Sample records for natural selection plant

  1. Natural selection on plant physiological traits in an urban environment

    NASA Astrophysics Data System (ADS)

    Lambrecht, Susan C.; Mahieu, Stephanie; Cheptou, Pierre-Olivier

    2016-11-01

    Current rates of urbanization are creating new opportunities for studying urban plant ecology, but our knowledge of urban plant physiology lags behind that of other ecosystems. Moreover, higher temperatures, elevated CO2, and increased inorganic nitrogen deposition along with altered moisture regimes of urban as compared to rural areas creates a compelling analog for studying adaptations of plants to climate change. We grew plants under common conditions in a greenhouse to determine whether populations of Crepis sancta (Asteraceae) differed in phenological, morphological, and physiological traits. We also used a field experiment to test for natural selection on these traits in urban Montpellier, France. Urban plants flowered and senesced later than rural plants, and natural selection favored later phenology in the urban habitat. Natural selection also favored larger plants with more leaves, and increased photosynthesis and leaf nitrogen concentration. Ours is the first study to document selection on plant functional traits in an urban habitat and, as such, advances our understanding of urban plant ecology and possible adaptations to climate change.

  2. Naturally seeded versus planted ponderosa pine seedlings in group-selection openings

    Treesearch

    Philip M. McDonald; Gary Fiddler; Martin Ritchie; Paula Anderson

    2009-01-01

    The purpose of this article was to determine whether natural regeneration or planted seedlings should be used in group-selection openings. The answer dependson the survival and growth rate of both types of seedlings, and that could depend on the size of the openings and the effect of trees on their edge. In thisside-by-side study, the natural pine seedlings originated...

  3. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation.

    PubMed

    Vergani, Lorenzo; Mapelli, Francesca; Marasco, Ramona; Crotti, Elena; Fusi, Marco; Di Guardo, Antonio; Armiraglio, Stefano; Daffonchio, Daniele; Borin, Sara

    2017-01-01

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates

  4. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation

    PubMed Central

    Vergani, Lorenzo; Mapelli, Francesca; Marasco, Ramona; Crotti, Elena; Fusi, Marco; Di Guardo, Antonio; Armiraglio, Stefano; Daffonchio, Daniele; Borin, Sara

    2017-01-01

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates

  5. Soil-to-plant transfer factors of natural radionuclides (226Ra and 40K) in selected Thai medicinal plants.

    PubMed

    Saenboonruang, Kiadtisak; Phonchanthuek, Endu; Prasandee, Kamonkhuan

    2018-04-01

    A soil-to-plant transfer factor (TF) is an important parameter that could be used to estimate radionuclides levels in medicinal plants. This work reports concentrations of natural radionuclides ( 226 Ra and 40 K) and TFs in six Thai medicinal plants grown in central Thailand using an HPGe gamma ray spectrometer. Either root, leaf, or flower parts of each medicinal plant were selected for use in the investigation according to their practical uses in traditional medicine. The results showed that due to K being essential in plants, 40 K had higher arithmetic means of activity concentrations and geometric means of TFs (geometric standard deviations in parentheses) of 610 ± 260 Bq kg -1 dry weight (DW) and 2.0 (1.4), respectively, than 226 Ra, which had the activity concentrations and TFs of 4.8 ± 2.6 Bq kg -1 DW and 0.17 (1.8), respectively. The results also showed that the leaves of medicinal plants had higher activity concentrations and TFs than root and flower parts, probably due to higher metabolic activities in leaves. Furthermore, there was good agreement between the results from the current work and other similar reports on medicinal plants. The information obtained from this work could strengthen knowledge of natural radionuclides in plants and particularly increase available TF data on Thai medicinal plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Pollinator-mediated natural selection in Penstemon digitalis.

    PubMed

    Parachnowitsch, Amy; Kessler, André

    2010-12-01

    Measuring the agents of natural selection is important because it allows us to understand not only which traits are expected to evolve but also why they will evolve. Natural selection by pollinators on floral traits is often assumed because in outcrossing animal-pollinated plants flowers are generally thought to function as advertisements of rewards directed at pollinators. We tested the role of bee pollinators in selection on Penstemon digitalis and found that pollinators were driving selection for larger and more flowers. However, what makes our publication unique is the additional information we gained from reviewing the few other studies that also directly tested whether pollinators were agents of selection on floral traits. As we would expect if pollinators are important agents of selection, selection on floral traits was significantly stronger when pollinators were present than when they were experimentally removed. Taken together, these results suggest that pollinators can be important drivers of selection in contemporary populations.

  7. Natural selection drives chemical resistance of Datura stramonium

    PubMed Central

    Miranda-Pérez, Adán; Castillo, Guillermo; Hernández-Cumplido, Johnattan; Valverde, Pedro L.; Borbolla, María; Cruz, Laura L.; Tapia-López, Rosalinda; Fornoni, Juan; Flores-Ortiz, César M.

    2016-01-01

    Plant resistance to herbivores involves physical and chemical plant traits that prevent or diminish damage by herbivores, and hence may promote coevolutionary arm-races between interacting species. Although Datura stramonium’s concentration of tropane alkaloids is under selection by leaf beetles, it is not known whether chemical defense reduces seed predation by the specialist weevil, Trichobaris soror, and if it is evolving by natural selection. We measured infestation by T. soror as well as the concentration of the plants’ two main tropane alkaloids in 278 D. stramonium plants belonging to 31 populations in central Mexico. We assessed whether the seed predator exerted preferences on the levels of both alkaloids and whether they affect plant fitness. Results show great variation across populations in the concentration of scopolamine and atropine in both leaves and seeds of plants of D. stramonium, as well as in the intensity of infestation and the proportion of infested fruits by T. soror. The concentration of scopolamine in seeds and leaves are negatively associated across populations. We found that scopolamine concentration increases plant fitness. Our major finding was the detection of a positive relationship between the population average concentrations of scopolamine with the selection differentials of scopolamine. Such spatial variation in the direction and intensity of selection on scopolamine may represent a coevolutionary selective mosaic. Our results support the view that variation in the concentration of scopolamine among-populations of D. stramonium in central Mexico is being driven, in part, by selection exerted by T. soror, pointing an adaptive role of tropane alkaloids in this plant species. PMID:27114866

  8. Natural Selection and Neutral Evolution Jointly Drive Population Divergence between Alpine and Lowland Ecotypes of the Allopolyploid Plant Anemone multifida (Ranunculaceae)

    PubMed Central

    McEwen, Jamie R.; Vamosi, Jana C.; Rogers, Sean M.

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence. PMID:23874801

  9. Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae).

    PubMed

    McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.

  10. Variation in resource limitation of plant reproduction influences natural selection on floral traits of Asclepias syriaca.

    PubMed

    Caruso, Christina M; Remington, Davin L D; Ostergren, Kate E

    2005-11-01

    The availability of both pollen and resources can influence natural selection on floral traits, but their relative importance in shaping floral evolution is unclear. We experimentally manipulated pollinator and resource (fertilizer and water) availability in the perennial wildflower Asclepias syriaca L. Nine floral traits, one male fitness component (number of pollinia removed), and two female fitness components (number of pollinia inserted and number of fruits initiated) were measured for plants in each of three treatments (unmanipulated control, decreased pollinator access, and resource supplementation). Although decreasing pollinators' access to flowers did result in fewer pollinia inserted and removed, fruit set and phenotypic selection on floral traits via female and male fitness did not differ from the control. In contrast, resource supplementation increased fruit set, and phenotypic selection on seven out of nine floral traits was stronger via female than male fitness, consistent with the prediction that selection via female fitness would be greater when reproduction was less resource-limited. Our results support the hypothesis that abiotic resource availability can influence floral evolution by altering gender-specific selection.

  11. Notice of release of Amethyst Germplasm hoaty tansyaster: Selected class of natural germplasm

    Treesearch

    Derek J. Tilley

    2015-01-01

    The US Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Aberdeen Plant Materials Center, Aberdeen, Idaho, announces the release of Amethyst Germplasm hoary tansyaster (Machaeronthero canescens (Pursh) A. Gray [Asteraceae]}, a selected class natural track germplasm identified by NRCS accession number 9076670 for conservation plantings in...

  12. Induced responses to competition and herbivory: natural selection on multi-trait phenotypic plasticity.

    PubMed

    Boege, Karina

    2010-09-01

    Herbivory and competition are two of the most common biotic stressors for plants. When occurring simultaneously, responses to one interaction can constrain the induction of responses to the other interaction due to resource limitation and other interactive effects. Thus, to maximize fitness when interacting with competitors and herbivores, plants are likely to express particular combinations of plastic responses. This study reports the interactive effects of herbivory and competition on responses induced in Tithonia tubaeformis plants and describes how natural selection acts on particular plastic responses and on their different combinations. Competition induced a stem elongation response, expressed through an increase in height and mean internode length, together with a decrease in basal diameter. Interestingly, realized resistance increased in both competition and herbivory treatments, suggesting a plastic response in both constitutive and induced resistance traits. Particular combinations of plastic responses defined three plant phenotypes: vigorous, elongated, and resistant plants. The ecological context in which plants grew modified the traits and the particular combinations of plastic responses that were favored by selection. Vigorous plants were favored by selection in all environments, except when they were damaged by herbivores in the absence of neighbors. The combination of responses defining an elongated plant phenotype was favored by selection in crowded conditions. Resistance was negatively selected in the absence of competition and herbivory but favored in the presence of both interactions. In addition, contextual analyses detected that population structure in heterogeneous environments can also influence the outcomes of selection. These findings suggest that natural selection can act on particular combinations of plastic responses, which may allow plants to adjust their phenotypes to those that promote greater fitness under particular ecological

  13. Demonstrating Natural Selection

    ERIC Educational Resources Information Center

    Hinds, David S.; Amundson, John C.

    1975-01-01

    Describes laboratory exercises with chickens selecting their food from dyed and natural corn kernels as a method of demonstrating natural selection. The procedure is based on the fact that organisms that blend into their surroundings escape predation. (BR)

  14. Pollinators exert natural selection on flower size and floral display in Penstemon digitalis.

    PubMed

    Parachnowitsch, Amy L; Kessler, André

    2010-10-01

    • A major gap in our understanding of floral evolution, especially micro-evolutionary processes, is the role of pollinators in generating patterns of natural selection on floral traits. Here we explicitly tested the role of pollinators in selecting floral traits in a herbaceous perennial, Penstemon digitalis. • We manipulated the effect of pollinators on fitness through hand pollinations and compared phenotypic selection in open- and hand-pollinated plants. • Despite the lack of pollen limitation in our population, pollinators mediated selection on floral size and floral display. Hand pollinations removed directional selection for larger flowers and stabilizing selection on flower number, suggesting that pollinators were the agents of selection on both of these traits. • We reviewed studies that measured natural selection on floral traits by biotic agents and generally found stronger signatures of selection imposed by pollinators than by herbivores and co-flowering plant species. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  15. Symbiogenesis, natural selection, and the dynamic Earth.

    PubMed

    Kutschera, U

    2009-08-01

    One century ago, Constantin S. Mereschkowsky introduced the symbiogenesis theory for the origin of chloroplasts from ancient cyanobacteria which was later supplemented by Ivan E. Wallin's proposal that mitochondria evolved from once free-living bacteria. Today, this Mereschkowsky-Wallin principle of symbiogenesis, which is also known as the serial primary endosymbiosis theory, explains the evolutionary origin of eukaryotic cells and hence the emergence of all eukaryotes (protists, fungi, animals and plants). In 1858, the concept of natural selection was described independently by Charles Darwin and Alfred R. Wallace. In the same year, Antonio Snider-Pellegrini proposed the idea of shifting continents, which was later expanded by Alfred Wegener, who published his theory of continental drift eight decades ago. Today, directional selection is accepted as the major cause of adaptive evolution within natural populations of micro- and macro-organisms and the theory of the dynamic Earth (plate tectonics) is well supported. In this article, I combine the processes and principles of symbiogenesis, natural selection and the dynamic Earth and propose an integrative 'synade-model' of macroevolution which takes into account organisms from all five Kingdoms of life.

  16. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.

    PubMed

    Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco

    2007-05-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.

  17. Selection for niche differentiation in plant communities increases biodiversity effects.

    PubMed

    Zuppinger-Dingley, Debra; Schmid, Bernhard; Petermann, Jana S; Yadav, Varuna; De Deyn, Gerlinde B; Flynn, Dan F B

    2014-11-06

    In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive this increasing biodiversity effect. Growing 12 grassland species in test monocultures and mixtures, we found character displacement between species and increased biodiversity effects when plants had been selected over 8 years in species mixtures rather than in monocultures. When grown in mixtures, relative differences in height and specific leaf area between plant species selected in mixtures (mixture types) were greater than between species selected in monocultures (monoculture types). Furthermore, net biodiversity and complementarity effects were greater in mixtures of mixture types than in mixtures of monoculture types. Our study demonstrates a novel mechanism for the increase in biodiversity effects: selection for increased niche differentiation through character displacement. Selection in diverse mixtures may therefore increase species coexistence and ecosystem functioning in natural communities and may also allow increased mixture yields in agriculture or forestry. However, loss of biodiversity and prolonged selection of crops in monoculture may compromise this potential for selection in the longer term.

  18. Herbivores modify selection on plant functional traits in a temperate rainforest understory.

    PubMed

    Salgado-Luarte, Cristian; Gianoli, Ernesto

    2012-08-01

    There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.

  19. Cyclone tolerance in new world arecaceae: biogeographic variation and abiotic natural selection.

    PubMed

    Griffith, M Patrick; Noblick, Larry R; Dowe, John L; Husby, Chad E; Calonje, Michael A

    2008-10-01

    Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection. New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts. Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0.001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality. Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.

  20. Avian use of natural versus planted woodlands in eastern South Dakota, USA

    USGS Publications Warehouse

    Bakker, K.K.; Higgins, K.F.

    2003-01-01

    We compared avian use of naturally occurring and planted woodlands in eastern South Dakota, USA, to evaluate whether planted woodlands support the same avian communities as natural woodlands. A stratified cluster sample was used to randomly select 307 public areas in which to survey planted (n = 425) and natural (n = 99) woodland patches. Eighty-five species of birds were detected in eastern South Dakota woodlands, 36 of which occurred in ??? 5 of 524 patches surveyed. The probability of occurrence for 8 of 13 woodland-obligate species was significantly greater in natural woodland habitats than in planted woodland habitats. Four of these species breed in relatively high numbers in eastern South Dakota. Only one woodland-obligate occurred less frequently in natural woodlands. Probability of occurrence for 6 edge and generalist species, including the brown-headed cowbird (Molothrus ater [Boddaert]), was significantly higher in planted woodlands. The avian community of planted woodlands was dominated by edge and generalist species. The homogeneous vegetation structure typical of planted woodlands does not appear to provide the habitat characteristics needed by woodland-obligate birds. We conclude that planted woodlands do not support significant numbers of woodland-obligate species and may negatively impact grassland-nesting birds by attracting edge and generalist bird species and predators into previously treeless habitats. Planted woodlands cannot be considered equal replacement habitats for natural woodland patches when managing for nongame woodland bird species. However, the preservation and maintenance of natural woodlands is critical for woodland-obligate species diversity in the northern Great Plains.

  1. A novel light-dependent selection marker system in plants.

    PubMed

    Koh, Serry; Kim, Hongsup; Kim, Jinwoo; Goo, Eunhye; Kim, Yun-Jung; Choi, Okhee; Jwa, Nam-Soo; Ma, Jun; Nagamatsu, Tomohisa; Moon, Jae Sun; Hwang, Ingyu

    2011-04-01

    Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H₂O₂ during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin-degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring-cleavage extradiol dioxygenase in the Exiguobacterium sp. 255-15; however, unlike other extradiol dioxygenases, Mn(2+) and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light-dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high-density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Transgenerational Effects Alter Plant Defense and Resistance in Nature

    PubMed Central

    Colicchio, Jack

    2017-01-01

    Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defense. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defense for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of inter-annual variation in herbivore density and the high cost of plant defense makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. PMID:28102915

  3. Natural selection promotes antigenic evolvability.

    PubMed

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  4. Natural Selection Promotes Antigenic Evolvability

    PubMed Central

    Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections

  5. Natural Selection in the Great Apes

    PubMed Central

    Cagan, Alexander; Theunert, Christoph; Laayouni, Hafid; Santpere, Gabriel; Pybus, Marc; Casals, Ferran; Prüfer, Kay; Navarro, Arcadi; Marques-Bonet, Tomas; Bertranpetit, Jaume; Andrés, Aida M.

    2016-01-01

    Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh. PMID:27795229

  6. Sexual and natural selection in the evolution of extended phenotypes: the use of green nesting material in starlings.

    PubMed

    Rubalcaba, J G; Polo, V; Maia, R; Rubenstein, D R; Veiga, J P

    2016-08-01

    Although sexual selection is typically considered the predominant force driving the evolution of ritualized sexual behaviours, natural selection may also play an important and often underappreciated role. The use of green aromatic plants among nesting birds has been interpreted as a component of extended phenotype that evolved either via natural selection due to potential sanitary functions or via sexual selection as a signal of male attractiveness. Here, we compared both hypotheses using comparative methods in starlings, a group where this behaviour is widespread. We found that the use of green plants was positively related to male-biased size dimorphism and that it was most likely to occur among cavity-nesting species. These results suggest that this behaviour is likely favoured by sexual selection, but also related to its sanitary use in response to higher parasite loads in cavities. We speculate that the use of green plants in starlings may be facilitated by cavity nesting and was subsequently co-opted as a sexual signal by males. Our results represent an example of how an extended phenotypic component of males becomes sexually selected by females. Thus, both natural selection and sexual selection are necessary to fully understand the evolution of ritualized behaviours involved in courtship. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    PubMed

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  8. Selecting native perennial plants for ecological intensification in Mediterranean greenhouse horticulture.

    PubMed

    Rodríguez, E; González, M; Paredes, D; Campos, M; Benítez, E

    2017-12-04

    Natural control by predators and parasitoids provides an important and often unnoticed ecosystem service to agricultural landscapes by reducing pest populations in crops. The current model of horticultural intensification in south-eastern Spain produces high yields but has also resulted in a landscape almost completely covered by plastic. Promoting natural areas among greenhouses could enhance biodiversity, by being beneficial insects, and reduce pest pressure outdoors. The first step is to ascertain how pests and their natural enemies (NEs) use Mediterranean vegetation for selecting the best plants for pest suppression outdoors. The abundance of the two major horticultural pests, the tobacco whitefly, Bemisia tabaci, and the western flower thrips, Frankliniella occidentalis, together with their NEs, were assayed in 22 flowering perennial plants, which were newly planted in an experimental field surrounded by greenhouses. Eight plant species were identified as the most critical species for sustaining pest populations outdoors. A set of five plant species supported a medium level of pests, and another set of ten plant species supported the lowest level of both pests. Tobacco whitefly occurred in a few plants species, whereas western flower thrips occurred on almost all the plant species studied, and was favoured by the presence of flowers in perennial plants. The results suggest that plant diversity may provide relatively few acceptable host plants for tobacco whitefly than for western flower thrips. NEs were generally collected in plants that also supported abundance of pests, indicating that host/prey availability, more than food resources from flowers, was a stronger predictor of NE abundance in perennial plants. Field trials using the plants with the lowest host acceptance by pests are needed in order to ascertain whether pest abundance outdoors is reduced.

  9. Plant selection for ethnobotanical uses on the Amalfi Coast (Southern Italy).

    PubMed

    Savo, V; Joy, R; Caneva, G; McClatchey, W C

    2015-07-15

    Many ethnobotanical studies have investigated selection criteria for medicinal and non-medicinal plants. In this paper we test several statistical methods using different ethnobotanical datasets in order to 1) define to which extent the nature of the datasets can affect the interpretation of results; 2) determine if the selection for different plant uses is based on phylogeny, or other selection criteria. We considered three different ethnobotanical datasets: two datasets of medicinal plants and a dataset of non-medicinal plants (handicraft production, domestic and agro-pastoral practices) and two floras of the Amalfi Coast. We performed residual analysis from linear regression, the binomial test and the Bayesian approach for calculating under-used and over-used plant families within ethnobotanical datasets. Percentages of agreement were calculated to compare the results of the analyses. We also analyzed the relationship between plant selection and phylogeny, chorology, life form and habitat using the chi-square test. Pearson's residuals for each of the significant chi-square analyses were examined for investigating alternative hypotheses of plant selection criteria. The three statistical analysis methods differed within the same dataset, and between different datasets and floras, but with some similarities. In the two medicinal datasets, only Lamiaceae was identified in both floras as an over-used family by all three statistical methods. All statistical methods in one flora agreed that Malvaceae was over-used and Poaceae under-used, but this was not found to be consistent with results of the second flora in which one statistical result was non-significant. All other families had some discrepancy in significance across methods, or floras. Significant over- or under-use was observed in only a minority of cases. The chi-square analyses were significant for phylogeny, life form and habitat. Pearson's residuals indicated a non-random selection of woody species for non

  10. Climate change will increase the naturalization risk from garden plants in Europe.

    PubMed

    Dullinger, Iwona; Wessely, Johannes; Bossdorf, Oliver; Dawson, Wayne; Essl, Franz; Gattringer, Andreas; Klonner, Günther; Kreft, Holger; Kuttner, Michael; Moser, Dietmar; Pergl, Jan; Pyšek, Petr; Thuiller, Wilfried; van Kleunen, Mark; Weigelt, Patrick; Winter, Marten; Dullinger, Stefan; Beaumont, Linda

    2017-01-01

    Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Europe. We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate.

  11. Climate change will increase the naturalization risk from garden plants in Europe

    PubMed Central

    Wessely, Johannes; Bossdorf, Oliver; Dawson, Wayne; Essl, Franz; Gattringer, Andreas; Klonner, Günther; Kreft, Holger; Kuttner, Michael; Moser, Dietmar; Pergl, Jan; Pyšek, Petr; Thuiller, Wilfried; van Kleunen, Mark; Weigelt, Patrick; Winter, Marten; Dullinger, Stefan; Beaumont, Linda

    2016-01-01

    Abstract Aim Plant invasions often follow initial introduction with a considerable delay. The current non‐native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non‐native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Location Europe. Methods We selected all species naturalized anywhere in the world but not yet in Europe from the set of non‐native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Results Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Main conclusions Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate. PMID:28111525

  12. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    PubMed Central

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-01-01

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms. PMID:23669710

  13. Induced defences alter the strength and direction of natural selection on reproductive traits in common milkweed.

    PubMed

    Thompson, K A; Cory, K A; Johnson, M T J

    2017-06-01

    Evolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defences can alter natural selection on reproductive traits, but it is unclear whether induced defences will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca L., we induced plant defences using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), whereas control plants only experienced a trend towards selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defences can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defences may promote the evolution of plant reproductive diversity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. A Conceptual Characterization of Online Videos Explaining Natural Selection

    NASA Astrophysics Data System (ADS)

    Bohlin, Gustav; Göransson, Andreas; Höst, Gunnar E.; Tibell, Lena A. E.

    2017-11-01

    Educational videos on the Internet comprise a vast and highly diverse source of information. Online search engines facilitate access to numerous videos claiming to explain natural selection, but little is known about the degree to which the video content match key evolutionary content identified as important in evolution education research. In this study, we therefore analyzed the content of 60 videos accessed through the Internet, using a criteria catalog with 38 operationalized variables derived from research literature. The variables were sorted into four categories: (a) key concepts (e.g. limited resources and inherited variation), (b) threshold concepts (abstract concepts with a transforming and integrative function), (c) misconceptions (e.g. that evolution is driven by need), and (d) organismal context (e.g. animal or plant). The results indicate that some concepts are frequently communicated, and certain taxa are commonly used to illustrate concepts, while others are seldom included. In addition, evolutionary phenomena at small temporal and spatial scales, such as subcellular processes, are rarely covered. Rather, the focus is on population-level events over time scales spanning years or longer. This is consistent with an observed lack of explanations regarding how randomly occurring mutations provide the basis for variation (and thus natural selection). The findings imply, among other things, that some components of natural selection warrant far more attention in biology teaching and science education research.

  15. Ecological genomics of natural plant populations: the Israeli perspective.

    PubMed

    Nevo, Eviatar

    2009-01-01

    The genomic era revolutionized evolutionary population biology. The ecological genomics of the wild progenitors of wheat and barley reviewed here was central in the research program of the Institute of Evolution, University of Haifa, since 1975 ( http://evolution.haifa.ac.il ). We explored the following questions: (1) How much of the genomic and phenomic diversity of wild progenitors of cultivars (wild emmer wheat, Triticum dicoccoides, the progenitor of most wheat, plus wild relatives of the Aegilops species; wild barley, Hordeum spontaneum, the progenitor of cultivated barley; wild oat, Avena sterilis, the progenitor of cultivated oats; and wild lettuce species, Lactuca, the progenitor and relatives of cultivated lettuce) are adaptive and processed by natural selection at both coding and noncoding genomic regions? (2) What is the origin and evolution of genomic adaptation and speciation processes and their regulation by mutation, recombination, and transposons under spatiotemporal variables and stressful macrogeographic and microgeographic environments? (3) How much genetic resources are harbored in the wild progenitors for crop improvement? We advanced ecological genetics into ecological genomics and analyzed (regionally across Israel and the entire Near East Fertile Crescent and locally at microsites, focusing on the "Evolution Canyon" model) hundreds of populations and thousands of genotypes for protein (allozyme) and deoxyribonucleic acid (DNA) (coding and noncoding) diversity, partly combined with phenotypic diversity. The environmental stresses analyzed included abiotic (climatic and microclimatic, edaphic) and biotic (pathogens, demographic) stresses. Recently, we introduced genetic maps, cloning, and transformation of candidate genes. Our results indicate abundant genotypic and phenotypic diversity in natural plant populations. The organization and evolution of molecular and organismal diversity in plant populations, at all genomic regions and

  16. Evolution of resistance to a multiple-herbivore community: genetic correlations, diffuse coevolution, and constraints on the plant's response to selection.

    PubMed

    Wise, Michael J; Rausher, Mark D

    2013-06-01

    Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities-particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  17. Development of a Plant Transformation Selection System Based on Expression of Genes Encoding Gentamicin Acetyltransferases

    PubMed Central

    Hayford, Maria B.; Medford, June I.; Hoffman, Nancy L.; Rogers, Stephen G.; Klee, Harry J.

    1988-01-01

    The development of selectable markers for transformation has been a major factor in the successful genetic manipulation of plants. A new selectable marker system has been developed based on bacterial gentamicin-3-N-acetyltransferases [AAC(3)]. These enzymes inactivate aminoglycoside antibiotics by acetylation. Two examples of AAC(3) enzymes have been manipulated to be expressed in plants. Chimeric AAC(3)-III and AAC(3)-IV genes were assembled using the constitutively expressed cauliflower mosaic virus 35S promoter and the nopaline synthase 3′ nontranslated region. These chimeric genes were engineered into vectors for Agrobacterium-mediated plant transformation. Petunia hybrida and Arabidopsis thaliana tissue transformed with these vectors grew in the presence of normally lethal levels of gentamicin. The transformed nature of regenerated Arabidopsis plants was confirmed by DNA hybridization analysis and inheritance of the selectable phenotype in progeny. The chimeric AAC(3)-IV gene has also been used to select transformants in several additional plant species. These results show that the bacterial AAC(3) genes will serve as useful selectable markers in plant tissue culture. Images Fig. 3 Fig. 4 Fig. 5 PMID:16666057

  18. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    PubMed

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  19. Natural selection in chemical evolution.

    PubMed

    Fernando, Chrisantha; Rowe, Jonathan

    2007-07-07

    We propose that chemical evolution can take place by natural selection if a geophysical process is capable of heterotrophic formation of liposomes that grow at some base rate, divide by external agitation, and are subject to stochastic chemical avalanches, in the absence of nucleotides or any monomers capable of modular heredity. We model this process using a simple hill-climbing algorithm, and an artificial chemistry that is unique in exhibiting conservation of mass and energy in an open thermodynamic system. Selection at the liposome level results in the stabilization of rarely occurring molecular autocatalysts that either catalyse or are consumed in reactions that confer liposome level fitness; typically they contribute in parallel to an increasingly conserved intermediary metabolism. Loss of competing autocatalysts can sometimes be adaptive. Steady-state energy flux by the individual increases due to the energetic demands of growth, but also of memory, i.e. maintaining variations in the chemical network. Self-organizing principles such as those proposed by Kauffman, Fontana, and Morowitz have been hypothesized as an ordering principle in chemical evolution, rather than chemical evolution by natural selection. We reject those notions as either logically flawed or at best insufficient in the absence of natural selection. Finally, a finite population model without elitism shows the practical evolutionary constraints for achieving chemical evolution by natural selection in the lab.

  20. Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly.

    PubMed

    Rolhauser, Andrés G; Pucheta, Eduardo

    2017-03-01

    How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results

  1. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine

    PubMed Central

    Haddad, Mohammad Hossein Feiz; Mahbodfar, Hamidreza; Zamani, Zahra; Ramazani, Ali

    2017-01-01

    Objective(s): In an attempt to discover new natural active extracts against malaria parasites, the present study evaluated the antiplasmodial properties of selected plants based on Iranian traditional medicine. Materials and Methods: Ten plant species found in Iran were selected and collected based on the available literature about the Iranian traditional medicine. The methanolic extracts of these plants were investigated for in vitro antimalarial properties against chloroquine-sensitive (3D7) and multi-drug resistant (K1) strains of Plasmodium falciparum. Their in vivo activity against Plasmodium berghei infection in mice was also determined. Cytotoxicity tests were carried out using the Raji cells line using the MTT assay. The extracts were phytochemically screened for their active constituents. Results: According to the IC50 and selectivity index (SI) values, of the 10 selected plant species, Citrullus colocynthis, Physalis alkekengi, and Solanum nigrum displayed potent in vitro antimalarial activity against both 3D7 and K1 strains with no toxicity (IC50= 2.01-18.67 µg/ml and SI=3.55 to 19.25). Comparisons between treated and untreated control mice showed that the mentioned plant species reduced parasitemia by 65.08%, 57.97%, and 60.68%, respectively. The existence of antiplasmodial compounds was detected in these plant extracts. Conclusion: This was the first study to highlight the in vitro and in vivo antiplasmodial effects of C. colocynthis, P. alkekengi, and S. nigrum in Iran. Future studies can use these findings to design further biological tests to identify the active constituents of the mentioned plant species and clarify their mechanism of action. PMID:28804611

  2. Natural selection. IV. The Price equation*

    PubMed Central

    Frank, Steven A.

    2012-01-01

    The Price equation partitions total evolutionary change into two components. The first component provides an abstract expression of natural selection. The second component subsumes all other evolutionary processes, including changes during transmission. The natural selection component is often used in applications. Those applications attract widespread interest for their simplicity of expression and ease of interpretation. Those same applications attract widespread criticism by dropping the second component of evolutionary change and by leaving unspecified the detailed assumptions needed for a complete study of dynamics. Controversies over approximation and dynamics have nothing to do with the Price equation itself, which is simply a mathematical equivalence relation for total evolutionary change expressed in an alternative form. Disagreements about approach have to do with the tension between the relative valuation of abstract versus concrete analyses. The Price equation’s greatest value has been on the abstract side, particularly the invariance relations that illuminate the understanding of natural selection. Those abstract insights lay the foundation for applications in terms of kin selection, information theory interpretations of natural selection, and partitions of causes by path analysis. I discuss recent critiques of the Price equation by Nowak and van Veelen. PMID:22487312

  3. Microsatellites as targets of natural selection.

    PubMed

    Haasl, Ryan J; Payseur, Bret A

    2013-02-01

    The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich's ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants.

  4. Microsatellites as Targets of Natural Selection

    PubMed Central

    Haasl, Ryan J.; Payseur, Bret A.

    2013-01-01

    The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich’s ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants. PMID:23104080

  5. Natural selection stops the evolution of male attractiveness

    PubMed Central

    Hine, Emma; McGuigan, Katrina; Blows, Mark W.

    2011-01-01

    Sexual selection in natural populations acts on highly heritable traits and tends to be relatively strong, implicating sexual selection as a causal agent in many phenotypic radiations. Sexual selection appears to be ineffectual in promoting phenotypic divergence among contemporary natural populations, however, and there is little evidence from artificial selection experiments that sexual fitness can evolve. Here, we demonstrate that a multivariate male trait preferred by Drosophila serrata females can respond to selection and results in the maintenance of male mating success. The response to selection was associated with a gene of major effect increasing in frequency from 12 to 35% in seven generations. No further response to selection, or increase in frequency of the major gene, was observed between generations 7 and 11, indicating an evolutionary limit had been reached. Genetic analyses excluded both depletion of genetic variation and overdominance as causes of the evolutionary limit. Relaxing artificial selection resulted in the loss of 52% of the selection response after a further five generations, demonstrating that the response under artificial sexual selection was opposed by antagonistic natural selection. We conclude that male D. serrata sexually selected traits, and attractiveness to D. serrata females conferred by these traits, were held at an evolutionary limit by the lack of genetic variation that would allow an increase in sexual fitness while simultaneously maintaining nonsexual fitness. Our results suggest that sexual selection is unlikely to cause divergence among natural populations without a concomitant change in natural selection, a conclusion consistent with observational evidence from natural populations. PMID:21321197

  6. Natural selection. IV. The Price equation.

    PubMed

    Frank, S A

    2012-06-01

    The Price equation partitions total evolutionary change into two components. The first component provides an abstract expression of natural selection. The second component subsumes all other evolutionary processes, including changes during transmission. The natural selection component is often used in applications. Those applications attract widespread interest for their simplicity of expression and ease of interpretation. Those same applications attract widespread criticism by dropping the second component of evolutionary change and by leaving unspecified the detailed assumptions needed for a complete study of dynamics. Controversies over approximation and dynamics have nothing to do with the Price equation itself, which is simply a mathematical equivalence relation for total evolutionary change expressed in an alternative form. Disagreements about approach have to do with the tension between the relative valuation of abstract versus concrete analyses. The Price equation's greatest value has been on the abstract side, particularly the invariance relations that illuminate the understanding of natural selection. Those abstract insights lay the foundation for applications in terms of kin selection, information theory interpretations of natural selection and partitions of causes by path analysis. I discuss recent critiques of the Price equation by Nowak and van Veelen. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  7. Plant-plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas.

    PubMed

    van Loon, Marloes P; Rietkerk, Max; Dekker, Stefan C; Hikosaka, Kouki; Ueda, Miki U; Anten, Niels P R

    2016-06-01

    The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant's lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant-plant interactions was analysed. Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant-plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in

  8. How To Select and Plant a Tree.

    ERIC Educational Resources Information Center

    Fazio, James R., Ed.

    1991-01-01

    This bulletin furnishes information about selecting and planting trees. The tree selection process includes being aware of the physical characteristics of bare root seedlings, containerized seedlings, balled and burlapped, or potted trees and determining the proper size and root ball proportions. The section on tree planting discusses how to: (1)…

  9. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    PubMed

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.

  10. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2017-11-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  11. Natural Selection as Coarsening

    NASA Astrophysics Data System (ADS)

    Smerlak, Matteo

    2018-07-01

    Analogies between evolutionary dynamics and statistical mechanics, such as Fisher's second-law-like "fundamental theorem of natural selection" and Wright's "fitness landscapes", have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

  12. Adaptive Value of Phenological Traits in Stressful Environments: Predictions Based on Seed Production and Laboratory Natural Selection

    PubMed Central

    Glorieux, Cédric; Cuguen, Joel; Roux, Fabrice

    2012-01-01

    Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously. PMID:22403624

  13. Populations, Natural Selection, and Applied Organizational Science.

    ERIC Educational Resources Information Center

    McKelvey, Bill; Aldrich, Howard

    1983-01-01

    Deficiencies in existing models in organizational science may be remedied by applying the population approach, with its concepts of taxonomy, classification, evolution, and population ecology; and natural selection theory, with its principles of variation, natural selection, heredity, and struggle for existence, to the idea of organizational forms…

  14. Comparing Patterns of Natural Selection across Species Using Selective Signatures

    PubMed Central

    Shapiro, B. Jesse; Alm, Eric J

    2008-01-01

    Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 γ-proteobacterial species. We describe the pattern of fast or slow evolution across species as the “selective signature” of a gene. Selective signatures represent a profile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example, glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell. PMID:18266472

  15. The neural bases of host plant selection in a Neuroecology framework.

    PubMed

    Reisenman, Carolina E; Riffell, Jeffrey A

    2015-01-01

    Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of "Neuroecology" seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.

  16. Genes and Junk in Plant Mitochondria—Repair Mechanisms and Selection

    PubMed Central

    Christensen, Alan C.

    2014-01-01

    Plant mitochondrial genomes have very low mutation rates. In contrast, they also rearrange and expand frequently. This is easily understood if DNA repair in genes is accomplished by accurate mechanisms, whereas less accurate mechanisms including nonhomologous end joining or break-induced replication are used in nongenes. An important question is how different mechanisms of repair predominate in coding and noncoding DNA, although one possible mechanism is transcription-coupled repair (TCR). This work tests the predictions of TCR and finds no support for it. Examination of the mutation spectra and rates in genes and junk reveals what DNA repair mechanisms are available to plant mitochondria, and what selective forces act on the repair products. A model is proposed that mismatches and other DNA damages are repaired by converting them into double-strand breaks (DSBs). These can then be repaired by any of the DSB repair mechanisms, both accurate and inaccurate. Natural selection will eliminate coding regions repaired by inaccurate mechanisms, accounting for the low mutation rates in genes, whereas mutations, rearrangements, and expansions generated by inaccurate repair in noncoding regions will persist. Support for this model includes the structure of the mitochondrial mutS homolog in plants, which is fused to a double-strand endonuclease. The model proposes that plant mitochondria do not distinguish a damaged or mismatched DNA strand from the undamaged strand, they simply cut both strands and perform homology-based DSB repair. This plant-specific strategy for protecting future generations from mitochondrial DNA damage has the side effect of genome expansions and rearrangements. PMID:24904012

  17. Natural Gas Processing Plants in the United States: 2010 Update

    EIA Publications

    2011-01-01

    This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations.

  18. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  19. Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides.

    PubMed

    Molinari, Sergio

    2011-03-01

    Plant-parasitic nematodes are pests of a wide range of economically important crops, causing severe losses to agriculture. Natural genetic resistance of plants is expected to be a valid solution of the many problems nematodes cause all over the world. Progress in resistance applications is particularly important for the less-developed countries of tropical and subtropical regions, since use of resistant cultivars may be the only possible and economically feasible control strategy in those farming systems. Resistance is being considered of particular importance also in modern high-input production systems of developed countries, as the customary reliance on chemical nematicides has been restricted or has come to an end. This review briefly describes the genetic bases of resistance to nematodes in plants and focuses on the chances and problems of its exploitation as a key element in an integrated management program. Much space is dedicated to the major problem of resistance durability, in that the intensive use of resistant cultivars is likely to increasingly induce the selection of virulent populations able to "break" the resistance. Protocols of pest-host suitability are described, as bioassays are being used to evaluate local nematode populations in their potential to be selected on resistant germplasm and endanger resistant crops. The recent progress in using robust and durable resistances against nematodes as an efficient method for growers in vegetable cropping systems is reported, as well as the possible use of chemicals that do not show any unfavorable impact on environment, to induce in plants resistance against plant-parasitic nematodes.

  20. Selection of a suitable plant for phytoremediation in mining artisanal zones.

    PubMed

    Chamba, I; Gazquez, M J; Selvaraj, T; Calva, J; Toledo, J J; Armijos, C

    2016-09-01

    A study was undertaken with the aim of identifying a suitable plant for the phytoremediation of metal-polluted soil from an artisanal mining area in Ecuador. Three zones including a natural zone (NZ), abandoned zone (AZ) and intensively mined zone (IZ) were selected. Three common native plants grown in the three zones were identified and collected, including Miconia zamorensis, Axonopus compressus and Erato polymnioides. The percentage of arbuscular mycorrhizal colonization that benefits their own survival in polluted soil was analyzed in the root samples of these candidate species. Analysis of the soils and plants collected from the different zones showed that the concentrations of Pb, Zn, Cu and Cd were comparatively lower in the NZ, higher in the AZ and IZ, and highest in the AZ for all the metals. The concentration of all these metals in plant tissues was the highest in E. polymnioides. The data analysis including the metal accumulation index, bioconcentration factor and translocation factor strongly identified E. polymnioides as a hyperaccumulator plant suitable for phytoremediation.

  1. SELECTING PLANT SPECIES FOR PESTICIDE REGISTRATION TESTS

    EPA Science Inventory

    Current test protocols used by the US EPA for the registration of pesticides examines plant responses of 10 crop species but may not examine regionally important native plants or crops. In order to test the efficiency of current test protocols we selected six native plant species...

  2. Lessons from natural and artificial polyploids in higher plants.

    PubMed

    Hegarty, M; Coate, J; Sherman-Broyles, S; Abbott, R; Hiscock, S; Doyle, J

    2013-01-01

    Polyploidy in higher plants is a major source of genetic novelty upon which selection may act to drive evolution, as evidenced by the widespread success of polyploid species in the wild. However, research into the effects of polyploidy can be confounded by the entanglement of several processes: genome duplication, hybridisation (allopolyploidy is frequent in plants) and subsequent evolution. The discovery of the chemical agent colchicine, which can be used to produce artificial polyploids on demand, has enabled scientists to unravel these threads and understand the complex genomic changes involved in each. We present here an overview of lessons learnt from studies of natural and artificial polyploids, and from comparisons between the 2, covering basic cellular and metabolic consequences through to alterations in epigenetic gene regulation, together with 2 in-depth case studies in Senecio and Glycine. See also the sister article focusing on animals by Arai and Fujimoto in this themed issue. Copyright © 2013 S. Karger AG, Basel.

  3. High throughput selection of antibiotic-resistant transgenic Arabidopsis plants.

    PubMed

    Nagashima, Yukihiro; Koiwa, Hisashi

    2017-05-15

    Kanamycin resistance is the most frequently used antibiotic-resistance marker for Arabidopsis transformations, however, this method frequently causes escape of untransformed plants, particularly at the high seedling density during the selection. Here we developed a robust high-density selection method using top agar for Arabidopsis thaliana. Top agar effectively suppressed growth of untransformed wild-type plants on selection media at high density. Survival of the transformed plants during the selection were confirmed by production of green true leaves and expression of a firefly luciferase reporter gene. Top agar method allowed selection using a large amount of seeds in Arabidopsis transformation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    PubMed Central

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. PMID:27009228

  5. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    PubMed

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).

  6. Estimating selection through male fitness: three complementary methods illuminate the nature and causes of selection on flowering time

    PubMed Central

    Austen, Emily J.; Weis, Arthur E.

    2016-01-01

    Our understanding of selection through male fitness is limited by the resource demands and indirect nature of the best available genetic techniques. Applying complementary, independent approaches to this problem can help clarify evolution through male function. We applied three methods to estimate selection on flowering time through male fitness in experimental populations of the annual plant Brassica rapa: (i) an analysis of mating opportunity based on flower production schedules, (ii) genetic paternity analysis, and (iii) a novel approach based on principles of experimental evolution. Selection differentials estimated by the first method disagreed with those estimated by the other two, indicating that mating opportunity was not the principal driver of selection on flowering time. The genetic and experimental evolution methods exhibited striking agreement overall, but a slight discrepancy between the two suggested that negative environmental covariance between age at flowering and male fitness may have contributed to phenotypic selection. Together, the three methods enriched our understanding of selection on flowering time, from mating opportunity to phenotypic selection to evolutionary response. The novel experimental evolution method may provide a means of examining selection through male fitness when genetic paternity analysis is not possible. PMID:26911957

  7. Which species? A decision-support tool to guide plant selection in stormwater biofilters

    NASA Astrophysics Data System (ADS)

    Payne, Emily G. I.; Pham, Tracey; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.; Fletcher, Tim D.

    2018-03-01

    Plant species are diverse in form, function and environmental response. This provides enormous potential for designing nature-based stormwater treatment technologies, such as biofiltration systems. However, species can vary dramatically in their pollutant-removal performance, particularly for nitrogen removal. Currently, there is a lack of information on how to efficiently select from the vast palette of species. This study aimed to identify plant traits beneficial to performance and create a decision-support tool to screen species for further testing. A laboratory experiment using 220 biofilter columns paired plant morphological characteristics with nitrogen removal and water loss for 20 Australian native species and two lawn grasses. Testing was undertaken during wet and dry conditions, for two biofilter designs (saturated zone and free-draining). An extensive root system and high total biomass were critical to the effective removal of total nitrogen (TN) and nitrate (NO3-), driven by high nitrogen assimilation. The same characteristics were key to performance under dry conditions, and were associated with high water use for Australian native plants; linking assimilation and transpiration. The decision-support tool uses these scientific relationships and readily-available information to identify the morphology, natural distribution and stress tolerances likely to be good predictors of plant nitrogen and water uptake.

  8. Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation.

    PubMed

    Hsiao, Paoyuan; Sanjaya; Su, Ruey-Chih; Teixeira da Silva, Jaime A; Chan, Ming-Tsair

    2007-03-01

    Gene transformation is an integral tool for plant genetic engineering. All antibiotic resistant genes currently employed are of bacterial origin and their presence in the field is undesirable. Therefore, we developed a novel and efficient plant native non-antibiotic selection system for the selection of transgenic plants in the model system Arabidopsis. This new system is based on the enhanced expression of Arabidopsis tryptophan synthase beta 1 (AtTSB1) and the use of 5-methyl-tryptophan (5MT, a tryptophan [Trp] analog) and/or CdCl2 as selection agent(s). We successfully integrated an expression cassette containing an AtT-SB1 cDNA driven by a cauliflower mosaic virus 35S promoter into Arabidopsis by floral dip transformation. Transgenic plants were efficiently selected on MS medium supplemented with 75 microM 5MT or 300 microM CdCl2 devoid of antibiotics. TSB1 selection was as efficient as the conventional hygromycin selection system. Northern blot analysis of transgenic plants selected by 5MT and CdCl2 revealed increased TSB1 mRNA transcript whereas uneven transcript levels of hygromycin phosphotransferase II (hpt) (control) was observed. Gas chromatography-mass spectrometry revealed 10-15 fold greater free Trp content in AtT-SB1 transgenic plants than in wild-type plants grown with or without 5MT or CdCl2. Taken together, the TSB1 system provides a novel selection system distinct from conventional antibiotic selection systems.

  9. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization

  10. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret

  11. An exotic invasive plant selects for increased competitive tolerance, but not competitive suppression, in a native grass.

    PubMed

    Fletcher, Rebecca A; Callaway, Ragan M; Atwater, Daniel Z

    2016-06-01

    Exotic invasive plants can exert strong selective pressure for increased competitive ability in native plants. There are two fundamental components of competitive ability: suppression and tolerance, and the current paradigm that these components have equal influences on a species' overall competitive ability has been recently questioned. If these components do not have equal influences on overall ability, then selection on competitive tolerance and suppression may be disproportionate. We used naturally invaded communities to study the effects of selection caused by an invasive forb, Centaurea stoebe, on a native grass, Pseudoroegneria spicata. P. spicata plants were harvested from within dense C. stoebe patches and from nearby uninvaded areas, divided clonally into replicates, then transplanted into a common garden where they grew alone or competed with C. stoebe. We found that P. spicata plants collected from within C. stoebe patches were significantly more tolerant of competition with C. stoebe than P. spicata plants collected from uninvaded areas, but plants from inside invaded patches were not superior at suppressing C. stoebe. These results are consistent with the hypothesis that strong competitors may select for tolerance to competition more than for the ability to suppress neighbors. This has important implications for how native plant communities may respond to invasion over time, and how invasive and native species may ultimately coexist.

