Science.gov

Sample records for natural solution concept

  1. Naturally selecting solutions

    PubMed Central

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems. PMID:23222169

  2. Natural Concepts in Pigeons

    ERIC Educational Resources Information Center

    Herrnstein, R. J.; And Others

    1976-01-01

    Pigeons learned discrimination rapidly and responded differentially to pictures seen for the first time. The essential feature of a natural discrimination--which is the ability to cope with natural ranges of variation--was approached and earlier experimental results were extended using other classes of stimuli. (Author/RK)

  3. Tail mean and related robust solution concepts

    NASA Astrophysics Data System (ADS)

    Ogryczak, Włodzimierz

    2014-01-01

    Robust optimisation might be viewed as a multicriteria optimisation problem where objectives correspond to the scenarios although their probabilities are unknown or imprecise. The simplest robust solution concept represents a conservative approach focused on the worst-case scenario results optimisation. A softer concept allows one to optimise the tail mean thus combining performances under multiple worst scenarios. We show that while considering robust models allowing the probabilities to vary only within given intervals, the tail mean represents the robust solution for only upper bounded probabilities. For any arbitrary intervals of probabilities the corresponding robust solution may be expressed by the optimisation of appropriately combined mean and tail mean criteria thus remaining easily implementable with auxiliary linear inequalities. Moreover, we use the tail mean concept to develope linear programming implementable robust solution concepts related to risk averse optimisation criteria.

  4. A natural species concept for prokaryotes

    NASA Technical Reports Server (NTRS)

    Ward, D. M.

    1998-01-01

    Direct molecular analyses of natural microbial populations reveal patterns that should compel microbiologists to adopt a more natural species concept that has been known to biologists for decades. The species debate can be exploited to address a larger issue - microbiologists need, in general, to take a more natural view of the organisms they study.

  5. Childrens' Conceptions of Nature

    ERIC Educational Resources Information Center

    Payne, Phillip

    2014-01-01

    This paper describes a study of sixth grade children's conceptions of nature and the environment. In so doing, it asks that environmental educators pay more attention to children's preconceived notions of environment and nature. Should this occur the theory-practice gap in environmental education may be diminished. Learners' concept…

  6. Teaching Russian Culture: Concepts of Nature.

    ERIC Educational Resources Information Center

    Jones, Dianne

    Russian culture is very much influenced by its huge land area, peculiar topography, and harsh climate. To understand Russian culture one must know how Russians perceive nature. This paper discusses how this concept may be conveyed to U.S. middle school students through poetry. Poems about nature can provide students an opportunity to understand…

  7. Missing concepts in natural selection theory reconstructions.

    PubMed

    Ginnobili, Santiago

    2016-09-01

    The concept of fitness has generated a lot of discussion in philosophy of biology. There is, however, relative agreement about the need to distinguish at least two uses of the term: ecological fitness on the one hand, and population genetics fitness on the other. The goal of this paper is to give an explication of the concept of ecological fitness by providing a reconstruction of the theory of natural selection in which this concept was framed, that is, based on the way the theory was put to use in Darwin's main texts. I will contend that this reconstruction enables us to account for the current use of the theory of natural selection. The framework presupposed in the analysis will be that of metatheoretical structuralism. This framework will provide both a better understanding of the nature of ecological fitness and a more complete reconstruction of the theory. In particular, it will provide what I think is a better way of understanding how the concept of fitness is applied through heterogeneous cases. One of the major advantages of my way of thinking about natural selection theory is that it would not have the peculiar metatheoretical status that it has in other available views. I will argue that in order to achieve these goals it is necessary to make several concepts explicit, concepts that are frequently omitted in usual reconstructions. PMID:27385113

  8. Natural gas as a natural' solution

    SciTech Connect

    McCormick, W.T. Jr.

    1991-05-15

    This article promotes natural gas use as a means to cut US dependence on imported oil by some 28 percent over the next ten years, while improving energy efficiency and solving a portion of the global warming and acid rain problems. Topics of discussion include fuel substitution, the Clean Air Act, natural gas capacity and distribution, and natural gas exploration.

  9. Portable long trace profiler: Concept and solution

    SciTech Connect

    Qian, Shinan; Takacs, Peter; Sostero, Giovanni; Cocco, Daniele

    2001-08-01

    Since the early development of the penta-prism long trace profiler (LTP) and the in situ LTP, and following the completion of the first in situ distortion profile measurements at Sincrotrone Trieste (ELETTRA) in Italy in 1995, a concept was developed for a compact, portable LTP with the following characteristics: easily installed on synchrotron radiation beam lines, easily carried to different laboratories around the world for measurements and calibration, convenient for use in evaluating the LTP as an in-process tool in the optical workshop, and convenient for use in temporarily installation as required by other special applications. The initial design of a compact LTP optical head was made at ELETTRA in 1995. Since 1997 further efforts to reduce the optical head size and weight, and to improve measurement stability have been made at Brookhaven National Laboratory. This article introduces the following solutions and accomplishments for the portable LTP: (1) a new design for a compact and very stable optical head, (2) the use of a small detector connected to a laptop computer directly via an enhanced parallel port, and there is no extra frame grabber interface and control box, (3) a customized small mechanical slide that uses a compact motor with a connector-sized motor controller, and (4) the use of a laptop computer system. These solutions make the portable LTP able to be packed into two laptop-size cases: one for the computer and one for the rest of the system.

  10. A Review of Solution Chemistry Studies: Insights into Students' Conceptions

    ERIC Educational Resources Information Center

    Calyk, Muammer; Ayas, Alipa; Ebenezer, Jazlin V.

    2005-01-01

    This study has reviewed the last two decades of student conception research in solution chemistry pertaining to aims, methods of exploring students' conception, general knowledge claims, students' conceptions and difficulties, and conceptual change studies. The aims of solution chemistry studies have been to assess students' understanding level of…

  11. Nature, Human Nature, and Solutions to Problems.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, B. C.

    This paper promotes an undergraduate course that would discuss the great ideas of Plato, St. Paul, Karl Marx, Sigmund Freud, Jean Paul Sartre, B. F. Skinner, and Konrad Lorenz. This course would help students understand human values and behaviors while focusing on historical, world, and national problems. Tentative solutions would then be…

  12. Marine geodesy - Problem areas and solution concepts

    NASA Technical Reports Server (NTRS)

    Saxena, N.

    1974-01-01

    This paper deals with a conceptional geodetic approach to solve various oceanic problems, such as submersible navigation under iced seas, demarcation/determination of boundaries in open ocean, resolving sea-level slope discrepancy, improving tsunami warning system, ecology, etc., etc. The required instrumentation is not described here. The achieved as well as desired positional accuracy estimates in open ocean for various tasks are also given.

  13. Solar-Assisted Solution-Mining Concept

    NASA Technical Reports Server (NTRS)

    Dowler, W. L.; French, R. L.; Becker, J. C. J.; Bills, J.

    1983-01-01

    Brine heated in solar pond dissolves minerals from deposits. In proposed solution-mining process, hot brine is pumped down one well and recovered at one or more other wells. Emerging brine is rich in desired mineral. Brine is evaporated in solar ponds to recover mineral.

  14. Exploring the folkbiological conception of human nature

    PubMed Central

    Linquist, Stefan; Machery, Edouard; Griffiths, Paul E.; Stotz, Karola

    2011-01-01

    Integrating the study of human diversity into the human evolutionary sciences requires substantial revision of traditional conceptions of a shared human nature. This process may be made more difficult by entrenched, ‘folkbiological’ modes of thought. Earlier work by the authors suggests that biologically naive subjects hold an implicit theory according to which some traits are expressions of an animal's inner nature while others are imposed by its environment. In this paper, we report further studies that extend and refine our account of this aspect of folkbiology. We examine biologically naive subjects' judgments about whether traits of an animal are ‘innate’, ‘in its DNA’ or ‘part of its nature’. Subjects do not understand these three descriptions to be equivalent. Both innate and in its DNA have the connotation that the trait is species-typical. This poses an obstacle to the assimilation of the biology of polymorphic and plastic traits by biologically naive audiences. Researchers themselves may not be immune to the continuing pull of folkbiological modes of thought. PMID:21199848

  15. The natural flow wing-design concept

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Bauer, Steven X. S.

    1992-01-01

    A wing-design study was conducted on a 65 degree swept leading-edge delta wing in which the wing geometry was modified to take advantage of the naturally occurring flow that forms over a slender wing in a supersonic flow field. Three-dimensional nonlinear analysis methods were used in the study which was divided into three parts: preliminary design, initial design, and final design. In the preliminary design, the wing planform, the design conditions, and the near-conical wing-design concept were derived, and a baseline standard wing (conventional airfoil distribution) and a baseline near-conical wing were chosen. During the initial analysis, a full-potential flow solver was employed to determine the aerodynamic characteristics of the baseline standard delta wing and to investigate modifications to the airfoil thickness, leading-edge radius, airfoil maximum-thickness position, and wing upper to lower surface asymmetry on the baseline near-conical wing. The final design employed an Euler solver to analyze the best wing configurations found in the initial design and to extend the study of wing asymmetry to develop a more refined wing. Benefits resulting from each modification are discussed, and a final 'natural flow' wing geometry was designed that provides an improvement in aerodynamic performance compared with that of a baseline conventional uncambered wing, linear-theory cambered wing, and near-conical wing.

  16. Natural optical design concepts for highly miniaturized camera systems

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    1999-08-01

    Microcameras for computers, mobile phones, watches, security system and credit cards is a very promising future market. Semiconductor industry is now able to integrate light reception, signal amplification and processing in a low- power-consuming microchip of a few mm2 size. Active pixel sensors supply each pixel in an image sensor with an individually programmable functionality. Beside the electronic receptor chip, a highly miniaturized lens system is required. Compared to the progress in microelectronics, optics has not yet made a significant step. Today's microcamera lenses are usually a downscaled version of a classical lens system and rarely smaller than 3 mm X 3 mm X 3 mm. This lagging of optics is quite surprising. Biologists have systematically studied all types of natural eye sensors since the 18th Century. Mother Nature provides a variety of highly effective examples for miniaturized imaging system. Single-aperture systems are the appropriate solution if the size is a free design parameter. If the budget is tight and optics limited to size, nature prefers multiple-aperture systems, the so-called compound eyes. As compound eyes are limited in resolution and night view, a cluster of single-aperture eyes, as jumping spiders use, is probably a better solution. The recent development in micro- optics offers the chance to imitate such natural design concepts. We have investigated miniaturized imaging systems based on microlens array and natural optical design concepts. Practical limitations for system design, packaging and assembling are given. Examples for micro-optical components and imaging systems are presented.

  17. A Review of Solution Chemistry Studies: Insights into Students? Conceptions

    NASA Astrophysics Data System (ADS)

    Çalýk, Muammer; Ayas, Alipaşa; Ebenezer, Jazlin V.

    2005-03-01

    This study has reviewed the last two decades of student conception research in solution chemistry pertaining to aims, methods of exploring students' conception, general knowledge claims, students' conceptions and difficulties, and conceptual change studies. The aims of solution chemistry studies have been to assess students' understanding level of solution chemistry and in some studies compare understanding based on age and year at school or college. The methods of exploring students' conceptions consisted of interviews, paper and pencil surveys (open-ended questions and multiple-choice questions), free writing and drawings and the validity of these methods have been highlighted. The general knowledge claims synthesized in this study are students' (a) attending to mechanical events, (b) preference for everyday language usage over chemical language, (c) confusing solution chemistry with non-related concepts, (d) lack of sub-microscopic explanation for macroscopic observation, (e) difficulty with visualizing and representing sub-microscopic ideas, (f) difficulty with symbolic representations, (g) inconsistent explanations, (h) development of student understanding with age, and (i) development of conservation reasoning with age. To incorporate students' conceptions, conceptual change studies have used strategies such as worksheet, analogy, collaboratively working with a teacher, hypermedia, and group exploration. The results of conceptual change studies generally have had a positive impact enabling students to consider their ideas and develop plausible models of solution chemistry. For improvement of student learning in chemistry, this review of solution chemistry studies sheds light on teacher thinking and capacity building with respect to explicitly incorporating students' conceptions into chemistry curriculum; practicing research-based strategies; forging links among types of chemical knowledge; collaborating for experimental teaching; and conducting further

  18. Kindergarten Teachers' Conceptions about Nature and the Environment

    ERIC Educational Resources Information Center

    Flogaitis, Evgenia; Agelidou, Evagelia

    2003-01-01

    This study was carried out within the framework of environmental education (EE) and its object was the recording, categorization and interpretation of kindergarten teachers' conceptions about two basic concepts: nature and the environment, which are key concepts of environmental education. The study involved the participation of 110 public…

  19. The Fuzzy Nature Of Concepts: Stochastic Objects

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Megaklis Th.

    2010-09-01

    Concept is every assignment of a prototype to an icon, whatever may be the prototype or the icon. We call the prototype "object" and the icon "attributes". Concepts are couples of sets O and A, that is assignments, of the object O (a set of none, or one or more elements -there is no real difference), to the set A of (their common) attributes. The objects change according to the sequence of attributes. So, only couples of objects and attributes, enriched with the proper operations, are adequate for our Knowledge Space. Concepts are proved to have the structure (order) of a Boolean Algebra(Lattice), which is more complex than linear or hierarchical ones. The lattice is created by two algebraic operations ("intersection of concepts" as the multiplication and "symmetric-difference(!) of concepts" as the addition (!)). There are two other operations (the "union of two concepts" and the "complement of a concept"). Intersection and union(which cannot play the role of multiplication) express similarities, while the other two operations express dissimilarities. Union, intersection and the complement are used for the definition of the symmetric-difference. The complement cannot be expressed by the two predefined operations union and intersection, which have the meaning of "common". Besides, it is not a deterministic function: the complement Oc may have attributes inside the complement Ac of attributes (and if yes, we do not know, from the beginning, which of them). Now, the situation becomes stochastic: if Ω' is the set of n attributes we are interested in (e.g., in m sequential experiments), suppose that, in each experiment, some attributes appear(are detected) and the rest from Ω' do not appear. Everyone from the m experiments consists of n Bernulli trials (one for every attribute) and, consequently, we get m stochastically changing objects (concepts) and the (complete, if we are very lucky) lattice of the m concepts. Everyone from the n attributes corresponds to a B

  20. Threshold concepts: implications for the management of natural resources

    USGS Publications Warehouse

    Guntenspergen, Glenn R.; Gross, John

    2014-01-01

    Threshold concepts can have broad relevance in natural resource management. However, the concept of ecological thresholds has not been widely incorporated or adopted in management goals. This largely stems from the uncertainty revolving around threshold levels and the post hoc analyses that have generally been used to identify them. Natural resource managers have a need for new tools and approaches that will help them assess the existence and detection of conditions that demand management actions. Recognition of additional threshold concepts include: utility thresholds (which are based on human values about ecological systems) and decision thresholds (which reflect management objectives and values and include ecological knowledge about a system) as well as ecological thresholds. All of these concepts provide a framework for considering the use of threshold concepts in natural resource decision making.

  1. Exploring Prospective Teachers' Worldviews and Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Liu, Shiang-Yao; Lederman, Norman G.

    2007-01-01

    This study explores the relationship, if any, between an individual's culturally based worldviews and conceptions of nature of science. In addition, the implications of this relationship (or lack of relationship) for science teaching and learning are discussed. Participants were 54 Taiwanese prospective science teachers. Their conceptions of…

  2. The nature of dissection: Exploring student conceptions

    NASA Astrophysics Data System (ADS)

    York, Katharine

    The model of conceptual change in science describes the process of learning as a complete restructuring of knowledge, when learners discover or are shown more plausible, intelligent alternatives to existing conceptions. Emotions have been acknowledged as part of a learner's conceptual ecology, but the effects of emotions on learning have yet to be described. This research was conducted to examine the role that emotions have on learning for thirteen high school students, as they dissected cats in a Human Anatomy and Physiology class. The project also investigated whether a student's emotional reactions may be used to develop a sense of connectedness with the nonhuman world, which is defined as ecological literacy. This study utilized a grounded theory approach, in which student responses to interviews were the primary source of data. Interviews were transcribed, and responses were coded according to a constant comparative method of analysis. Responses were compared with the four conditions necessary for conceptual change to occur, and also to five principles of ecological literacy. Students who had negative reactions to dissection participated less in the activity, and demonstrated less conceptual change. Two female students showed the strongest emotional reactions to dissection, and also the lowest amount of conceptual change. One male student also had strong negative reactions to death, and showed no conceptual change. The dissection experiences of the students in this study did not generally reflect ecological principles. The two students whose emotional reactions to dissection were the most negative demonstrated the highest degree of ecological literacy. These results provide empirical evidence of the effects that emotions have on learning, and also supports the opinions of educators who do not favor dissection, because it does not teach students to respect all forms of life.

  3. Solution dynamics of synthetic and natural polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.

    Polyelectrolytes are abundant in nature and essential to life, and used extensively in industry. This work discussed two polyelectrolytes: sodium poly(2-acrylamido-2-methylpropanesulfonate) (NaPAMS), synthetic polyelectrolyte, and sodium hyaluronate (NaHA), a glycosaminoglycan. Rheological data of NaPAMS solutions of variable chain length and concentration were reported. A strong dependence of viscosity eta on chain length: eta ˜ M2.4 was found. The comparison of the rheological data with two proposed scaling theories (Dobrynin 1995, Witten 1987) forces the conclusion that neither theory is correct. A possible interpretation of the viscosity data falling between the predictions of the two scaling theories is that some chain rigidity may persist beyond the correlation length. A sample model for the conductivity of semidilute polyelectrolytes with no added salt was presented. The model correctly describes the logarithmic decrease of specific conductance observed for many polyelectrolytes at low concentration (below ca. 10-2M), and is in good agreement with data from NaPAMS solutions. NaHA in phosphate buffered saline behaves as a typical polyelectrolyte in the high-salt limit, as Newtonian viscosities are observed over a wide range of shear rates. There is no evidence of intermolecular hydrogen bonding causing gel formation in NaHA solutions without protein present. The viscosity of 3 mg/mL NaHA was measured in the presence of the selected anti-inflammatory agents. Of the seven additives investigated only (D)-penicillamine significantly altered the rheology of HA. (D)-Penicillamine dramatically reduced the viscosity of HA, probably by disrupting intramolecular hydrogen bonding. The plasma proteins albumin and gamma-globulins bind to HA in solution to form a weak reversible gel. The rheology and osmotic pressure of the simple model for synovial fluid, consisting of 3mg/mL NaHA, 11 mg/mL albumin, and 7 mg/mL gamma-globulins in phosphate buffered saline, were studied

  4. Solution Concepts for Distributed Decision-Making without Coordination

    NASA Technical Reports Server (NTRS)

    Beling, Peter A.; Patek, Stephen D.

    2005-01-01

    Consider a single-stage problem in which we have a group N agents who are attempting to minimize the expected cost of their joint actions, without the benefit of communication or a pre-established protocol but with complete knowledge of the expected cost of any joint set of actions for the group. We call this situation a static coordination problem. The central issue in defining an appropriate solution concept for static coordination problems is considering how to deal with the fact that if the agents axe faced with a set of multiple (mixed) strategies that are equally attractive in terms of cost, a failure of coordination may lead to an expected cost value that is worse than that of any of the strategies in the set. In this proposal, we describe the notion of a general coordination problem, describe initial efforts at developing a solution concept for static coordination problems, and then outline a research agenda that centers on activities that will be basis for obtaining a complete understanding of solutions to static coordination problems.

  5. On natural solutal convection in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Pshenichnikov, A. F.

    2015-09-01

    An experiment was carried out to investigate natural solutal convection in a magnetic fluid caused by non-homogeneous initial distribution of colloidal particles in a vertical Hele-Shaw cell. For experiment, we used a dilute magnetic fluid of the "magnetite-kerosene-oleic acid" type. The initial distribution of particles was formed by magnetophoresis of the drop-like aggregates and their sedimentation on the surface of the diamagnetic disk located in the center of the cell. Application of the magnetic field on the system led to the onset of the Rayleigh-Taylor instability and formation of descending convective jets. The velocity of the flow at the front of descending jets was measured for different values of cell thickness (up to 0.18 mm) and strength of the magnetic field generating the drop-like aggregates (up to 21 kA/m). The solutal Rayleigh numbers varied in the range Ra = 50-105. It was shown that the intensity of the convective flow characterized by the Reynolds number Re, increases with the Rayleigh number according to the power law: Re = 1.16 × 10-5Ra0.86.

  6. Pre-Service Physics Teachers' Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2011-01-01

    Understanding of NOS (nature of science) appears as a prerequisite of a scientifically literate person. Promoting adequate understanding of NOS in pre-service physics teachers is, therefore, an important task of science educators. Before doing that, science educators must have information concerning their pre-service teachers' conceptions of NOS.…

  7. Turkish Primary Students' Conceptions about the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2011-01-01

    This study was conducted to determine 4th, 5th, and 6th grade primary students' conceptions about the particulate nature of matter in daily-life events. Five questions were asked of students and interviews were used to collect data. The interviews were conducted with 12 students, four students from each grade, after they finished the formal…

  8. Concepts and implementations of natural language query systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Liu, I-Hsiung

    1984-01-01

    The currently developed user language interfaces of information systems are generally intended for serious users. These interfaces commonly ignore potentially the largest user group, i.e., casual users. This project discusses the concepts and implementations of a natural query language system which satisfy the nature and information needs of casual users by allowing them to communicate with the system in the form of their native (natural) language. In addition, a framework for the development of such an interface is also introduced for the MADAM (Multics Approach to Data Access and Management) system at the University of Southwestern Louisiana.

  9. Children's Concepts of Natural Phenomena: Use of a Cognitive Mapping Approach to Describe These Concepts.

    ERIC Educational Resources Information Center

    Rowell, Richard M.

    Reported is a study based on the summary findings of a series of studies which indicated that many children who receive organized instruction designed around the few major concepts of science do, in fact, use scientific models to explain their observations of natural phenomena. The instruction that children in the study received was delivered by…

  10. Green Extraction of Natural Products: Concept and Principles

    PubMed Central

    Chemat, Farid; Vian, Maryline Abert; Cravotto, Giancarlo

    2012-01-01

    The design of green and sustainable extraction methods of natural products is currently a hot research topic in the multidisciplinary area of applied chemistry, biology and technology. Herein we aimed to introduce the six principles of green-extraction, describing a multifaceted strategy to apply this concept at research and industrial level. The mainstay of this working protocol are new and innovative technologies, process intensification, agro-solvents and energy saving. The concept, principles and examples of green extraction here discussed, offer an updated glimpse of the huge technological effort that is being made and the diverse applications that are being developed. PMID:22942724

  11. "The City Snuffs out Nature": Young People's Conceptions of and Relationship with Nature

    ERIC Educational Resources Information Center

    Pointon, Pam

    2014-01-01

    This paper reports a study of 384 13-14-year olds' written responses to open-ended questions about their understanding of and relationship with "nature." Using constant comparative method the responses were coded, categorised and themed. Most students held scientific conceptions of nature (excluding humans) and a utilitarian…

  12. The Nature and Variability of Children's Alternative Conceptions of Evolution

    NASA Astrophysics Data System (ADS)

    Ly, Uyen Adelyn

    In recent years a large amount of research has focused on the alternative conceptions about evolution found among secondary and university students, but few studies have investigated younger students' ideas on this subject. The present study examines the alternative conceptions of evolution harbored by second and third-grade students who participated in a summer instructional course that scaffolded the mechanisms of natural selection through cases of microevolution. In order to identify the categories of alternative conceptions that students expressed, 60 sets of pre- and posttest structured interviews were analyzed, and these showed that participants in this study expressed alternative conceptions closely related to those identified in studies conducted using high school and college-age participants. The results demonstrated a variability of alternative conceptions across a range of interview items, and also revealed how contextual features in the assessment tasks may account for the patterns that emerged in students' responses. Students' evocations of alternative conceptions declined after their participation in the instructional course. The analyses of the four case study students, whose pre-and posttest patterns were representative of their cohorts, provided a detailed within-subject look at how these alternative conceptions occurred in the context of the interview items and how they changed from pre- to posttest. These findings have broad relevance to understanding conceptual development in young children and important implications both for considering at how early an age instruction about evolutionary biology should begin and for evaluating the potential long-term impact of a curriculum that targets sources of student difficulty at earlier grade levels.

  13. Monitoring the Impact of Solution Concepts within a Given Problematic

    NASA Astrophysics Data System (ADS)

    Cavallucci, Denis; Rousselot, François; Zanni, Cecilia

    It is acknowledged that one of the most critical issues facing today’s organizations concerns the substantial leaps required to methodologically structure innovation. Among other published work, some suggest that a complete rethinking of current practices is required. In this article, we propose a methodology aiming at providing controlled R&D choices based on a monitoring of the impact Solution Concepts provoke on a problematic situation. Initially this problematic situation is modeled in a graph form, namely a Problem Graph. It has the objective to assists R&D managers when choosing which activities to support and bring them concrete arguments to defend their choices. We postulate that by improving the robustness of such approaches we help deciders to switch from intuitive decisions (mostly built upon their past experiences, fear regarding risks, and awareness of the company’s level of acceptance of novelties) to thoroughly constructed inventive problem solving strategies. Our approach will be discussed using a computer application that illustrates our hypothesis after being tested in several industrial applications.

