Sample records for natural surfactant-rich marine

  1. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.

    PubMed

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-10-26

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  2. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status

    PubMed Central

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-01-01

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs. PMID:27792168

  3. Surfactant-associated bacteria in the near-surface layer of the ocean.

    PubMed

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-12

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.

  4. Surfactant-associated bacteria in the near-surface layer of the ocean

    PubMed Central

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  5. Contribution of Seawater Surfactants to Generated Primary Marine Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Frossard, A. A.; Gerard, V.; Duplessis, P.; Kinsey, J. D.; Lu, X.; Zhu, Y.; Bisgrove, J.; Maben, J. R.; Long, M. S.; Chang, R.; Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Noziere, B.; Cohen, R. C.

    2017-12-01

    Surfactants account for minor fractions of total organic carbon in the ocean but may have major impacts on the surface tension of bursting bubbles at the sea surface that drive the production of primary marine aerosol particles (PMA). Surfactants associated with marine aerosol may also significantly reduce the surface tension of water thereby increasing the potential for cloud droplet activation and growth. During September and October 2016, PMA were produced from bursting bubbles in seawater using a high capacity generator at two biologically productive and two oligotrophic stations in the western North Atlantic, as part of a cruise on the R/V Endeavor. Surfactants were extracted from paired PMA and seawater samples, and their ionic compositions, total concentrations, and critical micelle concentrations (CMC) were quantified and compared for the four hydrographic stations. Higher surfactant concentrations were determined in the aerosol produced from biologically productive seawater compared to oligotrophic seawater, and the surfactants extracted from productive seawater were stronger (had lower CMCs) than those in the oligotrophic seawater. Surfactants associated with PMA and seawater in productive regions also varied over diel cycles, whereas those in the oligotrophic regions did not. This work demonstrates a direct link between surfactants in seawater and those in PMA.

  6. Marine benthic ecological functioning over decreasing taxonomic richness

    NASA Astrophysics Data System (ADS)

    Törnroos, Anna; Bonsdorff, Erik; Bremner, Julie; Blomqvist, Mats; Josefson, Alf B.; Garcia, Clement; Warzocha, Jan

    2015-04-01

    Alterations to ecosystem function due to reductions in species richness are predicted to increase as humans continue to affect the marine environment, especially in coastal areas, which serve as the interface between land and sea. The potential functional consequences due to reductions in species diversity have attracted considerable attention recently but little is known about the consequence of such loss in natural communities. We examined how the potential for function is affected by natural reductions in taxon richness using empirical (non-simulated) coastal marine benthic macrofaunal data from the Skagerrak-Baltic Sea region (N. Europe), where taxon richness decreases 25-fold, from 151 to 6 taxa. To estimate functional changes we defined multiple traits (10 traits and 51 categories) on which trait category richness, functional diversity (FD) and number of taxa per trait category were calculated. Our results show that decrease in taxon richness leads to an overall reduction in function but functional richness remains comparatively high even at the lowest level of taxon richness. Although the taxonomic reduction was sharp, up to 96% of total taxon richness, we identified both potential thresholds in functioning and subtler changes where function was maintained along the gradient. The functional changes were not only caused by reductions in taxa per trait category, some categories were maintained or even increased. Primarily, the reduction in species richness altered trait categories related to feeding, living and movement and thus potentially could have an effect on various ecosystem processes. This highlights the importance of recognising ecosystem multifunctionality, especially at low taxonomic richness. We also found that in this system rare species (singletons) did not stand for the functional complexities and changes. Our findings were consistent with theoretical and experimental predictions and suggest that a large proportion of the information about

  7. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.

  8. Effects of anthropogenic surfactants on the conversion of marine dissolved organic carbon and microgels.

    PubMed

    Shiu, Ruei-Feng; Lee, Chon-Lin

    2017-04-15

    The possible impact of three types of anthropogenic surfactants on the ability of marine dissolved organic carbon (DOC) to form self-assembled microgels was evaluated. The behavior of existing native microgels was also examined in the presence of surfactants. These results reveal that the release of surfactants even at low concentrations into the aquatic environment could effectively hinder the self-assembly of DOC polymers. The extent of the size reduction had the following order: anionic, cationic, and non-ionic. Furthermore, charged surfactants can disrupt existing native microgels, converting large assemblies into smaller particles. One possible mechanisms is that surfactants are able to enhance the stability of DOC polymers and disrupt aggregates due to their surface charges and protein-denaturing activities. These findings suggest that the ecological system is altered by anthropogenic surfactants, and provide useful information for ecological assessments of different types of surfactants and raise warnings about surfactant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  10. Marine natural flavonoids: chemistry and biological activities.

    PubMed

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  11. Surfactant and pulmonary blood flow distributions following treatment of premature lambs with natural surfactant.

    PubMed Central

    Jobe, A; Ikegami, M; Jacobs, H; Jones, S

    1984-01-01

    Prematurely delivered lambs were treated with radiolabeled natural surfactant by either tracheal instillation at birth and before the onset of mechanical ventilation, or after 23 +/- 1 (+/- SE) min of mechanical ventilation. Right ventricular blood flow distributions, left ventricular outputs, and left-to-right ductal shunts were measured with radiolabeled microspheres. After sacrifice, the lungs of lambs receiving surfactant at birth inflated uniformly with constant distending pressure while the lungs of lambs treated after a period of ventilation had aerated, partially aerated, and atelectatic areas. All lungs were divided into pieces which were weighed and catalogued as to location. The amount of radiolabeled surfactant and microsphere-associated radioactivity in each piece of lung was quantified. Surfactant was relatively homogenously distributed to pieces of lung from lambs that were treated with surfactant at birth; 48% of lung pieces received amounts of surfactant within +/- 25% of the mean value. Surfactant was preferentially recovered from the aerated pieces of lungs of lambs treated after a period of mechanical ventilation, and the distribution of surfactant to these lungs was very nonhomogeneous. Right ventricular blood flow distributions to the lungs were quite homogeneous in both groups of lambs. However, in 8 of 12 lambs, pulmonary blood flow was preferentially directed away from those pieces of lung that received relatively large amounts of surfactant and toward pieces of lung that received less surfactant. This acute redirection of pulmonary blood flow distribution may result from the local changes in compliances within the lung following surfactant instillation. PMID:6546766

  12. Mass stranding of marine birds caused by a surfactant-producing red tide.

    PubMed

    Jessup, David A; Miller, Melissa A; Ryan, John P; Nevins, Hannah M; Kerkering, Heather A; Mekebri, Abdou; Crane, David B; Johnson, Tyler A; Kudela, Raphael M

    2009-01-01

    In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red tide caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red tide, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone undetected. The frequency and amplitude of red tides have increased in Monterey Bay since 2004, suggesting that impacts on wintering marine birds may continue or increase.

  13. Mass Stranding of Marine Birds Caused by a Surfactant-Producing Red Tide

    PubMed Central

    Jessup, David A.; Miller, Melissa A.; Ryan, John P.; Nevins, Hannah M.; Kerkering, Heather A.; Mekebri, Abdou; Crane, David B.; Johnson, Tyler A.; Kudela, Raphael M.

    2009-01-01

    In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red tide caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red tide, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone undetected. The frequency and amplitude of red tides have increased in Monterey Bay since 2004, suggesting that impacts on wintering marine birds may continue or increase. PMID:19234604

  14. Cationic surfactants-modified natural zeolites: improvement of the excipients functionality.

    PubMed

    Krajisnik, Danina; Milojević, Maja; Malenović, Anđelija; Daković, Aleksandra; Ibrić, Svetlana; Savić, Snezana; Dondur, Vera; Matijasević, Srđan; Radulović, Aleksandra; Daniels, Rolf; Milić, Jela

    2010-10-01

    In this study an investigation of cationic surfactants-modified natural zeolites as drug formulation excipient was performed. The aim of this work was to carry out a study of the purified natural zeolitic tuff with high amount of clinoptilolite as a potential carrier for molecules of pharmaceutical interest. Two cationic surfactants (benzalkonium chloride and hexadecyltrimethylammonium bromide) were used for modification of the zeolitic surface in two levels (equal to and twice as external cation-exchange capacity of the zeolitic tuff). Prepared samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric, high-performance liquid chromatography analysis, and powder flow determination. Different surfactant/zeolite composites were used for additional investigation of three model drugs: diclofenac diethylamine, diclofenac sodium, and ibuprofen by means of adsorption isotherm measurements in aqueous solutions. The modified zeolites with two levels of surfactant coverage within the short activation time were prepared. Determination of flow properties showed that modification of zeolitic surface reflected on powder flow characteristics. Investigation of the model drugs adsorption on the obtained composites revealed that a variation between adsorption levels was influenced by the surfactant type and the amount present at the surface of the composites. In vitro release profiles of the drugs from the zeolite-surfactant-drug composites revealed that sustained drug release could be attained over a period of 8 hours. The presented results for drug uptake by surfactant-zeolite composites and the afterward drug release demonstrated the potential use of investigated modified natural zeolite as excipients for advanced excipients in drug formulations.

  15. Natural products with health benefits from marine biological resources

    USDA-ARS?s Scientific Manuscript database

    The ocean is the cradle of lives, which provides a diverse array of intriguing natural products that has captured scientists’ attention in the past few decades due to their significant and extremely potent biological activities. In addition to being rich sources for pharmaceutical drugs, marine nat...