  12. A quantum of natural selection

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth

    2009-03-01

    The modern evolutionary synthesis, which marries Darwin's theory of natural selection with Mendel's genetics, was developed around the same time as quantum mechanics. Is there any connection between the two?

  13. Fitness consequences of plants growing with siblings: reconciling kin selection, niche partitioning and competitive ability

    PubMed Central

    File, Amanda L.; Murphy, Guillermo P.; Dudley, Susan A.

    2012-01-01

    Plant studies that have investigated the fitness consequences of growing with siblings have found conflicting evidence that can support different theoretical frameworks. Depending on whether siblings or strangers have higher fitness in competition, kin selection, niche partitioning and competitive ability have been invoked. Here, we bring together these processes in a conceptual synthesis and argue that they can be co-occurring. We propose that these processes can be reconciled and argue for a trait-based approach of measuring natural selection instead of the fitness-based approach to the study of sibling competition. This review will improve the understanding of how plants interact socially under competitive situations, and provide a framework for future studies. PMID:22072602

  14. Plants for Play: A Plant Selection Guide for Children's Outdoor Environments.

    ERIC Educational Resources Information Center

    Moore, Robin C.

    This book presents guidelines in the design and management of children's landscapes and reveals the importance of plants as a resource for play and child development. It identifies plants by function, i.e., their sensory values, play values, food production, seasonal interest, shade quality, screens against natural barriers, wildlife enhancement,…

  15. On the importance of balancing selection in plants

    PubMed Central

    Delph, Lynda F.; Kelly, John K.

    2013-01-01

    Summary Balancing selection refers to a variety of selective regimes that maintain advantageous genetic diversity within populations. We review the history of the ideas regarding the types of selection that maintain such polymorphism in flowering plants, notably heterozygote advantage, negative frequency-dependent selection, and spatial heterogeneity. One shared feature of these mechanisms is that whether an allele is beneficial or detrimental is conditional on its frequency in the population. We highlight examples of balancing selection on a variety of discrete traits. These include the well-referenced case of self-incompatibility and recent evidence from species with nuclear-cytoplasmic gynodioecy, both of which exhibit trans-specific polymorphism, a hallmark of balancing selection. We also discuss and give examples of how spatial heterogeneity in particular, which is often thought unlikely to allow protected polymorphism, can maintain genetic variation in plants (which are rooted in place) as a result of microhabitat selection. Lastly, we discuss limitations of the protected polymorphism concept for quantitative traits, where selection can inflate the genetic variance without maintaining specific alleles indefinitely. We conclude that while discrete-morph variation provides the most unambiguous cases of protected polymorphism, they represent only a fraction of the balancing selection at work in plants. PMID:23952298

  16. Plant phosphomannose isomerase as a selectable marker for rice transformation

    PubMed Central

    Hu, Lei; Li, Hao; Qin, Ruiying; Xu, Rongfang; Li, Juan; Li, Li; Wei, Pengcheng; Yang, Jianbo

    2016-01-01

    The E. coli phosphomannose isomerase (EcPMI) gene is widely used as a selectable marker gene (SMG) in mannose (Man) selection-based plant transformation. Although some plant species exhibit significant PMI activity and active PMIs were even identified in Man-sensitive plants, whether plant PMIs can be used as SMGs remains unclear. In this study, we isolated four novel PMI genes from Chlorella variabilis and Oryza sativa. Their isoenzymatic activities were examined in vitro and compared with that of EcPMI. The active plant PMIs were separately constructed into binary vectors as SMGs and then transformed into rice via Agrobacterium. In both Indica and Japonica subspecies, our results indicated that the plant PMIs could select and produce transgenic plants in a pattern similar to that of EcPMI. The transgenic plants exhibited an accumulation of plant PMI transcripts and enhancement of the in vivo PMI activity. Furthermore, a gene of interest was successfully transformed into rice using the plant PMIs as SMGs. Thus, novel SMGs for Man selection were isolated from plants, and our analysis suggested that PMIs encoding active enzymes might be common in plants and could potentially be used as appropriate genetic elements in cisgenesis engineering. PMID:27174847

  17. Phenotypic selection in natural populations: what limits directional selection?

    PubMed

    Kingsolver, Joel G; Diamond, Sarah E

    2011-03-01

    Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.

  18. Natural Selection in the Field and the Classroom

    ERIC Educational Resources Information Center

    Andrews, Tessa Marie

    2012-01-01

    This dissertation examined natural selection in westslope cutthroat trout ("Oncorhynchus clarkii lewisi") and undergraduate learning in the subject area natural selection. Translocation--moving individuals to a new habitat to establish, re-establish or supplement a population--is a crucial management strategy for cutthroat trout. One of…

  19. Natural selection. VII. History and interpretation of kin selection theory.

    PubMed

    Frank, S A

    2013-06-01

    Kin selection theory is a kind of causal analysis. The initial form of kin selection ascribed cause to costs, benefits and genetic relatedness. The theory then slowly developed a deeper and more sophisticated approach to partitioning the causes of social evolution. Controversy followed because causal analysis inevitably attracts opposing views. It is always possible to separate total effects into different component causes. Alternative causal schemes emphasize different aspects of a problem, reflecting the distinct goals, interests and biases of different perspectives. For example, group selection is a particular causal scheme with certain advantages and significant limitations. Ultimately, to use kin selection theory to analyse natural patterns and to understand the history of debates over different approaches, one must follow the underlying history of causal analysis. This article describes the history of kin selection theory, with emphasis on how the causal perspective improved through the study of key patterns of natural history, such as dispersal and sex ratio, and through a unified approach to demographic and social processes. Independent historical developments in the multivariate analysis of quantitative traits merged with the causal analysis of social evolution by kin selection. © 2013 The Author. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  20. [Sugar Chain Construction of Functional Natural Products Using Plant Glucosyltransferases].

    PubMed

    Mizukami, Hajime

    2015-01-01

    Plant secondary product glycosyltransferases belong to family 1 of the glycosyltransferase superfamily and mediate the transfer of a glycosyl residue from activated nucleotide sugars to lipophilic small molecules, thus affecting the solubility, stability and pharmacological activities of the sugar-accepting compounds. The biotechnological application of plant glycosyltransferases in glycoside synthesis has attracted attention because enzymatic glycosylation offers several advantages over chemical methods, including (1) avoiding the use of harsh conditions and toxic catalysts, (2) providing strict control of regio-and stereo-selectivity and (3) high efficiency. This review describes the in vivo and in vitro glycosylation of natural organic compounds using glycosyltransferases, focusing on our investigation of enzymatic synthesis of curcumin glycosides. Our current efforts toward functional characterization of some glycosyltransferases involved in the biosynthesis of iridoids and crocin, as well as in the sugar chain elongation of quercetin glucosides, are described. Finally, I describe the relationship of the structure of sugar chains and the intestinal absorption which was investigated using chemoenzymatically synthesized quercetin glycosides.

  1. Evidence of Natural Selection Acting on a Polymorphic Hybrid Incompatibility Locus in Mimulus

    PubMed Central

    Sweigart, Andrea L.; Flagel, Lex E.

    2015-01-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci—hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)—to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. PMID:25428983

  2. Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.

    PubMed

    Sweigart, Andrea L; Flagel, Lex E

    2015-02-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.

  3. Does genomic selection have a future in plant breeding?

    PubMed

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2013-09-01

    Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Metabolic engineering of microorganisms for the synthesis of plant natural products.

    PubMed

    Marienhagen, Jan; Bott, Michael

    2013-01-20

    Of more than 200,000 plant natural products known to date, many demonstrate important pharmacological activities or are of biotechnological significance. However, isolation from natural sources is usually limited by low abundance and environmental, seasonal as well as regional variation, whereas total chemical synthesis is typically commercially unfeasible considering the complex structures of most plant natural products. With advances in DNA sequencing and recombinant DNA technology many of the biosynthetic pathways responsible for the production of these valuable compounds have been elucidated, offering the opportunity of a functional integration of biosynthetic pathways in suitable microorganisms. This approach offers promise to provide sufficient quantities of the desired plant natural products from inexpensive renewable resources. This review covers recent advancements in the metabolic engineering of microorganisms for the production of plant natural products such as isoprenoids, phenylpropanoids and alkaloids, and highlights general approaches and strategies to gain access to the rich biochemical diversity of plants by employing the biosynthetic power of microorganisms. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Parallel shifts in ecology and natural selection in an island lizard

    PubMed Central

    Calsbeek, Ryan; Buermann, Wolfgang; Smith, Thomas B

    2009-01-01

    Background Natural selection is a potent evolutionary force that shapes phenotypic variation to match ecological conditions. However, we know little about the year-to-year consistency of selection, or how inter-annual variation in ecology shapes adaptive landscapes and ultimately adaptive radiations. Here we combine remote sensing data, field experiments, and a four-year study of natural selection to show that changes in vegetation structure associated with a severe drought altered both habitat use and natural selection in the brown anole, Anolis sagrei. Results In natural populations, lizards increased their use of vegetation in wet years and this was correlated with selection on limb length but not body size. By contrast, a die-back of vegetation caused by drought was followed by reduced arboreality, selection on body size, and relaxed selection on limb length. With the return of the rains and recovery of vegetation, selection reverted back to pre-drought pattern of selection acting on limb length but not body size. To test for the impact of vegetation loss on natural selection during the drought, we experimentally removed vegetation on a separate study island in a naturally wet year. The experiment revealed similar inter-annual changes in selection on body size but not limb length. Conclusion Our results illustrate the dynamic nature of ecology driving natural selection on Anolis morphology and emphasize the importance of inter-annual environmental variation in shaping adaptive variation. In addition, results illustrate the utility of using remote sensing data to examine ecology's role in driving natural selection. PMID:19126226

  6. Bridging Emergent Attributes and Darwinian Principles in Teaching Natural Selection

    ERIC Educational Resources Information Center

    Xu, Dongchen; Chi, Michelene T. H.

    2016-01-01

    Students often have misconceptions about natural selection as they misuse a direct causal schema to explain the process. Natural selection is in fact an emergent process where random interactions lead to changes in a population. The misconceptions stem from students' lack of emergent schema for natural selection. In order to help students…

  7. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation.

    PubMed

    Durmic, Zoey; Moate, Peter J; Eckard, Richard; Revell, Dean K; Williams, Richard; Vercoe, Philip E

    2014-04-01

    Ruminants produce large quantities of methane in their rumen as a by-product of microbial digestion of feed. Antibiotics are added to ruminant feed to reduce wasteful production of methane; however, this practice has some downsides. A search for safer and natural feed additives with anti-methanogenic properties is under way. The objective of this research was to examine selected feed additives, plant essential oils and plant extracts for their anti-methanogenic potential in the rumen using an in vitro batch fermentation system. A significant reduction (P < 0.05) in methane production was observed with nine feed additives (up to 40% reduction), all eight essential oils (up to 75% reduction) and two plant extracts (14% reduction) when compared to their respective controls. Amongst these, only an algal meal high in docosahexaenoic acid, preparations of Nannochloropsis oculata, calcareous marine algae, yeast metabolites and two tannins did not inhibit microbial gas and volatile acid production. The current study identified some potent dietary ingredients or plant compounds that can assist in developing novel feed additives for methane mitigation from the rumen. © 2013 Society of Chemical Industry.

  8. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    PubMed

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  9. Using Card Games to Simulate the Process of Natural Selection

    ERIC Educational Resources Information Center

    Grilliot, Matthew E.; Harden, Siegfried

    2014-01-01

    In 1858, Darwin published "On the Origin of Species by Means of Natural Selection." His explanation of evolution by natural selection has become the unifying theme of biology. We have found that many students do not fully comprehend the process of evolution by natural selection. We discuss a few simple games that incorporate hands-on…

  10. Plant-Soil Feedback: Bridging Natural and Agricultural Sciences.

    PubMed

    Mariotte, Pierre; Mehrabi, Zia; Bezemer, T Martijn; De Deyn, Gerlinde B; Kulmatiski, Andrew; Drigo, Barbara; Veen, G F Ciska; van der Heijden, Marcel G A; Kardol, Paul

    2018-02-01

    In agricultural and natural systems researchers have demonstrated large effects of plant-soil feedback (PSF) on plant growth. However, the concepts and approaches used in these two types of systems have developed, for the most part, independently. Here, we present a conceptual framework that integrates knowledge and approaches from these two contrasting systems. We use this integrated framework to demonstrate (i) how knowledge from complex natural systems can be used to increase agricultural resource-use efficiency and productivity and (ii) how research in agricultural systems can be used to test hypotheses and approaches developed in natural systems. Using this framework, we discuss avenues for new research toward an ecologically sustainable and climate-smart future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hard and Soft Selection Revisited: How Evolution by Natural Selection Works in the Real World.

    PubMed

    Reznick, David

    2016-01-01

    The modern synthesis of evolutionary biology unified Darwin's natural selection with Mendelian genetics, but at the same time it created the dilemma of genetic load. Lewontin and Hubby's (1966) and Harris's (1966) characterization of genetic variation in natural populations increased the apparent burden of this load. Neutrality or near neutrality of genetic variation was one mechanism proposed for the revealed excessive genetic variation. Bruce Wallace coined the term "soft selection" to describe an alternative way for natural selection to operate that was consistent with observed variation. He envisioned nature as presenting ecological vacancies that could be filled by diverse genotypes. Survival and successful reproduction was a combined function of population density, genotype, and genotype frequencies, rather than a fixed value of the relative fitness of each genotype. My goal in this review is to explore the importance of soft selection in the real world. My motive and that of my colleagues as described here is not to explain what maintains genetic variation in natural populations, but rather to understand the factors that shape how organisms adapt to natural environments. We characterize how feedbacks between ecology and evolution shape both evolution and ecology. These feedbacks are mediated by density- and frequency-dependent selection, the mechanisms that underlie soft selection. Here, I report on our progress in characterizing these types of selection with a combination of a consideration of the published literature and the results from my collaborators' and my research on natural populations of guppies. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Naturalization of European plants on other continents: The role of donor habitats.

    PubMed

    Kalusová, Veronika; Chytrý, Milan; van Kleunen, Mark; Mucina, Ladislav; Dawson, Wayne; Essl, Franz; Kreft, Holger; Pergl, Jan; Weigelt, Patrick; Winter, Marten; Pyšek, Petr

    2017-12-26

    The success of European plant species as aliens worldwide is thought to reflect their association with human-disturbed environments. However, an explicit test including all human-made, seminatural and natural habitat types of Europe, and their contributions as donor habitats of naturalized species to the rest of the globe, has been missing. Here we combine two databases, the European Vegetation Checklist and the Global Naturalized Alien Flora, to assess how human influence in European habitats affects the probability of naturalization of their plant species on other continents. A total of 9,875 native European vascular plant species were assigned to 39 European habitat types; of these, 2,550 species have become naturalized somewhere in the world. Species that occur in both human-made habitats and seminatural or natural habitats in Europe have the highest probability of naturalization (64.7% and 64.5% of them have naturalized). Species associated only with human-made or seminatural habitats still have a significantly higher probability of becoming naturalized (41.7% and 28.6%, respectively) than species confined to natural habitats (19.4%). Species associated with arable land and human settlements were recorded as naturalized in the largest number of regions worldwide. Our findings highlight that plant species' association with native-range habitats disturbed by human activities, combined with broad habitat range, play an important role in shaping global patterns of plant invasions.

  13. Risk in nuclear power plants due to natural hazard phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.C.

    1995-12-01

    For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less

  14. [Application of natural plant pigment in hair dyes].

    PubMed

    Hu, Yu-Li; Luo, Jiao-Yang; Zhao, Hong-Zheng; Zhang, Shan-Shan; Yang, Shi-Hai; Yang, Mei-Hua

    2016-09-01

    With the development of living condition, more and more people tend to show unique personality, thus hair dyes as hair cosmetics are highly favored. By the year 2012, the global sales of hair dye had exceeded $15 billion, with a sustained growth at a rate of 8%-10% annually. However, the harm caused by long-term use of hair dyes has aroused widespread public concern, so people begin to seek non-toxic or low toxic natural plant hair dyes. The types of commonly used hair dyes and the corresponding dyeing mechanisms were summarized in this manuscript, and the representative natural botanic dyes were listed. Thereafter, their effective fractions, constituents and application status were described. In addition, the values of botanic hair dyes and their broad market prospect were discussed. Finally, the problems that exist in the research and development of plant hair dyes were issued. This review may help to provide thought for developing novel, green and ecological natural plant hair dyes. Copyright© by the Chinese Pharmaceutical Association.

  15. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    NASA Astrophysics Data System (ADS)

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-06-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2‧,3‧,4‧,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2‧,3‧,4‧-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15-45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme.

  16. Chalcone-based Selective Inhibitors of a C4 Plant Key Enzyme as Novel Potential Herbicides

    PubMed Central

    Nguyen, G. T. T.; Erlenkamp, G.; Jäck, O.; Küberl, A.; Bott, M.; Fiorani, F.; Gohlke, H.; Groth, G.

    2016-01-01

    Weeds are a challenge for global food production due to their rapidly evolving resistance against herbicides. We have identified chalcones as selective inhibitors of phosphoenolpyruvate carboxylase (PEPC), a key enzyme for carbon fixation and biomass increase in the C4 photosynthetic pathway of many of the world’s most damaging weeds. In contrast, many of the most important crop plants use C3 photosynthesis. Here, we show that 2′,3′,4′,3,4-Pentahydroxychalcone (IC50 = 600 nM) and 2′,3′,4′-Trihydroxychalcone (IC50 = 4.2 μM) are potent inhibitors of C4 PEPC but do not affect C3 PEPC at a same concentration range (selectivity factor: 15–45). Binding and modeling studies indicate that the active compounds bind at the same site as malate/aspartate, the natural feedback inhibitors of the C4 pathway. At the whole plant level, both substances showed pronounced growth-inhibitory effects on the C4 weed Amaranthus retroflexus, while there were no measurable effects on oilseed rape, a C3 plant. Growth of selected soil bacteria was not affected by these substances. Our chalcone compounds are the most potent and selective C4 PEPC inhibitors known to date. They offer a novel approach to combat C4 weeds based on a hitherto unexplored mode of allosteric inhibition of a C4 plant key enzyme. PMID:27263468

  17. Surprisingly Low Limits of Selection in Plant Domestication

    PubMed Central

    Allaby, Robin G.; Kitchen, James L.; Fuller, Dorian Q.

    2015-01-01

    Current debate concerns the pace at which domesticated plants emerged from cultivated wild populations and how many genes were involved. Using an individual-based model, based on the assumptions of Haldane and Maynard Smith, respectively, we estimate that a surprisingly low number of 50–100 loci are the most that could be under selection in a cultivation regime at the selection strengths observed in the archaeological record. This finding is robust to attempts to rescue populations from extinction through selection from high standing genetic variation, gene flow, and the Maynard Smith-based model of threshold selection. Selective sweeps come at a cost, reducing the capacity of plants to adapt to new environments, which may contribute to the explanation of why selective sweeps have not been detected more frequently and why expansion of the agrarian package during the Neolithic was so frequently associated with collapse. PMID:27081302

  18. Lime sulfur toxicity to broad mite, to its host plants and to natural enemies.

    PubMed

    Venzon, Madelaine; Oliveira, Rafael M; Perez, André L; Rodríguez-Cruz, Fredy A; Martins Filho, Sebastião

    2013-06-01

    An acaricidal effect of lime sulfur has not been demonstrated for Polyphagotarsonemus latus. However, lime sulfur can cause toxicity to natural enemies and to host plants. In this study, the toxicity of different concentrations of lime sulfur to P. latus, to the predatory mite Amblyseius herbicolus and to the predatory insect Chrysoperla externa was evaluated. Additionally, the phytotoxicity of lime sulfur to two P. latus hosts, chili pepper and physic nut plants, was determined. Lime sulfur at a concentration of 9.5 mL L(-1) restrained P. latus population growth. However, this concentration was deleterious to natural enemies. The predatory mite A. herbicolus showed a negative value of instantaneous growth rate, and only 50% of the tested larvae of C. externa reached adulthood when exposed to 10 mL L(-1) . Physic nut had severe injury symptoms when sprayed with all tested lime sulfur concentrations. For chili pepper plants, no phytoxicity was observed at any tested concentration. Lime sulfur might be used for P. latus control on chili pepper but not on physic nut owing to phytotoxicity. Care should be taken when using lime sulfur in view of negative effects on natural enemies. Selective lime sulfur concentration integrated with other management tactics may provide an effective and sustainable P. latus control on chili pepper. © 2012 Society of Chemical Industry.

  19. Naturally Occurring Fish Poisons from Plants

    ERIC Educational Resources Information Center

    Cannon, Jonathan G.; Burton, Robert A.; Wood, Steven G.; Owen, Noel L.

    2004-01-01

    The fish poisons derived from plants used throughout the world, not only as piscicides but also for a range of other uses, including insecticident and in folk medicines, is presented. The aim of this review is to provide a useful background for students interested in natural products.

  20. Plant–plant interactions mediate the plastic and genotypic response of Plantago asiatica to CO2: an experiment with plant populations from naturally high CO2 areas

    PubMed Central

    van Loon, Marloes P.; Rietkerk, Max; Dekker, Stefan C.; Hikosaka, Kouki; Ueda, Miki U.; Anten, Niels P. R.

    2016-01-01

    Background and Aims The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant–plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant’s lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant–plant interactions was analysed. Methods Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. Key Results It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. Conclusion The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant–plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly

  1. Effects of Mode of Target Task Selection on Learning about Plants in a Mobile Learning Environment: Effortful Manual Selection versus Effortless QR-Code Selection

    ERIC Educational Resources Information Center

    Gao, Yuan; Liu, Tzu-Chien; Paas, Fred

    2016-01-01

    This study compared the effects of effortless selection of target plants using quick respond (QR) code technology to effortful manual search and selection of target plants on learning about plants in a mobile device supported learning environment. In addition, it was investigated whether the effectiveness of the 2 selection methods was…

  2. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    PubMed Central

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural selection and also include discussions on sexual selection, molecular evolution, evolution of complex traits, and the evolution of behavior. The set of six topics gives students the opportunity to see how natural selection operates in a variety of contexts. Pre- and postinstruction testing showed students’ understanding of natural selection increased substantially after completing this series of learning activities. Testing throughout this unit showed steadily increasing student understanding, and surveys indicated students enjoyed the activities. PMID:24006396

  3. Natural Selection in a Petri Dish.

    ERIC Educational Resources Information Center

    McCarty, Robbie V.; Marek, Edmund A.

    1997-01-01

    Presents an activity to teach natural selection that involves students in a microbiological investigation. Students discover that a change in environmental conditions tests a species' range of adaptations. (DDR)

  4. Sesamin from Cuscuta palaestina natural plant extracts: Directions for new prospective applications.

    PubMed

    Abu-Lafi, Saleh; Makhamra, Sadam; Rayan, Ibrahim; Barriah, Waseim; Nasser, Ahmed; Abu Farkh, Basheer; Rayan, Anwar

    2018-01-01

    The aim of this study is to disclose the potential bioactive components of Cuscuta palaestina, a native parasitic natural plant of flora palaestina and to open direction towards new prospective application. GC-MS analysis identified 18 components in the methanolic extract of C. palaestina for the first time. The most appealing among them are Sesamin and two other phytosterols (Campesterol and Stigmasterol), all of which are documented in the scientific literature for their anticancer activity. Quantitation of Sesamin extracted from C. palaestina by HPLC-PDA with the use of three organic solvents showed that the Sesamin content in the methanolic extract was the highest. Following the disclosure of Sesamin presence in C. palaestina, we raised the question of whether it is produced naturally in C. palaestina or acquired from the host plant. The quantitation of Sesamin in C. palaestina was performed while being with five different host plants, and was compared with the amount of Sesamin in C. palaestina grown alone. The findings reveal that Sesamin is an endogenous secondary metabolite in C. palaestina. Thus, further studies are required to prove if C. palaestina can be used as an alternative source of anticancer phytochemicals, mainly Sesamin, and if proteins in the Sesamin production pathway could be valid biological targets for the development of novel and selective pesticides for control/ eradication of C. palaestina and maybe some other Cuscuta species. As well, the findings from this study raise a big question of whether inferring Sesamin production in C. palaestina could reduce its attack ability to host plants.

  5. Sesamin from Cuscuta palaestina natural plant extracts: Directions for new prospective applications

    PubMed Central

    Abu-Lafi, Saleh; Makhamra, Sadam; Rayan, Ibrahim; Barriah, Waseim; Nasser, Ahmed; Abu Farkh, Basheer

    2018-01-01

    The aim of this study is to disclose the potential bioactive components of Cuscuta palaestina, a native parasitic natural plant of flora palaestina and to open direction towards new prospective application. GC-MS analysis identified 18 components in the methanolic extract of C. palaestina for the first time. The most appealing among them are Sesamin and two other phytosterols (Campesterol and Stigmasterol), all of which are documented in the scientific literature for their anticancer activity. Quantitation of Sesamin extracted from C. palaestina by HPLC-PDA with the use of three organic solvents showed that the Sesamin content in the methanolic extract was the highest. Following the disclosure of Sesamin presence in C. palaestina, we raised the question of whether it is produced naturally in C. palaestina or acquired from the host plant. The quantitation of Sesamin in C. palaestina was performed while being with five different host plants, and was compared with the amount of Sesamin in C. palaestina grown alone. The findings reveal that Sesamin is an endogenous secondary metabolite in C. palaestina. Thus, further studies are required to prove if C. palaestina can be used as an alternative source of anticancer phytochemicals, mainly Sesamin, and if proteins in the Sesamin production pathway could be valid biological targets for the development of novel and selective pesticides for control/ eradication of C. palaestina and maybe some other Cuscuta species. As well, the findings from this study raise a big question of whether inferring Sesamin production in C. palaestina could reduce its attack ability to host plants. PMID:29634770

  6. In vitro antioxidant potential of selected aphrodisiac medicinal plants.

    PubMed

    Riaz, M; Shahid, M; Jamil, A; Saqib, M

    2017-01-01

    The present study aimed to evaluate the antioxidant activity of six selected aphrodisiac medicinal plants. Useful parts of the selected medicinal plants were collected and extracted in methanolic solvent. The antioxidant activity of selected plant extract was determined through different antioxidant assays, namely DPPH radical scavenging assay and ferric reducing antioxidant assay. Moreover, antioxidant compounds, like total phenolics and total flavonoids contents, were also determined. Results showed that Mucuna pruriens seed extract displayed high contents of phenolic compounds with total phenolic content of 683.15±4.28 mg GAE/g dry plant material while the least phenolic content was observed in Asparagus racemosus (195.5±3.02 mg GAE/g dry plant material). Highest total flavonoids content was found in Anacyclus pyrethrum roots (156.58±4.01 μg CE/g) and the least content was found in Asparagus racemosus roots. Among the studied plant extracts, the highest radical scavenging activity was shown by Mucuna pruriens seed extract (82.05±0.55%) and the least percent scavenging activity was observed in Tribulus terrestris extract (36.40±2.01%). Vitamin C was used as positive control for antioxidant assays showing 93.54±0.9% radical scavenging activity. The plant extract also exhibited a strong reducing potential against free radicals. Therefore, the present study concluded that all the studied medicinal plants possess varying concentrations of secondary active metabolites responsible for the antioxidant properties of the tested plant extracts.

  7. An invasive plant alters pollinator-mediated phenotypic selection on a native congener.

    PubMed

    Beans, Carolyn M; Roach, Deborah A

    2015-01-01

    • Recent studies suggest that invasive plants compete reproductively with native plants by reducing the quantity or quality of pollinator visits. Although these studies have revealed ecological consequences of pollinator-mediated competition between invasive and native plants, the evolutionary outcomes of these interactions remain largely unexplored.• We studied the ecological and evolutionary impact of pollinator-mediated competition with an invasive jewelweed, Impatiens glandulifera, on a co-occurring native congener, I. capensis. Using a pollinator choice experiment, a hand pollination experiment, and a selection analysis, we addressed the following questions: (1) Do native pollinators show preference for the invasive or native jewelweed, and do they move between the two species? (2) Does invasive jewelweed pollen inhibit seed production in the native plant? (3) Does the invasive jewelweed alter phenotypic selection on the native plant's floral traits?• The pollinator choice experiment showed that pollinators strongly preferred the invasive jewelweed. The hand pollination experiment demonstrated that invasive pollen inhibited seed production in the native plant. The selection analysis showed that the presence of the invasive jewelweed altered phenotypic selection on corolla height in the native plant.• Invasive plants have the potential to alter phenotypic selection on floral traits in native plant populations. If native plants can evolve in response to this altered selection pressure, the evolution of floral traits may play an important role in permitting long-term coexistence of native and invasive plants. © 2015 Botanical Society of America, Inc.

  8. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources

    PubMed Central

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-01

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants. PMID:28067795

  9. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources.

    PubMed

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-05

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.

  10. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts

    PubMed Central

    Nguta, Joseph M.; Appiah-Opong, Regina; Nyarko, Alexander K.; Yeboah-Manu, Dorothy; Addo, Phyllis G.A.; Otchere, Isaac; Kissi-Twum, Abena

    2016-01-01

    Ethnopharmacological relevance Tuberculosis (TB) caused by Mycobacterium tuberculosis remains an ongoing threat to human health. Several medicinal plants are used traditionally to treat tuberculosis in Ghana. The current study was designed to investigate the antimycobacterial activity and cytotoxicity of crude extracts from five selected medicinal plants. Material and methods The microplate alamar blue assay (MABA) was used for antimycobacterial studies while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients were used to compare the activity of crude extracts against nonpathogenic strains and the pathogenic Mycobacterium tuberculosis subsp.tuberculosis. Results Results of the MIC determinations indicated that all the crude extracts were active on all the three tested mycobacterial strains. Minimum inhibitory concentration values as low as 156.3 µg/mL against M. tuberculosis; Strain H37Ra (ATCC® 25,177™) were recorded from the leaves of Solanum torvum Sw. (Solanaceae). Cytotoxicity of the extracts varied, and the leaves from S. torvum had the most promising selectivity index. Activity against M. tuberculosis; Strain H37Ra was the best predictor of activity against pathogenic Mycobacterium tuberculosis subsp.tuberculosis (correlation coefficient=0.8). Conclusion The overall results of the present study provide supportive data on the use of some medicinal plants for tuberculosis treatment. The leaves of Solanum torvum are a potential source of anti-TB natural products and deserve further investigations to develop novel anti-TB agents against sensitive and drug resistant strains of M. tuberculosis. PMID:26875647

  11. Concurrent natural and sexual selection in wild male sockeye salmon, Oncorhynchus nerka.

    PubMed

    Hamon, Troy R; Foote, Chris J

    2005-05-01

    Concurrent natural and sexual selection have been inferred from laboratory and comparative studies in a number of taxa, but are rarely measured in natural populations. Because the interaction of these two general categories of selection may be complex when they occur simultaneously, empirical evidence from natural populations would help us to understand this interaction and probably give us greater insight into each separate episode as well. In male sockeye salmon, sexual selection for larger body size has been indicated in both deep and shallow water habitats. However, in shallow habitats male sockeye are generally smaller and less deep-bodied than in deep habitats, a difference that has been ascribed to natural selection. We measured concurrent natural and sexual selection in two years on breeding male sockeye salmon with respect to body size, body shape, and time of arrival to the breeding grounds. Natural selection was variable in effect and sexual selection was variable in intensity in these two years. The patterns of selection also appear to be interdependent; areas where predation on spawning adults is not intense have yielded different patterns of sexual selection than those measured here. It appears that some of the body shape differences in sockeye salmon associated with different spawning habitats, which were previously attributed to selective mortality, may be a result of different patterns of sexual selection in the different habitats. Total selection resulting from the combination of both natural and sexual selection was less intense than either natural or sexual selection in most cases. Measurement of concurrent selection episodes in nature may help us to understand whether the pattern of differential sexual selection is common, and whether observed patterns of habitat-related differentiation may be due to differences in sexual selection.

  12. A Gambler's Model of Natural Selection.

    ERIC Educational Resources Information Center

    Nolan, Michael J.; Ostrovsky, David S.

    1996-01-01

    Presents an activity that highlights the mechanism and power of natural selection. Allows students to think in terms of modeling a biological process and instills an appreciation for a mathematical approach to biological problems. (JRH)

  13. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    PubMed

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  14. Development and Validation of the Conceptual Assessment of Natural Selection (CANS)

    ERIC Educational Resources Information Center

    Kalinowski, Steven T.; Leonard, Mary J.; Taper, Mark L.

    2016-01-01

    We developed and validated the Conceptual Assessment of Natural Selection (CANS), a multiple-choice test designed to assess how well college students understand the central principles of natural selection. The expert panel that reviewed the CANS concluded its questions were relevant to natural selection and generally did a good job sampling the…

  15. Do Refuge Plants Favour Natural Pest Control in Maize Crops?

    PubMed Central

    Quispe, Reinaldo; Mazón, Marina; Rodríguez-Berrío, Alexander

    2017-01-01

    The use of non-crop plants to provide the resources that herbivorous crop pests’ natural enemies need is being increasingly incorporated into integrated pest management programs. We evaluated insect functional groups found on three refuges consisting of five different plant species each, planted next to a maize crop in Lima, Peru, to investigate which refuge favoured natural control of herbivores considered as pests of maize in Peru, and which refuge plant traits were more attractive to those desirable enemies. Insects occurring in all the plants, including the maize crop itself, were sampled weekly during the crop growing cycle, from February to June 2011. All individuals collected were identified and classified into three functional groups: herbivores, parasitoids, and predators. Refuges were compared based on their effectiveness in enhancing the populations of predator and parasitoid insects of the crop enemies. Refuges A and B were the most effective, showing the highest richness and abundance of both predators and parasitoids, including several insect species that are reported to attack the main insect pests of maize (Spodoptera frugiperda and Rhopalosiphum maidis), as well as other species that serve as alternative hosts of these natural enemies. PMID:28718835

  16. More than Meets the Eye--a Simulation of Natural Selection.

    ERIC Educational Resources Information Center

    Allen, J. A.; And Others

    1987-01-01

    Presents experiments using wild birds as predators and pastry as prey and colored stones as background to demonstrate natural selection. Describes the exercise as an exercise in simulating natural selection. (Author/CW)

  17. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies.

    PubMed

    Gopal, Murali; Gupta, Alka

    2016-01-01

    " No plant is an island too …" Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbors in different plant tissues, i.e., the 'plant microbiome,' form the holobiome which is now considered as unit of selection: 'the holobiont.' The 'plant microbiome' not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding. In this perspective, we propose bottom-up approach to co-propagate the co-evolved, the plant along with the target microbiome, through - (i) reciprocal soil transplantation method, or (ii) artificial ecosystem selection method of synthetic microbiome inocula, or (iii) by exploration of microRNA transfer

  18. Development and Validation of the Conceptual Assessment of Natural Selection (CANS)

    PubMed Central

    Kalinowski, Steven T.; Leonard, Mary J.; Taper, Mark L.

    2016-01-01

    We developed and validated the Conceptual Assessment of Natural Selection (CANS), a multiple-choice test designed to assess how well college students understand the central principles of natural selection. The expert panel that reviewed the CANS concluded its questions were relevant to natural selection and generally did a good job sampling the specific concepts they were intended to assess. Student interviews confirmed questions on the CANS provided accurate reflections of how students think about natural selection. And, finally, statistical analysis of student responses using item response theory showed that the CANS did a very good job of estimating how well students understood natural selection. The empirical reliability of the CANS was substantially higher than the Force Concept Inventory, a highly regarded test in physics that has a similar purpose. PMID:27856552

  19. On-plant selection and genetic analysis of European corn borer (Lepidoptera: Crambidae) behavioral traits: plant abandonment versus plant establishment

    USDA-ARS?s Scientific Manuscript database

    Although some studies have investigated how insect behavior could influence resistance evolution to transgenic plants, none have determined if behavioral traits respond to selection pressure and how they may be inherited. We investigated plant establishment and plant abandonment traits for the Euro...

  20. Missing concepts in natural selection theory reconstructions.

    PubMed

    Ginnobili, Santiago

    2016-09-01

    The concept of fitness has generated a lot of discussion in philosophy of biology. There is, however, relative agreement about the need to distinguish at least two uses of the term: ecological fitness on the one hand, and population genetics fitness on the other. The goal of this paper is to give an explication of the concept of ecological fitness by providing a reconstruction of the theory of natural selection in which this concept was framed, that is, based on the way the theory was put to use in Darwin's main texts. I will contend that this reconstruction enables us to account for the current use of the theory of natural selection. The framework presupposed in the analysis will be that of metatheoretical structuralism. This framework will provide both a better understanding of the nature of ecological fitness and a more complete reconstruction of the theory. In particular, it will provide what I think is a better way of understanding how the concept of fitness is applied through heterogeneous cases. One of the major advantages of my way of thinking about natural selection theory is that it would not have the peculiar metatheoretical status that it has in other available views. I will argue that in order to achieve these goals it is necessary to make several concepts explicit, concepts that are frequently omitted in usual reconstructions.

  1. Selecting an oxygen plant for a copper smelter modernization

    NASA Astrophysics Data System (ADS)

    Larson, Kenneth H.; Hutchison, Robert L.

    1994-10-01

    The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.

  2. The insufficient part of abiogenesis theory - natural selection

    NASA Astrophysics Data System (ADS)

    Ploompuu, Tõnu

    2016-04-01

    Abiogenesis has already been studied for a whole century. There have been studies on the synthesis of precursors of biopolymers, concentration processes and polymerization pathways, sites of initiation of life. Autoreplication has been explained. Protocells have been constructed from abiogenic membranes. But one essential aspect for life - the natural selection - has been marginalized in these investigations. Despite the convincing use of natural selection in biology for one and half century, it has not been used sufficiently in the models of the beginning of life. Pictorially - Darwin's pond model is used without darwinism. This generates an unnecessary interruption on the path for understanding the process. Natural selection is essential in abiogenesis, in the genesis of biological information system. A selection of more collaborative autoreplicate biopolymers and the depolymerisation of others was required. Only natural selection was able to combine biopolymer molecules for life. The primary natural selection can operate only in an environment with variable physical and chemical conditions. The selective agent must constantly fluctuate during a long time span and a large area. Formation of the simplest complex of life needs homeostasis. The best sites for constant fluctuations are littoral areas of oceans. Two very constant fluctuations - waves and tides - occur there. The best conditions for the origin of life were exactly in the end of the Late Heavy Bombardment at temperature nealy 100° C. Earth's surface was then protected against the UV destruction by a thick cloud cover. High evaporation at the hotter parts of shore rocks increased the concentration of the primordial soup and there was excellent selective power by routine water level fluctuations. Because of the water level fluctuations salty ocean water and fresh water from continuous downpours alternated at the littoral zones. In low temperatures the formation of life would be hindered by UV

  3. Microbial Resistance to Triclosan: A Case Study in Natural Selection

    ERIC Educational Resources Information Center

    Serafini, Amanda; Matthews, Dorothy M.

    2009-01-01

    Natural selection is the mechanism of evolution caused by the environmental selection of organisms most fit to reproduce, sometimes explained as "survival of the fittest." An example of evolution by natural selection is the development of bacteria that are resistant to antimicrobial agents as a result of exposure to these agents. Triclosan, which…

  4. Radon emissions from natural gas power plants at The Pennsylvania State University.

    PubMed

    Stidworthy, Alison G; Davis, Kenneth J; Leavey, Jeff

    2016-11-01

    Burning natural gas in power plants may emit radon ( 222 Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants' emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m -3 , averaging 34.5 ± 2.7 Bq m -3 around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m -3 around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m -3 , were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m -3 compared to modeled enhancements of 0.08 Bq m -3 . Measured enhancements around the WCSP averaged -0.2 Bq m -3 compared to the modeled enhancements of 0.05 Bq m -3 , which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants. Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations

  5. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves

    PubMed Central

    Wan, Jizhong

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves. PMID:27326373

  6. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors?

    PubMed

    Clavijo McCormick, Andrea

    2016-12-01

    The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

  7. Using David Lack's Observations of Finch Beak Size to Teach Natural Selection & the Nature of Science

    ERIC Educational Resources Information Center

    Bierema, Andrea M.-K.; Rudge, David W.

    2014-01-01

    One of the key aspects of natural selection is competition, yet the concept of competition is not necessarily emphasized in explanations of natural selection. Because of this, we developed an activity for our class that focuses on competition and provides an example of the effects of competition on natural selection. This hands-on activity models…

  8. Plant selection and soil legacy enhance long-term biodiversity effects.

    PubMed

    Zuppinger-Dingley, Debra; Flynn, Dan F B; De Deyn, Gerlinde B; Petermann, Jana S; Schmid, Bernhard

    2016-04-01

    Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of

  9. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  10. The genetic consequences of selection in natural populations.

    PubMed

    Thurman, Timothy J; Barrett, Rowan D H

    2016-04-01

    The selection coefficient, s, quantifies the strength of selection acting on a genetic variant. Despite this parameter's central importance to population genetic models, until recently we have known relatively little about the value of s in natural populations. With the development of molecular genetic techniques in the late 20th century and the sequencing technologies that followed, biologists are now able to identify genetic variants and directly relate them to organismal fitness. We reviewed the literature for published estimates of natural selection acting at the genetic level and found over 3000 estimates of selection coefficients from 79 studies. Selection coefficients were roughly exponentially distributed, suggesting that the impact of selection at the genetic level is generally weak but can occasionally be quite strong. We used both nonparametric statistics and formal random-effects meta-analysis to determine how selection varies across biological and methodological categories. Selection was stronger when measured over shorter timescales, with the mean magnitude of s greatest for studies that measured selection within a single generation. Our analyses found conflicting trends when considering how selection varies with the genetic scale (e.g., SNPs or haplotypes) at which it is measured, suggesting a need for further research. Besides these quantitative conclusions, we highlight key issues in the calculation, interpretation, and reporting of selection coefficients and provide recommendations for future research. © 2016 John Wiley & Sons Ltd.

  11. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOEpatents

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  12. Getting to Darwin: Obstacles to Accepting Evolution by Natural Selection

    ERIC Educational Resources Information Center

    Thagard, Paul; Findlay, Scott

    2010-01-01

    Darwin's theory of evolution by natural selection is central to modern biology, but is resisted by many people. This paper discusses the major psychological obstacles to accepting Darwin's theory. Cognitive obstacles to adopting evolution by natural selection include conceptual difficulties, methodological issues, and coherence problems that…

  13. Simulating natural selection in landscape genetics

    Treesearch

    E. L. Landguth; S. A. Cushman; N. Johnson

    2012-01-01

    Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially- explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal...

  14. ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI

    PubMed Central

    Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus

    2016-01-01

    Background: Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Materials and methods: Leaf extracts of selected South African plant species (Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana) were investigated for activity against selected phytopathogenic fungi (Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens (Candida albicans and Cryptococcus neoformans). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. Results: All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum. The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in

  15. ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI.

    PubMed

    Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus

    2016-01-01

    Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Leaf extracts of selected South African plant species ( Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana ) were investigated for activity against selected phytopathogenic fungi ( Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum ). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens ( Candida albicans and Cryptococcus neoformans ). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum . The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating

  16. Positive selection and functional divergence of farnesyl pyrophosphate synthase genes in plants.

    PubMed

    Qian, Jieying; Liu, Yong; Chao, Naixia; Ma, Chengtong; Chen, Qicong; Sun, Jian; Wu, Yaosheng

    2017-02-04

    Farnesyl pyrophosphate synthase (FPS) belongs to the short-chain prenyltransferase family, and it performs a conserved and essential role in the terpenoid biosynthesis pathway. However, its classification, evolutionary history, and the forces driving the evolution of FPS genes in plants remain poorly understood. Phylogeny and positive selection analysis was used to identify the evolutionary forces that led to the functional divergence of FPS in plants, and recombinant detection was undertaken using the Genetic Algorithm for Recombination Detection (GARD) method. The dataset included 68 FPS variation pattern sequences (2 gymnosperms, 10 monocotyledons, 54 dicotyledons, and 2 outgroups). This study revealed that the FPS gene was under positive selection in plants. No recombinant within the FPS gene was found. Therefore, it was inferred that the positive selection of FPS had not been influenced by a recombinant episode. The positively selected sites were mainly located in the catalytic center and functional areas, which indicated that the 98S and 234D were important positively selected sites for plant FPS in the terpenoid biosynthesis pathway. They were located in the FPS conserved domain of the catalytic site. We inferred that the diversification of FPS genes was associated with functional divergence and could be driven by positive selection. It was clear that protein sequence evolution via positive selection was able to drive adaptive diversification in plant FPS proteins. This study provides information on the classification and positive selection of plant FPS genes, and the results could be useful for further research on the regulation of triterpenoid biosynthesis.

  17. Factors driving natural regeneration beneath a planted urban forest

    Treesearch

    Danica A. Doroski; Alexander J. Felson; Mark A. Bradford; Mark P. Ashton; Emily E. Oldfield; Richard A. Hallett; Sara E. Kuebbing

    2018-01-01

    Cities around the world are investing in urban forest plantings as a form of green infrastructure. The aim is that these plantations will develop into naturally-regenerating native forest stands. However, woody plant recruitment is often cited as the most limiting factor to creating self-sustaining urban forests. As such, there is interest in site treatments that...

  18. The incidence and selection of multiple mating in plants

    PubMed Central

    Pannell, John R.; Labouche, Anne-Marie

    2013-01-01

    Mating with more than one pollen donor, or polyandry, is common in land plants. In flowering plants, polyandry occurs when the pollen from different potential sires is distributed among the fruits of a single individual, or when pollen from more than one donor is deposited on the same stigma. Because polyandry typically leads to multiple paternity among or within fruits, it can be indirectly inferred on the basis of paternity analysis using molecular markers. A review of the literature indicates that polyandry is probably ubiquitous in plants except those that habitually self-fertilize, or that disperse their pollen in pollen packages, such as polyads or pollinia. Multiple mating may increase plants' female component by alleviating pollen limitation or by promoting competition among pollen grains from different potential sires. Accordingly, a number of traits have evolved that should promote polyandry at the flower level from the female's point of view, e.g. the prolongation of stigma receptivity or increases in stigma size. However, many floral traits, such as attractiveness, the physical manipulation of pollinators and pollen-dispensing mechanisms that lead to polyandrous pollination, have probably evolved in response to selection to promote male siring success in general, so that polyandry might often best be seen as a by-product of selection to enhance outcross siring success. In this sense, polyandry in plants is similar to geitonogamy (selfing caused by pollen transfer among flowers of the same plant), because both polyandry and geitonogamy probably result from selection to promote outcross siring success, although geitonogamy is almost always deleterious while polyandry in plants will seldom be so. PMID:23339242

  19. Natural Selection in Large Populations

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2011-03-01

    I will discuss theoretical and experimental approaches to the evolutionary dynamics and population genetics of natural selection in large populations. In these populations, many mutations are often present simultaneously, and because recombination is limited, selection cannot act on them all independently. Rather, it can only affect whole combinations of mutations linked together on the same chromosome. Methods common in theoretical population genetics have been of limited utility in analyzing this coupling between the fates of different mutations. In the past few years it has become increasingly clear that this is a crucial gap in our understanding, as sequence data has begun to show that selection appears to act pervasively on many linked sites in a wide range of populations, including viruses, microbes, Drosophila, and humans. I will describe approaches that combine analytical tools drawn from statistical physics and dynamical systems with traditional methods in theoretical population genetics to address this problem, and describe how experiments in budding yeast can help us directly observe these evolutionary dynamics.