  14. The concept of nature in Islamic science teaching

    NASA Astrophysics Data System (ADS)

    Zarman, Wendi

    2016-02-01

    Science teaching is basically value laden activities. One of the values tells that science is not related to any religion. This secular value is reflected to science teaching in many places, including religious country like Indonesia. However, we argue that in Indonesia science teaching should not be secular as in the Western country since one of the basic aim of National Education according to the Indonesian constitution Undang-Undang Dasar 1945, is to inculcate faith and god-fearing to One God Almighty. As we know, Indonesia is a Moslem country and has many Islamic schools in it too. Thus, it is important to design a science teaching framework base on Islamic teaching to fulfill the basic aim of National Education This paper discusses concept of nature, the key term in science, based on Islamic view that may used as a framework to develop Islamic science teaching. In Islam, science has a strong relation to religion since nature reflects the existence of the Creator. This concept is derived from the analysis of several verses from Qur'an as the main source of Islamic teaching. There are several principle can be derived from this analysis. Firstly, visible world is not the only world, but there is also the unseen world. Secondly, the nature is not merely matter that doesn't have any sacred value, but it is the indication or symbol of God existence and His Nature. Thirdly, The Qur'an and the nature are both Books of Allah that contain messages of Him, so they are complementary to each other

  15. Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Trenbath, K. L.

    2011-12-01

    constructed definition removes human-causes from association with the word "climate change", which may influence their climate change understanding. Of the two higher achieving students, one emphasized anthropogenic climate change at the beginning of the semester, but later focused on natural climate change during his interviews. The other high achieving student included tangential environmental topics in her descriptions of climate change throughout the entire semester, thus conflating climate change's definition. These alternative definitions of climate change indicate that the learners constructed hybrid conceptions in order to incorporate class content with their prior ideas. These hybrid conceptions indicate that the students' understandings lie somewhere between misconceptions and conceptual change. Since the students demonstrated these hybrid conceptions at the end of class, perhaps more time is needed for the students to process the information. These case studies identify the gaps the professor should address for conceptual change to fully occur.

  16. Application of natural laminar flow to a supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Fuhrmann, Henri D.

    1993-01-01

    Results are presented of a preliminary investigation into an application of supersonic natural laminar flow (NLF) technology for a high speed civil transport (HSCT) configuration. This study focuses on natural laminar flow without regard to suction devices which are required for laminar flow control (LFC) or hybrid laminar flow control (HLFC). An HSCT design is presented with a 70 deg inboard leading-edge sweep and a 20 deg leading-edge outboard crank to obtain NLF over the outboard crank section. This configuration takes advantage of improved subsonic performance and NLF on the low-sweep portion of the wing while minimizing the wave drag and induced drag penalties associated with low-sweep supersonic cruise aircraft. In order to assess the benefits of increasing natural laminar flow wetted area, the outboard low-sweep wing area is parametrically increased. Using a range of supersonic natural laminar flow transition Reynolds numbers, these aircraft are then optimized and sized for minimum take-off gross weight (TOGW) subject to mission constraints. Results from this study indicate reductions in TOGW for the NLF concepts, due mainly to reductions in wing area and total wing weight. Furthermore, significant reductions in block fuel are calculated throughout the range of transition Reynolds numbers considered. Observations are made on the benefits of unsweeping the wingtips with all turbulent flow.

  17. What's Natural about Nature? Deceptive Concepts in Socio-Scientific Decision-Making

    ERIC Educational Resources Information Center

    Lindahl, Mats Gunnar; Linder, Cedric

    2015-01-01

    The conflicts between nature and nurture are brought to the fore and challenges socio-scientific decision-making in science education. The multitude of meanings of these concepts and their roles in societal discourses can impede students' development of understanding for different perspectives, e.g. on gene technology. This study problematizes…

  18. Metabiotics: novel idea or natural development of probiotic conception

    PubMed Central

    Shenderov, Boris A.

    2013-01-01

    Traditionally, probiotics on the base of live microorganisms are considered to be both beneficial and safe. Unfortunately, their effects may have short-term success or are absent or uncertain. Some symbiotic (probiotic) microorganisms with known beneficial health affects may cause opportunistic infections, increase incidence of allergic sensitization and autoimmune disorders, produce microecological imbalance, modify gene expression, transfer antibiotic resistant and virulence genes, cause disorders in epigenome and genome integrity, induce chromosomal DNA damage, and activate signaling pathways associated with cancer and other chronic diseases. The commercially available probiotics should be considered as a first generation means of correcting microecological disorders. Further, their development will include the selection of natural metabiotics and/or working out the synthetic (or semi-synthetic) metabiotics that will be analogies or improved copies of natural bioactives, produced by symbiotic (probiotic) microorganisms. Metabiotics are the structural components of probiotic microorganisms and/or their metabolites and/or signaling molecules with a determined (known) chemical structure that can optimize host-specific physiological functions, regulator, metabolic and/or behavior reactions connected with the activity of host indigenous microbiota. Metabiotics have some advantages because of their exact chemical structure, well dosed, very safe and long shelf-life. Thus, now metabiotics should not consider myth; they are the result of the natural evolution of probiotic conception. PMID:23990841

  19. Usage of Stereo Orthoimage in Gis: Old Concept, Modern Solution

    NASA Astrophysics Data System (ADS)

    Pyka, K.; Słota, M.; Twardowski, M.

    2012-07-01

    The main goal of this paper is to find answer for two questions: why stereo orthoimage (orthophoto) was forgotten, and furthermore, what conditions have to be fulfilled for this particular technique to be reanimated? Stereo orthophoto concept was first introduced by Collins, during late seventies of last century (Colins, 1968). It has ignited huge interest, and many researchers were looking forward for its development (Blachut 1976, Kraus et al. 1976). However, after around twenty years, interest in stereo-orthophoto has shrunk, and during eighties of XX century it was almost extinct. Despite of fact that digital photogrammetry provides better conditions for it now than ever, it has never got chance for reactivation. There was but few papers about stereo orthoimage, and they are proposing continuous stereo ortho-mosaic generation while preserving its metric value (Li et al 2002, Wang 2004). Reasons of downfall of this interest were examined, and it has been concluded that the main cause was usage of this technique in conjunction with analog photogrammetry. The radiometric value of orthophotomaps and stereo components developed on photosensitive paper were very low during that time. Equipment for observation and measurement were simply very big and therefore impractical. Authors have concluded, that nowadays sum of gains outweighs its flaws and it is reason enough to go back to it. But in a time of digital vector 3D models there is a need for proper strategy for popularization stereo orthophoto. Main point of this strategy would be encapsulating stereo orthoimage method into GIS tools, optimally open source. GIS have large numbers of consumers whom regard for orthophotomap (or orthoimage) is very high. If they were to be proposed with possibility of using stereo orthoimage inside a GIS tool, as a complementary to the orthophotomap, probably they would recon how much stereoscopy helps with interpretation of an image. Authors have planned to develop software for

  20. Constructing Concept Schemes From Astronomical Telegrams Via Natural Language Clustering

    NASA Astrophysics Data System (ADS)

    Graham, Matthew; Zhang, M.; Djorgovski, S. G.; Donalek, C.; Drake, A. J.; Mahabal, A.

    2012-01-01

    The rapidly emerging field of time domain astronomy is one of the most exciting and vibrant new research frontiers, ranging in scientific scope from studies of the Solar System to extreme relativistic astrophysics and cosmology. It is being enabled by a new generation of large synoptic digital sky surveys - LSST, PanStarrs, CRTS - that cover large areas of sky repeatedly, looking for transient objects and phenomena. One of the biggest challenges facing these is the automated classification of transient events, a process that needs machine-processible astronomical knowledge. Semantic technologies enable the formal representation of concepts and relations within a particular domain. ATELs (http://www.astronomerstelegram.org) are a commonly-used means for reporting and commenting upon new astronomical observations of transient sources (supernovae, stellar outbursts, blazar flares, etc). However, they are loose and unstructured and employ scientific natural language for description: this makes automated processing of them - a necessity within the next decade with petascale data rates - a challenge. Nevertheless they represent a potentially rich corpus of information that could lead to new and valuable insights into transient phenomena. This project lies in the cutting-edge field of astrosemantics, a branch of astroinformatics, which applies semantic technologies to astronomy. The ATELs have been used to develop an appropriate concept scheme - a representation of the information they contain - for transient astronomy using hierarchical clustering of processed natural language. This allows us to automatically organize ATELs based on the vocabulary used. We conclude that we can use simple algorithms to process and extract meaning from astronomical textual data.

  1. Energy Literacy: A Natural and Essential Part of a Solutions-Based Approach to Climate Literacy

    NASA Astrophysics Data System (ADS)

    Inman, M. M.

    2011-12-01

    As with climate science topics, many Americans have misconceptions or gaps in understanding related to energy topics. Recent literacy efforts are geared to address these gaps in understanding. The U.S. Global Change Research Program's recently published "Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education" offers a welcome complement to the Climate Literacy Essential Principles released in 2008. Research and experience suggest that education, communication and outreach about global climate change and related topics is best done using a solutions-based approach. Energy is a natural and effective topic to frame these solutions around. Used as a framework for designing curricula, Energy Literacy naturally leads to solutions-based approaches to Climate Change education. An inherently interdisciplinary topic, energy education must happen in the context of both the natural and social sciences. The Energy Literacy Essential Principles reflect this and open the door to curriculum that integrates the two.

  2. Concept of CFD model of natural draft wet-cooling tower flow

    NASA Astrophysics Data System (ADS)

    Hyhlík, T.

    2014-03-01

    The article deals with the development of CFD model of natural draft wet-cooling tower flow. The physical phenomena taking place within a natural draft wet cooling tower are described by the system of conservation law equations along with additional equations. The heat and mass transfer in the counterflow wet-cooling tower fill are described by model [1] which is based on the system of ordinary differential equations. Utilization of model [1] of the fill allows us to apply commonly measured fill characteristics as shown by [2].The boundary value problem resulting from the fill model is solved separately. The system of conservation law equations is interlinked with the system of ordinary differential equations describing the phenomena occurring in the counterflow wet-cooling tower fill via heat and mass sources and via boundary conditions. The concept of numerical solution is presented for the quasi one dimensional model of natural draft wet-cooling tower flow. The simulation results are shown.

  3. Advanced control concepts. [trim solution for space shuttle

    NASA Technical Reports Server (NTRS)

    Hutton, M. F.; Friedland, B.

    1973-01-01

    The selection of a trim solution that provides the space shuttle with the highest level of performance and dynamic control in the presense of wind disturbances and bias torques due to misalignment of rocket engines is described. It was determined that engine gimballing is insufficient to provide control to trim the vehicle for headwind and sidewind disturbances, and that it is necessary to use aerodynamic surfaces in conjunction with engine gimballing to achieve trim. The algebraic equations for computing the trim solution were derived from the differential equations describing the motion of the vehicle by substituting the desired trim conditions. The general problem of showing how the trim equations are derived from the equations of motion and the mathematical forms of the performance criterion is discussed in detail, along with the general equations for studying the dynamic response of the trim solution.

  4. Nature is (a) mine: conceptions of nature in the Dutch ecogenomics community.

    PubMed

    Van der Hout, Sanne

    2014-12-01

    Every field of science, but especially biology, contains particular conceptions of nature. These conceptions are not merely epistemological or ontological, but also have normative dimensions; they provide an ethos, a framework for moral orientation. These normative dimensions, whilst often remaining 'hidden' and inarticulate, influence the way in which biologists practice their profession. In this paper, I explore what happens when different versions of these implicit normative frameworks collide. To do so, I will focus on a case study from the field of ecological genomics as it has evolved in one particular country, namely the Netherlands. During an important inaugural meeting, the director of one of the most sizeable Dutch ecogenomics centres gave a presentation in which he introduced the term 'nature mining'. Part of the audience immediately embraced the term, but others were very reluctant. This mixed response is generally explained as a culmination of growing tension about the future direction of the field: due to new funding demands, a shift had occurred from fundamental research to research more interested in 'valorisation'.In addition to this current interpretation, I will argue that the turmoil caused by the use of the term 'nature mining' also reveals a more fundamental difference between the various parties involved in the Dutch ecogenomics community. This term is part of a vocabulary that emphasises the beneficial 'goods' produced by nature. Whereas part of the audience saw no harm in this commodification of nature, others had difficulties with the reduction of nature to a reservoir to be exploited using the latest technologies. I will conclude by arguing that, although at present, the core of Dutch ecogenomics research reflects a more or less instrumental attitude towards nature, the field also harbours other interpretations of nature as a significant and meaningful order. For instance, ecogenomics might further develop the image of land as a

  5. MODELLING OF AGRICHEMICALS IN ENVIRONMENTAL COMPARTMENTS - CONCEPTS, PROBLEMS, AND SOLUTIONS

    EPA Science Inventory

    The potential of plant protection chemicals to migrate away from application sites and expose non-target biota is of continuing interest and concern to regulatory specialists, ecotoxicologists, agriculturalists, and natural resource managers. Regulatory decisions can wait upon ne...

  6. Photodegradation of triazine herbicides in aqueous solutions and natural waters.

    PubMed

    Evgenidou, E; Fytianos, K

    2002-10-23

    The photodegradation of three triazines, atrazine, simazine, and prometryn, in aqueous solutions and natural waters using UV radiation (lambda > 290 nm) has been studied. Experimental results showed that the dark reactions were negligible. The rate of photodecomposition in aqueous solutions depends on the nature of the triazines and follows first-order kinetics. In the case of the use of hydrogen peroxide and UV radiation, a synergistic effect was observed. The number of photodegradation products detected, using FIA/MS and FIA/MS/MS techniques, suggests the existence of various degradation routes resulting in complex and interconnected pathways. PMID:12381128

  7. Teaching Concepts of Natural Sciences to Foreigners through Content-Based Instruction: The Adjunct Model

    ERIC Educational Resources Information Center

    Satilmis, Yilmaz; Yakup, Doganay; Selim, Guvercin; Aybarsha, Islam

    2015-01-01

    This study investigates three models of content-based instruction in teaching concepts and terms of natural sciences in order to increase the efficiency of teaching these kinds of concepts in realization and to prove that the content-based instruction is a teaching strategy that helps students understand concepts of natural sciences. Content-based…

  8. The interstellar conundrum: a survey of concepts and proposed solutions.

    PubMed

    Gilster, Paul A

    2005-12-01

    Once considered intractable, the problem of interstellar flight is slowly yielding to analysis. Although manned missions to the stars are exceedingly improbable in this century, the possibility of interstellar robotic probes should not be ruled out. Recent laboratory work and theoretical analysis suggest several near-term technologies that could, given the development of an adequate space-based infrastructure, provide the needed propulsion. Laser-driven lightsails offer the key advantage of leaving the fuel behind, with the laser beam focused by a large Fresnel lens in the outer Solar System. Perhaps more efficient is the use of a particle beam to boost a spacecraft by interacting with its magnetic sail, the latter a system already under intense scrutiny. Variations on "pellet" propulsion using macroscopic objects continue to surface, their mass converted to energy as they arrive at the departing starship. Interstellar flight will be both difficult and expensive, although it can no longer be considered an impossibility. This paper examines the above concepts and relates them to older ideas, such as the Bussard ramjet, that are currently out of favor. The vibrancy of interstellar flight studies is its syncretism-it was through analysis of the drag problem in fusion ramjet designs that a practical means of decelerating an interstellar probe by deployment of a magnetic sail emerged. The intermingling of such ideas offers the hope of robust hybrid concepts that may make interstellar flight a reality. PMID:16510426

  9. [Mouthwash solutions with microencapsuled natural extracts: Efficiency for dental plaque and gingivitis].

    PubMed

    Vervelle, A; Mouhyi, J; Del Corso, M; Hippolyte, M-P; Sammartino, G; Dohan Ehrenfest, D M

    2010-06-01

    Mouthwash solutions are mainly used for their antiseptic properties. They currently include synthetic agents (chlorhexidine, triclosan, etc.) or essential oils (especially Listerine). Many natural extracts may also be used. These associate both antiseptic effects and direct action on host response, due to their antioxidant, immunoregulatory, analgesic, buffering, or healing properties. The best known are avocado oil, manuka oil, propolis oil, grapefruit seed extract, pycnogenol, aloe vera, Q10 coenzyme, green tea, and megamin. The development of new technologies, such as microencapsulation (GingiNat concept), may allow an in situ slow release of active ingredients during several hours, and open new perspectives for mouthwash solutions. PMID:20605180

  10. Streamwise-Localized Solutions with natural 1-fold symmetry

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian; Willis, Ashley; Hof, Björn

    2014-11-01

    It has been proposed in recent years that turbulence is organized around unstable invariant solutions, which provide the building blocks of the chaotic dynamics. In direct numerical simulations of pipe flow we show that when imposing a minimal symmetry constraint (reflection in an axial plane only) the formation of turbulence can indeed be explained by dynamical systems concepts. The hypersurface separating laminar from turbulent motion, the edge of turbulence, is spanned by the stable manifolds of an exact invariant solution, a periodic orbit of a spatially localized structure. The turbulent states themselves (turbulent puffs in this case) are shown to arise in a bifurcation sequence from a related localized solution (the upper branch orbit). The rather complex bifurcation sequence involves secondary Hopf bifurcations, frequency locking and a period doubling cascade until eventually turbulent puffs arise. In addition we report preliminary results of the transition sequence for pipe flow without symmetry constraints.

  11. Emerging Modeling Concepts and Solutions in Stem Cell Research.

    PubMed

    Papatsenko, Dmitri; Lemischka, Ihor R

    2016-01-01

    Modern stem cell research, as well as other fields of contemporary biology involves quantitative sciences in many ways. Identifying candidates for key differentiation or reprogramming factors, tracing global transcriptome changes, or finding drugs is now broadly involves bioinformatics and biostatistics. However, the next key step, understanding the underlying reasons and establishing causal links leading to differentiation or reprogramming requires qualitative and quantitative biological models describing complex biological systems. Currently, quantitative modeling is a challenging science, capable to deliver rather modest results or predictions. What model types are the most popular and what features of stem cell behavior they are capturing? What new insights do we expect from the computational modeling of stem cells in the foreseeable future? Current review attempts to approach these essential questions by considering published quantitative models and solutions emerging in the area of stem cell research. PMID:26970649

  12. School Students' Conceptions about Biodiversity Loss: Definitions, Reasons, Results and Solutions

    NASA Astrophysics Data System (ADS)

    Kilinc, Ahmet; Yeşiltaş, Namik Kemal; Kartal, Tezcan; Demiral, Ümit; Eroğlu, Baris

    2013-12-01

    Environmental degradation stemming from anthropocentric causes threatens the biodiversity more than ever before, leading scholars to warn governments about the impending consequences of biodiversity loss (BL). At this point, it is of great importance to study the public's conceptions of BL in order to identify significant educational implications. However, a review of the literature reveals a relatively small body of research about the public understanding of BL. In this qualitative study, we thus strived to elicit Turkish school students' conceptions about BL using a written questionnaire including open-ended questions with respect to the definition of biodiversity as well as reasons for, results of and solutions to BL. The sample consisted of 245 school students in a relatively small city. A two-staged content analysis was run on the responses. The results showed that school students most commonly preferred species-focused definitions of biodiversity and understood BL through such various conceptual patterns as, `balance of nature', `forest', `global warming', `hunting' and `indirect conservation'. At the end of the paper, the possible educational implications and future perspectives were discussed.

  13. The Nature of Scientific Conceptions: A Discursive Psychological Perspective

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2008-01-01

    Over the past three decades, the literature in science education has accumulated a tremendous amount of research on students' conceptions--one bibliography currently lists 7000 entries concerning students' and teachers' conceptions and science education. Yet despite all of this research and all the advances in the associated conceptual change…

  14. The Concept of Need: Its Hedonistic and Logical Nature.

    ERIC Educational Resources Information Center

    Mattimore-Knudson, Russell

    1983-01-01

    Descriptions and clarifications of the concept of need have not included some of the problems inherent in the use of the term or implied by the term. This paper addresses the logical problem of the concept of need as a "referent" term and its hedonistic implications. (Author/SSH)

  15. Solution of naturally-occurring glasses in the geological environment

    SciTech Connect

    Glass, B.P.

    1982-12-01

    As part of a study to investigate the feasibility of putting nuclear wastes in glass containers and burying them on land or dumping them in the ocean, we have made a study of the amount of solution experienced by naturally occurring glasses from two land sites and thirty-four deep-sea sites. The glasses used in this study are microtektites from three strewn fields (Australasian, Ivory Coast, and North American) and from the Zhamanshin impact crater in southern Siberia. The microtektites range in age from 0.7 to 35 m.y. and they have a wide range in composition. Although several criteria for determining the amount of solution were considered, most of the conclusions are based on two criteria: (1) width of cracks, and (2) elevation of silica-rich inclusions above the adjacent microtektite surface. The amount of solution was determined for about 170 microtektites; and measured amounts of solution range from 0.2 to at least 28 {mu}m, but most are less than 5 {mu}m. There appears to be no systematic relationship between age and amount of solution. 21 refs., 7 tabs.

  16. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    ScienceCinema

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-03-13

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  17. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    SciTech Connect

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2014-02-24

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  18. Teaching the Nature of Science through the Concept of Living

    ERIC Educational Resources Information Center

    Kim, Byoung-Sug; McKinney, Mary

    2007-01-01

    By virtue of its connection with scientific literacy, the nature of science has been considered essential subject matter for the science curriculum. With this in mind, seventh-grade students were introduced to three aspects of the nature of science: (1) the distinction between observation and inference, (2) the subjective, and (3) the tentative…

  19. Registered nurses' constructed meaning of concepts of solution and their use in clinical practice

    NASA Astrophysics Data System (ADS)

    Wilkes, Lesley M.; Batts, Judith E.

    1991-12-01

    Since the introduction of nursing into tertiary institutions in Australia in 1975, there has been increasing interest in the teaching of physical science to nurses. Various courses in physical science for nurse students have been developed. They vary in length and content but there is agreement that concepts taught should be closely related to nursing applications. The choice of relevant concepts tends to be made by individual curriculum developers. This paper reports an examination of the use of physical science concepts and their relevance from the perspective of registered nurses practising in general ward areas. Inherent in this study is the premise that for registered nurses to have ideas of the physical science underlying their practice they must have constructed meaning first for these concepts. Specific chemical concepts related to solutions are discussed in these terms.

  20. Solution of naturally-ocurring glasses in the geological environment

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1982-01-01

    As part of a study to investigate the feasibility of putting nuclear wastes in glass containers and burying them on land or dumping them in the ocean, the amount of solution experience by naturally occurring glasses from two land sites and thirty-four deep sea sites was studied. The glasses are microtektites from three strewn fields and from the Zhamanshin impact crater. The microtektites range in age from 0.7 to 35 m.y. and have a wide range in composition. The weight percent SiO2, for example, ranges from 44.8 to 81.7. Although several criteria for determining the amount of solution were considered, most of the conclusions are based on two criteria: (1) width of cracks, and (2) elevation of silica rich inclusions above the adjacent microtektite surface. All the measurements were made on scanning electron microscope photomicrographs of the microtektites.

  1. Developing an instrument for assessing students' concepts of the nature of technology

    NASA Astrophysics Data System (ADS)

    Liou, Pey-Yan

    2015-05-01

    Background:The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students' concepts of the nature of technology. Purpose:This study aims to engage in discourse on students' concepts of the nature of technology based on a proposed theoretical framework. Moreover, another goal is to develop an instrument for measuring students' concepts of the nature of technology. Sample:Four hundred and fifty-five high school students' perceptions of technology were qualitatively analyzed. Furthermore, 530 students' responses to a newly developed questionnaire were quantitatively analyzed in the final test. Design and method:First, content analysis was utilized to discuss and categorize students' statements regarding technology and its related issues. The Student Concepts of the Nature of Technology Questionnaire was developed based on the proposed theoretical framework and was supported by the students' qualitative data. Finally, exploratory factor analysis and reliability analysis were applied to determine the structure of the items and the internal consistency of each scale. Results:Through a process of instrument development, the Student Concepts of the Nature of Technology Questionnaire was shown to be a valid and reliable tool for measuring students' concepts of the nature of technology. This newly developed questionnaire is composed of 29 items in six scales, namely 'technology as artifacts,' 'technology as an innovation change,' 'the current role of technology in society,' 'technology as a double-edged sword,' 'technology as a science-based form,' and 'history of technology.' Conclusions:The Student Concepts of the Nature of Technology Questionnaire has been confirmed as a reasonably valid and reliable

  2. Conceptions of Human Nature, Educational Practice, and Individual Development

    ERIC Educational Resources Information Center

    Looft, W. R.

    1973-01-01

    Discusses the nature-nurture controversy as a manifestation of the underlying assumptions of American education. Suggests these assumptions are neither desirable nor necessary for our society and educational system. (ST)

  3. Multiple Solutions Approach (MSA): Conceptions and Practices of Primary School Teachers in Ghana

    ERIC Educational Resources Information Center

    Nabie, Michael Johnson; Raheem, Kolawole; Agbemaka, John Bijou; Sabtiwu, Rufai

    2016-01-01

    The study explored the curriculum guidelines and primary school teachers' conceptions and practices of the Multiple Solutions Approach (MSA) in teaching mathematics using basic qualitative research design. Informal conversation interviews (ICIs), observations, video and document analyses were used to collect data. Participants included a purposive…

  4. The Concept of Race on Campus: Exploring the Nature of College Students' Racial Conceptions

    ERIC Educational Resources Information Center

    Johnston, Marc P.