  16. Oligomannuronates from Seaweeds as Renewable Sources for the Development of Green Surfactants

    NASA Astrophysics Data System (ADS)

    Benvegnu, Thierry; Sassi, Jean-François

    The development of surfactants based on natural renewable resources is a concept that is gaining recognition in detergents, cosmetics, and green chemistry. This new class of biodegradable and biocompatible products is a response to the increasing consumer demand for products that are both "greener", milder, and more efficient. In order to achieve these objectives, it is necessary to use renewable low-cost biomass that is available in large quantities and to design molecular structures through green processes that show improved performance, favorable ecotoxicological properties and reduced environmental impact. Within this context, marine algae represent a rich source of complex polysaccharides and oligosaccharides with innovative structures and functional properties that may find applications as starting materials for the development of green surfactants or cosmetic actives. Thus, we have developed original surfactants based on mannuronate moieties derived from alginates (cell-wall polyuronic acids from brown seaweeds) and fatty hydrocarbon chains derived from vegetable resources. Controlled chemical and/or enzymatic depolymerizations of the algal polysaccharides give saturated and/or unsaturated functional oligomannuronates. Clean chemical processes allow the efficient transformation of the oligomers into neutral or anionic amphiphilic molecules. These materials represent a new class of surface-active agents with promising foaming/emulsifying properties.

  17. Rational design of aromatic surfactants for graphene/natural rubber latex nanocomposites with enhanced electrical conductivity.

    PubMed

    Mohamed, Azmi; Ardyani, Tretya; Abu Bakar, Suriani; Sagisaka, Masanobu; Umetsu, Yasushi; Hamon, J J; Rahim, Bazura Abdul; Esa, Siti Rahmah; Abdul Khalil, H P S; Mamat, Mohamad Hafiz; King, Stephen; Eastoe, Julian

    2018-04-15

    Graphene nanoplatelets (GNPs) can be dispersed in natural rubber matrices using surfactants. The stability and properties of these composites can be optimized by the choice of surfactants employed as stabilizers. Surfactants can be designed and synthesized to have enhanced compatibility with GNPs as compared to commercially available common surfactants. Including aromatic groups in the hydrophobic chain termini improves graphene compatibility of surfactants, which is expected to increase with the number of aromatic moieties per surfactant molecule. Hence, it is of interest to study the relationship between molecular structure, dispersion stability and electrical conductivity enhancement for single-, double-, and triple-chain anionic graphene-compatible surfactants. Graphene-philic surfactants, bearing two and three chains phenylated at their chain termini, were synthesized and characterized by proton nuclear magnetic resonance ( 1 H NMR) spectroscopy. These were used to formulate and stabilize dispersion of GNPs in natural rubber latex matrices, and the properties of systems comprising the new phenyl-surfactants were compared with commercially available surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). Raman spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM) were used to study structural properties of the materials. Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between surfactant architecture and nanocomposite properties. Small-angle neutron scattering (SANS) was used to study self-assembly structure of surfactants. Of these different surfactants, the tri-chain aromatic surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly graphene-compatible (nanocomposite electrical conductivity

  18. Micelle-mediated extraction of elderberry blossom by whey protein and naturally derived surfactants.

    PubMed

    Śliwa, Karolina; Tomaszkiewicz-Potępa, Anna; Sikora, Elżbieta; Ogonowski, Jan

    2013-01-01

    Classical methods of the extraction of active ingredients from the plant material are expensive, complicated and often environmentally unfriendly. The micelle-mediated extraction method (MME) seems to be a good alternative. In this work, extractions of elderberry blossoms (Flos Sambuci) were performed using MME methods. Several popular surfactants and whey protein concentrate (WPC) was applied in the process. The obtained results were compared with those obtained in extraction by means of water. Antioxidant properties of the extracts were analyzed by using two different methods: reaction with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) reagent and Follin's method. Furthermore, the flavonoid content in the extracts was determined. The results confirmed that the MME method with using whey protein might be an alternative method for obtaining, rich in natural antioxidants, plant extracts.

  19. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zilian; Chen, Yi; Wang, Rui

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not bemore » completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.« less

  20. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    DOE PAGES

    Zhang, Zilian; Chen, Yi; Wang, Rui; ...

    2015-11-16

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not bemore » completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.« less

  1. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  2. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

    PubMed Central

    Choudhary, Alka; Naughton, Lynn M.; Montánchez, Itxaso

    2017-01-01

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds. PMID:28846659

  3. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    PubMed

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  4. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios.

    PubMed

    Shady, Nourhan Hisham; El-Hossary, Ebaa M; Fouad, Mostafa A; Gulder, Tobias A M; Kamel, Mohamed Salah; Abdelmohsen, Usama Ramadan

    2017-05-11

    Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios , reported to have various species such as Hyrtios erectus , Hyrtios reticulatus , Hyrtios gumminae , Hyrtios communis , and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  5. Spotlight on the use of new natural surfactants in colloidal gas aphron (CGA) fluids: A mechanistic study

    NASA Astrophysics Data System (ADS)

    Ali Ahmadi, Mohammad; Galedarzadeh, Morteza; Reza Shadizadeh, Seyed

    2017-12-01

    Colloidal gas aphron-based (CGA) drilling fluids are defined as gas bubbles with diameters in ranges of 10 to 100 microns which are created by intensive stirring of an aphronizer surfactant solution at high speed. Furthermore, CGA-based drilling fluid properties like stability and aphron size distribution extremely depend on the inherent characteristics of the aphronizer surfactant. The selection of an appropriate surface active agent plays a vital role in the generation of micro-bubbles with the favorable characteristics. The primary motivation behind this paper is to evaluate the potential of new natural surfactants as aphronizer in CGA-based drilling fluids. Here, two new natural based surfactants derived from roots of Glycyrrhiza glabra and leaves of Matricaria recutita plant are implemented for the preparation of aphron-based fluids. The physico-chemical properties of the aphronized fluids prepared from these surfactants are studied by different fundamental tests comprising rheological characterizations, bubble size measurements, and stability tests. The effect of polymer and surfactant concentration was also evaluated. According to the experimental outcomes of this research, the two introduced natural surfactants are appropriate for generating CGA-based drilling fluids while they have no environmental impacts and have very low cost in comparison to commercial and industrial surfactants.

  6. From conventional towards new - natural surfactants in drug delivery systems design: current status and perspectives.

    PubMed

    Savić, Snezana; Tamburić, Slobodanka; Savić, Miroslav M

    2010-03-01

    Surfactants play an important role in the development of both conventional and advanced (colloidal) drug delivery systems. There are several commercial surfactants, but a proportionally small group of them is approved as pharmaceutical excipients, recognized in various pharmacopoeias and therefore widely accepted by the pharmaceutical industry. The review covers some of the main categories of natural, sugar-based surfactants (alkyl polyglucosides and sugar esters) as prospective pharmaceutical excipients. It provides analysis of the physicochemical characteristics of sugar-based surfactants and their possible roles in the design of conventional or advanced drug delivery systems for different routes of administration. Summary and analysis of recent data on functionality, applied concentrations and formulation improvements produced by alkyl polyglucosides and sugar esters in different conventional and advanced delivery systems could be of interest to researchers dealing with drug formulation. Recent FDA certification of an alkyl polyglucoside surfactant for topical formulation presents a significant step in the process of recognition of this relatively new group of surfactants. This could trigger further research into the potential benefits of naturally derived materials in both conventional and new drug delivery systems.

  7. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

    PubMed

    Gogineni, Vedanjali; Hamann, Mark T

    2018-01-01

    The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    EPA Science Inventory

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  9. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms.

    PubMed

    Reeve, Peter J; Fallowfield, Howard J

    2018-01-01

    The objective of this review is to highlight the need for further investigation of microbial toxicity caused by desorption of surfactant from Surfactant Modified Zeolite (SMZ). SMZ is a low cost, versatile permeable reactive media which has the potential to treat multiple classes of contaminants. With this combination of characteristics, SMZ has significant potential to enhance water and wastewater treatment processes. Surfactant desorption has been identified as a potential issue for the ongoing usability of SMZ. Few studies have investigated the toxicity of surfactants used in zeolite modification towards microorganisms and fewer have drawn linkages between surfactant desorption and surfactant toxicity. This review provides an overview of natural zeolite chemistry, characteristics and practical applications. The chemistry of commonly used surfactants is outlined, along with the kinetics that drive their adsorption to the zeolite surface. Methodologies to characterise this surfactant loading are also described. Applications of SMZ in water remediation are highlighted, giving focus to applications which deal with biological pollutants and where microorganisms play a role in the remediation process. Studies that have identified surfactant desorption from SMZ are outlined. Finally, the toxicity of a commonly used cationic surfactant towards microorganisms is discussed. This review highlights the potential for surfactant to desorb from the zeolite surface and the need for further research into the toxicity of this desorbed surfactant towards microorganisms, including pathogens and environmental microbes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Medicinal benefits of marine invertebrates: sources for discovering natural drug candidates.