  20. Natural and sexual selection in a monogamous historical human population.

    PubMed

    Courtiol, Alexandre; Pettay, Jenni E; Jokela, Markus; Rotkirch, Anna; Lummaa, Virpi

    2012-05-22

    Whether and how human populations exposed to the agricultural revolution are still affected by Darwinian selection remains controversial among social scientists, biologists, and the general public. Although methods of studying selection in natural populations are well established, our understanding of selection in humans has been limited by the availability of suitable datasets. Here, we present a study comparing the maximum strengths of natural and sexual selection in humans that includes the effects of sex and wealth on different episodes of selection. Our dataset was compiled from church records of preindustrial Finnish populations characterized by socially imposed monogamy, and it contains a complete distribution of survival, mating, and reproductive success for 5,923 individuals born 1760-1849. Individual differences in early survival and fertility (natural selection) were responsible for most variation in fitness, even among wealthier individuals. Variance in mating success explained most of the higher variance in reproductive success in males compared with females, but mating success also influenced reproductive success in females, allowing for sexual selection to operate in both sexes. The detected opportunity for selection is in line with measurements for other species but higher than most previous reports for human samples. This disparity results from biological, demographic, economic, and social differences across populations as well as from failures by most previous studies to account for variation in fitness introduced by nonreproductive individuals. Our results emphasize that the demographic, cultural, and technological changes of the last 10,000 y did not preclude the potential for natural and sexual selection in our species.

  1. Natural and sexual selection in a monogamous historical human population

    PubMed Central

    Courtiol, Alexandre; Pettay, Jenni E.; Jokela, Markus; Rotkirch, Anna; Lummaa, Virpi

    2012-01-01

    Whether and how human populations exposed to the agricultural revolution are still affected by Darwinian selection remains controversial among social scientists, biologists, and the general public. Although methods of studying selection in natural populations are well established, our understanding of selection in humans has been limited by the availability of suitable datasets. Here, we present a study comparing the maximum strengths of natural and sexual selection in humans that includes the effects of sex and wealth on different episodes of selection. Our dataset was compiled from church records of preindustrial Finnish populations characterized by socially imposed monogamy, and it contains a complete distribution of survival, mating, and reproductive success for 5,923 individuals born 1760–1849. Individual differences in early survival and fertility (natural selection) were responsible for most variation in fitness, even among wealthier individuals. Variance in mating success explained most of the higher variance in reproductive success in males compared with females, but mating success also influenced reproductive success in females, allowing for sexual selection to operate in both sexes. The detected opportunity for selection is in line with measurements for other species but higher than most previous reports for human samples. This disparity results from biological, demographic, economic, and social differences across populations as well as from failures by most previous studies to account for variation in fitness introduced by nonreproductive individuals. Our results emphasize that the demographic, cultural, and technological changes of the last 10,000 y did not preclude the potential for natural and sexual selection in our species. PMID:22547810

  2. Limiting similarity and Darwin's naturalization hypothesis: understanding the drivers of biotic resistance against invasive plant species.

    PubMed

    Yannelli, F A; Koch, C; Jeschke, J M; Kollmann, J

    2017-03-01

    Several hypotheses have been proposed to explain biotic resistance of a recipient plant community based on reduced niche opportunities for invasive alien plant species. The limiting similarity hypothesis predicts that invasive species are less likely to establish in communities of species holding similar functional traits. Likewise, Darwin's naturalization hypothesis states that invasive species closely related to the native community would be less successful. We tested both using the invasive alien Ambrosia artemisiifolia L. and Solidago gigantea Aiton, and grassland species used for ecological restoration in central Europe. We classified all plant species into groups based on functional traits obtained from trait databases and calculated the phylogenetic distance among them. In a greenhouse experiment, we submitted the two invasive species at two propagule pressures to competition with communities of ten native species from the same functional group. In another experiment, they were submitted to pairwise competition with native species selected from each functional group. At the community level, highest suppression for both invasive species was observed at low propagule pressure and not explained by similarity in functional traits. Moreover, suppression decreased asymptotically with increasing phylogenetic distance to species of the native community. When submitted to pairwise competition, suppression for both invasive species was also better explained by phylogenetic distance. Overall, our results support Darwin's naturalization hypothesis but not the limiting similarity hypothesis based on the selected traits. Biotic resistance of native communities against invasive species at an early stage of establishment is enhanced by competitive traits and phylogenetic relatedness.

  3. Patients' recovery experiences of indoor plants and viewsof nature in a rehabilitation center.

    PubMed

    Raanaas, Ruth Kjærsti; Patil, Grete; Alve, Grete

    2015-01-01

    There is an increasing interest in the possible healing factors connected to the presence of nature elements in health institutions. The aim of the present study is to get a deeper understanding of how residents in a residential rehabilitation center experience the views through windows and the indoor plants, and whether and how the view and the plants can impact their recovery process. In-depth individual and group interviews were conducted among 16 residents at a rehabilitation center in Norway. The participants said that the indoor plants and the view of nature were pleasant to look at and elicited feelings of relaxation and positive emotions which contributed to opportunities for reflection and contemplation. They expressed a feeling of connectedness to nature: a feeling of wholeness and spirituality elicited by the nature elements. They also expressed that the presence of nature elements contributed to a sense of being taken care of. The nature elements, such as a view of nature or indoor plants, seem to enhance opportunities for reflection, feelings of meaningfulness and sense of being taken care of which may strengthen their feeling of well-being and make them more resilient to the stressors in life.

  4. Natural plant chemicals: source of industrial and medicinal materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.

    1985-01-01

    Many higher plants produce economically important organic compounds such as oils, resins, tannins, natural rubber, gums, waxes, dyes, flavors and fragrances, pharmaceuticals, and pesticides. However, most species of higher plants have never been described, much less surveyed for chemical or biologically active constituents, and new sources of commercially valuable materials remain to be discovered. Advances in biotechnology, particularly methods for culturing plants cells and tissues, should provide new means for the commercial processing of even rare plants and the chemicals they produce. These new technologies will extend and enhance the usefulness of plants as renewable resources of valuable chemicals. Inmore » the future, biologically active plant-derived chemicals can be expected to play an increasingly significant role in the commercial development of new products for regulating plant growth and for insect and weed control. 65 references.« less

  5. Naturally acidified habitat selects for ocean acidification–tolerant mussels

    PubMed Central

    Thomsen, Jörn; Stapp, Laura S.; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K. Mathias; Melzner, Frank

    2017-01-01

    Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2–adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change. PMID:28508039

  6. Naturally acidified habitat selects for ocean acidification-tolerant mussels.

    PubMed

    Thomsen, Jörn; Stapp, Laura S; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K Mathias; Melzner, Frank

    2017-04-01

    Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae ( Mytilus edulis ) in a periodically CO 2 -enriched habitat. The larval fitness of the population originating from the CO 2 -enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO 2 -adapted population showed higher fitness under elevated P co 2 (partial pressure of CO 2 ) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO 2 tolerance differed substantially between the families within the F 1 generation, and survival was drastically decreased in the highest, yet realistic, P co 2 treatment. Selection of CO 2 -tolerant F 1 animals resulted in higher calcification performance of F 2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO 2 -enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.

  7. A Working Model of Natural Selection Illustrated by Table Tennis

    ERIC Educational Resources Information Center

    Dinc, Muhittin; Kilic, Selda; Aladag, Caner

    2013-01-01

    Natural selection is one of the most important topics in biology and it helps to clarify the variety and complexity of organisms. However, students in almost every stage of education find it difficult to understand the mechanism of natural selection and they can develop misconceptions about it. This article provides an active model of natural…

  8. A Lesson on Evolution & Natural Selection

    ERIC Educational Resources Information Center

    Curtis, Anthony D.

    2010-01-01

    I describe three activities that allow students to explore the ideas of evolution, natural selection, extinction, mass extinction, and rates of evolutionary change by engaging a simple model using paper, pens, chalk, and a chalkboard. As a culminating activity that supports expository writing in the sciences, the students write an essay on mass…

  9. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis

    ERIC Educational Resources Information Center

    Hartwell, Supaporn Kradtap

    2012-01-01

    A number of scientific articles report on the use of natural extracts from plants as chemical reagents, where the main objective is to present the scientific applications of those natural plant extracts. The author suggests that natural reagents extracted from plants can be used as alternative low cost tools in teaching chemical analysis,…

  10. Plants and their active compounds: natural molecules to target angiogenesis.

    PubMed

    Lu, Kai; Bhat, Madhavi; Basu, Sujit

    2016-07-01

    Angiogenesis, or new blood vessel formation, is an important process in the pathogenesis of several diseases and thus has been targeted for the prevention and treatment for many disorders. However, the anti-angiogenic agents that are currently in use are mainly synthetic compounds and humanized monoclonal antibodies, which are either expensive or toxic, thereby limiting their use in many patients. Therefore, it is necessary to identify less toxic, inexpensive, novel and effective anti-angiogenic molecules. Several studies have indicated that natural plant products can meet these criteria. In this review, we discuss the anti-angiogenic properties of natural compounds isolated from plants and the molecular mechanisms by which these molecules act. Finally, we summarize the advantages of using plant products as anti-angiogenic agents. Compared with currently available anti-angiogenic drugs, plant products may not only have similar therapeutic potential but are also inexpensive, less toxic, and easy to administer. However, novel and effective strategies are necessary to improve their bioavailability for clinical use.

  11. Natural Selection as an Emergent Process: Instructional Implications

    ERIC Educational Resources Information Center

    Cooper, Robert A.

    2017-01-01

    Student reasoning about cases of natural selection is often plagued by errors that stem from miscategorising selection as a direct, causal process, misunderstanding the role of randomness, and from the intuitive ideas of intentionality, teleology and essentialism. The common thread throughout many of these reasoning errors is a failure to apply…

  12. Conservation of Endangered Lupinus mariae-josephae in Its Natural Habitat by Inoculation with Selected, Native Bradyrhizobium Strains

    PubMed Central

    Navarro, Albert; Fos, Simón; Laguna, Emilio; Durán, David; Rey, Luis; Rubio-Sanz, Laura; Imperial, Juan; Ruiz-Argüeso, Tomás

    2014-01-01

    Lupinus mariae-josephae is a recently discovered endemism that is only found in alkaline-limed soils, a unique habitat for lupines, from a small area in Valencia region (Spain). In these soils, L. mariae-josephae grows in just a few defined patches, and previous conservation efforts directed towards controlled plant reproduction have been unsuccessful. We have previously shown that L. mariae-josephae plants establish a specific root nodule symbiosis with bradyrhizobia present in those soils, and we reasoned that the paucity of these bacteria in soils might contribute to the lack of success in reproducing plants for conservation purposes. Greenhouse experiments using L. mariae-josephae trap-plants showed the absence or near absence of L. mariae-josephae-nodulating bacteria in “terra rossa” soils of Valencia outside of L. mariae-josephae plant patches, and in other “terra rossa” or alkaline red soils of the Iberian Peninsula and Balearic Islands outside of the Valencia L. mariae-josephae endemism region. Among the bradyrhizobia able to establish an efficient symbiosis with L. mariae-josephae plants, two strains, LmjC and LmjM3 were selected as inoculum for seed coating. Two planting experiments were carried out in consecutive years under natural conditions in areas with edapho-climatic characteristics identical to those sustaining natural L. mariae-josephae populations, and successful reproduction of the plant was achieved. Interestingly, the successful reproductive cycle was absolutely dependent on seedling inoculation with effective bradyrhizobia, and optimal performance was observed in plants inoculated with LmjC, a strain that had previously shown the most efficient behavior under controlled conditions. Our results define conditions for L. mariae-josephae conservation and for extension to alkaline-limed soil habitats, where no other known lupine can thrive. PMID:25019379

  13. The use of agrobiodiversity for plant improvement and the intellectual property paradigm: institutional fit and legal tools for mass selection, conventional and molecular plant breeding.

    PubMed

    Batur, Fulya; Dedeurwaerdere, Tom

    2014-12-01

    Focused on the impact of stringent intellectual property mechanisms over the uses of plant agricultural biodiversity in crop improvement, the article delves into a systematic analysis of the relationship between institutional paradigms and their technological contexts of application, identified as mass selection, controlled hybridisation, molecular breeding tools and transgenics. While the strong property paradigm has proven effective in the context of major leaps forward in genetic engineering, it faces a systematic breakdown when extended to mass selection, where innovation often displays a collective nature. However, it also creates partial blockages in those innovation schemes rested between on-farm observation and genetic modification, i.e. conventional plant breeding and upstream molecular biology research tools. Neither overly strong intellectual property rights, nor the absence of well delineated protection have proven an optimal fit for these two intermediary socio-technological systems of cumulative incremental innovation. To address these challenges, the authors look at appropriate institutional alternatives which can create effective incentives for in situ agrobiodiversity conservation and the equitable distribution of technologies in plant improvement, using the flexibilities of the TRIPS Agreement, the liability rules set forth in patents or plant variety rights themselves (in the form of farmers', breeders' and research exceptions), and other ad hoc reward regimes.

  14. [Plants as a source of natural harmful substances].

    PubMed

    Czerwiecki, Ludwik

    2005-01-01

    In this review the several data concerning phytotoxins as natural harmful substances of plants and phycotoxins--toxicants of algae were described. For example plants are source of pyrrolizidine alkaloids, glycoalkaloids, glucosinolates as well as glycosides, saponine and psolarens. Possible adverse effects of phytoestrogens as endocrine disruptors versus beneficial influence these substances on human organism were mentioned. About lectins as possible factors of some diseases was reported, as well as some proteins as allergens of soy and peanuts was mentioned. Accumulated by shellfish and fish the most important phycotoxins such as saxitoxin, okadaic acid, brevetoxins and ciguatoxins were described. Phycotoxins produced several poisoning symptoms. Microcystins and nodularin--cyanobacterial phycotoxins of freshwater, was mentioned. In conclusion, the need of limitation of permissible levels of some plant toxicants, development of analytical methods as well as knowledge of influence of some technological processes on toxic plant substances was highlighted. The importance of balanced diet as a tool of defense against plant toxicants was concluded.

  15. Plant biochemistry: a naturally decaffeinated arabica coffee.

    PubMed

    Silvarolla, Maria B; Mazzafera, Paulo; Fazuoli, Luiz C

    2004-06-24

    The adverse side effects of caffeine have increased the market for decaffeinated coffee to about 10% of coffee consumption worldwide (http://www.ncausa.org), despite the loss of key flavour compounds in the industrial decaffeinating process. We have discovered a naturally decaffeinated Coffea arabica plant from Ethiopia, a species normally recognized for the high quality of its beans. It should be possible to transfer this trait to commercial varieties of arabica coffee plants by intraspecific hybridization--a process likely to be simpler than an interspecific hybridization strategy, which could require more than 30 years of breeding to fix the decaffeinated trait and would probably result in an inferior cup of coffee.

  16. The Limits of Natural Selection in a Nonequilibrium World.

    PubMed

    Brandvain, Yaniv; Wright, Stephen I

    2016-04-01

    Evolutionary theory predicts that factors such as a small population size or low recombination rate can limit the action of natural selection. The emerging field of comparative population genomics offers an opportunity to evaluate these hypotheses. However, classical theoretical predictions assume that populations are at demographic equilibrium. This assumption is likely to be violated in the very populations researchers use to evaluate selection's limits: populations that have experienced a recent shift in population size and/or effective recombination rates. Here we highlight theory and data analyses concerning limitations on the action of natural selection in nonequilibrial populations and argue that substantial care is needed to appropriately test whether species and populations show meaningful differences in selection efficacy. A move toward model-based inferences that explicitly incorporate nonequilibrium dynamics provides a promising approach to more accurately contrast selection efficacy across populations and interpret its significance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. FT Raman microscopy of untreated natural plant fibres

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Farwell, D. W.; Webster, D.

    1997-11-01

    The application of FT-Raman microscopy to the non-destructive analysis of natural plant fibres is demonstrated with samples of flax, jute, ramie, cotton, kapok, sisal and coconut fibre. Vibrational assignments are proposed and characteristic features of each material are presented. Samples were not pre-treated chemically before analysis and were used directly from their respective storage collection; the adaptation of the Raman microscopic technique to the identification of specimens of natural fibres in archaeological burial sites is explored for its forensic potential.

  18. Using Plants to Explore the Nature & Structural Complexity of Life

    ERIC Educational Resources Information Center

    Howard, Ava R.

    2014-01-01

    Use of real specimens brings the study of biology to life. This activity brings easily acquired plant specimens into the classroom to tackle common alternative conceptions regarding life, size, complexity, the nature of science, and plants as multicellular organisms. The activity occurs after a discussion of the characteristics of life and engages…

  19. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  20. Marker-assisted selection in plant breeding for salinity tolerance.

    PubMed

    Ashraf, M; Akram, N A; Mehboob-Ur-Rahman; Foolad, M R

    2012-01-01

    Marker-assisted selection (MAS) is the process of using morphological, biochemical, or DNA markers as indirect selection criteria for selecting agriculturally important traits in crop breeding. This process is used to improve the effectiveness or efficiency of selection for the traits of interest in breeding programs. The significance of MAS as a tool for crop improvement has been extensively investigated in different crop -species and for different traits. The use of MAS for manipulating simple/qualitative traits is straightforward and has been well reported. However, MAS for the improvement of complex/polygenic traits, including plant tolerance/resistance to abiotic stresses, is more complicated, although its usefulness has been recognized. With the recent advances in marker technology, including high-throughput genotyping of plants, together with the development of nested association mapping populations, it is expected that the utility of MAS for breeding for stress tolerance traits will increase. In this chapter, we describe the basic procedure for using MAS in crop breeding for salt tolerance.

  1. Will genomic selection be a practical method for plant breeding?

    PubMed

    Nakaya, Akihiro; Isobe, Sachiko N

    2012-11-01

    Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.

  2. Will genomic selection be a practical method for plant breeding?

    PubMed Central

    Nakaya, Akihiro; Isobe, Sachiko N.

    2012-01-01

    Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. Scope In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Conclusions Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory. PMID:22645117

  3. What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

    PubMed Central

    Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten

    2009-01-01

    Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434

  4. A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism.

    PubMed

    López-Arredondo, Damar L; Herrera-Estrella, Luis

    2013-05-01

    Antibiotic and herbicide resistance genes are currently the most frequently used selectable marker genes for plant research and crop development. However, the use of antibiotics and herbicides must be carefully controlled because the degree of susceptibility to these compounds varies widely among plant species and because they can also affect plant regeneration. Therefore, new selectable marker systems that are effective for a broad range of plant species are still needed. Here, we report a simple and inexpensive system based on providing transgenic plant cells the capacity to convert a nonmetabolizable compound (phosphite, Phi) into an essential nutrient for cell growth (phosphate) trough the expression of a bacterial gene encoding a phosphite oxidoreductase (PTXD). This system is effective for the selection of Arabidopsis transgenic plants by germinating T0 seeds directly on media supplemented with Phi and to select transgenic tobacco shoots from cocultivated leaf disc explants using nutrient media supplemented with Phi as both a source of phosphorus and selective agent. Because the ptxD/Phi system also allows the establishment of large-scale screening systems under greenhouse conditions completely eliminating false transformation events, it should facilitate the development of novel plant transformation methods. © 2013 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  5. Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methodologies

    USDA-ARS?s Scientific Manuscript database

    Local adaptation research in plants: limitations to synthetic understanding Local adaptation is used as a criterion to select plant materials that will display high fitness in new environments. A large body of research has explored local adaptation in plants, however, to what extent findings can inf...

  6. Natural selection and infectious disease in human populations

    PubMed Central

    Karlsson, Elinor K.; Kwiatkowski, Dominic P.; Sabeti, Pardis C.

    2015-01-01

    The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology. PMID:24776769

  7. Six Classroom Exercises to Teach Natural Selection to Undergraduate Biology Students

    ERIC Educational Resources Information Center

    Kalinowski, Steven T.; Leonard, Mary J.; Andrews, Tessa M.; Litt, Andrea R.

    2013-01-01

    Students in introductory biology courses frequently have misconceptions regarding natural selection. In this paper, we describe six activities that biology instructors can use to teach undergraduate students in introductory biology courses how natural selection causes evolution. These activities begin with a lesson introducing students to natural…

  8. Caterpillar-induced plant volatiles attract conspecific adults in nature

    PubMed Central

    El-Sayed, Ashraf M.; Knight, Alan L.; Byers, John A.; Judd, Gary J. R.; Suckling, David M.

    2016-01-01

    Plants release volatiles in response to caterpillar feeding that attract natural enemies of the herbivores, a tri-trophic interaction which has been considered an indirect plant defence against herbivores. The caterpillar-induced plant volatiles have been reported to repel or attract conspecific adult herbivores. To date however, no volatile signals that either repel or attract conspecific adults under field conditions have been chemically identified. Apple seedlings uniquely released seven compounds including acetic acid, acetic anhydride, benzyl alcohol, benzyl nitrile, indole, 2-phenylethanol, and (E)-nerolidol only when infested by larvae of the light brown apple moth, Epiphyas postvittana. In field tests in New Zealand, a blend of two of these, benzyl nitrile and acetic acid, attracted a large number of conspecific male and female adult moths. In North America, male and female adults of the tortricid, oblique-banded leafroller, Choristoneura rosaceana, were most attracted to a blend of 2-phenylethanol and acetic acid. Both sexes of the eye-spotted bud moth, Spilonota ocellana, were highly attracted to a blend of benzyl nitrile and acetic acid. This study provides the first identification of caterpillar-induced plant volatiles that attract conspecific adult herbivores under natural conditions, challenging the expectation of herbivore avoidance of these induced volatiles. PMID:27892474

  9. The Darwin cure for apiculture? Natural selection and managed honeybee health.

    PubMed

    Neumann, Peter; Blacquière, Tjeerd

    2017-03-01

    Recent major losses of managed honeybee, Apis mellifera, colonies at a global scale have resulted in a multitude of research efforts to identify the underlying mechanisms. Numerous factors acting singly and/or in combination have been identified, ranging from pathogens, over nutrition to pesticides. However, the role of apiculture in limiting natural selection has largely been ignored. This is unfortunate, because honeybees are more exposed to environmental stressors compared to other livestock and management can severely compromise bee health. Here, we briefly review apicultural factors that influence bee health and focus on those most likely interfering with natural selection, which offers a broad range of evolutionary applications for field practice. Despite intense breeding over centuries, natural selection appears to be much more relevant for the health of managed A. mellifera colonies than previously thought. We conclude that sustainable solutions for the apicultural sector can only be achieved by taking advantage of natural selection and not by attempting to limit it.

  10. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    PubMed Central

    Aranega-Bou, Paz; de la O Leyva, Maria; Finiti, Ivan; García-Agustín, Pilar; González-Bosch, Carmen

    2014-01-01

    Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound. PMID:25324848

  11. Managing invasive plants in natural areas: Moving beyond weed control

    Treesearch

    Dean Pearson; Yvette Ortega

    2009-01-01

    Exotic invasive plants present one of the greatest challenges to natural resource management. These weeds can alter entire communities and ecosystems, substantially degrading important ecosystem services such as forage for wild and domestic herbivores, water and soil quality, recreational values, and wildlife habitat. Traditionally, weed management in natural areas has...

  12. Cameroonian Medicinal Plants: Pharmacology and Derived Natural Products

    PubMed Central

    Kuete, Victor; Efferth, Thomas

    2010-01-01

    Many developing countries including Cameroon have mortality patterns that reflect high levels of infectious diseases and the risk of death during pregnancy and childbirth, in addition to cancers, cardiovascular diseases and chronic respiratory diseases that account for most deaths in the developed world. Several medicinal plants are used traditionally for their treatment. In this review, plants used in Cameroonian traditional medicine with evidence for the activities of their crude extracts and/or derived products have been discussed. A considerable number of plant extracts and isolated compounds possess significant antimicrobial, anti-parasitic including antimalarial, anti-proliferative, anti-inflammatory, anti-diabetes, and antioxidant effects. Most of the biologically active compounds belong to terpenoids, phenolics, and alkaloids. Terpenoids from Cameroonian plants showed best activities as anti-parasitic, but rather poor antimicrobial effects. The best antimicrobial, anti-proliferative, and antioxidant compounds were phenolics. In conclusion, many medicinal plants traditionally used in Cameroon to treat various ailments displayed good activities in vitro. This explains the endeavor of Cameroonian research institutes in drug discovery from indigenous medicinal plants. However, much work is still to be done to standardize methodologies and to study the mechanisms of action of isolated natural products. PMID:21833168

  13. Use of space for development of commercial plant natural products

    NASA Astrophysics Data System (ADS)

    Draeger, Norman A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol.

  14. Darwinian natural selection: its enduring explanatory power

    PubMed Central

    2012-01-01

    Evolutionary theory has never had a stronger scientific foundation than it does today. In a short review I hope to portray the deep commitment of today's biologists to Darwinian natural selection and to discoveries made since Darwin's time. In spite of the scientific advances in the century and a half since the publication of On the Origin of Species, Darwin still remains the principal author of modern evolutionary theory. He is one of the greatest contributors of all time to our understanding of nature. PMID:22481845

  15. Discovery and resupply of pharmacologically active plant-derived natural products: A review

    PubMed Central

    Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H.; Rollinger, Judith M.; Schuster, Daniela; Breuss, Johannes M.; Bochkov, Valery; Mihovilovic, Marko D.; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M.; Stuppner, Hermann

    2016-01-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a “screening hit” through a “drug lead” to a “marketed drug” is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. PMID:26281720

  16. Discovery and resupply of pharmacologically active plant-derived natural products: A review.

    PubMed

    Atanasov, Atanas G; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H; Rollinger, Judith M; Schuster, Daniela; Breuss, Johannes M; Bochkov, Valery; Mihovilovic, Marko D; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M; Stuppner, Hermann

    2015-12-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGES

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; ...

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  18. Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways

    PubMed Central

    2016-01-01

    Covering: 2003 to 2016 The last decade has seen the first major discoveries regarding the genomic basis of plant natural product biosynthetic pathways. Four key computationally driven strategies have been developed to identify such pathways, which make use of physical clustering, co-expression, evolutionary co-occurrence and epigenomic co-regulation of the genes involved in producing a plant natural product. Here, we discuss how these approaches can be used for the discovery of plant biosynthetic pathways encoded by both chromosomally clustered and non-clustered genes. Additionally, we will discuss opportunities to prioritize plant gene clusters for experimental characterization, and end with a forward-looking perspective on how synthetic biology technologies will allow effective functional reconstitution of candidate pathways using a variety of genetic systems. PMID:27321668

  19. Evolution of Students' Ideas about Natural Selection through a Constructivist Framework

    ERIC Educational Resources Information Center

    Baumgartner, Erin; Duncan, Kanesa

    2009-01-01

    Educating students about the process of evolution through natural selection is vitally important because not only is it the unifying theory of biological science, it is also widely regarded as difficult for students to fully comprehend. Anderson and colleagues (2002) describe alternative ideas and misconceptions about natural selection as highly…

  20. Selective Pressure along a Latitudinal Gradient Affects Subindividual Variation in Plants

    PubMed Central

    Sobral, Mar; Guitián, José; Guitián, Pablo; Larrinaga, Asier R.

    2013-01-01

    Individual plants produce repeated structures such as leaves, flowers or fruits, which, although belonging to the same genotype, are not phenotypically identical. Such subindividual variation reflects the potential of individual genotypes to vary with micro-environmental conditions. Furthermore, variation in organ traits imposes costs to foraging animals such as time, energy and increased predation risk. Therefore, animals that interact with plants may respond to this variation and affect plant fitness. Thus, phenotypic variation within an individual plant could be, in part, an adaptive trait. Here we investigated this idea and we found that subindividual variation of fruit size of Crataegus monogyna, in different populations throughout the latitudinal gradient in Europe, was explained at some extent by the selective pressures exerted by seed-dispersing birds. These findings support the hypothesis that within-individual variation in plants is an adaptive trait selected by interacting animals which may have important implications for plant evolution. PMID:24069297

  1. Antimycobacterial activity of selected medicinal plants traditionally used in Sudan to treat infectious diseases.

    PubMed

    Abuzeid, Nadir; Kalsum, Sadaf; Koshy, Richin John; Larsson, Marie; Glader, Mikaela; Andersson, Henrik; Raffetseder, Johanna; Pienaar, Elsje; Eklund, Daniel; Alhassan, Muddathir S; AlGadir, Haidar A; Koko, Waleed S; Schön, Thomas; Ahmed Mesaik, M; Abdalla, Omer M; Khalid, Asaad; Lerm, Maria

    2014-11-18

    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis underscores the need for continuous development of new and efficient methods to determine the susceptibility of isolates of Mycobacterium tuberculosis in the search for novel antimycobacterial agents. Natural products constitute an important source of new drugs, and design and implementation of antimycobacterial susceptibility testing methods are necessary to evaluate the different extracts and compounds. In this study we have explored the antimycobacterial properties of 50 ethanolic extracts from different parts of 46 selected medicinal plants traditionally used in Sudan to treat infectious diseases. Plants were harvested and ethanolic extracts were prepared. For selected extracts, fractionation with hydrophilic and hydrophobic solvents was undertaken. A luminometry-based assay was used for determination of mycobacterial growth in broth cultures and inside primary human macrophages in the presence or absence of plant extracts and fractions of extracts. Cytotoxicity was also assessed for active fractions of plant extracts. Of the tested extracts, three exhibited a significant inhibitory effect on an avirulent strain of Mycobacterium tubercluosis (H37Ra) at the initial screening doses (125 and 6.25µg/ml). These were bark and leaf extracts of Khaya senegalensis and the leaf extract of Rosmarinus officinalis L. Further fractions of these plant extracts were prepared with n-hexane, chloroform, ethyl acetate, n-butanol, ethanol and water, and the activity of these extracts was retained in hydrophobic fractions. Cytotoxicity assays revealed that the chloroform fraction of Khaya senegalensis bark was non-toxic to human monocyte-derived macrophages and other cell types at the concentrations used and hence, further analysis, including assessment of IC50 and intracellular activity was done with this fraction. These results encourage further investigations to identify the active compound(s) within the

  2. Plant landscape design simulating natural community by using AHP method based on TWINSPAN classification

    NASA Astrophysics Data System (ADS)

    Wang, Li Han

    2018-06-01

    Taking the forest vegetation in Zijin Mountain (Purple Mountain) Area of Nanjing as the research object, based on the simulation natural and semi natural plant communities, the systematic research on the construction of Nanjing regional plant landscape is carried out by the method such as literature and theory, investigation and evaluation, discussion and reference. On the basis of TWINSPAN classification, the species composition (flora and geographical composition), community structure, species diversity, interspecific relationship and ecological niche of Zijin Mountain natural vegetation are studied and analyzed as a basis for simulation design and planting. Then, from the three levels of ornamental value, resource development and utilization potential and biological characteristics, a comprehensive evaluation system used for wild ornamental plant resources in Zijin Mountain is built. Finally, some suggestions on the planting species of deep forest vegetation in Zijin Mountain are put forward.

  3. What Is "Natural"? Consumer Responses to Selected Ingredients.

    PubMed

    Chambers, Edgar; Chambers, Edgar; Castro, Mauricio

    2018-04-23

    Interest in “natural” food has grown enormously over the last decade. Because the United States government has not set a legal definition for the term “natural”, customers have formed their own sensory perceptions and opinions on what constitutes natural. In this study, we examined 20 ingredients to determine what consumers consider to be natural. Using a national database, 630 consumers were sampled (50% male and 50% female) online, and the results were analyzed using percentages and chi-square tests. No ingredient was considered natural by more than 69% of respondents. We found evidence that familiarity may play a major role in consumers’ determination of naturalness. We also found evidence that chemical sounding names and the age of the consumer have an effect on whether an ingredient and potentially a food is considered natural. Interestingly, a preference towards selecting GMO (genetically modified organisms) foods had no significant impact on perceptions of natural.

  4. Can the fatty acid selectivity of plant lipases be predicted from the composition of the seed triglyceride?

    PubMed

    Hellyer, S A; Chandler, I C; Bosley, J A

    1999-09-22

    To address the question can the fatty acid selectivity of plant lipases be predicted from the composition of the seed triglyceride, we have characterised the selectivity of lipases from a wide range of oilseeds with diverse fatty acid compositions. For this study, a novel hydrolysis assay using a fully randomised oil, was developed. From some seed sources (e.g. Cinnamomum camphora), lipases show high preference for particular fatty acids, whilst from others (e.g. Brassica napus, Theobroma cacao80% saturated or 'unusual' fatty acids may contain lipases which exhibit selectivity. It therefore follows that since the majority of seeds are composed of unsaturated fatty acids, that highly selective lipases will be unusual in nature. However lipases from some species of the Cuphea genera show exceptionally high preference for particular fatty acids. For example, lipase from seeds of Cuphea procumbans has over 20-fold selectivity for C10:0.

  5. Relaxation of herbivore-mediated selection drives the evolution of genetic covariances between plant competitive and defense traits.

    PubMed

    Uesugi, Akane; Connallon, Tim; Kessler, André; Monro, Keyne

    2017-06-01

    Insect herbivores are important mediators of selection on traits that impact plant defense against herbivory and competitive ability. Although recent experiments demonstrate a central role for herbivory in driving rapid evolution of defense and competition-mediating traits, whether and how herbivory shapes heritable variation in these traits remains poorly understood. Here, we evaluate the structure and evolutionary stability of the G matrix for plant metabolites that are involved in defense and allelopathy in the tall goldenrod, Solidago altissima. We show that G has evolutionarily diverged between experimentally replicated populations that evolved in the presence versus the absence of ambient herbivory, providing direct evidence for the evolution of G by natural selection. Specifically, evolution in an herbivore-free habitat altered the orientation of G, revealing a negative genetic covariation between defense- and competition-related metabolites that is typically masked in herbivore-exposed populations. Our results may be explained by predictions of classical quantitative genetic theory, as well as the theory of acquisition-allocation trade-offs. The study provides compelling evidence that herbivory drives the evolution of plant genetic architecture. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Use of space for development of commercial plant natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draeger, N.A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol. {copyright} {ital 1997 American Institute of Physics.}

  7. Opportunity for natural selection among five population groups of Manipur, North East India.

    PubMed

    Asghar, M; Meitei, S Y; Luxmi, Y; Achoubi, N; Meitei, K S; Murry, B; Sachdeva, M P; Saraswathy, K N

    2014-01-01

    Opportunity for natural selection among five population groups of Manipur in comparison with other North East Indian population has been studied. Crow's index as well as Johnston and Kensinger's index for natural selection were calculated based on differential fertility and mortality. The mortality component was found to be lower compared to fertility component in all the populations which may attribute to comparatively improved and easily accessible health care facilities. However, different selection pressures, artificial and natural, seem to be influencing the selection intensity through induced abortion and spontaneous abortion among the two non-tribal migrant groups: Bamon and Muslims, respectively. This study highlights the probable interaction of artificial and natural selection in determining the evolutionary fate of any population group.

  8. Chiral Selective Chemistry Induced by Natural Selection of Spin-Polarized Electrons.

    PubMed

    Rosenberg, Richard A; Mishra, Debabrata; Naaman, Ron

    2015-06-15

    The search to understand the origin of homochirality in nature has been ongoing since the time of Pasteur. Previous work has shown that DNA can act as a spin filter for low-energy electrons and that spin-polarized secondary electrons produced by X-ray irradiation of a magnetic substrate can induce chiral selective chemistry. In the present work it is demonstrated that secondary electrons from a substrate that are transmitted through a chiral overlayer cause enantiomeric selective chemistry in an adsorbed adlayer. We determine the quantum yields (QYs) for dissociation of (R)- or (S)-epichlorohydrin adsorbed on a chiral self-assembled layer of DNA on gold and on bare gold (for control). The results show that there is a significant difference in the QYs between the two enantiomers when adsorbed on DNA, but none when they are adsorbed on bare Au. We propose that the effect results from natural spin filtering effects cause by the chiral monolayer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The natural selection of altruistic traits.

    PubMed

    Boehm, C

    1999-09-01

    Proponents of the standard evolutionary biology paradigm explain human "altruism" in terms of either nepotism or strict reciprocity. On that basis our underlying nature is reduced to a function of inclusive fitness: human nature has to be totally selfish or nepotistic. Proposed here are three possible paths to giving costly aid to nonrelatives, paths that are controversial because they involve assumed pleiotropic effects or group selection. One path is pleiotropic subsidies that help to extend nepotistic helping behavior from close family to nonrelatives. Another is "warfare"-if and only if warfare recurred in the Paleolithic. The third and most plausible hypothesis is based on the morally based egalitarian syndrome of prehistoric hunter-gatherers, which reduced phenotypic variation at the within-group level, increased it at the between-group level, and drastically curtailed the advantages of free riders. In an analysis consistent with the fundamental tenets of evolutionary biology, these three paths are evaluated as explanations for the evolutionary development of a rather complicated human social nature.

  10. Assessment of range planting as a conservation practice

    USDA-ARS?s Scientific Manuscript database

    Natural Resource Conservation Service (NRCS) Range Planting - Conservation Practice Standards provide guidelines for making decisions about seedbed preparation, planting methods, plant materials selection, seeding rate, seeding depth, timing of seeding, post-planting management, and weed-control. ...

  11. Predicting Microstegium vimineum invasion in natural plant communities of the southern Blue Ridge Mountains, USA

    Treesearch

    Dean P. Anderson; Monica G. Turner; Scott M. Pearson; Thomas P. Albright; Robert K. Peet; Ann Wieben

    2012-01-01

    Shade-tolerant non-native invasive plant species may make deep incursions into natural plant communities, but detecting such species is challenging because occurrences are often sparse. We developed Bayesian models of the distribution of Microstegium vimineum in natural plant communities of the southern Blue Ridge Mountains, USA to address three objectives: (1) to...

  12. Selection on spur shape in Impatiens capensis.

    PubMed

    Young, Helen J

    2008-06-01

    Rapid speciation within some plant families has been attributed to the evolution of floral spurs and to the effect of spur length on plant reproductive success. The flowers of Impatiens capensis (jewelweed) possess a long, curved spur in which nectar is produced and stored. Spur length and curvature varies among plants within one population. Here I document that spur shape is variable in natural populations, variation within plants is less than variation among plants, and spur shape is correlated with components of female and male reproductive success. The apparent natural selection is weakly directional in 1 of 2 years, with greatest seed production and pollen removal occurring in flowers with the greatest spur curvature. Bee pollinator visit length is longest at flowers with highly curved spurs, and they leave less nectar in these spurs than in flowers with straighter spurs. Spur angle evolution may be limited, at least in part, by opposing selection by nectar-robbers who prefer to visit flowers with greater spur curvature. Other factors that might contribute to the maintenance of spur angle variation are temporal variation in the strength of selection and potential genetic correlations of spur shape with other traits under selection.

  13. Evidence for a plant-associated natural habitat for Cronobacter spp.

    PubMed

    Schmid, Michael; Iversen, Carol; Gontia, Iti; Stephan, Roger; Hofmann, Andreas; Hartmann, Anton; Jha, Bhavanath; Eberl, Leo; Riedel, Kathrin; Lehner, Angelika

    2009-10-01

    Cronobacter (Enterobacter sakazakii) species are responsible for rare cases of necrotising enterocolitis and bacteraemia in infants, as well as cases of meningitis with high case fatality rates in neonates and immunocompromised infants. Some physiological features, such as the production of a yellow pigment, the formation of a gum-like extracellular polysaccharide and the ability to persist in a desiccated state, suggest an environmental niche for these organisms. To date, the natural habitat of Cronobacter spp. remains unknown. In this report, the isolation and characterisation of two Cronobacter sakazakii strains from plant roots is described. Also, the root colonisation behaviour of Cronobacter strains originating from clinical and plant sources is assessed. The nine strains investigated showed features often found in plant-associated and rhizosphere microorganisms, including solubilisation of mineral phosphate and production of indole acetic acid. Siderophore production was observed for all except one strain. In addition, the capability to endophytically colonise tomato and maize roots was demonstrated for several strains, either by fluorescence in situ hybridisation, using fluorescently labelled oligonucleotide probes, or by using strains tagged with green fluorescent protein and confocal laser scanning microscopy. The results provide evidence that plants may be the natural habitat of Cronobacter spp.

  14. RNA-Seq reveals virus–virus and virus–plant interactions in nature

    PubMed Central

    Kamitani, Mari; Nagano, Atsushi J.; Honjo, Mie N.; Kudoh, Hiroshi

    2016-01-01

    Abstract As research on plant viruses has focused mainly on crop diseases, little is known about these viruses in natural environments. To understand the ecology of viruses in natural systems, comprehensive information on virus–virus and virus–host interactions is required. We applied RNA-Seq to plants from a natural population of Arabidopsis halleri subsp. gemmifera to simultaneously determine the presence/absence of all sequence-reported viruses, identify novel viruses and quantify the host transcriptome. By introducing the criteria of read number and genome coverage, we detected infections by Turnip mosaic virus (TuMV), Cucumber mosaic virus and Brassica yellows virus. Active TuMV replication was observed by ultramicroscopy. De novo assembly further identified a novel partitivirus, Arabidopsis halleri partitivirus 1. Interestingly, virus reads reached a maximum level that was equivalent to that of the host's total mRNA, although asymptomatic infection was common. AhgAGO2, a key gene in host defence systems, was upregulated in TuMV-infected plants. Multiple infection was frequent in TuMV-infected leaves, suggesting that TuMV facilitates multiple infection, probably by suppressing host RNA silencing. Revealing hidden plant–virus interactions in nature can enhance our understanding of biological interactions and may have agricultural applications. PMID:27549115

  15. GEOTHERMAL ENVIRONMENTAL ASSESSMENT: BEHAVIOR OF SELECTED GEOTHERMAL BRINE CONTAMINANTS IN PLANTS AND SOILS

    EPA Science Inventory

    The behavior of selected elements found in the Roosevelt Hot Springs KGRA geothermal fluids was investigated in both plant and soil systems. The kinetics of these potential environmental containments were studied by using soil columns and selected cultivated and native plant spec...

  16. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    PubMed

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  17. Chemical interactions between plants in Mediterranean vegetation: the influence of selected plant extracts on Aegilops geniculata metabolome.

    PubMed

    Scognamiglio, Monica; Fiumano, Vittorio; D'Abrosca, Brigida; Esposito, Assunta; Choi, Young Hae; Verpoorte, Robert; Fiorentino, Antonio

    2014-10-01

    Allelopathy is the chemical mediated communication among plants. While on one hand there is growing interest in the field, on the other hand it is still debated as doubts exist at different levels. A number of compounds have been reported for their ability to influence plant growth, but the existence of this phenomenon in the field has rarely been demonstrated. Furthermore, only few studies have reported the uptake and the effects at molecular level of the allelochemicals. Allelopathy has been reported on some plants of Mediterranean vegetation and could contribute to structuring this ecosystem. Sixteen plants of Mediterranean vegetation have been selected and studied by an NMR-based metabolomics approach. The extracts of these donor plants have been characterized in terms of chemical composition and the effects on a selected receiving plant, Aegilops geniculata, have been studied both at the morphological and at the metabolic level. Most of the plant extracts employed in this study were found to have an activity, which could be correlated with the presence of flavonoids and hydroxycinnamate derivatives. These plant extracts affected the receiving plant in different ways, with different rates of growth inhibition at morphological level. The results of metabolomic analysis of treated plants suggested the induction of oxidative stress in all the receiving plants treated with active donor plant extracts, although differences were observed among the responses. Finally, the uptake and transport into receiving plant leaves of different metabolites present in the extracts added to the culture medium were observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Genetic divergence and signatures of natural selection in marginal populations of a keystone, long-lived conifer, Eastern White Pine (Pinus strobus) from Northern Ontario.

    PubMed

    Chhatre, Vikram E; Rajora, Om P

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (Ne) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and Ne than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and Ne between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance.

  19. Genetic Divergence and Signatures of Natural Selection in Marginal Populations of a Keystone, Long-Lived Conifer, Eastern White Pine (Pinus strobus) from Northern Ontario

    PubMed Central

    Chhatre, Vikram E.; Rajora, Om P.

    2014-01-01

    Marginal populations are expected to provide the frontiers for adaptation, evolution and range shifts of plant species under the anticipated climate change conditions. Marginal populations are predicted to show genetic divergence from central populations due to their isolation, and divergent natural selection and genetic drift operating therein. Marginal populations are also expected to have lower genetic diversity and effective population size (N e) and higher genetic differentiation than central populations. We tested these hypotheses using eastern white pine (Pinus strobus) as a model for keystone, long-lived widely-distributed plants. All 614 eastern white pine trees, in a complete census of two populations each of marginal old-growth, central old-growth, and central second-growth, were genotyped at 11 microsatellite loci. The central populations had significantly higher allelic and genotypic diversity, latent genetic potential (LGP) and N e than the marginal populations. However, heterozygosity and fixation index were similar between them. The marginal populations were genetically diverged from the central populations. Model testing suggested predominant north to south gene flow in the study area with curtailed gene flow to northern marginal populations. Signatures of natural selection were detected at three loci in the marginal populations; two showing divergent selection with directional change in allele frequencies, and one balancing selection. Contrary to the general belief, no significant differences were observed in genetic diversity, differentiation, LGP, and N e between old-growth and second-growth populations. Our study provides information on the dynamics of migration, genetic drift and selection in central versus marginal populations of a keystone long-lived plant species and has broad evolutionary, conservation and adaptation significance. PMID:24859159

  20. Natural image statistics and low-complexity feature selection.

    PubMed

    Vasconcelos, Manuela; Vasconcelos, Nuno

    2009-02-01

    Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1. This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two features, of observing any other feature is constant across image classes.

  1. Plant selection for nest building by western lowland gorillas in Cameroon.

    PubMed

    Willie, Jacob; Tagg, Nikki; Petre, Charles-Albert; Pereboom, Zjef; Lens, Luc

    2014-01-01

    We examined 834 nests built by western lowland gorillas in Cameroon between July 2008 and July 2011 to identify the plant species used in their construction. Preference for each plant species for nesting was assessed using a 'preference index' calculated by combining information on the occurrence of each species in the forest and in the nests. Forty-six plant species representing about 15 % of the total number of species in the forest and 26 % of species used for nest building were frequently used by gorillas. Preference levels significantly varied among these species. Nests were mostly built with herbs of the families Marantaceae and Zingiberaceae and woody species such as Manniophyton fulvum (liana) and Alchornea floribunda (shrub). As observed in other gorilla populations, suitability for nest building and availability of gorilla food in stems were the likely determinants of plant selection. The total number of species used per nest ranged from 1 to 11, with an average of 4.9. This is high compared to other sites, emphasizing variability in the availability of nest building materials and habitat differences across the range of the western gorilla. Seasonal changes in the use of different habitat types for nesting did not appear to influence plant use for nest building as there was little variation in plant selection across seasons or the composition of nests. Our findings suggest that gorillas non-randomly select plant species to build nests, and use a particular set of species combined at varying proportions, with no clear seasonal or spatial patterns.

  2. Selective MAO-B inhibitors: a lesson from natural products.

    PubMed

    Carradori, Simone; D'Ascenzio, Melissa; Chimenti, Paola; Secci, Daniela; Bolasco, Adriana

    2014-02-01

    Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.

