determined: Radium equivalent (Ra(eq)), external and internal hazard indexes (H(ex) and H(in)), their values ranged from 831 +/- 8 to 1298 +/- 14 Bq.kg(-1) for Ra(eq), from 2.2 +/- 0.4 to 3.5 +/- 0.7 Bq.kg(-1) for H(ex), and from 4.2 +/- 0.7 to 4.5 +/- 0.7 Bq.kg(-1) for H(in). PMID:20303630

  9. Environmental radionuclide distribution in Georgia after the Chernobyl accident

    SciTech Connect

    Mosulishvili, L.M.; Shoniya, N.I.; Katamadze, N.M.

    1994-01-01

    Atmospheric Chernobyl-released radioactivity, assessed at about 2 x 10{sup 18} Bq, caused global environmental contamination. Contaminated air masses appeared in the Transcaucasian region in early May, 1986. Rains that month promoted intense radionuclide deposition all over Georgia. The contamination level of western Georgia considerably exceeded the contamination level of eastern Georgia. The Black Sea coast of Georgia suffered from the Chernobyl accident as much as did strongly contaminated areas of the Ukraine and Belarus`. Unfortunately, governmental decrees on countermeasures against the consequences of the Chernobyl accident at that time did not even refer to the coast of Georgia. The authors observed the first increase in radioactivity background in rainfall samples collected on May 2, 1986, in Tbilisi. {gamma}-Spectrometric measurements of aerosol filters, vegetation, food stuffs, and other objects, in addition to rainfall, persistently confirmed the occurrence of short-lived radionuclides, including {sup 131}I. At first, this fact seemed unbelievable, because the Chernobyl accident had occurred only 4-5 days earlier and far from Georgia. However, these arguments proved to be faulty. Soon, environmental monitoring of radiation in Georgia became urgent. Environmental radionuclide distribution in Georgia shortly after the Chernobyl accident, as well as the methods of analysis, are reported in this paper.

  10. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-01-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m−3, respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. PMID:26838130

  11. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident.

    PubMed

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-07-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon-thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m(-3), respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. PMID:26838130

  12. Risk Due to Radiological Terror Attacks With Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Stan, Rydell; Lyudmila, Zaitseva

    2008-08-01

    The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb). This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.

  13. Risk Due to Radiological Terror Attacks With Natural Radionuclides

    SciTech Connect

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva; Stan, Rydell

    2008-08-07

    The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb).This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.

  14. Measuring and Modeling Naturally Occurring Radioactive Material: Interpreting the Relationship Between the Natural Radionuclides Present

    SciTech Connect

    Lombardo, A.J.; Mucha, A.F.

    2008-07-01

    The regulatory release of sites and facilities (property) for restricted or unrestricted use has evolved beyond prescribed levels to model-derived dose and risk based limits. Dose models for deriving corresponding soil and structure radionuclide concentration guidelines are necessarily simplified representations of complex processes. A conceptual site model is often developed to present a reasonable and somewhat conservative representation of the physical and chemical properties of the impacted material. Dose modeling software is then used to estimate resulting dose and/or radionuclide specific acceptance criteria (activity concentrations). When the source term includes any or all of the uranium, thorium or actinium natural decay series radionuclides the interpretation of the relationship between the individual radionuclides of the series is critical to a technically correct and complete assessment of risk and/or derivation of radionuclide specific acceptance criteria. Unlike man-made radionuclides, modeling and measuring naturally occurring radioactive material (NORM) and technologically enhanced NORM (TENORM) source terms involves the interpretation of the relationship between the radionuclide present, e.g., secular equilibrium, enrichment, depletion or transient equilibrium. Isotopes of uranium, radium, and thorium occur in all three natural decay series. Each of the three series also produces a radon gas isotope as one of its progeny. In nature, the radionuclides in the three natural decay series are in a state that is approaching or has achieved secular equilibrium, in which the activities of all radionuclides within each series are nearly equal. However, ores containing the three natural decay series may begin in approximate secular equilibrium, but after processing, equilibrium may be broken and certain elements (and the radioactive isotopes of that element) may be concentrated or removed. Where the original ore may have contained one long chain of natural

  15. Investigation of radionuclide distribution in soil particles in different landscapes

    NASA Astrophysics Data System (ADS)

    Shkinev, V. M.; Korobova, E. M.; Linnik, V. G.

    2012-04-01

    Russian and foreign publications have been analyzed for understanding the role of micro- and nano- particles in distribution and migration of technogenic elements in soils in different landscape conditions. A technique for application of various fractionation methods to separate and study -particles of different size down to micro- and nano-level has been developed. The dry sit method on the first stage of particle separation is recommend to be followed by the membrane filtration method. For obtaining more comprehensive information, combinations of fractionation technique should be chosen taking into account that (1) the efficiency of particles' separation using subsequent technique would be higher than using the preceding one; (2) separation methods should preferably be based on different principles (separation according size, density, charge etc.); (3) initial fractionation should separate particles according to their size, that makes possible to create an even scale for various samples. A study of distribution and balance of technogenic radionuclides' in soil particles of the size intervals 1.0—0.25, 0.25-0.1, 0.1-0.05, 0.05-0.01, 0.01-0.005, 0.005-0.001 and <0.001 mm in the Yenisey flood plain landscapes proved a significant role of both the particle size and the portion of contaminated fraction in contribution to the total radionuclide inventory in the soil layers. Contribution of the silt particles (0,05-0,01 mm) to Cs-137 contamination ranged from 26 to 33,8%, 45% maximum due to "optimal" combination of both factors. Clay fraction was responsible for approximately 30% of Cs-137 contained in soil horizons due to higher sorption capacity. Relatively high correlation between the activity of 152,154Eu and 60 and the content of silt and clay allowed suggesting their incorporation mainly in clay fraction. Selected experimental plots near the Kola NPP (northern taiga) were used to compare soil particles (fractions 140-71; 71-40 and < 40 µm) in their ability to

  16. Natural analogue studies of the role of colloids, natural organics and microorganisms on radionuclide transport

    SciTech Connect

    McCarthy, J.F.

    1994-10-01

    Colloids may be important as a geochemical transport mechanism for radionuclides at geological repositories if they are (1) present in the groundwater, (2) stable with respect to both colloidal and chemical stabilities, (3) capable of adsorbing radionuclides, especially if the sorption is irreversible, and (4) mobile in the subsurface. The available evidence from natural analogue and other field studies relevant to these issues is reviewed, as is the potential role of mobile microorganisms ({open_quotes}biocolloids{close_quotes}) on radionuclide migration. Studies have demonstrated that colloids are ubiquitous in groundwater, although colloid concentrations in deep, geochemically stable systems may be too low to affect radionuclide transport. However, even low colloid populations cannot be dismissed as a potential concern because colloids appear to be stable, and many radionuclides that adsorb to colloids are not readily desorbed over long periods. Field studies offer somewhat equivocal evidence concerning colloid mobility and cannot prove or disprove the significance of colloid transport in the far-field environment. Additional research is needed at new sites to properly represent a repository far-field. Performance assessment would benefit from natural analogue studies to examine colloid behavior at sites encompassing a suite of probable groundwater chemistries and that mimic the types of formations selected for radioactive waste repositories.

  17. Subcellular distribution and translocation of radionuclides in plants

    SciTech Connect

    Gouthu, S.; Weginwar, R.; Arie, Tsutomu; Ambe, Shizuko; Ozaki, Takuo; Enomoto, Shuichi; Ambe, Fumitoshi; Yamaguchi, Isamu

    1999-09-01

    The subcellular distribution of radionuclides in Glycine max Merr. (soybean) and Cucumis sativus L. (cucumber) and translocation of plant absorbed radionuclides with growth in soybean were studied. More than 60% of cellular incorporated Rb{sup {minus}83}, Sr{sup {minus}85}, Mn{sup {minus}54}, Nb{sup {minus}95}, and Se{sup {minus}75} remained in the supernatant fraction; 55% and 20% of Cr{sup {minus}51} was bound to soybean and cucumber cell wall fractions, respectively; 70% or more of Be{sup {minus}7}, Y{sup {minus}88}, and Fe{sup {minus}59} was fixed in the chloroplast fraction; and approx. 10% of Sc{sup {minus}46}, Fe{sup {minus}59}, V{sup {minus}48}, and As were fixed in the mitochondrial fraction. Translocation of nuclides within the soybean plant at different stages of growth has been determined. Vanadium, Y{sup {minus}88}, Be{sup {minus}7}, Se{sup {minus}75}, Nb{sup {minus}95}, Sc{sup {minus}46}, Cr{sup {minus}51}, and Zr{sup {minus}88} were predominantly accumulated in the root. Although the total percentage of plant uptake of Sc{sup {minus}46}, Zr{sup {minus}88}, Nb{sup {minus}95}, Sc{sup {minus}46}, and Cr{sup {minus}51} was high, because of low mobility and translocation to shoot, their accumulation in the fruit fraction was negligible. The translocation of mobile nuclides in plants was demonstrated clearly by Rb{sup {minus}83}, Zn{sup {minus}65}, and Fe{sup {minus}59}. Data on the nuclide fraction mobilized from vegetative parts into edible parts was used to assess the percentage of accumulated radionuclides in plants that may reach humans through beans.

  18. Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia.

    PubMed

    Dragović, Snežana; Gajić, Boško; Dragović, Ranko; Janković-Mandić, Ljiljana; Slavković-Beškoski, Latinka; Mihailović, Nevena; Momčilović, Milan; Ćujić, Mirjana

    2012-01-01

    The specific activities of natural radionuclides ((40)K, (226)Ra and (232)Th) and Chernobyl-derived (137)Cs were measured in soil profiles representing typical soil types of Belgrade (Serbia): chernozems, fluvisols, humic gleysols, eutric cambisols, vertisols and gleyic fluvisols. The influence of soil properties and content of stable elements on radionuclide distribution down the soil profiles (at 5 cm intervals up to 50 cm depth) was analysed. Correlation analysis identified associations of (40)K, (226)Ra and (137)Cs with fine-grained soil fractions. Significant positive correlations were found between (137)Cs specific activity and both organic matter content and cation exchange capacity. Saturated hydraulic conductivity and specific electrical conductivity were also positively correlated with the specific activity of (137)Cs. The strong positive correlations between (226)Ra and (232)Th specific activities and Fe and Mn indicate an association with oxides of these elements in soil. The correlations observed between (40)K and Cr, Ni, Pb and Zn and also between (137)Cs and Cd, Cr, Pb and Zn could be attributed to their common affinity for clay minerals. These results provide insight into the main factors that affect radionuclide migration in the soil, which contributes to knowledge about radionuclide behaviour in the environment and factors governing their mobility within terrestrial ecosystems. PMID:22072061

  19. Calculation of distribution coefficients for radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstroem, U.

    1995-01-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub d}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions. In the commonly used K{sub d}-methodology. however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U, and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories. 59 refs., 7 figs., 3 tabs.

  20. Calculation of distribution coefficients for Radionuclides in soils and sediments

    SciTech Connect

    Puigdomenech, I.; Bergstrom, U.

    1995-10-01

    The turnover of radionuclides in parts of the biosphere is usually modeled by use of a sorption distribution coefficient, K{sub a}. Its value has a large influence on calculated concentrations of long-lived radionuclides found in reservoirs, which are important for doses to humans. Sorption is due to several processes and a variety of physical and chemical interactions (e.g., surface complexation and ion exchange). In the commonly used K{sub d}-methodology, however, these processes were usually not considered explicitly. Additionally, many K{sub d} values were obtained from laboratory experiments or from the geosphere, the conditions of which differ from those prevailing in the biosphere. The main objective of this work was to extend the knowledge about the theoretical background for calculation of K{sub d} values. To achieve this objective, theoretical models for ion exchange and surface complexation were adapted to simulation under biospheric conditions. Elements studied were Cs, Ra, Np, U and Pu. The results show that a triple-layer surface complexation model may be used to estimate K{sub d} values for actinides as functions of some chemical parameters, such as pH and the redox potential (E{sub H}). An area of application is performance assessment of radioactive waste repositories.

  1. EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE & ORGANIC CONTAMINATION IN GROUNDWATER (SALT LAKE CITY, UT)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) for radionuclides and inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing ...

  2. Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet.

    PubMed

    Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N

    2016-01-01

    To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. PMID:26094571

  3. Environmental impact of natural radionuclides from a coal-fired power plant in Spain.

    PubMed

    Charro, Elena; Peña, Víctor

    2013-01-01

    This paper is a study of the radiological impact of a coal-fired power plant in Spain. Activity concentrations of six natural radionuclides were determined in coal, ash, mine wastes and sediments by gamma-ray spectrometry. The average activity concentrations of (238)U, (226)Ra, (224)Ra, (210)Pb, (232)Th and (40)K in coal were 24, 30, 28, 41, 23 and 242 Bq kg(-1)  and in ash were 103, 128, 101, 124, 88 and 860 Bq kg(-1), respectively. The enrichment factor, radium equivalent activity and alpha index in the ash sample have been estimated. For the five waste pile samples, the absorbed dose rate was higher than the world average dose rate (60 nGy h(-1)). The dependence of radionuclide concentration on the grain size of nine sediments was also studied. The analysis of the radionuclides in waste and sediment samples will demonstrate the distribution and mobility of these elements through the environment, where a potential risk of contamination can be detected. PMID:22807496

  4. Evaluation of natural radionuclides in Brazilian underground mines

    NASA Astrophysics Data System (ADS)

    Santos, T. O.; Rocha, Z.; Vasconcelos, V.; Lara, E. G.; Palmieri, H. E. L.; Cruz, P.; Gouvea, V. A.; Siqueira, J. B.; Oliveira, A. H.

    2015-11-01

    Mineral processing releases long and short half-life radionuclides generating potential exposure to miners. They are internally exposed to radon, thoron and their short-life decay products and, externally, to the gamma emitters scattered in the rock and dust of the mine. Concerning to radiological hazards to workers, this paper focuses on the characterization of the natural radioactivity in the Brazilian underground mines. The radon and its progeny concentrations were measured by using AlphaGUARD and DOSEman detectors, respectively. Radon concentration measurement in groundwater was performed by using RAD7 detector. The 238U and 232Th activity concentration in ore and soil samples were determined by ICPMS. Gamma spectrometry was used to determined 226Ra, 228Ra and 40K activity concentrations. The average radon concentration ranged from 113 to 4964 Bq m-3 and the average Equilibrium Equivalent Concentration varied from 76 to 1174 Bq m-3. Based on these data, the total annual effective dose for the miners was estimated. The results suggest the need of establishing monitoring and control procedures in some mines.

  5. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTION COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS

    SciTech Connect

    Kaplan, D.; et. al

    2010-01-11

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.10-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide Kd variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  6. Committed effective dose from naturally occuring radionuclides in shellfish

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D. A.

    2013-07-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238U (226Ra), 232Th (228Ra) and 40K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg-1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg-1. The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg-1 for 238U (226Ra), 0.16 Bq kg-1 for 232Th (228Ra) and 18 Bq kg-1 for 40K; the respective daily intake values from crustaceans are 0.36 Bq kg-1, 0.16 Bq kg-1 and 23 Bq kg-1. Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226Ra, 19.3 to 39.1 μSv for 228Ra and 17.0 to 40.4 μSv for 40K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values.

  7. Heat distribution by natural convection

    SciTech Connect

    Balcomb, J.D.

    1985-01-01

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  8. Investigating incorporation and distribution of radionuclides in trinitite.

    PubMed

    Belloni, F; Himbert, J; Marzocchi, O; Romanello, V

    2011-09-01

    Most of the surface explosions in nuclear tests have released radioactivity to the environment in the form of bulk glassy materials originating from the melting of sandy soil in the neighbourhood of ground zero. In view of clarifying issues concerning the mechanism of formation and the radiological impact of these materials, we investigated incorporation and volume distribution of radionuclides in a typical fragment of trinitite, the glassy substance generated following the first nuclear test (Trinity Site, New Mexico, 1945). Specific activities were determined by γ-spectrometry for the most significant fission and activation products. In particular, (152)Eu activity was used to estimate the original point of collection of the sample with respect to ground zero. After embedding in an epoxy resin, the sample was then sliced to perform cross-sectional β- and α-autoradiograph. α-spectrometry was also carried out on a fine powder obtained by surface abrasion. In the β-autoradiography, hot spots were distinguishable in the proximity of the blast side, over a 1000 times less intense background of sand activation products. Also α-contamination (from (239+240)Pu and (241)Am) was mostly concentrated within the superficial layer, in a fraction of only 20% of the overall volume of the sample, exhibiting a discontinuous, droplet-like distribution. This evidence would partially support a recent hypothesis on trinitite formation according to which most of the glass layer was formed not on the ground but by a rain of material injected into the fireball that melted, fell back, and collected on a bed of already fused sand. PMID:21636184

  9. Abundances of Natural Radionuclides (40K, 238U, 232Th) in Hanford and Rifle Integrated Field Research Challenge Site Sediments and the Application to the Estimation of Grain Size Distributions

    NASA Astrophysics Data System (ADS)

    Draper, K.; Ward, A. L.; Yabusaki, S.; Murray, C. J.; Greenwood, J.

    2009-12-01

    The distribution and geometry of lithofacies impact groundwater flow and solute spreading but are difficult to characterize at the scale controlling transport. We hypothesize that differences in γ-ray activity resulting from the natural distribution of 40K, 238U, and 232Th (K, U, T) are due to hydraulic separation and sorting and can be used to infer grain-size distributions at the scale of borehole γ-ray logs. The objective of this study was to investigate the feasibility of using γ-ray spectra to detect differences in grain size distributions as a means of characterizing small-scale variations in flow and reactive transport properties. The γ-ray spectra of whole and fractionated sediments from the Hanford and Old Rifle IFRC sites were characterized along with their grain size distributions. In the Hanford sediments, the abundance of K, U, and T was strongly correlated with the extent of weathering and with mean grain size. Hanford clay showed concentrations of 4%, 5.5 ppm, and 6.5 ppm for K, U, and T respectively. An increase in geometric mean diameter from 0.02 mm (clay) to 45.25 mm (very coarse gravel) showed increases in concentrations of 70% for K, 76% for U, and 83% for T. Old Rifle sediments showed no correlation between grain size and K, but there was an 81% increase in U and a 73 % increase in T. Cross plots of Th/U and Th/K also show strong correlations with grain size. The enrichment of natural isotopes with decreasing grain size is likely due to the increase in specific surface area. Thus, borehole γ-ray spectra could have a much wider application in characterizing grain separation and sorting and ultimately flow and reactive transport properties.

  10. Radionuclide releases from natural analogues of spent nuclear fuel

    SciTech Connect

    Curtis, D.B.; Fabryka-Martin, J.; Dixon, P.; Aguilar, R.; Rokop, D.; Cramer, J.

    1993-12-31

    Measures of {sup 99}Tc, {sup 129}I, {sup 239}Pu and U concentrations in rock samples from uranium deposits at Cigar Lake and Koongarra have been used to study processes of radionuclide release from uranium minerals. Rates of release have been immeasurably slow at Cigar Lake. At Koongarra release rates appear to have been faster, producing small deficiencies of {sup 99}Tc, and larger ones of {sup 129}I. The inferred differences in radionuclide release rates are consistent with expected differences in uranium mineral degradation rates produced by the differing hydrogeochemical environments at the two sites.

  11. Modeling Natural Variation through Distribution

    ERIC Educational Resources Information Center

    Lehrer, Richard; Schauble, Leona

    2004-01-01

    This design study tracks the development of student thinking about natural variation as late elementary grade students learned about distribution in the context of modeling plant growth at the population level. The data-modeling approach assisted children in coordinating their understanding of particular cases with an evolving notion of data as an…

  12. Hydrogeological interpretation of natural radionuclide contents in Austrian groundwaters

    NASA Astrophysics Data System (ADS)

    Schubert, Gerhard; Berka, Rudolf; Hörhan, Thomas; Katzlberger, Christian; Landstetter, Claudia; Philippitsch, Rudolf

    2010-05-01

    The Austrian Agency for Health and Food Safety (AGES) stores comprehensive data sets of radionuclide contents in Austrian groundwater. There are several analyses concerning Rn-222, Ra-226, gross alpha and gross beta as well as selected analyses of Ra-228, Pb-210, Po-210, Uranium and U-234/U-238. In a current project financed by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, AGES and the Geological Survey of Austria (GBA) are evaluating these data sets with regard to the geological backgrounds. Several similar studies based on groundwater monitoring have been made in the USA (for instance by Focazio, M.J., Szabo, Z., Kraemer, T.F., Mullin, A.H., Barringer, T.H., De Paul, V.T. (2001): Occurrence of selected radionuclides in groundwater used for drinking water in the United States: a reconnaissance survey, 1998. U.S. Geological Survey Water-Resources Investigations Report 00-4273). The geological background for the radionuclide contents of groundwater will be derived from geological maps in combination with existing Thorium and Uranium analyses of the country rocks and stream-sediments and from airborne radiometric maps. Airborne radiometric data could contribute to identify potential radionuclide hot spot areas as only airborne radiometric mapping could provide countrywide Thorium and Uranium data coverage in high resolution. The project will also focus on the habit of the sampled wells and springs and the hydrological situation during the sampling as these factors can have an important influence on the Radon content of the sampled groundwater (Schubert, G., Alletsgruber, I., Finger, F., Gasser, V., Hobiger, G. and Lettner, H. (2010): Radon im Grundwasser des Mühlviertels (Oberösterreich) Grundwasser. - Springer (in print). Based on the project results an overview map (1:500,000) concerning the radionuclide potential should be produced. The first version should be available in February 2011.

  13. Different sources of suspended sediment according to particle size determined by natural radionuclides

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Ohtsuka, J.; Maruyama, M.; Hamamoto, S.; Murakami, Y.

    2012-12-01

    Extensive human activity and climate change have given great impacts on the sediment balance and connectivity between fluvial and coastal systems, causing sediment-related problems such as sedimentation in reservoir, coastal erosion and water pollution by prolonged turbid water. The dynamics of suspended sediment is one of the most important issues in watershed and coastal management. Suspended sediment load transported to ocean by a river commonly represents a mixture of sediments delivered from different locations and source types within the contributing catchment. In our previous study, we have found that the three natural radionuclides are available to discriminate the source areas of suspended sediment represented by six different bed rock type (sedimentary rock, accretionary sedimentary rock, accretionary basalt block, accretionary volcanic rock, plutonic rock and metamorphic rock), and that the contribution of each source areas to suspended sediment can be estimated (Mizugaki et al., 2012). To elucidate the sources of suspended sediment from mountain to coastal area, the fingerprinting was conducted using natural radionuclide tracers across a couple of adjacent watersheds, the Saru River and Mu River watersheds in central Hokkaido, northern Japan. We collected suspended sediments at outlets of the 13 sub-catchments (0.7-27.2 km2) and 12 stream channels with mid- to large-scaled watershed areas (17-1,333 km2), deposited sediments across a dam reservoir and coastal sediments, in total 389 samples. For collected sediment samples, grain size distributions were measured by laser-diffraction particle size analyzer. The specific surface areas of the samples were estimated using their grain size distribution and the spherical approximation of the particles in each class. For fingerprint the source of suspended sediment, three natural radionuclide activities, 212Pb, 228Ac and 40K, were measured by gamma-ray spectrometry. Specific surface area of the sediment showed

  14. Assessment of doses and risk due to natural radionuclides in edible biota of Domiasiat, Meghalaya.

    PubMed

    Kumar, N; Chaturvedi, S S; Jha, S K

    2012-07-01

    A radiation dose assessment exercise was carried out for the edible biota Solanum nigrum, Carica papaya, Raphnus sativum and Phaseolus domesticus due to naturally available radionuclides (40)K, (238)U and (232)Th in the Domiasiat area in Meghalaya, India. The concentration of radionuclides in biota and corresponding soil was measured by the NaI(Tl) detector having a minimum detection limit (efficiency, 32.4%) and machine counting time of 3000 s. The obtained transfer factor for (40)K was 0.3061, 0.7163, 0.1988 and 0.1279, for (232)Th 0.0003, 2.22E-05, 2.71E-05 and 3.45E-05 and for (238)U 1.46E-05, 9.73E-05, 1.46E-05 and 3.11E-05 (ratio) in each biota, respectively. The detailed physiological and morphological study of the biota was carried out. The point source dose distribution (source↔target) hypothesis was applied for the radiation absorbed fraction. The generated data were modelled using FASSET and obtained un-weighted total dose was 1.78E-04, 6.84E-03, 8.46E-03 and 1.73E-04 μGy h(-1), respectively, finally compared with the IAEA and UNSCEAR data set for screening level dose risk assessment. PMID:22155750

  15. Using naturally occurring radionuclides to determine drinking water age in a community water system

    DOE PAGESBeta

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n =more » 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.« less

  16. Natural radionuclide uptake by mosses in eastern Serbia in 2008-2013.

    PubMed

    Čučulović, Ana Č; Sabovljević, Marko; Čučulović, Rodoljub Č; Veselinović, Dragan

    2016-03-01

    The results of the study on natural radionuclide content in 102 samples of the moss species randomly collected in 2008- 2013 at 30 locations of eastern Serbia are presented in the paper. The activity concentration values of 238U, 226Ra, 232Th, 40K, and 7Be determined by gamma spectrometry were within the intervals: 238U (1.1-50) Bq kg(-1), 226Ra (1.1-41) Bq kg(-1), 232Th (1.4-28) Bq kg(-1), 40K (64-484) Bq kg(-1) and 7Be (88-227) Bq kg(-1), not standing out of the average data reported for this region. The distribution of the obtained data for 226Ra, 232Th, and 238U activity concentration in the analysed mosses has shown values up to 10 Bq kg(-1) with frequencies 47.1 %, 54.9 % and 48.0 %, respectively. The obtained activity concentration values of primordial 40K and cosmogenic radionuclide 7Be were up to 500 Bq kg(-1) and about 90 % of all the results for 7Be uptake by mosses were in the 200-250 Bq kg(-1) concentration range. PMID:27092637

  17. Natural radionuclides and toxic elements in transboundary rivers of Kazakhstan.

    PubMed

    Solodukhin, V; Poznyak, V; Kabirova, G; Stepanov, V; Ryazanova, L; Lennik, S; Liventsova, A; Bychenko, A; Zheltov, D

    2015-06-01

    The paper reports on the study of radionuclide and elemental composition of water, bottom sediment and soil samples collected at the border areas of the following transboundary rivers in Kazakhstan: Chagan, Ural, Ilek, Tobol, Ayat, Irtysh, Emel, Ili, Tekes, Shu, Karabalta, Talas and Syrdarya. The employed analyses include the following methods: instrumental gamma-ray spectrometry, radiochemical analysis, neutron activation analysis, XRF and the inductively coupled plasma mass spectrometry (ICP-MS). Evidence of water environment contamination with radionuclides and toxic elements has been revealed in many of the studied rivers both in Kazakhstan and in adjacent countries. Transboundary transfer of the contaminants is most likely related to local industry (uranium mining and processing) and the presence of radioactive substances in the river basins. PMID:25971346

  18. Natural radionuclides in an eucalyptus forest located in the south of Spain

    NASA Astrophysics Data System (ADS)

    Vaca, F.; Manjón, G.; García-León, M.