    PubMed

    De Zoysa, Mahanama

    2012-01-01

    Marine invertebrates are one of the major groups of organisms, which could be diversified under the major taxonomic groups of Porifera, Cnidaria, Mollusca, Arthropoda, Echinodermata, and many other minor phyla. To date, range of medicinal benefits and a significant number of marine natural products (MNPs) have been discovered from marine invertebrates. Seafood diet from edible marine invertebrates such as mollusks and crustaceans has been linked with various medicinal benefits to improve human health. Among marine invertebrates, spongers from phylum Porifera is the most dominant group responsible for discovering large number of MNPs, which have been used as template to develop therapeutic drugs. MNPs isolated from invertebrates have shown wide range of therapeutic properties including antimicrobial, antioxidant, antihypertensive, anticoagulant, anticancer, anti-inflammatory, wound healing and immune modulator, and other medicinal effects. Therefore, marine invertebrates are rich sources of chemical diversity and health benefits for developing drug candidates, cosmetics, nutritional supplements, and molecular probes that can be supported to increase the healthy life span of human. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The Determination of Anionic Surfactants in Natural and Waste Waters.

    ERIC Educational Resources Information Center

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  12. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial.

    PubMed

    Annuzzi, Giovanni; Bozzetto, Lutgarda; Costabile, Giuseppina; Giacco, Rosalba; Mangione, Anna; Anniballi, Gaia; Vitale, Marilena; Vetrani, Claudia; Cipriano, Paola; Della Corte, Giuseppina; Pasanisi, Fabrizio; Riccardi, Gabriele; Rivellese, Angela A

    2014-03-01

    The postprandial triglyceride-rich lipoprotein (TRL) concentration is a recognized independent cardiovascular disease risk factor. Diet is the natural approach for these postprandial alterations. Dietary polyphenols and long chain n-3 polyunsaturated fatty acids (LCn3s) are associated with a lower cardiovascular disease risk. This randomized controlled study evaluated, in persons with a high risk of cardiovascular disease, the effects of diets naturally rich in polyphenols and/or marine LCn3s on plasma TRLs and urinary 8-isoprostane concentrations, a biomarker of oxidative stress. According to a 2 × 2 factorial design, 86 overweight/obese individuals with a large waist circumference and any other component of the metabolic syndrome were randomly assigned to an isoenergetic diet 1) poor in LCn3s and polyphenols, 2) rich in LCn3s, 3) rich in polyphenols, or 4) rich in LCn3s and polyphenols. The diets were similar in all other components. Before and after the 8-wk intervention, fasting and postmeal TRLs and 8-isoprostane concentrations in 24-h urine samples were measured. Dietary adherence was good in all participants. Polyphenols significantly reduced fasting triglyceride concentrations (2-factor ANOVA) in plasma (P = 0.023) and large very-low-density lipoproteins (VLDLs) (P = 0.016) and postprandial triglyceride total area under the curve in plasma (P = 0.041) and large VLDLs (P = 0.004). LCn3s reduced postprandial chylomicron cholesterol and VLDL apolipoprotein B-48. The concentrations of urinary 8-isoprostane decreased significantly with the polyphenol-rich diets. Lipoprotein changes induced by the intervention significantly correlated with changes in 8-isoprostane. Diets naturally rich in polyphenols positively influence fasting and postprandial TRLs and reduce oxidative stress. Marine LCn3s reduce TRLs of exogenous origin. Through their effects on postprandial lipemia and oxidative stress, polyphenols may favorably affect cardiovascular disease risk.

  13. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems

    PubMed Central

    Tomašových, Adam; Kennedy, Jonathan D.; Betzner, Tristan J.; Kuehnle, Nicole Bitler; Edie, Stewart; Kim, Sora; Supriya, K.; White, Alexander E.; Rahbek, Carsten; Huang, Shan; Price, Trevor D.; Jablonski, David

    2016-01-01

    Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size—on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification. PMID:27147094

  14. Modelling the Stoichiometric Regulation of C-Rich Toxins in Marine Dinoflagellates.

    PubMed

    Pinna, Adriano; Pezzolesi, Laura; Pistocchi, Rossella; Vanucci, Silvana; Ciavatta, Stefano; Polimene, Luca

    2015-01-01

    Toxin production in marine microalgae was previously shown to be tightly coupled with cellular stoichiometry. The highest values of cellular toxin are in fact mainly associated with a high carbon to nutrient cellular ratio. In particular, the cellular accumulation of C-rich toxins (i.e., with C:N > 6.6) can be stimulated by both N and P deficiency. Dinoflagellates are the main producers of C-rich toxins and may represent a serious threat for human health and the marine ecosystem. As such, the development of a numerical model able to predict how toxin production is stimulated by nutrient supply/deficiency is of primary utility for both scientific and management purposes. In this work we have developed a mechanistic model describing the stoichiometric regulation of C-rich toxins in marine dinoflagellates. To this purpose, a new formulation describing toxin production and fate was embedded in the European Regional Seas Ecosystem Model (ERSEM), here simplified to describe a monospecific batch culture. Toxin production was assumed to be composed by two distinct additive terms; the first is a constant fraction of algal production and is assumed to take place at any physiological conditions. The second term is assumed to be dependent on algal biomass and to be stimulated by internal nutrient deficiency. By using these assumptions, the model reproduced the concentrations and temporal evolution of toxins observed in cultures of Ostreopsis cf. ovata, a benthic/epiphytic dinoflagellate producing C-rich toxins named ovatoxins. The analysis of simulations and their comparison with experimental data provided a conceptual model linking toxin production and nutritional status in this species. The model was also qualitatively validated by using independent literature data, and the results indicate that our formulation can be also used to simulate toxin dynamics in other dinoflagellates. Our model represents an important step towards the simulation and prediction of marine algal

  15. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants.

    PubMed

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes

    2017-04-01

    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  16. Comparison of rSP-C surfactant with natural and synthetic surfactants after late treatment in a rat model of the acute respiratory distress syndrome

    PubMed Central

    Häfner, Dietrich; Germann, Paul-Georg; Hauschke, Dieter

    1998-01-01

    protein-containing and the protein-free surfactants was even more pronounced when comparing the PaO2 values at 120 min after treatment. Only rSP-C surfactant, bLES and Infasurf showed a dose-dependent increase in PaO2 at this time. With this animal model of late treatment it is possible even to differentiate between bovine derived surfactants. The differences between protein-containing and protein-free surfactants become even more pronounced. From the comparison of rSP-C surfactant with bovine-derived surfactants and the PL surfactant without rSP-C, it can be concluded that addition of rSP-C is sufficient to achieve the same activity as that of natural surfactants. PMID:9720777

  17. Isolation of microplastics in biota-rich seawater samples and marine organisms

    NASA Astrophysics Data System (ADS)

    Cole, Matthew; Webb, Hannah; Lindeque, Pennie K.; Fileman, Elaine S.; Halsband, Claudia; Galloway, Tamara S.

    2014-03-01

    Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m-3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.

  18. Isolation of microplastics in biota-rich seawater samples and marine organisms

    PubMed Central

    Cole, Matthew; Webb, Hannah; Lindeque, Pennie K.; Fileman, Elaine S.; Halsband, Claudia; Galloway, Tamara S.

    2014-01-01

    Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota. PMID:24681661

  19. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi.

    PubMed

    Overy, David P; Bayman, Paul; Kerr, Russell G; Bills, Gerald F

    2014-07-03

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from 'marine-derived' fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment.

  20. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    PubMed

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies. Copyright © 2017 Elsevier Ltd

  1. A marine sink for chlorine in natural organic matter [Natural chlorination of marine organic matter

    DOE PAGES

    Leri, Alessandra C.; Northrup, Paul A.; Mayer, Lawrence M.; ...

    2015-07-06

    Chloride, Cl –, is the most abundant solute in seawater, amounting to 55% of ions by weight. Cl – is more difficult to oxidize than bromide, and marine halogenating enzymes tend to be bromoperoxidases that are incapable of forming organochlorines. Consequently, most halogenated natural products identified in the marine environment are organobromines. Known exceptions include small quantities of volatile chlorocarbons emitted by marine algae and dissolved chlorinated benzoic acids.

  2. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi

    PubMed Central

    Overy, David P.; Bayman, Paul; Kerr, Russell G.; Bills, Gerald F.

    2014-01-01

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from ‘marine-derived’ fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment. PMID:25379338

  3. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    PubMed

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  4. Surfactants at the Design Limit.

    PubMed

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  5. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Influences of Scavenging and Removal of Surfactants by Bubble Processing on Primary Marine Aerosol Production from North Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Duplessis, P.; Chang, R.; Frossard, A. A.; Keene, W. C.; Maben, J. R.; Long, M. S.; Beaupre, S. R.; Kieber, D. J.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    Primary marine aerosol particles (PMA) are produced by bursting bubbles from breaking waves at the air-sea interface and significantly modulate atmospheric chemical transformations and cloud properties. Surfactants in bulk seawater rapidly (seconds) adsorb onto fresh bubble surfaces forming organic films that influence size, rise velocity, bursting behavior, and associated PMA emissions. During a cruise on the R/V Endeavor in September and October 2016, PMA production from biologically productive and oligotrophic seawater was investigated at four stations in the western North Atlantic Ocean. PMA were produced in a high-capacity generator via turbulent mixing of seawater and clean air in a Venturi nozzle. When the flow of fresh seawater through the generator was turned off, surfactant depletion via bubble processing resulted in greater PMA mass production efficiencies per unit air detrained but had no consistent influence on number production efficiencies. The greater (factor of 3) production efficiencies of organic matter associated with PMA generated with the Venturi relative to those generated with frits during previous campaigns contributed to a faster depletion of surfactants from the seawater reservoir and corresponding divergence in response.