  3. Checklist of the vascular plants of Steamboat Mountain Research Natural Area.

    Treesearch

    S. Reid Schuller; Robert E. Frenkel

    1981-01-01

    Lists 237 vascular plant taxa found in the 570-hectare Steamboat Mountain Research Natural Area. Notes on habitats, community types, and abundance are included for most taxa. This research note provides scientists, educators, and land managers with baseline information on the presence, location, and abundance of vascular plants within the Steamboat Mountain Research...

  4. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks

    PubMed Central

    Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C.; Pepper, John W.

    2017-01-01

    Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of “cancer” and for why this convergent condition becomes life-threatening. PMID:28148564

  5. Natural Selection in Cancer Biology: From Molecular Snowflakes to Trait Hallmarks.

    PubMed

    Fortunato, Angelo; Boddy, Amy; Mallo, Diego; Aktipis, Athena; Maley, Carlo C; Pepper, John W

    2017-02-01

    Evolution by natural selection is the conceptual foundation for nearly every branch of biology and increasingly also for biomedicine and medical research. In cancer biology, evolution explains how populations of cells in tumors change over time. It is a fundamental question whether this evolutionary process is driven primarily by natural selection and adaptation or by other evolutionary processes such as founder effects and drift. In cancer biology, as in organismal evolutionary biology, there is controversy about this question and also about the use of adaptation through natural selection as a guiding framework for research. In this review, we discuss the differences and similarities between evolution among somatic cells versus evolution among organisms. We review what is known about the parameters and rate of evolution in neoplasms, as well as evidence for adaptation. We conclude that adaptation is a useful framework that accurately explains the defining characteristics of cancer. Further, convergent evolution through natural selection provides the only satisfying explanation both for how a group of diverse pathologies have enough in common to usefully share the descriptive label of "cancer" and for why this convergent condition becomes life-threatening. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less

  7. Method and apparatus for selectively harvesting multiple components of a plant material

    DOEpatents

    Hoskinson, Reed L.; Hess, Richard J.; Kenney, Kevin L.; Svoboda, John M.; Foust, Thomas D.

    2004-05-04

    A method and apparatus for selectively harvesting multiple components of a plant material. A grain component is separated from the plant material such as by processing the plant material through a primary threshing and separating mechanism. At least one additional component of the plant material is selectively harvested such as by subjecting the plant material to a secondary threshing and separating mechanism. For example, the stems of a plant material may be broken at a location adjacent one or more nodes thereof with the nodes and the internodal stem portions being subsequently separated for harvesting. The at least one additional component (e.g., the internodal stems) may then be consolidated and packaged for subsequent use or processing. The harvesting of the grain and of the at least one additional component may occur within a single harvesting machine, for example, during a single pass over a crop field.

  8. Rindsel: an R package for phenotypic and molecular selection indices used in plant breeding.

    PubMed

    Perez-Elizalde, Sergío; Cerón-Rojas, Jesús J; Crossa, José; Fleury, Delphine; Alvarado, Gregorio

    2014-01-01

    Selection indices are estimates of the net genetic merit of the individual candidates for selection and are calculated based on phenotyping and molecular marker information collected on plants under selection in a breeding program. They reflect the breeding value of the plants and help breeders to choose the best ones for next generation. Rindsel is an R package that calculates phenotypic and molecular selection indices.

  9. Plants as natural antioxidants for meat products

    NASA Astrophysics Data System (ADS)

    Tomović, V.; Jokanović, M.; Šojić, B.; Škaljac, S.; Ivić, M.

    2017-09-01

    The meat industry is demanding antioxidants from natural sources to replace synthetic antioxidants because of the negative health consequences or beliefs regarding some synthetic ones. Plants materials provide good alternatives. Spices and herbs, generally used for their flavouring characteristics, can be added to meat products in various forms: whole, ground, or as isolates from their extracts. These natural antioxidants contain some active compounds, which exert antioxidative potential in meat products. This antioxidant activity is most often due to phenolic acids, phenolic diterpenes, flavonoids and volatile oils. Each of these compounds often has strong H-donating activity, thus making them extremely effective antioxidants; some compounds can chelate metals and donate H to oxygen radicals, thus slowing oxidation via two mechanisms. Numerous studies have demonstrated the efficacy of natural antioxidants when used in meat products. Based on this literature review, it can be concluded that natural antioxidants are added to fresh and processed meat and meat products to delay, retard, or prevent lipid oxidation, retard development of off-flavours (rancidity), improve colour stability, improve microbiological quality and extend shelf-life, without any damage to the sensory or nutritional properties.

  10. Contributions of natural and sexual selection to the evolution of premating reproductive isolation: a research agenda.

    PubMed

    Safran, Rebecca J; Scordato, Elizabeth S C; Symes, Laurel B; Rodríguez, Rafael L; Mendelson, Tamra C

    2013-11-01

    Speciation by divergent natural selection is well supported. However, the role of sexual selection in speciation is less well understood due to disagreement about whether sexual selection is a mechanism of evolution separate from natural selection, as well as confusion about various models and tests of sexual selection. Here, we outline how sexual selection and natural selection are different mechanisms of evolutionary change, and suggest that this distinction is critical when analyzing the role of sexual selection in speciation. Furthermore, we clarify models of sexual selection with respect to their interaction with ecology and natural selection. In doing so, we outline a research agenda for testing hypotheses about the relative significance of divergent sexual and natural selection in the evolution of reproductive isolation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Genetic evidence for natural selection in humans in the contemporary United States.

    PubMed

    Beauchamp, Jonathan P

    2016-07-12

    Recent findings from molecular genetics now make it possible to test directly for natural selection by analyzing whether genetic variants associated with various phenotypes have been under selection. I leverage these findings to construct polygenic scores that use individuals' genotypes to predict their body mass index, educational attainment (EA), glucose concentration, height, schizophrenia, total cholesterol, and (in females) age at menarche. I then examine associations between these scores and fitness to test whether natural selection has been occurring. My study sample includes individuals of European ancestry born between 1931 and 1953 who participated in the Health and Retirement Study, a representative study of the US population. My results imply that natural selection has been slowly favoring lower EA in both females and males, and are suggestive that natural selection may have favored a higher age at menarche in females. For EA, my estimates imply a rate of selection of about -1.5 mo of education per generation (which pales in comparison with the increases in EA observed in contemporary times). Although they cannot be projected over more than one generation, my results provide additional evidence that humans are still evolving-albeit slowly, especially compared with the rapid changes that have occurred over the past few generations due to cultural and environmental factors.

  12. Genetic evidence for natural selection in humans in the contemporary United States

    PubMed Central

    Beauchamp, Jonathan P.

    2016-01-01

    Recent findings from molecular genetics now make it possible to test directly for natural selection by analyzing whether genetic variants associated with various phenotypes have been under selection. I leverage these findings to construct polygenic scores that use individuals’ genotypes to predict their body mass index, educational attainment (EA), glucose concentration, height, schizophrenia, total cholesterol, and (in females) age at menarche. I then examine associations between these scores and fitness to test whether natural selection has been occurring. My study sample includes individuals of European ancestry born between 1931 and 1953 who participated in the Health and Retirement Study, a representative study of the US population. My results imply that natural selection has been slowly favoring lower EA in both females and males, and are suggestive that natural selection may have favored a higher age at menarche in females. For EA, my estimates imply a rate of selection of about −1.5 mo of education per generation (which pales in comparison with the increases in EA observed in contemporary times). Although they cannot be projected over more than one generation, my results provide additional evidence that humans are still evolving—albeit slowly, especially compared with the rapid changes that have occurred over the past few generations due to cultural and environmental factors. PMID:27402742

  13. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    PubMed Central

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  14. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants

    PubMed Central

    Coats, Vanessa C.; Rumpho, Mary E.

    2014-01-01

    Plants in terrestrial systems have evolved in direct association with microbes functioning as both agonists and antagonists of plant fitness and adaptability. As such, investigations that segregate plants and microbes provide only a limited scope of the biotic interactions that dictate plant community structure and composition in natural systems. Invasive plants provide an excellent working model to compare and contrast the effects of microbial communities associated with natural plant populations on plant fitness, adaptation, and fecundity. The last decade of DNA sequencing technology advancements opened the door to microbial community analysis, which has led to an increased awareness of the importance of an organism’s microbiome and the disease states associated with microbiome shifts. Employing microbiome analysis to study the symbiotic networks associated with invasive plants will help us to understand what microorganisms contribute to plant fitness in natural systems, how different soil microbial communities impact plant fitness and adaptability, specificity of host–microbe interactions in natural plant populations, and the selective pressures that dictate the structure of above-ground and below-ground biotic communities. This review discusses recent advances in invasive plant biology that have resulted from microbiome analyses as well as the microbial factors that direct plant fitness and adaptability in natural systems. PMID:25101069

  15. Contrasting natural regeneration and tree planting in fourteen North American cities

    Treesearch

    David J. Nowak

    2012-01-01

    Field data from randomly located plots in 12 cities in the United States and Canada were used to estimate the proportion of the existing tree population that was planted or occurred via natural regeneration. In addition, two cities (Baltimore and Syracuse) were recently re-sampled to estimate the proportion of newly established trees that were planted. Results for the...

  16. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    NASA Astrophysics Data System (ADS)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  17. Use of naturally growing aquatic plants for wastewater purification.

    PubMed

    Zimmels, Y; Kirzhner, F; Roitman, S

    2004-01-01

    This paper examines potential uses of naturally growing aquatic plants for wastewater purification. These plants enhance the removal of pollutants by consuming part of them in the form of plant nutrients. This applies to urban and agricultural wastewater, in particular, where treatment units of different sizes can be applied at the pollution source. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The growth rate of the plants was related to the wastewater content in the water. Batch and semicontinuous experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of the purified water for irrigation. This applies to biochemical oxygen demand (BOD), chemical oxygen demand, total suspended solids. pH, and turbidity. In specific cases, the turbidity reached the level of drinking water. Comparison of BOD concentrations with typical levels in water treatment facilities across the country indicates the effectiveness of water purification with plants. A major effect of treatment with plants was elimination of the disturbing smell from the wastewater. It is shown that mixtures of wastewater and polluted water from the Kishon River are amenable in varying degrees to treatment by the plants. The higher the wastewater content in the mixture, the more effective the treatment by the plants. In this context, a scheme for rehabilitation and restoration of the Kishon River is presented and technical and economical aspects of the purification technology are considered.

  18. Strong selection on mandible and nest features in a carpenter bee that nests in two sympatric host plants

    PubMed Central

    Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E

    2014-01-01

    Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored. PMID:24963379

  19. Strong selection on mandible and nest features in a carpenter bee that nests in two sympatric host plants.

    PubMed

    Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E

    2014-05-01

    Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored.

  20. Insights From Natural Host-Parasite Interactions: The Drosophila Model

    PubMed Central

    Keebaugh, Erin S.; Schlenke, Todd A.

    2013-01-01

    Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, particularly plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R/Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens’ virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune mechanisms that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss exciting prospects for future research on select natural pathogens of Drosophila. PMID:23764256

  1. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes?

    PubMed Central

    Sakkas, Denny; Ramalingam, Mythili; Garrido, Nicolas; Barratt, Christopher L.R.

    2015-01-01

    BACKGROUND In natural conception only a few sperm cells reach the ampulla or the site of fertilization. This population is a selected group of cells since only motile cells can pass through cervical mucus and gain initial entry into the female reproductive tract. In animals, some studies indicate that the sperm selected by the reproductive tract and recovered from the uterus and the oviducts have higher fertilization rates but this is not a universal finding. Some species show less discrimination in sperm selection and abnormal sperm do arrive at the oviduct. In contrast, assisted reproductive technologies (ART) utilize a more random sperm population. In this review we contrast the journey of the spermatozoon in vivo and in vitro and discuss this in the context of developing new sperm preparation and selection techniques for ART. METHODS A review of the literature examining characteristics of the spermatozoa selected in vivo is compared with recent developments in in vitro selection and preparation methods. Contrasts and similarities are presented. RESULTS AND CONCLUSIONS New technologies are being developed to aid in the diagnosis, preparation and selection of spermatozoa in ART. To date progress has been frustrating and these methods have provided variable benefits in improving outcomes after ART. It is more likely that examining the mechanisms enforced by nature will provide valuable information in regard to sperm selection and preparation techniques in vitro. Identifying the properties of those spermatozoa which do reach the oviduct will also be important for the development of more effective tests of semen quality. In this review we examine the value of sperm selection to see how much guidance for ART can be gleaned from the natural selection processes in vivo. PMID:26386468

  2. Novel natural food antimicrobials.

    PubMed

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  3. Uptake of the natural radioactive gas radon by an epiphytic plant.

    PubMed

    Li, Peng; Zhang, Ruiwen; Gu, Mintian; Zheng, Guiling

    2018-01-15

    Radon ( 222 Rn) is a natural radioactive gas and the major radioactive contributor to human exposure. The present effective ways to control Rn contamination are ventilation and adsorption with activated carbon. Plants are believed to be negligible in reducing airborne Rn. Here, we found epiphytic Tillandsia brachycaulos (Bromeliaceae) was effective in reducing airborne Rn via the leaves. Rn concentrations in the Rn chamber after Tillandsia plant treatments decreased more than those in the natural situation. The specialized foliar trichomes densely covering Tillandsia leaves play a major role in the uptake of Rn because the amplified rough leaf surface area facilitates deposition of Rn progeny particles and the powdery epicuticular wax layer of foliar trichomes uptakes liposoluble Rn. The results provide us a new ecological strategy for Rn contamination control, and movable epiphytic Tillandsia plants can be applied widely in Rn removal systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Woody plants selected by beavers in the Appalacian Ridge and Valley Province

    Treesearch

    Hewlette S. Crawford; R. G. Hooper; R. F. Harlow

    1976-01-01

    The availability of woody plants and the selection of plants by beavers along mountain streams was studied in four areas of the Appalachian Ridge and Valley Province in Virginia. Beavers' choice of woody plants varied between areas. Many species of woody plants were cut by beavers. They climbed slopes with gradients up to 80 percent to cut trees. Large as well as...

  5. Proof of the Wave Nature of Plants

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2008-03-01

    I assume plants operate with a set of frequencies. These frequencies and the means of these frequencies are equal in all directions. We can then write (vh/λ)avh=(vv/λ)avv where the subscripts h and v represent horizontal and vertical respectively and av is average,. or vv/vh=(1/λh)av/(1/λv)av. I use an internodal spacing as λ/2 or the the distance between adjacent branches, leaves, etc. The ratios, vv/vh, are ratios of small integers for sufficient samplings. For example, for Ponderosa pine the ratio is 3/1 or for delicious apple 4/3. Note that these ratios represent the shape of the tree or other plant and their interactions with gravity. These ratios are derivable by other means such as use the ratio of # of horizontal needles per unit length from a horizontal sample to the # of needles per unit length from a vertical sample from p-pine. Or measure the vertical and horizontal velocities. My literature provides many other proofs of the wave nature of plants. I suggest that the waves in and related waves outside of plants (outside 4.9 m/s) are a dark matter related since they travel at such low velocities. See my present web site at home.budget.net/˜oedphd.

  6. Host Range and Selectivity of the Hemiparasitic Plant Thesium chinense (Santalaceae)

    PubMed Central

    Suetsugu, Kenji; Kawakita, Atsushi; Kato, Makoto

    2008-01-01

    Background and Aims Thesium chinense is a hemiparasitic plant that is common in grassland habitats of eastern Asia. Although the physiology of Thesium has been well studied in attempts to control its weedy habit, there have been few ecological investigations of its parasitic life history. Thesium chinense is thought to parasitize species of Poaceae, but evidence remains circumstantial. Methods A vegetation survey was conducted to test whether any plant species occurs significantly more often in plots with T. chinense than expected. In addition, haustorial connections were examined directly by excavating the roots and post-attachment host selectivity was evaluated by comparing the observed numbers of haustoria on different hosts against those expected according to the relative below-ground biomass. Haustorium sizes were also compared among host species. Key Results Only two of the 38 species recorded, Lespedeza juncea and Eragrostis curvula, occurred more often in plots with Thesium than expected. In contrast to this, T. chinense parasitized 22 plant species in 11 families, corresponding to 57·9 % of plant species found at the study site. Haustoria were non-randomly distributed among host species, suggesting that there is some post-attachment host selectivity. Thesium chinense generally preferred the Poaceae, although haustoria formed on the Fabaceae were larger than those on other hosts. Conclusions This is the first quantitative investigation of the host range and selectivity of hemiparasitic plants of the Santalales. The preference for Fabaceae as hosts may be linked to the greater nutrient availability in these nitrogen-fixing plants. PMID:18492736

  7. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants

    PubMed Central

    Widhalm, Joshua R; Rhodes, David

    2016-01-01

    The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant–plant (allelopathy), plant–insect and plant–microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed. PMID:27688890

  8. Regulatory requirements for nuclear power plant site selection in Malaysia-a review.

    PubMed

    Basri, N A; Hashim, S; Ramli, A T; Bradley, D A; Hamzah, K

    2016-12-01

    Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.

  9. Search for bioactive natural products from medicinal plants of Bangladesh.

    PubMed

    Ahmed, Firoj; Sadhu, Samir Kumar; Ishibashi, Masami

    2010-10-01

    In our continuous search for bioactive natural products from natural resources, we explored medicinal plants of Bangladesh, targeting cancer-related tumor necrosis factor-related apoptosis-inducing ligand-signaling pathway, along with some other biological activities such as prostaglandin inhibitory activity, 1,1-diphenyl-2-picrylhydrazyl free-radical-scavenging activity, and cell growth inhibitory activity. Along with this, we describe a short field study on Sundarbans mangrove forests, Bangladesh, in the review.

  10. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators.

    PubMed

    Kurepin, Leonid V; Zaman, Mohammad; Pharis, Richard P

    2014-07-01

    There is increasing interest in the use of naturally occurring 'biostimulators' for enhancing the growth of agricultural and horticultural crops. Bacteria, fungi and protozoa, as well as marine algae-based seaweed extracts, can produce or contain biostimulators. The activity of biostimulators to promote plant growth is often attributed to their ability to directly or indirectly provide mineral nutrients (mostly N, but also P, S and other macro- and micro-nutrients) to plants. Alternatively, biostimulators are postulated to increase the plant's ability to assimilate these mineral nutrients, often in return for photo-assimilates (as occurs with certain bacteria and fungi associations). Although optimal growth of plants depends on the availability of adequate mineral nutritients, that growth (and also development, including reproduction) is also regulated by plant hormones (phytohormones), including gibberellins, auxins and cytokinins. This review describes and discusses the evidence that the presence or application of biostimulators also increases plant growth directly via phytohormone action and also influences the plant's ability to control its own hormone biosynthesis and homeostasis. Finally, it discusses the need for a better understanding of the role(s) that are played by the naturally occurring biostimulators associated with the plant in the crop field. It is suggested that better understanding will allow for optimal crop yield returns, since disruptions of phytohormone homeostasis in plant organs and tissues can yield either beneficial or sub-optimal outcomes. © 2013 Society of Chemical Industry.

  11. The Nature of Selected English Teachers' Online Participation

    ERIC Educational Resources Information Center

    Rodesiler, Luke

    2015-01-01

    This article documents an investigation into the nature of selected secondary English teachers' online participation across platforms (i.e., blogs, microblogs, social networking sites) as they explored issues related to teaching, learning, and literacy. Ethnographic content analysis of online artifacts generated over approximately 10 months…

  12. Identifying and Selecting Plants for the Landscape. Volume 23, Number 5.

    ERIC Educational Resources Information Center

    Rodekohr, Sherie; Harris, Clark Richard

    This handbook on identifying and selecting landscape plants can be used as a reference in landscaping courses or on an individual basis. The first of two sections, Identifying Plants for the Landscape, contains the following tables: shade tree identification; flowering tree identification; evergreen tree identification; flowering shrub…

  13. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, leasemore » condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.« less

  14. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species.

    PubMed

    Phung, Tanya N; Huber, Christian D; Lohmueller, Kirk E

    2016-08-01

    A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only

  15. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species

    PubMed Central

    Phung, Tanya N.; Lohmueller, Kirk E.

    2016-01-01

    A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only

  16. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    Treesearch

    Amy C. Ulappa; Rick G. Kelsey; Graham G. Frye; Janet L. Rachlow; LIsa A. Shipley; Laura Bond; Xinzhu Pu; Jennifer Sorensen Forbey

    2014-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites [PSMs]) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to...

  17. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts.

    PubMed

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement.

  18. Harnessing Biomedical Natural Language Processing Tools to Identify Medicinal Plant Knowledge from Historical Texts

    PubMed Central

    Sharma, Vivekanand; Law, Wayne; Balick, Michael J.; Sarkar, Indra Neil

    2017-01-01

    The growing amount of data describing historical medicinal uses of plants from digitization efforts provides the opportunity to develop systematic approaches for identifying potential plant-based therapies. However, the task of cataloguing plant use information from natural language text is a challenging task for ethnobotanists. To date, there have been only limited adoption of informatics approaches used for supporting the identification of ethnobotanical information associated with medicinal uses. This study explored the feasibility of using biomedical terminologies and natural language processing approaches for extracting relevant plant-associated therapeutic use information from historical biodiversity literature collection available from the Biodiversity Heritage Library. The results from this preliminary study suggest that there is potential utility of informatics methods to identify medicinal plant knowledge from digitized resources as well as highlight opportunities for improvement. PMID:29854223

  19. Natural Endophytic Occurrence of Acetobacter diazotrophicus in Pineapple Plants.

    PubMed

    Tapia-Hernández; Bustillos-Cristales; Jiménez-Salgado; Caballero-Mellado; Fuentes-Ramírez

    2000-01-01

    The presence of endophytic Acetobacter diazotrophicus was tested for pineapple plants (Ananas comosus [L.] Merr.) grown in the field. Diazotrophic bacteria were isolated from the inner tissues of surface sterilized roots, stems, and leaves of pineapple plants. Phenotypic tests permitted the selection of presumptive nitrogen-fixing A. diazotrophicus isolates. Restriction fragment length polymorphisms (RFLPs) of small subunit (SSU) rDNA using total DNA digested with endonuclease SphI and with endonuclease NcoI, hybridizations of RNA with an A. diazotrophicus large subunit (LSU) rRNA specific probe, as well as patterns in denaturing protein electrophoresis (SDS-PAGE) and multilocus enzyme tests allowed the identification of A. diazotrophicus isolates. High frequencies of isolation were obtained from propagative buds that had not been nitrogen-fertilized, and lower frequencies from 3-month-old plants that had been nitrogen-fertilized. No isolates were recovered from 5- to 7-month-old nitrogen-fertilized plants. All the A. diazotrophicus isolates recovered from pineapple plants belonged to the multilocus genotype which shows the most extensive distribution among all host species previously analyzed.

  20. Effective Assessment: Probing Students' Understanding of Natural Selection

    ERIC Educational Resources Information Center

    Stern, Luli

    2004-01-01

    Evolution by natural selection provides the conceptual framework upon which much of modern biology is based: therefore understanding core ideas about biological evolution is an essential part of scientific literacy. Nonetheless, research repeatedly shows that high school and college students have difficulties understanding the notion of natural…

  1. Strategies for engineering plant natural products: the iridoid-derived monoterpene indole alkaloids of Catharanthus roseus.

    PubMed

    O'Connor, Sarah E

    2012-01-01

    The manipulation of pathways to make unnatural variants of natural compounds, a process often termed combinatorial biosynthesis, has been robustly successful in prokaryotic systems. The development of approaches to generate new-to-nature compounds from plant-based pathways is, in comparison, much less advanced. Success will depend on the specific chemistry of the pathway, as well as on the suitability of the plant system for transformation and genetic manipulation. As plant pathways are elucidated, and can be heterologously expressed in hosts that are more amenable to genetic manipulation, biosynthetic production of new-to-nature compounds from plant pathways will become more widespread. In this chapter, some of the key strategies that have been developed for metabolic engineering of plant pathways, namely directed biosynthesis, mutasynthesis, and pathway incorporation of engineered enzymes are highlighted. The iridoid-derived monoterpene indole alkaloids from C. roseus, which are the focus of this chapter, provide an excellent system for developing these strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Selecting Trade Books for Elementary Science Units.

    ERIC Educational Resources Information Center

    Rop, Charles J.; Rop, Sheri K.

    2001-01-01

    Explains the importance of using well-chosen trade books for stimulating student interest and motivation in the natural world. Discusses how to assess and select trade books. Lists selected trade books on the life cycles of plants. (YDS)

  3. Identification of the plants use as natural herbal shampoo in Manipur.

    PubMed

    Singh, S R; Phurailatpam, A K; Senjam, P

    2014-01-01

    A field survey was conducted in the year, 2011 - 12 in Imphal valley of Manipur, on the use of herbs as ingredient sources for the preparation of traditional natural herbal shampoo referred to as 'Chinghi', by Meitei community. Methodological field survey and personal interview of local people aged between 30-70 years of both sexes using standard questionnaires were carried out to collect information on the plants use in the herbal shampoo preparation. The survey revealed the therapeutic application of 35 plant species representing 28 genera and 18 families available in the Imphal valley. Tree species contributed immensely, yielding 38%, while herbs 32%, shrubs 27%, and climbing shrubs 3%, respectively being the record of the total number of plants used as ingredient in herbal shampoo preparation. These natural shampoos are used for a wide range of common hair care like anti-ageing of the hair, blackness, shininess and smoothness of the hair. It is prepared from young leaves and tender stalk of shoot of trees or shrubs, or whole plant of the herbs and fresh fruits boiled with local sticky rice water locally called 'Chinghi'. Fermented lime peel is also used as a herbal shampoo. The study shows details of their scientific, common, and local names, including their family, parts used, habit of the plants, and the benefit to the hair health as a whole.

  4. Nonnative invasive plants: Maintaining biotic and soceioeconomic integrity along the urban-rural-natural gradient

    Treesearch

    Cynthia D. Huebner; David J. Nowak; Richard V. Pouyat; Allison R. Bodine

    2012-01-01

    In this chapter, we evaluate nonnative invasive plant species of the urban-rural-natural area gradient in order to reduce negative impacts of invasive plants on native species and ecosystems. This evaluation includes addressing (i) the concept of urban areas as the primary source of invasive plant species and characteristics of urban nonnative plants, including their...

  5. The Creativity of Natural Selection? Part I: Darwin, Darwinism, and the Mutationists.

    PubMed

    Beatty, John

    2016-12-01

    This is the first of a two-part essay on the history of debates concerning the creativity of natural selection, from Darwin through the evolutionary synthesis and up to the present. Here I focus on the mid-late nineteenth century to the early twentieth, with special emphasis on early Darwinism and its critics, the self-styled "mutationists." The second part focuses on the evolutionary synthesis and some of its critics, especially the "neutralists" and "neo-mutationists." Like Stephen Gould, I consider the creativity of natural selection to be a key component of what has traditionally counted as "Darwinism." I argue that the creativity of natural selection is best understood in terms of (1) selection initiating evolutionary change, and (2) selection being responsible for the presence of the variation it acts upon, for example by directing the course of variation. I consider the respects in which both of these claims sound non-Darwinian, even though they have long been understood by supporters and critics alike to be virtually constitutive of Darwinism.

  6. Plant protein and secondary metabolites influence diet selection in a mammalian specialist herbivore

    PubMed Central

    Ulappa, Amy C.; Kelsey, Rick G.; Frye, Graham G.; Rachlow, Janet L.; Shipley, Lisa A.; Bond, Laura; Pu, Xinzhu; Forbey, Jennifer Sorensen

    2015-01-01

    For herbivores, nutrient intake is limited by the relatively low nutritional quality of plants and high concentrations of potentially toxic defensive compounds (plant secondary metabolites, PSMs) produced by many plants. In response to phytochemical challenges, some herbivores selectively forage on plants with higher nutrient and lower PSM concentrations relative to other plants. Pygmy rabbits (Brachylagus idahoensis) are dietary specialists that feed on sagebrush (Artemisia spp.) and forage on specific plants more than others within a foraging patch. We predicted that the plants with evidence of heavy foraging (browsed plants) would be of higher dietary quality than plants that were not browsed (unbrowsed). We used model selection to determine which phytochemical variables best explained the difference between browsed and unbrowsed plants. Higher crude protein increased the odds that plants would be browsed by pygmy rabbits and the opposite was the case for certain PSMs. Additionally, because pygmy rabbits can occupy foraging patches (burrows) for consecutive years, their browsing may influence the nutritional and PSM constituents of plants at the burrows. In a post hoc analysis, we did not find a significant relationship between phytochemical concentrations, browse status and burrow occupancy length. We concluded that pygmy rabbits use nutritional and chemical cues while making foraging decisions. PMID:26366011

  7. [Selective enrichment of Pseudomonas spp. in the rhizoplane of different plant species].

    PubMed

    Marrero, Mariana A; Agaras, Betina; Wall, Luis G; Valverde, Claudio

    2015-01-01

    In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. The assessment of health impacts and external costs of natural gas-fired power plant of Qom.

    PubMed

    Fouladi Fard, Reza; Naddafi, Kazem; Yunesian, Masud; Nabizadeh Nodehi, Ramin; Dehghani, Mohammad Hadi; Hassanvand, Mohammad Sadegh

    2016-10-01

    The external health damage costs of the combined cycle natural gas-fired power plant of Qom were investigated via the simplified impact pathway approach. Emitted particulate matter (PM 10 ) and gaseous pollutants (NO x , CO, and SO 2 ) from the power plant stack were measured The health effects and related costs were estimated by QUERI model from AirPacts according to the emissions, source and stack parameters, pollutant depletion velocities, exposure-response functions, local and regional population density, and detailed meteorological data. The results showed that the main health effect was assigned to the nitrate as restricted activity days (RAD) with 25,240 days/year. For all pollutants, the maximum health damage costs were related to the long-term mortality (49 %), restricted activity days (27 %), and chronic bronchitis (21 %). The annual health damage costs were approximately 4.76 million US$, with the cost being 0.096 US per kWh of generating electricity. Although the health damage costs of gas-fired power plant were lower than those of other heavy fuels, it seems essential to consider the health and environmental damages and focus on the emission control strategies, particularly in site selection for the new power plants and expanding the current ones.

  9. Young children can be taught basic natural selection using a picture-storybook intervention.

    PubMed

    Kelemen, Deborah; Emmons, Natalie A; Seston Schillaci, Rebecca; Ganea, Patricia A

    2014-04-01

    Adaptation by natural selection is a core mechanism of evolution. It is also one of the most widely misunderstood scientific processes. Misconceptions are rooted in cognitive biases found in preschoolers, yet concerns about complexity mean that adaptation by natural selection is generally not comprehensively taught until adolescence. This is long after untutored theoretical misunderstandings are likely to have become entrenched. In a novel approach, we explored 5- to 8-year-olds' capacities to learn a basic but theoretically coherent mechanistic explanation of adaptation through a custom storybook intervention. Experiment 1 showed that children understood the population-based logic of natural selection and also generalized it. Furthermore, learning endured 3 months later. Experiment 2 replicated these results and showed that children understood and applied an even more nuanced mechanistic causal explanation. The findings demonstrate that, contrary to conventional educational wisdom, basic natural selection is teachable in early childhood. Theory-driven interventions using picture storybooks with rich explanatory structure are beneficial.

  10. Getting to Darwin: Obstacles to Accepting Evolution by Natural Selection

    NASA Astrophysics Data System (ADS)

    Thagard, Paul; Findlay, Scott

    2010-06-01

    Darwin’s theory of evolution by natural selection is central to modern biology, but is resisted by many people. This paper discusses the major psychological obstacles to accepting Darwin’s theory. Cognitive obstacles to adopting evolution by natural selection include conceptual difficulties, methodological issues, and coherence problems that derive from the intuitiveness of alternative theories. The main emotional obstacles to accepting evolution are its apparent conflict with valued beliefs about God, souls, and morality. We draw on the philosophy of science and on a psychological theory of cognitive and emotional belief revision to make suggestions about what can be done to improve acceptance of Darwinian ideas.

  11. Genomic selection for quantitative adult plant stem rust resistance in wheat

    USDA-ARS?s Scientific Manuscript database

    Quantitative adult plant resistance (APR) to stem rust (Puccinia graminis f. sp. tritici) is an important breeding target in wheat (Triticum aestivum L.) and a potential target for genomic selection (GS). To evaluate the relative importance of known APR loci in applying genomic selection, we charact...

  12. Natural and sexual selection against immigrants maintains differentiation among micro-allopatric populations.

    PubMed

    Tobler, M; Riesch, R; Tobler, C M; Schulz-Mirbach, T; Plath, M

    2009-11-01

    Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence lead to speciation. But what mechanisms contribute to reproductive isolation among diverging populations? We tested for natural and sexual selection against immigrants in a fish species inhabiting (and adapting to) nonsulphidic surface habitats, sulphidic surface habitats and a sulphidic cave. Gene flow is strong among sample sites situated within the same habitat type, but low among divergent habitat types. Our results indicate that females of both sulphidic populations discriminate against immigrant males during mate choice. Furthermore, using reciprocal translocation experiments, we document natural selection against migrants between nonsulphidic and sulphidic habitats, whereas migrants between sulphidic cave and surface habitats did not exhibit increased mortality within the same time period. Consequently, both natural and sexual selection may contribute to isolation among parapatric populations, and selection against immigrants may be a powerful mechanism facilitating speciation among locally adapted populations even over very small spatial distances.

  13. Potential of hypocotyl diameter in family selection aiming at plant architecture improvement of common bean.

    PubMed

    Oliveira, A M C; Batista, R O; Carneiro, P C S; Carneiro, J E S; Cruz, C D

    2015-09-28

    Cultivars of common bean with more erect plant architecture and greater tolerance to degree of lodging are required by producers. Thus, to evaluate the potential of hypocotyl diameter (HD) in family selection for plant architecture improvement of common bean, the HDs of 32 F2 plants were measured in 3 distinct populations, and the characteristics related to plant architecture were analyzed in their progenies. Ninety-six F2:3 families and 4 controls were evaluated in a randomized block design, with 3 replications, analyzing plant architecture grade, HD, and grain yield during the winter 2010 and drought 2011 seasons. We found that the correlation between the HD of F2 plants and traits related to plant architecture of F2:3 progenies were of low magnitude compared to the estimates for correlations considering the parents, indicating a high environmental influence on HD in bean plants. There was a predominance of additive genetic effects on the determination of hypocotyl diameter, which showed higher precision and accuracy compared to plant architecture grade. Thus, this characteristic can be used to select progenies in plant architecture improvement of common beans; however, selection must be based on the means of at least 39 plants in the plot, according to the results of repeatability analysis.

  14. Plant management in natural areas: balancing chemical, mechanical, and cultural control methods

    Treesearch

    Steven Manning; James Miller

    2011-01-01

    After determining the best course of action for control of an invasive plant population, it is important to understand the variety of methods available to the integrated pest management professional. A variety of methods are now widely used in managing invasive plants in natural areas, including chemical, mechanical, and cultural control methods. Once the preferred...

  15. Plant extracts and natural compounds used against UVB-induced photoaging.

    PubMed

    Cavinato, Maria; Waltenberger, Birgit; Baraldo, Giorgia; Grade, Carla V C; Stuppner, Hermann; Jansen-Dürr, Pidder

    2017-08-01

    Skin is continuously exposed to a variety of environmental stresses, including ultraviolet (UV) radiation. UVB is an inherent component of sunlight that crosses the epidermis and reaches the upper dermis, leading to increased oxidative stress, activation of inflammatory response and accumulation of DNA damage among other effects. The increase in UVB radiation on earth due to the destruction of stratospheric ozone poses a major environmental threat to the skin, increasing the risk of damage with long-term consequences, such as photoaging and photocarcinogenesis. Extracts from plants and natural compounds have been historically used in traditional medicine in the form of teas and ointments but the effect of most of these compounds has yet to be verified. Regarding the increasing concern of the population with issues related to quality of life and appearance, the cosmetic market for anti-aging and photoprotective products based on natural compounds is continuously growing, and there is increasing requirement of expansion on research in this field. In this review we summarized the most current and relevant information concerning plant extracts and natural compounds that are able to protect or mitigate the deleterious effects caused by photoaging in different experimental models.

  16. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region

    PubMed Central

    2012-01-01

    Background Worldwide particularly in developing countries, a large proportion of the population is at risk for tropical parasitic diseases. Several medicinal plants are still used traditionally against protozoal infections in Yemen and Saudi Arabia. Thus the present study investigated the in vitro antiprotozoal activity of twenty-five plants collected from the Arabian Peninsula. Methods Plant materials were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC50 < 10 μg/ml (<5 μg/ml for T. brucei) and selectivity index of >4. Results Antiplasmodial activity was found in the extracts of Chrozophora oblongifolia, Ficus ingens, Lavandula dentata and Plectranthus barbatus. Amastigotes of T. cruzi were affected by Grewia erythraea, L. dentata, Tagetes minuta and Vernonia leopoldii. Activity against T. brucei was obtained in G. erythraea, L. dentata, P. barbatus and T. minuta. No relevant activity was found against L. infantum. High levels of cytotoxicity (MRC-5 IC50 < 10 μg/ml) and hence non-specific activities were noted in Cupressus sempervirens, Kanahia laniflora and Kniphofia sumarae. Conclusion The results endorse that medicinal plants can be promising sources of natural products with antiprotozoal activity potential. The results support to some extent the traditional uses of some plants for the treatment of parasitic protozoal diseases. PMID:22520595

  17. Assessment of range planting as a conservation practice

    Treesearch

    Stuart P. Hardegree; Thomas A. Jones; Bruce A. Roundy; Nancy L. Shaw; Thomas A. Monaco

    2016-01-01

    Natural Resource Conservation Service Range Planting - Conservation Practice Standards provide guidelines for making decisions about seedbed preparation, planting methods, plant materials selection, seeding rate, seeding depth, timing of seeding, postplanting management, and weed control. Adoption of these standards is expected to contribute to successful...

  18. From Flowers to Worms: Understanding Nature's Cycle.

    ERIC Educational Resources Information Center

    Texas Child Care, 1995

    1995-01-01

    Gardening helps children learn how plants sprout, grow, bloom, and then wither away, leaving seeds behind. Participating in this natural process allows children to experience the stages of life. Suggested gardening activities include studying dandelions, focusing on culture for garden plant selection, and constructing a worm box or worm terrarium…

  19. Great Basin Native Plant Selection and Increase Project: 2012 progress report

    Treesearch

    Nancy Shaw; Mike Pellant

    2013-01-01

    The Interagency Native Plant Materials Development Program outlined in the 2002 USDA and USDI Report to Congress, USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Selection and Increase Project was...

  20. The use of ECAS in plant protection: a green and efficient antimicrobial approach that primes selected defense genes.

    PubMed

    Zarattini, Marco; De Bastiani, Morena; Bernacchia, Giovanni; Ferro, Sergio; De Battisti, Achille

    2015-11-01

    The use of highly polluting chemicals for plant and crop protection is one of the components of the negative environmental impact of agricultural activities. In the present paper, an environmentally friendly alternative to pesticide application has been studied, based on the so-called electrochemically activated solutions (ECAS). Experiments have been carried out, by applying ECAS having different contents of active ingredients, on tobacco plants at a laboratory scale and on apple trees at fruit garden scale. The results, accumulated during a couple of years, have shown that properly selected dilute solutions of chlorides, once activated by an electrochemical treatment, exhibit a very effective protecting action of plants, irrespective of their nature. Extension of the research has shown that the observed effect is the result of two distinct factors: the expected anti-microbial action of the electrochemically synthesized oxidants, and an unexpected priming of immune plant defenses, which is clearly due to the treatment with ECAS. Interestingly, the repetition of ECAS application triggers an even stronger activation of defense genes. No oxidative damages, due to the use of the activated solutions, could be detected.

  1. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints.

    PubMed

    Proudhon, D; Wei, J; Briat, J; Theil, E C

    1996-03-01

    Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may

  2. Natural selection on thermal preference, critical thermal maxima and locomotor performance.

    PubMed

    Gilbert, Anthony L; Miles, Donald B

    2017-08-16

    Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments. © 2017 The Author(s).

  3. Environmental Status of the Lake Michigan Region Volume 11. Natural Areas of the Lake Michigan Drainage Basin and Endangered or Threatened Plant and Animal Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, Forest; Lindsley, Diane

    1977-09-01

    The accelerating encroachment of human activity on the natural landscape has made many citizens appreciate the need to save representative biotic communities before urbanization and technologically induced change eliminate such communities. Active programs in natural-area preservation a.re now in progress in the four basin states; these programs have strong public support and legislative mandate. Local, state, and federal agencies and private individuals have taken an active interest in protecting select areas as samples of the biotic communities and natural features of the Basin. Most natural areas described in this report have been dedicated or reserved in some fashion. Other areasmore » are being added by the basin states each year. The maintenance of natural communities is closely linked to the preservation of endangered and threatened species of plants and animals which would cease to survive as isolated populations. Under federal regulations, certain plants and animals are listed as endange~ ed or threatened in the Basin. As individual state lists are prepared and investigations proceed, it is probable that many more threatened species will be found.« less

  4. Environmental status of the Lake Michigan region. Volume II. Natural areas of the Lake Michigan drainage basin and endangered or threatened plant and animal species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stearns, F.; Lindsley, D.

    1977-09-01

    The accelerating encroachment of human activity on the natural landscape has made many citizens appreciate the need to save representative biotic communities before urbanization and technologically induced change eliminate such communities. Active programs in natural-area preservation are now in progress in the four basin states; these programs have strong public support and legislative mandate. Local, state, and federal agencies and private individuals have taken an active interest in protecting select areas as samples of the biotic communities and natural features of the Basin. Most natural areas described in this report have been dedicated or reserved in some fashion. Other areasmore » are being added by the basin states each year. The maintenance of natural communities is closely linked to the preservation of endangered and threatened species of plants and animals which would cease to survive as isolated populations. Under federal regulations, certain plants and animals are listed as endangered or threatened in the Basin. As individual state lists are prepared and investigations proceed, it is probable that many more threatened species will be found.« less

  5. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.).

    PubMed

    Bahri, Bochra A; Daverdin, Guillaume; Xu, Xiangyang; Cheng, Jan-Fang; Barry, Kerrie W; Brummer, E Charles; Devos, Katrien M

    2018-06-14

    Advances in genomic technologies have expanded our ability to accurately and exhaustively detect natural genomic variants that can be applied in crop improvement and to increase our knowledge of plant evolution and adaptation. Switchgrass (Panicum virgatum L.), an allotetraploid (2n = 4× = 36) perennial C4 grass (Poaceae family) native to North America and a feedstock crop for cellulosic biofuel production, has a large potential for genetic improvement due to its high genotypic and phenotypic variation. In this study, we analyzed single nucleotide polymorphism (SNP) variation in 372 switchgrass genotypes belonging to 36 accessions for 12 genes putatively involved in biomass production to investigate signatures of selection that could have led to ecotype differentiation and to population adaptation to geographic zones. A total of 11,682 SNPs were mined from ~ 15 Gb of sequence data, out of which 251 SNPs were retained after filtering. Population structure analysis largely grouped upland accessions into one subpopulation and lowland accessions into two additional subpopulations. The most frequent SNPs were in homozygous state within accessions. Sixty percent of the exonic SNPs were non-synonymous and, of these, 45% led to non-conservative amino acid changes. The non-conservative SNPs were largely in linkage disequilibrium with one haplotype being predominantly present in upland accessions while the other haplotype was commonly present in lowland accessions. Tajima's test of neutrality indicated that PHYB, a gene involved in photoperiod response, was under positive selection in the switchgrass population. PHYB carried a SNP leading to a non-conservative amino acid change in the PAS domain, a region that acts as a sensor for light and oxygen in signal transduction. Several non-conservative SNPs in genes potentially involved in plant architecture and adaptation have been identified and led to population structure and genetic differentiation of ecotypes in

  6. Improving management of nonnative invasive plants in wilderness and other natural areas

    Treesearch

    John M. Randall

    2000-01-01

    Nonnative invasive plants invade wilderness and other natural areas throughout North America and invasive organisms as a group are now considered the second worst threat to biodiversity, behind only habitat loss and fragmentation. In the past 10-20 years there have been upsurges in interest in the ecology of plant invasions among researchers and in concern about how to...

  7. Side Streams of Plant Food Processing As a Source of Valuable Compounds: Selected Examples.

    PubMed

    Schieber, Andreas

    2017-02-28

    Industrial processing of plant-derived raw materials generates enormous amounts of by-products. On one hand, these by-products constitute a serious disposal issue because they often emerge seasonally and are prone to microbial decay. On the other hand, they are an abundant source of valuable compounds, in particular secondary plant metabolites and cell wall materials, which may be recovered and used to functionalize foods and replace synthetic additives with ingredients of natural origin. This review covers 150 references and presents select studies performed between 2001 and 2016 on the recovery, characterization, and application of valuable constituents from grape pomace, apple pomace, potato peels, tomato pomace, carrot pomace, onion peels, by-products of citrus, mango, banana, and pineapple processing, side streams of olive oil production, and cereal by-products. The criteria used were economic importance, amounts generated, relevance of side streams as a source of valuable compounds, and reviews already published. Despite a plethora of studies carried out on the utilization of side streams, relatively few processes have yet found industrial application.

  8. Natural selection on immune defense: A field experiment.

    PubMed

    Langeloh, Laura; Behrmann-Godel, Jasminca; Seppälä, Otto

    2017-02-01

    Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. Genetic variation in plant volatile emission does not result in differential attraction of natural enemies in the field.

    PubMed

    Wason, Elizabeth L; Hunter, Mark D

    2014-02-01

    Volatile organic chemical (VOC) emission by plants may serve as an adaptive plant defense by attracting the natural enemies of herbivores. For plant VOC emission to evolve as an adaptive defense, plants must show genetic variability for the trait. To date, such variability has been investigated primarily in agricultural systems, yet relatively little is known about genetic variation in VOCs emitted by natural populations of native plants. Here, we investigate intraspecific variation in constitutive and herbivore-induced plant VOC emission using the native common milkweed plant (Asclepias syriaca) and its monarch caterpillar herbivore (Danaus plexippus) in complementary field and common garden greenhouse experiments. In addition, we used a common garden field experiment to gauge natural enemy attraction to milkweed VOCs induced by monarch damage. We found evidence of genetic variation in the total constitutive and induced concentrations of VOCs and the composition of VOC blends emitted by milkweed plants. However, all milkweed genotypes responded similarly to induction by monarchs in terms of their relative change in VOC concentration and blend. Natural enemies attacked decoy caterpillars more frequently on damaged than on undamaged milkweed, and natural enemy visitation was associated with higher total VOC concentrations and with VOC blend. Thus, we present evidence that induced VOCs emitted by milkweed may function as a defense against herbivores. However, plant genotypes were equally attractive to natural enemies. Although milkweed genotypes diverge phenotypically in their VOC concentrations and blends, they converge into similar phenotypes with regard to magnitude of induction and enemy attraction.

  10. Experimental Infection of Plants with an Herbivore-Associated Bacterial Endosymbiont Influences Herbivore Host Selection Behavior

    PubMed Central

    Davis, Thomas Seth; Horton, David R.; Munyaneza, Joseph E.; Landolt, Peter J.