    2001-06-01

    Eucalyptus forests can be considered as the main source of raw material for the pulp industry of Spain. This environment was selected for a radioactivity study because natural and artificial radionuclides can be transferred into the pulp mills, associated with raw material, wood and barks, where they are concentrated by industrial processes, becoming a cause of doses. Radionuclide concentration of natural radionuclides ( 238U, 234U, 228Th, 230Th, 232Th) were determined by alpha- and gamma-spectrometry. Well-established radiochemical procedures were applied to environmental samples in order to isolate these radionuclides. A comparison between 228Th activity, determined by gamma-spectrometry, and 232Th activity, determined by alpha-spectrometry, was used as quality control parameter for analyses. The concentration factors were finally evaluated from experimental data.

  19. Distribution and mode of occurrence of radionuclides in phosphogypsum derived from Aqaba and Eshidiya Fertilizer Industry, South Jordan

    USGS Publications Warehouse

    Al-Hwaiti, M. S.; Zielinski, R.A.; Bundham, J.R.; Ranville, J.F.; Ross, P.E.

    2010-01-01

    Phosphogypsum (PG) is a by-product of the chemical reaction called the "wet process" whereby sulphuric acid reacts with phosphate rock (PR) to produce phosphoric acid, needed for fertilizer production. Through the wet process, some impurities naturally present in the PR become incorporated in PG, including U decay-series radionuclides, are the main important concern which could have an effect on the surrounding environment and prevent its safe utilization. In order to determine the distribution and bioavailability of radionuclides to the surrounding environment, we used a sequential leaching of PG samples from Aqaba and Eshidiya fertilizer industry. The results showed that the percentages of 226Ra and 210Pb in PG are over those in the corresponding phosphate rocks (PG/PR), where 85% of the 226Ra and 85% of the 210Pb fractionate to PG. The sequential extraction results exhibited that most of 226Ra and 210Pb are bound in the residual phase (non-CaSO4) fraction ranging from 45-65% and 55%-75%, respectively, whereas only 10%-15% and 10%-20% respectively of these radionuclides are distributed in the most labile fraction. The results obtained from this study showed that radionuclides are not incorporated with gypsum itself and may not form a threat to the surrounding environment. ?? 2010 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  20. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    SciTech Connect

    Dai, L.J.; Wei, H.Y.; Wang, L.Q.

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of Ra-226, Th-232, and K-40 in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.

  1. Spatial distribution and risk assessment of radionuclides in soils around a coal-fired power plant: A case study from the city of Baoji, China

    SciTech Connect

    Dai Lijun; Wei Haiyan . E-mail: yuxidlj@stu.snnu.edu.cn; Wang Lingqing

    2007-06-15

    Coal burning may enhance human exposure to the natural radionuclides that occur around coal-fired power plants (CFPP). In this study, the spatial distribution and hazard assessment of radionuclides found in soils around a CFPP were investigated using statistics, geostatistics, and geographic information system (GIS) techniques. The concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K in soils range from 12.54 to 40.18, 38.02 to 72.55, and 498.02 to 1126.98 Bq kg{sup -1}, respectively. Ordinary kriging was carried out to map the spatial patterns of radionuclides, and disjunctive kriging was used to quantify the probability of radium equivalent activity (Ra{sub eq}) higher than the threshold. The maps show that the spatial variability of the natural radionuclide concentrations in soils was apparent. The results of this study could provide valuable information for risk assessment of environmental pollution and decision support.

  2. Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution.

    PubMed

    Ćujić, Mirjana; Dragović, Snežana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan

    2015-07-01

    Primordial radionuclides, (238)U, (232)Th and (40)K were determined in soil samples collected at two depths (0-10 and 10-20 cm) in the vicinity of the largest coal-fired power plant in Serbia, and their spatial distribution was analysed using ordinary kriging. Mean values of activity concentrations for these depths were 50.7 Bq kg(-1) for (238)U, 48.7 Bq kg(-1) for (232)Th and 560 Bq kg(-1) for (40)K. Based on the measured activity concentrations, the radiological hazard due to naturally occurring radionuclides in soil was assessed. The value of the mean total absorbed dose rate was 76.3 nGy h(-1), which is higher than the world average. The annual effective dose due to these radionuclides ranged from 51.4 to 114.2 μSv. Applying cluster analysis, correlations between radionuclides and soil properties were determined. The distribution pattern of natural radionuclides in the environment surrounding the coal-fired power plant and their enrichment in soil at some sampling sites were in accordance with dispersion models of fly ash emissions. From the results obtained, it can be concluded that operation of the coal-fired power plant has no significant negative impact on the surrounding environment with regard to the content of natural radionuclides. PMID:25716901

  3. Natural radionuclides in seafood from the central Adriatic Sea (Italy).

    PubMed

    Desideri, D; Meli, M A; Roselli, C

    2011-02-01

    Activity concentrations of ²¹⁰Po, ²¹⁰Pb, and ⁴⁰K were measured in different samples of marine organisms from the central Adriatic Sea. The marine organisms were purchased from the local consumer market during all four seasons of the year to evaluate the spatial and temporal distribution of the natural radioactivity. The concentration trend is the following: ⁴⁰K > ²¹⁰Po > ²¹⁰Pb. ⁴⁰K concentration ranged between 54.9 and 235.9 Bq kg⁻¹ fresh weight, and the arithmetic mean of Pb concentration for all samples is <0.7 Bq kg⁻¹ fresh weight. Po activity concentration ranged between 0.3 and 44.6 Bq kg⁻¹ fresh weight; its arithmetic mean was 5.7 ± 7.2 Bq kg⁻¹ fresh weight. Among the pelagic species, anchovy displayed the highest polonium concentration. The data obtained depend upon the type of marine organism and the period of sampling. Committed effective dose due to ²¹⁰Po ingestion from marine food for individuals in the two different population groups was calculated to be 95.9 and 466.4 μSv y⁻¹, respectively. PMID:21399431

  4. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    SciTech Connect

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs.

  5. Study of natural radionuclide and absorbed gamma dose in Ukhimath area of Garhwal Himalaya, India.

    PubMed

    Rautela, B S; Yadav, M; Bourai, A A; Joshi, V; Gusain, G S; Ramola, R C

    2012-11-01

    Natural radiation is the largest contributor to the collective radiation dose of the world population. It is widely distributed in different geological formations such as soil, rocks, air and groundwater. In the present investigation, (226)Ra, (232)Th and (40)K were measured in soil samples of the Ukhimath region of Garhwal Himalaya, India using NaI(Tl) gamma-ray spectrometry. The activity concentrations of naturally occurring radionuclides (226)Ra, (232)Th and (40)K were found to vary from 38.4 ± 6.1 to 141.7 ± 11.9 Bq kg(-1) with an average of 80.5 Bq kg(-1), 57.0 ± 7.5 to 155.9 ± 12.4 Bq kg(-1) with an average of 118.9 Bq kg(-1) and 9.0 ± 3.0 to 672.8 ± 25.9 Bq kg(-1) with an average of 341 Bq kg(-1), respectively. The total absorbed gamma dose rate varies from 70.4 to 169.1 nGy h(-1) with an average of 123.4 nGy h(-1). This study is important to generate a baseline data of radiation exposure in the area. Health hazard effects due to natural radiation exposure are discussed in details. PMID:22908360

  6. Natural radionuclides and plutonium in sediments from the western Arctic Ocean: Sedimentation rates and pathways of radionuclides

    USGS Publications Warehouse

    Huh, C.-A.; Pisias, N.G.; Kelley, J.M.; Maiti, T.C.; Grantz, A.

    1997-01-01

    Sediment cores collected during R.V. Polar Sea AOS94 expedition from the Chukchi Shelf to the North Poke were analyzed for several decay-series natural radionuclides and Pu isotopes to study sedimentation rates and pathways of radionuclides in the western Arctic Ocean. The measured sedimentation rates vary by more than three orders of magnitude along the transect, from 210Pb based rates of 200-700 cm kyr-1 over the Chukchi Shelf and 89 cm kyr-1 at the Chukchi Slope to 230Th-based rates of 0.02-0.3 cm kyr-1 at various settings in the deep basin. 230Th(ex) profiles in the central western Arctic Basin are characterized by a cyclic pattern and a pronounced sub-surface maximum superimposed on an overall decrease with depth. Sediment inventories of excess 210Pb and 230Th in the deep basin as a whole cannot account for their in situ production and 2610Pb fall-out. The opposite is true at the slope and shallower waters. We contend that, as with other ocean basins, boundary scavenging also exists in the Arctic Ocean. The broad continental shelves and the slope region may have the potential of removing all or moat of the particle-reactive radionuclides unaccounted for in the deep basin. The Pu isotope data are consistent with the notion of boundary scavenging. Sediment inventories and concentrations of Pu decrease rapidly offshore. Isotopic composition of Pu suggests mixing of fall-out Pu, which decreases with increasing latitudes, and fuels reprocessing Pu derived from the Russian and Atlantic sides of the Arctic Ocean. Although fuel reprocessing Pu has impinged on the Chukchi Slope, its existence over the Chukchi Shelf is not evident and probably overshadowed by fall-out Pu.

  7. Radiological Assessment of Natural and Artificial Radionuclides in Mission (Texas) Surface Soils via Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wahid, Kareem; Hannan, Mohammad; Nguyen, Nam

    2015-04-01

    Residents living near decommissioned chemical facilities in the city of Mission, Texas have been noted to complain of physiological abnormalities and health related problems associated with low dose radiation exposure. The purpose of this study was to quantify radioactivity levels in the entire Mission area by measuring natural and anthropogenic radionuclide concentrations in 30 representative surface soil samples through high-resolution gamma-ray spectroscopy. The mean specific activity concentrations for these radionuclides were similar to other comparable locations and followed an approximately normal distribution across the samples. In addition, radiological impact assessment factors such as the absorbed dose rate, annual effective dose, radium equivalent activity, and external radiation hazard index were calculated and found to be lower than recommended values, thereby signifying that there seems to be no potential radiological threat associated with Mission surface soils.

  8. Natural attenuation of metals and radionuclides: Report from a workshop held by Sandia National Laboratories

    SciTech Connect

    Brady, P.V.; Borns, D.J.

    1997-11-01

    Natural attenuation is increasingly applied to remediate contaminated soils and ground waters. Roughly 25% of Superfund groundwater remedies in 1995 involved some type of monitored natural attenuation, compared to almost none 5 years ago. Remediation by natural attenuation (RNA) requires clear evidence that contaminant levels are decreasing sufficiently over time, a defensible explanation of the attenuation mechanism, long-term monitoring, and a contingency plan at the very least. Although the primary focus of implementation has to date been the biodegradation of organic contaminants, there is a wealth of scientific evidence that natural processes reduce the bioavailability of contaminant metals and radionuclides. Natural attenuation of metals and radionuclides is likely to revolve around sorption, solubility, biologic uptake and dilution controls over contaminant availability. Some of these processes can be applied to actively remediate sites. Others, such as phytoremediation, are likely to be ineffective. RNA of metals and radionuclides is likely to require specialized site characterization to construct contaminant and site-specific conceptual models of contaminant behavior. Ideally, conceptual models should be refined such that contaminant attenuation can be confidently predicted into the future. The technical approach to RNA of metals and radionuclides is explored here.

  9. Using naturally occurring radionuclides to determine drinking water age in a community water system

    SciTech Connect

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n = 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.

  10. Analysis of natural radionuclides in soil samples of Purola area of Garhwal Himalaya, India.

    PubMed

    Yadav, Manjulata; Rawat, Mukesh; Dangwal, Anoop; Prasad, Mukesh; Gusain, G S; Ramola, R C

    2015-11-01

    Naturally occurring radioactive materials are widely spread in the earth's environment, being distributed in soil, rocks, water, air, plants and even within the human body. All of these sources have contributed to an increase in the levels of environmental radioactivity and population radiation doses. This paper presents the activity level due to the presence of (226)Ra, (232)Th and (40)K in soil samples of Purola area in Garhwal Himalaya region. The measured activity of (226)Ra, (232)Th and (40)K in collected soil samples of Purola was found to vary from 13±10 to 55±10 Bq kg(-1) with an average of 31±2 Bq kg(-1), 13±10 to 101±13 Bq kg(-1) with an average 30±3 Bq kg(-1) and 150±81 to 1310±154 Bq kg(-1) with an average 583±30 Bq kg(-1), respectively. The radium equivalent activity in collected soil samples was found to vary from 47 to 221 Bq kg(-1) with an average of 115 Bq kg(-1). The total absorbed gamma dose rate in this area was found to vary from 22 to 93 nGy h(-1) with an average of 55 nGy h(-1). The distribution of these radionuclides in the soil of study area is discussed in details. PMID:25935014

  11. Suspended sediment from different geological sources in a watershed determined by natural radionuclides

    NASA Astrophysics Data System (ADS)

    Mizugaki, S.; Abe, T.; Murakami, Y.; Kubo, M.; Maruyama, M.; Hamamoto, S.

    2011-12-01

    The geological setting is essential for occurrence of slope failure and landslide so that the geology may control the suspended sediment yield with different magnitude. In the Saru River watershed of central Hokkaido, northern Japan, the typhoon Etau in August 2003 brought heavy rainfall, causing the slope failure and landslide across the areas of various geologies and the highest sediment yield since 1960s. Prolonged sediment runoff has caused the serious problems in association with turbid water, sedimentation in the reservoir, and their impacts on fishery and ecology downstream. To clarify the suspended sediment sources within the Nukabira River watershed, a tributary of Saru River, hydrological monitoring of discharge and turbidity and fingerprinting technique using natural radionuclide were conducted during a heavy rainfall event in August 2010. GIS analysis for slope failure and landslide areas was also conducted to investigate the distribution of potential suspended sediment sources. The activity of radionuclides, including U-series, Th-series, cesium-137 and potassium-40 were determined by gamma ray spectrometry. Statistical analysis showed the best composite fingerprints of Pb-212, Ac-228 and K-40 to classify the suspended sediment sources into six geological units, which were sedimentary rock, plutonic rock, metamorphic rock and three types of cretaceous accretionary complex consist of sedimentary rock, basalt block and volcanic rock. The contribution of source group to suspended sediment was calculated according to the assumption that the Mahalanobis distance in tracer properties between sources and suspended sediment can represent relative contribution of the source. During the rainfall event on August 11, 2011, dominant source of suspended sediment was found to be the areas consist of metamorphic rock (31%), sedimentary rock (30%) and accretionary sedimentary rock (24%). GIS analysis showed the spatial distribution of slope failure and landslide within

  12. Assessment of spatial distribution of fallout radionuclides through geostatistics concept.

    PubMed

    Mabit, L; Bernard, C

    2007-01-01

    After introducing geostatistics concept and its utility in environmental science and especially in Fallout Radionuclide (FRN) spatialisation, a case study for cesium-137 ((137)Cs) redistribution at the field scale using geostatistics is presented. On a Canadian agricultural field, geostatistics coupled with a Geographic Information System (GIS) was used to test three different techniques of interpolation [Ordinary Kriging (OK), Inverse Distance Weighting power one (IDW1) and two (IDW2)] to create a (137)Cs map and to establish a radioisotope budget. Following the optimization of variographic parameters, an experimental semivariogram was developed to determine the spatial dependence of (137)Cs. It was adjusted to a spherical isotropic model with a range of 30 m and a very small nugget effect. This (137)Cs semivariogram showed a good autocorrelation (R(2)=0.91) and was well structured ('nugget-to-sill' ratio of 4%). It also revealed that the sampling strategy was adequate to reveal the spatial correlation of (137)Cs. The spatial redistribution of (137)Cs was estimated by Ordinary Kriging and IDW to produce contour maps. A radioisotope budget was established for the 2.16 ha agricultural field under investigation. It was estimated that around 2 x 10(7)Bq of (137)Cs were missing (around 30% of the total initial fallout) and were exported by physical processes (runoff and erosion processes) from the area under investigation. The cross-validation analysis showed that in the case of spatially structured data, OK is a better interpolation method than IDW1 or IDW2 for the assessment of potential radioactive contamination and/or pollution. PMID:17673340

  13. Natural radionuclides in bottled drinking waters produced in Croatia and their contribution to radiation dose.

    PubMed

    Rožmarić, Martina; Rogić, Matea; Benedik, Ljudmila; Strok, Marko

    2012-10-15

    Activity concentrations of (234)U, (238)U, (226)Ra, (228)Ra, (210)Po and (210)Pb in all Croatian bottled drinking natural spring and natural mineral water products, commercially available on the market, were determined. The samples originated from various geological regions of Croatia. Activity concentrations of measured radionuclides are in general decreasing in this order: (234)U>(238)U>(226)Ra>(228)Ra>(210)Pb>(210)Po and (226)Ra>(228)Ra>(234)U>(238)U>(210)Pb>(210)Po for natural spring and mineral waters, respectively. Based on the radionuclide activity concentrations average total annual effective ingestion doses for infants, children and adults, as well as contribution of each particular radionuclide to total dose, were assessed and discussed. The highest doses were calculated for children from 7 to 12 years of age, which makes them the most critical group of population. All values for each type of water, as well as for each population group, were well below the recommended reference dose level (RDL) of 0.1 mSv from one year's consumption of drinking water according to the European Commission recommendations from 1998. Contribution of each particular radionuclide to total doses varied among different water types and within each water type, as well as between different age groups, where the lowest contribution was found for uranium isotopes and the highest for (228)Ra. PMID:22906977

  14. Analogue validation study of natural radionuclide migration in crystalline rocks using uranium-series disequilibrium studies

    SciTech Connect

    Smellie, J.A.T.; MacKenzie, A.B.; Scott, R.D.

    1986-01-01

    Concentrations and isotope ratios of natural decay series radionuclides have been studied in three contrasting crystalline rock drill core sections intersecting water-conducting fractures deep in the bedrock. Radioactive disequilibria resulting from rock-water interactions were observed in two of the cores. These indicated uranium migration along distances of 40 cm or more on a timescale of 10/sup 6/ years in conjunction with thorium immobility under the same conditions. Fracture surface minerals showed a high affinity for radionuclide retardation and a limit of about 3 cm is suggested for the migration of radionuclides from fracture fluids into the saturated rock. This limit may correspond to enhanced matrix porosities resulting from earlier hydrothermal activity along the same channels.

  15. Radionuclide distributions and migration mechanisms at shallow land burial sites. 1982 annual report of research investigations on the distribution, migration and containment of radionuclides at Maxey Flats, Kentucky

    SciTech Connect

    Kirby, L.J.

    1984-02-01

    Subsurface waters at Maxey Flats are anoxic, have a high alkalinity and contain high concentrations of ferrous, sulfide and ammonium ions and organic carbon. The trench leachates are extremely variable in composition. Prominent radionuclides include /sup 3/H, /sup 60/Co, /sup 90/Sr, /sup 137/Cs, /sup 238/ /sup 239/ /sup 240/Pu and /sup 241/Am. A wide spectrum of dissolved organic compounds is present in the leachates, including EDTA, polar organics and decomposition products from the waste forms. Cobalt-60 and plutonium are present as EDTA complexes and /sup 90/Sr and /sup 137/Cs are associated with carboxylic acid type compounds. The chemistry of these waters changes drastically as they become oxic and plutonium becomes less mobile under these new conditions. Water enters the trenches by infiltration through the trench caps, through subsidence areas, and through interfaces between new landfill and the original soil. Lateral flow is very complex and slow, and apparently occurs mainly by fracture flow. The plastic infiltration barrier installed in 1981 to 1982 has been effective in reducing soil moisture if cracks and leaks are eliminated. To date, no direct evidence of radionuclide transport to offsite locations by subsurface flow has been confirmed. The offsite distribution of radionuclides, except for tritium, is comparable to the ambient fallout from nuclear weapons testing. Tritium concentrations in water offsite are orders of magnitude below MPC levels. 24 figures, 31 tables.

  16. A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents.

    PubMed

    Schell, W R; Linkov, I; Myttenaere, C; Morel, B

    1996-03-01

    The Chernobyl Nuclear Power Plant accident in 1986 caused radionuclide contamination in most countries in Eastern and Western Europe. A prime example is Belarus where 23% of the total land area received chronic levels; about 1.5 x 10(6) ha of forested lands were contaminated with 40--190 kBq m-2 and 2.5 x 10(4) ha received greater than 1,480 kBq m-2 of 137Cs and other long-lived radionuclides such as 90Sr and 239,240Pu. Since the radiological dose to the forest ecosystem will tend to accumulate over long time periods (decades to centuries), we need to determine what countermeasures can be taken to limit this dose so that the affected regions can, once again, safely provide habitat and natural forest products. To address some of these problems, our initial objective is to formulate a generic model, FORESTPATH, which describes the major kinetic processes and pathways of radionuclide movement in forests and natural ecosystems and which can be used to predict future radionuclide concentrations. The model calculates the time-dependent radionuclide concentrations in different compartments of the forest ecosystem based on the information available on residence half-times in two forest types: coniferous and deciduous. The results show that the model reproduces well the radionuclide cycling pattern found in the literature for deciduous and coniferous forests. Variability analysis was used to access the relative importance of specific parameter values in the generic model performance. The FORESTPASTH model can be easily adjusted for site-specific applications. PMID:8609024

  17. A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents

    SciTech Connect

    Schell, W.R.; Linkov, I.; Myttenaere, C.

    1996-03-01

    The Chernobyl Nuclear Power Plant accident in 1986 caused radionuclide contamination in most countries in Eastern and Western Europe. A prime example is Belarus where 23% of the total land area received chronic levels; about 1.5 X 10{sup 6} ha of forested lands were contaminated with 40-190 kBq m{sup -2} and 2.5 X 10{sup 4} ha received greater than 1,480 kBq m{sup -2} of {sup 137}Cs and other long-lived radionuclides such as {sup 90}Sr and {sup 239,240}Pu. Since the radiological dose to the forest ecosystem will tend to accumulate over long time periods (decades to centuries), we need to determine what countermeasures can be taken to limit this dose so that the affected regions can, once again, safely provide habitat and natural forest products. To address some of these problems, our initial objective is to formulate a generic model, FORESTPATH, which describes the major kinetic processes and pathways of radionuclide movement in forests and natural ecosystems and which can be used to predict future radionuclide concentrations. The model calculates the time-dependent radionuclide concentrations in different compartments of the forest ecosystem based on the information available on residence half-times in two forest types: coniferous and deciduous. The results show that the model reproduces well the radionuclide cycling pattern found in the literature for deciduous and coniferous forests. Variability analysis was used to access the relative importance of specific parameter values in the generic model performance. The FORESTPASTH model can be easily adjusted for site-specific applications. 92 refs., 5 figs., 6 tabs.

  18. Computation Of The Residual Radionuclide Activity Within Three Natural Waterways At The Savannah River Site

    SciTech Connect

    Hiergesell, R. A.; Phifer, M. A.

    2014-01-07

    In 2010 a Composite Analysis (CA) of the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS) was completed. This investigation evaluated the dose impact of the anticipated SRS End State residual sources of radionuclides to offsite members of the public. Doses were assessed at the locations where SRS site streams discharge into the Savannah River at the perimeter of the SRS. Although the model developed to perform this computation indicated that the dose constraint of 0.3 mSv/yr (30 mrem/yr), associated with CA, was not approached at the Points of Assessment (POAs), a significant contribution to the total computed dose was derived from the radionuclides (primarily Cs-137) bound-up in the soil and sediment of the drainage corridors of several SRS streams. DOE’s Low Level Waste Federal Review Group (LFRG) reviewed the 2010 CA and identified several items to be addressed in the SRS Maintenance Program. One of the items recognized Cs-137 in the Lower Three Runs (LTR) Integrator Operable Unit (IOU), as a significant CA dose driver. The item made the recommendation that SRS update the estimated radionuclide inventory, including Cs-137, in the LTR IOU. That initial work has been completed and its radionuclide inventory refined. There are five additional streams at SRS and the next phase of the response to the LFRG concern was to obtain a more accurate inventory and distribution of radionuclides in three of those streams, Fourmile Branch (FMB), Pen Branch (PB) and Steel Creek (SC). Each of these streams is designated as an IOU, which are defined for the purpose of this investigation as the surface water bodies and associated wetlands, including the channel sediment, floodplain sed/soil, and related biota. If present, radionuclides associated with IOUs are adsorbed to the streambed sediment and soils of the shallow floodplains that lie immediately adjacent to stream channels. The scope of this effort included the evaluation of any previous sampling and

  19. IMPACTS OF SOLUBILITY AND OTHER GEOCHEMICAL PROCESSES ON RADIONUCLIDE RETARDATION IN THE NATURAL SYSTEM

    SciTech Connect

    B. Arnold

    2005-08-02

    This report documents results and findings of a study of solubility/co-precipitation effects and enhanced sorption due to variations in redox conditions on radionuclide transport in the natural system (BSC 2005 [DIRS 173951]; BSC 2005 [DIRS 173859]) conducted in response to DOE Contracting Officer Authorization Letter 05-001, Item d (Mitchell 2005 [DIRS 173265]). The purpose of this study is to assess the potential impacts of precipitation and enhanced sorption due to variations in redox conditions on radionuclide transport in the saturated zone (SZ) at Yucca Mountain. The information presented in this report is intended to aid in assessing the conservatism in the SZ transport model for supporting the total system performance assessment (TSPA) calculations. A similar study was performed for the impact of solubility/precipitation on radionuclide transport in the unsaturated zone (UZ). However, because the unsaturated zone is under predominantly oxidizing conditions and that the radionuclides released from the engineered barrier system are not expected to precipitate in the UZ for the reasons described below, it was concluded that the effect on unsaturated zone transport is not significant to warrant a detailed study. Solubility limiting conditions for neptunium in the UZ are expected to be similar to the conditions for neptunium solubility in the waste emplacement drift invert, where Np{sub 2}O{sub 5} is recommended as the controlling solid phase (BSC 2005 [DIRS 174566], Section 6.6.1). Solubility limits for neptunium inside the waste package, however, are expected to be controlled by NpO{sub 2} (BSC 2005 [DIRS 174566], Section 6.6.1). The solubility limits for Np2O5 are generally much higher than for NpO{sub 2} (BSC 2005 [DIRS 174566], Tables 6.6-4 and 6.6-7). Therefore, the low concentrations of neptunium releases from waste packages are unlikely to be affected by solubility limits in the unsaturated zone. The SZ is part of the Lower Natural Barrier to the

  20. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTIOIN COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS - 10259

    SciTech Connect

    Kaplan, D.