  7. Antifungal potential of marine natural products.

    PubMed

    El-Hossary, Ebaa M; Cheng, Cheng; Hamed, Mostafa M; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-27

    Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Nanocarriers Made from Non-Ionic Surfactants or Natural Polymers for Pulmonary Drug Delivery.

    PubMed

    Carter, K C; Puig-Sellart, M

    2016-01-01

    Treatment by the pulmonary route can be used for drugs that act locally in the lungs (e.g. lung cancer) or non-invasive administration of drugs that act systemically (e.g. diabetes). The potential of using drug delivery systems (DDS) formed from non-ionic surfactants or natural products for pulmonary drug delivery are reviewed. The effectiveness of each DDS depends on it ability to not only entrap the relevant drug and alter its bio distribution, but also its ability to withstand the physical stresses during nebulization and for the nebuliser to produce aerosol particles with the size for deposition in the appropriate part of the lungs. Different methods must be used to prepare nanoparticles (NP) using non-ionic surfactants, or biocompatible polymers from natural proteins or sugars, and the aqueous solubility of the drug also influences the manufacture method. NP produced using non-ionic surfactants, proteins such as collagen, albumin or gluten, and polysaccharides such as chitosan, hyaluronate, cellulose, carrageenans, alginate or starch has successfully delivered different types of drugs given by the pulmonary route. Drug entrapment efficiency depends on the DDS constituents and the manufacture method used. Large scale manufacture of DDS from natural products is technically challenging but changing from batch manufacture to continuous manufacturing processes has addressed some of these issues, and inclusion of a spray drying step has been beneficial in some cases. DDS for lung delivery can be produced using natural products but identifying a cost effective manufacture method may be challenging and the impact of using different type of nebulisers on the physiochemical characteristics of the aerosolised formulation should be an essential part of formulation development. This would ensure that some of the development work e.g. stability studies do not have to be repeated as they will identify if a carrier to protect the DDS from the physical trauma caused by

  9. The role of charge in the surfactant-assisted stabilization of the natural product curcumin.

    PubMed

    Wang, Zifan; Leung, Mandy H M; Kee, Tak W; English, Douglas S

    2010-04-20

    Colloidal solutions of surfactants that form micelles or vesicles are useful for solubilizing and stabilizing hydrophobic molecules that are otherwise sparingly soluble in aqueous solutions. In this paper we investigate the use of micelles and vesicles prepared from ionic surfactants for solubilizing and stabilizing curcumin, a medicinal natural product that undergoes alkaline hydrolysis in water. We identify spectroscopic signatures to evaluate curcumin partitioning and deprotonation in surfactant mixtures containing micelles or vesicles. These spectroscopic signatures allow us to monitor the interaction of curcumin with charged surfactants over a wide range of pH values. Titration data are presented to show the pH dependence of curcumin interactions with negatively and positively charged micelles and vesicles. In solutions of cationic micelles or positively charged vesicles, strong interaction between the Cur(-1) phenoxide ion and the positively charged surfactants results in a change in the acidity of the phenolic hydrogen and a lowering of the apparent lowest pK(a) value for curcumin. In the microenvironments formed by anionic micelles or negatively charged bilayers, our data indicates that curcumin partitions as the Cur(0) species, which is stabilized by interactions with the respective surfactant aggregates, and this leads to an increase in the apparent pK(a) values. Our results may explain some of the discrepancies within the literature with respect to reported pK(a) values and the acidity of the enolic versus phenolic protons. Hydrolysis rates, quantum yields, and molar absorption coefficients are reported for curcumin in a variety of solutions.

  10. Study on the surfactants present in atmospheric aerosols collected in the Okinawa Japan

    NASA Astrophysics Data System (ADS)

    Kamegawa, A.; Kasaba, T.; Shimabukuro, W.; Arakaki, T.

    2017-12-01

    The main constituent of atmospheric aerosols is organic substances, which occupy 20 to 70% of the mass. Organic matters in the aerosols contain organic acids, protein and humic acid, which behave similar to surfactants. Since surfactants contain both hydrophobic and hydrophilic functional groups in the molecule, they can play important roles in cloud formation and can affect climate change, but detailed mechanisms and magnitude are not well understood. In addition, surfactants can cause asthma, allergy, dry eye and so on. In this study, our aim is to characterize surfactants in the aerosols collected in different seasons in Okinawa, Japan. Atmospheric aerosols were collected at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) during Sep. 2013 and July 2014. Surfactants in the environment are comprised of artificially synthesized compounds and naturally derived organics so we only differentiate them into anionic and cationic surfactants. Colorimetric methods were used to determine the concentrations of anionic surfactants as methylene blue active substance (MBAS). Cationic surfactants were also measured by colorimetric method as disulfine blue active substance (DBAS) and showed always below detection limit. Thus, we only discuss anionic surfactants measured as MBAS. Water soluble organic carbon (WSOC) and metal concentrations were also measured for the same aerosol samples. Concentrations of MBAS in the studied samples were 2-3 times higher in spring, fall and winter than those collected in summer. MBAS concentration in the aerosols showed strong correlation with sulfate ion and WSOC, and slightly weaker correlation with nss-sulfate ion. Among the metals, only sodium ion showed a relatively strong correlation with MBAS concentrations. It is suggested that the anionic surfactants in the studied aerosols are mainly derived from marine sources.

  11. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    NASA Astrophysics Data System (ADS)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  12. Biomimicry of surfactant protein C

    PubMed Central

    Brown, Nathan J.; Johansson, Jan; Barron, Annelise E.

    2012-01-01

    CONSPECTUS Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned towards the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C’s seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C’s molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable poly-valine helix is replaced with a structurally stable, poly-leucine helix and includes a well placed positive charge to prevent aggregation. SP-C33 is both structurally stable and eliminates the association propensity of the native protein. The second approach

  13. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  14. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  15. Oligosaccharide-based Surfactant/Citric Acid Buffer System Stabilizes Lactate Dehydrogenase during Freeze-drying and Storage without the Addition of Natural Sugar.

    PubMed

    Ogawa, Shigesaburo; Kawai, Ryuichiro; Koga, Maito; Asakura, Kouichi; Takahashi, Isao; Osanai, Shuichi

    2016-06-01

    Experiments were conducted to assess the maintenance effects of oligosaccharide-based surfactants on the enzymatic activity of a model protein, lactate dehydrogenase (LDH), during freeze-drying and room temperature storage using the citric acid buffer system. Oligosaccharide-based surfactants, which exhibit a high glass transition temperature (Tg), promoted the eminent retention of enzymatic activity during these protocols, whereas monosaccharide-based surfactants with a low Tg displayed poor performance at high concentration, albeit much better than that of Tween 80 at middle concentration. The increase in the alkyl chain length did not exert positive effects as observed for the maintenance effect during freeze-thawing, but an amphiphilic nature and a glass forming ability were crucial for the effective stabilization at a low excipient concentration during freeze-drying. Even a low oligosaccharide-based surfactant content (0.1 mg mL(-1)) could maintain LDH activity during freeze-drying, but a high surfactant content (1.0 mg mL(-1)) was required to prevent buffer precipitation and retain high LDH activity on storage. Regarding storage, glass formation restricted molecular mobility in the lyophilized matrix, and LDH activity was effectively retained. The present results describe a strategy based on the glass-forming ability of surfactant-type excipients that affords a natural sugar-free formulation or an alternative use for polysorbate-type surfactants.

  16. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  17. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  18. Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups.

    PubMed

    Mohamed, Azmi; Anas, Argo Khoirul; Bakar, Suriani Abu; Ardyani, Tretya; Zin, Wan Manshol W; Ibrahim, Sofian; Sagisaka, Masanobu; Brown, Paul; Eastoe, Julian

    2015-10-01

    Here is presented a systematic study of the dispersibility of multiwall carbon nanotubes (MWCNTs) in natural rubber latex (NR-latex) assisted by a series of single-, double-, and triple-sulfosuccinate anionic surfactants containing phenyl ring moieties. Optical polarising microscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy have been performed to obtain the dispersion-level profiles of the MWCNTs in the nanocomposites. Interestingly, a triple-chain, phenyl-containing surfactant, namely sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3-phenylpropoxy)carbonyl) pentane-2-sulfonate (TCPh), has a greater capacity the stabilisation of MWCNTs than a commercially available single-chain sodium dodecylbenzenesulfonate (SDBS) surfactant. TCPh provides significant enhancements in the electrical conductivity of nanocomposites, up to ∼10(-2) S cm(-1), as measured by a four-point probe instrument. These results have allowed compilation of a road map for the design of surfactant architectures capable of providing the homogeneous dispersion of MWCNTs required for the next generation of polymer-carbon-nanotube materials, specifically those used in aerospace technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Archaea in Organic-Lean and Organic-Rich Marine Subsurface Sediments: An Environmental Gradient Reflected in Distinct Phylogenetic Lineages

    PubMed Central

    Durbin, Alan M.; Teske, Andreas

    2012-01-01

    Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure. PMID:22666218

  20. Surfactants at Single-Walled Carbon Nanotube-Water Interface: Physics of Surfactants, Counter-Ions, and Hydration Shell

    NASA Astrophysics Data System (ADS)

    Khare, Ketan S.; Phelan, Frederick R., Jr.