    2012-01-01

    Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with “Candidatus Liberibacter solanacearum” or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance. PMID:23166641

  11. Darwin at Orchis Bank: Selection after the Origin.

    PubMed

    Tabb, Kathryn

    2016-02-01

    Darwin's first publication after the Origin of Species was a volume on orchids that expanded on the theory of adaptation through natural selection introduced in his opus. Here I argue that On the Various Contrivances by which British and Foreign Orchids are Fertilised by Insects (1862) is not merely an empirical confirmation of his theory. In response to immediate criticisms of his metaphor of natural selection, Darwin uses Orchids to present adaptation as the result of innumerable natural laws, rather than discrete acts analogous to conscious choices. The means of selection among polliniferous plants cannot be neatly classed under the Origin's categories of artificial, natural, or sexual selection. Along with Darwin's exploration of sexual selection in his later works, Orchids serves to undo the restrictive metaphor so firmly established by the Origin and to win over those of Darwin's contemporaries who were committed advocates of natural law but suspicious of evolution by natural selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In silico approaches and proportional odds model towards identifying selective ADAM17 inhibitors from anti-inflammatory natural molecules.

    PubMed

    Borah, Pallab Kumar; Chakraborty, Sourav; Jha, Anupam N; Rajkhowa, Sanchaita; Duary, Raj Kumar

    2016-11-01

    ADAM metallopeptidase domain 17 (ADAM17) is an attractive target for the development of new anti-inflammatory drugs. We aimed to identify selective inhibitors of ADAM17 against matrix metalloproteinase enzymes (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, and MMP-16) which have substantial structural similarity. Target proteins were docked with 29 anti-inflammatory natural molecule ligands and a known selective inhibitor IK682. The ligands were screened based on Lipinski rules, interaction with the ADAM17 active site cavity, and then ranked using the proportional odds model multinomial logistic regression. Silymarin was the most selective inhibitor of ADAM17 exhibiting H-bonding with Glu 406, Gly 349, Glu 398, Asn 447, Tyr 433, and Lys 432. Molecular dynamics simulations were carried out for 10ns. The root mean square deviation (RMSD), root mean squared fluctuations (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and H-bonding indicated the induced metastability. A comparison of the principal component analysis revealed that the silymarin complex also explored lesser region compared to IK682 complex. A control study on ADAM17 protein (2OI0) is included. These observations present silymarin (widely present in plants such as milk thistle (Silybum maianum), wild artichokes (Cynara cardunculus), turmeric (Curcuma longa) roots, coriander (Coriandrum sativum) seeds, etc.) as a promising natural template for development of ADAM17 selective drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Serotonin, behavior, and natural selection in New World monkeys.

    PubMed

    Reales, Guillermo; Paixão-Côrtes, Vanessa R; Cybis, Gabriela B; Gonçalves, Gislene L; Pissinatti, Alcides; Salzano, Francisco M; Bortolini, Maria CÁtira

    2018-06-26

    Traits that undergo massive natural selection pressure, with multiple events of positive selection, are hard to find. Social behaviour, in social animals, is crucial for survival, and genetic networks involved in behaviour, such as those of serotonin (5-HT) and other neurotransmitters, must be the target of natural selection. Here, we used molecular analyses to search for signals of positive selection in the 5-HT system and found such signals in the M3-M4 intracellular domain of the 5-HT3A serotonin receptor subunit (HTR3A) in primates. We detected four amino acid sites with signs of putatively positive selection (398, 403, 432 and 416); the first three showed indications of being selected in New World monkeys (NWM, Platyrrhini), specifically in the Callitrichinae branch. Additionally, we searched for associations of these amino acid variants with social behavioural traits (i.e. sex-biased dispersal, dominance and social monogamy) using classical and Bayesian methods, and found statistically significant associations for unbiased sex dispersal (398L and 416S), unbiased sex dominance (416S) and social monogamy (416S), as well as significant positive correlation between female dispersal and 403G. Furthermore, we found putatively functional protein motifs determined by three selected sites, of which we highlight a ligand motif to GSK3 in the 416S variant, appearing only in Platyrrhini. 5-HT, 5-HT3A receptor and GSK3 are part of a network that participates in neurodevelopment and regulates behaviour, among other functions. We suggest that these genetic variations, together with those found in other neurotransmitter systems, must contribute to adaptive behaviours and consequently to fitness in NWMs. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  14. Antagonistic responses to natural and sexual selection and the sex-specific evolution of cuticular hydrocarbons in Drosophila simulans.

    PubMed

    Sharma, Manmohan D; Hunt, John; Hosken, David J

    2012-03-01

    Natural and sexual selection are classically thought to oppose one another, and although there is evidence for this, direct experimental demonstrations of this antagonism are largely lacking. Here, we assessed the effects of sexual and natural selection on the evolution of cuticular hydrocarbons (CHCs), a character subject to both modes of selection, in Drosophila simulans. Natural selection and sexual selection were manipulated in a fully factorial design, and after 27 generations of experimental evolution, the responses of male and female CHCs were assessed. The effects of natural and sexual selection differed greatly across the sexes. The responses of female CHCs were generally small, but CHCs evolved predominantly in the direction of natural selection. For males, profiles evolved via sexual and natural selection, as well as through the interaction between the two, with some male CHC components only evolving in the direction of natural selection when sexual selection was relaxed. These results indicate sex-specific responses to selection, and that sexual and natural selection act antagonistically for at least some combinations of CHCs. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  15. Perspectives for genomic selection applications and research in plants

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) has created a lot of excitement and expectations in the animal and plant breeding research communities. In this review, we briefly describe how genomic prediction can be integrated into breeding efforts and point out achievements and areas where more research is needed. GS pro...

  16. Sargassum as a Natural Solution to Enhance Dune Plant Growth

    NASA Astrophysics Data System (ADS)

    Williams, Amy; Feagin, Rusty

    2010-11-01

    Many beach management practices focus on creating an attractive environment for tourists, but can detrimentally affect long-term dune integrity. One such practice is mechanical beach raking in which the wrack line is removed from the beach front. In Texas, Sargassum fluitans and natans, types of brown alga, are the main components of wrack and may provide a subsidy to the ecosystem. In this study, we used greenhouse studies to test the hypothesis that the addition of sargassum can increase soil nutrients and produce increased growth in dune plants. We also conducted an analysis of the nutrients in the sargassum to determine the mechanisms responsible for any growth enhancement. Panicum amarum showed significant enhancement of growth with the addition of sargassum, and while Helianthus debilis, Ipomoea stolonifera, Sporobolus virginicus, and Uniola paniculata responded slightly differently to the specific treatments, none were impaired by the addition of sargassum. In general, plants seemed to respond well to unwashed sargassum and multiple additions of sargassum, indicating that plants may have adapted to capitalize on the subsidy in its natural state directly from the ocean. For coastal managers, the use of sargassum as a fertilizer could be a positive, natural, and efficient method of dealing with the accumulation of wrack on the beach.

  17. Natural selection on thermal performance in a novel thermal environment

    PubMed Central

    Logan, Michael L.; Cox, Robert M.; Calsbeek, Ryan

    2014-01-01

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming. PMID:25225361

  18. Natural selection on thermal performance in a novel thermal environment.

    PubMed

    Logan, Michael L; Cox, Robert M; Calsbeek, Ryan

    2014-09-30

    Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming.

  19. Long-term investigation of constructed wetland wastewater treatment and reuse: Selection of adapted plant species for metaremediation.

    PubMed

    Saggaï, Mohamed Mounir; Ainouche, Abdelkader; Nelson, Mark; Cattin, Florence; El Amrani, Abdelhak

    2017-10-01

    A highly diverse plant community in a constructed wetland was used to investigate an ecological treatment system for human wastewater in an arid climate. The eight-year operation of the system has allowed the identification of a highly adapted and effective plant consortium that is convenient for plant-assisted metaremediation of wastewater. This constructed wetland pilot station demonstrated effective performance over this extended period. Originally, there were twenty-five plant species. However, because of environmental constraints and pressure from interspecific competition, only seven species persisted. Interestingly, the molecular phylogenetic analyses and an investigation of the photosynthetic physiology showed that the naturally selected plants are predominately monocot species with C4 or C4-like photosynthetic pathways. Despite the loss of 72% of initially used species in the constructed wetland, the removal efficiencies of BOD, COD, TSS, total phosphorus, ammonia and nitrate were maintained at high levels, approximately 90%, 80%, 94%, 60% and 50%, respectively. Concomitantly, the microbiological water tests showed an extremely high reduction of total coliform bacteria and streptococci, about 99%, even without a specific disinfection step. Hence, the constructed wetland system produced water of high quality that can be used for agricultural purposes. In the present investigation, we provide a comprehensive set of plant species that might be used for long-term and large-scale wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Birth-order differences can drive natural selection on aging.

    PubMed

    Gillespie, Duncan O S; Trotter, Meredith V; Krishna-Kumar, Siddharth; Tuljapurkar, Shripad D

    2014-03-01

    Senescence-the deterioration of survival and reproductive capacity with increasing age-is generally held to be an evolutionary consequence of the declining strength of natural selection with increasing age. The diversity in rates of aging observed in nature suggests that the rate at which age-specific selection weakens is determined by species-specific ecological factors. We propose that, in iteroparous species, relationships between parental age, offspring birth order, and environment may affect selection on senescence. Later-born siblings have, on average, older parents than do first borns. Offspring born to older parents may experience different environments in terms of family support or inherited resources, factors often mediated by competition from siblings. Thus, age-specific selection on parents may change if the environment produces birth-order related gradients in reproductive success. We use an age-and-stage structured population model to investigate the impact of sibling environmental inequality on the expected evolution of senescence. We show that accelerated senescence evolves when later-born siblings are likely to experience an environment detrimental to lifetime reproduction. In general, sibling inequality is likely to be of particular importance for the evolution of senescence in species such as humans, where family interactions and resource inheritance have important roles in determining lifetime reproduction. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  1. Nonconsumptive predator-driven mortality causes natural selection on prey.

    PubMed

    Siepielski, Adam M; Wang, Jason; Prince, Garrett

    2014-03-01

    Predators frequently exert natural selection through differential consumption of their prey. However, predators may also cause prey mortality through nonconsumptive effects, which could cause selection if different prey phenotypes are differentially susceptible to this nonconsumptive mortality. Here we present an experimental test of this hypothesis, which reveals that nonconsumptive mortality imposed by predatory dragonflies causes selection on their damselfly prey favoring increased activity levels. These results are consistent with other studies of predator-driven selection, however, they reveal that consumption alone is not the only mechanism by which predators can exert selection on prey. Uncovering this mechanism also suggests that prey defensive traits may represent adaptations to not only avoid being consumed, but also for dealing with other sources of mortality caused by predators. Demonstrating selection through both consumptive and nonconsumptive predator mortality provides us with insight into the diverse effects of predators as an evolutionary force. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Productivity as related to diversity and age in planted versus natural forests

    Treesearch

    Qinfeng Guo; Hai Ren

    2014-01-01

    Little is known about the performance of plantations relative to natural forests of the same climate zone and age. China has more plantations than any other country as a consequence of massive afforestation efforts.We use data from China to comparatively examine tree biomass and productivity of planted and natural stands in relation to climate zone, latitude, elevation...

  3. Frugivore-Mediated Selection in A Habitat Transformation Scenario

    PubMed Central

    Fontúrbel, Francisco E.; Medel, Rodrigo

    2017-01-01

    Plant-animal interactions are strong drivers of phenotypic evolution. However, the extent to which anthropogenic habitat transformation creates new selective scenarios for plant-animal interactions is a little explored subject. We examined the effects of native forest replacement by exotic Eucalyptus trees on the frugivore-mediated phenotypic selection coefficients imposed by the relict marsupial Dromiciops gliroides upon traits involved in frugivore attraction and germination success of the mistletoe Tristerix corymbosus (Loranthaceae). We found significant gradients for seed weight and sugar content along the native - transformed habitat gradient. While selection for larger seed weight was more relevant in native habitats, fruits with intermediate sugar content were promoted in transformed habitats. The spatial habitat structure and microclimate features such as the degree of sunlight received influenced the natural selection processes, as they correlated with the phenotypic traits analysed. The response of this plant-frugivore interaction to human disturbance seemed to be context-dependent, in which extremely transformed habitats would offer new opportunities for natural selection on dispersal-related traits. Even in recent transformation events like this, human disturbance acts as a strong contemporary evolution driver. PMID:28349942

  4. Epigenetic Variation in Mangrove Plants Occurring in Contrasting Natural Environment

    PubMed Central

    Lira-Medeiros, Catarina Fonseca; Parisod, Christian; Fernandes, Ricardo Avancini; Mata, Camila Souza; Cardoso, Monica Aires; Ferreira, Paulo Cavalcanti Gomes

    2010-01-01

    Background Epigenetic modifications, such as cytosine methylation, are inherited in plant species and may occur in response to biotic or abiotic stress, affecting gene expression without changing genome sequence. Laguncularia racemosa, a mangrove species, occurs in naturally contrasting habitats where it is subjected daily to salinity and nutrient variations leading to morphological differences. This work aims at unraveling how CpG-methylation variation is distributed among individuals from two nearby habitats, at a riverside (RS) or near a salt marsh (SM), with different environmental pressures and how this variation is correlated with the observed morphological variation. Principal Findings Significant differences were observed in morphological traits such as tree height, tree diameter, leaf width and leaf area between plants from RS and SM locations, resulting in smaller plants and smaller leaf size in SM plants. Methyl-Sensitive Amplified Polymorphism (MSAP) was used to assess genetic and epigenetic (CpG-methylation) variation in L. racemosa genomes from these populations. SM plants were hypomethylated (14.6% of loci had methylated samples) in comparison to RS (32.1% of loci had methylated samples). Within-population diversity was significantly greater for epigenetic than genetic data in both locations, but SM also had less epigenetic diversity than RS. Frequency-based (GST) and multivariate (βST) methods that estimate population structure showed significantly greater differentiation among locations for epigenetic than genetic data. Co-Inertia analysis, exploring jointly the genetic and epigenetic data, showed that individuals with similar genetic profiles presented divergent epigenetic profiles that were characteristic of the population in a particular environment, suggesting that CpG-methylation changes may be associated with environmental heterogeneity. Conclusions In spite of significant morphological dissimilarities, individuals of L. racemosa from salt

  5. The basic science and mathematics of random mutation and natural selection.

    PubMed

    Kleinman, Alan

    2014-12-20

    The mutation and natural selection phenomenon can and often does cause the failure of antimicrobial, herbicidal, pesticide and cancer treatments selection pressures. This phenomenon operates in a mathematically predictable behavior, which when understood leads to approaches to reduce and prevent the failure of the use of these selection pressures. The mathematical behavior of mutation and selection is derived using the principles given by probability theory. The derivation of the equations describing the mutation and selection phenomenon is carried out in the context of an empirical example. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Pollen-specific, but not sperm-specific, genes show stronger purifying selection and higher rates of positive selection than sporophytic genes in Capsella grandiflora.

    PubMed

    Arunkumar, Ramesh; Josephs, Emily B; Williamson, Robert J; Wright, Stephen I

    2013-11-01

    Selection on the gametophyte can be a major force shaping plant genomes as 7-11% of genes are expressed only in that phase and 60% of genes are expressed in both the gametophytic and sporophytic phases. The efficacy of selection on gametophytic tissues is likely to be influenced by sexual selection acting on male and female functions of hermaphroditic plants. Moreover, the haploid nature of the gametophytic phase allows selection to be efficient in removing recessive deleterious mutations and fixing recessive beneficial mutations. To assess the importance of gametophytic selection, we compared the strength of purifying selection and extent of positive selection on gametophyte- and sporophyte-specific genes in the highly outcrossing plant Capsella grandiflora. We found that pollen-exclusive genes had a larger fraction of sites under strong purifying selection, a greater proportion of adaptive substitutions, and faster protein evolution compared with seedling-exclusive genes. In contrast, sperm cell-exclusive genes had a smaller fraction of sites under strong purifying selection, a lower proportion of adaptive substitutions, and slower protein evolution compared with seedling-exclusive genes. Observations of strong selection acting on pollen-expressed genes are likely explained by sexual selection resulting from pollen competition aided by the haploid nature of that tissue. The relaxation of selection in sperm might be due to the reduced influence of intrasexual competition, but reduced gene expression may also be playing an important role.

  7. Image statistics underlying natural texture selectivity of neurons in macaque V4

    PubMed Central

    Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko

    2015-01-01

    Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362

  8. Interaction intensity and pollinator-mediated selection.

    PubMed

    Trunschke, Judith; Sletvold, Nina; Ågren, Jon

    2017-05-01

    In animal-pollinated plants, the opportunity for selection and the strength of pollinator-mediated selection are expected to increase with the degree of pollen limitation. However, whether differences in pollen limitation can explain variation in pollinator-mediated and net selection among animal-pollinated species is poorly understood. In the present study, we quantified pollen limitation, variance in relative fitness and pollinator-mediated selection on five traits important for pollinator attraction (flowering start, plant height, flower number, flower size) and pollination efficiency (spur length) in natural populations of 12 orchid species. Pollinator-mediated selection was quantified by subtracting estimates of selection gradients for plants receiving supplemental hand-pollination from estimates obtained for open-pollinated control plants. Mean pollen limitation ranged from zero to 0.96. Opportunity for selection, pollinator-mediated selection and net selection were all positively related to pollen limitation, whereas nonpollinator-mediated selection was not. Opportunity for selection varied five-fold, strength of pollinator-mediated selection varied three-fold and net selection varied 1.5-fold among species. Supplemental hand-pollination reduced both opportunity for selection and selection on floral traits. The results show that the intensity of biotic interactions is an important determinant of the selection regime, and indicate that the potential for pollinator-mediated selection and divergence in floral traits is particularly high in species that are strongly pollen-limited. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.

    PubMed

    Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko

    2017-09-01

    Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.

  10. Beyond theories of plant invasions: Lessons from natural landscapes

    USGS Publications Warehouse

    Stohlgren, Thomas J.

    2002-01-01

    There are a growing number of contrasting theories about plant invasions, but most are only weakly supported by small-scale field experiments, observational studies, and mathematical models. Among the most contentious theories is that species-rich habitats should be less vulnerable to plant invasion than species-poor sites, stemming from earlier theories that competition is a major force in structuring plant communities. Early ecologists such as Charles Darwin (1859) and Charles Elton (1958) suggested that a lack of intense interspecific competition on islands made these low-diversity habitats vulnerable to invasion. Small-scale field experiments have supported and contradicted this theory, as have various mathematical models. In contrast, many large-scale observational studies and detailed vegetation surveys in continental areas often report that species-rich areas are more heavily invaded than species-poor areas, but there are exceptions here as well. In this article, I show how these seemingly contrasting patterns converge once appropriate spatial and temporal scales are considered in complex natural environments. I suggest ways in which small-scale experiments, mathematical models, and large- scale observational studies can be improved and better integrated to advance a theoretically based understanding of plant invasions.

  11. Natural genetic variation for morphological and molecular determinants of plant growth and yield.

    PubMed

    Nunes-Nesi, Adriano; Nascimento, Vitor de Laia; de Oliveira Silva, Franklin Magnum; Zsögön, Agustin; Araújo, Wagner L; Sulpice, Ronan

    2016-05-01

    The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Engineering of new-to-nature halogenated indigo precursors in plants.

    PubMed

    Fräbel, Sabine; Wagner, Bastian; Krischke, Markus; Schmidts, Volker; Thiele, Christina M; Staniek, Agata; Warzecha, Heribert

    2018-03-01

    Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study

  13. Genetic progress estimation strategy for upright common bean plants using recurrent selection.

    PubMed

    Pereira, L A; Abreu, A F B; Júnior, I C Vieira; Pires, L P M; Ramalho, M A P

    2017-03-22

    Common bean producers in Brazil tend to grow plants as upright as possible. Because the control of this trait involves a large number of genes, recurrent selection (RS) is the best approach for successful plant improvement. Because plant architecture (PA) is evaluated using scores and usually has high heritability, RS for PA is performed through visual selection in generation S 0 . The aim of the present study was to evaluate selection progress and investigate whether this progress varies with the number of selected progenies or the generation evaluated. In addition, the effect of RS for the upright (PA) trait on progeny grain yield (GY) was investigated. Data of progenies S 0:3 and S 0:4 of the fifth, eighth, and twelfth cycles were used. A combined analysis of variance was performed using the adjusted means of the 47 best progenies from each generation and cycle, using two control cultivars as reference. A joint analysis of the two generations used during the evaluation of progenies for the different cycles was also performed. The genetic progress (GP) was estimated by fitting a linear regression equation to the relationship between the adjusted mean of each cycle and the number of cycles. We found that RS was efficient and the estimated GP of the evaluated progenies was 4.5%. Based on the GY heritability estimates, in more advanced generation selection for GY can be successfully performed on progenies. Thus, the selection already done for PA in F 2 could be associated to the most productive progenies.

  14. Medicinal plants and natural products in amelioration of arsenic toxicity: a short review.

    PubMed

    Bhattacharya, Sanjib

    2017-12-01

    Chronic arsenic toxicity (arsenicosis) is considered a serious public health menace worldwide, as there is no specific, safe, and efficacious therapeutic management of arsenicosis. To collate the studies on medicinal plants and natural products with arsenic toxicity ameliorative effect, active pre-clinically and/or clinically. Literature survey was carried out by using Google, Scholar Google and Pub-Med. Only the scientific journal articles found on the internet for last two decades were considered. Minerals and semi-synthetic or synthetic analogs of natural products were excluded. Literature study revealed that 34 medicinal plants and 14 natural products exhibited significant protection from arsenic toxicity, mostly in preclinical trials and a few in clinical studies. This research could lead to development of a potentially useful agent in clinical management of arsenicosis in humans.

  15. Gitksan medicinal plants-cultural choice and efficacy

    PubMed Central

    Johnson, Leslie Main

    2006-01-01

    Background The use of plants for healing by any cultural group is integrally related to local concepts of the nature of disease, the nature of plants, and the world view of the culture. The physical and chemical properties of the plants themselves also bear on their selection by people for medicines, as does the array of plants available for people to choose from. I examine use of medicinal plants from a "biobehavioral" perspective to illuminate cultural selection of plants used for medicine by the Gitksan of northwestern British Columbia, Canada. Methods Consultant consensus, "intercultural consensus", independent use of the same plants by other cultural groups, and phytochemistry and bioassay results from the literature, were employed in analysis of probable empirical efficacy of plant uses. Results 70% of 37 Gitksan medicinal plants were used similarly by other cultures where direct diffusion is not known to have occurred; eleven plants, including the eight most frequently mentioned medicinal plants, also show active phytochemicals or bioassays indicating probable physiologically based therapeutic effects. Conclusion Analysis of intercultural consensus revealed that the majority of cultures in the British Columbia region within the plant ranges use the same plants, or closely related species, in similar ways. The rigor of this analysis is effected by the lack of consistent data on all taxa of interest for all cultures within the region. PMID:16790066

  16. Using theories of sexual selection and sexual conflict to improve our understanding of plant ecology and evolution

    PubMed Central

    Lankinen, Åsa; Karlsson Green, Kristina

    2015-01-01

    Today it is accepted that the theories of sexual selection and sexual conflict are general and can be applied to both animals and plants. However, potentially due to a controversial history, plant studies investigating sexual selection and sexual conflict are relatively rare. Moreover, these theories and concepts are seldom implemented in research fields investigating related aspects of plant ecology and evolution. Even though these theories are complex, and can be difficult to study, we suggest that several fields in plant biology would benefit from incorporating and testing the impact of selection pressures generated by sexual selection and sexual conflict. Here we give examples of three fields where we believe such incorporation would be particularly fruitful, including (i) mechanisms of pollen–pistil interactions, (ii) mating-system evolution in hermaphrodites and (iii) plant immune responses to pests and pathogens. PMID:25613227

  17. The Unit of Natural Selection: Groups, Families, Individuals, or Genes?

    ERIC Educational Resources Information Center

    Reiss, Michael J.

    1985-01-01

    Offers perspectives on natural selection and the phenomenon of altruism. Presents evidence for and against the theories that evolution acts essentially on genes, on individuals, on kin, or on larger groups. (ML)

  18. Natural Selection Is a Sorting Process: What Does that Mean?

    ERIC Educational Resources Information Center

    Price, Rebecca M.

    2013-01-01

    To learn why natural selection acts only on existing variation, students categorize processes as either creative or sorting. This activity helps students confront the misconception that adaptations evolve because species need them.

  19. Selected natural and fallout radionuclides in plant foods around the Kudankulam Nuclear Power Project, India.

    PubMed

    Ross, E Mahiban; Raj, Y Lenin; Wesley, S Godwin; Rajan, M P

    2013-01-01

    The activity concentrations of certain radionuclides were quantified in some plant foods cultivated around Kudankulam, where a mega-nuclear power plant is being established. The activity concentrations were found more in the 'pulses' group and were the lowest in 'other vegetable' category. The annual effective dose was computed based on the activity concentration of radionuclides and it was found to be higher due to the consumption of cereals and pulses. Other vegetables, cereals, pulses and nuts recorded high transfer factors for the radionuclide (228)Ra. Fruits, leafy vegetables, tubers and roots, and palm embryo registered high transfer factors for (226)Ra. Group-wise activity concentration, radiation dose to the public and soil-plant-to-transfer factor are discussed in detail. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators.

    PubMed

    Gómez, José M; Bosch, Jordi; Perfectti, Francisco; Fernández, J D; Abdelaziz, Mohamed; Camacho, J P M

    2008-10-07

    An adaptive role of corolla shape has been often asserted without an empirical demonstration of how natural selection acts on this trait. In generalist plants, in which flowers are visited by diverse pollinator fauna that commonly vary spatially, detecting pollinator-mediated selection on corolla shape is even more difficult. In this study, we explore the mechanisms promoting selection on corolla shape in the generalist crucifer Erysimum mediohispanicum Polatschek (Brassicaceae). We found that the main pollinators of E. mediohispanicum (large bees, small bees and bee flies) discriminate between different corolla shapes when offered artificial flowers without reward. Importantly, different pollinators prefer different shapes: bees prefer flowers with narrow petals, whereas bee flies prefer flowers with rounded overlapping petals. We also found that flowers with narrow petals (those preferred by bees) produce both more pollen and nectar than those with rounded petals. Finally, different plant populations were visited by different faunas. As a result, we found spatial variation in the selection acting on corolla shape. Selection favoured flowers with narrow petals in the populations where large or small bees are the most abundant pollinator groups. Our study suggests that pollinators, by preferring flowers with high reward, exert strong selection on the E. mediohispanicum corolla shape. The geographical variation in the pollinator-mediated selection on E. mediohispanicum corolla shape suggests that phenotypic evolution and diversification can occur in this complex floral trait even without specialization.

  1. Natural gums of plant origin as edible coatings for food industry applications.

    PubMed

    Saha, Anuradha; Tyagi, Shvetambri; Gupta, Rajinder K; Tyagi, Yogesh K

    2017-12-01

    Natural plant-based gums and their derivatives are widely utilized in food industries, however, their applications as edible coatings to extend fresh fruits and vegetable shelf-life has been explored recently. These natural polymeric polysaccharides have many advantages as compared to synthetic polymers, because they are biodegradable, nontoxic, economical and easily available in the environment. Natural gums can also be semi synthetically modified to produce derivatives, which can easily compete with the synthetic preservatives available on the food market. In this review, the recent developments in the use of natural gums and their derivatives as edible coatings have been explored and discussed.

  2. Global genetic differentiation of complex traits shaped by natural selection in humans.

    PubMed

    Guo, Jing; Wu, Yang; Zhu, Zhihong; Zheng, Zhili; Trzaskowski, Maciej; Zeng, Jian; Robinson, Matthew R; Visscher, Peter M; Yang, Jian

    2018-05-14

    There are mean differences in complex traits among global human populations. We hypothesize that part of the phenotypic differentiation is due to natural selection. To address this hypothesis, we assess the differentiation in allele frequencies of trait-associated SNPs among African, Eastern Asian, and European populations for ten complex traits using data of large sample size (up to ~405,000). We show that SNPs associated with height ([Formula: see text]), waist-to-hip ratio ([Formula: see text]), and schizophrenia ([Formula: see text]) are significantly more differentiated among populations than matched "control" SNPs, suggesting that these trait-associated SNPs have undergone natural selection. We further find that SNPs associated with height ([Formula: see text]) and schizophrenia ([Formula: see text]) show significantly higher variance in linkage disequilibrium (LD) scores across populations than control SNPs. Our results support the hypothesis that natural selection has shaped the genetic differentiation of complex traits, such as height and schizophrenia, among worldwide populations.

  3. The Emergence of Physiology and Form: Natural Selection Revisited

    PubMed Central

    Torday, John S.

    2016-01-01

    Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution. PMID:27534726

  4. Student concepts of Natural Selection from a resource-based perspective

    NASA Astrophysics Data System (ADS)

    Benjamin, Scott Shawn

    The past two decades have produced a substantial amount of research about the teaching and learning of evolution; however, recent research often lacks a theoretical foundation. Application of a new theoretical framework could help fill the void and improve research about student concepts of evolution. This study seeks to show that a resource-based framework (Hammer et al., 2005) can improve research into student concepts of natural selection. Concepts of natural selection from urban community college students were assessed via qualitative (interviews, written open-response questions, and write/think aloud procedures) and quantitative methods (coded open response analysis, Concept Inventory for Natural Selection (CINS)(Anderson, Fisher, & Norman, 2002). Results showed that students demonstrate four important aspects of resource-based framework: the multi-faceted construction of concepts, context sensitivity/ concept flexibility, at-the-moment activation of resources, and perceptual frames. In open response assessment, evolutionary-gain responses produced significantly different responses than evolutionary-loss questions with: 1) significantly more correct answers for the gain than loss question (Wilcoxon signed rank test, z = -3.68, p=0.0002); 2) more Lamarckian responses to loss than the gain question (Fisher exact, p=0.0039); and significantly different distributions in expanded need vs basic need answers (Fishers exact, p = 0.02). Results from CINS scores showed significant differences in post activity scores between students that held different naive concepts associated with origin of variation, origin of species, differential reproduction, and limited survival suggesting that some naive ideas facilitate learning. Outcomes also suggest that an everyday or self-experience typological perceptual frame is an underlying source of many incorrect ideas about evolution. Interview and write/think aloud assessments propose four process resources applied by students as

  5. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    PubMed

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.

  6. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study.

    PubMed

    McCleary, Barry V; McNally, Marian; Rossiter, Patricia

    2002-01-01

    Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high.

  7. Using Different Examples of Natural Selection When Teaching Biology.

    ERIC Educational Resources Information Center

    Perry, Robert T.

    1993-01-01

    Describes the following examples of natural selection for use in science instruction: sickle-cell anemia and human beings, clogged crabs, the rounding of the human head, shell color in land snails, pollinator behavior and flower color, copper tolerance in a grass, lizards and quick change, and Darwin's finches. (PR)

  8. The Living Dead: Transformative Experiences in Modelling Natural Selection

    ERIC Educational Resources Information Center

    Petersen, Morten Rask

    2017-01-01

    This study considers how students change their coherent conceptual understanding of natural selection through a hands-on simulation. The results show that most students change their understanding. In addition, some students also underwent a transformative experience and used their new knowledge in a leisure time activity. These transformative…

  9. Selective herbicide applications for low impact vegetation management of exotic species and enhancement of native plant communities

    Treesearch

    Max Williamson

    1998-01-01

    Selective and specific management for the control of exotic (non-native) plants is necessary for preservation of native plant communities. Managers of federal, state, or county land holdings and parks, wildlife areas, recreation areas, and historic sites are frequently charged with selectively managing the enhancement of desirable or native plant communities. In...

  10. SELECTING AND EVALUATING NATIVE PLANTS FOR REGION-SPECIFIC PHYTOTOXICITY TESTING

    EPA Science Inventory

    In this study, we evaluated methodology to determine risks to terrestrial native plant species from potential herbicide drift, focusing on 1) selection of native species for testing, 2) growth of these species, and 3) variability in herbicide response among native species and com...

  11. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    PubMed

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food preference. We evaluated the effect of postdispersal seed predators on the establishment of invasive, naturalized, and native species within and between adjacent forest and steppe communities of eastern Washington, USA that differ in severity of plant invasion. Seed removal from trays placed within guild-specific exclosures revealed that small mammals were the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus tectorum, Cirsium arvense) were removed significantly less than the seeds of native (Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea cyanus) species. Seed predation limited seedling emergence and establishment in both communities in the absence of competition in a pattern reflecting natural plant abundance: S. cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all species. Seed mass correlated with seed removal rates in the forest and their subsequent effects on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the steppe compared with the forest understory, suggesting the steppe may be more susceptible to invasion. Seed predation alone, however, did not result in significant differences in establishment for any species between these communities, presumably due to similar total small-mammal abundance between communities. Consequently, preferential seed predation by small

  12. Biological and Chemical Aspects of Natural Biflavonoids from Plants: A Brief Review.

    PubMed

    Gontijo, Vanessa Silva; Dos Santos, Marcelo Henrique; Viegas, Claudio

    2017-01-01

    Biflavonoids belong to a subclass of the plant flavonoids family and are limited to several species in the plant kingdom. In the literature, biflavonoids are extensively reported for their pharmacological properties including anti-inflammatory, antioxidant, inhibitory activity against phospholipase A2 (PLA2) and antiprotozoal activity. These activities have been discovered from the small number of biflavonoid structures that have been investigated, although the natural biflavonoids library is likely to be large. In addition, many medicinal properties and traditional use of plants are attributed to the presence of bioflavonoids among their secondary metabolites. Structurally, biflavonoids are polyphenol compounds comprising of two identical or non-identical flavonflavonoid units joined in a symmetrical or unsymmetrical manner through an alkyl or an alkoxy-based linker of varying length. Due to their chemical and biological importance, several bioprospective phytochemical studies and chemical approaches using coupling and molecular rearrangement strategies have been developed to identify and synthesize new bioactive biflavonoids. In this brief review, we present some basic structural aspects for classification and nomenclature of bioflavonoids and a compilation of the literature data published in the last 7 years, concerning the discovery of new natural biflavonoids of plant origin and their pharmacological and biological properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. The Neural Dynamics of Attentional Selection in Natural Scenes.

    PubMed

    Kaiser, Daniel; Oosterhof, Nikolaas N; Peelen, Marius V

    2016-10-12

    The human visual system can only represent a small subset of the many objects present in cluttered scenes at any given time, such that objects compete for representation. Despite these processing limitations, the detection of object categories in cluttered natural scenes is remarkably rapid. How does the brain efficiently select goal-relevant objects from cluttered scenes? In the present study, we used multivariate decoding of magneto-encephalography (MEG) data to track the neural representation of within-scene objects as a function of top-down attentional set. Participants detected categorical targets (cars or people) in natural scenes. The presence of these categories within a scene was decoded from MEG sensor patterns by training linear classifiers on differentiating cars and people in isolation and testing these classifiers on scenes containing one of the two categories. The presence of a specific category in a scene could be reliably decoded from MEG response patterns as early as 160 ms, despite substantial scene clutter and variation in the visual appearance of each category. Strikingly, we find that these early categorical representations fully depend on the match between visual input and top-down attentional set: only objects that matched the current attentional set were processed to the category level within the first 200 ms after scene onset. A sensor-space searchlight analysis revealed that this early attention bias was localized to lateral occipitotemporal cortex, reflecting top-down modulation of visual processing. These results show that attention quickly resolves competition between objects in cluttered natural scenes, allowing for the rapid neural representation of goal-relevant objects. Efficient attentional selection is crucial in many everyday situations. For example, when driving a car, we need to quickly detect obstacles, such as pedestrians crossing the street, while ignoring irrelevant objects. How can humans efficiently perform such tasks

  14. A Conceptual Characterization of Online Videos Explaining Natural Selection

    ERIC Educational Resources Information Center

    Bohlin, Gustav; Göransson, Andreas; Höst, Gunnar E.; Tibell, Lena A. E.

    2017-01-01

    Educational videos on the Internet comprise a vast and highly diverse source of information. Online search engines facilitate access to numerous videos claiming to explain natural selection, but little is known about the degree to which the video content match key evolutionary content identified as important in evolution education research. In…

  15. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota

    PubMed Central

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-01-01

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S′, H′, and D′) based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies. PMID:29479006

  16. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota.

    PubMed

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-03-29

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S', H', and D') based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  17. The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.

    PubMed

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2014-01-01

    Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.

  18. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo

    PubMed Central

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-01-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016

  19. Selection of plants for phytoremediation of soils contaminated with radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entry J.A.; Vance, N.C.; Watrud, L.S.

    1996-12-31

    Remediation of soil contaminated with radionuclides typically requires that soil be removed from the site and treated with various dispersing and chelating chemicals. Numerous studies have shown that radionuclides are generally not leached from the top 0.4 meters of soil, where plant roots actively accumulate elements. Restoration of large areas of land contaminated with low levels of radionuclides may be feasible using phytoremediation. Criteria for the selection of plants for phytoremediation, molecular approaches to increase radio nuclide uptake, effects of cultural practices on uptake and assessment of environmental effects of phytoremediation will be discussed.

  20. Integrating natural and social science perspectives on plant disease risk, management and policy formulation

    PubMed Central

    Mills, Peter; Dehnen-Schmutz, Katharina; Ilbery, Brian; Jeger, Mike; Jones, Glyn; Little, Ruth; MacLeod, Alan; Parker, Steve; Pautasso, Marco; Pietravalle, Stephane; Maye, Damian

    2011-01-01

    Plant diseases threaten both food security and the botanical diversity of natural ecosystems. Substantial research effort is focused on pathogen detection and control, with detailed risk management available for many plant diseases. Risk can be assessed using analytical techniques that account for disease pressure both spatially and temporally. We suggest that such technical assessments of disease risk may not provide an adequate guide to the strategies undertaken by growers and government to manage plant disease. Instead, risk-management strategies need to account more fully for intuitive and normative responses that act to balance conflicting interests between stakeholder organizations concerned with plant diseases within the managed and natural environments. Modes of effective engagement between policy makers and stakeholders are explored in the paper, together with an assessment of such engagement in two case studies of contemporary non-indigenous diseases in one food and in one non-food sector. Finally, a model is proposed for greater integration of stakeholders in policy decisions. PMID:21624923

  1. Integrating natural and social science perspectives on plant disease risk, management and policy formulation.

    PubMed

    Mills, Peter; Dehnen-Schmutz, Katharina; Ilbery, Brian; Jeger, Mike; Jones, Glyn; Little, Ruth; MacLeod, Alan; Parker, Steve; Pautasso, Marco; Pietravalle, Stephane; Maye, Damian

    2011-07-12

    Plant diseases threaten both food security and the botanical diversity of natural ecosystems. Substantial research effort is focused on pathogen detection and control, with detailed risk management available for many plant diseases. Risk can be assessed using analytical techniques that account for disease pressure both spatially and temporally. We suggest that such technical assessments of disease risk may not provide an adequate guide to the strategies undertaken by growers and government to manage plant disease. Instead, risk-management strategies need to account more fully for intuitive and normative responses that act to balance conflicting interests between stakeholder organizations concerned with plant diseases within the managed and natural environments. Modes of effective engagement between policy makers and stakeholders are explored in the paper, together with an assessment of such engagement in two case studies of contemporary non-indigenous diseases in one food and in one non-food sector. Finally, a model is proposed for greater integration of stakeholders in policy decisions.

  2. Nectar plant selection by the Karner blue butterfly (Lycaeides melissa samuelis) at the Indiana Dunes National Lakeshore

    USGS Publications Warehouse

    Grundel, Ralph; Pavlovic, Noel B.; Sulzman, Christina L.

    2000-01-01

    The Karner blue butterfly, Lycaeides melissa samuelis, is an endangered species residing in savanna and barrens habitats in the Midwest and Northeast United States. To improve our understanding of nectar plant selection patterns by the Karner blue, we examined nectar plant choices made by 146 butterflies. Within observation areas of 2-m radius butterflies usually chose the nectar species with the greatest total number of flowers or flowering heads. This suggests that the Karner blue is opportunistic in selecting nectar plants. However, certain nectar species, including Arabis lyrata, Coreopsis lanceolata, Melilotus alba and Rubus flagellaris, were selected in a significant majority of cases when other nectar species were available nearby. At least in the case of R. flagellaris, this preference was not directly related to the species' local flower abundance. In a significant majority of cases (77.5%) adult Karner blues selected nectar plant species with yellow or white flowers over species with other-colored flowers. Comparison of nectar plant selections at Indiana Dunes National Lakeshore to selections from Michigan and Wisconsin suggests that the Karner blue most frequently chooses a suite of nectar plant species that includes A. lyrata, C. lanceolata, Euphorbia corollata, M. alba, Monarda punctata, Potentilla simplex, Rubus spp., Solidago speciosa and, perhaps, Asclepias tuberosa and Helianthus divaricatus. This suite includes plant species that readily flower in the sun and others that readily flower in the shade, an important consideration since Karner blues often move across the sun-shade interface.

  3. A strategy to find novel candidate anti-Alzheimer's disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants.

    PubMed

    Chen, Bi-Wen; Li, Wen-Xing; Wang, Guang-Hui; Li, Gong-Hua; Liu, Jia-Qian; Zheng, Jun-Juan; Wang, Qian; Li, Hui-Juan; Dai, Shao-Xing; Huang, Jing-Fei

    2018-01-01

    Alzheimer' disease (AD) is an ultimately fatal degenerative brain disorder that has an increasingly large burden on health and social care systems. There are only five drugs for AD on the market, and no new effective medicines have been discovered for many years. Chinese medicinal plants have been used to treat diseases for thousands of years, and screening herbal remedies is a way to develop new drugs. We used molecular docking to screen 30,438 compounds from Traditional Chinese Medicine (TCM) against a comprehensive list of AD target proteins. TCM compounds in the top 0.5% of binding affinity scores for each target protein were selected as our research objects. Structural similarities between existing drugs from DrugBank database and selected TCM compounds as well as the druggability of our candidate compounds were studied. Finally, we searched the CNKI database to obtain studies on anti-AD Chinese plants from 2007 to 2017, and only clinical studies were included. A total of 1,476 compounds (top 0.5%) were selected as drug candidates. Most of these compounds are abundantly found in plants used for treating AD in China, especially the plants from two genera Panax and Morus. We classified the compounds by single target and multiple targets and analyzed the interactions between target proteins and compounds. Analysis of structural similarity revealed that 17 candidate anti-AD compounds were structurally identical to 14 existing approved drugs. Most of them have been reported to have a positive effect in AD. After filtering for compound druggability, we identified 11 anti-AD compounds with favorable properties, seven of which are found in anti-AD Chinese plants. Of 11 anti-AD compounds, four compounds 5,862, 5,863, 5,868, 5,869 have anti-inflammatory activity. The compound 28,814 mainly has immunoregulatory activity. The other six compounds have not yet been reported for any biology activity at present. Natural compounds from TCM provide a broad prospect for the

  4. Natural Competence and Recombination in the Plant Pathogen Xylella fastidiosa ▿

    PubMed Central

    Kung, Stephanie H.; Almeida, Rodrigo P. P.

    2011-01-01

    Homologous recombination is one of many forces contributing to the diversity, adaptation, and emergence of pathogens. For naturally competent bacteria, transformation is one possible route for the acquisition of novel genetic material. This study demonstrates that Xylella fastidiosa, a generalist bacterial plant pathogen responsible for many emerging plant diseases, is naturally competent and able to homologously recombine exogenous DNA into its genome. Several factors that affect transformation and recombination efficiencies, such as nutrient availability, growth stage, and methylation of transforming DNA, were identified. Recombination was observed in at least one out of every 106 cells when exogenous plasmid DNA was supplied and one out of every 107 cells when different strains were grown together in vitro. Based on previous genomic studies and experimental data presented here, there is mounting evidence that recombination can occur at relatively high rates and could play a large role in shaping the genetic diversity of X. fastidiosa. PMID:21666009

  5. Plants and other natural products used in the management of oral infections and improvement of oral health.

    PubMed

    Chinsembu, Kazhila C

    2016-02-01

    Challenges of resistance to synthetic antimicrobials have opened new vistas in the search for natural products. This article rigorously reviews plants and other natural products used in oral health: Punica granatum L. (pomegranate), Matricaria recutita L. (chamomile), Camellia sinensis (L.) Kuntze (green tea), chewing sticks made from Diospyros mespiliformis Hochst. ex A.D.C., Diospyros lycioides Desf., and Salvadora persica L. (miswak), honey and propolis from the manuka tree (Leptospermum scoparium J.R. Forst. & G. Forst.), rhein from Rheum rhabarbarum L. (rhubarb), dried fruits of Vitis vinifera L. (raisins), essential oils, probiotics and mushrooms. Further, the review highlights plants from Africa, Asia, Brazil, Mexico, Europe, and the Middle East. Some of the plants' antimicrobial properties and chemical principles have been elucidated. While the use of natural products for oral health is prominent in resource-poor settings, antimicrobial testing is mainly conducted in the following countries (in decreasing order of magnitude): India, South Africa, Brazil, Japan, France, Egypt, Iran, Mexico, Kenya, Switzerland, Nigeria, Australia, Uganda, and the United Kingdom. While the review exposes a dire gap for more studies on clinical efficacy and toxicity, the following emerging trend was noted: basic research on plants for oral health is mainly done in Brazil, Europe and Australia. Brazil, China, India and New Zealand generally conduct value addition of natural products for fortification of toothpastes. African countries focus on bioprospecting and primary production of raw plants and other natural products with antimicrobial efficacies. The Middle East and Egypt predominantly research on plants used as chewing sticks. More research and funding are needed in the field of natural products for oral health, especially in Africa where oral diseases are fuelled by human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Copyright © 2015 Elsevier B

  6. Modeling Natural Selection

    ERIC Educational Resources Information Center

    Bogiages, Christopher A.; Lotter, Christine

    2011-01-01

    In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…

  7. Natural selection and the evolution of reproductive effort.

    PubMed

    Hirshfield, M F; Tinkle, D W

    1975-06-01

    Reproductive effort is defined as that proportion of the total energy budget of an organism that is devoted to reproductive processes. Reproductive effort at a given age within a species will be selected to maximize reproductive value at that age. Reproductive effort is not directly affected by changes in juvenile survivorship, nor necessarily reduced by an increase in adult survivorship. Selection for high levels of reproductive effort should occur when extrinsic adult mortality is high, in environments with constant juvenile survivorship, and in good years for juvenile survivorship in a variable environment, provided that the quality of the year is predictable by adults. Data necessary to measure reproductive effort and to understand how selection results in different levels of effort between individuals and species are discussed. We make several predictions about the effect of increased resource availability on reproductive effort. The empirical bases for testing these predictions are presently inadequate, and we consider data on energy budgets of organisms in nature to be essential for such test. We also conclude that variance in life table parameters must be known in detail to understand the selective bases of levels of reproductive effort.

  8. Selection of root-zone media for higher plant cultivation in space.

    PubMed

    Guo, Shuang-sheng; Ai, Wei-dang; Zhao, Cheng-jian; Han, Li-jun; Wang, Jian-xiao

    2004-04-01

    To investigate the cultivating effects of several mineral matters used as root-zone media for higher plant growth in space. Four kinds of artificial and natural mineral matters were used as plant root-zone media based on lots of investigation and analysis. Nutrient liquid was delivered into the media by a long capillary material, and roots of plants obtained nutrition and water from the media. The related parameters such as plant height and photosynthetic efficiency were measured and analyzed. The growing effect in a mixture of coarse and fine ceramic particles with equal quantity proportion was the best, that in fine ceramic particles was the second best, that in clinoptilolite particles was the third and that in diorite particles was the last. The mixture of coarse and fine ceramic particles with equal quantity possesses not only fine capillary action, but also good aerating ability, and therefore is capable of being utilized as an effective root-zone media for higher plants intended to be grown in space.