    2010-01-04

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.3-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide K{sub d} variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  1. Distribution of radionuclides in surface soils, Singhbhum Shear Zone, India and associated dose.

    PubMed

    Patra, A C; Sahoo, S K; Tripathi, R M; Puranik, V D

    2013-09-01

    Gamma emitters were estimated in surface soils from a mineralized zone in Eastern India using high purity Germanium detector-based high resolution gamma spectrometry system. Activities of (238)U, (226)Ra, (232)Th, (235)U, (227)Th, (234 m)Pa, (210)Pb, (40)K, and (137)Cs were 79 ± 50, 81 ± 53, 65 ± 23, 4 ± 2, 5 ± 4, 92 ± 50, 97 ± 45, 517 ± 201, and 4 ± 2 Bq/kg, respectively. Most radionuclides were observed to follow log-normal distribution. The correlation between physicochemical properties of the samples, like pH, organic matter content, particle size, and moisture content were also studied. Activity ratios of (226)Ra/(238)U, (210)Pb/(226)Ra, and (227)Th/(235)U indicated deviation from secular equilibrium in some samples. The associated annual effective dose ranged from 0.07 to 0.24 mSv and the mean was calculated to be 0.12 ± 0.04 mSv for this region, indicating it to be one of normal natural background radiation. PMID:23456273

  2. DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY

    SciTech Connect

    Hiergesell, R.; Phifer, M.

    2012-11-09

    An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional streambed and floodplain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and RReactor cooling water effluent canal systems, PAR Pond (including Pond C) and the floodplain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 75.5 Ci, which is similar

  3. Determination of the Distribution and Inventory of Radionuclides within a Savannah River Site Waterway - 13202

    SciTech Connect

    Hiergesell, R.A.; Phifer, M.A.

    2013-07-01

    An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy's (DOE's) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional stream bed and flood plain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and R-Reactor cooling water effluent canal systems, PAR Pond (including Pond C) and the flood plain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 2.87 E+02 GBq, which is

  4. Comparison of in situ and laboratory gamma spectroscopy of natural radionuclides in desert soil.

    PubMed

    Benke, R R; Kearfott, K J

    1997-08-01

    In situ and laboratory gamma spectroscopy were used to characterize natural background levels of radiation in the soil at eight sites around the Yucca Mountain Range. The purpose of this practical field analysis was to determine if published empirical in situ calibration factors would yield accurate quantitative specific activities (Bq kg(-1)) in a desert environment. Corrections were made to the in situ calibration factors to account for the on-axis response of a detector with a thin beryllium end window. The in situ gamma spectroscopy results were compared to laboratory gamma spectroscopy of soil samples gathered from each site. Five natural radionuclides were considered: 40K, 214Pb, 214Bi, 208Tl, and 228Ac. The in situ determined specific activities were consistently within +/-15% of the laboratory soil sample results. A quantitative discussion of the factors contributing to the uncertainty in the in situ and laboratory results is included. Analysis on the specific activity data using statistical hypothesis tests determined that three nuclides, 214Pb, 214Bi, and 228Ac showed a weak site dependence while the other two nuclides, 40K and 208Tl, did not exhibit a site dependence. Differing radiation background levels from site to site along with in situ and laboratory uncertainties in excess of 10% are two factors that account for the weak site dependence. Despite the good correlation between data, it was recommended that the in situ detector be calibrated by a detector-specific Monte Carlo code which would accurately model more complex geometries and source distributions. PMID:9228170

  5. Concentrations and concentration factors of several anthropogenic and natural radionuclides in marine vertebrates and invertebrates. Final report

    SciTech Connect

    Noshkin, V.E.

    1985-07-17

    Literature is reviewed and summarized with regard to concentrations of several anthropogenic and natural radionuclides in biological organisms from marine environments. Reported concentration factors for these radionuclides in organisms are tabulated for marine fish and invertebrates from water masses affected by different source terms.

  6. Natural-series radionuclides in traditional aboriginal foods in tropical northern Australia: a review.

    PubMed

    Martin, Paul; Ryan, Bruce

    2004-02-26

    This paper gives a review of available information on natural-series radionuclides in traditional Aboriginal foods of northern Australia. Research on this topic has been carried out primarily for radiological impact assessment purposes in relation to uranium mining activities in the region. Many of the studies have concentrated on providing purely concentration data or concentration ratios, although more detailed uptake studies have been undertaken for freshwater mussels, turtles, and water lilies. The most-studied radionuclides are 238U and 226Ra. However, dose estimates based on current data highlight the importance of 210Po, particularly for the natural (nonmining-related) dose. Data on uptake by terrestrial flora and fauna are scarce in comparison with aquatic organisms, and this knowledge gap will need to be addressed in relation to planning for uranium minesite rehabilitation. PMID:15004321

  7. Assessment of radionuclide retardation: uses and abuses of natural analogue studies

    NASA Astrophysics Data System (ADS)

    McKinley, Ian G.; Russell Alexander, W.

    1993-06-01

    Various techniques which have been reported for the in situ determination of radionuclide sorption or retardation as part of natural analogue studies have been critically assessed. In particular cases, the tacit assumptions used to derive retardation data from field observations can be shown to be questionable or, indeed, totally incorrect. Some problems identified are due to ambiguous or inconsistent use of terminology, but a fundamental error which commonly arises is the failure to distinguish between sorption and precipitation — processes which are treated quite differently in transport models. Natural analogue studies can be used to test radionuclide migration models and their associated databases, but considerable efforts are required to adequately characterise the geochemical process occurring. Without such extensive studies, the general applicability of data produced is limited and claims to derive parameters usable in repository performance assessment should be treated with considerable caution.

  8. Weathering products of basic rocks as sorptive materials of natural radionuclides

    SciTech Connect

    Omelianenko, B.I.; Niconov, B.S.; Ryzhov, B.I.; Shikina, N.D.

    1994-06-01

    The principal requirements for employing natural minerals as buffer and backfill material in high-level waste (HLW) repositories are high sorptive properties, low water permeability, relatively high thermal conductivity, and thermostability. The major task of the buffer is to prevent the penetration of radionuclides into groundwater. The authors of this report examined weathered basic rocks from three regions of Russia in consideration as a suitable radioactive waste barrier.

  9. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  10. Anthropogenic radionuclide fluxes and distribution in bottom sediments of the cooling basin of the Ignalina Nuclear Power Plant.

    PubMed

    Marčiulionienė, D; Mažeika, J; Lukšienė, B; Jefanova, O; Mikalauskienė, R; Paškauskas, R

    2015-07-01

    Based on γ-ray emitting artificial radionuclide spectrometric measurements, an assessment of areal and vertical distribution of (137)Cs, (60)Co and (54)Mn activity concentrations in bottom sediments of Lake Drūkšiai was performed. Samples of bottom sediments from seven monitoring stations within the cooling basin were collected in 1988-1996 and 2007-2010 (in July-August). For radionuclide areal distribution analysis, samples from the surface 0-5 cm layer were used. Multi sample cores sliced 2 cm, 3 cm or 5 cm thick were used to study the vertical distribution of radionuclides. The lowest (137)Cs activity concentrations were obtained for two stations that were situated close to channels with radionuclide discharges, but with sediments that had a significantly smaller fraction of organic matter related to finest particles and consequently smaller radionuclide retention potential. The (137)Cs activity concentration was distributed quite evenly in the bottom sediments from other investigated monitoring stations. The highest (137)Cs activity concentrations in the bottom sediments of Lake Drūkšiai were measured in the period of 1988-1989; in 1990, the (137)Cs activity concentrations slightly decreased and they varied insignificantly over the investigation period. The obtained (238)Pu/(239,240)Pu activity ratio values in the bottom sediments of Lake Drūkšiai represented radioactive pollution with plutonium from nuclear weapon tests. Higher (60)Co and (54)Mn activity concentrations were observed in the monitoring stations that were close to the impact zones of the technical water outlet channel and industrial rain drainage system channel. (60)Co and (54)Mn activity concentrations in the bottom sediments of Lake Drūkšiai significantly decreased when operations at both INPP reactor units were stopped. The vertical distribution of radionuclides in bottom sediments revealed complicated sedimentation features, which may have been affected by a number of natural and

  11. INVESTIGATION OF BASALT-RADIONUCLIDE DISTRIBUTION COEFFICIENTS: FISCAL YEAR 1980 ANNUAL REPORT

    SciTech Connect

    Ames, L. L.; McGarrah, J. E.

    1980-12-01

    The Basalt Waste Isolation Project (Rockwell Hanford Operations) is conducting a safety assessment of nuclear waste storage in a repository on the Hanford Site. Pacific Northwest Laboratory, in support of the assessment effort, is generating radionuclide distribution coefficient data between simulated groundwaters and basalts and their secondary mineral products under the range of physicochemical conditions expected in a repository in basalt. Experimental radionuclide distribution coefficients were determined for crushed Pomona, Flow E, and Umtanum basalts at 23°, 60°, 150°, and 300°C at both normal oxygen partial pressure (~0.2 atm) and lower oxygen partial pressure (~10{sup -7} atm), using a static technique. Little or no changes in distribution coefficients were noted for selenium, uranium, technetium, neptunium, or plutonium over the oxygen partial pressure range noted above. Sodium dithionite and hydrazine are now under study as system additives to lower Eh to -0.3 to -0.5 V, the conditions expected to prevail in the closed repository in basalt. Radium, strontium, cesium, and americium are not expected to change oxidation states under repository conditions, while iodine remains an anion in either oxidation state. Lowering the system Eh to the -0.3 to -0.5 V expected in a repository in basalt should result in an oxidation state change and enhanced removal from solution for selenium, uranium, technetium, neptunium, and plutonium. Sorption of iodine was not affected by the Eh changes. Temperature change effects on most radionuclide distribution coefficient (Kd) values over the 23° to 300°C range were major with the exception of iodine and technetium, neither of which were appreciably sorbed at normal to ~10{sup -7} atm oxygen partial pressure. Uranium Kd values increased with an increase in temperature. In addition, uranium Kd values at 23°C decrease by an order of magnitude in response to added CO{sub 3}{sup 2-} in the solution. Cesium basalt Kd values

  12. Description of spatial patterns of radionuclide deposition by lognormal distribution and hot spots.

    PubMed

    Grubich, Andry; Makarevich, V I; Zhukova, O M

    2013-12-01

    Spatial distributions of activity density (kBq/m(2)) and activity concentration (Bq/kg) are studied on sites with non-cultivated soils. Fitting datasets with lognormal, Weibull and normal distributions with sampling size n ≥ 60 showed that radionuclide deposition ((90)Sr, (137)Cs, (238)Pu, (239+240)Pu, (241)Am) due to Chernobyl fallout no more than in 10% of cases are described by Weibull distribution, and in the rest of the cases--by lognormal distribution. However asymptotics of "righthand tail" of empirical (sample) distribution quite often differs from the right-hand tail asymptotics of lognormal distribution. Thereby lognormal distribution is only an approximate statistical model of radionuclides' spatial pattern. Estimates of site surface area with "hot spots" are considered. Also distributions of (137)Cs and (134)Cs activity concentration on the territory contaminated by Fukushima fallout are reviewed. Characteristics of activity concentration for Fukushima and Chernobyl fallouts are collated. The results obtained make it possible to suggest that in both cases spatial contaminations of soil are described by approximately the same statistical models. PMID:24144832

  13. The effect of gravel size fraction on the distribution coefficients of selected radionuclides

    NASA Astrophysics Data System (ADS)

    Um, Wooyong; Serne, R. Jeffrey; Last, George V.; Clayton, Ray E.; Glossbrenner, Ellwood T.

    2009-06-01

    This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient ( Kd) construct can be estimated from laboratory tests on sediments less than 2 mm size fraction. However, this common assumption can lead to inaccurate estimates of the mobility and sorption affinity of many radionuclides (e.g., Tc, U, and Np) on gravel dominated sediments at the Hanford Site and other locations. Laboratory batch sorption experiments showed that the distribution coefficients measured using only sediment less than 2 mm size fraction and correcting for inert gravel fraction were not in agreement with those obtained from the bulk sediments including gravel (larger than 2 mm size fraction), depending on the radionuclide. The least reactive radionuclide, Tc had Kd values for bulk sediment with negligible deviations from the inert gravel corrected Kd values measured on less than 2 mm size fraction. However, differences between measured Kd values using sediment less than 2 mm size fraction and the Kd values on the bulk sediment were significant for intermediately and strongly reactive radionuclides such as U and Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxide coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the Kd, < 2 mm and Kd, > 2 mm values to estimate the Kd for the bulk sediment were found to best describe Kd values for radionuclides on the bulk sediment. Gravel correction factors should not be neglected to predict precisely the sorption capacity of the bulk sediments that contain more than 30% gravel. In addition, more detailed characterization of gravel surfaces should be conducted to identify whether higher reactive sorbents are present in

  14. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan.

    PubMed

    Kinoshita, Norikazu; Sueki, Keisuke; Sasa, Kimikazu; Kitagawa, Jun-ichi; Ikarashi, Satoshi; Nishimura, Tomohiro; Wong, Ying-Shee; Satou, Yukihiko; Handa, Koji; Takahashi, Tsutomu; Sato, Masanori; Yamagata, Takeyasu

    2011-12-01

    A tremendous amount of radioactivity was discharged because of the damage to cooling systems of nuclear reactors in the Fukushima No. 1 nuclear power plant in March 2011. Fukushima and its adjacent prefectures were contaminated with fission products from the accident. Here, we show a geographical distribution of radioactive iodine, tellurium, and cesium in the surface soils of central-east Japan as determined by gamma-ray spectrometry. Especially in Fukushima prefecture, contaminated area spreads around Iitate and Naka-Dori for all the radionuclides we measured. Distributions of the radionuclides were affected by the physical state of each nuclide as well as geographical features. Considering meteorological conditions, it is concluded that the radioactive material transported on March 15 was the major contributor to contamination in Fukushima prefecture, whereas the radioactive material transported on March 21 was the major source in Ibaraki, Tochigi, Saitama, and Chiba prefectures and in Tokyo. PMID:22084070

  15. Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan

    PubMed Central

    Kinoshita, Norikazu; Sueki, Keisuke; Sasa, Kimikazu; Kitagawa, Jun-ichi; Ikarashi, Satoshi; Nishimura, Tomohiro; Wong, Ying-Shee; Satou, Yukihiko; Handa, Koji; Takahashi, Tsutomu; Sato, Masanori; Yamagata, Takeyasu

    2011-01-01

    A tremendous amount of radioactivity was discharged because of the damage to cooling systems of nuclear reactors in the Fukushima No. 1 nuclear power plant in March 2011. Fukushima and its adjacent prefectures were contaminated with fission products from the accident. Here, we show a geographical distribution of radioactive iodine, tellurium, and cesium in the surface soils of central-east Japan as determined by gamma-ray spectrometry. Especially in Fukushima prefecture, contaminated area spreads around Iitate and Naka-Dori for all the radionuclides we measured. Distributions of the radionuclides were affected by the physical state of each nuclide as well as geographical features. Considering meteorological conditions, it is concluded that the radioactive material transported on March 15 was the major contributor to contamination in Fukushima prefecture, whereas the radioactive material transported on March 21 was the major source in Ibaraki, Tochigi, Saitama, and Chiba prefectures and in Tokyo. PMID:22084070

  16. The enrichment of natural radionuclides in oil shale-fired power plants in Estonia--the impact of new circulating fluidized bed technology.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-03-01

    Burning oil shale to produce electricity has a dominant position in Estonia's energy sector. Around 90% of the overall electric energy production originates from the Narva Power Plants. The technology in use has been significantly renovated - two older types of pulverized fuel burning (PF) energy production units were replaced with new circulating fluidized bed (CFB) technology. Additional filter systems have been added to PF boilers to reduce emissions. Oil shale contains various amounts of natural radionuclides. These radionuclides concentrate and become enriched in different boiler ash fractions. More volatile isotopes will be partially emitted to the atmosphere via flue gases and fly ash. To our knowledge, there has been no previous study for CFB boiler systems on natural radionuclide enrichment and their atmospheric emissions. Ash samples were collected from Eesti Power Plant's CFB boiler. These samples were processed and analyzed with gamma spectrometry. Activity concentrations (Bq/kg) and enrichment factors were calculated for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides and for (40)K in different CFB boiler ash fractions. Results from the CFB boiler ash sample analysis showed an increase in the activity concentrations and enrichment factors (up to 4.5) from the furnace toward the electrostatic precipitator block. The volatile radionuclide ((210)Pb and (40)K) activity concentrations in CFB boilers were evenly distributed in finer ash fractions. Activity balance calculations showed discrepancies between input (via oil shale) and output (via ash fractions) activities for some radionuclides ((238)U, (226)Ra, (210)Pb). This refers to a situation where the missing part of the activity (around 20% for these radionuclides) is emitted to the atmosphere. Also different behavior patterns were detected for the two Ra isotopes, (226)Ra and (228)Ra. A part of (226)Ra input activity, unlike (228)Ra, was undetectable in the

  17. Monitoring of radionuclides contamination of soils in Shatsk National Natural Park (Volyn region, Ukraine) during 1994-2001.

    PubMed

    Hrabovskyy, V; Dzendzelyuk, O; Katerynchuk, I; Furgala, Y

    2004-01-01

    The results of studies of radionuclide contamination of the soils in the western part of the territory of Shatsk National Natural Park (ShNNP), Volyn region, Ukraine, performed during 1994-2001 are presented. Based on the experimental results, the three-dimensional plot of the 137Cs density contamination for the soils at the territory under investigation has been constructed. The monitoring during 1994-2001 of the 137Cs vertical distributions in the different kinds of soils from the Park and the forecasting of the distribution changes of the depth down to 50 cm for the sod loamy sandy gleyed loamy sand soil of the Park up to 2086 have been performed. PMID:15162852

  18. Investigation of basalt-radionuclide distribution coefficients: fiscal year 1980 annual report

    SciTech Connect

    Ames, L.L.; McGarrah, J.E.

    1980-12-01

    The Basalt Waste Isolation Project (Rockwell Hanford Operations) is conducting a safety assessment of nuclear waste storage in a repository on the Hanford Site. Pacific Northwest Laboratory, in support of the assessment effort, is generating radionuclide distribution coefficient data between simulated groundwaters and basalts and their secondary mineral products under the range of physicochemical conditions expected in a repository in basalt. Experimental radionuclide distribution coefficients were determined for crushed Pomona, Flow E, and Umtanum basalts at 23/sup 0/, 60/sup 0/, 150/sup 0/, and 300/sup 0/C at both normal oxygen partial pressure (approx. 0.2 atm) and lower oxygen partial pressure (approx. 10/sup -7/ atm), using a static technique. Little or no changes in distribution coefficients were noted for selenium, uranium, technetium, neptunium, or plutonium over the oxygen partial pressure range noted above. Sodium dithionite and hydrazine are now under study as system additives to lower Eh to -0.3 to -0.5 V, the conditions expected to prevail in the closed repository in basalt. Temperature change effects on most radionuclide distribution coefficient (Kd) values over the 23/sup 0/ to 300/sup 0/C range were major with the exception of iodine and technetium, neither of which were appreciably sorbed at normal to approx. 10/sup -7/ atm oxygen partial pressure. The effect of radionuclide concentration on the Kd value was shown graphically for cesium and strontium over a range of from 1 x 10/sup -10/ or 10/sup -12/ to 1 x 10/sup -4/M. Initial work was begun on Kd values obtained under controlled Eh and pH conditions to simulate specific oxygen partial pressure and pH conditions expected to occur in the repository environment.

  19. The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S

    2014-01-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252

  20. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant

    NASA Astrophysics Data System (ADS)

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.

    2014-08-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.

  1. External exposure doses due to gamma emitting natural radionuclides in some Egyptian building materials.

    PubMed

    Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R

    2012-01-01

    Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. PMID:21839645

  2. Distribution of radionuclides in the surface sea water developed by aerial radiological survey

    NASA Astrophysics Data System (ADS)

    Inomata, Yayoi; Aoyama, Michio; Hirose, Katsumi; Sanada, Yukihisa; Torii, Tatsuo; Tsubono, Takaki; Tsumune, Daisuke; Yamada, Masatoshi

    2014-05-01

    This study provides new data analysis method of aerial radiological survey to monitor the distribution of anthropogenic radioactivity in surface seawaters as a first attempt. The aerial radiological survey was performed by the U.S. Department of Energy National Nuclear Security Administration (DOE/NNSA) within a 30 km radius of the Fukushima Daiichi Nuclear Power Plant (FNPP1) on 18 April 2011. We found good correlations between the observed concentrations of FNPP1 derived radionuclides (131I, 134Cs, 137Cs) in the surface seawater and gamma-ray dose rates by aerial radiological surveys (correlation coefficients for 131I, 0.89; 134Cs, 0.96;137Cs, 0.95). The detection limits of 131I, 134Cs, and 137Cs in surface seawaters for the aerial radiological survey are 25, 21, 24 Bq L-1, respectively. Based on these relations, we find that the area with high concentrations of the FNPP1 derived radionuclides spread south-southeast from the FNPP1. The maximum concentrations of 131I, 134Cs, and 137Cs reached 303, 456, and 528 Bq L-1, respectively. The131I/134Cs ratios in surface waters of the high activities area are about 0.6-0.7. Considering the radioactive decay of 131I (half-life: 8.021 d), we confirm that radionuclides in the surface seawater of this area are due to direct release from FNPP1 to the ocean. From these results, it is concluded that the aerial radiological survey is very effective to investigate the accurate distribution of anthropogenic radioactivity in the surface seawater. Furthermore, the model reproduced the distribution pattern of the FNPP1 derived radionuclides in surface seawater obtained by the aerial radiological survey, although simulated results by regional ocean model are underestimated.

  3. Distribution of gamma-ray emitting radionuclides in the environment of Burullus Lake: I. Soils and vegetations.

    PubMed

    El-Reefy, H I; Sharshar, T; Zaghloul, R; Badran, H M

    2006-01-01

    The concentrations and distribution of gamma-ray emitting isotopes in Burullus Lake were investigated with the aim of evaluating the environmental radioactivity. Particularly in wetlands, natural properties of the environment can cause the actual inventory to be different from the activity originally deposited. The mean concentrations of (226)Ra, (232)Th and (40)K were 14.3, 15.5 and 224 Bq/kg, respectively, in the coastal soils. On the other hand, soil samples from the islands had mean concentrations of 13.5, 17.4 and 341 Bq/kg for (226)Ra, (232)Th and (40)K, respectively. Samples from coast and islands show evidence of possible transfer and accumulation of the (137)Cs radionuclide. The mean (137)Cs activity concentrations in the soil samples were 1.2 and 15.1 Bq/kg in the coast and islands, respectively. The vertical migration of (137)Cs was studied based on its content in the consequently located three soil layers down to 30 cm depth. The radium equivalent, dose rate in air and annual dose equivalent from the terrestrial natural gamma-radiation were evaluated. The mean activity concentrations of the gamma-ray emitting radionuclides in vegetation were relatively low. PMID:16427723

  4. An assessment of natural radionuclides in water of Langat River estuary, Selangor

    NASA Astrophysics Data System (ADS)

    Hamzah, Zaini; Rosli, Tengku Nurliana Tuan Mohd; Saat, Ahmad; Wood, Ab. Khalik

    2014-02-01

    An estuary is an area that has a free connection with the open sea and it is a dynamic semi-enclosed coastal bodies. Ex-mining, aquaculture and industrial areas in Selangor are the sources of pollutants discharged into the estuary water. Radionuclides are considered as pollutants to the estuary water. Gamma radiations emitted by natural radionuclides through their decaying process may give impact to human. The radiological effect of natural radionuclides which are 226Ra, 228Ra, 40K, 238U and 232Th, were explored by determining the respective activity concentrations in filtered water along the Langat estuary, Selangor. Meanwhile, in- situ water quality parameters such as temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using YSI portable multi probes meter. The activity concentration of 226Ra, 228Ra and 40K were determined by using gamma-ray spectrometry with high-purity germanium (HPGe) detector. The activity concentrations of 226Ra, 228Ra and 40K in samples are in the range of 0.17 - 0.67 Bq/L, 0.16 - 0.97 Bq/L and 1.22 - 5.57 Bq/L respectively. On the other hand, the concentrations of uranium-238 and thorium-232 were determined by using Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF). The thorium concentrations are between 0.17 ppm to 0.28 ppm and uranium concentrations were 0.25 ppm to 0.31 ppm. The results show activity concentrations of radionuclides are slightly high near the river estuary. The Radium Equivalent, Absorbed Dose Rate, External Hazard Index, and Annual Effective Dose of 226Ra, 228Ra and 40K are also studied.

  5. An assessment of natural radionuclides in water of Langat River estuary, Selangor

    SciTech Connect

    Hamzah, Zaini Rosli, Tengku Nurliana Tuan Mohd Saat, Ahmad Wood, Ab. Khalik

    2014-02-12

    An estuary is an area that has a free connection with the open sea and it is a dynamic semi-enclosed coastal bodies. Ex-mining, aquaculture and industrial areas in Selangor are the sources of pollutants discharged into the estuary water. Radionuclides are considered as pollutants to the estuary water. Gamma radiations emitted by natural radionuclides through their decaying process may give impact to human. The radiological effect of natural radionuclides which are {sup 226}Ra, {sup 228}Ra, {sup 40}K, {sup 238}U and {sup 232}Th, were explored by determining the respective activity concentrations in filtered water along the Langat estuary, Selangor. Meanwhile, in- situ water quality parameters such as temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using YSI portable multi probes meter. The activity concentration of {sup 226}Ra, {sup 228}Ra and {sup 40}K were determined by using gamma-ray spectrometry with high-purity germanium (HPGe) detector. The activity concentrations of {sup 226}Ra, {sup 228}Ra and {sup 40}K in samples are in the range of 0.17 - 0.67 Bq/L, 0.16 - 0.97 Bq/L and 1.22 - 5.57 Bq/L respectively. On the other hand, the concentrations of uranium-238 and thorium-232 were determined by using Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF). The thorium concentrations are between 0.17 ppm to 0.28 ppm and uranium concentrations were 0.25 ppm to 0.31 ppm. The results show activity concentrations of radionuclides are slightly high near the river estuary. The Radium Equivalent, Absorbed Dose Rate, External Hazard Index, and Annual Effective Dose of {sup 226}Ra, {sup 228}Ra and {sup 40}K are also studied.