    Specialized applications of single-walled carbon nanotubes (SWCNTs) require an efficient and reliable method to sort these materials into monodisperse fractions with respect to their defining metrics (chirality, length, etc.) while retaining their physical and chemical integrity. A popular method to achieve this goal is to use surfactants that individually disperse SWCNTs in water and then to separate the resulting colloidal mixture into fractions that are enriched in monodisperse SWCNTs. Recently, experiments at NIST have shown that subtle point mutations of chemical groups in bile salt surfactants have a large impact on the hydrodynamic properties of SWCNT-surfactant complexes during ultracentrifugation. These results provide strong motivation for understanding the rich physics underlying the assembly of surfactants around SWCNTs, the structure and dynamics of counter ions around the resulting complex, and propagation of these effects into the first hydration shell. Here, all-atom molecular dynamics simulations are used to investigate the thermodynamics of SWCNT-bile salt surfactant complexes in water with an emphasis on the buoyant characteristics of the SWCNT-surfactant complexes. Simulation results will be presented along with a comparison with experimental data. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

  1. Anaerobic Biodegradation of Detergent Surfactants

    PubMed Central

    Merrettig-Bruns, Ute; Jelen, Erich

    2009-01-01

    Detergent surfactants can be found in wastewater in relevant concentrations. Most of them are known as ready degradable under aerobic conditions, as required by European legislation. Far fewer surfactants have been tested so far for biodegradability under anaerobic conditions. The natural environment is predominantly aerobic, but there are some environmental compartments such as river sediments, sub-surface soil layer and anaerobic sludge digesters of wastewater treatment plants which have strictly anaerobic conditions. This review gives an overview on anaerobic biodegradation processes, the methods for testing anaerobic biodegradability, and the anaerobic biodegradability of different detergent surfactant types (anionic, nonionic, cationic, amphoteric surfactants).

  2. Natural Attenuation of Nonionic Surfactants Used in Hydraulic Fracturing Fluids: Degradation Rates, Pathways, and Mechanisms.

    PubMed

    Heyob, Katie M; Blotevogel, Jens; Brooker, Michael; Evans, Morgan V; Lenhart, John J; Wright, Justin; Lamendella, Regina; Borch, Thomas; Mouser, Paula J

    2017-12-05

    Hydraulic fracturing fluids are injected into shales to extend fracture networks that enhance oil and natural gas production from unconventional reservoirs. Here we evaluated the biodegradability of three widely used nonionic polyglycol ether surfactants (alkyl ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), and polypropylene glycols (PPGs)) that function as weatherizers, emulsifiers, wetting agents, and corrosion inhibitors in injected fluids. Under anaerobic conditions, we observed complete removal of AEOs and NPEOs from solution within 3 weeks regardless of whether surfactants were part of a chemical mixture or amended as individual additives. Microbial enzymatic chain shortening was responsible for a shift in ethoxymer molecular weight distributions and the accumulation of the metabolite acetate. PPGs bioattenuated the slowest, producing sizable concentrations of acetone, an isomer of propionaldehyde. Surfactant chain shortening was coupled to an increased abundance of the diol dehydratase gene cluster (pduCDE) in Firmicutes metagenomes predicted from the 16S rRNA gene. The pduCDE enzymes are responsible for cleaving ethoxylate chain units into aldehydes before their fermentation into alcohols and carboxylic acids. These data provide new mechanistic insight into the environmental fate of hydraulic fracturing surfactants after accidental release through chain shortening and biotransformation, emphasizing the importance of compound structure disclosure for predicting biodegradation products.

  3. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs

    PubMed Central

    Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-01-01

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities. PMID:28846626

  4. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs.

    PubMed

    Wang, Kai-Ling; Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-08-28

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC 50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC 50 values < 5 μg/mL and LC 50 /EC 50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.

  5. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation.

    PubMed

    Owoseni, Olasehinde; Nyankson, Emmanuel; Zhang, Yueheng; Adams, Samantha J; He, Jibao; McPherson, Gary L; Bose, Arijit; Gupta, Ram B; John, Vijay T

    2014-11-18

    Naturally occurring halloysite clay nanotubes are effective in stabilizing oil-in-water emulsions and can serve as interfacially-active vehicles for delivering oil spill treating agents. Halloysite nanotubes adsorb at the oil-water interface and stabilize oil-in-water emulsions that are stable for months. Cryo-scanning electron microscopy (Cryo-SEM) imaging of the oil-in-water emulsions shows that these nanotubes assemble in a side-on orientation at the oil-water interface and form networks on the interface through end-to-end linkages. For application in the treatment of marine oil spills, halloysite nanotubes were successfully loaded with surfactants and utilized as an interfacially-active vehicle for the delivery of surfactant cargo. The adsorption of surfactant molecules at the interface serves to lower the interfacial tension while the adsorption of particles provides a steric barrier to drop coalescence. Pendant drop tensiometry was used to characterize the dynamic reduction in interfacial tension resulting from the release of dioctyl sulfosuccinate sodium salt (DOSS) from halloysite nanotubes. At appropriate surfactant compositions and loadings in halloysite nanotubes, the crude oil-saline water interfacial tension is effectively lowered to levels appropriate for the dispersion of oil. This work indicates a novel concept of integrating particle stabilization of emulsions together with the release of chemical surfactants from the particles for the development of an alternative, cheaper, and environmentally-benign technology for oil spill remediation.

  6. Marine products with anti-protozoal activity: a review.

    PubMed

    García, Marley; Monzote, Lianet

    2014-01-01

    The marine organisms are a rich source of varied natural products with unique functionality. A variety of natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna for treatment and/or prevention of human diseases. The present review briefly illustrates current status of marine products as antiprotozoal agents. The in vitro and in vivo studies of marine algae, invertebrates and micro-organism against different protozoa parasites are included. The marine products studied, according to international criterions for selection of more promisory products in the different models reported, demonstrated their potentialities as antiprozoal agents. Herein, the interest of scientific community to search new alternatives from marine environment has been demonstrated.

  7. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    PubMed

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  8. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    PubMed Central

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  9. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Marine actinobacteria: an important source of bioactive natural products.

    PubMed

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Marine Natural Products as Prototype Agrochemical Agents

    PubMed Central

    Peng, Jiangnan; Shen, Xiaoyu; El Sayed, Khalid A.; Dunbar, D. C Harles; Perry, Tony L.; Wilkins, Scott P.; Hamann, Mark T.; Bobzin, Steve; Huesing, Joseph; Camp, Robin; Prinsen, Mike; Krupa, Dan; Wideman, Margaret A.

    2016-01-01

    In the interest of identifying new leads that could serve as prototype agrochemical agents, 18 structurally diverse marine-derived compounds were examined for insecticidal, herbicidal, and fungicidal activities. Several new classes of compounds have been shown to be insecticidal, herbicidal, and fungicidal, which suggests that marine natural products represent an intriguing source for the discovery of new agrochemical agents. PMID:12670165

  12. Marine and Lacustrine Organic-rich Sedimentary Unit Time Markers: Implications from Rhenium-Osmium Geochronology

    NASA Astrophysics Data System (ADS)

    Selby, D.

    2011-12-01

    Geochronology is fundamental to understand the age, rates and durations of Earth processes. This concerned Arthur Holmes who, for much of his career, attempted to define a geological time scale. This is a topic still important to Earth Scientists today, specifically the chronostratigraphy of sedimentary rocks. Here I explore the Re-Os geochronology of marine and lacustrine sedimentary rocks and its application to yield absolute time constraints for stratigraphy. The past decade has seen the pioneering research of Re-Os organic-rich sedimentary rock geochronology blossom into a tool that can now to be used to accurately and precisely determine depositional ages of organic-rich rock units that have experienced up to low grade greenschist metamorphism. This direct dating of sedimentary rocks is critical where volcanic horizons are absent. As a result, this tool has been applied to timescale calibration, basin correlation, formation duration and the timing of key Earth events (e.g., Neoproterozoic glaciations). The application of Re-Os chronometer to the Devonian-Mississippian boundary contained within the Exshaw Formation, Canada, determined an age of 361.3 ± 2.4 Ma. This age is in accord with U-Pb dates of interbedded tuff horizons and also U-Pb zircon date for the type Devonian-Mississippian Hasselbachtal section, Germany. The agreement of the biostratigraphic and U-Pb constraints of the Exshaw Formation with the Re-Os date illustrated the potential of the Re-Os chronometer to yield age determinations for sedimentary packages, especially in the absence of interbedd tuff horizons and biozones. A Re-Os date for the proposed type section of the Oxfordian-Kimmeridgian boundary, Staffin Bay, Isle of Skye, U.K., gave an age of 154.1 ± 2.2 Ma. This Re-Os age presents a 45 % (1.8 Ma) improvement in precision for the basal Kimmeridgian. It also demonstrated that the duration of the Kimmeridgian is nominally 3.3 Ma and thus is 1.6 Ma shorter than previously indicated. In

  13. Phylogenetic Inferences Reveal a Large Extent of Novel Biodiversity in Chemically Rich Tropical Marine Cyanobacteria

    PubMed Central

    Gunasekera, Sarath P.; Gerwick, William H.