    2014-01-01

    Despite the widely documented benefits associated with racial diversity in higher education, less is known about why and how race matters. A potential answer may be found in how students conceptualize race. This qualitative study explores students' underlying racial conceptions, which have been shown to influence various attitudes and…

  5. New toughening concepts for ceramic composites from rigid natural materials.

    PubMed

    Mayer, George

    2011-07-01

    The mechanisms underlying the toughening in rigid natural composites exhibited by the concentric cylindrical composites of spicules of hexactinellid sponges, and by the nacre (brick-and-mortar) structure of mollusks such as Haliotis rufescens (red abalone), as well as the crossed-lamellar structure of Strombus gigas (queen conch) show commonalities in the manner in which toughening takes place. It is proposed that crack diversion, a new kind of crack bridging, resulting in retardation of delamination, creation of new surface areas, and other energy-dissipating mechanisms occur in both natural systems. However, these are generally different from the toughening mechanisms that are utilized for other classes of structural materials. Complementary to those mechanisms found in rigid natural ceramic/organic composites, special architectures and thin viscoelastic organic layers have been found to play controlling roles in energy dissipation in these structures. PMID:21565715

  6. The Nature of Science in Science Curricula: Methods and Concepts of Analysis

    ERIC Educational Resources Information Center

    Ferreira, Sílvia; Morais, Ana M.

    2013-01-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically…

  7. Turkish Pupils' Conceptions of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Boz, Yezdan

    2006-01-01

    The purpose of this research study is to explore year 6, 8 & 11 (13, 15 and 17 years old respectively) Turkish pupils' views about the particulate nature of matter within the context of phase changes. About 300 pupils participated in the study. Questionnaires distributed to year 6, 8 and 11 pupils included 6-item open-ended questions about (a)…

  8. Natural resource valuation: A primer on concepts and techniques

    SciTech Connect

    Ulibarri, C.A.; Wellman, K.F.

    1997-07-01

    Natural resource valuation has always had a fundamental role in the practice of cost-benefit analysis of health, safety, and environmental issues. Today, this role is becoming all the more apparent in the conduct of natural resource damage assessments (NRDA) and cost-benefit analyses of environmental restoration (ER) and waste management (WM) activities. As such, environmental professionals are more interested in how natural resource values are affected by ER and WM activities. This professional interest extends to the use of NRDA values as measures of liability and legal causes of action under such environmental status as the Clean Water Act (CWA); the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, as amended); and the Oil Pollution Act (OPA) of 1990. Also, environmental professionals are paying closer attention to NRDA values in cost-benefit analyses of risk and pollution-abatement standards, and in meeting environmental and safety standards - for achievable (ALARA). This handbook reviews natural resource valuation techniques that may be applied to resources at DOE sites within the foregoing contexts.

  9. Fuels Containing Methane of Natural Gas in Solution

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    2004-01-01

    While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine

  10. Technology Knowledge: High School Science Teachers' Conceptions of the Nature of Technology

    ERIC Educational Resources Information Center

    Waight, Noemi

    2014-01-01

    In-depth interviews guided by video elicitations examined 30 high school science teachers' conceptions of technology and by extension how these conceptions reflected dimensions of nature of technology. Altogether, 64% of the teachers characterized their schools and departments as aggressive-moderate adopters with generous access and support…

  11. Different Conceptions of the Nature of Science among Preservice Elementary Teachers of Two Countries

    ERIC Educational Resources Information Center

    Park, Do-Yong; Lee, Yong Bok

    2009-01-01

    This study examined the differences of the nature of science (NOS) conceptions portrayed by preservice teachers in Korea (N = 42) and the United States (N = 50). We conducted a survey of preservice elementary science teachers' NOS conceptions followed by interviews in both countries to further investigate their viewpoints. The NOS domains of this…

  12. Preservice Teachers' Classroom Practice and Their Conceptions of the Nature of Science.

    ERIC Educational Resources Information Center

    Mellado, Vicente

    1997-01-01

    Describes research conducted with student teachers of elementary and secondary science education. Analyzes and compares the preservice teachers' conceptions of science with their classroom practices when teaching a science lesson. Results indicate that there is no correspondence between student teacher conceptions of the nature of science and…

  13. Arguments about the nature of concepts: Symbols, embodiment, and beyond.

    PubMed

    Mahon, Bradford Z; Hickok, Gregory

    2016-08-01

    How are the meanings of words, events, and objects represented and organized in the brain? This question, perhaps more than any other in the field, probes some of the deepest and most foundational puzzles regarding the structure of the mind and brain. Accordingly, it has spawned a field of inquiry that is diverse and multidisciplinary, has led to the discovery of numerous empirical phenomena, and has spurred the development of a wide range of theoretical positions. This special issue brings together the most recent theoretical developments from the leaders in the field, representing a range of viewpoints on issues of fundamental significance to a theory of meaning representation. Here we introduce the special issue by way of pulling out some key themes that cut across the contributions that form this issue and situating those themes in the broader literature. The core issues around which research on conceptual representation can be organized are representational format, representational content, the organization of concepts in the brain, and the processing dynamics that govern interactions between the conceptual system and sensorimotor representations. We highlight areas in which consensus has formed; for those areas in which opinion is divided, we seek to clarify the relation of theory and evidence and to set in relief the bridging assumptions that undergird current discussions. PMID:27282991

  14. Natural resource validation: A primer on concepts and techniques

    SciTech Connect

    Ulibarri, C.A.; Wellman, K.F.

    1997-07-01

    Natural resource valuation has always had a fundamental role in the practice of cost-benefit analysis of health, safety, and environmental issues. The authors provide an objective overview of resource valuation techniques and describe their potential role in environmental restoration/waste management (ER/WM) activities at federal facilities. This handbook considers five general classes of valuation techniques: (1) market-based techniques, which rely on historical information on market prices and transactions to determine resource values; (2) nonmarket techniques that rely on indirect estimates of resource values; (3) nonmarket techniques that are based on direct estimates of resource values; (4) cross-cutting valuation techniques, which combine elements of one or more of these methods; and (5) ecological valuation techniques used in the emerging field of ecological economics. The various valuation techniques under consideration are described by highlighting their applicability in environmental management and regulation. The handbook also addresses key unresolved issues in the application of valuation techniques generally, including discounting future values, incorporating environmental equity concerns, and concerns over the uncertainties in the measurement of natural resource values and environmental risk.

  15. An Investigation of Effectiveness of Conceptual Change Text-Oriented Instruction on Students' Understanding of Solution Concepts

    ERIC Educational Resources Information Center

    Pinarbasi, Tacettin; Canpolat, Nurtac; Bayrakceken, Samih; Geban, Omer

    2006-01-01

    This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of solution concepts (e.g., dissolving, solubility, factors affecting solubility, concentrations of solutions, types of solutions, physical properties of solutions) and their attitudes towards chemistry. The…

  16. On the Concept of Information and Its Role in Nature

    NASA Astrophysics Data System (ADS)

    Roederer, Juan G.

    2003-03-01

    In this article we address some fundamental questions concerning information: Can the existing laws of physics adequately deal with the most striking property of information, namely to cause specific changes in the structure and energy flows of a complex system, without the information in itself representing fields, forces or energy in any of their characteristic forms? Or is information irreducible to the laws of physics and chemistry? Are information and complexity related concepts? Does the Universe, in its evolution, constantly generate new information? Or are information and information-processing exclusive attributes of living systems, related to the very definition of life? If that were the case, what happens with the physical meanings of entropy in statistical mechanics or wave function in quantum mechanics? How many distinct classes of information and information processing do exist in the biological world? How does information appear in Darwinian evolution? Does the human brain have unique properties or capabilities in terms of information processing? In what ways does information processing bring about human self-consciousness? We shall introduce the meaning of "information" in a way that is detached from human technological systems and related algorithms and semantics, and that is not based on any mathematical formula. To accomplish this we turn to the concept of interaction as the basic departing point, and identify two fundamentally different classes, with information and information-processing appearing as the key discriminator: force-field driven interactions between elementary particles and ensembles of particles in the macroscopic physical domain, and information-based interactions between certain kinds of complex systems that form the biological domain. We shall show that in an abiotic world, information plays no role; physical interactions just happen, they are driven by energy exchange between the interacting parts and do not require any

  17. Cross-sensory correspondences and naive conceptions of natural phenomena.

    PubMed

    Walker, Peter

    2012-01-01

    Cross-sensory correspondences automatically intrude on performance in elaborate laboratory tasks (see Spence 2011 Attention, Perception, & Psychophysics 73 971-995, for a review). Outside such tasks, might they be responsible for some popular misconceptions about natural phenomena? Four simple demonstrations reveal how the correspondences between surface-lightness and weight, and between surface-lightness and auditory pitch, generate misconceptions about the weight and movement of objects and the vocalisations of animals. Specifically, people expect darker objects to be heavier than lighter-coloured objects, to free-fall more quickly, to roll across a table more slowly, and to make lower-pitched vocalisations when they come to life. PMID:23025164

  18. Employment of Gibbs-Donnan-based concepts for interpretation of the properties of linear polyelectrolyte solutions

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1991-01-01

    Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.

  19. Student conceptions of natural selection and its role in evolution

    NASA Astrophysics Data System (ADS)

    Bishop, Beth A.; Anderson, Charles W.

    Pretests and posttests on the topic of evolution by natural selection were administered to students in a college nonmajors' biology course. Analysis of test responses revealed that most students understood evolution as a process in which species respond to environmental conditions by changing gradually over time. Student thinking differed from accepted biological theory in that (a) changes in traits were attributed to a need-driven adaptive process rather than random genetic mutation and sexual recombination, (b) no role was assigned to variation on traits within a population or differences in reproductive success, and (c) traits were seen as gradually changing in all members of a population. Although students had taken an average of 1.9 years of previous biology courses, performance on the pretest was uniformly low. There was no relationship between the amount of previous biology taken and either pretest or posttest performance. Belief in the truthfulness of evolutionary theory was also unrelated to either pretest or posttest performance. Course instruction using specially designed materials was moderately successful in improving students' understanding of the evolutionary process.

  20. Conceptions of the Nature of Science--Are They General or Context Specific?

    ERIC Educational Resources Information Center

    Urhahne, Detlef; Kremer, Kerstin; Mayer, Juergen

    2011-01-01

    The study investigates the relationship between general and context-specific conceptions of the nature of science (NOS). The categorization scheme by Osborne et al. (J Res Sci Teach 40:692-720, "2003") served as the theoretical framework of the study. In the category "nature of scientific knowledge", the certainty, development, simplicity,…

  1. A Study of Taiwanese Children's Conceptions of and Relation to Nature: Curricular and Policy Implications

    ERIC Educational Resources Information Center

    Dai, Amy Hsin-I

    2011-01-01

    The present study investigated children's conceptions of and relations to nature. Understanding the factors that influence them was the goal. The study used the Contextual Model of Learning as the theoretical framework to structure the research questions and data analysis to understand children's nature learning in the personal, sociocultural, and…

  2. Science Teachers' Conceptions of Nature of Science: The Case of Bangladesh

    ERIC Educational Resources Information Center

    Sarkar, Md. Mahbub Alam; Gomes, Jui Judith

    2010-01-01

    This study explored Bangladeshi science teachers' conceptions of nature of science (NOS) with a particular focus on the nature of (a) scientific knowledge, (b) scientific inquiry and (c) scientific enterprise. The tentative, inferential, subjective and creative NOS, in addition to the myths of the scientific method and experimentation, the nature…

  3. The Impact of Socio-Scientific Controversies in Portuguese Natural Science Teachers' Conceptions and Practices

    ERIC Educational Resources Information Center

    Reis, Pedro; Galvao, Cecilia

    2004-01-01

    This article discusses the results of a qualitative study, based on case studies, aimed at: (a) assessing a group of Portuguese secondary school natural science teachers regarding their conceptions of the nature, teaching and learning of science; (b) studying possible impacts of recent controversies surrounding scientific and technological issues…

  4. What Is Technology? Investigating Student Conceptions about the Nature of Technology

    ERIC Educational Resources Information Center

    DiGironimo, Nicole

    2011-01-01

    The science education literature clearly shows that knowledge of the nature of technology is an educational goal; however there is a lack of research on student conceptions about the nature of technology. To address this gap in the literature, this research began with a thorough review of the literature on scientific and technological literacy,…

  5. Developing an Instrument for Assessing Students' Concepts of the Nature of Technology

    ERIC Educational Resources Information Center

    Liou, Pey-Yan

    2015-01-01

    Background: The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students'…

  6. Natural Conception May Be an Acceptable Option in HIV-Serodiscordant Couples in Resource Limited Settings

    PubMed Central

    Xin, Ruolei; Zhu, Yunxia; Li, Jianwei; Shao, Ying; Ye, Jiangzhu; Chen, Danqing; Li, Zaicun

    2015-01-01

    Many HIV serodiscordant couples have a strong desire to have their own biological children. Natural conception may be the only choice in some resource limited settings but data about natural conception is limited. Here, we reported our findings of natural conception in HIV serodiscordant couples. Between January 2008 and June 2014, we retrospectively collected data on 91 HIV serodiscordant couples presenting to Beijing Youan Hospital with childbearing desires. HIV counseling, effective ART on HIV infected partners, pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) in negative female partners and timed intercourse were used to maximally reduce the risk of HIV transmission. Of the 91 HIV serodiscordant couples, 43 were positive in male partners and 48 were positive in female partners. There were 196 unprotected vaginal intercourses, 100 natural conception and 97 newborns. There were no cases of HIV seroconversion in uninfected sexual partners. Natural conception may be an acceptable option in HIV-serodiscordant couples in resource limited settings if HIV-positive individuals have undetectable viremia on HAART, combined with HIV counseling, PrEP, PEP and timed intercourse. PMID:26540103

  7. EXACT SOLUTION TO FINITE TEMPERATURE SFDM: NATURAL CORES WITHOUT FEEDBACK

    SciTech Connect

    Robles, Victor H.; Matos, T. E-mail: tmatos@fis.cinvestav.mx

    2013-01-20

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. However, the standard cold dark matter model simulations predict a more cuspy behavior. One mechanism used to reconcile the simulations with the observed data is the feedback from star formation. While this mechanism may be successful in isolated dwarf galaxies, its success in LSB galaxies remains unclear. Additionally, the inclusion of too much feedback in the simulations is a double-edged sword-in order to obtain a cored DM distribution from an initially cuspy one, the feedback recipes usually require one to remove a large quantity of baryons from the center of the galaxies; however, some feedback recipes produce twice the number of satellite galaxies of a given luminosity and with much smaller mass-to-light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that DM is an auto-interacting real scalar field in a thermal bath at temperature T with an initial Z {sub 2} symmetric potential. As the universe expands, the temperature drops so that the Z {sub 2} symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system, showing that it can satisfy the two desired requirements and that the rotation curve profile is no longer universal.

  8. Exact Solution to Finite Temperature SFDM: Natural Cores without Feedback

    NASA Astrophysics Data System (ADS)

    Robles, Victor H.; Matos, T.

    2013-01-01

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. However, the standard cold dark matter model simulations predict a more cuspy behavior. One mechanism used to reconcile the simulations with the observed data is the feedback from star formation. While this mechanism may be successful in isolated dwarf galaxies, its success in LSB galaxies remains unclear. Additionally, the inclusion of too much feedback in the simulations is a double-edged sword—in order to obtain a cored DM distribution from an initially cuspy one, the feedback recipes usually require one to remove a large quantity of baryons from the center of the galaxies; however, some feedback recipes produce twice the number of satellite galaxies of a given luminosity and with much smaller mass-to-light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that DM is an auto-interacting real scalar field in a thermal bath at temperature T with an initial Z 2 symmetric potential. As the universe expands, the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system, showing that it can satisfy the two desired requirements and that the rotation curve profile is no longer universal.

  9. College biology students' conceptions related to the nature of biological knowledge: Implications for conceptual change

    NASA Astrophysics Data System (ADS)

    Ameny, Gloria Millie Apio

    Adequate understanding of the nature of science is a major goal of science education. Understanding of the evolutionary nature of biological knowledge is a means of reinforcing biology students' understanding of the nature of science. It provides students with the philosophical basis, explanatory ideals, and subject matter-specific views of what counts as a scientifically-acceptable biological explanation. This study examined 121 college introductory biology and advanced zoology students for their conceptions related to the nature of biological knowledge. A 60-item Likert-scale questionnaire called the Nature of Biological Knowledge Scale and student interviews were used as complementary research instruments. Firstly, the study showed that 80--100% of college biology students have an adequate understanding of scientific methods, and that a similar percentage of students had learned the theory of evolution by natural selection in their biology courses. Secondly, the study showed that at least 60--80% of the students do not understand the importance of evolution in biological knowledge. Yet the study revealed that a statistically significant positive correlation exist among students' understanding of natural selection, divergent, and convergent evolutionary models. Thirdly, the study showed that about 20--58% of college students hold prescientific conceptions which, in part, are responsible for students' lack of understanding of the nature of biological knowledge. A statistically significant negative correlation was found among students' prescientific conceptions about basis of biological knowledge and nature of change in biological processes, and their understanding of natural selection and evolutionary models. However, the study showed that students' characteristics such as gender, age, major, or years in college have no statistically significant influence on students' conceptions related to the nature of biological knowledge. Only students' depth of biological

  10. Representations of Fundamental Chemistry Concepts in Relation to the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde Demet; Beeth, Michael Edward

    2013-01-01

    This study investigated high school students' understanding of fundamental chemistry concepts - states of matter, melting, evaporation, condensation, boiling, and vapor pressure, in relation to their understanding of the particulate nature of matter. A sample of six students (four females and two males) enrolled in a second year chemistry course…

  11. Beyond Exemplars and Prototypes as Memory Representations of Natural Concepts: A Clustering Approach

    ERIC Educational Resources Information Center

    Verbeemen, Timothy; Vanpaemel, Wolf; Pattyn, Sven; Storms, Gert; Verguts, Tom

    2007-01-01

    Categorization in well-known natural concepts is studied using a special version of the Varying Abstraction Framework (Vanpaemel, W., & Storms, G. (2006). A varying abstraction framework for categorization. Manuscript submitted for publication; Vanpaemel, W., Storms, G., & Ons, B. (2005). A varying abstraction model for categorization. In B. Bara,…

  12. Test-Enhanced Learning of Natural Concepts: Effects on Recognition Memory, Classification, and Metacognition

    ERIC Educational Resources Information Center

    Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.

    2010-01-01

    Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…

  13. How to Learn the Natural Numbers: Inductive Inference and the Acquisition of Number Concepts

    ERIC Educational Resources Information Center

    Margolis, Eric; Laurence, Stephen

    2008-01-01

    Theories of number concepts often suppose that the natural numbers are acquired as children learn to count and as they draw an induction based on their interpretation of the first few count words. In a bold critique of this general approach, Rips, Asmuth, Bloomfield [Rips, L., Asmuth, J. & Bloomfield, A. (2006). Giving the boot to the bootstrap:…

  14. Teachers' Knowledge Structures for Nature of Science and Scientific Inquiry: Conceptions and Classroom Practice

    ERIC Educational Resources Information Center

    Bartos, Stephen A.; Lederman, Norman G.

    2014-01-01

    Research on nature of science (NOS) and scientific inquiry (SI) has indicated that a teacher's knowledge of each, however well developed, is not sufficient to ensure that these conceptions necessarily manifest themselves in classroom practice (Lederman & Druger, 1985; Lederman, 2007). In light of considerable research that has examined…

  15. The Problematic Nature of the Artist Teacher Concept and Implications for Pedagogical Practice

    ERIC Educational Resources Information Center

    Hoekstra, Marike

    2015-01-01

    The main argument of this article is that the problematic nature of the artist teacher concept might not be the duality between art and education, but might refer to a limited understanding of education, in such a way that art would appear to be contrasting to education. A different definition of education is required to understand the qualities…

  16. Thai Pre-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak; Sung-ong, Sunun

    2009-01-01

    The conceptions of the nature of science (NOS), particularly scientific knowledge, scientific method, scientists' work, and scientific enterprise, of 113 Thai pre-service science teachers were was captured by the Myths of Science Questionnaire (MOSQ) in the first semester of the 2008 academic year. The data was quantitatively and qualitatively…

  17. Thai In-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2009-01-01

    Understanding of the Nature of Science (NOS) serves as one of the desirable characteristics of science teachers. The current study attempted to explore 101 Thai in-service science teachers' conceptions of the NOS, particularly scientific knowledge, the scientific method, scientists' work, and scientific enterprise, by using the Myths of Science…

  18. A Developmental Study of the Intension and Extension of Four Natural Concepts.

    ERIC Educational Resources Information Center

    Currie-Jedermann, Janice

    To investigate the development of children's knowledge of the intension and extension of four natural concepts (cup, scissors, money, and musical instrument), three questions were explored in an experiment involving one-hundred-and-twenty 3-, 5-, and 7-year-old children (40 children for each age group). Extension was measured in a verbal labeling…

  19. A study of Taiwanese children's conceptions of and relation to nature: Curricular and policy implications

    NASA Astrophysics Data System (ADS)

    Dai, Amy Hsin-I.

    The present study investigated children's conceptions of and relations to nature. Understanding the factors that influence them was the goal. The study used the Contextual Model of Learning as the theoretical framework to structure the research questions and data analysis to understand children's nature learning in the personal, sociocultural, and physical contexts that change over time. Twelve children aged 5 and 6 were prompted to draw a picture of themselves in nature. They were interviewed about the sources of those ideas and living experiences, and if they thought photographs of scenery were nature. These twelve children's parents also participated in a survey to study the family influence. I used interpretational analysis to seek for common patterns and themes. Scoring rubrics, coaxial comparison, constant comparison, and the theoretical framework were used to triangulate and investigate influential factors of children's ideas of nature. The study showed that children at this age already had developed a basic conception of what is nature, but also need to learn about the role of human beings in nature and the interrelations of nature in order to develop environmental education ideas. Most children also had a positive feeling toward nature. Children's definitions of nature were developed mainly from what parents and grandparents had told them and their firsthand exposure to nature. Only during the weekend did the children's families have time to visit nature. It was found that most parents in this study stated that they were inspired by nature and were very willing to take their children to nature settings. The most visited natural places that were reported visited were parks in the city and the mountains surrounding the city. However, very often parents missed teachable opportunities to make the experiences with nature meaningful to children. Implications of the study apply to curriculum designers, educators, urban planners, and parents. It is recommended

  20. Student concepts of Natural Selection from a resource-based perspective

    NASA Astrophysics Data System (ADS)

    Benjamin, Scott Shawn

    The past two decades have produced a substantial amount of research about the teaching and learning of evolution; however, recent research often lacks a theoretical foundation. Application of a new theoretical framework could help fill the void and improve research about student concepts of evolution. This study seeks to show that a resource-based framework (Hammer et al., 2005) can improve research into student concepts of natural selection. Concepts of natural selection from urban community college students were assessed via qualitative (interviews, written open-response questions, and write/think aloud procedures) and quantitative methods (coded open response analysis, Concept Inventory for Natural Selection (CINS)(Anderson, Fisher, & Norman, 2002). Results showed that students demonstrate four important aspects of resource-based framework: the multi-faceted construction of concepts, context sensitivity/ concept flexibility, at-the-moment activation of resources, and perceptual frames. In open response assessment, evolutionary-gain responses produced significantly different responses than evolutionary-loss questions with: 1) significantly more correct answers for the gain than loss question (Wilcoxon signed rank test, z = -3.68, p=0.0002); 2) more Lamarckian responses to loss than the gain question (Fisher exact, p=0.0039); and significantly different distributions in expanded need vs basic need answers (Fishers exact, p = 0.02). Results from CINS scores showed significant differences in post activity scores between students that held different naive concepts associated with origin of variation, origin of species, differential reproduction, and limited survival suggesting that some naive ideas facilitate learning. Outcomes also suggest that an everyday or self-experience typological perceptual frame is an underlying source of many incorrect ideas about evolution. Interview and write/think aloud assessments propose four process resources applied by students as

  1. Liquid absorbent solutions for separating nitrogen from natural gas

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.; Edlund, David J.; Lyon, David K.; Miller, Warren K.

    2000-01-01

    Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

  2. High School Biology Students' Transfer of the Concept of Natural Selection: A Mixed-Methods Approach

    ERIC Educational Resources Information Center

    Pugh, Kevin J.; Koskey, Kristin L. K.; Linnenbrink-Garcia, Lisa

    2014-01-01

    The concept of natural selection serves as a foundation for understanding diverse biological concepts and has broad applicability to other domains. However, we know little about students' abilities to transfer (i.e. apply to a new context or use generatively) this concept and the relation between students' conceptual understanding and…

  3. Numerical Solution of Natural Convection in Eccentric Annuli

    SciTech Connect

    Pepper, D.W.

    2001-09-18

    The governing equations for transient natural convection in eccentric annular space are solved with two high-order accurate numerical algorithms. The equation set is transformed into bipolar coordinates and split into two one-dimensional equations: finite elements are used in the direction normal to the cylinder surfaces; the pseudospectral technique is used in the azimuthal direction. This report discusses those equations.

  4. The Electromagnetic Conception of Nature at the Root of the Special and General Relativity Theories and Its Revolutionary Meaning

    ERIC Educational Resources Information Center

    Giannetto, Enrico R. A.

    2009-01-01

    The revolution in XX century physics, induced by relativity theories, had its roots within the electromagnetic conception of Nature. It was developed through a tradition related to Brunian and Leibnizian physics, to the German "Naturphilosophie" and English XIXth physics. The electromagnetic conception of Nature was in some way realized by the…

  5. Solute properties of hydrocarbons in natural gas fluids

    SciTech Connect

    Eckert, C.A.; Teja, A.S.