  6. Nevada test site radionuclide inventory and distribution program: Report number 4, Areas 18 and 20

    SciTech Connect

    McArthur, R D; Mead, S W

    1988-04-01

    As part of the Radionuclide Inventory and Distribution Program on the Nevada Test Site, in situ measurements of gamma-emitting radionuclides were made at more than 600 locations in six regions near ground zeros in Areas 18 and 20. In addition, several soil samples were collected from each region and analyzed to determine inverse relaxation lengths and radionuclide ratios. Analysis of the data from Area 20 led to estimated inventories of 23 Ci of /sup 241/Am, 30 Ci of /sup 238/Pu, 41 Ci of /sup 239,240/Pu, 18 Ci of /sup 60/Co, 6.4 Ci of /sup 137/Cs, 6.0 Ci of /sup 90/Sr, 17 Ci of /sup 152/Eu, 19 Ci of /sup 154/Eu, and 6.6 Ci of /sup 155/Eu. For Area 18, the estimated inventories were 27 Ci of /sup 241/Am, 4.9 Ci of /sup 238/Pu, 150 Ci of /sup 239,240/Pu, 1.3 Ci of /sup 60/Co, 4.9 Ci of /sup 137/Cs, 13 Ci of /sup 90/Sr, 2.1 Ci of /sup 152/Eu, 1.3 Ci of /sup 154/Eu, and 1.4 Ci of /sup 155/Eu. The locations of the measurements in Area 18 were chosen by importance sampling, which permits the calculation of an estimate of the sampling error. Maps of radionuclide distributions were also generated for all regions except the area near the Palanquin and Cabriolet ground zeros. 3 refs., 65 figs., 7 tabs.

  7. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides. PMID:19027201

  8. Radionuclide migration experiments in a natural fracture in a quarried block of granite

    NASA Astrophysics Data System (ADS)

    Vandergraaf, Tjalle T.; Drew, Douglas J.; Masuda, Sumio

    1996-02-01

    A radionuclide migration experiment was performed over a distance of 1 m in a natural fracture in a quarried block of granite. The fracture in the block was characterized hydraulically by measuring the pressure drop in borehole-to-borehole pump tests. The effective fracture volume in the block was ˜ 100 mL. A silicone coating was applied to the exterior, and the block was immersed in a tank of water to which hydrazine was added to provide a chemically reducing barrier. Migration experiments were performed at a flow rate of 2.2 mL h -1 using 85Sr, 131I, 137Cs, 144Ce, 152Eu, 237Np and 238Pu. A total of 9.5 L of groundwater was pumped through the fracture, corresponding to ˜95 fracture volumes. Only 85Sr, 131I, 137Cs, 237Np and 238Pu were observed in the eluent. Scanning of the fracture surface at the end of the migration experiment showed limited mobility of α-emitting radionuclides and of the rare-earth elements, consistent with static sorption data obtained on representative fracture surface material. The mobility of 137Cs was higher than that of the rare-earth elements, but it was lower than that of 85Sr. When samples of fracture-coating material were separated into fractions with different specific gravity, there was a clear indication of radionuclide association with mineral groups.

  9. Dispersion of U-series natural radionuclides in stream sediments from Edale, UK.

    PubMed

    Siddeeg, Saifeldin M; Bryan, Nicholas D; Livens, Francis R

    2014-05-01

    The spatial distribution of (238)U-series radionuclides, specifically 238U, 234U, 230Th and 226Ra, has been determined in stream sediments from Edale, Derbyshire, United Kingdom, to explore the behaviour of U-series radionuclides during weathering. For uranium and thorium, two different extraction methods were used, total dissolution with HNO3/HF in a microwave and leaching with aqua regia. This was followed by radiochemical separation using extraction chromatography, then alpha spectrometry measurement. The total radium contents in the sediments were measured using gamma spectrometry, while the leached fraction was measured in the same way as for uranium and thorium. The total sediment content of uranium and thorium ranges from ∼10 up to ∼200 Bq kg(-1), while the radium specific activity lies between ∼15 and 180 Bq kg(-1). In the aqua regia extractions, the uranium and thorium contents are in the range of ∼5 to ∼100 Bq kg(-1), while the radium specific activities are similar to those measured by total dissolution. All the radionuclides show no correlation with organic matter content. The activity ratios 234U/238U, 230Th/238U and 226Ra/238U were used to determine the degree of radioactive disequilibrium. The data show disequilibrium in most of the sediments, with activity ratios of 234U/238U, 230Th/238U and 226Ra/238U>1, inconsistent with evolution through straightforward weathering processes. Multivariate cluster analysis based on five variables, the specific activities of 238U, 234U, 230Th, 226Ra and loss on ignition, was employed to group the data and identify five distinct clusters. There seems to be a link between high radionuclide concentrations and proximity to landslips. PMID:24562972

  10. Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash.

    PubMed

    Sahu, S K; Tiwari, M; Bhangare, R C; Pandit, G G

    2014-12-01

    Coal fired thermal power contributes 70% of power in India. Coal fired power generation results in huge amounts of fly ash and bottom ash of varying properties. Coal, which contains the naturally occurring radionuclides, on burning results in enrichment of these radionuclides in the ashes. In the present study, coal, bottom ash and fly ash samples collected from six coal-fired power plants in India were measured for (210)Po using alpha spectrometry and for natural U, (226)Ra, (232)Th and (40)K by an HPGe γ-ray spectrometer. (210)Po in fly ash ranged from 25.7 to 70 Bq/kg with a mean value of 40.5 Bq/kg. The range and mean activities of (238)U, (226)Ra, (232)Th, (40)K in fly ash were 38.5-101 (78.1), 60-105.7 (79), 20-125 (61.7) and 43.6-200 (100) Bq/kg respectively. Fly ash and bottom ash contains two to five times more natural radionuclides than feed coal. The results were compared with the available data from earlier studies in other countries. The effect of particle size on enrichment factor of the nuclides in fly ash was studied. (210)Po showed the largest size dependence with its concentration favoring the smaller particle size while (232)Th showed least size dependence. (238)U and (226)Ra showed behavior intermediate to that of (210)Po and (232)Th. Also the correlation between sulfur content of the feed coal and activity of (210)Po was investigated. Increased sulfur content in feed coal enhanced enrichment of (210)Po in ash. PMID:24813148

  11. Statistical analysis of the spatial distribution of radionuclides in soils around a coal-fired power plant in Spain.

    PubMed

    Charro, Elena; Pardo, Rafael; Peña, Víctor

    2013-10-01

    Coal-fired power-plants (CFPP) can be a source of contamination because the coal contains trace amounts of natural radionuclides, such as (40)K and (238)U, (232)Th and their decay products. These radionuclides can be released as fly ash from the CFPP and deposited from the atmosphere on the nearby top soils, therefore modifying the natural radioactivity background levels, and subsequently increasing the total radioactive dose received for the nearby population. In this paper, an area of 64 km(2) around the CFPP of Velilla del Río Carrión (Spain) has been studied by collecting 67 surface soil samples and measuring the activities of one artificial and six natural radionuclides by gamma spectrometry. The found results are similar to the background natural levels and ranged from 0 to 209 for (137)Cs, 11 to 50 for (238)U, 14 to 67 for (226)Ra, 29 to 380 for (210)Pb, 15 to 68 for (232)Th, 17 to 78 for (224)Ra, 97 to 790 for (40)K (all values in Bq kg(-1)). Besides the classical radiochemical tools, Analysis of Variance (ANOVA), Principal Component Analysis (PCA), Hierarchical Clustering Analysis (HCA), and kriging mapping have been used to the experimental dataset, allowing us to find the existence of two different models of spatial distribution around the CFPP. The first, followed by (238)U, (226)Ra, (232)Th, (224)Ra and (40)K can be assigned to 'natural background radioactivity', whereas the second model, followed by (210)Pb and (137)Cs, is based on 'atmospheric fallout radioactivity'. The main conclusion of this work is that CFPP has not influence on the radioactivity levels measured in the studied area, with has a mean annual outdoor effective dose E = 71 ± 22 μSv, very close to the average UNSCEAR value of 70 μSv, thus confirming the almost non-existent radioactive risk posed by the presence of the CFPP. PMID:23680923

  12. Absorbed Gamma-Ray Doses due to Natural Radionuclides in Building Materials

    SciTech Connect

    Aguiar, Vitor A. P.; Medina, Nilberto H.; Moreira, Ramon H.; Silveira, Marcilei A. G.

    2010-05-21

    This work is devoted to the application of high-resolution gamma-ray spectrometry in the study of the effective dose coming from naturally occurring radionuclides, namely {sup 40}K, {sup 232}Th and {sup 238}U, present in building materials such as sand, cement, and granitic gravel. Four models were applied to estimate the effective dose and the hazard indices. The maximum estimated effective dose coming from the three reference rooms considered is 0.90(45) mSv/yr, and maximum internal hazard index is 0.77(24), both for the compact clay brick reference room. The principal gamma radiation sources are cement, sand and bricks.

  13. Natural attenuation of metals and radionuclides -- An overview of the Sandia/DOE approach

    SciTech Connect

    Waters, R.D.; Brady, P.V.; Borns, D.J.

    1998-02-01

    Sandia National Laboratories is developing guidelines that outline the technical basis for relying on natural attenuation for the remediation of metals and radionuclide-contaminated soils and groundwaters at US Department of Energy (DOE) sites for those specific cases where natural processes are effective at ameliorating soil and groundwater toxicity. Remediation by monitored natural attenuation (MNA) requires a clear identification of the specific reaction(s) by which contaminant levels are made less available as well as considerable long-term monitoring. Central to MNA is the development of a conceptual model describing the biogeochemical behavior of contaminant(s) in the subsurface. The conceptual model will be used to make testable predictions of contaminant availability over time. In many cases, comparison between this prediction and field measurements will provide the test of whether MNA is to be implemented. As a result, development of the conceptual model should guide site characterization activities as well as long-term monitoring.

  14. The Distributed Nature of Pattern Generalization

    ERIC Educational Resources Information Center

    Rivera, Ferdinand

    2015-01-01

    Drawing on a review of recent work conducted in the area of pattern generalization (PG), this paper makes a case for a distributed view of PG, which basically situates processing ability in terms of convergences among several different factors that influence PG. Consequently, the distributed nature leads to different types of PG that depend on the…

  15. Natural-analog studies for partial validation of conceptual models of radionuclide retardation at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Ward, D.B.; Brookins, D.G. . Dept. of Geology); Siegel, M.D.; Lambert, S.J. )

    1990-01-01

    Transport by groundwater within the Culebra Dolomite, an aquifer above the Waste Isolation Pilot Plant (WIPP), is the most probable mechanism for long-term release of radionuclides to the accessible environment. Radionuclides could be retarded by sorption if the groundwater is exposed to sufficient amounts of fracture-lining clays. In this natural-analog study, distributions of U and trace metals have been examined to constrain the strength of clay/solute interactions within the Culebra. Uranium solid/liquid distribution ratios, calculated from U concentrations of groundwaters and consanguineous fracture-filling clays, range from {approximately}80 to 800 m{ell}/g and imply retardation factors of 60 to 500 using a fracture-flow model. Retardation factors inferred from uranium-series disequilibria and {sup 14}C ages in Culebra groundwaters alone are much lower ({approximately}10), implying that clays may contain a significant unreactive component of U. Such a possibility is corroborated by Rb/Sr ages; these imply long-term stability of the clays,with resetting occurring more than 250 Ma ago. Factor analysis and mass-balance calculations suggest, however, that Mg-rich clays are dissolving in Pleistocene-age groundwaters and/or are converting to Na-rich smectites, and that B and Li are taken up from the water by the clays. Apparently, the solution chemistry reflects gradual equilibration of clays with groundwater, but thus far the bulk of the clays remain structurally intact. Measurements of the distribution of U in the Culebra will be more meaningful if the inert and exchangeable components of the U content of the clays can be quantified. 26 refs., 3 figs., 2 tabs.

  16. Distribution of radionuclides in an iron calibration standard for a free release measurement facility.

    PubMed

    Hult, Mikael; Stroh, Heiko; Marissens, Gerd; Tzika, Faidra; Lutter, Guillaume; Šurán, Jiri; Kovar, Petr; Skala, Lukas; Sud, Jaromír

    2016-03-01

    A Europallet-sized calibration standard composed of 12 grey cast iron tubes contaminated with (60)Co and (110m)Ag with a mass of 246kg was developed. As the tubes were produced through centrifugal casting it was of particular concern to study the distribution of radionuclides in the radial direction of the tubes. This was done by removing 72 small samples (swarf) of ~0.3g each on both the inside and outside of the tubes. All of the samples were measured in the underground laboratory HADES. PMID:26597655

  17. Radionuclide adsorption distribution coefficients measured in Hanford sediments for the low level waste performance assessment project

    SciTech Connect

    Kaplan, D.I.; Serne, R.J.; Owen, A.T.

    1996-08-01

    Preliminary modeling efforts for the Hanford Site`s Low Level Waste-Performance Assessment (LLW PA) identified {sup 129}I, {sup 237}Np, {sup 79}Se, {sup 99}Tc, and {sup 234},{sup 235},{sup 238}U as posing the greatest potential health hazard. It was also determined that the outcome of these simulations was very sensitive to the parameter describing the extent to which radionuclides sorb to the subsurface matrix, i.e., the distribution coefficient (K{sub d}). The distribution coefficient is a ratio of the radionuclide concentration associated with the solid phase to that in the liquid phase. The objectives of this study were to (1) measure iodine, neptunium, technetium, and uranium K{sub d} values using laboratory conditions similar to those expected at the LLW PA disposal site, and (2) evaluate the effect of selected environmental parameters, such as pH, ionic strength, moisture concentration, and radio nuclide concentration, on K{sub d} values of selected radionuclides. It is the intent of these studies to develop technically defensible K{sub d} values for the PA. The approach taken throughout these studies was to measure the key radio nuclide K{sub d} values as a function of several environmental parameters likely to affect their values. Such an approach provides technical defensibility by identifying the mechanisms responsible for trends in K{sub d} values. Additionally, such studies provide valuable guidance regarding the range of K{sub d} values likely to be encountered in the proposed disposal site.

  18. Natural and artificial radionuclide activity concentrations in surface sediments of Izmit Bay, Turkey.

    PubMed

    Ergül, Halim Aytekin; Belivermiş, Murat; Kılıç, Önder; Topcuoğlu, Sayhan; Çotuk, Yavuz

    2013-12-01

    Surface sediments from the north-eastern coast of the Marmara Sea, Turkey's most industrialized coastal region, were enriched with radioisotopes from the Chernobyl explosion in 1986. Caesium-137 in these sediments is also thought to originate from one former paper mill located nearby that used wood contaminated by Chernobyl explosion-originated (137)Cs for paper production. The average activity concentration of the (137)Cs was 21 Bq kg(-1), while naturally occurring radioisotopes, i.e. (40)K, (226)Ra, and (228)Ra, were 568, 18 and 24 Bq kg(-1), respectively, in surface sediments. The natural radionuclide activities reached their highest levels near petrochemical, phosphate and fertilizer processing facilities. Average (137)Cs activities were generally up to ten times higher than in Middle Eastern marine sediments and lower than those in Northern European sediments. PMID:23981563

  19. Ecological distribution and bioavailability of uranium series radionuclides in terrestrial food chains: Key Lake uranium operations, northern Saskatchewan

    SciTech Connect

    Thomas, P.A.

    1997-12-31

    The purpose of this study was to determine radionuclide uptake within the terrestrial ecosystem at uranium mining operations in northern Saskatchewan. The study site was the Key Lake mine, chosen because it has been an operational mine, mill, and surface tailings area for 15 years and will continue to be an active ore-milling and tailings disposal area for the next 40 years. The focus of the study was on the small mammal food chains in black spruce bogs nearest to the Key Lake facilities, since bog habitats tend to absorb and accumulate radionuclides. Three study sites were chosen on the basis of their proximity to sources of radioactive dust and the presence of bog habitats. Interconnected terrestrial ecosystem components were sampled at the same time at each site. Samples of needles, twigs, ground cover, litter, soils, small mammals, and birds were analyzed for the four radionuclides of greatest concern in the uranium decay series. Radiation doses were calculated to small mammals and birds, food chain transfer parameters were determined to enable future modelling of environmental pathways, and a variety of atmospheric dust collectors were pilot tested to examine the rates of radionuclide deposition from facility emissions to local environments. Four sets of conclusions are discussed regarding: radionuclide distribution within habitats and among sites; the radionuclides responsible for animal doses; the relative bioavailability of radionuclides among sites; and the measurement of atmospheric deposition rates.

  20. Correlations of natural radionuclides in soil with those in sediment from the Danube and nearby irrigation channels.

    PubMed

    Krmar, M; Varga, E; Slivka, J

    2013-03-01

    The correlation between activity concentrations of some natural radionuclides ((238)U, (226)Ra, (232)Th, (40)K) measured in soil and in sediment taken from the Danube River and nearby irrigation channels was studied. The soil samples were collected from the northern part of Serbia and the sediment from the Serbian part of the Danube River and from the surrounding irrigation channels. The correlation between (238)U and other natural radionuclides in irrigation channel sediments was not as good as in the Danube. One of the possible explanations for this weak correlation can be the different chemical dynamics of (238)U in the irrigation channel sediment or changes of the (238)U activity concentration in irrigation channel sediment due to some human activities. The evaluation of ratios of activity concentrations of some natural radionuclides could be a more sensitive method for the determination of contaminant, rather than the straightforward analysis of activity concentrations. PMID:22244685

  1. Evaluation of natural radionuclides at Um-Greifat area, eastern desert of Egypt.

    PubMed

    Nada, A

    2003-02-01

    Air borne radiometric maps and remote sensing techniques were used to explore for the occurrence of radioactive materials. The previous techniques recorded radioactive mineralization for the first time along the NW-SE trending fault zones within the Miocene clastic-carbonate sediments. In the present study, gamma-ray spectrometry was used to confirm the presence of this mineralization. Concentrations of radionuclides, associated within the iron ochre at Um-Greifat area, have been measured, using a hyper-pure germanium spectrometer. The variation in concentration of radionuclides for the area under investigation can be classified into A, B and C regions of high, medium and low natural radioactivity. In region A, average concentration in Bqkg(-1) has been observed to range from 1858 to 4062 for 238U, between 29 and 151 for 232Th, from 60 to 136 for 235U and between 46 and 409 Bqkg(-1) for 40K. Radium equivalent activities (Ra(eq)) in addition to external and internal hazard indices (H(ex), H(in)) have also been determined. Ra(eq) varies between 1901 and 4307Bqkg(-1), which exceeds the permitted value (370Bqkg(-1)) and H(ex) and H(in) are higher than 1. The high activity concentration within region A points to an environmental hazard, while regions B and C have less exposure effect on human beings. PMID:12573328

  2. Activity concentration and spatial distribution of radionuclides in marine sediments close to the estuary of Shatt al-Arab/Arvand Rud River, the Gulf.

    PubMed

    Patiris, D L; Tsabaris, C; Anagnostou, C L; Androulakaki, E G; Pappa, F K; Eleftheriou, G; Sgouros, G

    2016-06-01

    Tigris and Euphrates rivers both emerge in eastern Turkey and cross Syria and Iraq. They unite to Shatt al-Arab/Arvand Rud River and discharge in Arabic/Persian Gulf. The activity concentration of natural and anthropogenic radionuclides was measured during the August of 2011 in a number of surficial sediment samples collected from the seabed along an almost straight line beginning near the estuary mouth and extending seaward. The results exhibited low activity concentration levels and an almost homogeneous spatial distribution except locations where sediment of biogenic origin, poor in radionuclides, dilute their concentrations. Dose rates absorbed by reference marine biota were calculated by the ERICA Assessment Tool considering the contribution of 40 K. The results revealed a relatively low impact of 40 K mainly to species living in, on and close to the seabed. Also, statistical association of radionuclides with selected stable elements (Ca, Ba and Sr) did not indicate presence of by-products related with oil and gas exploitation and transportation activities. Moreover, a semi-empirical sedimentology model applied to reproduce seabed granulometric facies based entirely on radionuclides activity concentrations. PMID:26945883

  3. Distributed and Relative Nature of Professional Expertise

    ERIC Educational Resources Information Center

    Pillay, Hitendra; McCrindle, Andrea R.

    2005-01-01

    This exploratory study investigates the distributed nature and complexity of professional expertise by examining the patterns of cognitive processes in novices and experts who are using ultrasound technology to make diagnoses. The study aims to identify and provide an explanation for such patterns in light of the recent debate on the locus of…

  4. Distribution and surface enrichment of radionuclides in lead-bismuth eutectic from spallation targets

    NASA Astrophysics Data System (ADS)

    Hammer-Rotzler, Bernadette; Neuhausen, Jörg; Boutellier, Viktor; Wohlmuther, Michael; Zanini, L.; David, J.-C.; Türler, Andreas; Schumann, Dorothea

    2016-07-01

    With the development of new high-power neutron spallation sources --both for scientific application and as neutron production tool for accelerator-driven systems-- the demand for experimentally obtained nuclear data on the residue nuclei production in the target is constantly increasing. In the present work, we examined two lead-bismuth-eutectic targets, irradiated with high-energy protons, concerning their radionuclide content and the spatial distribution of selected isotopes. The first one was the so-called ISOLDE target, being irradiated with 1-1.4GeV protons at CERN-ISOLDE, the second one was the MEGAPIE target, irradiated at PSI with 590MeV protons. In particular, we investigated the phenomenon of radionuclide enrichment on free surfaces in both targets. It turned out that considerable accumulation can be found especially in the case of lanthanides. The depletion process is enhanced at increased temperatures. The results are compared with theoretical predictions; some possible consequences of the findings are illustrated.

  5. Natural and artificial radionuclide measurements and radioactivity assessment of soil samples in eastern Sichuan province (China).

    PubMed

    Wang, Zhonghai; He, Jun; Du, Yu; He, Yang; Li, Zhiqian; Chen, Zhihua; Yang, Chaowen

    2012-07-01

    The activity concentrations of natural and artificial radionuclides were measured in the eastern region of Sichuan province (China). One hundred and ninety-three soil samples from this region were collected and analysed by high-purity germanium gamma spectrometry. The measured results show that the average radioactivity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs in the soil samples are 26, 49, 440 and 6 Bq kg(-1), respectively. The calculated average radium equivalent activity is 130 Bq kg(-1), which is less than the recommended limit of 370 Bq kg(-1). The absorbed dose rate and annual effective dose are 60 nGy h(-1) and 74 µSv, respectively. This is the first time the absorbed dose rate in the east region of Sichuan has been mapped. Overall, the environmental radiation background is greater in the southern part of the area studied than in the northern. PMID:22128351

  6. Measurement of natural radionuclides in Malaysian bottled mineral water and consequent health risk estimation

    NASA Astrophysics Data System (ADS)

    Priharti, W.; Samat, S. B.; Yasir, M. S.

    2015-09-01

    The radionuclides of 226Ra, 232Th and 40K were measured in ten mineral water samples, of which from the radioactivity obtained, the ingestion doses for infants, children and adults were calculated and the cancer risk for the adult was estimated. Results showed that the calculated ingestion doses for the three age categories are much lower than the average worldwide ingestion exposure of 0.29 mSv/y and the estimated cancer risk is much lower than the cancer risk of 8.40 × 10-3 (estimated from the total natural radiation dose of 2.40 mSv/y). The present study concludes that the bottled mineral water produced in Malaysia is safe for daily human consumption.

  7. Measurement of natural radionuclides in Malaysian bottled mineral water and consequent health risk estimation

    SciTech Connect

    Priharti, W.; Samat, S. B.; Yasir, M. S.

    2015-09-25

    The radionuclides of {sup 226}Ra, {sup 232}Th and {sup 40}K were measured in ten mineral water samples, of which from the radioactivity obtained, the ingestion doses for infants, children and adults were calculated and the cancer risk for the adult was estimated. Results showed that the calculated ingestion doses for the three age categories are much lower than the average worldwide ingestion exposure of 0.29 mSv/y and the estimated cancer risk is much lower than the cancer risk of 8.40 × 10{sup −3} (estimated from the total natural radiation dose of 2.40 mSv/y). The present study concludes that the bottled mineral water produced in Malaysia is safe for daily human consumption.

  8. Natural radionuclide and radiological assessment of building materials in high background radiation areas of Ramsar, Iran

    PubMed Central

    Bavarnegin, Elham; Moghaddam, Masoud Vahabi; Fathabadi, Nasrin

    2013-01-01

    Building materials, collected from different sites in Ramsar, a northern coastal city in Iran, were analyzed for their natural radionuclide contents. The measurements were carried out using a high resolution high purity Germanium (HPGe) gamma-ray spectrometer system. The activity concentration of 226Ra, 232Th, and 40K content varied from below the minimum detection limit up to 86,400 Bqkg-1, 187 Bqkg-1, and 1350 Bqkg-1, respectively. The radiological hazards incurred from the use of these building materials were estimated through various radiation hazard indices. The result of this survey shows that values obtained for some samples are more than the internationally accepted maximum limits and as such, the use of them as a building material pose significant radiation hazard to individuals. PMID:23776313

  9. Radiological impact of dietary intakes of naturally occurring radionuclides on Pakistani adults.

    PubMed

    Akhter, P; Rahman, K; Orfi, S D; Ahmad, N

    2007-02-01

    Daily dietary intakes of three naturally occurring long-lived radionuclides (232)Th, (238)U and (40)K were estimated for the adult population of Pakistan using neutron activation analysis (NAA), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), respectively. The daily intakes of (232)Th ranged from 4 to 29 mBq, (238)U ranged from 17 to 82 mBq and (40)K ranged from 51 to 128 Bq. The geometric means of these intakes were 10 mBqd(-1) for (232)Th, 33 mBqd(-1) for (238)U and 78.5 Bqd(-1) for (40)K. The measured values give annual committed effective doses of 0.80, 0.53 and 178.75 microSvyr(-1) for (232)Th, (238)U and (40)K, respectively to Pakistani population. The net radiological impact of these radionuclides is 180.08 microSvyr(-1). This value gives cancer risk factor of 4.5 x 10(-4) and loss of life expectancy of 0.87 days only. Whereas ICRP cancer risk factor for general public is 2.5 x 10(-3) and total risk involve from the all natural radiation sources based on global average annual radiation dose of 2.4 mSvyr(-1) is 6.0 x 10(-3). The estimated cancer risk shows that probability of increase of cancer risk from daily Pakistani diet is only a minor fraction of ICRP values. Therefore, the diet does not pose any significant health hazard and is considered radiologically safe for human consumption. PMID:17034921

  10. Uranium and other natural radionuclides in the sediments of a Mediterranean fjord-like embayment, Amvrakikos Gulf (Ionian Sea), Greece.