    2013-01-01

    Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria. PMID:23315747

  14. Interactions of surfactants with lipid membranes.

    PubMed

    Heerklotz, Heiko

    2008-01-01

    Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.

  15. Fluorescence spectroscopy as a specific tool for the interaction study of two surfactants with natural and synthetic organic compounds

    NASA Astrophysics Data System (ADS)

    Jung, Aude-Valérie; Frochot, Céline; Bersillon, Jean-Luc

    2016-04-01

    Four different techniques were used to study the binding of cationic cetyltrimethylammonium bromide (CTAB) and non-ionic nonylphenylethoxyl (NPE) surfactants to three synthetic organic components that mimic humic-like aggregates and to two natural aggregated humic substances (HS) extracted from aquatic suspended matter. The composition of synthetic organic components were chosen to be similar to high molecular weight highly processed terrigenous HS and low and high molecular weight less processed terrigenous (or aquatic terrigenous) HS. The natural HS were extracted under two different meteorological conditions (rainy and dry periods). No significant interaction between the non-ionic surfactant and any of the studied compounds was found. Concerning CTAB; pH, conductivity and turbidity measurements, along with fluorescence spectroscopy were combined to provide a better understanding of interactions between organic aggregates and the surfactant. The spectroscopic data show that a "highly processed terrigenous HS" fluorophore interacts in a different way with the cationic surfactant than an "aquatic terrigenous (or less processed terrigenous) HS" fluorophore does. Under similar conditions, some spectral changes in the fluorescence signal are correlated to changes in non-specific physical-chemical parameters (pH, turbidity, conductivity) for the organic compounds tested. The complexation mechanism is essentially governed by charge neutralization, which can be monitored specifically by the fluorescence of the organic moieties.

  16. Effects of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material.

    PubMed

    Hari, Ajai C; Paruchuri, Rajiv A; Sabatini, David A; Kibbey, Tohren C G

    2005-04-15

    A wide range of pharmaceutical compounds have been identified in the environment, and their presence is a topic of growing concern, both for human and ecological health. Adsorption to aquifer materials and sediments is an important factor influencing the fate and transport of pharmaceutical compounds in the environment. Surfactants and other amphiphiles are known to influence the adsorption of many compounds and may be present in the environment from wastewaters or other sources. The work described here examines the adsorption of four pharmaceutical compounds, acetaminophen, carbamazepine, nalidixic acid, and norfloxacin, in the presence of a natural aquifer material. Adsorption was studied as a function of pH and in the presence and absence of two surfactants, cetylpyridinium chloride (CPC), a cationic surfactant, and Tergitol NP9, an ethoxylated nonionic surfactant. In the absence of surfactants, results indicate a 1-2 orders of magnitude variation in adsorption affinity with changing pH for each of the two quinolone pharmaceuticals (nalidixic acid and norfloxacin) but no measurable adsorption for carbamazepine or acetaminophen. In the presence of surfactants, adsorption of acetaminophen and carbamazepine was enhanced to extents consistent with compound hydrophobicity, while adsorption of nalidixic acid and norfloxacin was not. At high pH values, the anionic species of nalidixic acid exhibited enhanced adsorption in the presence of the cationic surfactant, CPC.

  17. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    PubMed

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    electrostatic (hydrogen bonds) and nonpolar (van der Waals and π-π) interactions involving carbohydrate proteins and lipids present. The presence and relevance of these interactions agree with the supramolecular and surfactant characteristics of marine organic matter described in the scientific literature.

  18. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  19. The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides.

    PubMed

    Hamley, Ian W; Castelletto, Valeria; Dehsorkhi, Ashkan; Torras, Juan; Aleman, Carlos; Portnaya, Irina; Danino, Dganit

    2018-02-15

    The secondary structure of proline-rich surfactant-like peptides is examined for the first time and is found to be influenced by charged end groups in peptides P 6 K, P 6 E, and KP 6 E and an equimolar mixture of P 6 K and P 6 E. The peptides exhibit a conformational transition from unordered to polyproline II (PPII) above a critical concentration, detected from circular dichroism (CD) measurements and unexpectedly from fluorescence dye probe measurements. Isothermal titration calorimetry (ITC) measurements provided the Gibbs energies of hydration of P 6 K and P 6 E, which correspond essentially to the hydration energies of the terminal charged residues. A detailed analysis of peptide conformation for these peptides was performed using density functional theory calculations, and this was used as a basis for hybrid quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations. Quantum mechanics simulations in implicit water show both peptides (and their 1:1 mixture) exhibit PPII conformations. However, hybrid QM/MM MD simulations suggest that some deviations from this conformation are present for P 6 K and P 6 E in peptide bonds close to the charged residue, whereas in the 1:1 mixture a PPII structure is observed. Finally, aggregation of the peptides was investigated using replica exchange molecular dynamics simulations. These reveal a tendency for the average aggregate size (as measured by the radius of gyration) to increase with increasing temperature, which is especially marked for P 6 K, although the fraction of the most populated clusters is larger for P 6 E.

  20. Marine natural products: a new wave of drugs?

    PubMed Central

    Montaser, Rana; Luesch, Hendrik

    2011-01-01

    The largely unexplored marine world that presumably harbors the most biodiversity may be the vastest resource to discover novel ‘validated’ structures with novel modes of action that cover biologically relevant chemical space. Several challenges, including the supply problem and target identification, need to be met for successful drug development of these often complex molecules; however, approaches are available to overcome the hurdles. Advances in technologies such as sampling strategies, nanoscale NMR for structure determination, total chemical synthesis, fermentation and biotechnology are all crucial to the success of marine natural products as drug leads. We illustrate the high degree of innovation in the field of marine natural products, which in our view will lead to a new wave of drugs that flow into the market and pharmacies in the future. PMID:21882941

  1. Natural Products from Marine Fungi—Still an Underrepresented Resource

    PubMed Central

    Imhoff, Johannes F.

    2016-01-01

    Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes. PMID:26784209

  2. Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains.

    PubMed

    Tian, Wei; Yao, Jun; Liu, Ruiping; Zhu, Mijia; Wang, Fei; Wu, Xiaoying; Liu, Haijun

    2016-07-01

    Hydrocarbon pollution is a worldwide problem. In this study, five surfactants containing SDS, LAS, Brij 30, Tween 80 and biosurfactant were used to evaluate their effect on crude oil biodegradation. Hydrocarbon degrading bacteria were isolated from oil production water. The biosurfactant used was a kind of cyclic lipopeptide produced by Bacillus subtilis strain WU-3. Solubilization test showed all the surfactants could apparently increase the water solubility of crude oil. The microbial adhesion to the hydrocarbon (MATH) test showed surfactants could change cell surface hydrophobicity (CSH) of microbiota, depending on their species and concentrations. Microcalorimetric experiments revealed these surfactants exhibited toxicity to microorganisms at high concentrations (above 1 CMC), except for SDS which showed low antibacterial activity. Surfactant supplementation (about 0.1 and 0.2 CMC) could improve degradation rate of crude oil slightly, while high surfactant concentration (above 1 CMC) may decrease the degradation rate from 50.5% to 28.9%. Those findings of this work could provide guidance for the application of surfactants in bioremediation of oil pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  4. [The recent research progress of chemistry of marine natural products].

    PubMed

    Shi, Qing-wen; Li, Li-geng; Wang, Yu-fang; Huo, Chang-hong; Zhang, Man-li

    2010-10-01

    Ocean is a unique and excellent resource that provides a diverse array of intriguing natural products. Marine natural products have demonstrated significant and extremely potent biological activities and have captured the attention of natural products chemists in the past few decades. It is increasingly recognized that a wealth of fascinating natural products and novel chemical entities will play a dominant role in the discovery of useful leads for the development of pharmaceutical agents and provide useful probes to lead to breakthroughs in a variety of life-science fields. This article focused on the research progress of chemistry of marine natural products in recent five years.