    1995-12-01

    A knowledge of the solubility of various hydrocarbons in natural gases can lead to methods to ameliorate the problem of solid deposition in pipelines. We have measured the solubilities of the n-alkanes (heptane to hexatriacontane) and two diamondoids (adamantane and diamantane) in methane, ethane, and CO{sub 2} over a range of temperatures and pressures. The solubilities were measured with a new chromatographic apparatus using an evaporative light scattering detector, as well as with a traditional flow apparatus. The results also yield information on enhancement factors, as well as partial molal volumes and enthalpies at infinite dilution. The data were correlated both by carbon number and by equations of state.

  6. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection

    NASA Astrophysics Data System (ADS)

    Janković, Srdja; Ćirković, Milan M.

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  7. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    PubMed

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection. PMID:26419865

  8. Sargassum as a Natural Solution to Enhance Dune Plant Growth

    NASA Astrophysics Data System (ADS)

    Williams, Amy; Feagin, Rusty

    2010-11-01

    Many beach management practices focus on creating an attractive environment for tourists, but can detrimentally affect long-term dune integrity. One such practice is mechanical beach raking in which the wrack line is removed from the beach front. In Texas, Sargassum fluitans and natans, types of brown alga, are the main components of wrack and may provide a subsidy to the ecosystem. In this study, we used greenhouse studies to test the hypothesis that the addition of sargassum can increase soil nutrients and produce increased growth in dune plants. We also conducted an analysis of the nutrients in the sargassum to determine the mechanisms responsible for any growth enhancement. Panicum amarum showed significant enhancement of growth with the addition of sargassum, and while Helianthus debilis, Ipomoea stolonifera, Sporobolus virginicus, and Uniola paniculata responded slightly differently to the specific treatments, none were impaired by the addition of sargassum. In general, plants seemed to respond well to unwashed sargassum and multiple additions of sargassum, indicating that plants may have adapted to capitalize on the subsidy in its natural state directly from the ocean. For coastal managers, the use of sargassum as a fertilizer could be a positive, natural, and efficient method of dealing with the accumulation of wrack on the beach.

  9. The World Atlas of Desertification assessment concept for conscious land use solutions

    NASA Astrophysics Data System (ADS)

    Cherlet, Michael; Ivits, Eva; Kutnjak, Hrvoje; Smid, Marek; Sommer, Stefan; Zucca, Claudio

    2015-04-01

    Land degradation and desertification are complex phenomena that result in environmental damage, economic inefficiency and social inequity and are reflected by a reducing productive capacity of the land and soil. Research indicated that they are driven by a multiple but a limited number of causal aspects that unbalance the capacity of the environment system to sustainably produce ecosystem services and economic value. Competition for land, driven by societal needs or economic opportunities, adds further stress on the land resources. To address these complex global challenges, a monitoring and assessment system offering up-to-date information on the status and trends of land degradation and their causes and effects is needed to provide science-based routes for possible land use solutions. The assessment concept that has been outlined for the compilation of the new World Atlas of Desertification (WAD) confronts this complexity by converging evidence of stress on the land system caused by various issues. These issues relate to sets of dynamics of the human-environment system and include changing agricultural or pastoral land use and management practices, changing population and societal aspects, changing aridity and drought. The WAD describes the issues, spatially documents their change, whenever data is available, highlights the importance of the issues in relation to land degradation processes and illustrates the integrated assessment concepts. The first step is the preparation of solid global data layers that are related to, or express aspects that can be related to, land-system productivity dynamics and status. These can be used for identifying and evaluating the interaction of spatial variables with the land-system productivity dynamics. Initial analysis of the land productivity dynamics within stratified land cover/use areas, such as the global croplands, show substantial differences in the extension, geographic location and possible related causes of potentially

  10. Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'.

    PubMed

    Jassim, Sabah A A; Limoges, Richard G

    2014-08-01

    Antibiotics have been a panacea in animal husbandry as well as in human therapy for decades. The huge amount of antibiotics used to induce the growth and protect the health of farm animals has lead to the evolution of bacteria that are resistant to the drug's effects. Today, many researchers are working with bacteriophages (phages) as an alternative to antibiotics in the control of pathogens for human therapy as well as prevention, biocontrol, and therapy in animal agriculture. Phage therapy and biocontrol have yet to fulfill their promise or potential, largely due to several key obstacles to their performance. Several suggestions are shared in order to point a direction for overcoming common obstacles in applied phage technology. The key to successful use of phages in modern scientific, farm, food processing and clinical applications is to understand the common obstacles as well as best practices and to develop answers that work in harmony with nature. PMID:24781265

  11. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  12. Analysis of Saudi Arabian middle and high school science teachers' conceptions of the nature of science

    NASA Astrophysics Data System (ADS)

    Almazroa, Hiya Mohammed

    This study was conducted to explore Saudi middle and high school science teachers' conceptions of the Nature of Science (NOS). It also detected the effects of gender, science content major, and years of teaching experience on teachers' conceptions of the NOS. The study included a sample of 786 science teachers (137 male and 649 female) who were teaching in middle and high schools in Riyadh, Saudi Arabia in the 1995-1996 academic year. The study was conducted using a translated version of the Nature of Science Scale (NOSS) developed by Kimball (1967). The scale contains 29 items ranging from "agree" to "disagree", and the scoring of the items ranged from 29 to 87. The lowest score is 29 (1 x 29) and the highest score possible on the test is 87 (3 x 29 items). The data collected was statistically analyzed using descriptive statistics and Analysis of Variance (ANOVA). The study revealed that Saudi science teachers as a group hold numerous misconceptions about the NOS with a significant difference in understanding the NOS between the male and female teachers. The study also showed that teachers with a major in physics held more adequate views than did teachers with other majors. In addition, novice teachers were found to have more adequate conceptions of the NOS than did experienced teachers.

  13. Natural Sources as Innovative Solutions Against Fungal Biofilms.

    PubMed

    Girardot, Marion; Imbert, Christine

    2016-01-01

    Fungal cells are capable of adhering to biotic and abiotic surfaces and form biofilms containing one or more microbial species that are microbial reservoirs. These biofilms may cause chronic and acute infections. Fungal biofilms related to medical devices are particularly responsible for serious infections such as candidemia. Nowadays, only a few therapeutic agents have demonstrated activities against fungal biofilms in vitro and/or in vivo. So the discovery of new anti-biofilm molecules is definitely needed. In this context, biodiversity is a large source of original active compounds including some that have already proven effective in therapies such as antimicrobial compounds (antibacterial or antifungal agents). Bioactive metabolites from natural sources, useful for developing new anti-biofilm drugs, are of interest. In this chapter, the role of molecules isolated from plants, lichens, algae, microorganisms, or from animal or human origin in inhibition and/or dispersion of fungal biofilms (especially Candida and Aspergillus biofilms) is discussed. Some essential oils, phenolic compounds, saponins, peptides and proteins and alkaloids could be of particular interest in fighting fungal biofilms. PMID:27115410

  14. A natural compromise: a moderate solution to the GMO & "natural" labeling disputes.

    PubMed

    Amaru, Stephanie

    2014-01-01

    In the United States, genetically modified (GM) foods are labeled no differently from their natural counterparts, leaving consumers with no mechanism for deciphering genetically modified food content. The Food and Drug Administration (FDA) has not formally defined the term "natural," which is frequently used on food labels despite consumer confusion as to what it means. The FDA should initiate a notice and comment rulemaking addressing the narrow issue of whether use of the word "natural" should be permitted oil GM food labels. Prohibition of the use of"natural" on genetically modified foods would mitigate consumer deception regarding genetically modified food content without significantly disadvantaging genetically modified food producers. PMID:25654943

  15. The Nature of Science in Science Curricula: Methods and concepts of analysis

    NASA Astrophysics Data System (ADS)

    Ferreira, Sílvia; Morais, Ana M.

    2013-11-01

    The article shows methods and concepts of analysis of the nature of science in science curricula through an exemplary study made in Portugal. The study analyses the extent to which the message transmitted by the Natural Science curriculum for Portuguese middle school considers the nature of science. It is epistemologically and sociologically grounded with particular emphasis on Bernstein's theory of pedagogic discourse and Ziman's conceptualization of science construction. The study used a mixed methodology and followed a dialectical process between the theoretical and the empirical. The results show that the nature of science has a low status in the curriculum with the exception of the external sociological dimension of science. Intra-disciplinary relations between scientific and metascientific knowledge are mostly absent. Recontextualization processes occurred between the two main parts of the curriculum. These results are discussed and their consequences in terms of scientific learning are explored. The mode of analysis used in the study has the potential of highlighting the level of a science curriculum, in terms of specific aspects of the nature of science.

  16. Achieving optimal gingival esthetics around restored natural teeth and implants. Rationale, concepts, and techniques.

    PubMed

    Bichacho, N

    1998-10-01

    The role of prosthetic restorations in the final appearance of the surrounding soft tissues has long been recognized. Innovative prosthodontic concepts as described should be used to enhance the biologic as well as the esthetic data of the supporting tissues, in natural teeth and implants alike. Combined dental treatment modalities of different kinds (i.e., orthodontics, periodontal treatment) are often required for optimal results. Meticulous care and attention to the delicate soft tissues should be given throughout all phases of the treatment, with a view to achieving a functional, healthy, and esthetic oral environment. PMID:9891656

  17. Solitary wave solutions of nonlinear financial markets: data-modeling-concept-practicing

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Long; Ma, Fei-Te

    2007-07-01

    This paper seeks to solve the difficult nonlinear problem in financial markets on the complex system theory and the nonlinear dynamics principle, with the data-model-concept-practice issue-oriented reconstruction of the phase space by the high frequency trade data. In theory, we have achieved the differentiable manifold geometry configuration, discovered the Yang-Mills functional in financial markets, obtained a meaningful conserved quantity through corresponding space-time non-Abel localization gauge symmetry transformation, and derived the financial solitons, which shows that there is a strict symmetry between manifold fiber bundle and guage field in financial markets. In practical applications of financial markets, we have repeatedly carried out experimental tests in a fluctuant evolvement, directly simulating and validating the existence of solitons by researching the price fluctuations (society phenomena) using the same methods and criterion as in natural science and in actual trade to test the stock Guangzhou Proprietary and the futures Fuel Oil in China. The results demonstrate that the financial solitons discovered indicates that there is a kind of new substance and form of energy existing in financial trade markets, which likely indicates a new science paradigm in the economy and society domains beyond physics.

  18. Dynamics of a Definition: A Framework to Analyse Student Construction of the Concept of Solution to a Differential Equation

    ERIC Educational Resources Information Center

    Raychaudhuri, Debasree

    2008-01-01

    In this note we develop a framework that makes explicit the inherent dynamic structure of certain mathematical definitions by means of the four facets of context-entity-process-object. These facets and their interrelations are then used to capture and interpret specific aspects of student constructions of the concept of solution to first order…

  19. Eulerian-Lagrangian solution of the convection-dispersion equation in natural co-ordinates.

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Milford, S.N.

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system.-from Authors

  20. Student Conceptions of Ionic Compounds in Solution and the Influences of Sociochemical Norms on Individual Learning

    NASA Astrophysics Data System (ADS)

    Warfa, Abdi-Rizak M.

    Using the symbolic interactionist perspective that meaning is constituted as individuals interact with one another, this study examined how group thinking during cooperative inquiry-based activity on chemical bonding theories shaped and influenced college students' understanding of the properties of ionic compounds in solution. The analysis revealed the development of sociochemical norms and specific ways of reasoning about chemical ideas that led to shifts in student thinking and understanding of the nature of dissolved ionic solids. The analysis similarly revealed two kinds of teacher-initiated discourses, dialogical and monologic, that impacted student learning differently. I discuss the nature of this teacher-initiated discourse and number of moves, such as confirming, communicative, and re-orienting, that the course instructor made to communicate to students what counts as justifiable chemical reasoning and appropriate representations of chemical knowledge. I further describe the use of sociochemical dialogues as lens to study the ways in which chemistry instructors and students develop normative ways of reasoning and chemical justifications. Because the activity was designed as an intervention to target student misconceptions about ionic bonding, I also examined the extent to which the activity elicited and corrected commonly found student chemical misconceptions. To do so, student-generated particulate drawings were coded qualitatively into one of four broad themes: i) use of molecular framework with discrete atoms, ii) use of ionic framework with discrete ionic species, iii) use of quasi-ionic framework with partial ionic-molecular thinking, or iv) use of an all-encompassing "other" category. The findings suggested the intervention significantly improved students' conceptual knowledge of ionic compounds in solution - there was statistically significant increase in the number of drawings using ionic and quasi-ionic frameworks in the pre-activity vs. post

  1. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    NASA Astrophysics Data System (ADS)

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-05-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined the quantitative data while a conceptually clustered matrix classified the open-ended responses. The country effect could explain 3-12 % of the variances of subjectivity, empirical testability and diverse methods, but it was not significant for the concepts of tentativeness and socio-cultural embeddedness of science. The open-ended responses showed that students believed scientific theories change due to errors or discoveries. Students regarded empirical evidence as undeniable and objective although they acknowledged experiments depend on theories or scientists' knowledge. The open responses revealed that national situations and curriculum content affected their views. For our future democratic citizens to gain scientific literacy, science curricula should include currently acknowledged NOS concepts and should be situated within societal and cultural perspectives.

  2. Reflections on the nature of the concepts of field in physics

    NASA Astrophysics Data System (ADS)

    Pombo, C.

    2012-12-01

    This paper is a short introduction on the analysis of the concepts of field in physics, showing their different natures. It comprises a study on the development of observers based on observational realism, a physical epistemology in development, on the basis of analytical psychology. This epistemology incorporates and justify the proposition of R. Carnap, of separating observational and theoretical domains of a theory, and gives a criterion for this separation. The basis of three theories are discussed, where concepts of field emerge. We discuss the different origins and meanings of these fields, from an epistemological point of view, in their respective theories. The aim of this paper is to form a basis of discussion to be applied in the analysis of other theories where concepts of field are present, to reach a better understanding of the contemporary programs of unification. We would like to clarify if these programs are intended for unification of fields as elements of the physical reality, fields as explanations for the observations, unification of their theories, or other possible cases.

  3. Confronting, Representing, and Believing Counterintuitive Concepts: Navigating the Natural and the Supernatural

    PubMed Central

    Lane, Jonathan D.; Harris, Paul. L.

    2014-01-01

    Recent research shows that even preschoolers are skeptical; they frequently reject claims from other people when the claims conflict with their own perceptions and concepts. Yet, despite their skepticism, both children and adults come to believe in a variety of phenomena that defy their first-hand perceptions and intuitive conceptions of the world. In this review, we explore how children and adults acquire such concepts. We describe how a similar developmental process underlies mental representation of both the natural and the supernatural world, and we detail this process for two prominent supernatural counterintuitive ideas—God and the afterlife. In doing so, we highlight the fact that conceptual development does not always move in the direction of greater empirical truth, as described within naturalistic domains. We consider factors that likely help overcome skepticism, and in doing so promote belief in counterintuitive phenomena. These factors include qualities of the learners, aspects of the context, qualities of the informants, and qualities of the information. PMID:24683418

  4. Confronting, Representing, and Believing Counterintuitive Concepts: Navigating the Natural and the Supernatural.

    PubMed

    Lane, Jonathan D; Harris, Paul L

    2014-03-01

    Recent research shows that even preschoolers are skeptical; they frequently reject claims from other people when the claims conflict with their own perceptions and concepts. Yet, despite their skepticism, both children and adults come to believe in a variety of phenomena that defy their first-hand perceptions and intuitive conceptions of the world. In this review, we explore how children and adults acquire such concepts. We describe how a similar developmental process underlies mental representation of both the natural and the supernatural world, and we detail this process for two prominent supernatural counterintuitive ideas-God and the afterlife. In doing so, we highlight the fact that conceptual development does not always move in the direction of greater empirical truth, as described within naturalistic domains. We consider factors that likely help overcome skepticism and, in doing so, promote belief in counterintuitive phenomena. These factors include qualities of the learners, aspects of the context, qualities of the informants, and qualities of the information. PMID:24683418

  5. Epistemological and Hermeneutic Conceptions of the Nature of Understanding: The Cases of Paul H. Hirst and Martin Heidegger.

    ERIC Educational Resources Information Center

    Okshevsky, Walter C.

    1992-01-01

    Discusses educational philosophy, presenting epistemological and hermeneutic conceptions of the nature of understanding according to Paul H. Hirst and Martin Heidegger. The article looks at Hirst's epistemology of understanding and Heidegger's understanding as a praxeological competence. (SM)

  6. Sperm selection in natural conception: what can we learn from Mother Nature to improve assisted reproduction outcomes?

    PubMed Central

    Sakkas, Denny; Ramalingam, Mythili; Garrido, Nicolas; Barratt, Christopher L.R.

    2015-01-01

    BACKGROUND In natural conception only a few sperm cells reach the ampulla or the site of fertilization. This population is a selected group of cells since only motile cells can pass through cervical mucus and gain initial entry into the female reproductive tract. In animals, some studies indicate that the sperm selected by the reproductive tract and recovered from the uterus and the oviducts have higher fertilization rates but this is not a universal finding. Some species show less discrimination in sperm selection and abnormal sperm do arrive at the oviduct. In contrast, assisted reproductive technologies (ART) utilize a more random sperm population. In this review we contrast the journey of the spermatozoon in vivo and in vitro and discuss this in the context of developing new sperm preparation and selection techniques for ART. METHODS A review of the literature examining characteristics of the spermatozoa selected in vivo is compared with recent developments in in vitro selection and preparation methods. Contrasts and similarities are presented. RESULTS AND CONCLUSIONS New technologies are being developed to aid in the diagnosis, preparation and selection of spermatozoa in ART. To date progress has been frustrating and these methods have provided variable benefits in improving outcomes after ART. It is more likely that examining the mechanisms enforced by nature will provide valuable information in regard to sperm selection and preparation techniques in vitro. Identifying the properties of those spermatozoa which do reach the oviduct will also be important for the development of more effective tests of semen quality. In this review we examine the value of sperm selection to see how much guidance for ART can be gleaned from the natural selection processes in vivo. PMID:26386468

  7. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  8. Professional Development of Elementary and Science Teachers in a Summer Science Camp: Changing Nature of Science Conceptions

    ERIC Educational Resources Information Center

    Karaman, Ayhan

    2016-01-01

    Many countries all over the world have recently integrated nature of science (NOS) concepts into their science education standards. Providing professional support to teachers about NOS concepts is crucially important for successful implementation of the standards. For this purpose, a summer science camp was offered to elementary and science…

  9. Challenging the Concept of Natural Distributions: Global Change Turns Trees Into Weeds

    NASA Astrophysics Data System (ADS)

    Gleadow, R.; O'Leary, B.; Burd, M.

    2015-12-01

    National parks and nature reserves are set aside to preserve certain ecosystems, reflecting species distributions at a moment in time. Changing climate and fire dynamics can mean that the species most suited to that area are different, leading new tree species to 'invade' the conservation areas. Pittosporum undulatum is an invasive tree native tree species with a natural range from southeast Queensland to Eastern Victoria, Australia. Soon after European settlement this species became a popular ornamental tree in gardens and was planted outside of its natural range across the continent and introduced to the USA (where it is known as Victorian Box), the Hawaiian Islands, Jamaica, southern Africa and the Azores. The reason this is important is because high density of P. undulatum lead to reduced biodiversity and often the complete suppression of regeneration of exiting forest trees. In Australia, changes in fire dynamics have played a major part in its in dominance. New strategies for forest management were proposed by Gleadow an Ashton in the 1980s, but lack of action has led us to predict that the entire Dandenong Ranges, near Melbourne, will be invaded within 25 years resulting in the loss of a major recreational and conservation area. This is a model of the type of problems that can be expected as the climate envelope for species changes in the coming century, challenging the very concept of a "native ".

  10. Investigating the Nature of Third Grade Students' Experiences with Concept Maps to Support Learning of Science Concepts

    ERIC Educational Resources Information Center

    Merrill, Margaret L.

    2012-01-01

    To support and improve effective science teaching, educators need methods to reveal student understandings and misconceptions of science concepts and to offer all students an opportunity to reflect on their own knowledge construction and organization. Students can benefit by engaging in scientific activities in which they build personal…

  11. An Investigation into the Relationship between Students' Conceptions of the Particulate Nature of Matter and Their Understanding of Chemical Bonding

    ERIC Educational Resources Information Center

    Othman, Jazilah; Treagust, David F.; Chandrasegaran, A. L.

    2008-01-01

    A thorough understanding of chemical bonding requires familiarity with the particulate nature of matter. In this study, a two-tier multiple-choice diagnostic instrument consisting of ten items (five items involving each of the two concepts) was developed to assess students' understanding of the particulate nature of matter and chemical bonding so…

  12. The Electromagnetic Conception of Nature at the Root of the Special and General Relativity Theories and its Revolutionary Meaning

    NASA Astrophysics Data System (ADS)

    Giannetto, Enrico R. A.

    2009-06-01

    The revolution in XX century physics, induced by relativity theories, had its roots within the electromagnetic conception of Nature. It was developed through a tradition related to Brunian and Leibnizian physics, to the German Naturphilosophie and English XIXth physics. The electromagnetic conception of Nature was in some way realized by the relativistic dynamics of Poincaré of 1905. Einstein, on the contrary, after some years, linked relativistic dynamics to a semi-mechanist conception of Nature. He developed general relativity theory on the same ground, but Hilbert formulated it starting from the electromagnetic conception of Nature. Here, a comparison between these two conceptions is proposed in order to understand the conceptual foundations of special relativity within the context of the changing world views. The whole history of physics as well as history of science can be considered as a conflict among different worldviews. Every theory, as well as every different formulation of a theory implies a different worldview: a particular image of Nature implies a particular image of God (atheism too has a particular image of God) as well as of mankind and of their relationship. Thus, it is very relevant for scientific education to point out which image of Nature belongs to a particular formulation of a theory, which image comes to dominate and for which ideological reason.

  13. Problems and solutions: two concepts of mankind in cognitive-behavior therapy.

    PubMed

    Wagner, Rudolph Friedrich; Reinecker, Hans

    2003-01-01

    Scientific theories that are concerned with experience and behavior of human beings always include anthropological core assumptions. This applies in particular to psychotherapeutic theories. These anthropological core assumptions (i.e., concepts of mankind) affect techniques that are derived from these theories but they also have a great influence on acceptance and spreading of psychotherapeutic methods. This article examines the concept of mankind in cognitive-behavior therapy. In this connection two highly differing conceptions of the human being are identified: the early behavioristic black-box model and the conception of the human being as an actively performing subject ("man the scientist") in the framework of the self-management approach and in cognitive therapy. The image problem of today's behavior therapy, the lack of application of efficient methods of behavior therapy and problems in finding a professional identity as a behavior therapist can be seen as stemming from the differing concepts of mankind. To solve these problems we propose: an integrative concept of mankind, an increased emphasis of a cooperative therapist-patient relationship, and the taking into account of unconscious processes. PMID:12961823

  14. BOOK REVIEW: Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools

    NASA Astrophysics Data System (ADS)

    Franz, S.

    2004-10-01

    Since the discovery of the renormalization group theory in statistical physics, the realm of applications of the concepts of scale invariance and criticality has pervaded several fields of natural and social sciences. This is the leitmotiv of Didier Sornette's book, who in Critical Phenomena in Natural Sciences reviews three decades of developments and applications of the concepts of criticality, scale invariance and power law behaviour from statistical physics, to earthquake prediction, ruptures, plate tectonics, modelling biological and economic systems and so on. This strongly interdisciplinary book addresses students and researchers in disciplines where concepts of criticality and scale invariance are appropriate: mainly geology from which most of the examples are taken, but also engineering, biology, medicine, economics, etc. A good preparation in quantitative science is assumed but the presentation of statistical physics principles, tools and models is self-contained, so that little background in this field is needed. The book is written in a simple informal style encouraging intuitive comprehension rather than stressing formal derivations. Together with the discussion of the main conceptual results of the discipline, great effort is devoted to providing applied scientists with the tools of data analysis and modelling necessary to analyse, understand, make predictions and simulate systems undergoing complex collective behaviour. The book starts from a purely descriptive approach, explaining basic probabilistic and geometrical tools to characterize power law behaviour and scale invariant sets. Probability theory is introduced by a detailed discussion of interpretative issues warning the reader on the use and misuse of probabilistic concepts when the emphasis is on prediction of low probability rare---and often catastrophic---events. Then, concepts that have proved useful in risk evaluation, extreme value statistics, large limit theorems for sums of independent

  15. Natural conception in HIV-serodiscordant couples with the infected partner in suppressive antiretroviral therapy: A prospective cohort study.

    PubMed

    Del Romero, Jorge; Baza, María Begoña; Río, Isabel; Jerónimo, Adrián; Vera, Mar; Hernando, Victoria; Rodríguez, Carmen; Castilla, Jesús

    2016-07-01

    The potential of antiretroviral treatment (ART) to prevent the sexual transmission of HIV has increased the number of serodiscordant couples who are considering natural conception. We aim to describe the results of a protocol for reproductive counseling aimed at HIV serodiscordant couples who desire natural conception, in which the infected partner, the index case, is receiving suppressive antiretroviral treatment.A prospective cohort included all HIV serodiscordant couples attended a counseling program in the period 2002 to 2013 who opted for natural conception and met the following criteria: index case on ART with persistent plasma viral suppression for at least the previous 6 months, ART compliance over 95%, preserved immune status, undetectable HIV viral and proviral load in semen in male index cases, and absence of genitourinary infections and fertility problems in both members of the couple.Of the 161 HIV serodiscordant couples included, 133 with male index cases, 66% achieved at least 1 pregnancy, 18% a second one, and 5% a third pregnancy. A total of 144 natural pregnancies occurred and 107 babies were born. The pregnancy rate was 1.9 for each 100 acts of vaginal intercourse, and the mean time to conception was 6.1 months, both independently of the sex of the index case. No case of sexual or vertical HIV transmission occurred.In the absence of fertility problems and under controlled conditions, natural conception might be a safe and effective reproductive method for those HIV serodiscordant couples who choose this reproductive option. PMID:27472733

  16. An exploration of worldview and conceptions of nature of science among science teachers at a private Christian high school

    NASA Astrophysics Data System (ADS)

    Kits, Kara M.