  9. Selective fertilization with phosphite allows unhindered growth of cotton plants expressing the ptxD gene while suppressing weeds.

    PubMed

    Pandeya, Devendra; López-Arredondo, Damar L; Janga, Madhusudhana R; Campbell, LeAnne M; Estrella-Hernández, Priscila; Bagavathiannan, Muthukumar V; Herrera-Estrella, Luis; Rathore, Keerti S

    2018-06-04

    Weeds, which have been the bane of agriculture since the beginning of civilization, are managed manually, mechanically, and, more recently, by chemicals. However, chemical control options are rapidly shrinking due to the recent rise in the number of herbicide-resistant weeds in crop fields, with few alternatives on the horizon. Therefore, there is an urgent need for alternative weed suppression systems to sustain crop productivity while reducing our dependence on herbicides and tillage. Such a development will also allay some of the negative perceptions associated with the use of herbicide-resistance genes and heavy dependence on herbicides. Transgenic plants expressing the bacterial phosphite dehydrogenase ( ptxD ) gene gain an ability to convert phosphite (Phi) into orthophosphate [Pi, the metabolizable form of phosphorus (P)]. Such plants allow for a selective fertilization scheme, based on Phi as the sole source of P for the crop, while offering an effective alternative for suppressing weed growth. Here, we show that, when P is supplied in the form of Phi, ptxD -expressing cotton ( Gossypium hirsutum L.) plants outcompete, in both artificial substrates and natural soils from agricultural fields, three different monocot and dicot weed species intentionally introduced in the experiments, as well as weeds naturally present in the tested soils. Importantly, the ptxD /Phi system proved highly efficacious in inhibiting the growth of glyphosate-resistant Palmer amaranth. With over 250 weed species resistant to currently available herbicides, ptxD -transgenic plants fertilized with Phi could provide an effective alternative to suppressing the growth of these weeds while providing adequate nutrition to the crop. Copyright © 2018 the Author(s). Published by PNAS.

  10. Substitution rate and natural selection in parvovirus B19

    PubMed Central

    Stamenković, Gorana G.; Ćirković, Valentina S.; Šiljić, Marina M.; Blagojević, Jelena V.; Knežević, Aleksandra M.; Joksić, Ivana D.; Stanojević, Maja P.

    2016-01-01

    The aim of this study was to estimate substitution rate and imprints of natural selection on parvovirus B19 genotype 1. Studied datasets included 137 near complete coding B19 genomes (positions 665 to 4851) for phylogenetic and substitution rate analysis and 146 and 214 partial genomes for selection analyses in open reading frames ORF1 and ORF2, respectively, collected 1973–2012 and including 9 newly sequenced isolates from Serbia. Phylogenetic clustering assigned majority of studied isolates to G1A. Nucleotide substitution rate for total coding DNA was 1.03 (0.6–1.27) x 10−4 substitutions/site/year, with higher values for analyzed genome partitions. In spite of the highest evolutionary rate, VP2 codons were found to be under purifying selection with rare episodic positive selection, whereas codons under diversifying selection were found in the unique part of VP1, known to contain B19 immune epitopes important in persistent infection. Analyses of overlapping gene regions identified nucleotide positions under opposite selective pressure in different ORFs, suggesting complex evolutionary mechanisms of nucleotide changes in B19 viral genomes. PMID:27775080

  11. In vitro cytotoxic screening of selected Saudi medicinal plants.

    PubMed

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  12. From Ends to Causes (and Back Again) by Metaphor: The Paradox of Natural Selection

    NASA Astrophysics Data System (ADS)

    Blancke, Stefaan; Schellens, Tammy; Soetaert, Ronald; Van Keer, Hilde; Braeckman, Johan

    2014-04-01

    Natural selection is one of the most famous metaphors in the history of science. Charles Darwin used the metaphor and the underlying analogy to frame his ideas about evolution and its main driving mechanism into a full-fledged theory. Because the metaphor turned out to be such a powerful epistemic tool, Darwin naturally assumed that he could also employ it as an educational tool to inform his contemporaries about his findings. Moreover, by using the metaphor Darwin was able to bring his theory in accordance with both the dominant philosophy of science in his time and the respected tradition of natural theology. However, as he introduced his theory of evolution by natural selection in On the origin of species in 1859, the metaphor also turned out to have a serious downside. Because of its intentional overtones, his contemporaries systematically misunderstood his metaphor not as a natural mechanism causing evolution to occur but as an agent who works towards particular ends. The difference in success between natural selection as an epistemic tool and its failure as an educational tool is labelled as a paradox. We explain the paradox from a cognitive perspective and discuss the implications for teaching evolution.

  13. The paradoxical advantages and disadvantages of natural selection: the case history of Charles Darwin.

    PubMed

    Lieb, J

    2007-01-01

    The biology of natural selection is an enduring mystery, as is the nature of Charles Darwin's chronic illness. Of the theories advanced to explain the latter, Oedipal conflicts and Chagas' disease are preeminent. Hypomania, however, propelled Darwin to the pinnacle of scientific achievement and good health, the depression that followed condemning him to intellectual stagnation, lethargy, impaired memory and concentration, and incapacitating gastrointestinal disorders. Examples of natural selection in humans are much sought after when, ironically, one need look no further than Darwin himself.

  14. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    PubMed Central

    Silva, Ana Carolina Oliveira; Santana, Elidiane Fonseca; Saraiva, Antonio Marcos; Coutinho, Felipe Neves; Castro, Ricardo Henrique Acre; Pisciottano, Maria Nelly Caetano; Amorim, Elba Lúcia Cavalcanti; Albuquerque, Ulysses Paulino

    2013-01-01

    The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities. PMID:23878595

  15. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  16. Unweaving misconceptions: Guided learning, simulations, and misconceptions in learning principles of natural selection

    NASA Astrophysics Data System (ADS)

    Weeks, Brian E.

    College students often come to the study of evolutionary biology with many misconceptions of how the processes of natural selection and speciation occur. How to relinquish these misconceptions with learners is a question that many educators face in introductory biology courses. Constructivism as a theoretical framework has become an accepted and promoted model within the epistemology of science instruction. However, constructivism is not without its skeptics who see some problems of its application in lacking necessary guidance for novice learners. This study within a quantitative, quasi-experimental format tested whether guided online instruction in a video format of common misconceptions in evolutionary biology produced higher performance on a survey of knowledge of natural selection versus more constructivist style learning in the form of student exploration of computer simulations of the evolutionary process. Performances on surveys were also explored for a combination of constructivist and guided techniques to determine if a consolidation of approaches produced higher test scores. Out of the 94 participants 95% displayed at least one misconception of natural selection in the pre-test while the study treatments produced no statistically significant improvements in post-test scores except within the video (guided learning treatment). These overall results demonstrated the stubbornness of misconceptions involving natural selection for adult learners and the difficulty of helping them overcome them. It also bolsters the idea that some misconceptions of natural selection and evolution may be hardwired in a neurological sense and that new, more long-term teaching techniques may be warranted. Such long-term strategies may not be best implemented with constructivist techniques alone, and it is likely that some level of guidance may be necessary for novice adult learners. A more substantial, nuanced approach for undergraduates is needed that consolidates successful

  17. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.).

    PubMed

    Breseghello, Flavio; Coelho, Alexandre Siqueira Guedes

    2013-09-04

    Plant breeding can be broadly defined as alterations caused in plants as a result of their use by humans, ranging from unintentional changes resulting from the advent of agriculture to the application of molecular tools for precision breeding. The vast diversity of breeding methods can be simplified into three categories: (i) plant breeding based on observed variation by selection of plants based on natural variants appearing in nature or within traditional varieties; (ii) plant breeding based on controlled mating by selection of plants presenting recombination of desirable genes from different parents; and (iii) plant breeding based on monitored recombination by selection of specific genes or marker profiles, using molecular tools for tracking within-genome variation. The continuous application of traditional breeding methods in a given species could lead to the narrowing of the gene pool from which cultivars are drawn, rendering crops vulnerable to biotic and abiotic stresses and hampering future progress. Several methods have been devised for introducing exotic variation into elite germplasm without undesirable effects. Cases in rice are given to illustrate the potential and limitations of different breeding approaches.

  18. Wind data for wind driven plant. [site selection for optimal performance

    NASA Technical Reports Server (NTRS)

    Stodhart, A. H.

    1973-01-01

    Simple, averaged wind velocity data provide information on energy availability, facilitate generator site selection and enable appropriate operating ranges to be established for windpowered plants. They also provide a basis for the prediction of extreme wind speeds.

  19. Selection criteria for forested natural areas in New England, USA

    Treesearch

    William B. Leak; Mariko Yamasaki; Marie-Louise Smith; David T. Funk

    1994-01-01

    The selection of forested natural areas for research and educational purposes is discussed. Five factors are important: sufficient size; representation of typical communities and sites; documented disturbance histories; acceptable current condition in terms of age, tree size, and successional stage; and administrative feasibility.

  20. Selective Behaviour of Honeybees in Acquiring European Propolis Plant Precursors.

    PubMed

    Isidorov, Valery A; Bakier, Sławomir; Pirożnikow, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2016-06-01

    Honey bees harvest resins from various plant species and use them in the hive as propolis. While there have been a number of studies concerning the chemical composition of this antimicrobial product, little is known about selective behavior and bee preference when different potential plant sources of resin are available. The main objective of this paper was to investigate some aspects of behavioral patterns of honeybees in the context of resin acquisition. Samples of propolis originating from temperate zones of Europe and the supposed botanical precursors of the product were analyzed. Taxonomical markers of bud resins of two white birch species, aspen, black poplar, horse-chestnut, black alder, and Scots pine were determined through GC-MS analysis. All these trees have been reported as sources of propolis, but comparisons of the chemical composition of their bud resins with the compositions of propolis samples from seven European countries have demonstrated the presence of taxonomical markers only from black poplar, aspen, and one species of birch. This suggests selective behavior during the collection of bud resins by honeybees. To examine the causes of such selectivity, the antimicrobial properties of bud resins were determined. Horse-chestnut resins had lower antimicrobial activity than the other resins which did not differ significantly.

  1. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  2. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisionsmore » for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.« less

  3. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem.

    PubMed

    Evju, Marianne; Austrheim, Gunnar; Halvorsen, Rune; Mysterud, Atle

    2009-08-01

    Herbivores shape plant communities through selective foraging. However, both herbivore selectivity and the plant's ability to tolerate or resist herbivory may depend on the density of herbivores. In an alpine ecosystem with a long history of grazing, plants are expected to respond to both enhanced and reduced grazing pressures, and the interaction between plant traits and changes in species abundance are expected to differ between the two types of alteration of grazing regime. To understand the mechanisms behind species response, we investigated the relationship between sheep selectivity (measured in situ), plant traits and experimentally derived measures of change in species abundance as a response to the enhancement (from low to high density) or cessation (from low to zero density) of sheep grazing pressure over a six-year time period for 22 abundant herb species in an alpine habitat in south Norway. Sheep selected large, late-flowering herbs with a low leaf C/N ratio. Species that increased in abundance in response to enhanced grazing pressure were generally small and had high root/shoot ratios, thus exhibiting traits that reflect both resistance (through avoidance) and tolerance (through regrowth capacity) strategies. The abundance of selected species remained stable during the study period, and also under the enhanced grazing pressure treatment. There was, however, a tendency for selected species to respond positively to cessation of grazing, although overall responses to cessation of grazing were much less pronounced than responses to enhanced grazing. Avoidance through short stature (probably associated with increased light availability through the removal of tall competitors) as well as a certain amount of regrowth capacity appear to be the main mechanisms behind a positive response to enhanced grazing pressure in this study. The plant trait perspective clearly improves our insight into the mechanisms behind observed changes in species abundance when the

  4. Population abundance of Frankliniella occidentalis (Thysanoptera: Thripidae) and natural enemies on plant hosts in central Chile.

    PubMed

    Ripa, Renato; Funderburk, Joe; Rodriguez, Fernando; Espinoza, Fernanda; Mound, Laurence

    2009-04-01

    Populations of the invasive Frankliniella occidentalis (Pergande) are serious pests of agricultural crops in the Aconcagua Valley of central Chile. An extensive survey was conducted of 55 plant species in 24 families to identify plant hosts of F. occidentalis and to determine its relative abundance on each host during each season. A more intensive study was conducted on selected plant species serving as reproductive hosts to determine the population dynamics of F. occidentalis and to evaluate the potential importance of Orius species and other natural enemies for controlling F. occidentalis. Adults of F. occidentalis were active during each season of the year inhabiting the flowers of 91% of the sampled plant species in 22 families, and 86% of these plant species in 19 families served as reproductive hosts. The number of host plant species used was greatest in the spring and least in the winter. All of the hosts except Medicago sativa L. were used only when flowering. Populations of F. occidentalis were significantly aggregated in M. sativa in the terminal buds over the leaves when the host was not flowering, and in the flowers, followed by the terminal buds, followed by the leaves when the host was flowering. Larvae were 1.3-2.3 times more abundant on dates when M. sativa was flowering. There were no identifiable patterns in plant hosts based on endemicity or plant family. Most of the plant species used by F. occidentalis were inferior quality hosts where populations either declined or were stable. Populations of F. occidentalis on low-quality hosts generally escaped predation by Orius species and competition by other species of thrips. Only 25% of the food hosts and 28% of the reproductive hosts for F. occidentalis in the extensive survey, respectively, were host plants for Orius. Parasitoids and other predators were not found to be important in suppressing thrips on any of the plant hosts. Populations of F. occidentalis increased on only a few hosts, including M

  5. Screening of selected indigenous plants of Cambodia for antiplasmodial activity.

    PubMed

    Hout, Sotheara; Chea, Aun; Bun, Sok-Siya; Elias, Riad; Gasquet, Monique; Timon-David, Pierre; Balansard, Guy; Azas, Nadine

    2006-08-11

    The in vitro antiplasmodial activity of 117 aqueous, methanol and dichloromethane extracts derived from different parts of 28 indigenous wild plant species was studied. These plants are commonly used in Cambodian traditional medicine. The plant extracts were tested for in vitro activity against a chloroquine resistant Plasmodium falciparum strain (W2). Nine extracts were moderately active with IC(50) values ranging between 5 and 10 microg/ml, 17 extracts were active with IC(50) values ranging between 1 and 5 microg/ml. These 26 extracts derived from eight plants belong to six families. The most active extracts were dichloromethane and came from Stephania rotunda and Brucea javanica with IC(50) values of 1 microg/ml and a selectivity index > or = 25. It is interesting to note that some aqueous extracts were as active as dichloromethane extracts especially aqueous extracts of Stephania rotunda, Brucea javanica, Phyllanthus urinaria and Eurycoma longifolia with IC(50) values of < or = 4 microg/ml. These results are in agreement with statements of healers on traditional uses of these plants for the treatment of malaria and/or fever. In this study, we report the antiplasmodial potential activity of eight plant species from Cambodia. Among them four are tested for the first time.

  6. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins.

    PubMed

    Lenarčič, Tea; Albert, Isabell; Böhm, Hannah; Hodnik, Vesna; Pirc, Katja; Zavec, Apolonija B; Podobnik, Marjetka; Pahovnik, David; Žagar, Ema; Pruitt, Rory; Greimel, Peter; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Zienkiewicz, Agnieszka; Gömann, Jasmin; Mortimer, Jenny C; Fang, Lin; Mamode-Cassim, Adiilah; Deleu, Magali; Lins, Laurence; Oecking, Claudia; Feussner, Ivo; Mongrand, Sébastien; Anderluh, Gregor; Nürnberger, Thorsten

    2017-12-15

    Necrosis and ethylene-inducing peptide 1-like (NLP) proteins constitute a superfamily of proteins produced by plant pathogenic bacteria, fungi, and oomycetes. Many NLPs are cytotoxins that facilitate microbial infection of eudicot, but not of monocot plants. Here, we report glycosylinositol phosphorylceramide (GIPC) sphingolipids as NLP toxin receptors. Plant mutants with altered GIPC composition were more resistant to NLP toxins. Binding studies and x-ray crystallography showed that NLPs form complexes with terminal monomeric hexose moieties of GIPCs that result in conformational changes within the toxin. Insensitivity to NLP cytolysins of monocot plants may be explained by the length of the GIPC head group and the architecture of the NLP sugar-binding site. We unveil early steps in NLP cytolysin action that determine plant clade-specific toxin selectivity. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Selectively Structural Determination of Cellulose and Hemicellulose in Plant Cell Wall

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chun; Park, Yong; Cosgrove, Daniel; Maranas, Janna; Janna Maranas Team; Daniel Cosgrove Team

    2013-03-01

    Primary plant cell walls support the plant body, and regulate cell size, and plant growth. It contains several biopolymers that can be categorized into three groups: cellulose, hemicellulose and pectin. To determine the structure of plant cell wall, we use small angle neutron scattering in combination with selective deuteration and contrast matching method. We compare the structure between wild Arabidopsis thaliana and its xyloglucan-deficient mutant. Hemicellulose in both samples forms coil with similar radii of gyration, and weak scattering from the mutant suggests a limited amount of hemicellulose in the xyloglucan-deficient mutant. We observe good amount of hemicellulose coating on cellulose microfibrils only in wild Arabidopsis. The absence of coating in its xyloglucan-deficient mutation suggests the other polysaccharides do not have comparable interaction with cellulose. This highlights the importance of xyloglucan in plant cell wall. At larger scale, the average distance between cellulose fibril is found smaller than reported value, which directly reflects on their smaller matured plant size. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Center for LignoCellulose Structure and Formation

  8. Riparian restoration in the Southwest: Species selection, propagation, planting methods, and case studies

    Treesearch

    David Dreesen; John Harrington; Tom Subirge; Pete Stewart; Greg Fenchel

    2002-01-01

    Riparian plant communities, though small in overall area, are among the most valuable natural areas in the Southwest. The causes of degradation of southwestern riparian zones range from excessive cattle and elk grazing in montane watersheds to invasive woody exotic species and lack of natural flooding in the cottonwood forests, "bosque," of low elevation...

  9. Gis-Based Site Selection for Underground Natural Resources Using Fuzzy Ahp-Owa

    NASA Astrophysics Data System (ADS)

    Sabzevari, A. R.; Delavar, M. R.

    2017-09-01

    Fuel consumption has significantly increased due to the growth of the population. A solution to address this problem is the underground storage of natural gas. The first step to reach this goal is to select suitable places for the storage. In this study, site selection for the underground natural gas reservoirs has been performed using a multi-criteria decision-making in a GIS environment. The "Ordered Weighted Average" (OWA) operator is one of the multi-criteria decision-making methods for ranking the criteria and consideration of uncertainty in the interaction among the criteria. In this paper, Fuzzy AHP_OWA (FAHP_OWA) is used to determine optimal sites for the underground natural gas reservoirs. Fuzzy AHP_OWA considers the decision maker's risk taking and risk aversion during the decision-making process. Gas consumption rate, temperature, distance from main transportation network, distance from gas production centers, population density and distance from gas distribution networks are the criteria used in this research. Results show that the northeast and west of Iran and the areas around Tehran (Tehran and Alborz Provinces) have a higher attraction for constructing a natural gas reservoir. The performance of the used method was also evaluated. This evaluation was performed using the location of the existing natural gas reservoirs in the country and the site selection maps for each of the quantifiers. It is verified that the method used in this study is capable of modeling different decision-making strategies used by the decision maker with about 88 percent of agreement between the modeling and test data.

  10. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro.

    PubMed

    Jardim, A C G; Igloi, Z; Shimizu, J F; Santos, V A F F M; Felippe, L G; Mazzeu, B F; Amako, Y; Furlan, M; Harris, M; Rahal, P

    2015-03-01

    Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50=2.3μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3(∗)43 (EC50=4.0μM), 3(∗)20 (EC50=8.2μM) and 5(∗)362 (EC50=38.9μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants.

    PubMed

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  12. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants

    PubMed Central

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md. Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes. PMID:28979070

  13. Paternity and Nested-within-Family Marker Assisted Selection in Space Planted Red Clover Nurseries

    USDA-ARS?s Scientific Manuscript database

    Presented is a cost effective marker assisted selection methodology that utilizes individual plant phenotypes, seed production based knowledge of maternity, molecular marker determined paternity, and nested within halfsib family linkage relationships. Combining all above listed components, selection...

  14. Host-Plant Selectivity of Rhizobacteria in a Crop/Weed Model System

    PubMed Central

    Zeller, Simon L.; Brandl, Helmut; Schmid, Bernhard

    2007-01-01

    Belowground microorganisms are known to influence plants' performance by altering the soil environment. Plant pathogens such as cyanide-producing strains of the rhizobacterium Pseudomonas may show strong host-plant selectivity. We analyzed interactions between different host plants and Pseudomonas strains and tested if these can be linked to the cyanide sensitivity of host plants, the cyanide production of bacterial strains or the plant identity from which strains had been isolated. Eight strains (four cyanide producing) were isolated from roots of four weed species and then re-inoculated on the four weed and two additional crop species. Bacterial strain composition varied strongly among the four weed species. Although all six plant species showed different reductions in root growth when cyanide was artificially applied to seedlings, they were generally not negatively affected by inoculation with cyanide-producing bacterial strains. We found a highly significant plant species x bacterial strain interaction. Partitioning this interaction into contrasts showed that it was entirely due to a strongly negative effect of a bacterial strain (Pseudomonas kilonensis/brassicacearum, isolated from Galium mollugo) on Echinochloa crus-galli. This exotic weed may not have become adapted to the bacterial strain isolated from a native weed. Our findings suggest that host-specific rhizobacteria hold some promise as biological weed-control agents. PMID:17786217

  15. Effects of the Ordering of Natural Selection and Population Regulation Mechanisms on Wright-Fisher Models

    PubMed Central

    He, Zhangyi; Beaumont, Mark; Yu, Feng

    2017-01-01

    We explore the effect of different mechanisms of natural selection on the evolution of populations for one- and two-locus systems. We compare the effect of viability and fecundity selection in the context of the Wright-Fisher model with selection under the assumption of multiplicative fitness. We show that these two modes of natural selection correspond to different orderings of the processes of population regulation and natural selection in the Wright-Fisher model. We find that under the Wright-Fisher model these two different orderings can affect the distribution of trajectories of haplotype frequencies evolving with genetic recombination. However, the difference in the distribution of trajectories is only appreciable when the population is in significant linkage disequilibrium. We find that as linkage disequilibrium decays the trajectories for the two different models rapidly become indistinguishable. We discuss the significance of these findings in terms of biological examples of viability and fecundity selection, and speculate that the effect may be significant when factors such as gene migration maintain a degree of linkage disequilibrium. PMID:28500051

  16. Evolution in plant populations as a driver of ecological changes in arthropod communities

    PubMed Central

    Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.

    2009-01-01

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  17. Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.

    PubMed

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F; Kaiser, Markus; van der Hoorn, Renier A L

    2012-01-15

    Organophosphate and -phosphonates and their thio derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant are poorly investigated. Here, we use competitive activity-based protein profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Selective Inhibition of Plant Serine Hydrolases by Agrochemicals Revealed by Competitive ABPP

    PubMed Central

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Cravatt, Benjamin F.; Kaiser, Markus; van der Hoorn, Renier A. L.

    2013-01-01

    Organophosphate and –phosphonates and their thiol derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant and their consumers are poorly investigated. Here, we use competitive Activity-based Protein Profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to confirm eight SH-compound interactions, including selective inhibition of carboxylesterase CXE12, prolyloligopeptidase, methylesterase MES2 and tripeptidyl peptidase TPP2. These observations can be used for the design of novel probes and selective inhibitors and may help to assess physiological effects of agrochemicals on crop plants. PMID:21764588

  19. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    PubMed

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion

  20. Economic and Environmental Assessment of Natural Gas Plants with Carbon Capture and Storage (NGCC-CCS)

    EPA Science Inventory

    The CO2 intensity of electricity produced by state-of-the-art natural gas combined-cycle turbines (NGCC) isapproximately one-third that of the U.S. fleet of existing coal plants. Compared to new nuclear plants and coal plantswith integrated carbon capture, NGCC has a lower invest...

  1. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.

    PubMed

    Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K

    2016-12-01

    Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .

  2. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications.

    PubMed

    Wood, Jacquelyn L A; Yates, Matthew C; Fraser, Dylan J

    2016-06-01

    It is widely thought that small populations should have less additive genetic variance and respond less efficiently to natural selection than large populations. Across taxa, we meta-analytically quantified the relationship between adult census population size (N) and additive genetic variance (proxy: h (2)) and found no reduction in h (2) with decreasing N; surveyed populations ranged from four to one million individuals (1735 h (2) estimates, 146 populations, 83 species). In terms of adaptation, ecological conditions may systematically differ between populations of varying N; the magnitude of selection these populations experience may therefore also differ. We thus also meta-analytically tested whether selection changes with N and found little evidence for systematic differences in the strength, direction or form of selection with N across different trait types and taxa (7344 selection estimates, 172 populations, 80 species). Collectively, our results (i) indirectly suggest that genetic drift neither overwhelms selection more in small than in large natural populations, nor weakens adaptive potential/h (2) in small populations, and (ii) imply that natural populations of varying sizes experience a variety of environmental conditions, without consistently differing habitat quality at small N. However, we caution that the data are currently insufficient to determine whether some small populations may retain adaptive potential definitively. Further study is required into (i) selection and genetic variation in completely isolated populations of known N, under-represented taxonomic groups, and nongeneralist species, (ii) adaptive potential using multidimensional approaches and (iii) the nature of selective pressures for specific traits.

  3. Purification of Plant Receptor Kinases from Plant Plasma Membranes.

    PubMed

    Lee, Jin Suk

    2017-01-01

    Receptor kinases play a central role in various biological processes, but due to their low abundance and highly hydrophobic and dynamic nature, only a few of them have been functionally characterized, and their partners and ligands remain unidentified. Receptor protein extraction and purification from plant tissues is one of the most challenging steps for the success of various biochemical analyses to characterize their function. Immunoprecipitation is a widely used and selective method for enriching or purifying a specific protein. Here we describe two different optimized protein purification protocols, batch and on-chip immunoprecipitation, which efficiently isolate plant membrane receptor kinases for functional analysis.

  4. Natural selection of memory-one strategies for the iterated prisoner's dilemma.

    PubMed

    Kraines, D P; Kraines, V Y

    2000-04-21

    In the iterated Prisoner's Dilemma, mutually cooperative behavior can become established through Darwinian natural selection. In simulated interactions of stochastic memory-one strategies for the Iterated Prisoner's Dilemma, Nowak and Sigmund discovered that cooperative agents using a Pavlov (Win-Stay Lose-Switch) type strategy eventually dominate a random population. This emergence follows more directly from a deterministic dynamical system based on differential reproductive success or natural selection. When restricted to an environment of memory-one agents interacting in iterated Prisoner's Dilemma games with a 1% noise level, the Pavlov agent is the only cooperative strategy and one of very few others that cannot be invaded by a similar strategy. Pavlov agents are trusting but no suckers. They will exploit weakness but repent if punished for cheating. Copyright 2000 Academic Press.

  5. Strong and consistent natural selection associated with armour reduction in sticklebacks.

    PubMed

    LE Rouzic, Arnaud; Østbye, Kjartan; Klepaker, Tom O; Hansen, Thomas F; Bernatchez, Louis; Schluter, Dolph; Vøllestad, L Asbjørn

    2011-06-01

    Measuring the strength of natural selection is tremendously important in evolutionary biology, but remains a challenging task. In this work, we analyse the characteristics of selection for a morphological change (lateral-plate reduction) in the threespine stickleback Gasterosteus aculeatus. Adaptation to freshwater, leading with the reduction or loss of the bony lateral armour, has occurred in parallel on numerous occasions in this species. Completely-plated and low-plated sticklebacks were introduced into a pond, and the phenotypic changes were tracked for 20 years. Fish from the last generation were genotyped for the Ectodysplasin-A (Eda) locus, the major gene involved in armour development. We found a strong fitness advantage for the freshwater-type fish (on average, 20% fitness advantage for the freshwater morph, and 92% for the freshwater genotype). The trend is best explained by assuming that this fitness advantage is maximum at the beginning of the invasion and decreases with time. Such fitness differences provide a quantifiable example of rapid selection-driven phenotypic evolution associated with environmental change in a natural population. © 2011 Blackwell Publishing Ltd.

  6. Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants.

    PubMed

    Palici, Ionut F; Liktor-Busa, Erika; Zupkó, István; Touzard, Blaise; Chaieb, Mohamed; Urbán, Edit; Hohmann, Judit

    2015-12-01

    The aim of the present study was the evaluation of the antimicrobial and antiproliferative activities of selected Saharan species, which are applied in the traditional medicine but not studied thoroughly from chemical and pharmacological point of view. The studied plants, namely Anthyllis henoniana, Centropodia forskalii, Cornulaca monacantha, Ephedra alata var. alenda, Euphorbia guyoniana, Helianthemum confertum, Henophyton deserti, Moltkiopsis ciliata and Spartidium saharae were collected from remote areas of North Africa, especially from the Tunisian region of Sahara. After drying and applying the appropriate extraction methods, the plant extracts were tested in antimicrobial screening assay, performed on 19 Gram-positive and -negative strains of microbes. The inhibition zones produced by plant extracts were determined by disc-diffusion method. Remarkable antibacterial activities were exhibited by extracts of Ephedra alata var. alenda and Helianthemum confertum against B. subtilis, M. catarrhalis and methicillin-resistant and non-resistant S. aureus. Minimum inhibitory concentrations of these two species were also determined. Antiproliferative effects of the extracts were evaluated against 4 human adherent cell lines (HeLa, A431, A2780 and MCF7). Notable cell growth inhibition was found for extract of Helianthemum confertum and Euphorbia guyoniana. Our results provided data for selection of some plant species for further detailed pharmacological and phytochemical examinations.

  7. Genetic polymorphism and natural selection of Duffy binding protein of Plasmodium vivax Myanmar isolates

    PubMed Central

    2012-01-01

    Background Plasmodium vivax Duffy binding protein (PvDBP) plays an essential role in erythrocyte invasion and a potential asexual blood stage vaccine candidate antigen against P. vivax. The polymorphic nature of PvDBP, particularly amino terminal cysteine-rich region (PvDBPII), represents a major impediment to the successful design of a protective vaccine against vivax malaria. In this study, the genetic polymorphism and natural selection at PvDBPII among Myanmar P. vivax isolates were analysed. Methods Fifty-four P. vivax infected blood samples collected from patients in Myanmar were used. The region flanking PvDBPII was amplified by PCR, cloned into Escherichia coli, and sequenced. The polymorphic characters and natural selection of the region were analysed using the DnaSP and MEGA4 programs. Results Thirty-two point mutations (28 non-synonymous and four synonymous mutations) were identified in PvDBPII among the Myanmar P. vivax isolates. Sequence analyses revealed that 12 different PvDBPII haplotypes were identified in Myanmar P. vivax isolates and that the region has evolved under positive natural selection. High selective pressure preferentially acted on regions identified as B- and T-cell epitopes of PvDBPII. Recombination may also be played a role in the resulting genetic diversity of PvDBPII. Conclusions PvDBPII of Myanmar P. vivax isolates displays a high level of genetic polymorphism and is under selective pressure. Myanmar P. vivax isolates share distinct types of PvDBPII alleles that are different from those of other geographical areas. These results will be useful for understanding the nature of the P. vivax population in Myanmar and for development of PvDBPII-based vaccine. PMID:22380592

  8. Biological Activity of Peanut (Arachis hypogaea) Phytoalexins and Selected Natural and Synthetic Stilbenoids

    PubMed Central

    SOBOLEV, VICTOR S.; KHAN, SHABANA I.; TABANCA, NURHAYAT; WEDGE, DAVID E.; MANLY, SUSAN P.; CUTLER, STEPHEN J.; COY, MONIQUE R.; BECNEL, JAMES J.; NEFF, SCOTT A.; GLOER, JAMES B.

    2011-01-01

    The peanut plant (Arachis hypogaea L.), when infected by a microbial pathogen, is capable of producing stilbene-derived compounds that are considered antifungal phytoalexins. In addition, the potential health benefits of other stilbenoids from peanuts, including resveratrol and pterostilbene, have been acknowledged by several investigators. Despite considerable progress in peanut research, relatively little is known about the biological activity of the stilbenoid phytoalexins. This study investigated the activities of some of these compounds in a broad spectrum of biological assays. Since peanut stilbenoids appear to play roles in plant defense mechanisms, they were evaluated for their effects on economically important plant pathogenic fungi of the genera Colletotrichum, Botrytis, Fusarium, and Phomopsis. We further investigated these peanut phytoalexins, together with some related natural and synthetic stilbenoids (a total of 24 compounds) in a panel of bioassays to determine their anti-inflammatory, cytotoxic, and antioxidant activities in mammalian cells. Several of these compounds were also evaluated as mammalian opioid receptor competitive antagonists. Assays for adult mosquito and larvae toxicity were also performed. The results of these studies reveal that peanut stilbenoids, as well as related natural and synthetic stilbene derivatives, display a diverse range of biological activities. PMID:21314127

  9. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    NASA Astrophysics Data System (ADS)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  10. AQUATIC PLANT SPECIATION AFFECTED BY DIVERSIFYING SELECTION OF ORGANELLE DNA REGIONS(1).

    PubMed

    Kato, Syou; Misawa, Kazuharu; Takahashi, Fumio; Sakayama, Hidetoshi; Sano, Satomi; Kosuge, Keiko; Kasai, Fumie; Watanabe, Makoto M; Tanaka, Jiro; Nozaki, Hisayoshi

    2011-10-01

    Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the "shallow" and "deep" subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima's D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both "shallow" and "deep" haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes. © 2011 Phycological Society of America.

  11. Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity.

    PubMed

    Bell, Rayna C; Zamudio, Kelly R

    2012-12-07

    Sexual dichromatism, a form of sexual dimorphism in which males and females differ in colour, is widespread in animals but has been predominantly studied in birds, fishes and butterflies. Moreover, although there are several proposed evolutionary mechanisms for sexual dichromatism in vertebrates, few studies have examined this phenomenon outside the context of sexual selection. Here, we describe unexpectedly high diversity of sexual dichromatism in frogs and create a comparative framework to guide future analyses of the evolution of these sexual colour differences. We review what is known about evolution of colour dimorphism in frogs, highlight alternative mechanisms that may contribute to the evolution of sexual colour differences, and compare them to mechanisms active in other major groups of vertebrates. In frogs, sexual dichromatism can be dynamic (temporary colour change in males) or ontogenetic (permanent colour change in males or females). The degree and the duration of sexual colour differences vary greatly across lineages, and we do not detect phylogenetic signal in the distribution of this trait, therefore frogs provide an opportunity to investigate the roles of natural and sexual selection across multiple independent derivations of sexual dichromatism.

  12. The investigation of antibacterial activity of selected native plants from North of Iran.

    PubMed

    Koohsari, H; Ghaemi, E A; Sadegh Sheshpoli, M; Jahedi, M; Zahiri, M

    2015-01-01

    Plant derived products have been used for medicinal purposes during centuries. Bacterial resistance to currently used antibiotics has become a concern to public health. The development of bacterial super resistant strains has resulted in the currently used antibiotic agents failing to end many bacterial infections. For this reason, the search is ongoing for new antimicrobial agents, both by the design and by the synthesis of new agents, or through the search of natural sources for yet undiscovered antimicrobial agents. Herbal medications in particular have seen a revival of interest due to a perception that there is a lower incidence of adverse reactions to plant preparations compared to synthetic pharmaceuticals. Coupled with the reduced costs of plant preparations, this makes the search for natural therapeutics an attractive option. This research was carried out to assess the antibacterial activity aqueous and ethanolic extracts of six Azadshahr township Native plants in north of Iran against six species of pathogen bacteria by using three methods of Disk diffusion, Well method and MBC. The results of this research indicated that the effect of ethanol extracts were more than aqueous extract and among six plants, Lippia citriodora and Plantago major ethanol extract had the most antibacterial activity in any of the three methods. Gram-positive bacteria were more sensitive than gram-negative bacteria. Staphylococcus epidermidis and Staphylococcus aureus were the most susceptible Gram-positive bacteria.

  13. Genetic signatures of natural selection in a model invasive ascidian

    NASA Astrophysics Data System (ADS)

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-03-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.

  14. Genetic signatures of natural selection in a model invasive ascidian

    PubMed Central

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-01-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta. PMID:28266616

  15. Using natural selection and optimization for smarter vegetation models - challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Franklin, Oskar; Han, Wang; Dieckmann, Ulf; Cramer, Wolfgang; Brännström, Åke; Pietsch, Stephan; Rovenskaya, Elena; Prentice, Iain Colin

    2017-04-01

    Dynamic global vegetation models (DGVMs) are now indispensable for understanding the biosphere and for estimating the capacity of ecosystems to provide services. The models are continuously developed to include an increasing number of processes and to utilize the growing amounts of observed data becoming available. However, while the versatility of the models is increasing as new processes and variables are added, their accuracy suffers from the accumulation of uncertainty, especially in the absence of overarching principles controlling their concerted behaviour. We have initiated a collaborative working group to address this problem based on a 'missing law' - adaptation and optimization principles rooted in natural selection. Even though this 'missing law' constrains relationships between traits, and therefore can vastly reduce the number of uncertain parameters in ecosystem models, it has rarely been applied to DGVMs. Our recent research have shown that optimization- and trait-based models of gross primary production can be both much simpler and more accurate than current models based on fixed functional types, and that observed plant carbon allocations and distributions of plant functional traits are predictable with eco-evolutionary models. While there are also many other examples of the usefulness of these and other theoretical principles, it is not always straight-forward to make them operational in predictive models. In particular on longer time scales, the representation of functional diversity and the dynamical interactions among individuals and species presents a formidable challenge. Here we will present recent ideas on the use of adaptation and optimization principles in vegetation models, including examples of promising developments, but also limitations of the principles and some key challenges.

  16. Development of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination

    PubMed Central

    2013-01-01

    Background Antibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for selectable marker gene (SMG) elimination has previously been demonstrated by different groups in several plants including Brassica. In the present study exploiting Cre/lox mediated recombination strategy, attempt has been made for selectable marker gene elimination from Allium sativum leaf agglutinin (ASAL) expressing Brassica plants with hemipteran insect resistant phenotype. Results Allium sativum leaf agglutinin (ASAL) linked with lox flanked hygromycin resistant (hpt) gene was introduced in mustard. Cre recombinase gene cassette was also integrated in separate event. A Cre/lox mediated recombination using crossing strategy was adopted to remove the hpt gene from the subsequent generation of selected hybrid events. Reciprocal crosses were made between T1ASAL-lox-hpt-lox and cre-bar plants. Marker gene elimination was confirmed in the resulting F1 hybrid progenies by PCR analysis, using hpt, cre and ASAL specific primers followed by Southern hybridization. In marker free plants, expression of ASAL was also confirmed by western blotting and ELISA analysis. Retention of functionality of expressed ASAL was investigated by agglutination assay using rabbit erythrocytes. Expressed ASAL was also found to be thermo-sensitive. In planta insect bioassay on F1 hybrid progenies exhibited detrimental effect on the performance of devastating target pest, Lipaphis erysimi. The F1 hybrid hpt negative, ASAL positive plants were allowed to self- fertilize to obtain F2 progeny plants. In some of these plants cre gene was found to be segregated out of the ASAL gene by genetic segregation yielding

  17. Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast.

    PubMed

    Herrera, C M; Pozo, M I; Bazaga, P

    2011-11-01

    Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety-one isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band-based methods and model- and nonmodel-based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite-dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φ(st)  = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite-dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality. © 2011 Blackwell Publishing Ltd.

  18. Effects of invasive woody plants on avian nest site selection and nesting success in shrublands

    Treesearch

    S. Schlossberg; D.I. King

    2010-01-01

    Exotic, invasive plants are a growing conservation problem. Birds frequently use invasive plants as nest substrates, but effects of invasives on avian nesting success have been equivocal in past studies. In 2004 and 2005, we assessed effects of invasive woody plants on avian nest-site selection and nesting success in western Massachusetts shrublands. At the nest scale...

  19. Novel Natural Products for Healthy Ageing from the Mediterranean Diet and Food Plants of Other Global Sources-The MediHealth Project.

    PubMed

    Waltenberger, Birgit; Halabalaki, Maria; Schwaiger, Stefan; Adamopoulos, Nicolas; Allouche, Noureddine; Fiebich, Bernd L; Hermans, Nina; Jansen-Dürr, Pidder; Kesternich, Victor; Pieters, Luc; Schönbichler, Stefan; Skaltsounis, Alexios-Leandros; Tran, Hung; Trougakos, Ioannis P; Viljoen, Alvaro; Wolfender, Jean-Luc; Wolfrum, Christian; Xynos, Nikos; Stuppner, Hermann

    2018-05-06

    There is a rapid increase in the percentage of elderly people in Europe. Consequently, the prevalence of age-related diseases will also significantly increase. Therefore, the main goal of MediHealth, an international research project, is to introduce a novel approach for the discovery of active agents of food plants from the Mediterranean diet and other global sources that promote healthy ageing. To achieve this goal, a series of plants from the Mediterranean diet and food plants from other origins are carefully selected and subjected to in silico, cell-based, in vivo (fly and mouse models), and metabolism analyses. Advanced analytical techniques complement the bio-evaluation process for the efficient isolation and identification of the bioactive plant constituents. Furthermore, pharmacological profiling of bioactive natural products, as well as the identification and synthesis of their metabolites, is carried out. Finally, optimization studies are performed in order to proceed to the development of innovative nutraceuticals, dietary supplements or herbal medicinal products. The project is based on an exchange of researchers between nine universities and four companies from European and non-European countries, exploiting the existing complementary multidisciplinary expertise. Herein, the unique and novel approach of this interdisciplinary project is presented.

  20. The nature of plant species

    PubMed Central

    Rieseberg, Loren H.; Wood, Troy E.; Baack, Eric J.

    2008-01-01

    Many botanists doubt the existence of plant species1–5, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or ‘units of evolution’. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few ‘botanical horror stories’, such as dandelions, blackberries and oaks6,7. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (>80%), the correspondence of taxonomic species to these clusters is poor (<60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom8, plant species are more likely than animal species to represent reproductively independent lineages. PMID:16554818

  1. The nature of plant species.

    PubMed

    Rieseberg, Loren H; Wood, Troy E; Baack, Eric J

    2006-03-23

    Many botanists doubt the existence of plant species, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or 'units of evolution'. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few 'botanical horror stories', such as dandelions, blackberries and oaks. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (> 80%), the correspondence of taxonomic species to these clusters is poor (< 60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom, plant species are more likely than animal species to represent reproductively independent lineages.

  2. A checklist of the vascular plants in Abbott Creek Research Natural Area, Oregon.

    Treesearch

    Rod Mitchell

    1979-01-01

    This paper is a checklist of 277 vascular plant taxa that have been collected or encountered in Abbott Creek Research Natural Area, Oregon; a brief description of five forested and two nonforested vegetation types is included.

  3. A method to select human-system interfaces for nuclear power plants

    DOE PAGES

    Hugo, Jacques Victor; Gertman, David Ira

    2015-10-19

    The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less

  4. Leaf Selection by Two Bornean Colobine Monkeys in Relation to Plant Chemistry and Abundance

    PubMed Central

    Matsuda, Ikki; Tuuga, Augustine; Bernard, Henry; Sugau, John; Hanya, Goro

    2013-01-01

    Focusing on the chemical basis of dietary selection while investigating the nutritional ecology of animals helps understand their feeding biology. It is also important to consider food abundance/biomass while studying the mechanism of animal food selection. We studied leaf selection in two Bornean folivorous primates in relation to plant chemistry and abundance: proboscis monkeys inhabiting a secondary riverine forest and red leaf monkeys inhabiting a primary forest. Both species tended to prefer leaves containing higher protein levels, although more abundant plant species were chosen within the preferred species, probably to maximise energy gain per unit time. However, the two species showed clear differences in their detailed feeding strategy. Red leaf monkeys strictly chose to consume young leaves to adapt to the poor nutritional environment of the primary forest, whereas proboscis monkeys were not highly selective because of the better quality of its common food in the riverine forest. PMID:23695180

  5. Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata.

    PubMed

    Sandring, Saskia; Agren, Jon

    2009-05-01

    The evolution of floral display and flowering time in animal-pollinated plants is commonly attributed to pollinator-mediated selection. Yet, the causes of selection on flowering phenology and traits contributing to floral display have rarely been tested experimentally in natural populations. We quantified phenotypic selection on morphological and phenological characters in the perennial, outcrossing herb Arabidopsis lyrata in two years using female reproductive success as a proxy of fitness. To determine whether selection on floral display and flowering phenology can be attributed to interactions with pollinators, selection was quantified both for open-pollinated controls and for plants receiving supplemental hand-pollination. We documented directional selection for many flowers, large petals, late start of flowering, and early end of flowering. Seed output was pollen-limited in both years and supplemental hand-pollination reduced the magnitude of selection on number of flowers, and reversed the direction of selection on end of flowering. The results demonstrate that interactions with pollinators may affect the strength of selection on floral display and the direction of selection on phenology of flowering in natural plant populations. They thus support the contention that pollinators can drive the evolution of both floral display and flowering time.

  6. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill.

    PubMed

    Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam

    2017-04-01

    The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits

  7. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill

    PubMed Central

    González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.

    2017-01-01

    Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P

  8. No consistent effect of plant diversity on productivity

    USGS Publications Warehouse

    Huston, M.A.; Aarssen, L.W.; Austin, M.P.; Cade, B.S.; Fridley, J.D.; Garnier, E.; Grime, J.P.; Hodgson, J.; Lauenroth, W.K.; Thompson, K.; Vandermeer, J.H.; Wardle, D.A.

    2000-01-01

    Hector et al. (1) reported on BIODEPTH, a major international experiment on the response of plant productivity to variation in the number of plant species. They found “an overall log-linear reduction of average aboveground biomass with loss of species,” leading to what the accompanying Perspective (2) described as “a rule of thumb—that each halving of diversity leads to a 10 to 20% reduction in productivity.” These conclusions, if true, imply that the continuing high rate of plant extinction threatens the future productivity of Earth's natural and managed ecosystems and could impair their ability to produce resources essential for human survival and to regulate the concentration of atmospheric CO2.The three sites with proper experimental design (Portugal, Sweden, and Sheffield) all showed significant positive regressions of productivity across two or three doublings of species richness [Fig. 1; (12)]. This is the pattern expected from random selection from a set of objects with different properties (13–15), because the probability of including any specific member of the set—such as a plant species that grows rapidly or fixes nitrogen—increases with the number of objects selected. Such a pattern, found consistently in randomly assembled experimental plant communities but only rarely in natural plant communities (4, 5,13–15), has been identified as a statistical artifact of experimental design (5, 13, 14). Although one study (15) suggested that the pattern constitutes a natural mechanism by which diversity affects productivity, this requires the biologically unrealistic assumption that plant communities are randomly assembled with respect to productivity (5).

  9. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  10. The Chemistry and Biological Activities of Natural Products from Northern African Plant Families: From Taccaceae to Zygophyllaceae.