  5. Surfactants reduce platelet-bubble and platelet-platelet binding induced by in vitro air embolism.

    PubMed

    Eckmann, David M; Armstead, Stephen C; Mardini, Feras

    2005-12-01

    The effect of gas bubbles on platelet behavior is poorly characterized. The authors assessed platelet-bubble and platelet-platelet binding in platelet-rich plasma in the presence and absence of bubbles and three surface-active compounds. Platelet-rich plasma was prepared from blood drawn from 16 volunteers. Experimental groups were surfactant alone, sparging (microbubble embolization) alone, sparging with surfactant, and neither sparging nor surfactant. The surfactants were Pluronic F-127 (Molecular Probes, Eugene, OR), Perftoran (OJSC SPC Perftoran, Moscow, Russia), and Dow Corning Antifoam 1510US (Dow Corning, Midland, MI). Videomicroscopy images of specimens drawn through rectangular glass microcapillaries on an inverted microscope and Coulter counter measurements were used to assess platelet-bubble and platelet-platelet binding, respectively, in calcium-free and recalcified samples. Histamine-induced and adenosine diphosphate-induced platelet-platelet binding were measured in unsparged samples. Differences between groups were considered significant for P < 0.05 using analysis of variance and the Bonferroni correction. Sixty to 100 platelets adhered to bubbles in sparged, surfactant-free samples. With sparging and surfactant, few platelets adhered to bubbles. Numbers of platelet singlets and multimers not adherent to bubbles were different (P < 0.05) compared both with unsparged samples and sparged samples without surfactant. No significant platelet-platelet binding occurred in uncalcified, sparged samples, although 20-30 platelets adhered to bubbles. Without sparging, histamine and adenosine diphosphate provoked platelet-platelet binding with and without surfactants present. Sparging causes platelets to bind to air bubbles and each other. Surfactants added before sparging attenuate platelet-bubble and platelet-platelet binding. Surfactants may have a clinical role in attenuating gas embolism-induced platelet-bubble and platelet-platelet binding.

  6. Interfaces Charged by a Nonionic Surfactant.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Behrens, Sven Holger

    2018-05-24

    Highly hydrophobic, water-insoluble nonionic surfactants are often considered irrelevant to the ionization of interfaces at which they adsorb, despite observations that suggest otherwise. In the present study, we provide unambiguous evidence for the participation of a water-insoluble surfactant in interfacial ionization by conducting electrophoresis experiments for surfactant-stabilized nonpolar oil droplets in aqueous continuous phase. It was found that the surfactant with amine headgroup positively charged the surface of oil suspended in aqueous continuous phase (oil/water interface), which is consistent with its basic nature. In nonpolar oil continuous phase, the same surfactant positively charged the surface of solid silica (solid/oil interface) which is often considered acidic. The latter observation is exactly opposite to what the traditional acid-base mechanism of surface charging would predict, most clearly suggesting the possibility for another charging mechanism.

  7. Hydrocarbons and surfactants: Ecotoxicology in a marine pelagic food chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skadsheim, A.; Hoivangli, V.; Labes-Carrier, C.

    1996-12-31

    Accidental spills and production lead to discharges of petroleum hydrocarbons and surface active agents to the sea. The Norwegian government has set guidelines adopted from the OSPAR commission for assessment and studies of the environmental load from these discharges. The free water masses are poorly studied compared to the benthic processes in this context and we question how oil and surfactants might bioaccumulate in a simplified marine pelagic food chain comprised of algae, crustaceans and fish. When test methods and species recommended for initial water based acute toxicity studies are to be implemented in more comprehensive studies like assessment ofmore » bioaccumulation various problems arose. An improvement of the OSPAR method for the production of Water Accommodated Fractions (WAFs) of oil is presented. Emphasis is on control of oil concentration and distribution in water, and on applicability for studies where larger volumes of WAF are required than for the demand in acute toxicity tests. Acute toxicity assessments of one oil, Blended Arabian Light topped at 150{degrees}C, and two non-ionic dispersants, hexaetoxyparanonylphenol and a sophorolipid, were conducted on OSPAR recommended species. The toxicity responses were in line with observations made by others. At a given concentration the oil particle size during WAF preparation might influence subsequent expression of toxic effects. The same applied for the presence of emulsified oil particles in the WAR where the organisms were exposed. Reasons for selecting other test organisms than those officially recommended for continued studies on bioaccumulation are presented and discussed.« less

  8. Monsoonal variations in atmospheric surfactants at different coastal areas of the Malaysian Peninsula.

    PubMed

    Jaafar, Shoffian Amin; Latif, Mohd Talib; Razak, Intan Suraya; Shaharudin, Muhammad Zulhilmi; Khan, Md Firoz; Wahid, Nurul Bahiyah Abd; Suratman, Suhaimi

    2016-08-15

    This study determined the effect of monsoonal changes on the composition of atmospheric surfactants in coastal areas. The composition of anions (SO4(2-), NO3(-), Cl(-), F(-)) and the major elements (Ca, K, Mg, Na) in aerosols were used to determine the possible sources of surfactants. Surfactant compositions were determined using a colorimetric method as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS). The anion and major element compositions of the aerosol samples were determined by ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results indicated that the concentrations of surfactant in aerosols were dominated by MBAS (34-326pmolm(-3)). Monsoonal changes were found to significantly affect the concentration of surfactants. Using principal component analysis-multiple linear regressions (PCA-MLR), major possible sources for surfactants in the aerosols were motor vehicle emissions, secondary aerosol and the combustion of biomass along with marine aerosol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Aromatic proteinaceous surfactants stabilize long-lived gas microbubbles from natural sources

    NASA Technical Reports Server (NTRS)

    Darrigo, J. S.

    1981-01-01

    Three different types of protein-specific chemical tests were performed on long-lived gas microbubbles derived from aqueous solutions of agarose powder and from filtered aqueous extracts of Hawaiian forest soil. The separate protein-specific tests involved use of either 0.3% (w/v) ninhydrin, 100 microM methylene blue dye, or 0.7-1.0 M 2-hydroxy-5-nitrobenzyl bromide. The chemical test results obtained with each of the two natural substances, i.e., agarose powder and Hawaiian forest soil, were very similar and indicate that the biological surfactants which surround and stabilize long-lived gas microbubbles are proteinaceous compounds that contain, and whose surface activity depends upon, aromatic amino acid residues, particularly tryptophan.

  10. Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm?

    USGS Publications Warehouse

    Pavlacky, D.C.; Anderson, S.H.

    2007-01-01

    As one approaches the north-eastern limit of pinyon (Pinus spp.) juniper (Juniperus spp.) vegetation on the Colorado Plateau, USA, woodland patches become increasingly disjunct, grading into sagebrush (Artemisia spp.)-dominated landscapes. Patterns of avian species richness in naturally heterogeneous forests may or may not respond to patch discontinuity in the same manner as bird assemblages in fragmented agricultural systems. We used observational data from naturally patchy woodlands and predictions derived from studies of human-modified agricultural forests to estimate the effects of patch area, shape, isolation and distance to contiguous woodland on avian species richness. We predicted that patterns of species richness in naturally patchy juniper woodlands would differ from those observed in fragmented agricultural systems. Our objectives were to (1) estimate the effect of naturally occurring patch structure on avian species richness with respect to habitat affinity and migratory strategy and (2) assess the concordance of the effects to predictions from agricultural forest systems. We used the analogy between populations and communities to estimate species richness, where species are treated as individuals in the application of traditional capture-recapture theory. Information-theoretic model selection showed that overall species richness was explained primarily by the species area relationship. There was some support for a model with greater complexity than the equilibrium theory of island biogeography where the isolation of large patches resulted in greater species richness. Species richness of woodland-dwelling birds was best explained by the equilibrium hypothesis with partial landscape complementation by open-country species in isolated patches. Species richness within specific migratory strategies showed concomitant increases and no shifts in species composition along the patch area gradient. Our results indicate that many patterns of species richness

  11. Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites.

    PubMed

    Engene, Niclas; Rottacker, Erin C; Kaštovský, Jan; Byrum, Tara; Choi, Hyukjae; Ellisman, Mark H; Komárek, Jiří; Gerwick, William H

    2012-05-01

    The filamentous cyanobacterial genus Moorea gen. nov., described here under the provisions of the International Code of Botanical Nomenclature, is a cosmopolitan pan-tropical group abundant in the marine benthos. Members of the genus Moorea are photosynthetic (containing phycocyanin, phycoerythrin, allophycocyanin and chlorophyll a), but non-diazotrophic (lack heterocysts and nitrogenase reductase genes). The cells (discoid and 25-80 µm wide) are arranged in long filaments (<10 cm in length) and often form extensive mats or blooms in shallow water. The cells are surrounded by thick polysaccharide sheaths covered by a rich diversity of heterotrophic micro-organisms. A distinctive character of this genus is its extraordinarily rich production of bioactive secondary metabolites. This is matched by genomes rich in polyketide synthase and non-ribosomal peptide synthetase biosynthetic genes which are dedicated to secondary metabolism. The encoded natural products are sometimes responsible for harmful algae blooms and, due to morphological resemblance to the genus Lyngbya, this group has often been incorrectly cited in the literature. We here describe two species of the genus Moorea: Moorea producens sp. nov. (type species of the genus) with 3L(T) as the nomenclature type, and Moorea bouillonii comb. nov. with PNG5-198(R) as the nomenclature type.

  12. Habitat Availability and Heterogeneity and the Indo-Pacific Warm Pool as Predictors of Marine Species Richness in the Tropical Indo-Pacific

    PubMed Central

    Sanciangco, Jonnell C.; Carpenter, Kent E.; Etnoyer, Peter J.; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region. PMID:23457533

  13. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    PubMed

    Sanciangco, Jonnell C; Carpenter, Kent E; Etnoyer, Peter J; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2) with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  14. Bioactive natural products from Chinese marine flora and fauna.

    PubMed

    Zhou, Zhen-Fang; Guo, Yue-Wei

    2012-09-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail.