    Both worldview and conceptions of nature of science (NOS) are important components in teaching and learning science. However, few empirical studies have examined the interplay between both of these components for teachers or students. Therefore, this study examines the possible relationship between worldview and conceptions of nature of science for secondary science teachers who currently teach at a Christian school. Qualitative methodologies developed a rich description of the worldview beliefs and conceptions of NOS for teachers in this study. Eight secondary science teachers employed at a private Christian school participated in the study. A Views of Nature of Science (VNOS) questionnaire and follow-up interviews elicited participants' conceptions of NOS. A semi-structured interview and Test of Preferred Explanations (TOPE) questionnaire elicited participants' worldview beliefs regarding nature and the natural world and causality. Participants communicated understandings of NOS that ranged from uninformed to informed in various aspects. In addition, while their worldview beliefs and conceptions of NOS reflected their faith beliefs, participants did not have a less informed view of NOS than other science teachers in previous studies. In fact, for several aspects of NOS, these participants articulated more informed conceptions of NOS than participants in previous studies. For these participants, faith did not appear to interfere with their ability to think scientifically in regards to their worldview beliefs regarding nature and causality. Rather, faith was incorporated into a scientifically compatible worldview regarding nature and causality that is not much different from other teachers. Other than the fact that these science teachers integrated their faith beliefs into some of their responses regarding worldview and NOS, these teachers did not appear to be much different from other science teachers. That is, there was no predictable pattern between worldview

  17. Urban e-Mobility - Challenges and potential solutions using the example of the "E3W" concept vehicle

    NASA Astrophysics Data System (ADS)

    Perterer, M.; Martin, P.; Lochner, H.

    2014-05-01

    Due to the increasing number of people in urban areas, there is a need for affordable individual transportation. Limited space in cities together with the need for a significant reduction of pollution will lead to new mobility concepts in the near future. The aim of these concepts is not replacing the car itself, but to supply an additional personal transportation solution with local zero emission. Therefore, electrical powered vehicle concepts may be used. Due to the limited energy density and high cost of current Li-ion batteries, a significant weight reduction of the vehicle could lead to acceptable range and cost. In order to develop an affordable urban concept, the requirements for this kind of vehicle also have to be adjusted in comparison to conventional cars. This concept, the so called "E3W", combines the advantages of a two-wheeler with those of a four-wheeler, resulting in a lightweight and compact vehicle. This concept accommodates space for two persons with luggage and guarantees a high level of safety including wind and weather protection. The overall measures of this vehicle are smaller than current compact cars and allow therefore better use in cities. In order to fulfill technical and commercial requirements, a load carrying, short fiber reinforced thermoplastic body structure is chosen, combining good weight specific mechanical properties and low production costs. This highly integrated body structure also provides the body cover all in one. Pultruded glass fiber reinforced plastic (GFRP) beams are used as the backbone for the vehicle by carrying the main loads, the front crash structure and the rear swingarm. Finally, two prototypes are built to investigate the driving behavior, proof the concept and the suitability for daily use.

  18. Nature of fluid flows in differentially heated cylindrical container filled with a stratified solution

    NASA Technical Reports Server (NTRS)

    Wang, Jai-Ching

    1992-01-01

    Semiconductor crystals such as Hg(1-x)Cd(x)Te grown by unidirectional solidification Bridgmann method have shown compositional segregations in both the axial and radial directions. Due to the wide separation between the liquidus and the solidus of its pseudobinary phase diagram, there is a diffusion layer of higher HgTe content built up in the melt near the melt-solid interface which gives a solute concentration gradient in the axial direction. Because of the higher thermal conductivity in the melt than that in the crystal there is a thermal leakage through the fused silica crucible wall near the melt-solid interface. This gives a thermal gradient in the radial direction. Hart (1971), Thorpe, Hutt and Soulsby (1969) have shown that under such condition a fluid will become convectively unstable as a result of different diffusivities of temperature and solute. It is quite important to understand the effects of this thermosolute convection on the compositional segregation in the unidirectionally solidified crystals. To reach this goal, we start with a simplified problem. We study the nature of fluid flows of a stratified solution in a cylindrical container with a radial temperature gradient. The cylindrical container wall is considered to be maintained at a higher temperature than that at the center of the solution and the solution in the lower gravitational direction has higher solute concentration which decrease linearly to a lower concentration and then remain constant to the top of the solution. The sample solution is taken to be salt water.

  19. Finite element, stream function-vorticity solution of steady laminar natural convection

    NASA Astrophysics Data System (ADS)

    Stevens, W. N. R.

    1982-12-01

    Stream function-vorticity finite element solution of two-dimensional incompressible viscous flow and natural convection is considered. Steady state solutions of the natural convection problem have been obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element discretization and a displacement of the appropriate discrete equations. Solution is obtained by Newton-Raphson iteration of all equations simultaneously. The method then appears to give a steady solution whenever the flow is physically steady, but it does not give a steady solution when the flow is physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a degree of economy over primitive variable formulations. Physical results are given for the square cavity convection problem. The paper also reports on earlier work in which the most commonly used boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated solution procedures were attempted with very minimal success.

  20. Designing an Illustrated Food Web to Teach Ecological Concepts: Challenges and Solutions.

    ERIC Educational Resources Information Center

    Godkin, Celia M.

    1999-01-01

    Argues that food webs are an efficient method through which to communicate the core idea of ecology--that all living things are interconnected. Assesses the challenges and solutions to using illustrated food webs. (Author/CCM)

  1. School Students' Conceptions about Biodiversity Loss: Definitions, Reasons, Results and Solutions

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Yesiltas, Namik Kemal; Kartal, Tezcan; Demiral, Ümit; Eroglu, Baris

    2013-01-01

    Environmental degradation stemming from anthropocentric causes threatens the biodiversity more than ever before, leading scholars to warn governments about the impending consequences of biodiversity loss (BL). At this point, it is of great importance to study the public's conceptions of BL in order to identify significant educational…

  2. Children's Conceptions of Air Pressure: Exploring the Nature of Conceptual Change.

    ERIC Educational Resources Information Center

    Tytler, Russell

    1998-01-01

    Constructs case studies of individuals to explore the way conceptions change over time, and the difficulties presented by the concept of atmospheric pressure. Evaluates different structural theories of conceptual change. Contains 62 references. (DDR)

  3. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality.

    PubMed

    Saltali, Kadir; Sari, Ahmet; Aydin, Mehmet

    2007-03-01

    The purposes of this study were to investigate the removal efficiency of ammonium (NH(4)(+)) ion from aqueous solution using the natural Turkish (Yildizeli) zeolite and to characterize equilibrium isotherms. Experiments were carried out using batch method as a function of the solution pH, shaking time, dosage of adsorbent, and temperature. All these factors affected NH(4)(+) ion removal from aqueous solution. Equilibrium modelling data were fitted to linear Langmuir and Freundlich models. Dubinin-Redushckevich (D-R) isotherm was applied to describe the nature of ion exchange of NH(4)(+) and found that it occurred physically. Thermodynamics parameters such as change in free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) were also calculated. These parameters confirmed that ion exchange of NH(4)(+) by the zeolite was feasible, spontaneous and exothermic in nature. Based on the results, it can be concluded that the natural Turkish (Yildizeli) zeolite is suitable for the removal of NH(4)(+) ions in wastewater treatments and agricultural purposes to in terms of sustainability of environmental quality. PMID:16930832

  4. 'Normal', 'natural', 'good' or 'good-enough' birth: examining the concepts.

    PubMed

    Darra, Susanne

    2009-12-01

    In the face of increasing intervention in childbirth, 'normal birth' is currently being promoted by the World Health Organization, national governments, professional bodies and other organisations throughout the world. This paper takes a postmodernist stance and explores the idea of the 'normal' before going on to analyse normal childbirth, referring to concepts of the normal and the natural. It refers to historical developments in childbearing and lay organisations along with research relating to women's views of childbirth, to question the appropriateness of using 'normal' to describe the very individual experiences of childbirth. It laments the way in which women have been treated and arguably continue to be 'cared for' in maternity/obstetric services. It adds to the current discussion by recalling psychoanalytical theory and philosophical analysis to conclude with a call for future consideration of the 'good-enough' birth instead of concentrating on promoting normal birth which is very difficult, if not impossible to define in retrospect, or to prospectively promote. PMID:19906280

  5. Student Conceptions of Ionic Compounds in Solution and the Influences of Sociochemical Norms on Individual Learning

    ERIC Educational Resources Information Center

    Warfa, Abdi-Rizak M.

    2013-01-01

    Using the symbolic interactionist perspective that meaning is constituted as individuals interact with one another, this study examined how group thinking during cooperative inquiry-based activity on chemical bonding theories shaped and influenced college students' understanding of the properties of ionic compounds in solution. The analysis…

  6. Exploring Fundamental Concepts in Aqueous Solution Conductivity: A General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Stevanov, Kelly; Barlag, Rebecca

    2010-01-01

    Using a conductivity sensor, a temperature sensor, and a datalogger, fundamental factors that affect conductivity are explored. These factors are (i) concentration, (ii) temperature, (iii) ion charge, and (iv) size and or mass of anion. In addition, the conductivities of a number of other solutions are measured. This lab has been designed to…

  7. Innovative Learning Solutions in New Communities: Opportunities and Challenges to Teachers' Conceptions of Workspace

    ERIC Educational Resources Information Center

    Costley, Debra

    2007-01-01

    This article explores the possibilities and opportunities created by large-scale property developers for new ways of learning and working in master-planned communities. The discussion is based on the findings from research of one developer's innovative solutions to learning in newly developed communities and specifically draws on data from one…

  8. Student Learning of Thermochemical Concepts in the Context of Solution Calorimetry.

    ERIC Educational Resources Information Center

    Greenbowe, Thomas J.; Meltzer, David E.

    2003-01-01

    Analyzes student performance on solution calorimetry problems in an introductory university chemistry class. Includes data from written classroom exams for 207 students and an extensive longitudinal interview with a student. Indicates learning difficulties, most of which appear to originate from failure to understand, that net increases and…

  9. Detecting Underspecification in SNOMED CT Concept Definitions Through Natural Language Processing

    PubMed Central

    Pacheco, Edson; Stenzhorn, Holger; Nohama, Percy; Paetzold, Jan; Schulz, Stefan

    2009-01-01

    Quality assurance and audit issues play a major role in maintening large biomedical terminology, such as SNOMED CT. Several automatized techniques have been proposed to facilitate the identification of weak spots and suggest adequate improvements. In this study, we address a well-known issue within SNOMED CT: Albeit the wording of many free-text concept descriptions suggests a connection to other concepts, they are often not referred to in the logical concept definition. To detect such inconsistencies, we use a semantic indexing approach which maps free text onto a sequence of semantic identifiers. Applied to SNOMED CT concepts without attributes, our technique spots refinable concepts and suggests appropriate attributes, i.e., connections to other concepts. Based on a manual analysis of random samples, we estimate that approximately 18,000 refinable concepts can be found. PMID:20351905

  10. The NUCLEUS integrated electronic patient dossier breakthrough and concepts of an open solution.

    PubMed

    Kilsdonk, A C; Frandji, B; van der Werff, A

    1996-07-01

    This paper addresses the requirements of healthcare providers and hospital managers vis-à-vis electronic patient records that can be integrated. It starts from some critical failure factors, found with previous attempts to standardise the electronic health record. Standardisation appears to be the key issue: the subject of standardisation requires delicate positioning. Technology must provide us with the means to obtain the standardised foundation for an integrated health record concept, which can be completely configured and customised to meet the requirements of health professionals and institutions involved. NUCLEUS, project A2025 in the AIM programme, has taken on this endeavour, and with good success. This paper summarises the benefits of this approach for various categories of people interested in using electronic patient records. Moreover, it illustrates NUCLEUS' contribution to achieving seamless integration of care. Furthermore, this paper explains the conceptual innovations that have been achieved in the NUCLEUS project. It consolidates the main concept of Act Management, structuring the professional primary process as well as the interprofessional communication. These concepts are subsequently expanded to include the key elements of the NUCLEUS integrated electronic patient record. Next, the paper reflects on what has appeared to be one of the critical success factors of the electronic patient record: its configuration and customisation facilities. These facilities make it possible to access the patient record at various intuitive aggregation levels and to make the integrated patient record 'look like' the individually specialised record of the respective healthcare professionals. Finally, the paper addresses various topics required to facilitate the successful implementation and operation of the NUCLEUS integrated electronic patient record like security, integrity, message communication, distribution, heterogeneity and the context of the hospital

  11. A leaky aquifer below Champlain Sea clay: closed-form solutions for natural seepage.

    PubMed

    Chapuis, Robert P; Saucier, Antoine

    2013-01-01

    Closed-form solutions are proposed for natural seepage in semiconfined (leaky) aquifers such as those existing below the massive Champlain Sea clay layers in the Saint-Lawrence River Valley. The solutions are for an ideal horizontal leaky aquifer below an ideal aquitard that may have either a constant thickness and a constant hydraulic head at its surface, or a variable thickness and a variable hydraulic head at its surface. A few simplifying assumptions were needed to obtain the closed-form solutions. These have been verified using a finite element method, which did not make any of the assumptions but gave an excellent agreement for hydraulic heads and groundwater velocities. For example, the difference between the two solutions was smaller than 1 mm for variations in the 5 to 8 m range for the hydraulic head in the semiconfined aquifer. Note that fitting the hydraulic head data of monitoring wells to the theoretical solutions gives only the ratio of the aquifer and aquitard hydraulic conductivities, a clear case of multiple solutions for an inverse problem. Consequently, field permeability tests in the aquitard and the aquifer, and pumping tests in the aquifer, are still needed to determine the hydraulic conductivity values. PMID:23441962

  12. Supply Chain Based Solution to Prevent Fuel Tax Evasion: Proof of Concept Final Report

    SciTech Connect

    Capps, Gary J; Lascurain, Mary Beth; Franzese, Oscar; Earl, Dennis Duncan; West, David L; McIntyre, Timothy J; Chin, Shih-Miao; Hwang, Ho-Ling; Connatser, Raynella M; Lewis Sr, Samuel Arthur; Moore, Sheila A

    2011-12-01

    The goal of this research was to provide a proof-of-concept (POC) system for preventing non-taxable (non-highway diesel use) or low-taxable (jet fuel) petrochemical products from being blended with taxable fuel products and preventing taxable fuel products from cross-jurisdiction evasion. The research worked to fill the need to validate the legitimacy of individual loads, offloads, and movements by integrating and validating, on a near-real-time basis, information from global positioning system (GPS), valve sensors, level sensors, and fuel-marker sensors.

  13. The effectiveness of conceptual change texts and concept clipboards in learning the nature of science

    NASA Astrophysics Data System (ADS)

    Çil, Emine; Çepni, Salih

    2016-01-01

    Background: One of the most important goals of science education is to enable students to understand the nature of science (NOS). However, generally regular science teaching in classrooms does not help students improve informed NOS views. Purpose: This study investigated the influence of an explicit reflective conceptual change approach compared with an explicit reflective inquiry-oriented approach on seventh graders' understanding of NOS. Sample: The research was conducted with seventh grade students. A total of 44 students participated in the study. Design and method: The study was an interpretive study because this study focused on the meanings that students attach to target aspects of NOS. Participants were divided into two groups, each consisting of 22 students. One of the groups learned NOS with an explicit reflective conceptual change approach. The requirements of conceptual change were provided through the use of conceptual change texts and concept cartoons. The other group learned NOS with an explicit reflective inquiry-oriented approach. The data were collected through open-ended questionnaires and semi-structured interviews. These instruments were employed in a pre-test, a post-test and a delayed test. Students' views of the aspects of NOS were categorized as naive, transitional and informed. Results: The result of this study indicated that before receiving instruction, most of the participants had transitional views of the tentative, empirical and imaginative and creative aspects of the NOS, and they had naive understandings of the distinction between observation and inference. The instruction in the experimental group led to a 60% - a 25% increase in the number of students who possessed an informed understanding of the tentative, empirical, creative and observation and inference aspect of the NOS. The instruction in the control group led to a 30% - a 15% increase in the informed NOS views. Conclusion: The explicit reflective conceptual change approach

  14. An Examination of the Documentary Film "Einstein and Eddington" in Terms of Nature of Science Themes, Philosophical Movements, and Concepts

    ERIC Educational Resources Information Center

    Kapucu, Munise Seçkin

    2016-01-01

    This study aims to examine nature of science themes, philosophical movements, and overall concepts covered in the documentary film, "Einstein and Eddington". A qualitative research method was used. In this study, the documentary film "Einstein and Eddington," the viewing time of which is 1 hour and 28 minutes, was used as the…

  15. Thai and Bangladeshi In-Service Science Teachers' Conceptions of Nature of Science: A Comparative Study

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak; Abedin Forhad, Ziaul

    2014-01-01

    Understanding of nature of science (NOS) serves as one of the desirable characteristics of science teachers. The current study explored 55 Thai and 110 Bangladeshi in-service secondary science teachers' conceptions of NOS regarding scientific knowledge, scientific method, scientists' work, and scientific enterprise, by using the Myths of…

  16. Using the History of Research on Sickle Cell Anemia to Affect Preservice Teachers' Conceptions of the Nature of Science.

    ERIC Educational Resources Information Center

    Howe, Eric M.

    This paper examines how using a series of lessons developed from the history of research on sickle cell anemia affects preservice teacher conceptions of the nature of science (NOS). The importance of a pedagogy that has students do science through an integral use of the history of science is effective at enriching students' NOS views is presented.…

  17. Changing High School Students' Conceptions of the Nature of Science: The Partnership for Research and Education in Plants (PREP)

    ERIC Educational Resources Information Center

    Brooks, Eric Dwayne

    2011-01-01

    This study investigated whether participation in the Partnership for Research and Education in Plants (PREP), a long-term authentic plant research project, in conjunction with explicit verses implicit instruction can change high school students' conceptions of the nature of science (NOS). The participants included a total of 134 students comprised…

  18. Students' Conceptions of the Nature of Science: Perspectives from Canadian and Korean Middle School Students

    ERIC Educational Resources Information Center

    Park, Hyeran; Nielsen, Wendy; Woodruff, Earl

    2014-01-01

    This study examined and compared students' understanding of nature of science (NOS) with 521 Grade 8 Canadian and Korean students using a mixed methods approach. The concepts of NOS were measured using a survey that had both quantitative and qualitative elements. Descriptive statistics and one-way multivariate analysis of variances examined…

  19. Teaching Nature of Science to Preservice Science Teachers: A Phenomenographic Study of Chinese Teacher Educators' Conceptions

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Drawing from the phenomenographic perspective, this study investigated Chinese science teacher educators' conceptions of teaching nature of science (NOS) to preservice science teachers through two semi-structured interviews. The subjects were twenty-four science teacher educators in the developed regions in China. Five key dimensions emerged…

  20. Outcomes of Nature of Science Instruction along a Context Continuum: Preservice Secondary Science Teachers' Conceptions and Instructional Intentions

    ERIC Educational Resources Information Center

    Bell, Randy L.; Mulvey, Bridget K.; Maeng, Jennifer L.

    2016-01-01

    This investigation examined outcomes associated with nature of science (NOS) instruction along a science-content context continuum on the development of secondary preservice science teachers' conceptions of and plans to teach NOS, moving beyond the common dichotomy of contextualized versus noncontextualized instruction. Participants comprised six…

  1. Natural micro-scale heterogeneity induced solute and nanoparticle retardation in fractured crystalline rock.

    PubMed

    Huber, F; Enzmann, F; Wenka, A; Bouby, M; Dentz, M; Schäfer, T

    2012-05-15

    We studied tracer (Tritiated Water (HTO); Tritium replaces one of the stable hydrogen atoms in the H(2)O molecule) and nanoparticle (quantum dots (QD)) transport by means of column migration experiments and comparison to 3D CFD modeling. Concerning the modeling approach, a natural single fracture was scanned using micro computed tomography (μCT) serving as direct input for the model generation. The 3D simulation does not incorporate any chemical processes besides the molecular diffusion coefficient solely reflecting the impact of fracture heterogeneity on mass (solute and nanoparticles) transport. Complex fluid velocity distributions (flow channeling and flowpath heterogeneity) evolve as direct function of fracture geometry. Both experimental and simulated solute and colloidal breakthrough curves show heavy tailing (non-Fickian transport behavior), respectively. Regarding the type of quantum dots and geochemical conditions prevailing (Grimsel ground water chemistry, QD and diorite surface charge, respectively and porosity of the Äspö diorite drill core) experimental breakthrough of the quantum dots always arrives faster than the solute tracer in line with the modeling results. Besides retardation processes like sorption, filtration, straining or matrix diffusion, the results show that natural 3D fracture heterogeneity represents an important additional retardation mechanism for solutes and colloidal phases. This is clearly verified by the numerical simulations, where the 3D real natural fracture geometry and the resulting complex flow velocity distribution is the only possible process causing solute/nanoparticle retardation. Differences between the experimental results and the simulations are discussed with respect to uncertainties in the μCT measurements and experimental and simulation boundary conditions, respectively. PMID:22484609

  2. Removal Of Copper From Aqueous Solutions By Using Natural And Fe-Modified Clinoptilolite

    NASA Astrophysics Data System (ADS)

    Lipovský, Marek; Sirotiak, Maroš; Soldán, Maroš

    2015-06-01

    Removal of copper from aqueous solution on the natural and modified clinoptilolite was studied under static conditions. Batch adsorptions of copper were performed to investigate the effects of contact time and initial metal ion concentration. The Freundlich and Langmuir adsorption isotherms were used to analyse the experimental data. The kinetic analyses of the adsorption processes were performed using the pseudo-first-order and pseudo-second-order kinetic models.

  3. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Cortis, A.; Birkholzer, J. T.

    2010-12-01

    Solute transport in fractured porous media is typically "non-Fickian"; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  4. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method

    SciTech Connect

    Geiger, S.; Cortis, A.; Birkholzer, J.T.

    2010-04-01

    Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

  5. Effects of radiation damping for biomolecular NMR experiments in solution: a hemisphere concept for water suppression

    PubMed Central

    Ishima, Rieko

    2016-01-01

    Abundant solvent nuclear spins, such as water protons in aqueous solution, cause radiation damping in NMR experiments. It is important to know how the effect of radiation damping appears in high-resolution protein NMR because macromolecular studies always require very high magnetic field strengths with a highly sensitive NMR probe that can easily cause radiation damping. Here, we show the behavior of water magnetization after a pulsed-field gradient (PFG) using nutation experiments at 900 MHz with a cryogenic probe: when water magnetization is located in the upper hemisphere (having +Z component, parallel to the external magnetic field), dephasing of the magnetization by a PFG effectively suppresses residual water magnetization in the transverse plane. In contrast, when magnetization is located in the lower hemisphere (having −Z component), the small residual transverse component remaining after a PFG is still sufficient to induce radiation damping. Based on this observation, we designed 1H-15N HSQC experiments in which water magnetization is maintained in the upper hemisphere, but not necessarily along Z, and compared them with the conventional experiments, in which water magnetization is inverted during the t1 period. The result demonstrates moderate gain of signal-to-noise ratio, 0–28%. Designing the experiments such that water magnetization is maintained in the upper hemisphere allows shorter pulses to be used compared to the complete water flip-back and, thereby, is useful as a building block of protein NMR pulse programs in solution. PMID:27524944

  6. Major Design Drivers for LEO Space Surveillance in Europe and Solution Concepts

    NASA Astrophysics Data System (ADS)

    Krag, Holger; Flohrer, Tim; Klinkrad, Heiner

    Europe is preparing for the development of an autonomous system for space situational aware-ness. One important segment of this new system will be dedicated to surveillance and tracking of space objects in Earth orbits. First concept and capability analysis studies have led to a draft system proposal. This proposal foresees, in a first deployment step, a groundbased system consisting of radar sensors and a network of optical telescopes. These sensors will be designed to have the capability of building up and maintaining a catalogue of space objects. A number of related services will be provided, including collision avoidance and the prediction of uncontrolled reentry events. Currently, the user requirements are consolidated, defining the different services, and the related accuracy and timeliness of the derived products. In this consolidation process parameters like the lower diameter limit above which catalogue coverage is to be achieved, the degree of population coverage in various orbital regions and the accuracy of the orbit data maintained in the catalogue are important design drivers for the selection of number and location of the sensors, and the definition of the required sensor performance. Further, the required minimum time for the detection of a manoeuvre, a newly launched object or a fragmentation event, significantly determines the required surveillance performance. In the requirement consolidation process the performance to be specified has to be based on a careful analysis which takes into account accuracy constraints of the services to be provided, the technical feasibility, complexity and costs. User requirements can thus not be defined with-out understanding the consequences they would pose on the system design. This paper will outline the design definition process for the surveillance and tracking segment of the European space situational awareness system. The paper will focus on the low-Earth orbits (LEO). It will present the core user

  7. Problem Definition and Solution Concept for En Route Constrained Airspace Problems

    NASA Technical Reports Server (NTRS)

    Green, Steven; Vivona, Robert

    2000-01-01

    NASA's AATT Program is investigating potential ground-based decision support tool (DST) development for en route controllers and managers. NASA's previous work in en route DST development has focused on Transition airspace, where aircraft are impacted by constraints associated with the transition of aircraft from en route to terminal airspace. This paper investigates the problems associated with aircraft in non-transitional en route airspace, termed Constrained Airspace. A literature search was performed to catalog previously identified constrained airspace problems. The results of this search were investigated with industry representatives to validate these problems were significant in constrained airspace. Three general problem areas were identified. The first problem area involves negative impacts caused by a loss of airspace (e.g., activation of Special Use Airspace (SUA), weather cell formation, and overloaded sectors). The second problem area is the lack of identifying and taking advantage of gained airspace (e.g., SUA deactivation, weather dissipation, and sector loading reductions). The third problem area is unforeseen negative impacts caused by the acceptance of user routing requests (e.g., a route change into an area of congestion that negated the users intended benefit). Based upon the problems identified, an operational concept was developed for a DST to help handle these problems efficiently. The goal is to strategically identify constrained airspace problems and to provide functionality to support ARTCC TMUs in resolving the identified impacts. The capability lends itself well to TMU and Airline Operations Center (AOC) collaboration.