    PubMed

    Ntie-Kang, Fidele; Njume, Leonel E; Malange, Yvette I; Günther, Stefan; Sippl, Wolfgang; Yong, Joseph N

    2016-04-01

    Traditional medicinal practices have a profound influence on the daily lives of people living in developing countries, particularly in Africa, since the populations cannot generally afford the cost of Western medicines. We have undertaken to investigate the correlation between the uses of plants in Traditional African medicine and the biological activities of the derived natural products, with the aim to validate the use of traditional medicine in Northern African communities. The literature is covered for the period 1959-2015 and part III of this review series focuses on plant families with names beginning with letters T to Z. The authors have focused on curating data from journals in natural products and phytomedicine. Within each journal home page, a query search based on country name was conducted. All articles "hits" were then verified, one at a time, that the species was harvested within the Northern African geographical regions. The current data partly constitutes the bases for the development of the Northern African natural compounds database. The review discusses 284 plant-based natural compounds from 34 species and 11 families. It was observed that the ethnobotanical uses of less than 40 % of the plant species surveyed correlated with the bioactivities of compounds identified.

  11. Effectiveness of Natural Antifungal Compounds in Controlling Infection by Grapevine Trunk Disease Pathogens through Pruning Wounds

    PubMed Central

    Cobos, Rebeca; Mateos, Rosa María; Álvarez-Pérez, José Manuel; Olego, Miguel Angel; Sevillano, Silvia; González-García, Sandra; Garzón-Jimeno, Enrique

    2015-01-01

    Grapevine trunk fungal pathogens, such as Diplodia seriata and Phaeomoniella chlamydospora, can infect plants through pruning wounds. They cause grapevine trunk diseases and are involved in grapevine decline. Accordingly, the protection of pruning wounds is crucial for the management of grapevine trunk diseases. The efficacy of different natural antifungals in inhibiting the growth of several fungi causing grapevine trunk diseases was evaluated in vitro. The fungi showing greater in vitro efficacy were tested on autoclaved grape wood assays against D. seriata and P. chlamydospora. Based on results from these assays, chitosan oligosaccharide, vanillin, and garlic extract were selected for further evaluation on pruning wounds inoculated with D. seriata and P. chlamydospora in field trials. A significant decrease in plant mortality was observed after 2 years of growth in the plants treated with the different natural antifungals compared to the mortality rate observed in infected plants that were not treated with antifungals. Also, the infection rate for the inoculated pathogens was significantly reduced in plants treated with the selected natural antifungals. Therefore, natural antifungals represent a promising alternative for disease control and could provide significant economic benefits for the grape-growing industry. PMID:26162882

  12. A Study of Vocational Education as a Factor in Selecting a Community for a Manufacturing Plant Site.

    ERIC Educational Resources Information Center

    Dean, Ernest H.

    The purpose of the study was to determine the factors considered by industrialists as they select communities in which to locate their new manufacturing plants, and to place the relative importance upon vocational-technical education as a factor in the plant site selection process. The three populations consisted of 113 companies of varying sizes…

  13. Plant tendrils: Nature's hygroscopic springs

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Puzey, Joshua; McCormick, Andrew; Mahadevan, L.

    2012-02-01

    Plant tendrils are specialized climbing organs that have fascinated biologists and physicists alike for centuries. Initially straight tendrils attach at the tip to an elevated rigid support and then winch the plant upward by coiling into a helical morphology characterized by two helices of opposite handedness connected by a helical perversion. In his renowned treatise on twining and tendril-bearing plants, Charles Darwin surmised that coiled tendrils serve as soft, springy attachments for the climbing plant. Yet, the true effect of the perverted helical shape of a coiled plant tendril has not been fully revealed. Using a combination of experiments on Cucurbitaceae tendrils, physical models constructed from strained rubber sheets, and numerical models of helical perversions, we have uncovered that tendril coiling occurs via anisotropic shrinkage of a strip of specialized cells in the interior of the tendril. Furthermore, variations in the mechanical behavior of tendrils as they become drier and ``woodier'' adds a new twist to the story of tendril coiling.

  14. Functional and taxonomic plant diversity for riverbank protection works: bioengineering techniques close to natural banks and beyond hard engineering.

    PubMed

    Cavaillé, Paul; Ducasse, Léon; Breton, Vincent; Dommanget, Fanny; Tabacchi, Eric; Evette, André

    2015-03-15

    Erosion control is a major issue in the Prealps region since piedmont is subject to both intense flood hazards and anthropic pressure. Riverbank protections may have major impacts on local ecosystem functioning and ecological corridor continuity. This study aimed to estimate the effects of the types of riverbank protection technique (from pure riprap to pure bioengineering) on the taxonomic and ecological composition of plant communities in comparison with unmanaged riverbanks as the referential system. Thirty-eight embankments were sampled in the foothills of the French and Swiss Alps. Four distinct riverbank techniques were analyzed and natural young willow stands were chosen as the referential system. At each site, vegetation was sampled along three transects from the waterline to the top of the riverbank. Plant communities were characterized using biological group composition (growth forms and life history, life strategies and distribution in space and time) and functional diversity indices (MFAD, FDc and wFDc). We identified 177 distinct plant species on 38 sites. Higher species richness levels were observed on bioengineered banks (from an average of 12 species recorded on ripraps to 27 species recorded on bioengineered banks) strongly dominated by Salicaceae species, especially for fascine and cribwall banks. Functional analyses of plant communities highlighted significant differences among bank types (p-value: 0.001) for all selected biological groups. Competitive - ruderal strategy, rooting shoots, stems or leaves that lie down or break off, and unisexual - dioecious, as well as pioneer plants and low shrubs (<4 m tall) distinguished bioengineered bank types. Functional diversity indices confirmed these differences among bank types (MFAD: p-value: 0.002; FDc: p-value: 0.003; wFDc: p-value: 0.005). Riprap always showed the lowest levels on functional diversity indices, fascine and cribwall banks were at the medium level and finally mixed and natural banks

  15. Plant essential oils potency as natural antibiotic in Indonesian medicinal herb of “jamu”

    NASA Astrophysics Data System (ADS)

    Soetjipto, H.; Martono, Y.

    2017-02-01

    The main purposes of this study are to compile antibacterial activity data of essential oils from Indonesian’s plants in order which can be used as a natural antibiotic in “jamu” to increase potential Indonesian medicinal herb. By using Agar Diffusing method, Bioautography and Gas Chromatography Mass Spectrum, respectively, antibacterial activity and chemical compounds of 12 plants essential oils were studied in the Natural Product Chemistry Laboratory, Department of Chemistry, Faculty of Science and Mathematics, Satya Wacana Christian University, Salatiga since 2007 until 2015. The results of this studies showed that all of the essential oils have a medium to a strong antibacterial activity which are in the range of 30 - 2,500 μg and 80-5,000 μg. Further on, the essential oils analyzed by GCMS showed that each essential oils have different dominant compounds. These data can be used as basic doses in the usage of essential oils as natural antibiotics.

  16. Succession Influences Wild Bees in a Temperate Forest Landscape: The Value of Early Successional Stages in Naturally Regenerated and Planted Forests

    PubMed Central

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional

  17. Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forests.

    PubMed

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional

  18. [Research progress in chemical communication among insect-resistant genetically modified plants, insect pests and natural enemies].

    PubMed

    Liu, Qing-Song; Li, Yun-He; Chen, Xiu-Ping; Peng, Yu-Fa

    2014-08-01

    Semiochemicals released by plants or insects play an important role in the communication among plants, phytophagous insects and their natural enemies. They thus form a chemical information network which regulates intra- and inter-specific behaviors and sustains the composition and structure of plant and insect communities. The application of insect-resistant genetically modified (IRGM) crops may affect the chemical communication within and among the tritrophic levels, and thus cause disturbances to the biotic community structure and the stability of the farmland ecosystem. This has raised concerns about the environmental safety of IRGM crops and triggered research worldwide. In the current article we provided a brief summary of the chemical communication among plants, herbivores and natural enemies; analyzed the potential of IRGM crops to affect the chemical communication between plants and arthropods and the related mechanisms; and discussed the current research progress and the future prospects in this field. We hope that this will promote the research in this field by Chinese scientists and increase our understanding of the potential effects of growing of IRGM crops on the arthropod community structure.

  19. Genetic basis and selection for life-history trait plasticity on alternative host plants for the cereal aphid Sitobion avenae.

    PubMed

    Dai, Xinjia; Gao, Suxia; Liu, Deguang

    2014-01-01

    Sitobion avenae (F.) can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones' life-history traits was unexpectedly low. The factor 'clone' alone explained 27.7-62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs) between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed.

  20. Behavior of Selected Endocrine Disrupting Chemicals in Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Wang, Xinze; Lu, Jiaming; Ollivier, Natacha; Saturnino, Anais; Gomez, Elena; Casellas, Claude; Picot, Bernadette

    2010-11-01

    The behavior of endocrine disrupting chemicals in sewage treatment plant affects their final fate in water environment. We selected six endocrine disrupting chemicals: 4 alkylphenols (4-tert-octylphenol, octylphenol, 4-nonylphenol, bisphenol A) and 2 steroids (17α-ethinylestradiol and estriol) as targets, their removal and transformation in wastewater treatment plant were studied. Five mixed liquors were sampled respectively from different stages of Minhang wastewater treatment plant in Shanghai. EDCs concentration were analyzed with GC-MS. The main removal pathways of EDCs include initial adsorption by suspended solids and following biodegradation in biological sludge. The removal efficiency of six targets was more than 86%. The concentration of OP and 4-n-NP in water significantly increased in anoxic stage, the reason may be the releases of EDCs from sludge to water on the condition of low DO. And it was also found that the EDCs could be released to water phase in the secondary clarifier, which may cause potential risk of EDCs entering the environment with discharge.

  1. The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck).

    PubMed

    Boscariol, R L; Almeida, W A B; Derbyshire, M T V C; Mourão Filho, F A A; Mendes, B M J

    2003-09-01

    A new method for obtaining transgenic sweet orange plants was developed in which positive selection (Positech) based on the Escherichia coli phosphomannose-isomerase (PMI) gene as the selectable marker gene and mannose as the selective agent was used. Epicotyl segments from in vitro-germinated plants of Valencia, Hamlin, Natal and Pera sweet oranges were inoculated with Agrobacterium tumefaciens EHA101-pNOV2116 and subsequently selected on medium supplemented with different concentrations of mannose or with a combination of mannose and sucrose as a carbon source. Genetic transformation was confirmed by PCR and Southern blot. The transgene expression was evaluated using a chlorophenol red assay and isoenzymes. The transformation efficiency rate ranged from 3% to 23.8%, depending on cultivar. This system provides an efficient manner for selecting transgenic sweet orange plants without using antibiotics or herbicides.

  2. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    PubMed

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  3. Constraint, natural selection, and the evolution of human body form

    PubMed Central

    Savell, Kristen R. R.; Auerbach, Benjamin M.; Roseman, Charles C.

    2016-01-01

    Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics. PMID:27482101

  4. Constraint, natural selection, and the evolution of human body form.

    PubMed

    Savell, Kristen R R; Auerbach, Benjamin M; Roseman, Charles C

    2016-08-23

    Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics.

  5. Comparing hydraulic properties of soil-less substrates with natural soils: a more detailed look at hydraulic properties and their impact on plant water availability

    NASA Astrophysics Data System (ADS)

    Crawford, L.; Rivera, L. D.; van Iersel, M.

    2013-12-01

    Moisture release curves are often used when assessing plant-water relationships in soil-less substrates. However, differences between natural soils and soilless substrates make traditional assumptions about plant available water potentially invalid. If soil-less substrates are supposed to be treated like natural soils; why do plants begin wilting at very low water potentials (-10 to -30 kPa) and there is anywhere between 20 to 40 % water left (on a volumetric basis) in the soil (Abad et al., 2005; Arguedas et al., 2006; Ristvey et al, 2008) . We hypothesize that the fault lies in the methods used and the assumption that water potential is the only limiting factor in water availability to plants. Hydraulic properties, including the relationships that exist between plant available water, water content, and hydraulic conductivity of soil-less substrates have traditionally been characterized using instrumentation such as pressure plates, hanging water columns, and tempe cells. These approaches typically take a months and only provide data on select segments of the soil moisture release curve, and in the case of pressure plates and hanging water columns hydraulic conductivity is ignored and not very well understood. Using the Wind/Schindler Evaporation method more detailed measurements of these hydraulic properties can be measured in a less than a week. A more detailed look at the hydraulic properties of soil-less substrates and how they compare with natural soils may give us more insight into soil-plant-water-relations and what limits availability of water to plants. Soil moisture release curves and hydraulic conductivity curves of different soil-less substrates were compared with curves from typical agriculture soils to give insight into how these properties compare. Results of the soil moisture release curves showed that some soil-less substrates had comparable moisture release curves to agricultural soils while others had bi-modal curves indicating gap-gradation in

  6. Food selection of the Malayan tapir (Tapirus indicus) under semi-wild conditions

    NASA Astrophysics Data System (ADS)

    Simpson, Boyd K.; Shukor, M. N.; Magintan, David

    2013-11-01

    A study on the selection of food plants by captive Malayan tapirs (Tapirus indicus) was undertaken in a 30 hectare natural forest enclosure at the Sungai Dusun Wildlife Reserve, Malaysia. Tapirs browsed on 217 species of plants (from 99 genera and 49 families) from a total of the 1142 specimens collected and identified. Food plants were heavily dominated by sapling trees and shrubs which comprised 93% of all plants taken, with the remainder comprising woody lianas, vines and herbaceous plants. Although tapirs browsed on a wide variety of plant species, the top 30 species consumed represented more than 60% of all the plants selected, whilst the vast majority of species were rarely eaten. More than 80 species of trees and shrubs were available, but not eaten at all. The most readily consumed species were the sub-canopy and understorey trees Xerospermum noronhianum, Aporosa prainiana and Baccaurea parviflora, while Aporosa, Knema and Xerospermum were the dominant plant genera. The Phyllanthaceae (leaf flowers), Myristicaceae (nutmegs) and Sapindaceae (rambutans) were the most commonly selected families comprising 45% of the diet. Tapirs fed on saplings trees up to 8.3 m in height, while plants taller than about 1.6 m were bent, broken or pushed to the ground to gain access to the foliage. Sapling stems up to 4.2 cm in diameter could be snapped by biting, while larger trees to 7 cm diameter could be pushed down. Tapirs typically fed on the newer leaves and shoots, however, often only consuming half of the available foliage on a plant. This study documents 160 new plant species suitable as Malayan tapir food, and is consistent with the generalist, but selective browsing nature of the Tapirus species in general.

  7. Rational selection of structurally diverse natural product scaffolds with favorable ADME properties for drug discovery.

    PubMed

    Samiulla, D S; Vaidyanathan, V V; Arun, P C; Balan, G; Blaze, M; Bondre, S; Chandrasekhar, G; Gadakh, A; Kumar, R; Kharvi, G; Kim, H O; Kumar, S; Malikayil, J A; Moger, M; Mone, M K; Nagarjuna, P; Ogbu, C; Pendhalkar, D; Rao, A V S Raja; Rao, G Venkateshwar; Sarma, V K; Shaik, S; Sharma, G V R; Singh, S; Sreedhar, C; Sonawane, R; Timmanna, U; Hardy, L W

    2005-01-01

    Natural product analogs are significant sources for therapeutic agents. To capitalize efficiently on the effective features of naturally occurring substances, a natural product-based library production platform has been devised at Aurigene for drug lead discovery. This approach combines the attractive biological and physicochemical properties of natural product scaffolds, provided by eons of natural selection, with the chemical diversity available from parallel synthetic methods. Virtual property analysis, using computational methods described here, guides the selection of a set of natural product scaffolds that are both structurally diverse and likely to have favorable pharmacokinetic properties. The experimental characterization of several in vitro ADME properties of twenty of these scaffolds, and of a small set of designed congeners based upon one scaffold, is also described. These data confirm that most of the scaffolds and the designed library members have properties favorable to their utilization for creating libraries of lead-like molecules.

  8. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana

    PubMed Central

    Luo, Y; Widmer, A; Karrenberg, S

    2015-01-01

    Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana. PMID:25293874

  9. The look of into Desalination and Natural Hazard

    NASA Astrophysics Data System (ADS)

    Arregoitia Sarabia, C. A.

    2012-04-01

    Today due to climate change and population growth, cities and especially larger cities have become more water stressed. Thus the growing demand for drinkable water due to water scarcity in different World regions and its reliable supply, have persuaded humans to construct desalination plants. Today, the implementation of different large-scale desalination methods is increasing. Desalination is a separation process that consists on the removal of salts from water (seawater or brackish water) to make it suitable for other purposes. Some important environmental aspects for a desalination plant are the location of the plant, brine disposal and energy considerations. However these issues become affected when natural adversity happens. Desalination processes used are normally classified in thermal and membrane. The energy required by these processes could be of any form of heat, electrical or mechanical depending on the separation process. These types of energy derive from fossil fuels, which conditions the desalination sustainability -environmental and economical. To improve this reality, the desalination industry is making a great research effort related to novel technologies, the use of renewable energies, and brine management. Presently desalination membrane technologies are preferred over thermal ones (based on evaporation) since they allow for continuous operations close to ambient temperatures. Moreover, the offer for a wider selection of large equipment and modules is increasing. This makes it possible to design processes according to potable needs as well as ease the use of membranes and other separation technologies together. Traditionally the location of the plant is an obvious matter where selection of site should be determined by considerations of mainly energy supply available and distance in relation to feed water intake, disposal site and end-user. This means locating these plants in coastal areas or inland locations and look for a solution to then

  10. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    PubMed

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  11. Selected Landscape Plants. Slide Script.

    ERIC Educational Resources Information Center

    McCann, Kevin

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important woody ornamental landscape plants. Included in the script are narrations for use with a total of 253 slides illustrating 92 different plants. Several slides are used to illustrate each plant: besides a view of…

  12. Determining light requirements of groundcover plants from subtropical natural forest using hemispherical photography

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhong, Yonglin; Xu, Mingfeng; Su, Zhiyao

    2017-01-01

    In order to determine light requirements of indigenous groundcover plants for potential use in urban landscaping, we conducted a plant census in Yinpingshan Nature Reserve, Dongguan, China, and measured canopy structure and understory light regimes using hemispherical photography. We found that canopy openness, transmitted direct solar radiation, and transmitted diffuse solar radiation exhibited highly significant spatial heterogeneity. Species composition and diversity of groundcover plants were highly dependent on canopy structure and understory light condition. Greater diversity and more stems of groundcover plants were associated with greater canopy openness and understory radiation in most cases. Highly significant differences in species composition were detected along canopy openness, transmitted direct solar radiation, and transmitted diffuse solar radiation gradients, respectively. We also detected indicator species for specific understory light regimes, which will provide useful information when applying such species in urban greening under various light environments.

  13. Remote sensing of selected winter and spring host plants of tarnished plant bug (Heteroptera: Miridae) and herbicide use strategies as a management tactic

    USDA-ARS?s Scientific Manuscript database

    Remote sensing was used in a series of experiments over a three-year period to obtain spectral reflectance data for use in studying differences in vegetation indices between grasses, broadleaf plants, and grass/broadleaf plant mixtures. Empirical simulations of selected non-crop winter and spring h...

  14. Selecting Proper Plant Species for Mine Reclamation Using Fuzzy AHP Approach (Case Study: Chadormaloo Iron Mine of Iran)

    NASA Astrophysics Data System (ADS)

    Ebrahimabadi, Arash

    2016-12-01

    This paper describes an effective approach to select suitable plant species for reclamation of mined lands in Chadormaloo iron mine which is located in central part of Iran, near the city of Bafgh in Yazd province. After mine's total reserves are excavated, the mine requires to be permanently closed and reclaimed. Mine reclamation and post-mining land-use are the main issues in the phase of mine closure. In general, among various scenarios for mine reclamation process, i.e. planting, agriculture, forestry, residency, tourist attraction, etc., planting is the oldest and commonly-used technology for the reclamation of lands damaged by mining activities. Planting and vegetation play a major role in restoring productivity, ecosystem stability and biological diversity to degraded areas, therefore the main goal of this research work is to choose proper and suitable plants compatible with the conditions of Chadormaloo mined area, providing consistent conditions for future use. To ensure the sustainability of the reclaimed landscape, the most suitable plant species adapted to the mine conditions are selected. Plant species selection is a Multi Criteria Decision Making (MCDM) problem. In this paper, a fuzzy MCDM technique, namely Fuzzy Analytic Hierarchy Process (FAHP) is developed to assist chadormaloo iron mine managers and designers in the process of plant type selection for reclamation of the mine under fuzzy environment where the vagueness and uncertainty are taken into account with linguistic variables parameterized by triangular fuzzy numbers. The results achieved from using FAHP approach demonstrate that the most proper plant species are ranked as Artemisia sieberi, Salsola yazdiana, Halophytes types, and Zygophyllum, respectively for reclamation of Chadormaloo iron mine.

  15. Natural selection and sex differences in morbidity and mortality in early life.

    PubMed

    Wells, J C

    2000-01-07

    Both morbidity and mortality are consistently reported to be higher in males than in females in early life, but no explanation for these findings has been offered. This paper argues that the sex difference in early vulnerability can be attributed to the natural selection of optimal maternal strategies for maximizing lifetime reproductive success, as modelled previously by Trivers and Willard. These authors theorized that males and females offer different returns on parental investment depending on the state of the environment. Natural selection has therefore favoured maternal ability to manipulate offspring sex in response to environmental conditions in early life, as shown in variation in the sex ratio at birth. This argument can be extended to the whole period of parental investment until weaning. Male vulnerability in response to environmental stress in early life is predicted to have been favoured by natural selection. This vulnerability is most evident in the harsh conditions resulting from pre-term birth, but can also be seen in term infants, and manifests as greater morbidity and mortality persisting into early childhood. Malnutrition, interacting with infection after birth, is suggested as the fundamental trigger mechanism. The model suggests that whatever improvements are made in medical care, any environmental stress will always affect males more severely than females in early life. Copyright 2000 Academic Press.

  16. The nature of selection on the major histocompatibility complex.

    PubMed

    Apanius, V; Penn, D; Slev, P R; Ruff, L R; Potts, W K

    1997-01-01

    Only natural selection can account for the extreme genetic diversity of genes of the major histocompatibility complex (MHC). Although the structure and function of classic MHC genes is well understood at the molecular and cellular levels, there is controversy about how MHC diversity is selectively maintained. The diversifying selection can be driven by pathogen interactions and inbreeding avoidance mechanisms. Pathogen-driven selection can maintain MHC polymorphism based on heterozygote advantage or frequency-dependent selection due to pathogen evasion of MHC-dependent immune recognition. Empirical evidence demonstrates that specific MHC haplotypes are resistant to certain infectious agents, while susceptible to others. These data are consistent with both heterozygote advantage and frequency-dependent models. Additional research is needed to discriminate between these mechanisms. Infectious agents can precipitate autoimmunity and can potentially contribute to MHC diversity through molecular mimicry and by favoring immunodominance. MHC-dependent abortion and mate choice, based on olfaction, can also maintain MHC diversity and probably functions both to avoid genome-wide inbreeding and produce MHC-heterozygous offspring with increased immune responsiveness. Although this diverse set of hypotheses are often treated as competing alternatives, we believe that they all fit into a coherent, internally consistent thesis. It is likely that at least in some species, all of these mechanisms operate, leading to the extreme diversification found in MHC genes.

  17. Natural and sexual selection giveth and taketh away reproductive barriers: models of population divergence in guppies.

    PubMed

    Labonne, Jacques; Hendry, Andrew P

    2010-07-01

    The standard predictions of ecological speciation might be nuanced by the interaction between natural and sexual selection. We investigated this hypothesis with an individual-based model tailored to the biology of guppies (Poecilia reticulata). We specifically modeled the situation where a high-predation population below a waterfall colonizes a low-predation population above a waterfall. Focusing on the evolution of male color, we confirm that divergent selection causes the appreciable evolution of male color within 20 generations. The rate and magnitude of this divergence were reduced when dispersal rates were high and when female choice did not differ between environments. Adaptive divergence was always coupled to the evolution of two reproductive barriers: viability selection against immigrants and hybrids. Different types of sexual selection, however, led to contrasting results for another potential reproductive barrier: mating success of immigrants. In some cases, the effects of natural and sexual selection offset each other, leading to no overall reproductive isolation despite strong adaptive divergence. Sexual selection acting through female choice can thus strongly modify the effects of divergent natural selection and thereby alter the standard predictions of ecological speciation. We also found that under no circumstances did divergent selection cause appreciable divergence in neutral genetic markers.

  18. Selecting the Best Mobile Information Service with Natural Language User Input

    NASA Astrophysics Data System (ADS)

    Feng, Qiangze; Qi, Hongwei; Fukushima, Toshikazu

    Information services accessed via mobile phones provide information directly relevant to subscribers’ daily lives and are an area of dynamic market growth worldwide. Although many information services are currently offered by mobile operators, many of the existing solutions require a unique gateway for each service, and it is inconvenient for users to have to remember a large number of such gateways. Furthermore, the Short Message Service (SMS) is very popular in China and Chinese users would prefer to access these services in natural language via SMS. This chapter describes a Natural Language Based Service Selection System (NL3S) for use with a large number of mobile information services. The system can accept user queries in natural language and navigate it to the required service. Since it is difficult for existing methods to achieve high accuracy and high coverage and anticipate which other services a user might want to query, the NL3S is developed based on a Multi-service Ontology (MO) and Multi-service Query Language (MQL). The MO and MQL provide semantic and linguistic knowledge, respectively, to facilitate service selection for a user query and to provide adaptive service recommendations. Experiments show that the NL3S can achieve 75-95% accuracies and 85-95% satisfactions for processing various styles of natural language queries. A trial involving navigation of 30 different mobile services shows that the NL3S can provide a viable commercial solution for mobile operators.

  19. The impact of three recent coal-fired power plant closings on Pittsburgh air quality: A natural experiment.

    PubMed

    Russell, Marie C; Belle, Jessica H; Liu, Yang

    2017-01-01

    Relative to the rest of the United States, the region of southwestern Pennsylvania, including metropolitan Pittsburgh, experiences high ambient concentrations of fine particulate matter (PM 2.5 ), which is known to be associated with adverse respiratory and cardiovascular health impacts. This study evaluates whether the closing of three coal-fired power plants within the southwestern Pennsylvania region resulted in a significant decrease in PM 2.5 concentration. Both PM 2.5 data obtained from EPA ground stations in the study region and aerosol optical depth (AOD) data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra and Aqua satellites were used to investigate regional air quality from January 2011 through December 2014. The impact of the plant closings on PM 2.5 concentration and AOD was evaluated using a series of generalized additive models. The model results show that monthly fuel consumption of the Elrama plant, which closed in October of 2012, and monthly fuel consumption of both the Mitchell and Hatfield's Ferry plants, which closed in October of 2013, were significant predictors of both PM 2.5 concentration and AOD at EPA ground stations in the study region, after controlling for multiple meteorological factors and long-term, region-wide air quality improvements. The model's power to predict PM 2.5 concentration increased from an adjusted R 2 of 0.61 to 0.68 after excluding data from ground stations with higher uncertainty due to recent increases in unconventional natural gas extraction activities. After preliminary analyses of mean PM 2.5 concentration and AOD showed a downward trend following each power plant shutdown, results from a series of generalized additive models confirmed that the activity of the three plants that closed, measured by monthly fuel consumption, was highly significant in predicting both AOD and PM 2.5 at 12 EPA ground stations; further research on PM 2.5 emissions from

  20. A model for plant lighting system selection.

    PubMed

    Ciolkosz, D E; Albright, L D; Sager, J C; Langhans, R W

    2002-01-01

    A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.

  1. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria

    PubMed Central

    Khan, Usman Ali; Niaz, Zeeshan; Qasim, Muhammad; Khan, Jafar; Tayyaba; Rehman, Bushra

    2013-01-01

    Medicinal plants are traditionally used for the treatment of human infections. The present study was undertaken to investigate Bergenia ciliata, Jasminum officinale, and Santalum album for their potential activity against human bacterial pathogens. B. ciliata, J. officinale, and S. album extracts were prepared in cold and hot water. The activity of plant extracts and selected antibiotics was evaluated against five bacterial pathogens including Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli using agar well diffusion method. Among the three medicinal plants, B. ciliata extracts displayed potential activity against bacterial pathogens. Cold water extract of Bergenia ciliate showed the highest activity against B. subtilis, which is comparable with a zone of inhibition exhibited by ceftriaxone and erythromycin. J. officinale and S. album extracts demonstrated variable antibacterial activity. Further studies are needed to explore the novel antibacterial bioactive molecules. PMID:24294497

  2. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    NASA Astrophysics Data System (ADS)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  3. Plant genetic transformation efficiency of selected Malaysian rice based on selectable marker gene (hptII).

    PubMed

    Htwe, Nwe Nwe; Ling, Ho Chai; Zaman, Faridah Qamaruz; Maziah, Mahmood

    2014-04-01

    Rice is one of the most important cereal crops with great potential for biotechnology progress. In transformation method, antibiotic resistance genes are routinely used as powerful markers for selecting transformed cells from surrounding non-transformed cells. In this study, the toxicity level of hygromycin was optimized for two selected mutant rice lines, MR219 line 4 and line 9. The mature embryos were isolated and cultured on an MS medium with different hygromycin concentrations (0, 20, 40, 60, 80 and 100 mg L(-1)). Evidently, above 60 mg L(-1) was effective for callus formation and observed completely dead. Further there were tested for specific concentration (0-60). Although, 21.28% calli survived on the medium containing 45 mg L(-1) hygromycin, it seemed suitable for the identification of putative transformants. These findings indicated that a system for rice transformation in a relatively high frequency and the transgenes are stably expressed in the transgenic plants. Green shoots were regenerated from the explant under hygromycin stress. RT-PCR using hptII and gus sequence specific primer and Southern blot analysis were used to confirm the presence of the transgene and to determine the transformation efficiency for their stable integration in regenerated plants. This study demonstrated that the hygromycin resistance can be used as an effective marker for rice transformation.

  4. Population genetic structure and natural selection of Plasmodium falciparum apical membrane antigen-1 in Myanmar isolates.

    PubMed

    Kang, Jung-Mi; Lee, Jinyoung; Moe, Mya; Jun, Hojong; Lê, Hương Giang; Kim, Tae Im; Thái, Thị Lam; Sohn, Woon-Mok; Myint, Moe Kyaw; Lin, Khin; Shin, Ho-Joon; Kim, Tong-Soo; Na, Byoung-Kuk

    2018-02-07

    Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is one of leading blood stage malaria vaccine candidates. However, genetic variation and antigenic diversity identified in global PfAMA-1 are major hurdles in the development of an effective vaccine based on this antigen. In this study, genetic structure and the effect of natural selection of PfAMA-1 among Myanmar P. falciparum isolates were analysed. Blood samples were collected from 58 Myanmar patients with falciparum malaria. Full-length PfAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. PfAMA-1 sequence of each isolate was sequenced. Polymorphic characteristics and effect of natural selection were analysed with using DNASTAR, MEGA4, and DnaSP programs. Polymorphic nature and natural selection in 459 global PfAMA-1 were also analysed. Thirty-seven different haplotypes of PfAMA-1 were identified in 58 Myanmar P. falciparum isolates. Most amino acid changes identified in Myanmar PfAMA-1 were found in domains I and III. Overall patterns of amino acid changes in Myanmar PfAMA-1 were similar to those in global PfAMA-1. However, frequencies of amino acid changes differed by country. Novel amino acid changes in Myanmar PfAMA-1 were also identified. Evidences for natural selection and recombination event were observed in global PfAMA-1. Among 51 commonly identified amino acid changes in global PfAMA-1 sequences, 43 were found in predicted RBC-binding sites, B-cell epitopes, or IUR regions. Myanmar PfAMA-1 showed similar patterns of nucleotide diversity and amino acid polymorphisms compared to those of global PfAMA-1. Balancing natural selection and intragenic recombination across PfAMA-1 are likely to play major roles in generating genetic diversity in global PfAMA-1. Most common amino acid changes in global PfAMA-1 were located in predicted B-cell epitopes where high levels of nucleotide diversity and balancing natural selection were found. These results highlight the

  5. Reasoning about Natural Selection: Diagnosing Contextual Competency Using the ACORNS Instrument

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Beggrow, Elizabeth P.; Opfer, John E.; Ha, Minsu

    2012-01-01

    Studies of students' thinking about natural selection have revealed that the scenarios in which students reason evoke different types, magnitudes, and arrangements of knowledge elements and misconceptions. Diagnostic tests are needed that probe students' thinking across a representative array of evolutionary contexts. The ACORNS is a diagnostic…

  6. Linearity assumption in soil-to-plant transfer factors of natural uranium and radium in Helianthus annuus L.

    PubMed

    Rodríguez, P Blanco; Tomé, F Vera; Fernández, M Pérez; Lozano, J C

    2006-05-15

    The linearity assumption of the validation of soil-to-plant transfer factors of natural uranium and (226)Ra was tested using Helianthus annuus L. (sunflower) grown in a hydroponic medium. Transfer of natural uranium and (226)Ra was tested in both the aerial fraction of plants and in the overall seedlings (roots and shoots). The results show that the linearity assumption can be considered valid in the hydroponic growth of sunflowers for the radionuclides studied. The ability of sunflowers to translocate uranium and (226)Ra was also investigated, as well as the feasibility of using sunflower plants to remove uranium and radium from contaminated water, and by extension, their potential for phytoextraction. In this sense, the removal percentages obtained for natural uranium and (226)Ra were 24% and 42%, respectively. Practically all the uranium is accumulated in the roots. However, 86% of the (226)Ra activity concentration in roots was translocated to the aerial part.

  7. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III".

    PubMed

    Manosroi, Aranya; Akazawa, Hiroyuki; Akihisa, Toshihiro; Jantrawut, Pensak; Kitdamrongtham, Worapong; Manosroi, Worapaka; Manosroi, Jiradej

    2015-02-23

    Thai/Lanna region has its own folklore wisdoms including the traditional medicinal plant recipes. Thai/Lanna medicinal plant recipe database "MANOSROI III" has been developed by Prof. Dr. Jiradej Manosroi. It consists of over 200,000 recipes for all diseases including cancer. To investigate the anti-proliferative and apoptotic activities on human colon cancer cell line (HT-29) as well as the cancer cell selectivity of the methanolic extracts (MEs) and fractions of the 23 selected plants from the "MANOSROI III" database. The 23 selected plants were extracted with methanol under reflux and evaluated for their anti-proliferative activity by sulforhodamine B assay. The 5 plants (Gloriosa superba, Caesalpinia sappan, Fibraurea tinctoria, Ventilago denticulata and Psophocarpus tetragonolobus) with potent anti-proliferative activity were fractionated by liquid-liquid partition to give 4 fractions including each hexane (HF), methanol-water (MF), n-butanol (BF) and water (WF) fractions. They were tested for anti-proliferative activity and cancer cell selectivity. The ME and fractions of G. superba which showed potent anti-proliferative activity were further examined for morphological changes and apoptotic activities by acridine orange (AO)/ethidium bromide (EB) staining. The ME of G. superba root showed active with the highest anti-proliferative activity at 9.17 and 1.58 folds of cisplatin and doxorubicin, respectively. After liquid-liquid partition, HF of V. denticulata, MFs of F. tinctoria, V. denticulata and BF of P. tetragonolobus showed higher anti-proliferative activities than their MEs. The MF of G. superba indicated the highest anti-proliferative activity at 7.73 and 1.34 folds of cisplatin and doxorubicin, respectively, but only 0.86 fold of its ME. The ME and HF, MF and BF of G. superba and MF of F. tinctoria demonstrated high cancer cell selectivity. At 50 µg/ml, ME, HF, MF and BF of G. superba demonstrated higher apoptotic activities than the two standard drugs

  8. Selecting plant species for ecological restoration: A perspective for land managers

    Treesearch

    Ray W. Brown; Michael C. Amacher

    1999-01-01

    We recommend in this paper that land managers adopt a policy of mandatory use of native plant species for revegetation and restoration of severe disturbances on wildlands throughout the Interior West. A review of the relative advantages and disadvantages of using introduced and native species suggests that selection criteria based on ecological adaptability and...

  9. In vitro antibacterial activity of selected medicinal plants from lower Himalayas.

    PubMed

    Zulqarnain; Rahim, Abdur; Ahmad, Khalid; Ullah, Faizan; Ullah, Hamid; Nishan, Umar

    2015-03-01

    The present studies cover antibacterial activity of the crude methanolic extracts of 11 medicinal plants viz. Adhatoda vasica, Bauhenia variegate, Bombax ceiba, Carrisa opaca, Caryopteris grata, Debregeasia salicifolia, Lantana camara, Melia azedarach, Phyllanthus emblica, Pinus roxburghii and Olea ferruginea collected from lower Himalayas against two Gram positive (Staphylococcus aureus, Micrococcus luteus) and two Gram negative (Escherichia coli, Pseudomonas aureginosa) bacterial strains. The extracts were applied at four different concentrations (120 mg/mL, 90mg/mL, 60mg/mL and 30mg/mL) in dimethyl sulfoxide (DMSO) by using agar well diffusion method. Antibacterial activities against Staphylococcus aureus and Micrococcus luteus were observed formethanolic extracts of all the above mentioned plants. Greater antibacterial activity against Pseudomonas aeruginosa was only exhibited by Phyllanthus emblica, Pinus roxburghii, Debregeasia salicifolia and Lantana camara. Escherichia coli was highly resistant to all the plant extracts at all concentrations. It is inferred that methanolic crude extracts of the above mentioned plantsexhibitantibacterial activities against pathogenic bacteria, which proved the ethnobotanical importance of the selected plants that indigenous people use for cure against various diseases.

  10. The Nature of Selection and Judging for the Teacher of the Year Award.

    ERIC Educational Resources Information Center

    McKenna, Bonnie; And Others

    This paper reports on the investigation of the operation of the Teacher of the Year Award program in 28 states. It focuses on the method of selection for recipients of this award, and explores the nature of the judging process used in selecting candidates at both the state and national levels. Specific objectives are: (1) to determine the criteria…

  11. Assessment of air pollution tolerance levels of selected plants around cement industry, Coimbatore, India.

    PubMed

    Radhapriya, P; NavaneethaGopalakrishnan, A; Malini, P; Ramachandran, A

    2012-05-01

    Being the second largest manufacturing industry in India, cement industry is one of the major contributors of suspended particulate matter (SPM). Since plants are sensitive to air pollution, introducing suitable plant species as part of the greenbelt around cement industry was the objective of the present study. Suitable plant species were selected based on the Air pollution tolerance index (APTI) calculated by analyzing ascorbic acid (AA), pH, relative water content (RWC) and total chlorophyll (TChl) of the plants occuring in the locality. Plants were selected within a 6 km radius from the industry and were graded as per their tolerance levels by analyzing the biochemical parameters. From the statistical analysis at 0.05 level of significance a difference in the APTI values among the 27 plant species was observed, but they showed homogenous results when analysed zone wise using one-way analyses of variance. Analyses of individual parameters showed variation in the different zones surrounding the cement industry, whereas the APTI value (which is a combination of the parameter viz. AA, RWC, TChl, pH) showed more or less same gradation. Significant variation in individual parameters and APTI was seen with in the species. All the plants surrounding the cement industry are indicative of high pollution exposure comparable to the results obtain for control plants. Based on the APTI value, it was observed that about 37% of the plant species were tolerant. Among them Mangifera indica, Bougainvillea species, Psidum quajava showed high APTI values. 33% of the species were highly susceptible to the adverse effects of SPM, among which Thevetia neriifolia, Saraca indica, Phyllanthus emblica and Cercocarpus ledifolius showed low APTI values. 15% each of the species were at the intermediary and moderate tolerance levels.

  12. Performance of the Natural Mortality Factors of Aphis gossypii (Hemiptera: Aphididae) as a Function of Cotton Plant Variety and Phenology.

    PubMed

    Chamuene, António; Araújo, Tamíris Alves; Silva, Gerson; Costa, Thiago Leandro; Berger, Paulo Geraldo; Picanço, Marcelo Coutinho

    2018-04-05

    Natural mortality factors are responsible for regulating pest populations in the field. However, plant attributes such as the variety and phenological stage can influence the performance of these factors. Therefore, we investigated the performance of the natural mortality factors of Aphis gossypii (Glover; Hemiptera: Aphididae) as a function of the plant variety and phenology. To investigate the performance of these factors, we evaluated the mortality of A. gossypii caused by natural mortality factors for 2 yr in field conditions in transgenic (Bacillus thuringiensis/Roundup Ready) and non-transgenic cotton crops during vegetative, flowering, and fruiting stages. The natural mortality factors were affected similarly between the transgenic and non-transgenic plants; however, differences were observed in their performance, depending on the phenological stage of the cotton plant. Compared with other stages, predation was higher in the flowering stage, whereas the mortality caused by rainfall was higher in the vegetative stage. Coccinellid beetles were primarily responsible for the predation on A. gossypii. These findings highlight that the performance of the natural mortality factors of A. gossypii varied more as a function of the phenological stage of cotton than of the variety.

  13. Antioxidant activity of selected plant species; potential new sources of natural antioxidants.

    PubMed

    Nićiforović, N; Mihailović, V; Masković, P; Solujić, S; Stojković, A; Pavlović Muratspahić, D

    2010-11-01

    The aim of this study was to examine six plants from Serbia for their potential antioxidant activity. Therefore, six antioxidant activity assays were carried out, including: total antioxidant capacity, DPPH free-radical scavenging, the inhibitory activity toward lipid peroxidation, Fe(3+)- reducing power, Fe(2+)- chelating ability and hydroxyl radical scavenging activity. Total phenolic and flavonoid contents were also determined for each alcoholic extract. Cotinus coggygria extract contained the highest amount of total phenols (413mg GAE /g dry extract), while the highest proportion of flavonoids was found in the Echium vulgare methanol extract (105 mg RU/g). Cotinus coggygria and Halacsya sendtneri alcoholic extracts showed the highest total antioxidant capacity (313 and 231 mg AA/g dry extract), as well as DPPH free-radical scavenging (IC(50)=9 and 99 μg/ml), inhibitory activity toward lipid peroxidation (IC(50)=3 and 17 μg/ml) and reducing power. Whereas, the greatest hydroxyl radical scavenging activity, as well as ferrous ion chelating ability showed Echium vulgare, Echium rubrum and Halacsya sendtneri. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Modelling of plant-soil carbon, nitrogen and phosphorus cycling in semi-natural terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Davies, Jessica; Quinton, John; Rowe, Ed; Tipping, Ed

    2013-04-01

    In recent centuries pools and fluxes of C, N and P in natural and semi-natural UK ecosystems have been transformed by atmospheric pollution leading to: acidification; eutrophication of surface waters; loss of biodiversity; and increased greenhouse gas emissions. In addition, climate change now threatens to perturb these systems further. Understanding in this field is vital in determining the consequences of artificial nutrient enrichment and land use and climate change, and mitigating against their effects. The N14CP model has been recently developed to assess the temporal responses of soil C, N and P pools to nutrient enrichment in semi-natural ecosystems, and explore the connections between these nutrients. It is a dynamic, mechanistic model, driven by: climate; CO2, N (fixation and pollutant deposition), and P (weathering and atmospheric deposition) inputs; and plant cover type. It explicitly links C, N, and P in both plants and soils, using plant element stoichiometry as the primary constraint. Net primary production, and plant/soil element pools, are calculated over time, and output fluxes of dissolved organic and inorganic, and gaseous, forms of C, N, and P produced. Radiocarbon data are used to constrain Soil Organic Matter (SOM) turnover. The SOM is represented as three pools, undergoing first-order decomposition reactions with turn-over rates ranging from 2 to 1000 years. The N14CP modelling methodology is discussed and its calibration and verification using observations from 200 northern European sites presented. Whilst the primary period of interest with respect to nutrient enrichment is from the industrial revolution onwards, plant-soil C, N and P are simulated at these sites for a period spanning from the start of the Holocene (to provide a spin-up period) to the present day. Clearly, during this time span land cover and usage will have changed at these sites, and histories of these changes are used as an input to the model. The influence of these land

  15. Gathering "tea"--from necessity to connectedness with nature. Local knowledge about wild plant gathering in the Biosphere Reserve Grosses Walsertal (Austria).

    PubMed

    Grasser, Susanne; Schunko, Christoph; Vogl, Christian R

    2012-08-13

    Wild plant gathering is an essential element in livelihood strategies all over the world. However due to changing circumstances in Europe, the reason for gathering has altered from one of necessity in the past to a pleasurable activity today. Wild plant gathering has therefore also received renewed attention as a form of intangible cultural heritage expressing local preferences, habits and man's relationship with nature. In the Biosphere Reserve Grosses Walsertal (Austria), local people's knowledge of the gathering of wild plants and their perception of their own gathering activities are being documented. The focus of this paper is on the uses of herbal teas and the informal guidelines for gathering plants that have been issued by the Bergtee (mountain tea) association. Thirty-six free-list interviews were conducted with subsequent semi-structured interviews and three focus group meetings held with members of the Bergtee association. Participatory observation (gathering and processing plants, mixing and marketing tea) also allowed for greater understanding of what had been reported. In total, 140 different gathered plant species were listed by respondents. Herbal tea is the most frequently mentioned use. The Bergtee association, founded by a young man and two middle-aged women in the valley, is a good example of the link between biological and cultural diversity, with the aim of sharing the biosphere reserve's natural treasures as well as local plant-related knowledge in the form of herbal tea products. The association's informal guidelines for gathering reflect people's attitude to nature: monetary income does not play a major role in gathering plants; instead people's appreciation of the value of the nature around them is to the fore. Gathering wild plants can be seen as an expression of people's regional identity. The conscious appreciation of nature and related local knowledge is crucial for the sustainable conservation and use of the Biosphere Reserve

  16. RNA-Seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions

    PubMed Central

    2013-01-01

    Background The investigation of extremophile plant species growing in their natural environment offers certain advantages, chiefly that plants adapted to severe habitats have a repertoire of stress tolerance genes that are regulated to maximize plant performance under physiologically challenging conditions. Accordingly, transcriptome sequencing offers a powerful approach to address questions concerning the influence of natural habitat on the physiology of an organism. We used RNA sequencing of Eutrema salsugineum, an extremophile relative of Arabidopsis thaliana, to investigate the extent to which genetic variation and controlled versus natural environments contribute to differences between transcript profiles. Results Using 10 million cDNA reads, we compared transcriptomes from two natural Eutrema accessions (originating from Yukon Territory, Canada and Shandong Province, China) grown under controlled conditions in cabinets and those from Yukon plants collected at a Yukon field site. We assessed the genetic heterogeneity between individuals using single-nucleotide polymorphisms (SNPs) and the expression patterns of 27,016 genes. Over 39,000 SNPs distinguish the Yukon from the Shandong accessions but only 4,475 SNPs differentiated transcriptomes of Yukon field plants from an inbred Yukon line. We found 2,989 genes that were differentially expressed between the three sample groups and multivariate statistical analyses showed that transcriptomes of individual plants from a Yukon field site were as reproducible as those from inbred plants grown under controlled conditions. Predicted functions based upon gene ontology classifications show that the transcriptomes of field plants were enriched by the differential expression of light- and stress-related genes, an observation consistent with the habitat where the plants were found. Conclusion Our expectation that comparative RNA-Seq analysis of transcriptomes from plants originating in natural habitats would be confounded

  17. Plant and Insect Viruses in Managed and Natural Environments: Novel and Neglected Transmission Pathways.

    PubMed

    Jones, Roger A C

    2018-01-01

    The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease

  18. Synthetic mimicking of plant oils and comparison with naturally grown products in polyurethane synthesis.

    PubMed

    Coles, Stuart R; Barker, Guy; Clark, Andrew J; Kirwan, Kerry; Jacobs, Daniel; Makenji, Kylash; Pink, David

    2008-06-11

    The use of plant oils as industrial feedstocks can often be hampered by their lack of optimization towards a particular process, as well as their development being risky; growing suitable volumes of crops to test can take up to five years. To circumvent this, we aimed to discover a method that would mimic plant oil profiles in the laboratory, and show that they exhibited similar properties to the naturally grown plant oils in a given process. Using the synthesis of polyurethanes as an example, we have synthesized six different polymers and demonstrated that plant oils will produce polymers with similar physical properties to those oils mimicked in the laboratory. The use of this mimicking process can be extended to other types of polymers to obtain a method for predicting the properties of a given material based on the plant oil composition of a crop before it is grown in bulk.