    PubMed

    Papaefthymiou, H; Athanasopoulos, D; Papatheodorou, G; Iatrou, M; Geraga, M; Christodoulou, D; Kordella, S; Fakiris, E; Tsikouras, B

    2013-08-01

    The distribution of the natural radionuclides ((238)U, (232)Th, (226)Ra, (40)K) and the artificial (137)Cs was studied in sediment cores collected from Amvrakikos Gulf, a seasonal anoxic marine basin, using γ-ray spectrometry. The activity of radionuclides, along with the concentrations of Fe and Mn, were also studied in relation to the total organic carbon and the granulometric fractions of the sediments. The results obtained revealed higher (238)U activity concentrations in all the examined sediment samples compared to the world and Greek average values for soil. The high activity values of (238)U are attributed, besides the lattice-held fraction, to phosphate fertilizer inputs in the Gulf via major rivers and/or to alteration processes of phosphate ores located mainly in the drainage basin of the river Louros. The elevated activity values of (40)K could be attributed to the mineralogical composition of the sediments and to phosphate fertilizers containing potassium. Organic matter seems to be a more efficient sorbent for U than clay minerals and amorphous Fe and Mn-oxyhydroxides. Scanning electron microscopy, together with qualitative analysis of some smectites, reveals the occurrence of U, suggesting a limited absorption of U onto clay minerals. The applied BCR sequential extraction procedure revealed that U was found mainly in the refractory phase or associated with organic matter and to a lesser extent as surface-coating oxides, with the exception of one sediment core which is characterized by high content of fresh marine organic matter and presents high percentage of U in the exchangeable fraction. PMID:23538023

  11. Study on vertical distribution of radionuclides (40K, Th and U) in soil collected from Manjung district

    NASA Astrophysics Data System (ADS)

    Zainal, Fetri; Hamzah, Zaini; Saat, Ahmad; Wood, Khalik; Alias, Masitah

    2016-01-01

    The accumulation of radionuclides in soil is a greatest concerns due to their toxicity. This study investigated the vertical distribution of radionuclides and radiological assessment in a soil profile were collected in three different directions [North (N), North-East (NE) and South-East (SE)] within 40 km from Manjung district. All profile samples were collected down to 45cm at 7.5cm interval using hand auger. Soil density and radionuclides (40K, Th and U) concentrations were determined by gravimetric method and Energy Dispersive X-Ray Fluorescence (EDXRF) technique, respectively. The radionuclides concentrations was in decreasing order of 40K > Th > U. Soil quality assessment was carried out using Enrichment Factor (EF), Pollution Index (PI) and Geoaccumulation Index (I geo) where all radionuclides show significant enrichment (5 < EF < 20), PI classified as middle pollution classes and 0 < Igeo < 1, indicating moderately polluted, respectively. From the concentration of radionuclides, the radiological risk was calculated and the present result show external hazard index (Hex) is below than unity indicate low radiological risk.

  12. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach.

    PubMed

    Ravisankar, R; Chandramohan, J; Chandrasekaran, A; Prince Prakash Jebakumar, J; Vijayalakshmi, I; Vijayagopal, P; Venkatraman, B

    2015-08-15

    This paper reports on the distribution of three natural radionuclides (238)U, (232)Th and (40)K in coastal sediments from Pattipulam to Devanampattinam along the East coast of Tamilnadu to establish baseline data for future environmental monitoring. Sediment samples were collected by a Peterson grab samples from 10m water depth parallel to the shore line. Concentration of natural radionuclides were determined using a NaI(Tl) detector based γ-spectrometry. The mean activity concentration is ⩽2.21, 14.29 and 360.23Bqkg(-1) for (238)U, (232)Th and (40)K, respectively. The average activity of (232)Th, (238)U and (40)K is lower when compared to the world average value. Radiological hazard parameters were estimated based on the activity concentrations of (238)U, (232)Th and (40)K to find out any radiation hazard associated with the sediments. The radiological hazard parameters such as radium equivalent activity (Raeq), absorbed gamma dose rates in air (DR), the annual gonadal dose equivalent (AGDE), annual effective dose equivalent (AEDE), external hazard index (Hex) internal hazard index (Hin), activity utilization index (AUI) and excess lifetime cancer (ELCR) associated with the radionuclides were calculated and compared with internationally approved values and the recommended safety limits. Pearson correlation, principal component analysis (PCA) and hierarchical cluster analysis (HCA) have been applied in order to recognize and classify radiological parameters in sediments collected at 22 sites on East coast of Tamilnadu. The values of radiation hazard parameters were comparable to the world averages and below the recommended values. Therefore, coastal sediments do not to pose any significant radiological health risk to the people living in nearby areas along East coast of Tamilnadu. The data obtained in this study will serve as a baseline data in natural radionuclide concentration in sediments along the coastal East coast of Tamilnadu. PMID:26036177

  13. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  14. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    PubMed

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors. PMID:19628312

  15. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    SciTech Connect

    Valente, M.; Malano, F.; Perez, P.

    2010-08-04

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  16. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Valente, M.; Malano, F.; Pérez, P.

    2010-08-01

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  17. Radiation dose to Malaysian infants from natural radionuclides via consumption of powdered milk

    NASA Astrophysics Data System (ADS)

    Uwatse, Onosohwo Bemigho; Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd.

    2015-04-01

    Milk is the basic food stuff for the infants because they generally consume more milk on a daily basis as its minerals and proteins are essential for their growth and development, therefore, it is very important to assess the natural radioactivity levels and the associated dose in the widely consumed powered infant's milk. As a result, 14 brands of infant's powdered milk were collected from different supermarkets around Selangor, Malaysia and analysed for 226Ra, 232Th and 40K activities. The obtained mean activity of 226Ra, 232Th and 40K are 3.05±1.84, 2.55±2.48 and 99.1±69.5 Bqkg-1, respectively. Among the analysed milk samples, the brand from Philippines (Lactogen) showed low level of radioactivity while Singaporean brand (S26 SMA Gold) showed the highest. The estimated mean annual effective doses due to the ingestion of natural radionuclides in the sampled milk are 635 and 111 µSv for infant ≤ 1y and infant 1-2y, respectively. The obtained dose value does not yet pose any significant radiological hazards to the population under investigation comparing with the 1.0 mSvy-1 recommended by ICRP for all ages.

  18. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    PubMed

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). PMID:26465672

  19. Radiation dose to Malaysian infants from natural radionuclides via consumption of powdered milk

    SciTech Connect

    Uwatse, Onosohwo Bemigho; Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd.

    2015-04-24

    Milk is the basic food stuff for the infants because they generally consume more milk on a daily basis as its minerals and proteins are essential for their growth and development, therefore, it is very important to assess the natural radioactivity levels and the associated dose in the widely consumed powered infant’s milk. As a result, 14 brands of infant’s powdered milk were collected from different supermarkets around Selangor, Malaysia and analysed for {sup 226}Ra, {sup 232}Th and {sup 40}K activities. The obtained mean activity of {sup 226}Ra, {sup 232}Th and {sup 40}K are 3.05±1.84, 2.55±2.48 and 99.1±69.5 Bqkg{sup −1}, respectively. Among the analysed milk samples, the brand from Philippines (Lactogen) showed low level of radioactivity while Singaporean brand (S26 SMA Gold) showed the highest. The estimated mean annual effective doses due to the ingestion of natural radionuclides in the sampled milk are 635 and 111 µSv for infant ≤ 1y and infant 1-2y, respectively. The obtained dose value does not yet pose any significant radiological hazards to the population under investigation comparing with the 1.0 mSvy{sup −1} recommended by ICRP for all ages.

  20. Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides.

    PubMed

    Lourenço, Joana I; Pereira, Ruth O; Silva, Ana C; Morgado, José M; Carvalho, Fernando P; Oliveira, João M; Malta, Margarida P; Paiva, Artur A; Mendo, Sónia A; Gonçalves, Fernando J

    2011-02-15

    Eisenia andrei was exposed, for 56 days, to a contaminated soil from an abandoned uranium mine and to the natural reference soil LUFA 2.2. The organisms were sampled after 0, 1, 2, 7, 14 and 56 days of exposure, to assess metals bioaccumulation, coelomocytes DNA integrity and cytotoxicity. Radionuclides bioaccumulation and growth were also determined at 0 h, 14 and 56 days of exposure. Results have shown the bioaccumulation of metals and radionuclides, as well as, growth reduction, DNA damages and cytotoxicity in earthworms exposed to contaminated soil. The usefulness of the comet assay and flow cytometry, to evaluate the toxicity of contaminants such as metals and radionuclides in earthworms are herein reported. We also demonstrated that DNA strand breakage and immune cells frequency are important endpoints to be employed in the earthworm reproduction assay, for the evaluation of soil geno and cytotoxicity, as part of the risk assessment of contaminated areas. This is the first study that integrates DNA damage and cytotoxicity evaluation, growth and bioaccumulation of metals and radionuclides in a sub lethal assay, for earthworms exposed to soil contaminated with metals and radionuclides. PMID:21146299

  1. Investigation of exposure rates and radionuclide and trace metal distributions along the Hanford Reach of the Columbia River

    SciTech Connect

    Cooper, A.T.; Woodruff, R.K.

    1993-09-01

    Studies have been conducted to investigate exposure rates, and radionuclide and trace metal distributions along the Columbia River where it borders the Hanford Site. The last major field study was conducted in 1979. With recently renewed interest in various land use and resource protection alternatives, it is important to have data that represent current conditions. Radionuclides and trace metals were surveyed in Columbia River shoreline soils along the Hanford Site (Hanford Reach). The work was conducted as part of the Surface Environmental Surveillance Project, Pacific Northwest Laboratory. The survey consisted of taking exposure rate measurements and soil samples primarily at locations known or expected to have elevated exposure rates.

  2. [The distribution of the radionuclides in the main components of lake ecosystems within the Chernobyl NPP exclusion zone].

    PubMed

    2005-01-01

    The results of the studies devoted to the distribution of radionuclides 90Sr, 137Cs, 238Pu, 239 + 240Pu and 241Am in 1998-2003 in main components of Glubokoe Lake and Dalekoe-1 Lake located within Krasnensky flood lands of the Pripyat River (inner exclusion zone of the Chernobyl NPP) were analysed. The data about the radionuclide content in bottom sediments, in water, in seston, in macrozoobenthos (including bivalvia molluscs), in gasteropods molluscs, in higher aquatic plants and in fish are presented. PMID:16080615

  3. Disequilibrium study of natural radionuclides of uranium and thorium series in cores and briny groundwaters from Palo Duro Basin, Texas

    SciTech Connect

    Laul, J.C.; Smith, M.R.

    1988-05-01

    The concentrations of natural radionuclides of the /sup 238/U and /232/Th series are reported in several cores and in ten deep and five shallow briny groundwaters from various formations in the Palo Duro Basin. The formations include Granite Wash, Pennsylvanian Granite Wash, Wolfcamp Carbonate, Pennsylvanian Carbonate, Seven River, Queen Grayburg, San Andres, Yates and Salado. The natural radionuclide data in cores suggest that the radionuclides have not migrated or been leached for at least a period of about 1 million years. Relative to the U and Th concentrations in cores, the brines are depleted by a factor of 10/sup 4/ to 10/sup 5/, indicating extremely low solubility of U and Th in brines. The natural radionuclide data in brines suggest that radium is not sorbed significantly and thus not retarded in nine deep brines. Radium is somewhat sorbed in one deep brine of Wolfcamp Carbonate and significantly sorbed in shallow brines. Relative to radium, the U, Th, Pb, Bi, and Po radionuclides are highly retarded by sorption. The retardation factors for /sup 228/Th range from 10/sup 2/ to 10/sup 3/, whereas those for /sup 230/Th and /sup 234/U range from 10/sup 3/ to 10/sup 5/, depending on the formation. The /sup 234/U//sup 238/U ratios in these brines are constant at about 1.5. The magnitude of the /sup 234/U//sup 230/Th ratio appears to reflect the degree of redox state of the aquifer's environment. The /sup 234/U//sup 230/Th ratio in nine deep brines is about unity, suggesting that U, like Th/sup +4/, is in the +4 state, which in turn suggests a reduced environment. 49 refs., 23 figs., 18 tabs.

  4. Natural Radionuclides In Mineral Sand Products From A Processing Plant In Northeastern Brazil

    SciTech Connect

    Hazin, C. A.; Khoury, H. J.; Silveira, S. V.

    2008-08-07

    This paper presents the results of a preliminary investigation carried out in a mineral sand processing plant located in the coastal region of Northeastern Brazil. The study aimed to determine the natural radionuclide content of the mineral products extracted from beach sands, with special emphasis on zircon. Measurements were performed through gamma spectrometry, by using a high-purity germanium detector (HPGe) coupled to a multichannel analyzer. Activity concentrations of {sup 226}Ra and {sup 228}Ra were determined by measuring some of the radon progeny activity concentrations ({sup 214}Pb and {sup 214}Bi for {sup 226}Ra, and {sup 228}Ac and {sup 208}Tl for {sup 228}Ra) and assuming an equilibrium condition upstream of the radon progeny. The results of the measurements carried out for the zircon samples showed activity concentrations ranging from 18.09 to 48.51 kBq kg{sup -1} for {sup 226}Ra. The results for {sup 228}Ra, on the other hand, were consistently lower than those obtained for {sup 226}Ra, ranging from 2.72 to 18.31 kBq kg{sup -1}.

  5. Natural radionuclides in Austrian mineral water and their sequential measurement by fast methods.

    PubMed

    Wallner, Gabriele; Wagner, Rosmarie; Katzlberger, Christian

    2008-07-01

    Ten samples of Austrian mineral water were investigated with regard to the natural radionuclides (228)Ra, (226)Ra, (210)Pb, (210)Po, (238)U and (234)U. The radium isotopes as well as (210)Pb were measured by liquid scintillation counting (LSC) after separation on a membrane loaded with element-selective particles (Empore Radium Disks) and (210)Po was determined by alpha-spectroscopy after spontaneous deposition onto a copper planchette. Uranium was determined by ICP-MS as well as by alpha-spectroscopy after ion separation and microprecipitation with NdF(3). From the measured activity concentrations the committed effective doses for adults and babies were calculated and compared to the total indicative dose of 0.1 mSv/a given in the EC Drinking Water Directive as a maximum dose. The dominant portion of the committed effective dose was due to the radium isotopes; the dose from (228)Ra in most samples clearly exceeded the dose from (226)Ra. PMID:18243442

  6. State of radionuclides in seawater. Comparison of natural stable and artificial radioactive isotope s of mercury and zinc in natural waters of the arid zone of the USSR

    SciTech Connect

    Rakhmatov, U; Khikmatov, K; Kist, A.A.; Kulmatov, R.A.; Teshabaev, S.T.; Volkov, A.A.

    1986-09-01

    This paper studies the state of stable and artificial radioactive isotopes of merury and zinc in natural waters of the arid zone of the USSR by radioactivity and radiochemical methods. Convergent results have been obtained for the dissolved forms of mercury and zinc in natural waters of the arid zone in a comparison of the results of radioactivation analysis and laboratory simulation using the radionuclides mercury-203 and zinc-65.

  7. Gamma-ray methods for determining natural and anthropogenic radionuclides in environmental and soil science

    SciTech Connect

    Harbottle, G.; Evans, C.V.

    1997-05-01

    Gamma-ray methods for the determination of radionuclides in environmental materials are convenient because they generally require less bench-top preparation time than, for example, determinations based on alpha-particle pulse-height analysis. Also, parallel measurements of chemical yield are not needed, and typically several radionuclides can be determined simultaneously. In this paper, the authors review gamma-ray methods currently in use at Brookhaven, and present a new method for the determination of the radionuclide protactinium-231 in soils and other environmental materials, using the gamma-ray deconvolution package in the EG&G Ortec {open_quotes}Gammavision{close_quotes} software.

  8. Low level measurements of natural radionuclides in soil samples around a coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Rosner, G.; Bunzl, K.; Hötzl, H.; Winkler, R.

    1984-06-01

    To detect a possible contribution of airborne radioactivity from stack effluents to the soil radioactivity, several radionuclides in the soil around a coal-fired power plant have been determined. A plant situated in a rural region of Bavaria was selected to minimize contributions from other civilisatory sources. The soil sampling network consisted of 5 concentric circles with diameters between 0.4 and 5.2 km around the plant, 16 sampling points being distributed regularly on each circle. Radiochemical analysis techniques for 210Pb and 210Po in soil samples of several grams had to be developed. They include a wet dissolution procedure, simultaneous precipitation of lead and polonium as the sulfides, purification via lead sulfate, counting of the lead as the chromate in a low-level beta counter and alpha spectrometric determination of the 210Po in a gridded ionization chamber. The 238U, 226Ra, 232Th and 40K were counted by low level gamma spectrometry. Specific activities found were in the range of 0.7 to 2.0 pCi g -1 for 210Pb and 0.3 to 1.6 pCi g -1 for 226Ra. The distribution patterns of 210Po and 210Pb around the plant were found to be similar. They were different, however, from that of 226Ra. The highest 210Pb/ 226Ra activity ratio was 3.9 at a distance of 0.76 km SSE from the plant. Nevertheless, the evidence is not considered to be sufficient to attribute these observations unambiguously to plant releases.

  9. Vertical distribution of anthropogenic radionuclides in cores from contaminated floodplains of the Yenisey River.

    PubMed

    Standring, W J F; Brown, J E; Dowdall, M; Korobova, E M; Linnik, V G; Volosov, A G

    2009-12-01

    The Mining and Chemical Industrial Combine, Zheleznogorsk (MCIC, previously known as Krasnoyarsk-26) on the River Yenisey has contaminated the surrounding environment with anthropogenic radionuclides as a result of discharges of radioactive wastes. The purpose of this study was to investigate the vertical distribution of anthropogenic contamination ((137)Cs and plutonium) within floodplain areas at different distances from the discharge point. Sites were chosen that display different characteristics with respect to periodic inundation with river water. Cs-137 activity concentrations were in the range 23-3770 Bq/kg (dry weight, d.w.); Pu-239,240 activity concentrations were in the range <0.01-14.2 Bq/kg (d.w.). Numerous sample cores exhibited sub-surface maxima which may be related to the historical discharges from the MCIC. Possible evidence indicating the deposition of earlier discharges at MCIC in deeper core layers was observed in the (238)Pu:(239,240)Pu activity ratio data: a Pu signal discernible from global fallout could be observed in numerous samples. Cs-137 and Pu-239,240 activity concentrations were correlated with the silt fraction (% by mass <63 microm) though no significant correlation was observed between (grain-size) normalised (137)Cs activity concentrations and distance downstream from the MCIC. PMID:19446379

  10. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect

    Clay A. Cooper; Ming Ye; Jenny Chapman; Craig Shirley

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released from the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.

  11. Distribution pattern of artificial radionuclides in the Baltic Sea in the special event of the Chernobyl fallout.

    PubMed

    Weiss, Dietmar

    2011-09-01

    Extensive investigations on radioactive contamination and on its spatial and temporal changes in the Baltic Sea have been carried out by the National Board for Atomic Safety and Radiation Protection since 1986. The results were compared with data obtained in the years prior to the Chernobyl accident. Due to the composition of the accidental releases and the physical half-life of the released radionuclides, special emphasis was laid on Cs-134 and Cs-137. Other radionuclides, such as H-3, Sr-90, Ru-103 and Ru-106 turned out to be insignificant compared with the caesium isotopes. The radionuclides Cs-134 and Cs-137 accounting for the highest percentage of the released long-lived radionuclides were deposited on the sea surface with an initial ratio of 0.5. Their distribution pattern on the sea surface was affected by the meteorological conditions prevailing during the release period. The horizontal dislocation of higher contaminated water masses and the vertical penetration of radioactive caesium resulted in a prolonged uniformity of the contamination level of the Baltic Sea. PMID:21809941

  12. RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS

    SciTech Connect

    Hiergesell, R.; Phifer, M.

    2014-04-29

    As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the work described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: • Defining contaminated reaches of sediments along the IOU waterways • Identifying separate segments within each IOU waterway to evaluate individually • Computing the volume and mass of contaminated soil associated with each segment, or “compartment” • Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU • Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, • Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs • Computing the

  13. Soil-to-Crop Transfer Factors of Naturally Occurring Radionuclides and Stable Elements for Long-Term Dose Assessment

    SciTech Connect

    Uchida, S.; Tagami, K.

    2007-07-01

    A soil-to-crop transfer factor, TF, is a key parameter that directly affects the internal dose assessment for the ingestion pathway, however, obtaining TFs of various long-lived radionuclides occurred during operation of nuclear power plants is difficult because most of them could not be found in natural environments. In this study, therefore, we collected crops and their associated soils throughout Japan and measured more than 50 elements to obtain TFs under equilibrium conditions. The TFs were calculated for 42 elements (Li, Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Mo, Cd, Sn, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tl, Pb, Th and U) from their concentrations in both crop and soil samples. The TF is defined as the concentration of an isotope in a crop (in Bq/kg or mg/kg dry weight) divided by the concentration of the isotope in soil (in Bq.kg or mg/kg dry weight). Probability distributions of TFs for 62 upland field crops were usually log-normal type so that geometric means (GMs) were calculated. The values for the elements of interest from the viewpoint of long-term dose assessment were 2.5E-02 for Se, 7.9E-02 for Sr, 3.1E-03 for Cs, 4.2E-04 for Th and 4.6E-04 for U. Leafy vegetable showed the highest TFs for all the elements among the crop groups. It was clear that these data were usually within the 95% confidence limits of TFs compiled by IAEA in Technical Report Series 364. (authors)

  14. Selected natural and fallout radionuclides in plant foods around the Kudankulam Nuclear Power Project, India.

    PubMed

    Ross, E Mahiban; Raj, Y Lenin; Wesley, S Godwin; Rajan, M P

    2013-01-01

    The activity concentrations of certain radionuclides were quantified in some plant foods cultivated around Kudankulam, where a mega-nuclear power plant is being established. The activity concentrations were found more in the 'pulses' group and were the lowest in 'other vegetable' category. The annual effective dose was computed based on the activity concentration of radionuclides and it was found to be higher due to the consumption of cereals and pulses. Other vegetables, cereals, pulses and nuts recorded high transfer factors for the radionuclide (228)Ra. Fruits, leafy vegetables, tubers and roots, and palm embryo registered high transfer factors for (226)Ra. Group-wise activity concentration, radiation dose to the public and soil-plant-to-transfer factor are discussed in detail. PMID:23017443

  15. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum.

    PubMed

    Nisti, M B; Saueia, C R; Malheiro, L H; Groppo, G H; Mazzilli, B P

    2015-06-01

    The main phosphate industries in Brazil are responsible for the annual production of 5.5 million tons of a residue (phosphogypsum), which is stored in stacks. The presence of radionuclides and metals puts restrictions on the use of phosphogypsum in agriculture. To assure a safe utilization, it is important to estimate the lixiviation of the radionuclides ((238)U, (226)Ra, (210)Pb, (210)Po, (232)Th and (228)Ra) and metals (As, Cd, Cr, Ni, Se, Hg and Pb) present in phosphogypsum. For this purpose, an experiment was carried out, in which columns filled with sandy and clay Brazilian typical soils mixed with phosphogypsum were percolated with water, to achieve a mild extraction of these elements. The results obtained for the concentration of the radionuclides and metals in the leachate were low; giving evidence that, even when these elements are present in the phosphogypsum, they do not contribute to an enhancement of their content in water. PMID:25841114

  16. Investigation of the environmental impacts of naturally occurring radionuclides in the processing of sulfide ores for gold using gamma spectrometry.

    PubMed

    Gbadago, J K; Faanhof, A; Darko, E O; Schandorf, C

    2011-09-01

    The possible environmental impacts of naturally occurring radionuclides on workers and a critical community, as a result of milling and processing sulfide ores for gold by a mining company at Bogoso in the western region of Ghana, have been investigated using gamma spectroscopy. Indicative doses for the workers during sulfide ore processing were calculated from the activity concentrations measured at both physical and chemical processing stages. The dose rate, annual effective dose equivalent, radium equivalent activity, external and internal hazard indices, and radioactivity level index for tailings, for the de-silted sediments of run-off from the vicinity of the tailings dam through the critical community, and for the soils of the critical community's basic schools were calculated and found to be lower than their respective permissible limits. The environmental impact of the radionuclides is therefore expected to be low in this mining environment. PMID:21865616

  17. Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors.

    PubMed

    Manić, Vesna; Nikezic, Dragoslav; Krstic, Dragana; Manić, Goran

    2014-12-01

    The specific absorbed gamma dose rates, originating from natural radionuclides in concrete, were calculated at different positions of a detection point inside the standard room, as well as inside an example room. The specific absorbed dose rates corresponding to a wall with arbitrary dimensions and thickness were also evaluated, and appropriate fitting functions were developed, enabling dose rate calculation for most realistic rooms. In order to make calculation simpler, the expressions fitting the exposure build-up factors for whole (238)U and (232)Th radionuclide series and (40)K were derived in this work, as well as the specific absorbed dose rates from a point source in concrete. Calculated values of the specific absorbed dose rates at the centre point of the standard room for (238)U, (232)Th and (40)K are in the ranges of previously obtained data. PMID:24421381

  18. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    SciTech Connect

    Hrycushko, Brian A.; Li Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating

  19. ASSESSMENTOF BETA PARTICLE FLUX FROM SURFACE CONTAMINATION AS A RELATIVE INDICATOR FOR RADIONUCLIDE DISTRIBUTION ON EXTERNAL SURFACES OF A MULTI-STORY BUILDING IN PRIPYAT

    SciTech Connect

    Farfan, E.