  8. A Resource for Eliciting Student Alternative Conceptions: Examining the Adaptability of a Concept Inventory for Natural Selection at the Secondary School Level

    NASA Astrophysics Data System (ADS)

    Lucero, Margaret M.; Petrosino, Anthony J.

    2016-07-01

    The Conceptual Inventory of Natural Selection (CINS) is an example of a research-based instrument that assesses conceptual understanding in an area that contains well-documented alternative conceptions. Much of the CINS's use and original validation has been relegated to undergraduate settings, but the information learned from student responses on the CINS can also potentially be a useful resource for teachers at the secondary level. Because of its structure, the CINS can have a role in eliciting alternative conceptions and induce deeper conceptual understanding by having student ideas leveraged during instruction. In a first step toward this goal, the present study further investigated the CINS's internal properties by having it administered to a group (n = 339) of students among four different biology teachers at a predominantly Latino, economically disadvantaged high school. In addition, incidences of the concept inventory's use among the teachers' practices were collected for support of its adaptability at the secondary level. Despite the teachers' initial enthusiasm for the CINS's use as an assessment tool in the present study, results from a principal components analysis demonstrate inconsistencies between the original and present validations. Results also reveal how the teachers think CINS items may be revised for future use among secondary student populations.

  9. The contribution of nature to people: Applying concepts of values and properties to rate the management importance of natural elements.

    PubMed

    Smith, Michael J; Wagner, Christian; Wallace, Ken J; Pourabdollah, Amir; Lewis, Loretta

    2016-06-15

    An important, and yet unresolved question in natural resource management is how best to manage natural elements and their associated values to ensure human wellbeing. Specifically, there is a lack of measurement tools to assess the contribution of nature to people. We present one approach to overcome this global issue and show that the preferred state of any system element, in terms of realising human values, is a function of element properties. Consequently, natural resource managers need to understand the nature of the relationships between element properties and values if they are to successfully manage for human wellbeing. In two case studies of applied planning, we demonstrate how to identify key element properties, quantify their relationships to priority human values, and combine this information to model the contribution of elements to human wellbeing. In one of the two case studies we also compared the modelling outputs with directly elicited stakeholder opinions regarding the importance of the elements for realising the given priority values. The two, largely congruent outputs provide additional support for the approach. The study shows that rating sets of elements on their relative overall value for human wellbeing, or utility, provides critical information for subsequent management decisions and a basis for productive new research. We consider that the described approach is broadly applicable within the domain of natural resource management. PMID:27056439

  10. Natural Hazard Problem and Solution Definition in the News Media: the Case of Tropical Storm Allison

    NASA Astrophysics Data System (ADS)

    Lindquist, Eric; Mosher-Howe, Katrina

    2010-05-01

    Focusing events such as natural or technological disasters can have significant impacts on public policy and planning in both the near and long term. These impacts can manifest at different temporal scales ranging from the period of immediate attention and disaster relief through the period of recovery and reconstruction and beyond. These impacts and associated decisions can be studied in retrospect and understood as not only short-term reactions, but as long-term components of subsequent natural hazard planning and public policy. By studying in detail how an event was defined, and the policy and planning alternatives that were raised or recommended in response to a disaster event, we can better understand the role that disaster-related focusing events play in the long-term evolution of a community's public policy, infrastructural planning efforts, and responses to natural disasters. This paper will use a focusing event framework to explore the local and regional policy impacts over time of a major urban flood in Houston, Texas, Tropical Storm Allison. Tropical Storm Allison (TSA), dropped 36 inches of rain on Houston over a period of four days in early June 2001, and was responsible for 22 deaths, 70,000 flood damaged homes, and 5 billion in damage to the region. The primary data source for this effort is a database of 500 articles from the major regional newspaper, the Houston Chronicle, over the period of 2001 through 2008. These articles were coded for multiple variables, including, cause, effect and impact (financial and social), blame, problem and solution definition and solution acceptance). This paper focuses primarily on the measures of problem definition (how was TSA, as an event, defined in the media, for example, as an act of God, or as a result of poor planning or decision making, etc), and on solution definition (what solutions were proposed to mitigate or adapt to future storms of this magnitude, how were they linked to the definition of the problem

  11. Three-dimensional perturbation solution of the natural vibrations of piezoelectric rectangular plates

    NASA Astrophysics Data System (ADS)

    Cupiał, Piotr

    2015-09-01

    The paper discusses a perturbation solution of the natural frequencies and mode shapes of a piezoelectric rectangular plate modelled as a three-dimensional body. The coupled theory of piezoelectricity is used, with the governing equations consisting of one electrostatic and three mechanical equations coupled through the piezoelectric effect. Analytical perturbation formulas up to the first-order terms have been derived and used. An important difference of the present analysis as compared to the classical perturbation method consists in that the small parameter enters not only the governing equations but the boundary conditions as well. To address this complication an efficient new approach that makes use of generalized functions has been proposed. Results of the natural frequencies and mode shapes obtained by the perturbation method are discussed for a thin piezoelectric rectangular plate, a thick plate and a piezoelectric parallelepiped. All the results obtained using the perturbation method have been compared with the exact solutions of the coupled electromechanical problem. The proposed perturbation approach furnishes an efficient approximate method of studying the coupled piezoelectric vibration problem. The main advantage of the method derives from the fact that only the elastic solution is required, the effect of piezoelectric coupling being accounted for at a post-processing stage.

  12. The Online Dissemination of Nature-Health Concepts: Lessons from Sentiment Analysis of Social Media Relating to "Nature-Deficit Disorder".

    PubMed

    Palomino, Marco; Taylor, Tim; Göker, Ayse; Isaacs, John; Warber, Sara

    2016-01-01

    Evidence continues to grow supporting the idea that restorative environments, green exercise, and nature-based activities positively impact human health. Nature-deficit disorder, a journalistic term proposed to describe the ill effects of people's alienation from nature, is not yet formally recognized as a medical diagnosis. However, over the past decade, the phrase has been enthusiastically taken up by some segments of the lay public. Social media, such as Twitter, with its opportunities to gather "big data" related to public opinions, offers a medium for exploring the discourse and dissemination around nature-deficit disorder and other nature-health concepts. In this paper, we report our experience of collecting more than 175,000 tweets, applying sentiment analysis to measure positive, neutral or negative feelings, and preliminarily mapping the impact on dissemination. Sentiment analysis is currently used to investigate the repercussions of events in social networks, scrutinize opinions about products and services, and understand various aspects of the communication in Web-based communities. Based on a comparison of nature-deficit-disorder "hashtags" and more generic nature hashtags, we make recommendations for the better dissemination of public health messages through changes to the framing of messages. We show the potential of Twitter to aid in better understanding the impact of the natural environment on human health and wellbeing. PMID:26797628

  13. Darwin's "Imaginary Illustrations": Creatively Teaching Evolutionary Concepts & the Nature of Science

    ERIC Educational Resources Information Center

    Love, Alan C.

    2010-01-01

    An overlooked feature of Darwin's work is his use of "imaginary illustrations" to show that natural selection is competent to produce adaptive, evolutionary change. When set in the context of Darwin's methodology, these thought experiments provide a novel way to teach natural selection and the nature of science.

  14. Developing an Evidence-Based Epilepsy Risk Assessment eHealth Solution: From Concept to Market

    PubMed Central

    Shankar, Rohit; Hanna, Jane; McLean, Brendan; Osland, Alex; Milligan, Cathryn; Ball, Abbie; Jory, Caryn; Walker, Matthew

    2016-01-01

    Introduction Sudden unexpected death in epilepsy (SUDEP) is possibly the most common cause of death as a result of complications from epilepsy. The need to educate and regularly review risk for all patients with epilepsy is paramount, but rarely delivered in actual clinical practice. Evidence suggests that education around SUDEP and modifiable risk variables translate into better self-management of epilepsy. Objective We aimed to develop and implement an eHealth solution to support education and self-management of risks, in epilepsy. Methods We undertook an innovation pathways approach, including problem identification, feasibility assessment, design, implementation, and marketing. People with epilepsy were provided a smartphone-based app (Epilepsy Self-Monitor, EpSMon), which translates the clinical risk assessment tool into an educational and self-monitoring platform, for the self-management of epilepsy. Results Results include the success of the marketing campaign, and in what areas, with an estimated reach of approximately 38 million people. EpSMon has proved a success in academic and clinical circles, attracting awards and nominations for awards. The number of users of EpSMon, after 3 months, turned out to be lower than expected (N=221). A 4-month trial of the app in use in the United Kingdom, and the success of the marketing strategy, point to necessary changes to the model of delivery and marketing, summarized in this paper. These include the marketing message, user cost model, and need for the availability of an Android version. Conclusions EpSMon has proven a success in respect to its reception by academics, clinicians, stakeholder groups, and the patients who use it. There is work needed to promote the model and increase its acceptability/attractiveness, including broadening the marketing message, increasing its availability, and reducing its cost. Future development and promotion of the tool will hopefully inform iterative design of its core features for

  15. Solving problems on base of concepts formalization of language image and figurative meaning of the natural-language constructs

    NASA Astrophysics Data System (ADS)

    Bisikalo, Oleg V.; Cieszczyk, Sławomir; Yussupova, Gulbahar

    2015-12-01

    Building of "clever" thesaurus by algebraic means on base of concepts formalization of language image and figurative meaning of the natural-language constructs in the article are proposed. A formal theory based on a binary operator of directional associative relation is constructed and an understanding of an associative normal form of image constructions is introduced. A model of a commutative semigroup, which provides a presentation of a sentence as three components of an interrogative language image construction, is considered.

  16. New fundamental evidence of non-classical structure in the combination of natural concepts.

    PubMed

    Aerts, D; Sozzo, S; Veloz, T

    2016-01-13

    We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modelled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modelled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the superposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning', guided by 'emergence', and that the latter generally prevails over the former. All these findings provide new fundamental support to our quantum-theoretic approach to human cognition. PMID:26621983

  17. Outcomes of nature of science instruction along a context continuum: preservice secondary science teachers' conceptions and instructional intentions

    NASA Astrophysics Data System (ADS)

    Bell, Randy L.; Mulvey, Bridget K.; Maeng, Jennifer L.

    2016-02-01

    This investigation examined outcomes associated with nature of science (NOS) instruction along a science-content context continuum on the development of secondary preservice science teachers' conceptions of and plans to teach NOS, moving beyond the common dichotomy of contextualized versus noncontextualized instruction. Participants comprised six teacher cohorts (n = 70) enrolled in a two-year Master of Teaching program. Participants were explicitly taught current NOS conceptions using activities that incorporated varied degrees of contextualization and were informed by conceptual change principles during the first program year. Participants' pre- and post-instruction conceptions were assessed using VNOS-C questionnaire written responses and follow-up interviews. Participants' views were classified by degree of alignment (non, partially, or fully aligned) with current NOS conceptions. Interview transcripts were analyzed using analytic induction to verify/refine VNOS responses and to identify patterns in NOS instructional plans and rationales. Wilcoxon signed ranks tests were run to assess possible statistical significance of pre- to post-instruction changes. Participants' responses shifted markedly toward more aligned NOS conceptions post-instruction, with substantial and statistically significant gains for each assessed tenet (all p-values <.001). All participants planned future NOS instruction and most expressed a sophisticated rationale for this choice, including that NOS supported the teaching of key concepts such as evolution. These results indicate that teaching and scaffolding NOS lessons along a context continuum can be effective in eliciting desired changes in preservice teachers' NOS conceptions and instructional intentions within the confines of the science methods course. Future research will examine post-methods course and post-program NOS instruction.

  18. A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

    2013-04-01

    Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can

  19. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  20. Radiation effects on bifurcation and dual solutions in transient natural convection in a horizontal annulus

    SciTech Connect

    Luo, Kang; Yi, Hong-Liang Tan, He-Ping

    2014-05-15

    Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.

  1. On the viscosity of natural hyper-saline solutions and its importance: The Dead Sea brines

    NASA Astrophysics Data System (ADS)

    Weisbrod, Noam; Yechieli, Yoseph; Shandalov, Semion; Lensky, Nadav

    2016-01-01

    The relationship between the density, temperature and viscosity of hypersaline solutions, both natural and synthetic, is explored. An empirical equation of the density-viscosity relationship as a function of temperature was developed for the Dead Sea brine and its dilutions. The viscosity levels of the Dead Sea brine (density of 1.24 ṡ 103 kg/m3; viscosity of 3.6 mPa s at 20 °C) and of the more extremely saline natural brine (density of 1.37 ṡ 103 kg/m3) were found to be ∼3 and ∼10 times greater than that of fresh water, respectively. The combined effect of the above changes in viscosity and density on the hydraulic conductivity is reduction by a factor of 3-7. The chemical composition significantly affects the viscosity of brines with similar densities, whereby solutions with a higher Mg/Na ratio have higher viscosity. This explains the extremely high viscosity of the Dead Sea and related Mg-rich brines in comparison with the much lower values of NaCl and KCl brines with similar density. Possible impacts of the results include reduced settling velocity of grains in hypersaline viscous brines and changing hydraulic dynamics at the freshwater-saltwater and the vicinity of sinkholes.

  2. Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith.

    PubMed

    Krishnan, K Anoop; Haridas, Ajit

    2008-04-01

    Iron impregnated coir pith (CP-Fe-I) can be effectively used for the removal of phosphate from aqueous streams and sewage. Iron impregnation on natural coir pith was carried out by drop by drop addition method. The effect of various factors such as pH, initial concentration of phosphate, contact time and adsorbent dose on phosphate adsorption was studied by batch technique. The pH at 3.0 favored the maximum adsorption of phosphate from aqueous solutions. The effect of pH on phosphate adsorption was explained by pH(zpc), phosphate speciation in solution and affinity of anions towards the adsorbent sites. A comparative study of the adsorption of phosphate using CP-Fe-I and CP (coir pith) was made and results show that the former one is five to six times more effective than the latter. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Adsorption followed Langmuir isotherm model. Column studies were conducted to examine the utility of the investigated adsorbent for the removal of phosphate from continuously flowing aqueous solutions. PMID:17706344

  3. Multi-period natural gas market modeling Applications, stochastic extensions and solution approaches

    NASA Astrophysics Data System (ADS)

    Egging, Rudolf Gerardus

    This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. 1 The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in

  4. Using a Concept Cartoon© Method to Address Elementary School Students' Ideas about Natural Phenomena

    ERIC Educational Resources Information Center

    Minárechová, Michaela

    2016-01-01

    This study investigated the identification and subsequent development or modification of students´ ideas about scientific phenomena by teaching by concept cartoons© method. We found out ideas of students of the fourth grade of primary school by conceptual tasks which were parts of quasi-experiment (pretest and posttest design). For triangulation…

  5. Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets

    ERIC Educational Resources Information Center

    Goguen, Joseph A., Jr.

    1974-01-01

    Paper reports research related to mathematics, philosophy, computer science and linguistics. It gives a system of axioms for a relatively simple form of fuzzy set theory, and uses these axioms to consider the accuracy of representing concepts in various ways by fuzzy sets. (Author)

  6. Influence of Teachers' Conceptions of the Nature of Science on Classroom Practice

    ERIC Educational Resources Information Center

    Sarieddine, Diana; BouJaoude, Saouma

    2014-01-01

    Whether teachers' conceptions of NOS are reflected in their instructional planning and classroom practice remains an important research question. Consequently, this study investigated teachers' NOS views and their relationship to their classroom practice and delineated the factors that facilitate or impede this relationship. To achieve…

  7. Meaning Making: What Reflective Essays Reveal about Biology Students' Conceptions about Natural Selection

    ERIC Educational Resources Information Center

    Balgopal, Meena M.; Montplaisir, Lisa M.

    2011-01-01

    The process of reflective writing can play a central role in making meaning as learners process new information and connect it to prior knowledge. An examination of the written discourse can therefore be revealing of learners' cognitive understanding and affective (beliefs, feelings, motivation to learn) responses to concepts. Despite reflective…

  8. Saccharification of natural lignocellulose biomass and polysaccharides by highly negatively charged heteropolyacids in concentrated aqueous solution.

    PubMed

    Ogasawara, Yoshiyuki; Itagaki, Shintaro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2011-04-18

    Highly negatively charged heteropolyacids (HPAs), in particular H(5) BW(12) O(40) , efficiently promoted saccharification of crystalline cellulose into water-soluble saccharides in concentrated aqueous solutions (e.g., 82 % total yield and 77 % glucose yield, based on cellulose with a 0.7 M H(5) BW(12) O(40) solution); the performance was much better than those of previously reported systems with commonly utilized mineral acids (e.g., H(2) SO(4) and HCl) and HPAs (e.g., H(3) PW(12) O(40) and H(4) SiW(12) O(40)). Besides crystalline cellulose, the present system was applicable to the selective transformation of cellobiose, starch, and xylan to the corresponding monosaccharides such as glucose and xylose. In addition, one-pot synthesis of levulinic acid and sorbitol directly from cellulose was realized by using concentrated HPA solutions. The present system, concentrated aqueous solutions of highly negatively charged HPAs, was further applicable to saccharification of natural (non-purified) lignocellulose biomass, such as "rice plant straw", "oil palm empty fruit bunch (palm EFB) fiber", and "Japanese cedar sawdust", giving a mixture of the corresponding water-soluble saccharides, such as glucose (main product), galactose, mannose, xylose, arabinose, and cellobiose, in high yields (≥77 % total yields of saccharides based on holocellulose). Separation of the saccharides and H(5) BW(12) O(40) was easy, and the retrieved H(5) BW(12) O(40) could repeatedly be used without appreciable loss of the high performance. PMID:21404445

  9. NATURAL GRADIENT EXPERIMENT ON SOLUTE TRANSPORT IN A SAND AQUIFER. 1. APPROACH AND OVERVIEW OF PLUME MOVEMENT

    EPA Science Inventory

    A large-scale field experiment on natural gradient transport of solutes in groundwater has been conducted at a site in Borden, Ontario. Well-defined initial conditions were achieved by the pulse injection of 12 cu m of a uniform solution containing known masses of two inorganic t...

  10. Student Knowledge of Scientific and Natural Resource Concepts Concerning Acidic Deposition.

    ERIC Educational Resources Information Center

    Brody, Michael; And Others

    1989-01-01

    Assessed is the level of scientific and natural resource knowledge possessed by fourth-, eighth- and eleventh-grade students. Misconceptions are noted. Discussed are implications for teaching about acidic deposition. (CW)

  11. Nature of science conceptions, attitudes towards evolution and global climate change, and course achievement in an introductory biology course

    NASA Astrophysics Data System (ADS)

    Carter, Benjamin Elijah

    Many researchers have studied student attitudes toward and knowledge of evolutionary science, attitudes towards global climate change (GCC), conceptions about the nature of science (NOS), and course success. However, at the time of this writing, no studies explicitly link these topics. It is overwhelmingly acknowledged by the scientific community that evolution and global climate change (GCC) are undeniably supported by physical evidence. And yet, both topics remain very politically contentious in the United States. Efforts to mitigate the disconnects between the scientific community and the general public on these issues are imperative to science education. Such undertakings need to examine students' conceptions of the nature of science (NOS), how evidence is treated, how theories are constructed, and how scientific consensus is reached, as these may be key factors in acceptance of evolution and GCC. If students have a more thorough understanding of the weight behind scientific consensus and better tools to discern scientific versus non-scientific arguments, they may become more likely to accept strongly supported scientific ideas. Our study explored this hypothesis guided by the following questions: Do changes in NOS conceptions correlate with changes in attitudes towards evolution or GCC? If there are correlations, are they similar for evolution and GCC? What demographic factors affect these correlations? Further, we asked whether attitudes towards evolution before the course began was a significant predictor of achievement in the course. Previously-developed tools were used to measure students' conceptions of the nature of science and attitudes towards evolution, while national public opinion poll questions were used to measure attitudes towards GCC. Demographic questions were produced to target factors thought to influence attitudes towards evolution or global climate change. Overall sample size was N=620. Principle Components Analysis was used to determine

  12. Natural convection in binary gases driven by combined horizontal thermal and vertical solutal gradients

    SciTech Connect

    Weaver, J.A.; Viskanta, R. )

    1992-01-01

    An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model. 31 refs.

  13. Microbially-Enhanced Redox Solution Reoxidation for Sour Natural Gas Sweetening

    SciTech Connect

    Kenneth Brezinsky

    2008-01-15

    The specific objective of this project are to advance the technology and improve the economics of the commercial iron-based chelate processes such as LO-CAT II and SulFerox process utilizing biologically enhanced reoxidation of the redox solutions used in these processes. The project is based on the use of chelated ferric iron as the catalyst for the production of elemental sulfur, and then oxidizing bacteria, such as Thiobacillus Ferrooxidans (ATCC 23270) as an oxidizer. The regeneration of Fe{sup 3+} - chelate is accomplished by the use of these same microbes under mild conditions at 25-30 C and at atmospheric pressure to minimize the chelate degradation process. The pH of the redox solution was observed to be a key process parameter. Other parameters such as temperature, total iron concentration, gas to liquid ratio and bacterial cell densities also influence the overall process. The second part of this project includes experimental data and a kinetic model of microbial H{sub 2}S removal from sour natural gas using thiobacillus species. In the experimental part, a series of experiments were conducted with a commercial chelated iron catalyst at pH ranges from 8.7 to 9.2 using a total iron concentration range from 925 ppm to 1050 ppm in the solution. Regeneration of the solution was carried out by passing air through the solution. Iron oxidizing bacteria were used at cell densities of 2.3 x 10{sup 7}cells/ml for optimum effective performance. In the modeling part, oxidation of Fe{sup 2+} ions by the iron oxidizing bacteria - Thiobacillus Ferrooxidans was studied for application to a continuous stirred tank reactor (CSTR). The factors that can directly affect the oxidation rate such as dilution rate, temperature, and pH were analyzed. The growth of the microorganism was assumed to follow Monod type of growth kinetics. Dilution rate had influence on the rate of oxidation of ferrous iron. Higher dilution rates caused washout of the biomass. The oxidation rate was

  14. Suppressing Synonymy with a Homonym: The Emergence of the Nomenclatural Type Concept in Nineteenth Century Natural History.