  19. Planted and natural tree seedling survival and density in three floodplain restorations on abandoned agricultural fields

    Treesearch

    Allen E. Plocher

    2003-01-01

    In three floodplain forest restorations, established in abandoned agricultural fields in Illinois, permanent plots were sampled for 3 years to determine survivorship and density of planted tree seedlings, and species composition and density of natural regeneration. Planted tree survivorship decreased over time at all sites and after 3 years ranged from 32 to 61 percent...

  20. The cost of carbon capture and storage for natural gas combined cycle power plants.

    PubMed

    Rubin, Edward S; Zhai, Haibo

    2012-03-20

    This paper examines the cost of CO(2) capture and storage (CCS) for natural gas combined cycle (NGCC) power plants. Existing studies employ a broad range of assumptions and lack a consistent costing method. This study takes a more systematic approach to analyze plants with an amine-based postcombustion CCS system with 90% CO(2) capture. We employ sensitivity analyses together with a probabilistic analysis to quantify costs for plants with and without CCS under uncertainty or variability in key parameters. Results for new baseload plants indicate a likely increase in levelized cost of electricity (LCOE) of $20-32/MWh (constant 2007$) or $22-40/MWh in current dollars. A risk premium for plants with CCS increases these ranges to $23-39/MWh and $25-46/MWh, respectively. Based on current cost estimates, our analysis further shows that a policy to encourage CCS at new NGCC plants via an emission tax or carbon price requires (at 95% confidence) a price of at least $125/t CO(2) to ensure NGCC-CCS is cheaper than a plant without CCS. Higher costs are found for nonbaseload plants and CCS retrofits.

  1. An experimental demonstration of Fisher's principle: evolution of sexual proportion by natural selection.

    PubMed Central

    Carvalho, A B; Sampaio, M C; Varandas, F R; Klaczko, L B

    1998-01-01

    Most sexually reproducing species have sexual proportions around 1:1. This major biological phenomenon remained unexplained until 1930, when FISHER proposed that it results from a mechanism of natural selection. Here we report the first experimental test of his model that obeys all its assumptions. We used a naturally occurring X-Y meiotic drive system--the sex-ratio trait of Drosophila mediopunctat--to generate female-biased experimental populations. As predicted by FISHER, these populations evolved toward equal sex proportions due to natural selection, by accumulation of autosomal alleles that direct the parental reproductive effort toward the rare sex. Classical Fisherian evolution is a rather slow mechanism: despite a very large amount of genetic variability, the experimental populations evolved from 16% of males to 32% of males in 49 generations and would take 330 generations (29 years) to reach 49%. This slowness has important implications for species potentially endangered by skewed sexual proportions, such as reptiles with temperature sex determination. PMID:9504919

  2. Assessment of soil contamination by (210)Po and (210)Pb around heavy oil and natural gas fired power plants.

    PubMed

    Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y

    2014-06-01

    Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S

    2014-08-28

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.

  4. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant

    PubMed Central

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.

    2014-01-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252

  5. Screening and characterization of selected drugs having antibacterial potential.

    PubMed

    Javed, Hina; Tabassum, Sobia; Erum, Shazia; Murtaza, Iram; Muhammad, Aish; Amin, Farhana; Nisar, Muhammad Farrukh

    2018-05-01

    Due to ever increasing antibiotic resistance offered by pathogenic bacterial strains and side effects of synthetic antibiotics, thereof, there is a need to explore the effective phytochemicals from natural resources. In order to help overcoming the problem of effective natural drug and the side effects posed by the use of the synthetic drugs, five different plants namely Thymus vulgaris, Lavandula angustifolia, Rosmarinus officinalis, Cymbopogon citratus and Achillea millefolium were selected to study their antibacterial potential. Antibacterial activity and minimum inhibitory concentration (MIC) checked against the selected bacterial strains. As compared to other test plants, ethanolic extract of Rosmarinus officinalis leaves showed the most promising inhibitory effect i.e: inhibition zone (18.17± 0.44mm) against Klebsiella pneumoniae and the lowest inhibition (15.5±0.29mm) against Pseudomonas aeruginosa and Escherichia coli (p<0.05). The MIC values were recorded in the range of 1 to 20mg/ml. Screening of the selected extracts for the test plants additionally indicate some unique variations. Results were further confirmed through TLC for alkaloids and terpenoids (15% sulphuric acid and Dragedroff's reagent) in ethanolic extract. Characterization of Rosmarinus officinalis of ethanolic extract was carried out using column chromatography. The appearance of orange crystals may indicate the presence of alkaloidal bioactive compounds which need to be further investigated. The tested plants may have a potential for fighting against some infectious diseases caused by selected human pathogenic bacterial strains. This knowledge may incite a gateway to effective drug search and so on.

  6. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    PubMed Central

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  7. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    PubMed

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  8. Archaeological data reveal slow rates of evolution during plant domestication.

    PubMed

    Purugganan, Michael D; Fuller, Dorian Q

    2011-01-01

    Domestication is an evolutionary process of species divergence in which morphological and physiological changes result from the cultivation/tending of plant or animal species by a mutualistic partner, most prominently humans. Darwin used domestication as an analogy to evolution by natural selection although there is strong debate on whether this process of species evolution by human association is an appropriate model for evolutionary study. There is a presumption that selection under domestication is strong and most models assume rapid evolution of cultivated species. Using archaeological data for 11 species from 60 archaeological sites, we measure rates of evolution in two plant domestication traits--nonshattering and grain/seed size increase. Contrary to previous assumptions, we find the rates of phenotypic evolution during domestication are slow, and significantly lower or comparable to those observed among wild species subjected to natural selection. Our study indicates that the magnitudes of the rates of evolution during the domestication process, including the strength of selection, may be similar to those measured for wild species. This suggests that domestication may be driven by unconscious selection pressures similar to that observed for natural selection, and the study of the domestication process may indeed prove to be a valid model for the study of evolutionary change. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  9. An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery

    PubMed Central

    Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing

    2010-01-01

    The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897

  10. Occupational exposure to natural radioactivity in a zircon sand milling plant.

    PubMed

    Ballesteros, Luisa; Zarza, Isidoro; Ortiz, Josefina; Serradell, Vicente

    2008-10-01

    Raw zirconium sand is one of the substances (naturally occurring radioactive material, NORM) which is widely used in the ceramic industry. This sand contains varying concentrations of natural radionuclides: mostly U-238 but also Th-232 and U-235, together with their daughters, and therefore may need to be regulated by Directive 96/29/EURATOM. This paper describes the method used to perform the radiological study on a zircon sand milling plant and presents the results obtained. Internal and external doses were evaluated using radioactivity readings from sand, airborne dust, intermediate materials and end products. The results on total effective dose show the need for this type of industry to be carefully controlled, since values near to 1 mSv were obtained.

  11. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    PubMed

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  12. Evaluating the non-rice host plant species of Sesamia inferens (Lepidoptera: Noctuidae) as natural refuges: resistance management of Bt rice.

    PubMed

    Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa

    2011-06-01

    Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea mays L.); tidalmarsh flatsedge (Cyperus serotinus Rottb.); and narrow-leaved cat-tail (Typha angustifolia Linn.) were identified as the primary host plant species of S. inferens. Greenhouse experiments further demonstrated that water oat, corn, and narrow-leaved cat-tail could support the survival and development of S. inferens. Interestingly, greenhouse experiments showed that S. inferens preferred to lay eggs on tidalmarsh flatsedge compared with the other three nonrice host species, although no pupae were found in the plants examined in field surveys. Few larvae were found to survive on tidalmarsh flatsedge in greenhouse bioassays, suggesting that tidalmarsh flatsedge could serve as a "dead-end" trap crop for S. inferens, but is not a candidate to serve as natural refuge to maintain susceptible S. inferens. Overall, these results suggest that water-oat, corn, and narrow-leaved cat-tail might serve as "natural refuge" for S. inferens in rice planting area of southern China when Bt rice varieties are planted.

  13. The need for plant electro-physiology

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    The already experimentaly evidenced existance of electrotropism for some plant species permits me to propose to extend these studies. Electrotropism is not well defined in plant physiology handbooks. There is a confusion of current and electric field which leads to communication problems between biologists and physicists. The electric field E, is measured in units of volts/metre=newtons/coulomb. We do not attach any wires to the plant leaves but subject them to the electric field. The plant distords the electrical field lines which in turn modify the shape of the plant. It has been verified in fitotron experiments that the direction and strength of the E vector relative to the gravitational force has different effects on plant growth. The natural fair weather global value of E is close to 130 V/m with positive charges in the air and negative on the ground. The most important results are: fields of (1.6 kV/m) enhance plant growth. Reversed fields overwhelm the gravitational field and plants grow towards the grownd. Horizontal E also enhances the plant growth in the horizontal direction ignoring the gravity. It shows that we can restore the directional orientation for plants in the absence of gravity by means of electrotropism. This is an important result for the plant growth in micro-gravity, basic advantage for long duration space fligths for raising edible crops for the vegetarian crew. It has the advantage of selecting in laboratory environment the plants which are suitable for space applications. The use of electic fields in ground based and space plant cultivation opens up important applications based on these novel trends also in modern greenhouses including the Biosphere 2. In addition to the fitotron experiments we have also studied plant growth in natural and modified natural electrical field environment. Two pioneering papers describing the above mentioned results and their possible ground based and space applications are cited as well as several

  14. Soil, plant, and terrain effects on natural perchlorate distribution in a desert landscape

    USGS Publications Warehouse

    Andraski, Brian J.; Jackson, W.A.; Welborn, Toby L.; Böhlke, John Karl; Sevanthi, Ritesh; Stonestrom, David A.

    2014-01-01

    Perchlorate (ClO4−) is a contaminant that occurs naturally throughout the world, but little is known about its distribution and interactions in terrestrial ecosystems. The objectives of this Amargosa Desert, Nevada study were to determine (i) the local-scale distribution of shallow-soil (0–30 cm) ClO4− with respect to shrub proximity (far and near) in three geomorphic settings (shoulder slope, footslope, and valley floor); (ii) the importance of soil, plant, and terrain variables on the hillslope-distribution of shallow-soil and creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville] ClO4−; and (iii) atmospheric (wet plus dry, including dust) deposition of ClO4− in relation to soil and plant reservoirs and cycling. Soil ClO4− ranged from 0.3 to 5.0 μg kg−1. Within settings, valley floor ClO4− was 17× less near shrubs due in part to enhanced leaching, whereas shoulder and footslope values were ∼2× greater near shrubs. Hillslope regression models (soil, R2 = 0.42; leaf, R2 = 0.74) identified topographic and soil effects on ClO4− deposition, transport, and cycling. Selective plant uptake, bioaccumulation, and soil enrichment were evidenced by leaf ClO4− concentrations and Cl−/ClO4− molar ratios that were ∼8000× greater and 40× less, respectively, than soil values. Atmospheric deposition ClO4− flux was 343 mg ha−1 yr−1, ∼10× that for published southwestern wet-deposition fluxes. Creosote bush canopy ClO4− (1310 mg ha−1) was identified as a previously unrecognized but important and active reservoir. Nitrate δ18O analyses of atmospheric deposition and soil supported the leaf-cycled–ClO4− input hypothesis. This study provides basic data on ClO4− distribution and cycling that are pertinent to the assessment of environmental impacts in desert ecosystems and broadly transferable to anthropogenically contaminated systems.

  15. Selective Determination of Lipid Hydroperoxides in Natural Waters Using a Fluorescent Probe

    NASA Astrophysics Data System (ADS)

    Sunday, M. O.; Sakugawa, H.

    2016-12-01

    The presence of various lipids in natural waters and the availability of conditions needed for their oxidation to lipid hydroperoxides (LHPs) suggest that LHPs may be part of the hydroperoxide mix in natural waters. While other hydroperoxides, including H2O2, methyl hydroperoxide (MHP) and ethyl hydroperoxide (EHP) etc. have been investigated, there is no information on LHPs in natural waters. In this study, we report the presence of LHPs in natural waters. Firstly, a method selective to LHPs determination was developed using 2-(4-diphenylphosphanyl-phenyl)-9-(3,6,9,12-tetraoxatridecyl)-anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetraone, Liperfluo, as a fluorescent probe. A flow injector analysis equipped with fluorescence detector was used for fluorescence measurement of Liperfluo-Ox formed from the reaction between Liperfluo and LHP. Under the optimized conditions, the reaction of Liperfluo with LHP in MilliQ and river water had a linear range of 0-500 nM LHP. The method detection limit was 10.1 nM and 7.3 nM in riverwater and MilliQ respectively. The coefficient of variation for five replicate measurements each for 100 nM and 500 nM LHP was ≤ 3.8%. The probe and the conditions used in this study showed high selectivity for LHP over other natural water hydroperoxides, including H2O2, MHP and EHP. The method was applied in the quantification of LHPs in water from the Kurose River (Japan). The concentration ranged from below detection limit to 98 nM (ave. 37.2 nM; n=12). Increase in H2O2 formation upon irradiation of LHP-spiked riverwater in a solar simulator suggests H2O2 formation as one of the possible sinks of LHPs in natural waters. For the first time, this study reveals that LHPs are part of the hydroperoxide mix in natural waters and provides insight on its fate in natural waters.

  16. Warning signals are under positive frequency-dependent selection in nature

    PubMed Central

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-01-01

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  17. Plant community development after 28 years in small group-selection openings

    Treesearch

    Philip M. McDonald; Phillip E. Reynolds

    1999-01-01

    Thirty openings, 9, 18, and 27 meters in diameter, were created by group-selection harvest on a high quality site in northern California in 1963. In 1991, or 28 years after site preparation, the plant community in the openings had stabilized at 55 species. A major shift was from annuals to perennials. New seedlings of ponderosa and sugar pine were able to become...

  18. Invasive stink bug favors naïve plants: Testing the role of plant geographic origin in diverse, managed environments.

    PubMed

    Martinson, Holly M; Bergmann, Erik J; Venugopal, P Dilip; Riley, Christopher B; Shrewsbury, Paula M; Raupp, Michael J

    2016-09-01

    With the introduction and establishment of exotic species, most ecosystems now contain both native and exotic plants and herbivores. Recent research identifies several factors that govern how specialist herbivores switch host plants upon introduction. Predicting the feeding ecology and impacts of introduced generalist species, however, remains difficult. Here, we examine how plant geographic origin, an indicator of shared co-evolutionary history, influences patterns of host use by a generalist, invasive herbivore, while accounting for variation in plant availability. The brown marmorated stink bug, Halyomorpha halys, is a highly polyphagous Asian herbivore and an economically important invasive pest in North America and Europe. In visual surveys of 220 plant taxa in commercial nurseries in Maryland, USA, H. halys was more abundant on non-Asian plants and selected these over Asian plants. The relationship between the relative use of plants and their availability was strongly positive but depended also on plant origin at two of our three sites, where the higher relative use of non-Asian plants was greatest for highly abundant taxa. These results highlight the importance of considering both plant origin and relative abundance in understanding the selection of host plants by invasive generalist herbivores in diverse, natural and urban forests.

  19. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    Loik, Michael E.; Carter, Sue A.; Alers, Glenn; Wade, Catherine E.; Shugar, David; Corrado, Carley; Jokerst, Devin; Kitayama, Carol

    2017-10-01

    Global renewable electricity generation capacity has rapidly increased in the past decade. Increasing the sustainability of electricity generation and the market share of solar photovoltaics (PV) will require continued cost reductions or higher efficiencies. Wavelength-Selective Photovoltaic Systems (WSPVs) combine luminescent solar cell technology with conventional silicon-based PV, thereby increasing efficiency and lowering the cost of electricity generation. WSPVs absorb some of the blue and green wavelengths of the solar spectrum but transmit the remaining wavelengths that can be utilized by photosynthesis for plants growing below. WSPVs are ideal for integrating electricity generation with glasshouse production, but it is not clear how they may affect plant development and physiological processes. The effects of tomato photosynthesis under WSPVs showed a small decrease in water use, whereas there were minimal effects on the number and fresh weight of fruit for a number of commercial species. Although more research is required on the impacts of WSPVs, they are a promising technology for greater integration of distributed electricity generation with food production operations, for reducing water loss in crops grown in controlled environments, as building-integrated solar facilities, or as alternatives to high-impact PV for energy generation over agricultural or natural ecosystems.

  20. Supplier selection criteria for sustainable supply chain management in thermal power plant

    NASA Astrophysics Data System (ADS)

    Firoz, Faisal; Narayan Biswal, Jitendra; Satapathy, Suchismita

    2018-02-01

    Supplies are always in great demand when it comes to industrial operations. The quality of raw material their price accompanied by sustainability and environmental effects are a major concern for industrial operators these days. Supply Chain Management is the subject which is focused on how the supply of different products is carried out. The motive is that each operation performed can be optimized and inherently the efficiency of the whole chain is integrated. In this paper we will be dealing with all the criteria that are required to be evaluated before selecting a supplier, in particular, focusing on Thermal Power Plant. The most suppliers of the thermal power plant are the coal suppliers. The quality of coal directly determines the efficiency of the whole plant. And when there are matters concerning coal environmental pollution plays a very crucial role. ANP method has been used here to select suppliers of thermal power sectors in Indian context. After applying ANP to prioritize the sustainable supplier selection criteria, it is found that for thermal power industries best suppliers are Nationalized/State owned suppliers then 2nd ranked suppliers are imported supplier. Private owned suppliers are ranked least. So private owned suppliers must be more concerned about their performance. Among these suppliers it is found that to compete in the global market privatized suppliers have to give more emphasize on most important criteria like sustainability, then fuel cost and quality. Still some sub-criteria like a clean program, environmental issues, quality, reliability, service rate, investment in high technology, green transportation channel, waste management etc needs for continuous improvement as per their priority.

  1. Mutualists and antagonists drive among-population variation in selection and evolution of floral display in a perennial herb

    PubMed Central

    Ågren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan

    2013-01-01

    Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations. PMID:24145439

  2. Mutualists and antagonists drive among-population variation in selection and evolution of floral display in a perennial herb.

    PubMed

    Agren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan

    2013-11-05

    Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0-100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.

  3. Evaluation of plant-based natural coagulants for municipal wastewater treatment.

    PubMed

    Maurya, Sandhya; Daverey, Achlesh

    2018-01-01

    In this study, four plant-based natural coagulants (banana peel powder, banana stem juice, papaya seed powder and neem leaf powder) were evaluated for the removal of turbidity, chemical oxygen demand (COD) and total suspended solids (TSS) from municipal wastewater. The experiments were conducted at room temperature without adjusting the initial pH. The maximum turbidity removal was observed with banana peel powder (59.6%) at 0.4 g/L of dosage. Papaya seed powder and banana stem juice were the most effective for TSS removal (66.66%) and COD removal (66.67%), respectively. Significant linear relationships between turbidity and TSS ( R 2  = 0.67-0.88) and turbidity removals and COD removals ( R 2  = 0.68-0.8) were observed. Interestingly, all the natural coagulants tested in the study did not change the pH of the wastewater, which is an added advantage. FTIR analysis of banana peels revealed that functional groups such as carboxylic acid, hydroxyl and aliphatic amines might be responsible for promoting the coagulation-flocculation by neutralizing the charge on impurities in water. Overall, the results suggest the potential of low-cost natural coagulants in municipal wastewater treatment.

  4. The evolution of plant-insect mutualisms.

    PubMed

    Bronstein, Judith L; Alarcón, Ruben; Geber, Monica

    2006-01-01

    Mutualisms (cooperative interactions between species) have had a central role in the generation and maintenance of life on earth. Insects and plants are involved in diverse forms of mutualism. Here we review evolutionary features of three prominent insect-plant mutualisms: pollination, protection and seed dispersal. We focus on addressing five central phenomena: evolutionary origins and maintenance of mutualism; the evolution of mutualistic traits; the evolution of specialization and generalization; coevolutionary processes; and the existence of cheating. Several features uniting very diverse insect-plant mutualisms are identified and their evolutionary implications are discussed: the involvement of one mobile and one sedentary partner; natural selection on plant rewards; the existence of a continuum from specialization to generalization; and the ubiquity of cheating, particularly on the part of insects. Plant-insect mutualisms have apparently both arisen and been lost repeatedly. Many adaptive hypotheses have been proposed to explain these transitions, and it is unlikely that any one of them dominates across interactions differing so widely in natural history. Evolutionary theory has a potentially important, but as yet largely unfilled, role to play in explaining the origins, maintenance, breakdown and evolution of insect-plant mutualisms.

  5. Cyclooxygenase inhibitory natural products: current status.

    PubMed

    Jachak, Sanjay M

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.

  6. Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island.

    PubMed

    Liu, Xin; Wang, Shuai; Jiang, Yishan; Sun, Yingtao; Li, Jun; Zhang, Gan

    2017-08-01

    Transformation from natural forests to planted forests in tropical regions is an expanding global phenomenon causing major modifications of land cover and soil properties, e.g. soil organic carbon (SOC). This study investigated accumulations of POPs in soils under eucalyptus and rubber forests as compared with adjacent natural forests on Hainan Island, China. Results showed that due to the greater forest filter effect and the higher SOC, the natural forest have accumulated larger amounts of POPs in the top 20 cm soil. Based on correlation and air-soil equilibrium analysis, we highlighted the importance of SOC in the distribution of POPs. It is assumed that the elevated mobility of POPs in the planted forests was caused by greater loss of SOC and extensive leaching in the soil profile. This suggests that a better understanding of global POPs fate should take into consideration the role of planted forests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Goal-Side Selection in Soccer Penalty Kicking When Viewing Natural Scenes

    PubMed Central

    Weigelt, Matthias; Memmert, Daniel

    2012-01-01

    The present study investigates the influence of goalkeeper displacement on goal-side selection in soccer penalty kicking. Facing a penalty situation, participants viewed photo-realistic images of a goalkeeper and a soccer goal. In the action selection task, they were asked to kick to the greater goal-side, and in the perception task, they indicated the position of the goalkeeper on the goal line. To this end, the goalkeeper was depicted in a regular goalkeeping posture, standing either in the exact middle of the goal or being displaced at different distances to the left or right of the goal’s center. Results showed that the goalkeeper’s position on the goal line systematically affected goal-side selection, even when participants were not aware of the displacement. These findings provide further support for the notion that the implicit processing of the stimulus layout in natural scenes can effect action selection in complex environments, such in soccer penalty shooting. PMID:22973246

  8. Natural selection and the predictability of evolution in Timema stick insects.

    PubMed

    Nosil, Patrik; Villoutreix, Romain; de Carvalho, Clarissa F; Farkas, Timothy E; Soria-Carrasco, Víctor; Feder, Jeffrey L; Crespi, Bernard J; Gompert, Zach

    2018-02-16

    Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time ( r 2 = 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection ( r 2 = 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Selection of plants for phytoremediation of barium-polluted flooded soils.

    PubMed

    Ribeiro, Paulo Roberto Cleyton de Castro; Viana, Douglas Gomes; Pires, Fábio Ribeiro; Egreja Filho, Fernando Barboza; Bonomo, Robson; Cargnelutti Filho, Alberto; Martins, Luiz Fernando; Cruz, Leila Beatriz Silva; Nascimento, Mauro César Pinto

    2018-05-10

    The use of barite (BaSO4) in drilling fluids for oil and gas activities makes barium a potential contaminant in case of spills onto flooded soils, where low redox conditions may increase barium sulfate solubility. In order to select plants able to remove barium in such scenarios, the following species were evaluated on barium phytoextraction capacity: Brachiaria arrecta, Cyperus papyrus, Eleocharis acutangula, E. interstincta, Nephrolepsis cf. rivularis, Oryza sativa IRGA 424, O. sativa BRS Tropical, Paspalum conspersum, and Typha domingensis. Plants were grown in pots and exposed to six barium concentrations: 0, 2.5, 5.0, 10.0, 30.0, and 65.0 mg kg -1 . To simulate flooding conditions, each pot was kept with a thin water film over the soil surface (∼1.0 cm). Plants were evaluated for biomass yield and barium removal. The highest amount of barium was observed in T. domingensis biomass, followed by C. papyrus. However, the latter exported most of the barium to the aerial part of the plant, especially at higher BaCl 2 doses, while the former accumulated barium preferentially in the roots. Thus, barium removal with C. papyrus could be achieved by simply harvesting aerial biomass. The high amounts of barium in T. domingensis and C. papyrus resulted from the combination of high barium concentration in plant tissues with high biomass production. These results make T. domingensis and C. papyrus potential candidates for phytoremediation schemes to remove barium from flooded soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Estimation of Whole Plant Photosynthetic Rate of Irwin Mango under Artificial and Natural Lights Using a Three-Dimensional Plant Model and Ray-Tracing.

    PubMed

    Jung, Dae Ho; Lee, Joon Woo; Kang, Woo Hyun; Hwang, In Ha; Son, Jung Eek

    2018-01-04

    Photosynthesis is an important physiological response for determination of CO₂ fertilization in greenhouses and estimation of crop growth. In order to estimate the whole plant photosynthetic rate, it is necessary to investigate how light interception by crops changes with environmental and morphological factors. The objectives of this study were to analyze plant light interception using a three-dimensional (3D) plant model and ray-tracing, determine the spatial distribution of the photosynthetic rate, and estimate the whole plant photosynthetic rate of Irwin mango ( Mangifera indica L. cv. Irwin) grown in greenhouses. In the case of mangoes, it is difficult to measure actual light interception at the canopy level due to their vase shape. A two-year-old Irwin mango tree was used to measure the whole plant photosynthetic rate. Light interception and whole plant photosynthetic rate were measured under artificial and natural light conditions using a closed chamber (1 × 1 × 2 m). A 3D plant model was constructed and ray-tracing simulation was conducted for calculating the photosynthetic rate with a two-variable leaf photosynthetic rate model of the plant. Under artificial light, the estimated photosynthetic rate increased from 2.0 to 2.9 μmolCO₂·m -2 ·s -1 with increasing CO₂ concentration. On the other hand, under natural light, the photosynthetic rate increased from 0.2 μmolCO₂·m -2 ·s -1 at 06:00 to a maximum of 7.3 μmolCO₂·m -2 ·s -1 at 09:00, then gradually decreased to -1.0 μmolCO₂·m -2 ·s -1 at 18:00. In validation, simulation results showed good agreement with measured results with R ² = 0.79 and RMSE = 0.263. The results suggest that this method could accurately estimate the whole plant photosynthetic rate and be useful for pruning and adequate CO₂ fertilization.

  11. Interaction-based evolution: how natural selection and nonrandom mutation work together.

    PubMed

    Livnat, Adi

    2013-10-18

    The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation-while not Lamarckian, or "directed" to increase fitness-is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination's fitness. This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive

  12. Interaction-based evolution: how natural selection and nonrandom mutation work together

    PubMed Central

    2013-01-01

    Background The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Presentation of the hypothesis Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation—while not Lamarckian, or “directed” to increase fitness—is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination’s fitness. Testing and implications of the hypothesis This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional

  13. Darwin's Arguments in Favour of Natural Selection and against Special Creationism

    ERIC Educational Resources Information Center

    Nola, Robert

    2013-01-01

    In many places in "The Origin of Species", Darwin compares his own theory of Natural Selection favourably with Special Creationism which comes off as a bad second best. He does this using some version of the argument form known as "Inference to the Best Explanation". The first part of this paper is methodological. It considers Whewell's notion of…

  14. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology

    PubMed Central

    2016-01-01

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753

  15. Woody Species Diversity in Forest Plantations in a Mountainous Region of Beijing, China: Effects of Sampling Scale and Species Selection

    PubMed Central

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

  16. Adaptive and selective seed abortion reveals complex conditional decision making in plants.

    PubMed

    Meyer, Katrin M; Soldaat, Leo L; Auge, Harald; Thulke, Hans-Hermann

    2014-03-01

    Behavior is traditionally attributed to animals only. Recently, evidence for plant behavior is accumulating, mostly from plant physiological studies. Here, we provide ecological evidence for complex plant behavior in the form of seed abortion decisions conditional on internal and external cues. We analyzed seed abortion patterns of barberry plants exposed to seed parasitism and different environmental conditions. Without abortion, parasite infestation of seeds can lead to loss of all seeds in a fruit. We statistically tested a series of null models with Monte Carlo simulations to establish selectivity and adaptiveness of the observed seed abortion patterns. Seed abortion was more frequent in parasitized fruits and fruits from dry habitats. Surprisingly, seed abortion occurred with significantly greater probability if there was a second intact seed in the fruit. This strategy provides a fitness benefit if abortion can prevent a sibling seed from coinfestation and if nonabortion of an infested but surviving single seed saves resources invested in the fruit coat. Ecological evidence for complex decision making in plants thus includes a structural memory (the second seed), simple reasoning (integration of inner and outer conditions), conditional behavior (abortion), and anticipation of future risks (seed predation).

  17. Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant.

    PubMed

    Mohanty, Sudipta Kumar; Malappa, Kumaraswamy; Godavarthi, Ashok; Subbanarasiman, Balasubramanya; Maniyam, Anuradha

    2014-09-01

    To evaluate the antioxidant and anti proliferative potential of different solvent extract of micropropagated and naturally grown plants of Leptadenia reticulata against various cancer cell lines. In this study different extract were tested for cytotoxicity against human breast adenocarcinoma cell line MCF-7, human colon adenocarcinoma grade II cell line HT-29 and non cancer skeletal muscle cell line L6 through 3-(4, 5-dimethyl thiazol-2-yl)-5-diphenyl tetrazolium bromide assay. The total antioxidant potential was estimated by three different antioxidant model diphenylpicrylhydrazyl free radical scavenging activity, H2O2 scavenging activity and FeCl3 reducing activity. The ethyl acetate extract of both naturally grown plant and tissue cultured plant exhibited significant cytotoxicity with IC50 values of 21 µg/mL, 26 µg/mL and 22 µg/mL; 20 µg/mL, 30 µg/mL and 18 µg/mL respectively against three cell lines. The diphenylpicrylhydrazyl free radical scavenging activity was found to be highest with IC50 value of 267.13 µg/mL in ethyl acetate extract. The methanolic extract exhibited moderate antioxidant activity with IC50 value of 510.15 µg/mL. A highly positive correlation was observed between the antioxidant potential and cytotoxic activity of the plant. The strong cytotoxicity of ethyl acetate extract revealed anti carcinogenic potential of the plant which supports its traditional use as medicine. The present investigation is new to literature till date and will provide better scientific basis for future pharmacological, in vivo studies and novel source of pure bioactive compounds having anti cancer properties in this plant. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    NASA Astrophysics Data System (ADS)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  19. Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria, yeasts and fungi.

    PubMed

    Ložienė, Kristina; Švedienė, Jurgita; Paškevičius, Algimantas; Raudonienė, Vita; Sytar, Oksana; Kosyan, Anatoliy

    2018-04-22

    Although the nature-identical chemical compounds are cheaper, they not always repeat biological activity of plant origin natural chemical compounds, often react allergies and resistance of microorganisms. The aim of this study was to investigate effects of Juniperus communis origin α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Results showed that different enantiomeric composition of α-pinene have different activities on microorganisms: essential oil with (1S)-(-) ≈ (1R)-(+) enantiomeric composition of α-pinene influenced on some microorganisms stronger than essential oil with (1S)-(-) < (1R)-(+) enantiomeric composition of α-pinene; the pure natural α-pinene with enantiomeric composition S < R more strongly inhibited growth of investigated bacteria and Candida yeasts, α-pinene with enantiomeric composition S ≈ R - growth of Trichophyton and Aspergillus. (1S)-(-) and (1R)-(+) enantiomeric forms of α-pinene can have also different synergistic effects with other compounds of essential oil. The results of study showed that the same amount of α-pinene with different enantiomeric composition can have diverse antimicrobial potential due different specific interactions with other chemical compounds of essential oil. Therefore, it is very important to determine and present the enantiomeric composition of those plant origin compounds, which are characterized by enantiomerisation, during the course of research of biological activities of natural plant products (essential oils and other) and their isolated compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Transcriptomic and metabolomic analysis of Yukon Thellungiella plants grown in cabinets and their natural habitat show phenotypic plasticity

    PubMed Central

    2012-01-01

    Background Thellungiella salsuginea is an important model plant due to its natural tolerance to abiotic stresses including salt, cold, and water deficits. Microarray and metabolite profiling have shown that Thellungiella undergoes stress-responsive changes in transcript and organic solute abundance when grown under controlled environmental conditions. However, few reports assess the capacity of plants to display stress-responsive traits in natural habitats where concurrent stresses are the norm. Results To determine whether stress-responsive changes observed in cabinet-grown plants are recapitulated in the field, we analyzed leaf transcript and metabolic profiles of Thellungiella growing in its native Yukon habitat during two years of contrasting meteorological conditions. We found 673 genes showing differential expression between field and unstressed, chamber-grown plants. There were comparatively few overlaps between genes expressed under field and cabinet treatment-specific conditions. Only 20 of 99 drought-responsive genes were expressed both in the field during a year of low precipitation and in plants subjected to drought treatments in cabinets. There was also a general pattern of lower abundance among metabolites found in field plants relative to control or stress-treated plants in growth cabinets. Nutrient availability may explain some of the observed differences. For example, proline accumulated to high levels in cold and salt-stressed cabinet-grown plants but proline content was, by comparison, negligible in plants at a saline Yukon field site. We show that proline accumulated in a stress-responsive manner in Thellungiella plants salinized in growth cabinets and in salt-stressed seedlings when nitrogen was provided at 1.0 mM. In seedlings grown on 0.1 mM nitrogen medium, the proline content was low while carbohydrates increased. The relatively higher content of sugar-like compounds in field plants and seedlings on low nitrogen media suggests that

  1. Missing domesticated plant forms: can artificial selection fill the gap?

    PubMed Central

    Van Tassel, David L; DeHaan, Lee R; Cox, Thomas S

    2010-01-01

    In the course of their evolution, the angiosperms have radiated into most known plant forms and life histories. Their adaptation to a recently created habitat, the crop field, produced a novel form: the plant that allocates an unprecedented 30–60% of its net productivity to sexual structures. Long-lived trees, shrubs and vines of this form evolved, as did annual herbs. Perennial herb forms with increased allocation to asexual reproduction evolved, but there are no examples of perennial herbs with high sexual effort. We suggest that sowing seed into annually tilled fields favored shorter-lived herbs because of trade-offs between first-year seed production and relative growth rate and/or persistence. By propagating cuttings, people quickly domesticated tuber crops and large woody plants. Perennial herbs were too small to be efficiently propagated by cuttings, and the association between longevity, allogamy and genetic load made rapid domestication by sexual cycles unlikely. Perennial grain crops do not exist because they could not have evolved under the original set of conditions; however, they can be deliberately developed today through artificial phenotypic and genotypic selection. PMID:25567937

  2. Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture

    NASA Astrophysics Data System (ADS)

    Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh

    2015-01-01

    We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.

  3. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest1[OPEN

    PubMed Central

    2017-01-01

    Multicellular glandular trichomes are epidermal outgrowths characterized by the presence of a head made of cells that have the ability to secrete or store large quantities of specialized metabolites. Our understanding of the transcriptional control of glandular trichome initiation and development is still in its infancy. This review points to some central questions that need to be addressed to better understand how such specialized cell structures arise from the plant protodermis. A key and unique feature of glandular trichomes is their ability to synthesize and secrete large amounts, relative to their size, of a limited number of metabolites. As such, they qualify as true cell factories, making them interesting targets for metabolic engineering. In this review, recent advances regarding terpene metabolic engineering are highlighted, with a special focus on tobacco (Nicotiana tabacum). In particular, the choice of transcriptional promoters to drive transgene expression and the best ways to sink existing pools of terpene precursors are discussed. The bioavailability of existing pools of natural precursor molecules is a key parameter and is controlled by so-called cross talk between different biosynthetic pathways. As highlighted in this review, the exact nature and extent of such cross talk are only partially understood at present. In the future, awareness of, and detailed knowledge on, the biology of plant glandular trichome development and metabolism will generate new leads to tap the largely unexploited potential of glandular trichomes in plant resistance to pests and lead to the improved production of specialized metabolites with high industrial or pharmacological value. PMID:28724619

  4. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    PubMed

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  5. From Ends to Causes (and Back Again) by Metaphor: The Paradox of Natural Selection

    ERIC Educational Resources Information Center

    Blancke, Stefaan; Schellens, Tammy; Soetaert, Ronald; Van Keer, Hilde; Braeckman, Johan

    2014-01-01

    Natural selection is one of the most famous metaphors in the history of science. Charles Darwin used the metaphor and the underlying analogy to frame his ideas about evolution and its main driving mechanism into a full-fledged theory. Because the metaphor turned out to be such a powerful epistemic tool, Darwin naturally assumed that he could also…

  6. Nutrient Presses and Pulses Differentially Impact Plants, Herbivores, Detritivores and Their Natural Enemies

    PubMed Central

    Murphy, Shannon M.; Wimp, Gina M.; Lewis, Danny

    2012-01-01

    Anthropogenic nutrient inputs into native ecosystems cause fluctuations in resources that normally limit plant growth, which has important consequences for associated food webs. Such inputs from agricultural and urban habitats into nearby natural systems are increasing globally and can be highly variable, spanning the range from sporadic to continuous. Despite the global increase in anthropogenically-derived nutrient inputs into native ecosystems, the consequences of variation in subsidy duration on native plants and their associated food webs are poorly known. Specifically, while some studies have examined the effects of nutrient subsidies on native ecosystems for a single year (a nutrient pulse), repeated introductions of nutrients across multiple years (a nutrient press) better reflect the persistent nature of anthropogenic nutrient enrichment. We therefore contrasted the effects of a one-year nutrient pulse with a four-year nutrient press on arthropod consumers in two salt marshes. Salt marshes represent an ideal system to address the differential impacts of nutrient pulses and presses on ecosystem and community dynamics because human development and other anthropogenic activities lead to recurrent introductions of nutrients into these natural systems. We found that plant biomass and %N as well as arthropod density fell after the nutrient pulse ended but remained elevated throughout the nutrient press. Notably, higher trophic levels responded more strongly than lower trophic levels to fertilization, and the predator/prey ratio increased each year of the nutrient press, demonstrating that food web responses to anthropogenic nutrient enrichment can take years to fully manifest themselves. Vegetation at the two marshes also exhibited an apparent tradeoff between increasing %N and biomass in response to fertilization. Our research emphasizes the need for long-term, spatially diverse studies of nutrient enrichment in order to understand how variation in the duration

  7. Penetration enhancing effects of selected natural oils utilized in topical dosage forms.

    PubMed

    Viljoen, Joe M; Cowley, Amé; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta

    2015-01-01

    Various natural products, including oils, have been utilized as penetration enhancers due to their "safety profiles". These oils contain fatty acids promoting skin permeability through lipid fluidization within the stratum corneum; and might therefore be able to effectively enhance transdermal drug delivery. We investigated possible penetration enhancing properties of selected oils, utilizing flurbiprofen as marker compound in emulgel formulations. The formulations were compared to a liquid paraffin emulgel and a hydrogel to establish any significant penetration enhancing effects. Gas chromatographic analysis of the natural oils was performed at ambient temperature to determine the fatty acid composition in each selected natural oils. Franz cell diffusion studies and tape stripping methods were employed to study delivery of the marker into, and through the skin. The following rank order for the emulgel flux-values was obtained: Hydrogel > olive oil > liquid paraffin > coconut oil > grape seed oil > Avocado oil ≥ Crocodile oil > Emu oil. Results suggested that oils containing predominantly mono-unsaturated oleic acid, on average increased the flux of the marker to a larger extent than oils containing an almost even mixture of both mono- and poly-unsaturated fatty acids. Oils comprising saturated fatty acids (SFAs) with alkyl chains between C12 and C14, increased the marker flux to a higher extent than oils containing C16-C18 SFAs. Effects observed for branched fatty acids, however, did not vary significantly from effects for unbranched fatty acids with the same carbon chain length. Natural oils possess penetration enhancing effects.

  8. Pharmacological and Phytochemical Appraisal of Selected Medicinal Plants from Jordan with Claimed Antidiabetic Activities

    PubMed Central

    Afifi, Fatma U.; Kasabri, Violet

    2013-01-01

    Plant species have long been regarded as possessing the principal ingredients used in widely disseminated ethnomedical practices. Different surveys showed that medicinal plant species used by the inhabitants of Jordan for the traditional treatment of diabetes are inadequately screened for their therapeutic/preventive potential and phytochemical findings. In this review, traditional herbal medicine pursued indigenously with its methods of preparation and its active constituents are listed. Studies of random screening for selective antidiabetic bioactivity and plausible mechanisms of action of local species, domesticated greens, or wild plants are briefly discussed. Recommended future directives incurring the design and conduct of comprehensive trials are pointed out to validate the usefulness of these active plants or bioactive secondary metabolites either alone or in combination with existing conventional therapies. PMID:24482764

  9. Measuring Knowledge of Natural Selection: A Comparison of the CINS, an Open-Response Instrument, and an Oral Interview

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Schonfeld, Irvin Sam

    2008-01-01

    Growing recognition of the central importance of fostering an in-depth understanding of natural selection has, surprisingly, failed to stimulate work on the development and rigorous evaluation of instruments that measure knowledge of it. We used three different methodological tools, the Conceptual Inventory of Natural Selection (CINS), a modified…

  10. Selective significance of genome size in a plant community with heavy metal pollution.

    PubMed

    Vidic, T; Greilhuber, J; Vilhar, B; Dermastia, M

    2009-09-01

    In eukaryotes, nuclear genome sizes vary by more than five orders of magnitude. This variation is not related to organismal complexity, and its origin and biological significance are still disputed. One of the open questions is whether genome size has an adaptive role. We tested the hypothesis that genome size has selective significance, using five grassland communities occurring on a gradient of metal pollution of the soil as a model. We detected a negative correlation between the concentration of contaminating metals in the soil and the number of vascular plant species. Analysis of genome sizes of 70 herbaceous dicot perennial species occurring on the investigated plots revealed a negative correlation between the concentration of contaminating metals in the soil and the proportion of species with large genomes in plant communities. Consistent with the hypothesis, these results show that species with large genomes are at selective disadvantage in extreme environmental conditions.

  11. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.

    PubMed

    Müller-Linow, Mark; Pinto-Espinosa, Francisco; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. We show that a stereo imaging setup together with the

  12. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  13. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  14. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  15. 43 CFR 6302.15 - When and how may I collect or disturb natural resources such as rocks and plants in wilderness...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When and how may I collect or disturb natural resources such as rocks and plants in wilderness areas? 6302.15 Section 6302.15 Public Lands... disturb natural resources such as rocks and plants in wilderness areas? (a) You may remove or disturb...

  16. Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation?

    PubMed

    Mitton, Francesca M; Ribas Ferreira, Josencler L; Gonzalez, Mariana; Miglioranza, Karina S B; Monserrat, José M

    2016-06-01

    Phytoremediation is a low-cost alternative technology based on the use of plants to remove pollutants from the environment. Persistent organic pollutants such as DDTs with a long half-life in soils are attractive candidates for remediation. This study aimed to determine the potential of antioxidant response use in the evaluation of plants' tolerance for selecting species in phytoremediation purposes. Alfalfa and soybean plants were grown in DDT contaminated soils. After 60days, growth, protein content, antioxidant capacity, GST activity, concentration of proteic and non-proteic thiol groups, chlorophyll content and carotenoid content were measured in plant tissues. Results showed no effect on alfalfa or soybean photosynthetic pigments but different responses in the protein content, antioxidant capacity, GST activity and thiol groups on roots, stems and leaves, indicating that DDTs affected both species. Soybean showed higher susceptibility than alfalfa plants due to the lower antioxidant capacity and GST activity in leaves, in spite of having the lowest DDT accumulation. This study provides new insights into the role of oxidative stress as an important component of the plant's response to DDT exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Influences of Teleological and Lamarckian Thinking on Student Understanding of Natural Selection

    ERIC Educational Resources Information Center

    Stover, Shawn K.; Mabry, Michelle L.

    2007-01-01

    Previous research has demonstrated creationist, Lamarckian, and teleological reasoning in high school and college students. These lines of thinking conflict with the Darwinian notion of natural selection, which serves as the primary catalyst for biological evolution. The current study assessed evolutionary conceptions in non-science majors,…

  18. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.

    PubMed

    Hasani, F; Shala, F; Xhixha, G; Xhixha, M K; Hodolli, G; Kadiri, S; Bylyku, E; Cfarku, F

    2014-12-01

    The energy production in Kosovo depends primarily on lignite-fired power plants. During coal combustion, huge amounts of fly ash and bottom ash are generated, which may result in enriched natural radionuclides; therefore, these radionuclides need to be investigated to identify the possible processes that may lead to the radiological exposure of workers and the local population. Lignite samples and NORMs of fly ash and bottom ash generated in lignite-fired power plants in Kosovo are analyzed using a gamma-ray spectrometry method for the activity concentration of natural radionuclides. The average activity concentrations of (40)K, (226)Ra and (232)Th in lignite are found to be 36 ± 8 Bq kg(-1), 9 ± 1 Bq kg(-1) and 9 ± 3 Bq kg(-1), respectively. Indications on the occurrence and geochemical behavior of uranium in the lignite matrix are suggested. The activity concentrations of natural radionuclides in fly ash and bottom ash samples are found to be concentrated from 3 to 5 times that of the feeding lignite. The external gamma-ray absorbed dose rate and the activity concentration index are calculated to assess the radiological hazard arising from ash disposal and recycling in the cement industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy

    PubMed Central

    Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria

    2013-01-01

    As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530

  20. Spatially-Correlated Risk in Nature Reserve Site Selection

    PubMed Central

    Albers, Heidi J.; Busby, Gwenlyn M.; Hamaide, Bertrand; Ando, Amy W.; Polasky, Stephen

    2016-01-01

    Establishing nature reserves protects species from land cover conversion and the resulting loss of habitat. Even within a reserve, however, many factors such as fires and defoliating insects still threaten habitat and the survival of species. To address the risk to species survival after reserve establishment, reserve networks can be created that allow some redundancy of species coverage to maximize the expected number of species that survive in the presence of threats. In some regions, however, the threats to species within a reserve may be spatially correlated. As examples, fires, diseases, and pest infestations can spread from a starting point and threaten neighboring parcels’ habitats, in addition to damage caused at the initial location. This paper develops a reserve site selection optimization framework that compares the optimal reserve networks in cases where risks do and do not reflect spatial correlation. By exploring the impact of spatially-correlated risk on reserve networks on a stylized landscape and on an Oregon landscape, this analysis demonstrates an appropriate and feasible method for incorporating such post-reserve establishment risks in the reserve site selection literature as an additional tool to be further developed for future conservation planning. PMID:26789127