    2009-11-17

    How would we recover if a Radiological Dispersion Device (e.g., dirty bomb) or Improvised Nuclear Device were to detonate in a large city? In order to assess the feasibility of remediation following such an event, several issues would have to be considered, including the levels and characteristics of the radioactive contamination, the availability of the required resources to accomplish decontamination, and the planned future use of the city's structures and buildings. Presently little is known about the distribution, redistribution, and migration of radionuclides in an urban environment. However, Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident, may provide some answers. The main objective of this study was to determine the radionuclide distribution on a Pripyat multi-story building, which had not been previously decontaminated and therefore could reflect the initial fallout and its further natural redistribution on external surfaces. The 7-story building selected was surveyed from the ground floor to the roof on horizontal and vertical surfaces along seven ground-to-roof transections. Some of the results from this study indicate that the upper floors of the building had higher contamination levels than the lower floors. The authors consequently recommend that existing decontamination procedures for tall structures be re-examined and modified accordingly.

  20. Assessment of beta particle flux from surface contamination as a relative indicator for radionuclide distribution on external surfaces of a multistory building in Pripyat.

    PubMed

    Farfán, Eduardo B; Gaschak, Sergii P; Maksymenko, Andriy M; Jannik, G Tim; Marra, James C; Bondarkov, Mikhail D; Donnelly, Elizabeth H

    2011-02-01

    Several issues should be considered when assessing the feasibility of remediation following the detonation of a radiological dispersion device (e.g., dirty bomb) or improvised nuclear device in a large city. These issues include the levels and characteristics of the radioactive contamination, the availability of resources required for decontamination, and the planned future use of the city's structures and buildings. Presently, little is known about the distribution, redistribution, and migration of radionuclides in an urban environment. However, Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident in April 1986, may provide some answers. The main objective of this study was to determine the radionuclide distribution on a Pripyat multistory building that had not been decontaminated and, therefore, could reflect the initial fallout and its further natural redistribution on external surfaces over 23 y. The seven-story building selected was surveyed from the ground floor to the roof on horizontal and vertical surfaces along seven ground-to-roof transections. Some results from this study indicate that the upper floors of the building had higher contamination levels than the lower floors. Consequently, the authors recommend that thorough decontamination should be considered for all the floors of tall buildings (not just lower floors). PMID:21399438

  1. DISTRIBUTION AND SOLUBILITY OF RADIONUCLIDES AND NEUTRON ABSORBERS IN WASTE FORMS FOR DISPOSITION OF PLUTONIUM ASH AND SCRAPS, EXCESS PLUTONIUM, AND MISCELLANEOUS SPENT NUCLEAR FUELS

    EPA Science Inventory

    The objective of this multi-institutional, multi-national research effort is to understand the distributions, solubilities, and releases of radionuclides and neutron absorbers in waste forms. The results will provide the underpinning knowledge for developing, evaluating, selectin...

  2. Distribution and transport kinetics of radionuclides sup 99 Mo and sup 131 I in a simulated aquatic ecosystem

    SciTech Connect

    Svadlenkova, M.; Konecny, J.; Obdrzalek, M.; Simanov, L. )

    1990-04-01

    Radioactive liquid wastes from nuclear power stations increase the activity not only of water but also of sediment, aquatic and shore plants, and animals. On average, the majority of the total radioactivity brought to the aquatic system is absorbed by the sediment; the remaining fraction is distributed between water and biomass. For us to be able to assess the influence of the nuclear power station at Temelin in South Bohemia on the nearby hydrosphere, the authors concentrated first on the experimental investigation of the distribution and transport kinetics of some radionuclides in a simulated aquatic system.

  3. Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Technical report

    SciTech Connect

    Bacon, M.P.; Fleer, A.P.; Deuser, W.G.

    1985-01-01

    A record of radionuclide fluxes at a deep-ocean station near Bermuda (32/sup 0/ 05 min N, 64/sup 0/ 15 min W) was obtained from analysis of a 3-year collection of sediment-trap samples. The trap was placed at a depth of 3200 m, 1000 m above the sea floor, and the samples were recovered at 2-month intervals. Concentrations of U-238, -234, Th-232, -230, -228, Pa-231, Pb-210, Po-210, and Pu-239 and -240 were measured in the trapped material. Most of the radionuclide activity was found in the <37-micron sieved fraction. All radionuclide fluxes showed seasonal variations in phase with the variations in total sediment flux, which had been previously shown to be closely tied to the annual cycle of primary production in the overlying surface water. Seasonal variations are especially noteworthy for Th-230 and Pa-231, considering that most of their production occurs in the water column below the euphotic zone. Evidently the seasonal influence is transmitted downward by the varying particle flux so that radionuclide scavenging rates at depth, as well as at the surface, are affected. It is suggested that this could be brought about by seasonal variations in the flux of marine snow or in the rate of fecal-matter production in the deep-water column. Keywords: Pelagic sedimentation.

  4. Mapping and modelling of radionuclide distribution on the ground due to the Fukushima accident.

    PubMed

    Saito, Kimiaki

    2014-08-01

    A large-scale environmental monitoring effort, construction of detailed contamination maps based on the monitoring data, studies on radiocaesium migration in natural environments, construction of a prediction model for the air dose rate distribution in the 80 km zone, and construction of a database to preserve and keep open the obtained data have been implemented as national projects. Temporal changes in contamination conditions were analysed. It was found that air dose rates above roads have decreased much faster than those above undisturbed flat fields. Further, the decreasing tendency was found to depend on land uses, magnitudes of initial dose rates and some other factors. PMID:24695555

  5. Application of sorption technique for decontamination of liquid radwaste and natural water from cesium and strontium radionuclides

    SciTech Connect

    Milyutin, V.V.; Gelis, V.M.; Penzin, R.A.

    1995-12-31

    In this paper the results obtained in field tests of decontaminating radioactive natural and industrial solutions of different chemical and radionuclide composition from cesium and strontium radionuclides are reported. Decontamination of industrial reservoir water at the Production Association Mayak (Chelyabinsk Region, Russia) was performed using CMP synthetic zeolite. Efficient decontamination of the feed water is achieved after preliminary precipitation of hardness salts in the form of carbonates. Decontamination of water from the pool for spent fuel element storage from {sup 137}Cs was conducted using NGA ferricyanide sorbent. Decontamination factors with respect to {sup 137}Cs of 400 have been reached, the installation throughput being 100,000 by (bed volumes). Decontamination of liquid radwaste at Murmansk Shipping Co was conducted with CFB, CMP synthetic zeolites and NGA ferricyanide sorbent as well. Decontamination of D and D solutions and wastes of the special laundry resulted in decontamination factors within the range of 20--400, 10--100, and 10--30 with respect to {sup 137}Cs, {sup 90}Sr, and total {beta}-activity, respectively. Installation throughput of 3,000--5,000 bv for zeolites and 8,000--10,000 bv for ferrocyanide sorbents has been reached. Results obtained prove the high efficiency of sorption technique for decontaminating solutions from cesium and strontium radionuclides.

  6. Temporal variations of natural and anthropogenic radionuclides in sea otter skull tissue in the North Pacific Ocean

    USGS Publications Warehouse

    Baskaran, M.; Hong, G.-H.; Dayton, S.; Bodkin, J.L.; Kelley, J.J.

    2002-01-01

    Marine mammals being among the top predators in the food web tend to accumulate organic and inorganic contaminants from the environment. The body burden of contaminants in these species could reflect their foods and thus contaminant levels could serve as proxies on the changes of ecosystem. A pilot study was carried out to investigate the possibility of radionuclide leakage at Amchitka using a suite of sea otter (Enhydra lutris) skulls collected near Amchitka nuclear test-sites before (1950s) and after the testing (1990s), and at Adak, another Aleutian Island, about 300 km from Amchitka, where the potential impact of radionuclide leakage from Amchitka is expected to be negligible. In addition, the naturally occurring and anthropogenic radionuclide content on the sea otter skull was also utilized to investigate if there was any significant ecosystem changes in the environment. Concentration of 210Pb in sea otter bones collected during the 1950s was significantly higher than those collected in the 1990s. We propose that among the various factors that could cause this higher enrichment in 210Pb, changes in the sea otter prey is the most likely one. Comparison of the 137Cs, 90Sr, 239,240Pu concentrations appear not to be significantly higher in sea otter skulls collected in 1990s from Amchitka where the underground tests in 1965-71 than those from Adak, although significant differences were detected among different groups collected at various times. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Temporal variations of natural and anthropogenic radionuclides in sea otter skull tissue in the North Pacific Ocean

    USGS Publications Warehouse

    Baskaran, M.; Hong, G.-H.; Dayton, S.; Bodkin, J.L.; Kelly, J.J.

    2003-01-01

    Marine mammals being in the top predator in the food web tend to accumulate organic and inorganic contaminants from the environment. The body burden of contaminants in these species could reflect their foods and thus contaminant levels could serve as proxies on the changes of ecosystem. A pilot study was carried out to investigate the possibility of radionuclide leakage at Amchitka using a suite of sea otter (Enhydra lutris) skulls collected near Amchitka nuclear test-sites before (1950s) and after the testing (1990s), and at Adak, another Aleutian Island, about 300 km from Amchitka, where the potential impact of radionuclide leakage from Amchitka is expected to be negligible. In addition, the naturally occurring and anthropogenic radionuclide content on the sea otter skull was also utilized to investigate if there was any significant ecosystem changes in the environment. Concentration of 210Pb in sea otter bones collected during the 1950's was significantly higher than those collected in the 1990's. We propose that among the various factors that could cause this higher enrichment in 210Pb, changes in the sea otter prey is the most likely one. Comparison of the 137Cs, 90Sr, 239,240Pu concentrations appear not to be significantly higher in sea otter skulls collected in 1990s from Amchitka where the underground tests in 1965-71 than those from Adak, although significant differences were detected among different groups collected at various times.

  8. Sorption and diffusion of radionuclides in rock matrix and natural fracture surfaces studied by autoradiography

    SciTech Connect

    Muuronen, S.; Kaemaeraeinen, E.L.; Jaakkola, T.; Pinnioja, S.; Lindberg, A.

    1986-01-01

    A method based on autoradiography was developed to determine the sorption and diffusion of cesium, strontium, cobalt, nickel, iodine and americium into rock matrix. Samples chosen for this study were filled and unfilled natural fracture surfaces and drill cores having a central drilled hole (drill core cups). Rock types were mica gneiss, tonalite and rapakivi granite, which were selected to represent the common rocks and minerals in Finnish bedrock. Distribution coefficients (K/sub a/-values) of cesium and strontium determined for fissure surfaces and drill core cups were of the same order of magnitude. After three months contact time the greatest penetration depth for cesium was 2.5 mm, for a natural fissure surface sample of rapakivi granite. For strontium the penetration depths of 11 mm in three months and 35 mm in twelve months were found for filled natural fissure surface samples of rapakivi granite. The range of D/sub a/-values was 1.5 x 10/sup -15/ - 3.2 x 10/sup -14/ m/sup 2//s and 1.4 x 10/sup -14/ - 2.1 x 10/sup -13/ m/sup 2//s for cesium and strontium, resp. For cobalt the D/sub a/-values of 5 x 10/sup -16/ m/sup 2//s in tonalite was obtained. In six months the penetration depths of nickel, iodine and americium were too low (<0.5 mm) to allow calculation of D/sub a/.

  9. The detailed analysis of natural radionuclides dissolved in spa waters of the Kłodzko Valley, Sudety Mountains, Poland.

    PubMed

    Walencik-Łata, A; Kozłowska, B; Dorda, J; Przylibski, T A

    2016-11-01

    A survey was conducted to measure natural radioactivity in spa waters from the Kłodzko Valley. The main goal of this study was to determine the activity concentration of uranium, radium and radon isotopes in the investigated groundwaters. Samples were collected several times from 35 water intakes from 5 spas and 2 mineral water bottling plants. The authors examined whether the increased gamma radiation background, as well as the elevated values of radium and uranium content in reservoir rocks, have a significant impact on the natural radioactivity of these waters. The second objective of this research was to provide information about geochemistry of U, Ra, Rn radionuclides and the radiological and chemical risks incurred by ingestion of isotopes with drinking water. On the basis of results obtained, it is feasible to assess the health hazard posed by ingestion of natural radioactivity with drinking waters. Moreover, the data yielded by this research may be helpful in the process of verification of the application of these waters in balneotherapy. In addition, annual effective radiation doses resulting from the isotopes consumption were calculated on the basis of the evaluated activity concentrations. In dose assessment for uranium and radium isotopes, the authors provided values for different human age groups. The obtained uranium content in the investigated waters was compared with the currently valid regulations concerning the quality of drinking water. Based on the activity concentrations data, the activity isotopic ratios (234)U/(238)U, (226)Ra/(238)U, (222)Rn/(238)U, (222)Rn/(226)Ra and the correlations between radionuclides content were then examined. In brief, it may be concluded on the basis of the obtained results that radon solubility is inversely proportional to radium and uranium dissolution in environmental water circulation. The presented study allows conclusions to be drawn on the radionuclide circulation among different environmental biota: from

  10. Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarata; Hosoda, Masahiro; Prasad, Ganesh; Takahashi, Hiroyuki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2013-08-01

    The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.

  11. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  12. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments.

    PubMed

    Suresh, G; Ramasamy, V; Meenakshisundaram, V; Venkatachalapathy, R; Ponnusamy, V

    2011-10-01

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. PMID:21636283

  13. The geographic distribution of radionuclide deposition across the continental US from atmospheric nuclear testing.

    PubMed

    Simon, Steven L; Bouville, André; Beck, Harold L

    2004-01-01

    For the first time, calculations for the more than 3000 counties of the US have been completed that estimate the average deposition density (Bq m(-2)) of more than 40 radionuclides in fallout from atmospheric nuclear weapons tests conducted in the US (1951-1962) and 19 radionuclides from tests conducted elsewhere in the world (1952-1963). The geographic pattern of deposition across the US, as well as the amount of fallout deposited, varied significantly depending on whether the tests were conducted within or outside of the US. Fallout deposited from the Nevada Test Site (NTS) varied geographically as a result of dispersion and dilution in the atmosphere, the wind patterns following each test, and the occurrence of localized rainfall events. In general, states immediately east of the NTS received the highest deposition from tests conducted there. In contrast, the variation in deposition across the country from global fallout was less than for NTS fallout primarily reflecting variations in annual precipitation across larger regions. Hence, in the eastern and mid-western US, where rainfall is above the national average, higher levels of global fallout were deposited than in the more arid southwestern states. This paper presents a summary of the methods used and findings of our studies on fallout from NTS and global fallout, with emphasis on two of the most important radionuclides, (131)I and (137)Cs. PMID:15063539

  14. Activity concentration of natural radionuclides and radon and thoron exhalation rates in rocks used as decorative wall coverings in Japan.

    PubMed

    Iwaoka, Kazuki; Hosoda, Masahiro; Tabe, Hiroyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Yonehara, Hidenori

    2013-01-01

    In Japan, many dwellings have decorative wall coverings made from granite, andesite, tuff, gabbro, and marble. However, information regarding activity concentrations and radon (Rn) and thoron (Rn) exhalation rates for such rocks is very scarce. Therefore, samples of the granite, andesite, tuff, and marble that are used as wall coverings in Japan were collected from mining companies, and their activity concentrations and Rn and Rn exhalation rates were measured. Dose estimations for inhabitants living in houses built with these materials were also carried out. The activity concentration of natural radionuclides in all the materials was lower than the critical values described by the International Atomic Energy Agency (IAEA) (10,000 Bq kg for K and 1,000 Bq kg for all other radionuclides of natural origin). The maximum values of Rn and Rn mass exhalation rates for the granite samples were 0.12 and 430 mBq kg s, and those for the area exhalation rates were 1.8 and 6300 mBq m s, respectively; these values are higher than those for other samples. The maximum value of effective doses to inhabitants was 0.68 mSv y, which is lower than the intervention exemption level (1 mSv y) given in the International Commission on Radiological Protection (ICRP) Publication 82. PMID:23192085

  15. Study of natural radionuclide concentrations in an area of elevated radiation background in the northern districts of Bangladesh.

    PubMed

    Hamid, B N; Chowdhury, M I; Alam, M N; Islam, M N

    2002-01-01

    The activity concentrations of naturally occurring radioactive materials in soil samples from an elevated radiation background area of three northern districts of Bangladesh were determined using gamma ray spectrometry. The outdoor and indoor external effective dose rates and the radiation hazard indices from these soil activities were evaluated. The dose rates were found to be about four times higher than the reported world average value. The concentration of natural radionuclides, derived radium equivalent activities and the representative level indices were also found to be higher. Recommendations on radiological and dosimetric measures have been suggested with an aim of minimising the harmful effects of ionising radiation to the population of the area concerned. PMID:11926374

  16. Distribution of lake-bottom radionuclides measured with an underwater HPGe detector

    SciTech Connect

    Winn, W.G.; Dunn, D.L.; Bresnahan, P.J.

    1996-07-01

    This study at Savannah River was done to assist decisions on the future of L Lake, an artificial reservoir made in 1983-5 for additional cooling for L Reactor discharges. EG&G overflight NaI mappings prior to filling indicated that most of the man-made radionuclides were {sup 60}Co and (predominantly) {sup 137}Cs in the earlier stream beds lying beneath the lake. An underwater HPGe was used in 1995 to rapidly scope the present radiation levels at 96 locations in the lake. The present levels are in reasonable agreement with the earlier overflight mappings. 1 fig, 4 figs.

  17. Naturally-Occurring Radionuclides In Drinking Water From Surface And Groundwater Reservoirs

    SciTech Connect

    Carvalho, F. P.; Madruga, M. J.; Oliveira, J. M.; Lopes, I.; Ferrador, G.; Sequeira, M. M.

    2008-08-07

    Radioactivity in water for human consumption is under closer scrutiny than ever before and many countries adopted guideline values based on total alpha and total beta activity measurements. Although most waters from surface circulation meet these guidelines, it is frequently found that groundwater exceed guideline values. Results of water analyses by alpha spectrometry clarified that the main radionuclides present are from the uranium decay series, such as uranium isotopes, radium ({sup 226}Ra), radon ({sup 222}Rn), and also {sup 210}Pb and {sup 210}Po. Occasionally, groundwater displayed {sup 226}Ra concentrations higher than 1 Bq L{sup -1} and {sup 222}Rn concentrations above 1000 Bq L{sup -1}. Nevertheless, lack of conformity of these waters with guidelines adopted, generally, is not due to anthropogenic inputs.

  18. Conversion factors for external gamma dose derived from natural radionuclides in soils.

    PubMed

    Quindos, L S; Fernández, P L; Ródenas, C; Gómez-Arozamena, J; Arteche, J

    2004-01-01

    Field in situ gamma radiation exposure rates and laboratory measured radioactivity contents of 1500 Spanish soils were compared. The main objective was to determine if published theoretically derived conversion factors would yield accurate quantitative activity concentration (Bq kg(-1)) for the data carried out in different surveys developed by our laboratory during the last ten years. The in situ external gamma dose rate results were compared to laboratory gamma analysis of soils samples gathered from each site, considering the concentrations of seven radionuclides: 40K, 214Pb, 214Bi, 212Bi, 212Pb, 208Tl and 228Ac. The coefficient of correlation found between these variables indicate a good relationship. A discussion of the factors contributing to the uncertainties as well as measurement procedure are also given in this paper. PMID:14567949

  19. Natural Gas Hydrates: Occurrence, Distribution, and Detection

    NASA Astrophysics Data System (ADS)

    Paull, Charles K.; Dillon, William P.

    We publish this volume at a time when there is a growing interest in gas hydrates and major expansion in international research efforts. The first recognition of natural gas hydrate on land in Arctic conditions was in the mid-1960s (by I. Makogon) and in the seabed environment only in the early 1970s, after natural seafloor gas hydrate was drilled on the Blake Ridge during Deep Sea Drilling Project Leg 11. Initial scientific investigations were slow to develop because the study of natural gas hydrates is unusually challenging. Gas hydrate exists in nature in conditions of temperature and pressure where human beings cannot survive, and if gas hydrate is transported from its region of stability to normal Earth-surface conditions, it dissociates. Thus, in contrast to most minerals, we cannot depend on drilled samples to provide accurate estimates of the amount of gas hydrate present. Even the heat and changes in chemistry (methane saturation, salinity, etc.) introduced by the drilling process affect the gas hydrate, independent of the changes brought about by moving a sample to the surface. Gas hydrate has been identified in nature generally by inference from indirect evidence in drilling data or by using remotely sensed indications, mostly from seismic data. Obviously, the established techniques ofgeologic analysis, which require direct observation and sampling, do not apply to gas hydrate studies, and controversy has surrounded many interpretations. Pressure/temperature conditions appropriate for the existence of gas hydrate occur over the greater part of the shallow subsurface of the Earth beneath the ocean at water depths exceeding about 500 m (shallower beneath colder Arctic seas) and on land beneath high-latitude permafrost. Gas hydrate actually will be present in such conditions, however, only where methane is present at high concentrations. In the Arctic, these methane concentrations are often associated with petroleum deposits, whereas at continental margins

  20. EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE AND INORGANIC CONTAMINANTS IN GROUNDWATER

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) for inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing a technical refer...

  1. Assessing Natural Radionuclide Migration in the Legacy Tailings of Uranium Production

    NASA Astrophysics Data System (ADS)

    Bondarenko, G.; Koliabina, I.; Marinich, O.

    2011-12-01

    The former Prydniprovsky Chemical Plant in Dniprodzerzhynsk, Ukraine, processed uranium ore from 1949 until 1991. Multiple tailing ponds containing solid residual waste products from the uranium leaching and processing of uranium were accumulated along the Dnieper River, including the largest, adjacent to the Dnieper Reservoir, containing over 12 million tons of tailings. Samples for this study were selected from a core recovered from the Dnieper tailing pit in 2009, and used to assess radionuclide migration from tailing ponds. Samples were selected from different depths of the tailing pit core, analyzed for total radionuclide concentrations [Marinich et al., 2009], and successively leached using distilled water, followed by 1N ammonium acetate solution, and finally by 1N HCl solution. Leaching times were ~24 h at 15.17 °C. 238U, 230Th and 226Ra leachate activities were measured by γ-spectrometry with a Ge(Li) detector. 210Pb activity was measured using a SEB-01 scintillation β-spectrometer. Errors depended on measuring method, radionuclide, activity and exposure time: 238U, 11.9%; 230Th, 10.9%; 226Ra, 9.3%; 210Pb ~30%. The average total 238U activity in the tailing profile was 4 Bq/g. The concentration of 238U in the water leachates increased with depth from 14.5% (7-7.5 m), to 43% (11-11.5 m). The concentration of 238U in the acid leachates behaved similarly, increasing from 5.5 % to 15.5% with depth. While the total 230Th activity in increased from 30 Bq/g (7-7.5 m) to 540 Bq/g (11-11.5 m), the 230Th concentration in ammonium acetate leachates decreased from ˜15% to ˜1%. The concentration of 226Ra in all leachates was <1%, indicating that, under conditions of the Dnieper tailing pit, 226Ra is essentially immobile. The concentration of 210Pb in the leachates was as high as 10%. In general, the magnitude of mobile activity from the Dnieper tailing pit core samples decreases in the order 238U>230Th≥210Pb> 226Ra. Secular radioactive equilibrium in the 238U

  2. Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary

    NASA Astrophysics Data System (ADS)

    Erőss, Anita; Mádl-Szőnyi, Judit; Surbeck, Heinz; Horváth, Ákos; Goldscheider, Nico; Csoma, Anita É.

    2012-03-01

    SummaryThe Buda Thermal Karst (Budapest, Hungary) developed in the regional discharge zone of a carbonate rock aquifer system. High radioactivity of the spring waters has already been reported in 1912, but there has been no detailed study and no consistent explanation for its origin. In this area mixing of cold and hot karst waters was hitherto assigned to be responsible for cave formation. However, the dissimilarity of the discharging waters within Budapest (in the North: Rózsadomb; in the South: Gellért Hill), may suggest also different cave forming processes. The application of radionuclides as natural tracers represents a novel approach to investigate these questions. For this study, we used uranium, radium and radon to identify mixing of fluids in the Buda Thermal Karst system and to infer the temperature and chemical composition of the end members. Chloride as a conservative component allowed the mixing ratios for the sampled waters to be calculated. Their fluid compositions were modeled and through the comparison of modeled and measured values, the end members were validated. As the result of this study, it was possible to characterize the mixing end members for the Rózsadomb area, whereas for the Gellért Hill discharge zone, mixing components could not be identified with the aid of radionuclides. Therefore, it is suggested that different processes are responsible for cave formation in these areas. In the Rózsadomb area, structurally-controlled mixing is the dominant cave forming process, whereas in the Gellért Hill area, due to the lack of mixing members, other processes have to be found, which are responsible for the formation of the caves, such as retrograde calcite solubility and/or geogenic acids, such as H2S. The application of radionuclides thus further supported the differences between the two study areas. This study identified moreover the source of elevated radon content of the waters in the Gellért Hill area in form of iron

  3. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia.

    PubMed

    Kleinschmidt, Ross; Akber, Riaz

    2008-04-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk. PMID:17980468

  4. Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources.

    PubMed

    Dragović, S; Mihailović, N; Gajić, B

    2008-06-01

    The study is dealing with the distribution and the origin of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in soils from a priori non-polluted areas. Positive correlations with organic matter and clay content but not with pH have been observed for most of elements analyzed in this study. Correlations of some metals (Cr, Pb and Zn) and radionuclides (238U and 137Cs) observed for analyzed soils could be explained by their common affinity for clay minerals. Enrichment factor (EF) analysis and cluster analysis (CA) highlighted the lithogenic origin of Cr, Cu, Mn, Ni, Pb and Zn and pointed out the primary input of Cd from anthropogenic sources. It also revealed the need for detailed geochemical surveys in the future in order to decrease the uncertainty of discrimination between lithogenic and anthropogenic origin of metals of interest. PMID:18433832

  5. Chemical methods for reduction of the transfer of radionuclides to farm animals in semi-natural environments.

    PubMed

    Hove, K

    1993-09-24

    The same chemicals can be used for reduction of radionuclide transfer to animals whether kept on farms or grazing in semi-natural and natural habitats. However, different techniques are required for administration of the active compounds. Dairy ruminants may be treated effectively by inclusion of chemicals in supplemental concentrates. Practical experience gained after the Chernobyl accident has shown that both clay minerals and hexacyanoferrates are effective in preventing high radiocaesium levels in animal products. Chemicals such as bentonite clays and CaCO3, used for reduction of 137Cs and 90Sr transfer respectively, must be fed in hectogram quantities and are only practical for dairy animals in semi-natural ecosystems. Salt licks and sustained release boli with hexacyanoferrates as caesium binders have been developed and used successfully after the Chernobyl accident for meat producing cattle, sheep and reindeer which graze freely for extended periods. Daily doses of 25-300 mg in sheep and 250-2000 mg in cows reduces 137Cs accumulation 2-10-fold. Binders for 90Sr have not been tested in grazing animals. Stable iodine could be provided in salt licks and indwelling rumen boli at rates required to block radioiodine uptake by the thyroid gland. Boli and salt licks are highly cost effective in reducing doses to man when compared to interdiction of food from farm animals. PMID:8248770

  6. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  7. The uptake and distribution of buried radionuclides by pocket gophers (Thomomys bottae).