    PubMed

    Witteveen, Joeri

    2016-02-01

    'Type' in biology is a polysemous term. In a landmark article, Paul Farber (Journal of the History of Biology 9(1): 93-119, 1976) argued that this deceptively plain term had acquired three different meanings in early nineteenth century natural history alone. 'Type' was used in relation to three distinct type concepts, each of them associated with a different set of practices. Important as Farber's analysis has been for the historiography of natural history, his account conceals an important dimension of early nineteenth century 'type talk.' Farber's taxonomy of type concepts passes over the fact that certain uses of 'type' began to take on a new meaning in this period. At the closing of the eighteenth century, terms like 'type specimen,' 'type species,' and 'type genus' were universally recognized as referring to typical, model members of their encompassing taxa. But in the course of the nineteenth century, the same terms were co-opted for a different purpose. As part of an effort to drive out nomenclatural synonymy - the confusing state of a taxon being known to different people by different names - these terms started to signify the fixed and potentially atypical name-bearing elements of taxa. A new type concept was born: the nomenclatural type. In this article, I retrace this perplexing nineteenth century shift in meaning of 'type.' I uncover the nomenclatural disorder that the new nomenclatural type concept dissolved, and expose the conceptual confusion it left in its tracks. What emerges is an account of how synonymy was suppressed through the coinage of a homonym. PMID:26126490

  15. XANES Reveals the Flexible Nature of Hydrated Strontium in Aqueous Solution.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Sessa, Francesco; Mancini, Giordano; Persson, Ingmar

    2016-05-01

    X-ray absorption near-edge structure (XANES) spectroscopy has been used to determine the structure of the hydrated strontium in aqueous solution. The XANES analysis has been carried out using solid [Sr(H2O)8](OH)2 as reference model. Classical and Car-Parrinello molecular dynamics (MD) simulations have been carried out and in the former case two different sets of Lennard-Jones parameters have been used for the Sr(2+) ion. The best performing theoretical approach has been chosen on the basis of the experimental results. XANES spectra have been calculated starting from MD trajectories, without carrying out any minimization of the structural parameters. This procedure allowed us to properly account for thermal and structural fluctuations occurring in the aqueous solution in the analysis of the experimental spectrum. A deconvolution procedure has been applied to the raw absorption data thus increasing the sensitivity of XANES spectroscopy. One of the classical MD simulations has been found to provide a XANES theoretical spectrum in better agreement with the experimental data. An 8-fold hydration complex with a Sr-O distance of 2.60 Å has been found to be compatible with the XANES data, in agreement with previous findings. However, the hydration shells of the strontium ions have been found to have a flexible nature with a fast ligand exchange rate between the first and second hydration shell occurring in the picosecond time scale. PMID:27065305

  16. Investigating inquiry beliefs and nature of science (NOS) conceptions of science teachers as revealed through online learning

    NASA Astrophysics Data System (ADS)

    Atar, Hakan Yavuz

    teachers NOS conceptions. Developing desired understanding of nature of science conceptions and having an adequate experience with inquiry learning is especially important for science teachers because science education literature suggests that the development of teachers' nature of science conceptions is influenced by their experiences with inquiry science (Akerson et. al. 2000) and implementation of science lessons reflect teachers' NOS conceptions (Abd-EL-Khalick & Boujaoude, 1997; Matson & Parsons, 1998; Rosenthal, 1993; Trowbridge, Bybee & Powell, 2000; Turner & Sullenger, 1999). Furthermore, the impediments to successful integration of inquiry based science instruction from teachers' perspective are particularly important, as they are the implementers of inquiry based science education reform. The purpose of this study is to understand the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices in their classrooms and how this relationship impedes or contributes to the implementation of inquiry based science education reform efforts. The participants of this study were in-service teachers who were accepted into the online Masters Program in science education program at a southern university. Three online courses offered in the summer semester of 2005 constituted the research setting of this study: (1) Special Problems in the Teaching of Secondary School Science: Nature of Science & Science Teaching, (2) Curriculum in Science Education, and (3) Colloquium. Multiple data sources were used for data triangulation (Miles & Huberman, 1984; Yin, 1994) in order to understand the relationship between participants' NOS views and their conceptions and beliefs about inquiry-based science teaching. The study revealed that the relationship between the teachers' NOS conceptions and their inquiry beliefs and practices is far from being simple and linear. Data suggests that the teachers' sophistication of NOS conceptions influence their perception of

  17. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    PubMed

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  18. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    PubMed Central

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  19. A study of elementary teachers' conceptions of nature of science and their beliefs about the developmental appropriateness and importance of nature of science throughout a professional development program

    NASA Astrophysics Data System (ADS)

    Adibelli, Elif

    This qualitative study aimed to explore the changes in elementary science teachers' conceptions of nature of science (NOS) and their beliefs about the developmental appropriateness and importance of NOS after participating in an academic, year-long professional development program (PDP) as well as the factors facilitating these changes. The PDP consisted of two phases. In the first phase, the participants received NOS training designed with an explicit-reflective instructional approach. In the second phase, the participants implemented several NOS training activities in their classrooms. Four elementary science teachers who volunteered and completed all components of the PDP (i.e., the NOS training and the NOS teaching) comprised the participants of the present study. A multiple-embedded case study design was employed to explore the changes in the elementary science teachers' conceptions of NOS and their beliefs about the developmental appropriateness and importance of NOS. The study data were collected from multiple sources. The primary data sources included (a) Views of Nature of Science Elementary School Version 2 (VNOS-D2) questionnaire (Lederman & Khishfe, 2002), (b) Ideas about Science for Early Elementary (K-4) Students questionnaire (Sweeney, 2010), and (c) follow-up semi-structured interviews. The secondary data sources included videotaping of meetings with teachers, reflective field notes, and artifacts produced by teachers and their students. Data were analyzed using Yin's (1994, 2003) analytic tactics of pattern matching, explanation building, and cross-case synthesis. The findings of the study revealed that the elementary science teachers showed gradual, but substantial changes in their conceptions, and beliefs about the developmental appropriateness and importance of the NOS aspects over the course of participation in the PDP. Moreover, the participants identified nine components in the PDP that facilitated these changes in their conceptions, and

  20. Student Conceptions of Natural Selection and Its Role in Evolution, Research Series No. l65.

    ERIC Educational Resources Information Center

    Bishop, Beth A.; Anderson, Charles W.

    Pretests and posttests on the topic of evolution through natural selection were administered to students in a college nonmajors' biology course. Analysis of test responses revealed that most students understood evolution as a process in which species respond to environmental conditions by changing gradually over time. Student thinking differed…

  1. Learning Nature of Science Concepts through a Research Apprenticeship Program: A Comparative Study of Three Approaches

    ERIC Educational Resources Information Center

    Burgin, Stephen R.; Sadler, Troy D.

    2016-01-01

    The merits of three approaches (explicit, reflective and implicit) to Nature of Science (NOS) teaching and learning in the context of a summer research experience on high school student participants' NOS ideas were explored in this study. The effectiveness of explicit over implicit approaches has been demonstrated in school contexts, but less…

  2. Time to Get a New Mountain? The Role of Function in Children's Conceptions of Natural Kinds

    ERIC Educational Resources Information Center

    DiYanni, Cara; Kelemen, Deborah

    2005-01-01

    Prior research indicates that young children are promiscuously teleological, attributing purpose not only to artifacts, but also to living and non-living natural entities. This study further examines the role of function in children's reasoning about different object kinds by indirectly probing children's intuitions about what types of entities…

  3. The Effectiveness of Conceptual Change Texts and Concept Clipboards in Learning the Nature of Science

    ERIC Educational Resources Information Center

    Çil, Emine; Çepni, Salih

    2016-01-01

    Background: One of the most important goals of science education is to enable students to understand the nature of science (NOS). However, generally regular science teaching in classrooms does not help students improve informed NOS views. Purpose: This study investigated the influence of an explicit reflective conceptual change approach compared…

  4. Political Nature and Socio-Professional Determinants of the Concept of Quality

    ERIC Educational Resources Information Center

    Olaskoaga-Larrauri, Jon; González-Laskibar, Xabier; Barrenetxea-Ayesta, Miren

    2015-01-01

    This paper is based on the hypothesis that the notions of teaching quality used in the higher education sector have a political nature; in other words, they may describe the approaches agents take as regards the duties they perform in institutions of higher education or the model of governance those institutions should adopt. This paper uses the…

  5. Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change: A Case Study Approach

    ERIC Educational Resources Information Center

    Trenbath, Thien-Kim Leckie

    2012-01-01

    This dissertation shows the evolution of five undergraduate students' ideas of natural and anthropogenic climate change throughout a lecture hall course on climate change. This research was informed by conceptual change theory and students' inaccurate ideas of climate change. Subjects represented different levels of climate change understanding at…

  6. Pre-Service and In-Service Science Teachers' Conceptions of the Nature of Science

    ERIC Educational Resources Information Center

    Buaraphan, Khajornsak

    2010-01-01

    The author explores the history of nature of science beliefs among pre-service and in-service teachers primarily in the United States and Thailand and compares this history to findings in a current study being conducted in Thailand. Two research questions were used to guide this current study: What are pre-service and in-service science teachers'…

  7. Fostering Instrumentalist Conceptions of the Nature of Science: A Classroom Study.

    ERIC Educational Resources Information Center

    Larson, Jane O.

    This case study of learning explores the relationship between a chemistry teacher's instrumentalist perspective on the nature of science, the classroom culture that flourished through curriculum enactment during the course of a school year, and development of perspectives on science by his students. An ethnographic methodology was employed, with…

  8. Elucidating nature's solutions to heart, lung, and blood diseases and sleep disorders.

    PubMed

    Carey, Hannah V; Martin, Sandra L; Horwitz, Barbara A; Yan, Lin; Bailey, Shannon M; Podrabsky, Jason; Storz, Jay F; Ortiz, Rudy M; Wong, Renee P; Lathrop, David A

    2012-03-30

    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature's solutions to heart, lung, blood, and sleep disorders through future research in this area. PMID:22461362

  9. n-butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production.

    PubMed

    Branduardi, Paola; Porro, Danilo

    2016-04-01

    The economic upturn of the past 200 years would not have been conceivable without fossil resources such as coal and oil. However, the fossil-based economy increasingly reaches its limits and displays contradictions. Bioeconomy, strategically combining economy and ecology willing to make biobased and sustainable growth possible, is promising to make a significant contribution towards solving these issues. In this context, microbial bioconversions are promising to support partially the increasing need for materials and fuels starting from fresh, preferably waste, biomass. Butanol is a very attractive molecule finding applications both as a chemical platform and as a fuel. Today it principally derives from petroleum, but it also represents the final product of microbial catabolic pathways. Because of the need to maximize yield, titer and productivity to make the production competitive and viable, the challenge is to transform a robustly regulated metabolic network into the principal cellular activity. However, this goal can only be accomplished by a profound understanding of the cellular physiology, survival strategy and sensing/signalling cascades. Here, we shortly review on the natural cellular pathways and circumstances that lead to n-butanol accumulation, its physiological consequences that might not match industrial needs and on possible solutions for circumventing these natural constraints. PMID:27020412

  10. Biological classification historical case studies: Fostering high school students' conceptions of the nature of science

    NASA Astrophysics Data System (ADS)

    Friedman, Ami J.

    The history of science has long been infused in science education. Research conducted in this area has primarily focused on physics and chemistry classes and few studies examine the effects of historical case studies on shaping female students' perspectives of the nature of science. This study aimed to examine female, high school students' conceptualizations of the nature of science while learning biological classification using historical case studies. To meet this end, this study used qualitative methods to identify and explore a female cohort's conceptualizations of the nature of science. Data collection over eight weeks included audio taped individual interviews, audio tapes of lab groups working together, field notes, artifacts, journal entries, a modified VNOS survey, and final exam essays. These data were subjected to qualitative analysis techniques. Initially, younger cohort students, compared with older cohort students, held more limited views of science, whereas the difference between younger and older cohort students dissipated by the end of the unit. Not only did the cohort express a more comprehensive view of science, but they also conceptualized various aspects of science in multiple ways indicating that grade level was not an issue when developing complex notions of the nature of science at the high school level. In addition, cohort students demonstrated a deep understanding of the nature of science by providing examples that reached beyond the biological classification unit. One lesson from the unit specifically addressed gender issues and science, allowing students to role play what was like to be a naturalist or a naturalist's wife during the Age of Discovery. This lesson provided insights into how girls conceptualize issues related to gender and science. In particular, girls viewed the perceptions, experiences, and opportunities of female scientists as being different from those of male scientists. Finally, the implications of this study were

  11. Undergraduate students' conceptions of natural and anthropogenic climate change: A case study approach

    NASA Astrophysics Data System (ADS)

    Trenbath, Thien-Kim Leckie

    This dissertation shows the evolution of five undergraduate students' ideas of natural and anthropogenic climate change throughout a lecture hall course on climate change. This research was informed by conceptual change theory and students' inaccurate ideas of climate change. Subjects represented different levels of climate change understanding at the beginning of the course and were selected based on their scores on a climate change questionnaire. The study was designed to research how students' ideas changed throughout the course and compare trajectories of lower and higher achieving students. At the beginning, students had different levels of understanding, but as the semester continued, the lower-performing students progressed more than the higher-performing students. At the end of the course, all students described more ideas than they did at the beginning; however some of these ideas were inconsistent with the professors' instruction. Lower-performing students struggled more than the higher-performing students. Struggles included differentiating climate change and its causes, effects, and consequences from other environmental problems. Students also struggled with the idea that climate change is anthropogenic despite it being natural in the past. In order to understand that climate change is impacted by human forcings in addition to natural forcings, students developed the relationship that climate change is natural and humans are "speeding it up." They took time to integrate this relationship into their prior ideas. Three of the students constructed a definition of climate change that was different than the professor's. Two students defined "climate change" as only the natural aspects of climate change and reserved the anthropogenic changes for the term "global warming". For a third student, "climate change" included damming rivers, eutrophication, frog mutations, ozone depletion, and overfishing, which are environmental ailments but not climate change.

  12. Using the history of research on sickle-cell anemia to affect preservice teachers' conceptions of the nature of science

    NASA Astrophysics Data System (ADS)

    Howe, Eric M.

    Preservice elementary teachers enrolled in an elective biology course participated in an eight-class unit of instruction based on the history of research in understanding the disease sickle-cell anemia. Students were introduced to the disease as a "mystery" for them to solve, and subsequently developed an understanding of the disease from several disciplines in biology (e.g., genetics, ecology, evolution, molecular biology). The unit involved open-ended problems in which students examined evidence and developed explanations in a manner analogous to the reasoning used by Anthony C. Allison and his colleagues during the early to middle part of the twentieth century. Throughout the unit, students were challenged to explicitly and reflectively connect their work with the historical material to more general conclusions about aspects of the nature of science. These aspects included (a) the nature of scientific theories, (b) the tentative nature of science, (c) the difference between scientific theories and laws, (d) the validity of observational methods in science, and (e) the subjective (theory-laden) nature of science. The research measured students' pre- and post-instruction views by using both an open-ended survey (VNOS) and follow-up, semi-structured interviews. The results indicated that an appreciable number of students underwent a change or enrichment in their views for some of the nature of science aspects. Moreover, change or enrichment in students' views was directly attributable to their work in the sickle-cell unit as evidenced from the specific examples students articulated in their post-instruction responses in support of their more informed views. In general, the findings of this research lend empirical support to the value of having students actively recapitulate the history of science to improve their nature of science conceptions. This is facilitated when the lessons challenge students to explicitly and reflectively develop views of the nature of

  13. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    NASA Astrophysics Data System (ADS)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  14. Interactions Between Mathematics and Physics: The History of the Concept of Function—Teaching with and About Nature of Mathematics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Tinne Hoff; Lützen, Jesper

    2015-07-01

    In this paper, we discuss the history of the concept of function and emphasize in particular how problems in physics have led to essential changes in its definition and application in mathematical practices. Euler defined a function as an analytic expression, whereas Dirichlet defined it as a variable that depends in an arbitrary manner on another variable. The change was required when mathematicians discovered that analytic expressions were not sufficient to represent physical phenomena such as the vibration of a string (Euler) and heat conduction (Fourier and Dirichlet). The introduction of generalized functions or distributions is shown to stem partly from the development of new theories of physics such as electrical engineering and quantum mechanics that led to the use of improper functions such as the delta function that demanded a proper foundation. We argue that the development of student understanding of mathematics and its nature is enhanced by embedding mathematical concepts and theories, within an explicit-reflective framework, into a rich historical context emphasizing its interaction with other disciplines such as physics. Students recognize and become engaged with meta-discursive rules governing mathematics. Mathematics teachers can thereby teach inquiry in mathematics as it occurs in the sciences, as mathematical practice aimed at obtaining new mathematical knowledge. We illustrate such a historical teaching and learning of mathematics within an explicit and reflective framework by two examples of student-directed, problem-oriented project work following the Roskilde Model, in which the connection to physics is explicit and provides a learning space where the nature of mathematics and mathematical practices are linked to natural science.

  15. Marginal cost of natural gas in developing countries: concepts and applications

    SciTech Connect

    Mashayekhi, A.

    1983-01-01

    Many developing nations are facing complex questions regarding the best strategy for developing their domestic gas reserves. The World Bank has addressed these questions in studies on the cost and prices of gas and its optimal allocation among different markets. Based on the average incremental method, an estimate of the marginal cost of natural gas in 10 developing countries proved to be $0.61-1.79/1000 CF or $3.59-10.54/bbl of oil equivalent, far below the border prices of competing fuels in these nations. Moreover, the cost of gas is not expected to rise in these countries within the next 20 years while the reserves/production ratios remain high. The sample involves a variety of gas compositions and production conditions among the countries of Bangladesh, Cameroon, Egypt, India, Morocco, Nigeria, Pakistan, Tanzania, Thailand, and Tunisia.

  16. Evaluation of strategies for nature-based solutions to drought: a decision support model at the national scale

    NASA Astrophysics Data System (ADS)

    Simpson, Mike; Ives, Matthew; Hall, Jim

    2016-04-01

    There is an increasing body of evidence in support of the use of nature based solutions as a strategy to mitigate drought. Restored or constructed wetlands, grasslands and in some cases forests have been used with success in numerous case studies. Such solutions remain underused in the UK, where they are not considered as part of long-term plans for supply by water companies. An important step is the translation of knowledge on the benefits of nature based solutions at the upland/catchment scale into a model of the impact of these solutions on national water resource planning in terms of financial costs, carbon benefits and robustness to drought. Our project, 'A National Scale Model of Green Infrastructure for Water Resources', addresses this issue through development of a model that can show the costs and benefits associated with a broad roll-out of nature based solutions for water supply. We have developed generalised models of both the hydrological effects of various classes and implementations of nature-based approaches and their economic impacts in terms of construction costs, running costs, time to maturity, land use and carbon benefits. Our next step will be to compare this work with our recent evaluation of conventional water infrastructure, allowing a case to be made in financial terms and in terms of security of water supply. By demonstrating the benefits of nature based solutions under multiple possible climate and population scenarios we aim to demonstrate the potential value of using nature based solutions as a component of future long-term water resource plans. Strategies for decision making regarding the selection of nature based and conventional approaches, developed through discussion with government and industry, will be applied to the final model. Our focus is on keeping our work relevant to the requirements of decision-makers involved in conventional water planning. We propose to present the outcomes of our model for the evaluation of nature

  17. Electrochemical removal of microcystin-LR from aqueous solution in the presence of natural organic pollutants.

    PubMed

    Tran, Nam; Drogui, Patrick

    2013-01-15

    Removal of microcystin-LR (MC-LR) from water was evaluated using an electro-oxidation process. Different operating parameters were investigated, including current density, reaction time, anode material and type of supporting electrolyte. The current density and the type of anode material played an important role in the MC-LR degradation efficiency, whereas the type of sodium salts influenced the removal efficiency. The degradation of MC-LR was mainly attributed to direct anodic oxidation. The best operating conditions (98% of MC-LR removal) for MC-LR (initial concentration of 11-13 μg L(-1)) degradation in solution were obtained at a current density of 38 mA cm(-2) for 60 min with a recycling rate of 0.1 L min(-1) using a Ti/BDD anode in the presence of 0.2 g L(-1) of Na(2)SO(4). The colour caused by the presence of natural organic matter (humic acid) could be diminished by up to 81%. Likewise, MC-LR decomposition exhibited first-order reaction behaviours with a rate coefficient of 0.049 min(-1). PMID:23137914

  18. Experimental study of natural convection melting of ice in salt solutions

    SciTech Connect

    Fang, L.J.; Cheung, F.B.; Linehan, J.H.; Pedersen, D.R.

    1984-01-01

    The solid-liquid interface morphology and the micro-physical process near the moving phase boundary during natural convection melting of a horizontal layer of ice by an overlying pool of salt solution were studied experimentally. A cathetometer which amplifies the interface region was used to measure the ice melting rate. Also measured were the temperature transients of the liquid pool. Within the temperature and the density ratio ranges explored, the ice melting rate was found to be very sensitive to the ratio of pool-to-ice melt density but independent of pool-to-ice temperature difference. By varying the density ratio, three different flow regimes and morphologies of the solid-liquid interface were observed, with melt streamers emanating from the crests of the wavy interface into the pool in all three cases. The measured wavelengths (spacing) between the streamers for four different pairs of materials were correlated with the density ratio and found to agree favorably with the predictions of Taylor instability theory.

  19. The removal of heavy metals from aqueous solution using natural Jordanian zeolite

    NASA Astrophysics Data System (ADS)

    Taamneh, Yazan; Sharadqah, Suhail

    2016-02-01

    In this article, the adsorption process of cadmium and copper using natural Jordanian (NJ) zeolite as adsorbent has been experimentally estimated. The samples of NJ zeolite were obtained from Al Mafraq discrete, north east of Jordan. The influence of the bulk concentration (C o), contact time (t) and different adsorbent masses (m) of NJ zeolite on the removal of heavy metal were evaluated. These variables had a considerable function in promoting the sorption process of heavy metal using the NJ zeolite. The initial concentration of heavy metals in the stock solution was extended between 80 and 600 mg/L. The batch adsorption method was employed to investigate the adsorption process. The experimental data were correlated using Freundlich and Langmuir empirical formula. The ability of NJ zeolite to eliminate cadmium and copper was estimated according to Langmuir isotherm empirical formula and found 25.9 and 14.3 mg/g for cadmium and copper, respectively. The kinetics of adsorption of cadmium and copper have been analyzed and correlated by first-order and second-order reaction model. It was noticed that adsorption of cadmium and copper was better correlated with pseudo-second-order kinetic model. The results presented that NJ zeolite is practical adsorbent for removing cadmium and copper ion metal.

  20. High Fluorescence Anisotropy of Thioflavin T in Aqueous Solution Resulting from Its Molecular Rotor Nature.

    PubMed

    Kuznetsova, Irina M; Sulatskaya, Anna I; Maskevich, Alexander A; Uversky, Vladimir N; Turoverov, Konstantin K

    2016-01-01

    Thioflavin T (ThT) is widely used to study amyloid fibrils while its properties are still debated in the literature. By steady-state and femtosecond time-resolved fluorescence we showed that, unlike small sized rigid molecules, the fluorescence anisotropy value of the free ThT in aqueous solutions is very high, close to the limiting value. This is determined by the molecular rotor nature of ThT, where the direction of the ThT transition dipole moment S₀ → S₁* is not changed either by the internal rotation of the ThT benzothiazole and aminobenzene rings relative to each other in the excited state, because the axis of this rotation coincides with the direction of the transition dipole moment, or by the rotation of the ThT molecule as a whole, because the rate of this process is 3 orders of magnitude smaller than the rate of the internal rotation which leads to the fluorescence quenching. Consequently, ThT fluorescence anisotropy cannot be directly used to study amyloid fibrils formation, as it was proposed by some authors. PMID:26637393

  1. Simultaneous transport of synthetic colloids and a nonsorbing solute through single saturated natural fractures

    SciTech Connect

    Reimus, P.W.; Robinson, B.A.; Nuttall, H.E.; Kale, R.

    1994-09-01

    Tracer transport experiments involving colloids that showed little tendency to attach to rock surfaces and a nonsorbing solute (iodide) -were conducted in three different well-characterized natural fractures in tuff. The colloids always arrived earlier in the effluent than the iodide, which we believe is evidence of (1) hydrodynamic chromatography and/or (2) the fact that the colloids experience a smaller effective volume in the fracture because they diffuse too slowly to enter low-velocity regions (dead zones) along the rough fracture walls. The iodide also approached the inlet concentration in the effluent more slowly than the colloids, with the concentration at a given elution volume being greater at higher flow rates. By contrast, the rate of approach of the colloid concentration to the inlet concentration did not vary with flow rate. We attribute this behavior to matrix diffusion of the iodide, with the colloids being too large/nondiffusive to experience this phenomenon. Dispersion of all tracers was greatest in the fracture of widest average aperture and least in the fracture of narrowest aperture, which is consistent with Taylor dispersion theory. The tracer experiments were modeled/interpreted using a three-step approach that involved (1) estimating the aperture distribution in each fracture using surface profiling techniques, (2) predicting the flow field in the fractures using a localized parallel-plate approximation, and (3) predicting tracer transport in the fractures using particle-tracking techniques. Although considered preliminary at this time, the model results were in qualitative agreement with the experiments.

  2. An analysis of 16-17-year-old students' understanding of solution chemistry concepts using a two-tier diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Adadan, Emine; Savasci, Funda

    2012-03-01

    This study focused on the development of a two-tier multiple-choice diagnostic instrument, which was designed and then progressively modified, and implemented to assess students' understanding of solution chemistry concepts. The results of the study are derived from the responses of 756 Grade 11 students (age 16-17) from 14 different high schools who participated in the study. The final version of the instrument included a total of 13 items that addressed the six aspects of solution chemistry, and students' understandings in the test were challenged in multiple contexts with multiple modes and levels of representation. Cronbach alpha reliability coefficients for the content tier and both tiers of the test were found to be 0.697 and 0.748, respectively. Results indicated that a substantial number of students held an inadequate understanding of solution chemistry concepts. In addition, 21 alternative conceptions observed in more than 10% of the students were reported, along with discussion on possible sources of such conceptions.

  3. Isolation of nonvolatile, organic solutes from natural waters by zeotrophic distillation of water from N,N-dimethylformamide

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, P.A.; Stiles, E.A.

    1987-01-01

    Nonvolatile, organic solutes that comprise the dissolved organic carbon (DOC) in saline waters were isolated by removal of the water by distillation from a N,N-dimethylformamideformic acid-acetonitrile mixture. Salts isolated with the DOC were removed by crystallization of sodium chloride and sodium sulfate from the solvent mixture, removal of silicic acid by acidification and precipitation, removal of boric acid by methylation and volatilization, and removal of phosphate by zinc acetate precipitation. Chemical alteration of the organic solutes was minimized during evaporative concentration steps by careful control of acid concentrations in the solvent mixture and was minimized during drying by conversion of the samples to pyridinium and sodium salts. Recoveries of various hydrophilic organic standards from aqueous salt solutions and recoveries of natural organic solutes from various water samples varied from 60 to 100%. Losses of organic solutes during the isolation procedure were nonselective and related to the number of salt- and precipitate-washing cycles in the procedure.

  4. A Hypermedia Environment To Explore and Negotiate Students' Conceptions: Animation of the Solution Process of Table Salt.

    ERIC Educational Resources Information Center

    Ebenezer, Jazlin V.

    2001-01-01

    Describes the characteristics and values of hypermedia for learning chemistry. Reports on how a hypermedia environment was used to explore a group of 11th grade chemistry students' conceptions of table salt dissolving in water. Indicates that a hypermedia environment can be used to explore, negotiate, and assess students' conceptions of…

  5. Nature of Non-Fickian Solute Transport in Complex Heterogeneous Porous Media - Carbonates

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Mostaghimi, P.; Blunt, M. J.