    PubMed

    Budd, R L; Gonzales, G J; Fresquez, P R; Lopez, E A

    2004-01-01

    Material Disposal Area G (Area G) at the Los Alamos National Laboratory is a low-level radioactive waste disposal facility. The noticeably high activity of pocket gophers on closed waste burial sites of various types at Area G resulted in the need to understand possible interactions between gophers and radioactive waste. Fossorial animals can influence the fate of contaminants by directly burrowing into waste trenches, pushing contaminated soil to the surface, or through indirect mechanisms such as consumption of contaminant-laden vegetation or the ingestion of soil. In our study, pocket gophers, mound soil, surface soil, and vegetation were collected at Area G and at offsite reference locations. The samples were analyzed for 241Am, 238Pu, 239Pu, 3H, and total U. It did not appear that gophers were responsible for any upward transport of radionuclides. Concentrations of 241Am, 238Pu, 239Pu, and 3H in some gophers, soil, and vegetation were higher than at reference sites; however, only 3H in gopher carcasses at only one of five sites within Area G was higher than a conservative ecological screening level. PMID:15055929

  8. Sediment transport and Hg recovery in Lavaca Bay, as evaluated from radionuclide and Hg distributions

    SciTech Connect

    Santschi, P.H.; Allison, M.A.; Asbill, S.; Perlet, A.B.; Cappellino, S.; Dobbs, C.; McShea, L.

    1999-02-01

    Mercury was released in the late 1960s from a chloralkali facility managed by ALCOA and deposited into sediments of Lavaca Bay, TX. Sediments have recorded this event as a well-defined subsurface concentration maximum. Radionuclide, mercury, X-radiography, and grain size data from sediment cores taken in 1997 at 15 stations in Lavaca bay were used to assess sediment and Hg movements in the bay. Sediment accumulation rates were calculated from bomb fallout nuclide ({sup 137}Cs, {sup 239,240}Pu) peaks in 1963 and from the steady-state delivery of {sup 210}Pb from the atmosphere. Sedimentation rates are highest at near-shore sites near the ALCOA facility and generally decrease away from shore. Sedimentation rates in some areas are likely influenced by anthropogenic activities such as dredging. Particle reworking, as assessed from {sup 7}Be measurements, is generally restricted to the upper 2--7 cm of sediments. Numerical simulations of Hg profiles using measured sedimentation and mixing parameters indicate that at most sites high remnant mercury concentrations at 15--60 cm depth cannot supply substantial amounts of Hg to surface sediments. Assuming no future Hg supplies, Hg concentrations in surface sediments are predicted to decrease exponentially with a recovery half-time of 4 {+-} 2 years.

  9. Quantification and Radiological Risk Estimation Due to the Presence of Natural Radionuclides in Maiganga Coal, Nigeria

    PubMed Central

    Kolo, Matthew Tikpangi; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Abdullah, Wan Hasiah Binti

    2016-01-01

    Following the increasing demand of coal for power generation, activity concentrations of primordial radionuclides were determined in Nigerian coal using the gamma spectrometric technique with the aim of evaluating the radiological implications of coal utilization and exploitation in the country. Mean activity concentrations of 226Ra, 232Th, and 40K were 8.18±0.3, 6.97±0.3, and 27.38±0.8 Bq kg-1, respectively. These values were compared with those of similar studies reported in literature. The mean estimated radium equivalent activity was 20.26 Bq kg-1 with corresponding average external hazard index of 0.05. Internal hazard index and representative gamma index recorded mean values of 0.08 and 0.14, respectively. These values were lower than their respective precautionary limits set by UNSCEAR. Average excess lifetime cancer risk was calculated to be 0.04×10−3, which was insignificant compared with 0.05 prescribed by ICRP for low level radiation. Pearson correlation matrix showed significant positive relationship between 226Ra and 232Th, and with other estimated hazard parameters. Cumulative mean occupational dose received by coal workers via the three exposure routes was 7.69 ×10−3 mSv y-1, with inhalation pathway accounting for about 98%. All radiological hazard indices evaluated showed values within limits of safety. There is, therefore, no likelihood of any immediate radiological health hazards to coal workers, final users, and the environment from the exploitation and utilization of Maiganga coal. PMID:27348624

  10. Quantification and Radiological Risk Estimation Due to the Presence of Natural Radionuclides in Maiganga Coal, Nigeria.

    PubMed

    Kolo, Matthew Tikpangi; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Abdullah, Wan Hasiah Binti

    2016-01-01

    Following the increasing demand of coal for power generation, activity concentrations of primordial radionuclides were determined in Nigerian coal using the gamma spectrometric technique with the aim of evaluating the radiological implications of coal utilization and exploitation in the country. Mean activity concentrations of 226Ra, 232Th, and 40K were 8.18±0.3, 6.97±0.3, and 27.38±0.8 Bq kg-1, respectively. These values were compared with those of similar studies reported in literature. The mean estimated radium equivalent activity was 20.26 Bq kg-1 with corresponding average external hazard index of 0.05. Internal hazard index and representative gamma index recorded mean values of 0.08 and 0.14, respectively. These values were lower than their respective precautionary limits set by UNSCEAR. Average excess lifetime cancer risk was calculated to be 0.04×10-3, which was insignificant compared with 0.05 prescribed by ICRP for low level radiation. Pearson correlation matrix showed significant positive relationship between 226Ra and 232Th, and with other estimated hazard parameters. Cumulative mean occupational dose received by coal workers via the three exposure routes was 7.69 ×10-3 mSv y-1, with inhalation pathway accounting for about 98%. All radiological hazard indices evaluated showed values within limits of safety. There is, therefore, no likelihood of any immediate radiological health hazards to coal workers, final users, and the environment from the exploitation and utilization of Maiganga coal. PMID:27348624

  11. Transfer factors of natural radionuclides and (137)Cs from soil to plants used in traditional medicine in central Serbia.

    PubMed

    Djelic, Gorica; Krstic, Dragana; Stajic, Jelena M; Milenkovic, Biljana; Topuzovic, Marina; Nikezic, Dragoslav; Vucic, Dusica; Zeremski, Tijana; Stankovic, Milan; Kostic, Dragana

    2016-07-01

    Transfer factors of natural radionuclides and (137)Cs from soil to plants used in traditional medicine were determined. The transfer factors (TF) were calculated as Bq kg(-1) of dry plant per Bq kg(-1) of dry soil. Mass activity concentrations of (226)Ra, (232)Th, (40)K and (137)Cs in soil and plant samples were measured with high purity germanium detector (HPGe). The concentrations of As, Co, Cr, Cu, Mn, Ni, Pb and Zn were determined, as well as the cation exchange capacity (CEC) and the content of exchangeable cations (Ca, Mg, K, Na). Wide ranges of values were obtained for all the metals, especially for Cr and Ni. The Absalom model was used for determination of the amount of (137)Cs transferred from soil to plant based on soil characteristics such as pH, exchangeable potassium, humus and clay contents. The estimated transfer factors were in the range from 0.011 to 0.307 with an arithmetic mean of 0.071, median of 0.050, geometric mean of 0.053 and geometric standard deviation (GSD) of 2.08. This value agreed well with that calculated from the measurements of 0.069, geometric mean 0.040 and GSD 3.19. Correlations between radionuclides, metals, physicochemical properties and transfer factors were determined by Spearman correlation coefficient. There was a strong positive correlation between (137)Cs transfer factor and the ratio of transfer factor for K and (137)Cs. Principal Component Analysis (PCA) was performed in order to identify some pattern of data. PMID:27082759

  12. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    SciTech Connect

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  13. Investigation of Depth Distribution of Radionuclides in Soil Contaminated by the Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Niizato, Tadafumi; Tanaka, Shingo; Abe, Hironobu; Aoki, Kazuhiro

    2014-05-01

    This work was conducted as one of the researches relating to distribution maps of radiation dose rate etc. which the government has promoted as one of the counter-measures to the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, and the 2nd investigation on the depth distribution of radionuclides (RNs) in soil was conducted after about 1 year from the accident, succeedingly to the 1st investigation which was conducted after about 3 months from the accident. Soil core samples to about 50cm deep were taken at 11 locations in Nihonmatsu-city, Kawamata-town and Namie-town. Sorption-desorption experiments of Cs-137 and I-131, CEC and AEC measurements and mineralogical analyses by XRD were conducted for 3 types of soils (sandy, clayey, organic) and those elutriated components (clay, silt, sand). Radiocaesium (Cs-134 and Cs-137) and Ag-110m were detected at all locations investigated and only at locations where radiation dose rate is high, respectively. Radiocaesium more than 95% and 99% of the inventory distributed within 5cm and 10cm deep in soil in the surface layer (mainly sandy soil), respectively, and distributed within 16cm and 20cm deep in organic soil and soil at locations where are supposed to have been used as farmland, respectively. Radiocaesium tended to extend to deeper parts in soil that organic and clayey soils are the support layer, particularly in organic soil, compared with the 1st investigation. Distribution coefficients of Cs-137 onto organic soil and its elutriated components were also lower than that onto other soils. This is consistent with trend of penetration profile.

  14. The use of lichen (Canoparmelia texana) as biomonitor of atmospheric deposition of natural radionuclides from U-238 and Th-232 series

    NASA Astrophysics Data System (ADS)

    Leonardo, Lucio; Damatto, Sandra Regina; Mazzilli, Barbara Paci; Saiki, Mitiko

    2008-08-01

    Lichens have been used in studies of environmental pollution monitoring of various air pollutants, especially heavy metals. This paper aims to study the possibility of using this specimen for the assessment of radionuclides deposition in the vicinity of a nuclear research institute, Instituto de Pesquisas Energéticas e Nucleares (IPEN) located in São Paulo, Brazil. This Institute has as major activity to perform research in the field of the nuclear fuel cycle, and therefore deals with considerable amounts of natural radionuclides of the U and Th series. The activity of the naturally occurring radionuclides U-238, Ra-226, Ra-226 and Pb-210 was determined in samples of lichen (Canoparmelia texana) and soil collected at IPEN campus. The concentrations of Ra-228, Ra-226 and Pb-210 were determined by measuring alpha and beta gross counting in a gas flow proportional detector; U and Th were determined by neutron activation analysis. The values obtained varied from 164 Bq/kg to 864 Bq/kg, 13 Bq/kg to 50 Bq/kg, and from 287 Bq/kg to 730 Bq/kg for Ra-228, Ra-226 and Pb-210 respectively. For natural U and Th the values obtained varied from 1.2 Bq/kg to 162 Bq/kg and 1.84 Bq/kg to 5.17 Bq/kg respectively. The results obtained so far suggest that the Canoparmelia texana can be used as radionuclide monitor in the vicinity of nuclear installations.

  15. The use of lichen (Canoparmelia texana) as biomonitor of atmospheric deposition of natural radionuclides from U-238 and Th-232 series

    SciTech Connect

    Leonardo, Lucio; Damatto, Sandra Regina; Mazzilli, Barbara Paci; Saiki, Mitiko

    2008-08-07

    Lichens have been used in studies of environmental pollution monitoring of various air pollutants, especially heavy metals. This paper aims to study the possibility of using this specimen for the assessment of radionuclides deposition in the vicinity of a nuclear research institute, Instituto de Pesquisas Energeticas e Nucleares (IPEN) located in Sao Paulo, Brazil. This Institute has as major activity to perform research in the field of the nuclear fuel cycle, and therefore deals with considerable amounts of natural radionuclides of the U and Th series. The activity of the naturally occurring radionuclides U-238, Ra-226, Ra-226 and Pb-210 was determined in samples of lichen (Canoparmelia texana) and soil collected at IPEN campus. The concentrations of Ra-228, Ra-226 and Pb-210 were determined by measuring alpha and beta gross counting in a gas flow proportional detector; U and Th were determined by neutron activation analysis. The values obtained varied from 164 Bq/kg to 864 Bq/kg, 13 Bq/kg to 50 Bq/kg, and from 287 Bq/kg to 730 Bq/kg for Ra-228, Ra-226 and Pb-210 respectively. For natural U and Th the values obtained varied from 1.2 Bq/kg to 162 Bq/kg and 1.84 Bq/kg to 5.17 Bq/kg respectively. The results obtained so far suggest that the Canoparmelia texana can be used as radionuclide monitor in the vicinity of nuclear installations.

  16. Production cross-sections of long-lived radionuclides in deuteron-induced reactions on natural zinc up to 23 MeV

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Murakami, Masashi; Otuka, Naohiko

    2015-03-01

    Production cross-sections of long-lived radionuclides 66,67Ga, 64,67Cu, 65,69mZn, and 58m+gCo via a deuteron irradiation on a natural zinc target were measured up to 23 MeV using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. The present results showed partial agreements with the earlier experimental cross-sections and also with the theoretical data extracted from the TENDL-2013 library. Physical thick target yields of the investigated radionuclides were deduced using the measured cross-sections, and they found agreements with the directly measured ones in the literatures except for those reported by Dmitriev et al. for 65Zn. Optimal production pathways of the medically important 67Ga radionuclide using a low energy cyclotron are discussed.

  17. [Accumulation and distribution of 137Cs and 90Sr radionuclides in the components of water-bottom sediments-macrophytes of Lake Malye Kirpichiky].

    PubMed

    Kablova, K V; Deryagin, V V; Levina, S G; Sutyagin, A A

    2014-01-01

    This research work is devoted to analyzing the processes of accumulation and distribution of long-lived radionuclides of 90Sr and 137Cs in the components of water-sediment-macrophytes of Lake Malye Kirpichiky (Chelyabinsk region). The characteristic features of redistribution of radioactive substances, depending on the texture of the bottom sediments of the lake and the species composition of aquatic vegetation are shown. Also shown is the total stock of radionuclides in water and bottom sediments. The coefficients of 90Sr and 137Cs accumulation in bottom sediments and macrophytes have been calculated. PMID:25980292

  18. Natural and active chemical remediation of toxic metals, organics, and radionuclides in the aquatic environment

    SciTech Connect

    McPherson, G.; Pintauro, P.; O`Connor, S.

    1996-05-02

    This project focuses on the chemical aspects of remediation, with the underlying theme that chemical remediation does occur naturally. Included are studies on the fate of heavy metal and organic contaminants discharged into aquatic environments; accurate assay metal contaminants partitioned into soils, water and tissue; development of novel polymeric membranes and microporous solids for the entrapment of heavy metals; and the development of hybrid chemo-enzymatic oxidative schemes for aromatics decontamination. 49 refs.

  19. Framework for bringing realistic virtual natural environments to distributed simulations

    NASA Astrophysics Data System (ADS)

    Whitney, David A.; Reynolds, Robert A.; Olson, Stephen H.; Sherer, Dana Z.; Driscoll, Mavis L.; Watman, K. L.

    1997-06-01

    One of the major new technical challenges for distributed simulations is the distribution and presentation and distribution of the natural atmosphere-ocean-space environment. The natural terrain environment has been a part of such simulations for a while, but the integration of atmosphere and ocean data and effects is quite new. The DARPA synthetic environments (SE) program has been developing and demonstrating advanced technologies for providing tactically significant atmosphere-ocean data and effects for a range of simulations. A general-purpose data collection, assimilation, management, and distribution system is being developed by the TAOS (Total Atmosphere-Ocean System) Project. This system is designed to support the new high level architecture (HLA)/run- time infrastructure (RTI) being developed by the Defense Modeling and Simulation Office (DMSO), as well as existing distributed interactive simulation (DIS) network protocols. This paper describes how synthetic natural environments are being integrated by TAOS to provide an increasingly rich dynamic synthetic natural environment. Architectural designs and implementations to accommodate a range of simulation applications are discussed. A number of enabling technologies are employed, such as the development of standards for gridded data distribution, and the inclusion of derived products and local environmental features within 4-dimensional data grids. The application of TAOS for training, analysis, and engineering simulations for sensor analysis is discussed.

  20. Partitioning of naturally-occurring radionuclides (NORM) in Marcellus Shale produced fluids influenced by chemical matrix.

    PubMed

    Nelson, Andrew W; Johns, Adam J; Eitrheim, Eric S; Knight, Andrew W; Basile, Madeline; Bettis, E Arthur; Schultz, Michael K; Forbes, Tori Z

    2016-04-01

    Naturally-occurring radioactive materials (NORM) associated with unconventional drilling produced fluids from the Marcellus Shale have raised environmental concerns. However, few investigations into the fundamental chemistry of NORM in Marcellus Shale produced fluids have been performed. Thus, we performed radiochemical experiments with Marcellus Shale produced fluids to understand the partitioning behavior of major radioelements of environmental health concern (uranium (U), thorium (Th), radium (Ra), lead (Pb), and polonium (Po)). We applied a novel radiotracer, (203)Pb, to understand the behavior of trace-levels of (210)Pb in these fluids. Ultrafiltration experiments indicated U, Th, and Po are particle reactive in Marcellus Shale produced fluids and Ra and Pb are soluble. Sediment partitioning experiments revealed that >99% of Ra does not adsorb to sediments in the presence of Marcellus Shale produced fluids. Further experiments indicated that although Ra adsorption is related to ionic strength, the concentrations of heavier alkaline earth metals (Ba, Sr) are stronger predictors of Ra solubility. PMID:26952871

  1. Radiological risk assessment of natural radionuclides in sand collected from some beaches along the coastline of southwestern Nigeria.

    PubMed

    Ademola, J A; Nwafor, C O

    2013-10-01

    The activity concentrations of natural radionuclides in sand from three beaches in southwestern Nigeria had been determined employing the gamma-ray spectroscopy method. The mean activity concentrations of (226)Ra, (232)Th and (40)K, respectively, were 12.5 ± 3.3, 25.8 ± 4.7 and 153.9 ± 18.5 Bq kg(-1) for Suntan Beach, 13.1 ± 3.1, 23.9 ± 4.5 and 219.9 ± 33.9 Bq kg(-1) for Bar Beach. Lekki Beach had 13.2 ± 3.2, 26.3 ± 3.8 and 149.0 ± 19.8 Bq kg(-1), respectively. The absorbed dose rates were calculated as 27.8 ± 3.1, 29.7 ± 4.0, 28.2 ± 3.3 nGy h(-1), respectively. The corresponding annual effective doses are 0.034 ± 0.004, 0.036 ± 0.005, 0.035 ± 0.004 mSv y(-1), which are less than the limit of 1 mSv y(-1) recommended for the members of the public. The radiological hazard indices are within the maximum recommended limits, hence pose no significant radiological hazards for construction. PMID:23567195

  2. Natural radionuclides content and associated dose rates in fine-grained sediments from Patras-Rion sub-basins, Greece.

    PubMed

    Papaefthymiou, H V; Chourdakis, G; Vakalas, J

    2011-01-01

    The activity concentrations of the natural radionuclides (238)U, (226)Ra, (232)Th and (40)K were measured in soil samples collected from the Patras-Rion sub-basins (Southern Greece) and were found to be 28, 27, 30 and 483 Bq kg(-1), respectively. These values compare well with the average Greek and worldwide values for crustal soil and sedimentary rocks. The mean (226)Ra/(238)U activity ratio was close to 1, implying secular radioactive equilibrium in the uranium series. All soil samples have Ra(eq) values lower than the limit of 370 Bq kg(-1), indicating their safe use in brick production. The average annual terrestrial absorbed dose rate in air was 51±14 nGy h(-1), and the average annual effective dose 0.06±0.02 mSv y(-1), which is consistent with the average worldwide exposure to external terrestrial radiation outdoors (0.07 mSv y(-1)). Non-significant differences between soils with different age and depositional environments were found, which could be attributed to a common source of sediments. PMID:21059742

  3. Fallout plutonium and natural radionuclides in annual bands of the coral Montastrea annularis, St. Croix, U. S. Virgin Islands

    SciTech Connect

    Benninger, L.K.; Dodge, R.E.

    1986-12-01

    The authors have investigated the banded coral Montastrea annularis as a recorder of the history of fallout Pu in surface seawater. To aid the Pu interpretation Ca, Mg, Sr, Na and natural radionuclides (/sup 238/U, /sup 228/Ra, /sup 232/Th and /sup 210/Pb) were also determined in the annual bands. In small samples (0.5 g) Ca, Mg and Na show correlated variations which could be due to seasonal variability in uptake. The /sup 238/U and /sup 228/Ra records were generally consistent with uptake, at constant discrimination, from surface-water reservoirs of nearly constant concentration, although one sample showed probable diagenetic addition of U. /sup 232/Th was not detected with certainty; this implies that terrigenous particles were not consistently entrapped within the coral skeleton. Interpretation of /sup 210/Pb was difficult because /sup 226/Ra was not measured. Montastrea annularis preserves a record of fallout Pu. To make this record useful it must be considered in the broadest possible geochemical context.

  4. Measurements of natural radionuclides in human teeth and animal bones as markers of radiation exposure from soil in the Northern Malaysian Peninsula

    NASA Astrophysics Data System (ADS)

    Almayahi, B. A.; Tajuddin, A. A.; Jaafar, M. S.

    2014-04-01

    This study aimed to estimate the radioactive accumulation of the radionuclides 40K, 137Cs, 210Pb, 226Ra, 228Ra, and 228Th in extracted human teeth, animal bones, and soil. The natural radionuclides were measured by high-purity germanium spectroscopy in extracted human teeth and animal bones from people and animals living in different states in the Northern Malaysian Peninsula. The average 40K, 137Cs, 210Pb, 226Ra, 228Ra, and 228Th concentrations in teeth were found to be 12.31±7.27 Bq g-1, 0.48±0.21 Bq g-1, 0.56±0.21 Bq g-1, 0.55±0.23 Bq g-1, 1.82±1.28 Bq g-1, and 0.50±0.14 Bq g-1, respectively. The corresponding concentrations in bones were found to be 3.79±0.81 Bq g-1, 0.07±0.02 Bq g-1, 0.08±0.02 Bq g-1, 0.16±0.04 Bq g-1, 0.51±1.08 Bq g-1, and 0.06±0.02 Bq g-1, respectively. The corresponding radionuclide concentrations in teeth from smokers were higher than those in non-smokers, and the corresponding radionuclide concentrations were higher in female teeth than in male teeth. The corresponding radionuclide concentrations were higher in teeth than in bones. A positive correlation was found between radionuclides in both teeth and bone samples.

  5. Vertical and horizontal distribution of radionuclides (232Th, 238U and 40K) in sediment from Manjung coastal water area Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik

    2016-01-01

    Distribution of radionuclides from anthropogenic activities has been widely studied in marine coastal area. Due to rapid population growth and socio-economic development in Manjung area such as coal fired power plant, iron foundries, port development, waste discharged from factories and agriculture runoff may contribute to increase in pollution rate. The radioactive materials from anthropogenic activities could deteriorate the quality of the marine ecosystem and thus lead to possible radiological health risk to the population. Radionuclides (232Th, 238U and 40K) content in surface and profile sediment from Manjung coastal area was determined in this study. Radionuclides in sediment from seven locations were collected using sediment core sampling and measurements were carried out using Energy Dispersive X-ray Fluorescence (EDXRF) spectroscopy. The results show that the concentration of radionuclides in surface sediment and distribution trend of depth vertical profile sediment generally varies depending on locations. Enrichment factors (EF), geo-accumulation index (Igeo) and pollution index (PI) were applied to determine level of pollution of this study area. The radiological risks related to human exposure were evaluated based on external hazard index (Hex).

  6. Sediment accumulation rates in Conowingo Reservoir as determined by man-made and natural radionuclides

    SciTech Connect

    McLean, R.I.; Domotor, S.L. ); Summers, J.K.; Wilson, H. ); Olsen, C.R.; Larsen, I.L. )

    1991-05-01

    The Susquehanna River is the major contributor to sediment loadings in the Chesapeake Bay. Because many environmental contaminants are associated with suspended particulates, the degree of particle retention within the reservoirs of the lower Susquehanna River is an important consideration in evaluating contaminant loadings to the Chesapeake Bay. Profiles of weapons-test Cs-137, nuclear power plant-related Cs-134 and Cs-137, and naturally-derived Pb-210 were used to estimate rates of sediment accretion in the Conowingo Reservoir,an impoundmment of the Susquehanna River along the Maryland-Pennsylvania border. Net accretion rates ranged from about 2 cm yr{sup {minus}1} downstream of a nuclear power plant cooling discharge to a high of about 7 cm yr{sup {minus}1} at the mount of an incoming creek. Slight, but consistent, increases in the annual rate of accretion since the creation of the reservoir in 1928 are apparent. The current net average annual sediment load retained by the reservoir is estimated to be 0.4 {times} 10{sup 6} to 1.5 {times} 10{sup 6} metric tons yr{sup {minus}1}. The retained sediment load represents about 8-23% of the long-time average sediment input to the reservoir.

  7. Do organic matter matter? Contribution of organic matter on scavenging and fractionation of natural radionuclides in the Oceanic Flux Program (OFP) site of Bermuda

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Santschi, P. H.; Conte, M. H.; Schumann, D.; Ayranov, M.

    2012-12-01

    Natural particle-reactive radionuclides, 234Th, 233Pa, 210Po, 210Pb and 7Be, have been used for estimating particulate organic carbon (POC) export flux in the ocean for decades. However, by simply relying on empirically determined isotope ratios to POC and other parameters, sometimes results from field studies are puzzling and become controversial (e.g., one is summarized in Li, 2005). The picture becomes clearer when it was noticed that a missing fraction, e.g., natural organic matter, could be the cause. For example, a series of field and lab studies demonstrated that biopolymers excreted by marine micro-organisms are likely carrier molecules for a number of these isotopes (e.g., Guo et al., 2002; Quigley et al., 2002; Santschi et al., 2003; Roberts et al., 2009; Hung et al., 2010; Xu et al., 2011; Hung et al., 2012; Yang et al., 2012). To examine the effect of organic composition of the particle on the scavenging and fractionation of selected natural radionuclides (e.g., Th, Pa, Pb, Po, Be), organic composition (e.g., protein, polysaccharides, uronic acid, siderophore and amino acid contents, and etc.) and particle-water partition coefficients (Kd) were determined for sediment trap material collected in the Oceanic Flux Program (OFP) site of Bermuda (500, 1500 and 3200 m). Results showed that different organic components contribute differently to the fractionation of different radionuclides from the three depths. We conclude that natural organic matter control on the particle-water partition coefficients cannot be ignored.

  8. Aged Nuclear Explosive Melt Glass: Radiography and Scanning Electron Microscope Analyses Documenting Both Radionuclide Distribution and Glass Alteration

    SciTech Connect

    Eaton, G.F.; Smith, D.K.

    2000-03-28

    Assessment of the long-term performance of nuclear melt glass under saturated conditions provides insight into factors controlling radionuclide release into groundwater. Melt glass samples were collected from an underground nuclear detonation cavity at the Nevada Test Site that was in contact with groundwater for more than 10 years. The samples were made into thin sections and the distribution of alpha activity mapped using CR-39 plastic detectors. The melt glass is visually heterogeneous and the results of the alpha track radiography indicate that the highest alpha activity is associated with areas of dark colored glass. Analyses of the thin sections by alpha spectrometry show the prominent actinide species to be {sup 238}Pu, {sup 239}Pu and {sup 241}Am. Scanning electron microprobe analysis of the bulk glass shows conspicuous alteration layers lining internal vesicle surfaces in the glass. X-ray diffraction patterns for the alteration phases are consistent with clay mineral compositions. Glass dissolution models indicate these layers are too thick to have formed at ambient temperatures over the 10 year period in which they remained in a saturated environment. This implies the alteration layers likely formed at temperatures higher than ambient during cooling of the cavity following the underground detonation. Mobilization of this clay alteration layer as colloidal particles in groundwater represents a potential source of actinide release into the environment.

  9. Concentration and distribution of heavy metals and radionuclides in topsoils from Middle Jiu Valley surface coal exploitations sourrounding area (Gorj County, Romania)

    NASA Astrophysics Data System (ADS)

    Corneanu, Mihaela; Corneanu, Gabriel; Lacatusu, Anca-Rovena; Cojocaru, Luminita; Butnariu, Monica

    2013-04-01

    Middle Jiu Valley is one of the largest surface coal exploitation area in Romania. The coal exploitation area is a dense populated one, along the valleys are villages and the inhabitants produce for their own consumption fruits and vegetables, in their personal gardens, or cereals in the fields, nearby the villages. There was considered to be of great interest to investigate the heavy metals and radionuclides content in gardens and cropfield soils from the villages sourrounding the Thermo Electric Power Plants (TEPP) and coal surface exploitation, as well as in crude /cultivated sterile soil or ash. The topsoil samples (104) were harvested from population gardens (58), cropfields sourronding Thermo Electric Power Plants (24), crude sterile dumps (7), cultivated sterile dumps (9) and ash dumps (6). The content in radionuclides in soil was performed by Duggan (1988) method. Radionuclide activity was expressed in Bqkg-1, confidence level 95%. The total content of heavy metals in soil (Zn, Cu, Fe, Mn, Pb, Cd, Ni, Cr, Co) was measured with flame atomic mass spectrometry. The content in heavy metals was expressed in mgkg-1. Soil analysis revealed the presence of natural radionuclides, beloging from ash and coal dust, as well as of Cs-137, of Cernobal provenance. In the cropfields radionuclides content in topsoil is lower than in gardens, due to the deepper soil mobilisation. Radionuclides content over the normal limits for Romania were registered for Th-234, Pb-210, U-235 and in few locations for Ra-226. The soil content for all analysed metals was over the normal limits in most samples, in few cases with values close to allert limits. Concentrations between allert and intervention limits were registered in samples collected from 15-20 km North of TEPP Turceni, in population gardens.

  10. Bioaccumulation of the artificial Cs-137 and the natural radionuclides Th-234, Ra-226, and K-40 in the fruit bodies of Basidiomycetes in Greece.

    PubMed

    Kioupi, Vasiliki; Florou, Heleny; Kapsanaki-Gotsi, Evangelia; Gonou-Zagou, Zacharoula

    2016-01-01

    The bioaccumulation of artificial Cs-137 and natural radionuclides Th-234, Ra-226, and K-40 by Basidiomycetes of several species is studied and evaluated in relation to their substratum soils. For this reason, 32 fungal samples, representing 30 species of Basidiomycetes, were collected along with their substratum soil samples, from six selected sampling areas in Greece. The fungal fruit bodies and the soil samples were properly treated and the activity concentrations of the studied radionuclides were measured by gamma spectroscopy. The measured radioactivity levels ranged as follows: Cs-137 from <0.1 to 87.2 ± 0.4 Bq kg(-1) fresh weight (F.W.), Th-234 from <0.5 ± 0.9 to 28.3 ± 25.5 Bq kg(-1) F.W., Ra-226 from <0.3 to 1.0 ± 0.5 Bq kg(-1) F.W., and K-40 from 56.4 ± 3.0 to 759.0 ± 28.3 Bq kg(-1) F.W. The analysis of the results supported that the bioaccumulation of the studied natural radionuclides and Cs-137 is dependent on the species and the functional group of the fungi. Fungi were found to accumulate Th-234 and not U-238. What is more, potential bioindicators for each radionuclide among the 32 species studied could be suggested for each habitat, based on their estimated concentration ratios (CRs). The calculation of the CRs' mean values for each radionuclide revealed a rank in decreasing order for all the species studied. PMID:26330322

  11. Estimation of brain perfusion using Va value as initial distribution volume in radionuclide angiography with technetium-99m HMPAO

    SciTech Connect

    Kawamoto, M.; Ikegami, T.

    1994-05-01

    Matsuda reported a non-invasive, simple method for the quantitative measurements of brain perfusion using radionuclide angiography with Tc-99m. HMPAO and showed graphical analysis of the ratio of brain activity to aortic arch activity gave two parameters, which are the slope of the fitted line (Ku:unidirectional influx constant) and its intercept with the yards (Vn:initial volume of distribution). Brain perfusion index (BPI),which is a connected Ku value, showed good correlation with cerebral blood flow determined with Xe-133 SPECT. The aim of our study is to elucidate the clinical significance of another parameter, Vn value, determined inpatients with cerebral vessel disease. Eighty-nine cases were studied and classified into three groups on the basis of clinical history and images of CT and/or MR: Group A, normal, 36 cases; Group B, infarction, 44 cases; Group C, subarachnoid hemorrhage, 9 cases. The average age of each group were not different statistically (63.3, 67.4 and 59.8, respectively). The average BPI values for group B and C were significantly lower than that of group A(7.7, 6. 8 and 9.5, respectively ). On the other hand, Vn for group C(0.23) was significantly lower than that for group A(0.45); however that for group B(0.49) was not. These findings indicate that cerebral blood flow in both infarction and subarachnoid hemorrhage decrease but their circumstances near vessels differ from the aspect of initial volume of tracer distribution. This might help to understand or diagnose cerebral vessel diseases.

  12. Antibodies labeled with metallic radionuclides: influence of nuclide chemistry on dose distribution.

    PubMed

    Vaughan, A T; Yankuba, S C; Anderson, P

    1987-01-01

    An antibody with human CEA specificity has been labeled with either yttrium-90, scandium-47, or indium-111, via a diethylenetriamine pentaacetic acid (DTPA) link covalently bound to the protein. The clearance of these proteins from the blood of mice can be described by a single exponential; the half-life decreases in the order indium-111 greater than yttrium-90 greater than scandium-47. Associated with the blood clearance is an uptake of radioactivity into the liver; scandium-47 has the highest concentration, indium-111 has the least, and yttrium-90 is intermediate. There is no correlation between these results and the equilibrium stability constants of the metals with DTPA-like ligands. The results obtained show that, in vivo, scandium-47 and yttrium-90 are more easily displaced from DTPA by other ions than is indium-111. They also show that free DTPA is able to extract yttrium-90 and scandium-47, but not indium-111, from the liver of treated animals, indicating that indium-111 is resistant to ligand exchange reactions in vivo. These data indicate that 1) the equilibrium stability constant is not a good indicator of the in vivo stability of metal-labeled proteins and 2) it is possible to manipulate the ion distribution and therefore the dose from scandium-47 and yttrium-90 after injection of the labeled proteins. PMID:3029601

  13. Determination and mapping the spatial distribution of radioactivity of natural spring water in the Eastern Black Sea Region by using artificial neural network method.

    PubMed

    Yeşilkanat, Cafer Mert; Kobya, Yaşar

    2015-09-01

    In this study, radiological distribution of gross alpha, gross beta, (226)Ra, (232)Th, (40)K, and (137)Cs for a total of 40 natural spring water samples obtained from seven cities of the Eastern Black Sea Region was determined by artificial neural network (ANN) method. In the ANN method employed, the backpropagation algorithm, which estimates the backpropagation of the errors and results, was used. In the structure of ANN, five input parameters (latitude, longitude, altitude, major soil groups, and rainfall) were used for natural radionuclides and four input parameters (latitude, longitude, altitude, and rainfall) were used for artificial radionuclides, respectively. In addition, 75 % of the total data were used as the data of training and 25 % of them were used as test data in order to reveal the structure of each radionuclide. It has been seen that the results obtained explain the radiographic structure of the region very well. Spatial interpolation maps covering the whole region were created for each radionuclide including spots not measured by using these results. It has been determined that artificial neural network method can be used for mapping the spatial distribution of radioactivity with this study, which is conducted for the first time for the Black Sea Region. PMID:26307690

  14. The influence of natural organic matter on radionuclide mobility under conditions relevant to cementitious disposal of radioactive wastes: A review of direct evidence

    NASA Astrophysics Data System (ADS)

    Stockdale, Anthony; Bryan, Nick D.

    2013-06-01

    A concept for the disposal of intermediate level radioactive wastes involves emplacement within a geological disposal facility, followed by backfilling of the facility with cement. When the closed facility is re-saturated with groundwater, this will create a high pH environment due to dissolution of the cement minerals. Dissolved organic matter (DOM; defined here as naturally occurring organic acids and humin) will be present in the groundwater at a concentration that reflects the host rock environment and the recharge source and pathway. Interactions between DOM and radionuclides may enhance transport away from the facility and are an important consideration in safety performance assessments. This review specifically focuses on studies of DOM-radionuclide interactions at the high pH range that is expected during a repository lifetime. Whilst the vast majority of available data cover binary (DOM-radionuclide) and batch ternary systems (mineral-radionuclide-DOM), this review also covers other potentially important areas, such as reversibility kinetics and redox processes that can be mediated by DOM.

  15. Natural radionuclide concentrations in granite rocks in Aswan and Central-Southern Eastern Desert, Egypt and their radiological implications.

    PubMed

    Issa, Shams A M; Uosif, M A M; Abd el-Salam, L M

    2012-07-01

    Different types of granites, used extensively in local construction, were collected from five localities in Egypt, namely: Abu Ziran (Central Eastern Desert), Gabal El Maesala (Aswan) and three areas from Wadi Allaqi, (Gabal Abu Marw, Gabal Haumor and Gabal um Shalman), in the South Eastern Desert. Granite samples were studied radiologically, petrographically and geochemically. The contents of natural radionuclides ((226)Ra, (232)Th and (40)K) were measured in investigated samples by using gamma spectrometry [NaI (Tl) 3'×3']. The activity concentrations of (226)Ra, (232)Th and (40)K in the selected granite samples ranged from 9±0.5 to 111±7, 8±1 to 75±4 and 100±6 to 790±40 Bq kg(-1), respectively. The external hazard index (H(ex)), absorbed dose and annual effective dose rate were evaluated to assess the radiation hazard for people living in dwellings made of the materials studied. The calculated radium equivalents were lower than the values recommended for construction materials (370 Bq kg(-1)). The excess lifetime cancer risks were also calculated. Petrographically, the granites studied are varied in the form of potash-feldspar, quartz, plagioclase, mica and hornblende. The accessory minerals are zircon, apatite and allanite. Geochemically, the chemical composition of the granite is studied especially for major oxides. They are characterized to have SiO(2), K(2)O, Na(2)O and Al(2)O(3) with depletion in CaO, MgO, TiO(2) and P(2)O(5). PMID:22147926

  16. Radionuclide trap

    DOEpatents

    McGuire, Joseph C.

    1978-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  17. Distribution of fallout and environmental radionuclides in ice-free areas of King George Island (Western Antarctica)

    NASA Astrophysics Data System (ADS)

    Castillo, Alejandra; Schuller, Paulina; Dercon, Gerd; Nguyen, Minh-Long; Navas, Ana; Ramírez, Paola; López, César

    2013-04-01

    Climate change is progressing at a rate which is several times the global average in Western Antarctica. The Antarctic Peninsula region has experienced a rise of ca. 3°C for surface air temperature over the last 50 years; and 87% of 244 glaciers along the west coast of the Antarctic Peninsula have retreated in the last 50 years. Examining the impacts of climate change in Antarctic landscapes, in particular in the soils at the foot of retreating glaciers, can provide a better understanding of the future impacts of climate change on landscape dynamics (including land degradation and resulting changes in land, water and ecosystem quality) in the higher mountainous cold regions of the world. In this paper, results of an exploratory assessment of soil movement and identification of sediment sources and sediment sinks by investigating the distribution of fallout (FRN's) and environmental radionuclides (ERN's) in ice-free areas of King George Island (Western Antarctica) are discussed. This assessment has been carried in the context of an Instituto Antártico Chileno project, and supported by the IAEA Technical Cooperation, studying land degradation in the cold regions of South America. To this purpose soil profiles were sampled at depth increments at three different control sites. In addition, topsoil (0-1 cm depth) samples were collected from areas identified as potential soil sources and from others identified as sinks of sediments. The soil profiles at the control sites showed distinctive patterns in the depth distribution of the FRN's and ERN's. The 137Cs and 210Pbex activity mass concentration (Bq kg-1) were highest in the topsoil and penetration depth was less than 8 and 25 cm, respectively. The depth distribution of 226Ra and 232Th in the soil profiles was quite homogeneous and greater variation was found for 40K and 238U, possibly related to differences in the mineralogical composition of soils. Average mass activity values of 137Cs and 210Pbex at the source

  18. Tracing the origin of suspended sediment in a large Mediterranean river by combining continuous river monitoring and measurement of artificial and natural radionuclides.

    PubMed

    Zebracki, Mathilde; Eyrolle-Boyer, Frédérique; Evrard, Olivier; Claval, David; Mourier, Brice; Gairoard, Stéphanie; Cagnat, Xavier; Antonelli, Christelle

    2015-01-01

    Delivery of suspended sediment from large rivers to marine environments has important environmental impacts on coastal zones. In France, the Rhone River (catchment area of 98,000 km(2)) is by far the main supplier of sediment to the Mediterranean Sea and its annual solid discharge is largely controlled by flood events. This study investigates the relevance of alternative and original fingerprinting techniques based on the relative abundances of a series of radionuclides measured routinely at the Rhone River outlet to quantify the relative contribution of sediment supplied by the main tributaries during floods. Floods were classified according to the relative contribution of the main subcatchments (i.e., Oceanic, Cevenol, extensive Mediterranean and generalised). Between 2000 and 2012, 221 samples of suspended sediment were collected at the outlet and were shown to be representative of all flood types that occurred during the last decade. Three geogenic radionuclides (i.e., (238)U, (232)Th and (40)K) were used as fingerprints in a multivariate mixing model in order to estimate the relative contribution of the main subcatchment sources-characterised by different lithologies-in sediment samples collected at the outlet. Results showed that total sediment supply originating from Pre-Alpine, Upstream, and Cevenol sources amounted to 10, 7 and 2.10(6)tons, respectively. These results highlight the role of Pre-Alpine tributaries as the main sediment supplier (53%) to the Rhone River during floods. Other fingerprinting approaches based on artificial radionuclide activity ratios (i.e., (137)Cs/(239+240)Pu and (238)Pu/(239+240)Pu) were tested and provided a way to quantify sediment remobilisation or the relative contributions of the southern tributaries. In the future, fingerprinting methods based on natural radionuclides should be further applied to catchments with heterogeneous lithologies. Methods based on artificial radionuclides should be further applied to catchments

  19. Modeling natural gas market volatility using GARCH with different distributions

    NASA Astrophysics Data System (ADS)

    Lv, Xiaodong; Shan, Xian

    2013-11-01

    In this paper, we model natural gas market volatility using GARCH-class models with long memory and fat-tail distributions. First, we forecast price volatilities of spot and futures prices. Our evidence shows that none of the models can consistently outperform others across different criteria of loss functions. We can obtain greater forecasting accuracy by taking the stylized fact of fat-tail distributions into account. Second, we forecast volatility of basis defined as the price differential between spot and futures. Our evidence shows that nonlinear GARCH-class models with asymmetric effects have the greatest forecasting accuracy. Finally, we investigate the source of forecasting loss of models. Our findings based on a detrending moving average indicate that GARCH models cannot capture multifractality in natural gas markets. This may be the plausible explanation for the source of model forecasting losses.

  20. Estimation of annual effective dose due to natural and man-made radionuclides in the metropolitan area of the Bay of Cadiz (SW of Spain).

    PubMed

    Casas-Ruiz, M; Ligero, R A; Barbero, L

    2012-06-01

    In order to investigate the radiological hazard of naturally occurring radioactive material (NORM) and man-made (137)Cs radionuclide in the Bay of Cádiz, 149 samples of sediments have been analysed. Activity concentration in all the samples was determined using a HPGe detection system. Activity concentrations values of (226)Ra, (232)Th, (40)K and (137)Cs in the samples were 12.6±2.6 (2.5-40.6), 18.5±4.0 (2.8-73.4), 451±45 (105-1342) and 3.2±1.3 (0.2-16.0) Bq kg(-1), respectively. Outdoor external dose rate due to natural and man-made radionuclides was calculated to be 35.79±1.69 (4.71-119.16) nGy h(-1) and annual effective dose was estimated to be 43.89±2.27 (5.78-146.14) µSv y(-1). Results showed low levels of radioactivity due to NORM and man-made (137)Cs radionuclide in marine sediments recovered from the Bay of Cádiz (Spain), discarding any significant radiological risks related to human activities of the area. Furthermore, the obtained data set could be used as background levels for future research. PMID:21896553

  1. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically

  2. Distribution of organic carbon, selected stable elements and artificial radionuclides among dissolved, colloidal and particulate phases in the Rhône River (France): preliminary results.

    PubMed

    Eyrolle, F; Charmasson, S

    2001-01-01

    The behaviour of radionuclides discharged from nuclear facilities in the Rhône River depends on their distribution among the dissolved, colloidal and particulate phases. A large water sample was fractionated using sequential ultrafiltration. Size distributions of organic carbon, Fe, Al, Si, Ca, Mg, Cu, Zn, 137Cs, 60Co and 106Ru were obtained. Our results show that organic colloids account for 11% of the total organic carbon content. Approximately 20% of the dissolved (< 450 nm) Fe and Al are in colloidal classes. 137Cs is not significantly transferred by the colloidal phase while 25% of 60Co or 106Ru is associated with organic and inorganic colloids. PMID:11398374

  3. Variations of cosmogenic radionuclide production rates along the meteorite orbits

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Laubenstein, M.; Povinec, P. P.; Ustinova, G. K.

    2015-08-01

    Cosmogenic radionuclides produced by galactic cosmic rays (GCR) in meteorites during their motion in space are natural detectors of the GCR intensity and variations along the meteorite orbits. On the basis of measured and calculated contents of cosmogenic radionuclides in the freshly fallen Chelyabinsk and Košice chondrites some peculiarities of generation of cosmogenic radionuclides of different half-lives in the chondrites of different orbits and dates of fall onto the Earth are demonstrated. Dependence of production rates of the radionuclides on the GCR variations in the heliosphere is analyzed. Using radionuclides with different half-lives it is possible to compare the average GCR intensity over various time periods. The measurement and theoretical analysis of cosmogenic radionuclides in consecutively fallen chondrites provide a unique information on the space-time continuum of the cosmogenic radionuclide production rates and their variations over a long time scale, which could be useful in correlative analyses of processes in the heliosphere. Some applications of cosmogenic radionuclide depth distribution in chondrites for estimation of their pre-atmospheric sizes are illustrated.

  4. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    SciTech Connect

    Roback, R.; Murrel, M.; Goldstein, S.; Ku, T.L.; Luo, S.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence

  5. HYDROLOGIC AND GEOCHEMICAL CONTROLS ON THE TRANSPORT OF RADIONUCLIDES IN NATURAL UNDISTURBED ARID ENVIRONMENTS AS DETERMINED BY ACCELERATOR MASS SPECTROMETRY

    EPA Science Inventory

    We propose to identify and quantify the geochemical parameters controlling the migration of key radionuclides (36Cl, 90Sr, 93Zr, 99Tc, and 129I) in undisturbed soils of the shallow and deep vadose zone. Currently, the scientific understanding of these parameters cannot sufficient...

  6. A study of radionuclides, metals and stable lead isotope ratios in sediments and soils in the vicinity of natural U-mineralisation areas in the Northern Territory.

    PubMed

    Frostick, A; Bollhöfer, A; Parry, D

    2011-10-01

    Australian guidelines recommend that tailings materials from uranium (U) mining and milling be contained without any detrimental impact on the environment for at least 1000 years. Natural analogue sites are being investigated to determine if they can provide data on the rates of natural erosion processes which occur over these timescales, for input into predictive geomorphic computer models. This paper presents radionuclide, metal and stable lead (Pb) isotope data from sediment cores and surface soils in the vicinity of two mineralised areas in the Alligator Rivers Region. Surface scrapes from the natural Anomaly #2, south of the Ranger mineral lease, exhibit radiogenic (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios, and elevated U and metal concentrations typical for a near surface U anomaly. In contrast, samples taken from the Koongarra mineral lease (KML) show radionuclide activity and metal concentrations similar to natural areas elsewhere in the Alligator Rivers Region and Pb isotope ratios are closer to present day average crustal ratios (PDAC), as the orebodies at KML are covered by surficial sand. A sediment core collected from Anbangbang Billabong, downstream of KML, exhibits small variations in Pb isotope ratios that indicate that approximately 1% of the upper sediments in the sediment core may be derived from material originating from the U anomaly at Koongarra. PMID:20471726

  7. Radionuclide Distribution Coefficients for Sediments Collected from Borehole 299-E17-21: Final Report for Subtask 1a

    SciTech Connect

    DI Kaplan; IV Kutynakov; KE Parker

    1998-10-14

    Over 360 distribution coefficients (KJ for cesium, iodine, selenium, Strontium, technetium, and uranium were measured in fiscal year 1998 using 20 sediments collected fkom borehole 299-El 7-21 on the Hanford Site as part of the Immobilized Low-Activity Waste-Performance Assessment (ILAW-PA). Additionally, the pH and cation-exchange capacity (a measure of the total quantity of cations that a sediment can adsorb) of these sediment samples were measured. The sediment samples originated from the Hanford formation (informal name). Statistical analyses, using Student's t-test and correlation were conducted with the measured values. There were no significant differences between layers 1 and 2 for the selenium, strontium, technetium, and uranium & values (statistics could not be applied to evaluate layer 3 &values). Significant differences between the cesium and iodine&values for layem 1 and 2 were observed. However, these differences were modest and would likely not warrant the added complexity of using three distinct ®ions to represent the Hanford formation in the ILAW-PA model. Generally, the &values of layer 3 were more similar to those of layer 2 than those of layer 1. Conservative and best estimates of radionuclide & values were calculated based on the results from these measurements. The best estimate was chosen to be the calculated median value; whereas the con- servative estimate was the miniium value, except for the conservative uranium&estimate that was based on the second-to-lowest value because of the presence of an unusually low value that was not consistent with other values from this borehole or previous reported values. Overall, the estimates are consistent with values used for the ILAW-PA, with some notable excep- tions. The conservative & estimates for technetium and uranium are approximately the same as those used for the ILAW-PA. The conservative ~alues for cesium, selenium, and strontium were appreciably more conservative than necessary. The

  8. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetité, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo

    2008-08-01

    The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  9. Absorbed Dose Rate Due to Intake of Natural Radionuclides by Tilapia Fish (Tilapia nilotica,Linnaeus, 1758) Estimated Near Uranium Mining at Caetite, Bahia, Brazil

    SciTech Connect

    Pereira, Wagner de S; Kelecom, Alphonse

    2008-08-07

    The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.

  10. Scaling laws for the distribution of natural resources

    NASA Astrophysics Data System (ADS)

    Blenkinsop, Thomas

    2014-05-01

    If scaling laws can be established for the distribution of natural resources, they would have important economic consequences. For example, they can be used to estimate total resources, they can dictate exploration strategies, and they can also point to processes by which natural resources form. A scaling law for the spatial distribution of natural resources can be proposed as: M(r) ~ r-D where M(r) is the mass of resource within a circle of radius r. If the mass of individual occurrences of resources is unity, this law describes the Mass Dimension D of the resource, commonly analysed by the number-in-circle method. In this case D is simply interpreted as a measure of the clustering of the resource distribution. Space filling or random distributions have D = 2: lower values indicate a decrease in density with distance. If the mass of resource varies at each occurrence (as typical in nature), then M(r) ~ r-D is a general scaling law, with an exponent that is referred to here as the Mass-Radius scaling exponent. This exponent can have values greater than 2. Mass Dimensions and Mass-Radius scaling exponents have been determined in this study for Archean gold deposits in Zimbabwe, direct use of geothermal energy in Oregon, geothermal energy use in New Zealand and conventional and unconventional gas production in Pennsylvania. Mass Dimensions vary between 0.4 and 2, reflecting the variable clustering of the data sets. The highest values are from conventional gas production, while unconventional gas production and geothermal energy have lower values. In general Mass Dimensions and Mass-Radius scaling exponents are similar in any data sets. An interesting consequence is that an approximate value for the Mass-Radius scaling exponent can be given by the Mass Dimension. It is commonly hard to measure the Mass-Radius scaling exponent because accurate data for mass is difficult to obtain. The similarity of the two exponents suggests that substituting the Mass Dimension for the