    2011-12-01

    Despite the range of significant practical applications of solute transport, including the long-term fate of nuclear waste repositories, secure storage of CO2 and improved oil recovery, even the qualitative behavior of most rocks is uncertain: vast carbonate sedimentary basins contain more than half the world's current oil reserves yet experimental data on transport in carbonates is scant. The relationship between pore structure, velocity field and transport remains unknown, particularly for heterogeneous carbonates. We simulate solute transport through 3D μ-CT images of different rock samples, representing geological media of increasing pore-scale complexity: a sandpack, a Berea sandstone and a Portland limestone. A finite-difference Stokes solver is employed to compute the flow field and transport particles semi-analytically along streamlines to represent advection with a random motion to model diffusion. We predict the propagators measured on similar cores in Nuclear Magnetic Resonance (NMR) experiments. Dispersion coefficient dependence on Peclet number is shown to have different scaling for complex carbonates. The behavior is explained using continuous time random walks with a truncated power-law distribution of travel times: transport is qualitatively different for the complex limestone compared to the sandstone or sandpack, with long tailing, an almost immobile peak concentration and a very slow approach to asymptotic dispersion. We demonstrate the different nature of non-Fickian transport in carbonates by analyzing the transit time probabilities ψ(τ) of traveling between two neighboring voxels for Portland carbonate that show an approximately power-law dependence of travel times ψ(τ) ~ τ -1-β with a slope corresponding to β = 0.7, as shown in Fig.1. The comparison with ψ(τ) of the sandpack and Berea sandstone for Pe = ∝ indicates quantitatively different generic behavior, as the sandpack and sandstone have slope corresponding to β = 1.8 (two

  6. Considering Hans-Georg Gadamer's philosophical hermeneutics as a referent for student understanding of nature-of-science concepts

    NASA Astrophysics Data System (ADS)

    Rashford, Jared M.

    The purpose of this study is to examine philosophical hermeneutics as a referent for student understanding of Nature-of-Science (NOS) concepts. Rather than focus on a prescriptive set of canons used in addressing NOS pedagogy in K-12 schools, this study seeks to explicate a descriptive set of principles based on Hans-Georg Gadamer's theory of interpretation that has the potential for developing dispositions necessary for understanding. Central among these are the concepts of fore-structure, prejudice, temporal distance, and history of effect, all of which constitute part of the whole of the hermeneutic circle as envisaged by Gadamer. As such, Gadamer's hermeneutics is contrasted with Cartesian epistemology and its primacy of method, the Enlightenment's prejudice against prejudice, the modernist/progressive tendency to consider all situations as problems to be solved by relegating all forms of knowledge to techne, and the subjective nature of interpretation inherent in a hermeneutics of suspicion. The implication of such a conceptual analysis for NOS pedagogy is that student understanding is considered not so much as a cognitive outcome dependent on a series of mental functions but rather as an ontological characteristic of Dasein (being-human) that situates learning in the interchange between interpreter and text. In addition, the philosophical foundations implicit in addressing student understanding of NOS found in many curricular reform efforts and pedagogical practices in science education are questioned. Gadamer's hermeneutics affords science education a viable philosophical framework within which to consider student understanding of the development of scientific knowledge and the scientific enterprise.

  7. Multiple Solutions in Natural Convection in an Air Filled Square Enclosure: Fractal Dimension of Attractors

    NASA Astrophysics Data System (ADS)

    Aklouche Benouaguef, S.; Zeghmati, B.; Bouhadef, K.; Daguenet, M.

    In this study, we investigated numerically the transient natural convection in a square cavity with two horizontal adiabatic sides and vertical walls composed of two regions of same size maintained at different temperatures. The flow has been assumed to be laminar and bi-dimensional. The governing equations written in dimensionless form and expressed in terms of stream function and vorticity, have been solved using the Alternating Direction Implicit (ADI) method and the GAUSS elimination method. Calculations were performed for air (Pr = 0.71), with a Rayleigh number varying from 2.5x105 to 3.7x106. We analysed the effect of the Rayleigh number on the route to the chaos of the system. The first transition has been found from steady-state to oscillatory flow and the second is a subharmonic bifurcation as the Rayleigh number is increased further. For sufficiently small Rayleigh numbers, present results show that the flow is characterized by four cells with horizontal and vertical symmetric axes. The attractor bifurcates from a stable fixed point to a limit cycle for a Rayleigh number varying from 2.5x105 to 2.51x105. A limit cycle settles from Ra = 3x105 and persists until Ra = 5x105. At a Rayleigh number of 2.5x105 the temporal evolution of the Nusselt number Nu(t) was stationary. As the Rayleigh number increases, the flow becomes unstable and bifurcates to a time periodic solution at a critical Rayleigh number between 2.5x105 and 2.51x105. After the first HOPF bifurcation at Ra = 2.51x105, the oscillatory flow undergoes several bifurcations and ultimately evolves into a chaotic flow.

  8. Changing Preservice Science Teachers' Views of Nature of Science: Why Some Conceptions May be More Easily Altered than Others

    NASA Astrophysics Data System (ADS)

    Mesci, Gunkut; Schwartz, Renee'S.

    2016-02-01

    The purpose of this study was to assess preservice teachers' views of Nature of Science (NOS), identify aspects that were challenging for conceptual change, and explore reasons why. This study particularly focused on why and how some concepts of NOS may be more easily altered than others. Fourteen preservice science teachers enrolled in a NOS and Science Inquiry course participated in this study. Data were collected by using a pre/post format with the Views of Nature of Science questionnaire (VNOS-270), the Views of Scientific Inquiry questionnaire (VOSI-270), follow-up interviews, and classroom artifacts. The results indicated that most students initially held naïve views about certain aspects of NOS like tentativeness and subjectivity. By the end of the semester, almost all students dramatically improved their understanding about almost all aspects of NOS. However, several students still struggled with certain aspects like the differences between scientific theory and law, tentativeness, and socio-cultural embeddedness. Results suggested that instructional, motivational, and socio-cultural factors may influence if and how students changed their views about targeted NOS aspects. Students thought that classroom activities, discussions, and readings were most helpful to improve their views about NOS. The findings from the research have the potential to translate as practical advice for teachers, science educators, and future researchers.

  9. Rotational diffusion of neutral and charged solutes in 1-butyl-3-methylimidazolium-based ionic liquids: influence of the nature of the anion on solute rotation.

    PubMed

    Karve, Lalita; Dutt, G B

    2012-02-16

    Temperature-dependent fluorescence anisotropies of two organic solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and rhodamine 110 (R110), have been measured in 1-butyl-3-methylimidazolium ([bmim(+)])-based ionic liquids containing the anions hexafluorophosphate ([PF(6)(-)]), bis(trifluoromethylsulfonyl)imide ([Tf(2)N(-)]), tetrafluoroborate ([BF(4)(-)]), trifluoromethanesulfonate ([TfO(-)]), and nitrate ([NO(3)(-)]). This data has been used in conjunction with the recently published results (Dutt, G. B. J. Phys. Chem. B2010, 114, 8971) for the same solutes in [bmim(+)] tris(pentafluoroethyl)trifluorophosphate ([FAP(-)]) to understand the influence of various anions on solute rotation. The boundary condition parameter C(obs), which has been obtained from the analysis of the data using Stokes-Einstein-Debye hydrodynamic theory, for the neutral solute DMDPP is more or less the same in all the ionic liquids. Moreover, C(obs) values are close to the predictions of slip boundary condition, which indicates that solvent viscosity alone governs the rotation of DMDPP. In contrast, for R110, which experiences specific interactions with the anions of the ionic liquids, the C(obs) values are close to stick hydrodynamics. It has also been noticed that the C(obs) values vary with the nature of the anion and this variation correlates with the hydrogen bond basicities of the anions of the ionic liquids. PMID:22233259

  10. Aqueous photochemical degradation of BDE-153 in solutions with natural dissolved organic matter.

    PubMed

    Wang, Huili; Wang, Mei; Wang, Hui; Gao, Jiajia; Dahlgren, Randy A; Yu, Qing; Wang, Xuedong

    2016-07-01

    The compound 2,2',4,4',5,5'-hexabrominated diphenyl ether (BDE-153) is an intermediate photolytic product in the degradation of highly brominated diphenyl ethers to lower brominated forms. Herein, we report the effects of two natural organic matter (NOM) sources, Suwannee River fulvic acid (SRFA) and Pony Lake fulvic acid (PLFA), on BDE-153 photolysis in water. The rate constant (k) and half-life of BDE-153 was 2.26 × 10(-2) min(-1) and 30.72 min under UV-Vis irradiation (direct photolysis at λ > 290 nm). The k value for BDE-153 decreased markedly in the presence of NOM with a larger decrease in the presence of PLFA than SRFA. Electron spin resonance (ESR) demonstrated generation of free radicals in the photolytic process that mainly involved (1)O2 and OH. The biomolecular k values for reaction of (1)O2 and OH with BDE-153 were 3.65 × 10(6) and 7.70 × 10(8) M(-1) s(-1), respectively. The contribution of OH (28.7-31.0%) to the indirect photolysis of BDE-153 was higher than for (1)O2 (12.9-14.9%). The photolytic rate of BDE-153 in oxygen-rich (aerated) solution was much slower than in oxygen-poor (nitrogen-sparged) conditions, demonstrating that (3)NOM* is a more effective reagent for degradation of BDE-153 than (1)O2. Addition of sorbic acid (a (3)NOM* quencher) significantly reduced the photolytic rate of BDE-153 confirming the important role of (3)NOM* in indirect photolysis. In the presence of NOM, BDE-153 indirect photolysis was facilitated mainly by reaction with (3)NOM* and OH. To the best of our knowledge, this is the first comprehensive investigation of indirect photolysis of BDE-153 in water containing NOM. PMID:27135698

  11. Dynamics of water solutions of natural polysaccharides by fast field cycling nmr relaxometry

    NASA Astrophysics Data System (ADS)

    Prusova, Alena; Conte, Pellegrino; Kucerik, Jiri; de Pasquale, Claudio; Alonzo, Giuseppe

    2010-05-01

    second hydration shell contains water molecules, also recognized as partly-bound (PBW), which are not directly interacting with the hyaluronan chains but with BW. Finally, water molecules, which dynamics is resembling that of the pure and undisturbed water, are indicated either as a bulk water or free water (FW). As hyaluronan concentration is increased the third FW hydration shell is lost and all water molecules are affected by the presence of hyaluronan molecules. This work showed the great potential of FFC-NMR relaxometry in revealing water nature in polysaccharide solutions and the possibility for future applications on complex biological systems. Acknowledgements A.P. gratefully acknowledges a bilateral Erasmus project between Brno University of Technology and University of Palermo which provided grant sustainment for working in Italy. Ministry of Education of the Czech Republic, project MSM 0021630501 is also acknwledged. This work was partially funded by Ce.R.T.A. s.c.r.l. (Centri Regionali per le Tecnologie Alimentari; Italy). Authors kindly acknowledge Dr. Vladimír Velebný (CPN company, Dolní Dobrouč, Czech Republic) for providing of hyaluronan sample.

  12. Evolution of ion emission yield of alloys with the nature of the solute. 2: Interpretation

    NASA Technical Reports Server (NTRS)

    Blaise, G.; Slodzian, G.

    1977-01-01

    Solid solutions of transition elements in copper, nickel, cobalt, iron, and aluminum matrices were analyzed by observing secondary ion emissions under bombardment with 6.2-keV argon ions. Enchancement of the production of solute-element ions was observed. An ion emission model is proposed according to which the ion yield is governed by the probability of an atom leaving the metal in a preionized state. The energy distribution of the valence electrons of the solute atoms is the bases of the probability calculation.

  13. Improving the Integration of Recreation Management with Management of Other Natural Resources by Applying Concepts of Scale from Ecology

    NASA Astrophysics Data System (ADS)

    Morse, Wayde C.; Hall, Troy E.; Kruger, Linda E.

    2009-03-01

    In this article, we examine how issues of scale affect the integration of recreation management with the management of other natural resources on public lands. We present two theories used to address scale issues in ecology and explore how they can improve the two most widely applied recreation-planning frameworks. The theory of patch dynamics and hierarchy theory are applied to the recreation opportunity spectrum (ROS) and the limits of acceptable change (LAC) recreation-planning frameworks. These frameworks have been widely adopted internationally, and improving their ability to integrate with other aspects of natural resource management has significant social and conservation implications. We propose that incorporating ecologic criteria and scale concepts into these recreation-planning frameworks will improve the foundation for integrated land management by resolving issues of incongruent boundaries, mismatched scales, and multiple-scale analysis. Specifically, we argue that whereas the spatially explicit process of the ROS facilitates integrated decision making, its lack of ecologic criteria, broad extent, and large patch size decrease its usefulness for integration at finer scales. The LAC provides explicit considerations for weighing competing values, but measurement of recreation disturbances within an LAC analysis is often done at too fine a grain and at too narrow an extent for integration with other recreation and resource concerns. We suggest that planners should perform analysis at multiple scales when making management decisions that involve trade-offs among competing values. The United States Forest Service is used as an example to discuss how resource-management agencies can improve this integration.

  14. First Year Chemical Engineering Students' Conceptions of Energy in Solution Processes: Phenomenographic Categories for Common Knowledge Construction.

    ERIC Educational Resources Information Center

    Ebenezer, Jazlin V.; Fraser, Duncan M.

    2001-01-01

    Examines first-year chemical engineering students' conceptions of the energy changes taking place in dissolution. Students were individually interviewed and transcripts (n=17) were analyzed using a phenomenographic methodology. The phenomenographic category explanations given by students were used as the basis for developing an approach to…

  15. Drops of Water and of Soap Solution: Students' Constraining Mental Models of the Nature of Matter

    ERIC Educational Resources Information Center

    Eilam, Billie

    2004-01-01

    This study investigates how 25 junior high school students employed their bodies of knowledge and responded to problem cues while individually performing a science experiment and reasoning about a drops phenomenon. Line-by-line content analysis conducted on students' written ad hoc explanations aimed to reveal students' concepts and their…

  16. Development of a model to predict the adsorption of lead from solution on a natural streambed sediment

    USGS Publications Warehouse

    Brown, David Wayne; Hem, John David

    1984-01-01

    Adsorption of solutes by solid mineral surfaces commonly influences the dissolved ionic composition of natural waters. A model based on electrical double-layer theory has been developed which appears to be capable of characterizing the surface chemical behavior of a natural fine-grained sediment containing mostly quartz and feldspar. This variable surface charge-variable surface potential (VSC-VSP) model differs from others in being capable of evaluating more closely the effect of total metal ion activity on the pH-dependent change in electrical potential at the solid surface. The model was tested using 10-4 molar solutions of lead and a silt-size fraction of sediment from the bed of Colma Creek, a small stream in urban northern San Mateo County, California. The average deviation of measured percent adsorption and values calculated from the model was 6.6 adsorption percent from pH 2.0 to pH 7.0.

  17. A new concept of desulfurization: the electrochemically driven and green conversion of SO2 to NaHSO4 in aqueous solution.

    PubMed

    Wang, Chuan; Liu, Hong; Li, Xiang-Zhong; Shi, Jianying; Ouyang, Gangfeng; Peng, Min; Jiang, Chengchun; Cui, Hua'nan

    2008-11-15

    A new concept of desulfurization was developed by designing a series of electrochemical reactions to drive an SO2 absorption-and-conversion process in aqueous solution, hence the SO2 in gas was eventually converted to a valuable chemical of NaHSO4. A model experiment of chemically substantiating this concept includes two steps: (I) absorption of SO2 gas by aqueous solution and oxidation of the absorbed SO2 to SO4(2-) by air and (II) transformation of the SO4(2-) to NaHSO4. The experiment demonstrated that in Step I, the cathodic reduction of 02 from ambient air scavenged the H+ released due to the SO2 absorption and its further oxidation, which thereby were accelerated. Meanwhile H2O2 as a cathodic product further enhanced the SO2 oxidation. In Step II, the anodic oxidation of H2O supplied H+ and allowed the NaHSO4 formation through balances of electrons and mass. Thereafter, a pH range of 5.0-6.0 for the SO2 oxidation was optimized, and an electrochemically driven process for the SO2 conversion to NaHSO4 was proposed. Sustainability evaluation indicated that this concept complies with the principles of green chemistry and potentially enables the SO2 conversion from flue gas to NaHSO4 as a value-added process. PMID:19068852

  18. Employing inquiry-based computer simulations and embedded scientist videos to teach challenging climate change and nature of science concepts

    NASA Astrophysics Data System (ADS)

    Cohen, Edward Charles

    . The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.

  19. Employing Inquiry-Based Computer Simulations and Embedded Scientist Videos To Teach Challenging Climate Change and Nature of Science Concepts

    NASA Astrophysics Data System (ADS)

    Cohen, E.

    2013-12-01

    . The students in the video group had marked improvement compared to the non-video group on questions regarding modeling as a tool for representing objects and processes of science modeling aspects as evident by multiple data sources. The findings from the dissertation have potential impacts on improving Nature of Science (NOS) concepts around modeling by efficiently embedding short authentic scientific videos that can be easily used by many educators. Compared to published assessments by the American Association for the Advancement of Science (AAAS), due to the curriculum interventions both groups scored higher than the average United States middle school student on many NOS and climate content constructs.

  20. Darwinian agriculture: when can humans find solutions beyond the reach of natural selection?

    PubMed

    Denison, R Ford; Kiers, E Toby; West, Stuart A

    2003-06-01

    Progress in genetic improvement of crop yield potential has slowed since 1985. Simultaneously, more sustainable management of agricultural ecosystems is needed. A better understanding of natural selection can help solve both problems. We illustrate this point with two specific examples. First, the genetic legacy of crop plants has been refined by millions of years of natural selection, often driven by competition among plants. We therefore suggest that most simple, tradeoff-free options to increase competitiveness (e.g., increased gene expression, or minor modifications of existing plant genes) have already been tested by natural selection. Further genetic improvement of crop yield potential over the next decade will mainly involve tradeoffs, either between fitness in past versus present environments, or between individual competitiveness and the collective performance of plant communities. Eventually, we may develop the ability to predict the consequences of genetic alterations so radical that they have not yet been tested by natural selection. Second, natural selection acts mainly at the level of genes, individuals, and family groups, rather than ecosystems as a whole. Consequently, there is no reason to expect the structure of natural ecosystems (diversity, spatial, or temporal patterns) to be a reliable blueprint for agricultural ecosystems. Natural ecosystems are nonetheless an important source of information that could be used to improve agriculture. PMID:12825416

  1. Evaluating the potential of multi-purpose nature based solutions in peri-urban landscapes - a preliminary assessment

    NASA Astrophysics Data System (ADS)

    Geris, Josie; Wilkinson, Mark; Stutter, Marc; Guenther, Daniel; Soulsby, Chris

    2016-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality protection and improvement with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). Current mitigation solutions are typically based on isolated design strategies used at specific small scale sites and for storm water only. More holistic catchment scale approaches are urgently required to effectively manage the amount of water flows and protect the raw water quality in peri-urban landscapes. This project aims to provide a better understanding of the connectivity between natural and managed flow pathways, storage, and biogeochemical processes in the peri-urban landscape to eventually aid a more integrated water quantity and quality control design. For an actively urbanising catchment in NE Scotland we seek to understand the spatio-temporal character of the natural flow pathways and associated water quality, and how these may be used to support the design of nature based solutions during urbanisation. We present preliminary findings from a dense and multiscale monitoring network that includes hydrometric, tracer (stable water isotopes) and water quality (turbidity (sediment), nitrate, phosphate) data during a range of contrasting hydroclimatological conditions and at different stages of the development of urban infrastructure. These demonstrate a highly variable nature, both temporally and spatially, with water quality dynamics out of sync with storm responses and depending on management practices. This highlights potential difficulties for managing water quantity and quality simultaneously at the catchment scale, and suggests that a treatment train approach may be required. Well-designed nature based solutions that tackle both water quantity and quality issues will require adaptability and a

  2. A unifying model for elongational flow of polymer melts and solutions based on the interchain tube pressure concept

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred Hermann; Rolón-Garrido, Víctor Hugo

    2015-04-01

    An extended interchain tube pressure model for polymer melts and concentrated solutions is presented, based on the idea that the pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic (M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986). In a tube model with variable tube diameter, chain stretch and tube diameter reduction are related, and at deformation rates larger than the inverse Rouse time τR, the chain is stretched and its confining tube becomes increasingly anisotropic. Tube diameter reduction leads to an interchain pressure in the lateral direction of the tube, which is proportional to the 3rd power of stretch (G. Marrucci and G. Ianniruberto. Macromolecules 37, 3934-3942, 2004). In the extended interchain tube pressure (EIP) model, it is assumed that chain stretch is balanced by interchain tube pressure in the lateral direction, and by a spring force in the longitudinal direction of the tube, which is linear in stretch. The scaling relations established for the relaxation modulus of concentrated solutions of polystyrene in oligomeric styrene (M. H. Wagner, Rheol. Acta 53, 765-777, 2014, M. H. Wagner, J. Non-Newtonian Fluid Mech. http://dx.doi.org/10.1016/j.jnnfm.2014.09.017, 2014) are applied to the solutions of polystyrene (PS) in diethyl phthalate (DEP) investigated by Bhattacharjee et al. (P. K. Bhattacharjee et al., Macromolecules 35, 10131-10148, 2002) and Acharya et al. (M. V. Acharya et al. AIP Conference Proceedings 1027, 391-393, 2008). The scaling relies on the difference ΔTg between the glass-transition temperatures of the melt and the glass-transition temperatures of the solutions. ΔTg can be inferred from the reported zero-shear viscosities, and the BSW spectra of the solutions are obtained from the BSW spectrum of the reference melt with good accuracy. Predictions of the EIP model are compared to the steady-state elongational viscosity data of PS

  3. Formulation and solution of the delayed gamma dose rate problem using the concept of effective delayed gamma production cross section

    SciTech Connect

    Liew, S.L.; Ku, L.P.

    1989-06-01

    With appropriate approximations, the delayed gamma dose rate problem can be formulated in terms of the effective delayed gamma production cross section. The coupled neutron-delayed-gamma transport equations then take the same form as the coupled neutron-prompt-gamma transport equations and they can, therefore, be solved directly in the same manner. This eliminates the need for the tedious and error prone flux coupling step in conventional calculations. Mathematical formulation and solution algorithms are derived. The advantages of this method are illustrated by an example of its application in the solution of a practical design problem. 62 refs., 10 figs., 1 tab.

  4. Focusing on the Classical or Contemporary? Chinese Science Teacher Educators' Conceptions of Nature of Science Content to Be Taught to Pre-Service Science Teachers

    ERIC Educational Resources Information Center

    Wan, Zhi Hong; Wong, Siu Ling; Wei, Bing; Zhan, Ying

    2013-01-01

    Drawing from the phenomenographic perspective, an exploratory study investigated Chinese teacher educators' conceptions of teaching Nature of Science (NOS) to pre-service science teachers through semi-structured interviews. Five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content to be taught to…

  5. Bridging the Gap between Preservice Early Childhood Teachers' Cultural Values, Perceptions of Values Held by Scientists, and the Relationships of These Values to Conceptions of Nature of Science

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Buzzelli, Cary A.; Eastwood, Jennifer L.

    2012-01-01

    This study explored preservice teachers' views of their own cultural values, the cultural values they believed scientists hold, and the relationships of these views to their conceptions of nature of science (NOS). Parallel assignments in a foundations of early childhood education and a science methods course required preservice teachers to explore…

  6. Female and Male Teachers' Pro-Environmental Behaviour, Conceptions and Attitudes Towards Nature and the Environment Do Not Differ: Ecofeminism Put to the Test

    ERIC Educational Resources Information Center

    Mc Ewen, B.; Clément, P.; Gericke, N. M.; Nyberg, E.; Hagman, M.; Landström, J.

    2015-01-01

    Teachers' pro-environmental behaviour, conceptions and attitudes towards nature and the environment were investigated using 47 questions from the BIOHEAD-Citizen questionnaire. The sample included 1,109 pre- and in-service teachers from Sweden and France. Analyses showed only few significant differences between female and male teachers. Forty-one…

  7. The Classroom Practice of a Prospective Secondary Biology Teacher and His Conceptions of the Nature of Science and of Teaching and Learning Science

    ERIC Educational Resources Information Center

    Mellado, Vicente; Bermejo, Maria Luisa; Blanco, Lorenzo J.; Ruiz, Constantino

    2008-01-01

    We describe research carried out with a prospective secondary biology teacher, whom we shall call Miguel. The teacher's conceptions of the nature of science and of learning and teaching science were analyzed and compared with his classroom practice when teaching science lessons. The data gathering procedures were interviews analyzed by means of…

  8. Construct Validity: Choosing the Appropriate Factor Analytic Solution for Developing Subscales on a Self-Concept Instrument.

    ERIC Educational Resources Information Center

    Crocker, Linda; Ahmadi, Behrokh

    The subscales of the How I See Myself Scale were originally established by using a principal components analysis on item scores for a sample of 4,217 elementary school children in grades three to six. A re-analysis of the same data using a common factor solution (using test communalities instead of units in the major diagonal of the correlation…

  9. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo of Natural Waters

    EPA Science Inventory

    Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...

  10. A Comparison of Numerical and Analytical Radiative-Transfer Solutions for Plane Albedo in Natural Waters

    EPA Science Inventory

    Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...