  15. Zebrafish Embryo Toxicity Microscale Model for Ichthyotoxicity Evaluation of Marine Natural Products.

    PubMed

    Bai, Hong; Kong, Wen-Wen; Shao, Chang-Lun; Li, Yun; Liu, Yun-Zhang; Liu, Min; Guan, Fei-Fei; Wang, Chang-Yun

    2016-04-01

    Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.

  16. Unique role of ionic liquid [bmin][BF 4] during curcumin-surfactant association and micellization of cationic, anionic and non-ionic surfactant solutions

    NASA Astrophysics Data System (ADS)

    Patra, Digambara; Barakat, Christelle

    2011-09-01

    Hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroburate, modified the properties of aqueous surfactant solutions associated with curcumin. Because of potential pharmaceutical applications as an antioxidant, anti-inflammatory and anti-carcinogenic agent, curcumin has received ample attention as potential drug. The interaction of curcumin with various charged aqueous surfactant solutions showed it exists in deprotonated enol form in surfactant solutions. The nitro and hydroxyl groups of o-nitrophenol interact with the carbonyl and hydroxyl groups of the enol form of curcumin by forming ground state complex through hydrogen bonds and offered interesting information about the nature of the interactions between the aqueous surfactant solutions and curcumin depending on charge of head group of the surfactant. IL[bmin][BF 4] encouraged early formation of micelle in case of cationic and anionic aqueous surfactant solutions, but slightly prolonged micelle formation in the case of neutral aqueous surfactant solution. However, for curcumin IL [bmin][BF 4] favored strong association (7-fold increase) with neutral surfactant solution, marginally supported association with anionic surfactant solution and discouraged (˜2-fold decrease) association with cationic surfactant solution.

  17. Modified natural porcine surfactant modulates tobacco smoke-induced stress response in human monocytes.

    PubMed

    Pinot, F; Bachelet, M; François, D; Polla, B S; Walti, H

    1999-01-01

    Tobacco smoke (TS) is a potent source of oxidants and oxidative stress is an important mechanism by which TS exerts its toxicity in the lung. We have shown that TS induces heat shock (HS)/stress protein (HSP) synthesis in human monocytes. Pulmonary surfactant (PS) whose major physiological function is to confer mechanical stability to alveoli, also modulates oxidative metabolism and other pro-inflammatory functions of monocytes-macrophages. In order to determine whether PS alters the stress response induced by TS, we incubated human peripheral blood monocytes overnight with modified natural porcine surfactant (Curosurf) (1 mg/ml) before exposure to TS. Curosurf decreased TS-induced, but not HS-induced, expression of the major cytosolic, inducible 72 kD HSP (Hsp70). Furthermore, TS-generated superoxide anions production was significantly decreased by Curosurf in an acellular system, suggesting a direct scavenging effect of PS. We also examined the effects of TS and PS on monocytes ultrastructure. Monocytes incubated with Curosurf presented smoother cell membranes than control monocytes, while TS-induced monocyte vacuolization was, at least in part, prevented by Curosurf. Taken together, our data suggest that PS plays a protective role against oxygen radical-mediated, TS-induced cellular stress responses.

  18. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges.

    PubMed

    Gurgui, Cristian; Piel, Jörn

    2010-01-01

    Many marine sponges harbor massive consortia of symbiotic bacteria belonging to diverse phyla. Sponges are also an unusually rich source of biologically active natural products, and evidence is accumulating that these compounds might often be synthesized by the symbionts. Since the study of sponge-associated bacteria is generally hampered by very low cultivation rates, cultivation-independent, metagenomic methods have recently been applied to sponges. These methods allow for the isolation of biosynthetic gene clusters that can ultimately be exploited to develop sustainable natural product sources by heterologous expression. However, general challenges encountered in sponge metagenomic research are the poor quality of the isolated DNA with respect to size and yield, the difficulty to identify genes of interest among numerous homologs, insufficient clone numbers in metagenomic libraries, and time-consuming screening procedures to identify and isolate rare positive clones. Here, we give an overview of methods that address these problems and can be used to streamline isolation of biosynthetic and other genes of interest.

  19. Physical properties of botanical surfactants.

    PubMed

    Müller, Lillian Espíndola; Schiedeck, Gustavo

    2018-01-01

    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm -1 while neutral bar soap was 0.15% with 34.96mNm -1 . Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bioactive natural products from Chinese marine flora and fauna

    PubMed Central

    Zhou, Zhen-fang; Guo, Yue-wei

    2012-01-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail. PMID:22941288

  1. Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants.

    PubMed

    Holmiere, Sébastien; Valentin, Romain; Maréchal, Philippe; Mouloungui, Zéphirin

    2017-02-01

    Glycerol carbonate is one of the most potentially multifunction glycerol-derived compounds. Glycerol is an important by-product of the oleochemical industry. The oligomerization of glycerol carbonate, assisted by the glycerol, results in the production of polyhydroxylated oligomers rich in linear carbonate groups. The polar moieties of these oligomers (M w <1000Da) were supplied by glycerol and glycerol carbonate rather than ethylene oxide as in most commercial surfactants. The insertion of linear carbonate groups into the glycerol-based skeleton rendered the oligomers amphiphilic, resulting in a decrease in air/water surface tension to 57mN/m. We improved the physical and chemical properties of the oligomers, by altering the type of acylation reaction and the nature of the acyl donor. The polar head is constituted of homo-oligomers and hetero-oligomers. Homo-oligomers are oligoglycerol and/or oligocarbonate, hetero-oligomers are oligo(glycerol-glycerol carbonate). Coprah oligoesters had the best surfactant properties (CMC<1mg/mL, π cmc <30mN/m), outperforming molecules of fossil origin, such as ethylene glycol monododecyl ether, glycol ethers and fatty acid esters of sorbitan polyethoxylates. The self-assembling properties of oligocarbonate esters were highlighted by their ability to stabilize inverse and multiple emulsions. The oligo-(glycerol carbonate-glycerol ether) with relatively low molecular weights showed properties of relatively high-molecular weight molecules, and constitute a viable "green" alternative to ethoxylated surfactants. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    PubMed

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  3. Surfactants assist in lipid extraction from wet Nannochloropsis sp.

    PubMed

    Wu, Chongchong; Xiao, Ye; Lin, Weiguo; Zhu, Junying; De la Hoz Siegler, Hector; Zong, Mingsheng; Rong, Junfeng

    2017-11-01

    An efficient approach involving surfactant treatment, or the modification and utilization of surfactants that naturally occur in algae (algal-based surfactants), was developed to assist in the extraction of lipids from wet algae. Surfactants were found to be able to completely replace polar organic solvents in the extraction process. The highest yield of algal lipids extracted by hexane and algal-based surfactants was 78.8%, followed by 78.2% for hexane and oligomeric surfactant extraction, whereas the lipid yield extracted by hexane and ethanol was only 60.5%. In addition, the saponifiable lipids extracted by exploiting algal-based surfactants and hexane, or adding oligomeric surfactant and hexane, accounted for 78.6% and 75.4% of total algal lipids, respectively, which was more than 10% higher than the lipids extracted by hexane and ethanol. This work presents a method to extract lipids from algae using only nonpolar organic solvents, while obtaining high lipid yields and high selectivity to saponifiables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of surfactants and natural detergents on phosphatidylcholine synthesis in photoreceptor membranes.

    PubMed

    Roque, M E; Castagnet, P I; Giusto, N M

    2001-07-01

    The synthesis of phosphatidylcholine (PC) in rod outer segments (ROS) catalysed by lysophosphatidylcholine acyltransferase and phosphatidylethanolamine N-methyltransferase (PE N-MTase) was studied and the effects of natural (FA and lysophospholipids) and synthetic (Triton X-100, deoxycholate and CHAPS) surfactants was evaluated. In all experimental conditions used, incorporation of labelled oleate into lysophosphatidylcholine (lysoPC) was at least 40 times greater than oleate incorporation into any other lysophospholipid. Acylation of lysoPC was slightly affected by Triton X-100 and was totally inhibited in the presence of 10 mM sodium deoxycholate (NaDOC) or CHAPS. Below their critical micelle concentration (cmc) Triton X-100 and NaDOC stimulated acylation of all ROS lysophospholipids analysed. The activity of PE N-MTase was stimulated at detergent concentrations below the cmc and inhibited at concentrations above the cmc for all three detergents tested. The effect of FA with differing degree of unsaturation on PC synthesis was evaluated. Oleic acid (10 microM) inhibited methyl group incorporation into total PC, whereas from 100 microM onward, the methylating activity increased with preferential synthesis of PC. Docosahexaenoic acid, in turn, inhibited PE N-MTase activity at every concentration tested. These results suggest that PC synthesis in ROS membranes is modified by bioregulators and surfactants altering the physico-chemical state of the membrane.

  5. Transdermal absorption of natural progesterone from alcoholic gel formulations with hydrophilic surfactant.

    PubMed

    Matsui, Rakan; Ueda, Osamu; Uchida, Shinya; Namiki, Noriyuki

    2015-06-01

    The aim of this study was to evaluate the in vitro skin permeation and in vivo transdermal absorption of natural progesterone (Prog) from alcoholic gel-based transdermal formulations containing Prog dissolved stably at a concentration of 3%. 3% Prog dissolved gel formulations were prepared containing with water, ethanol, 1,3-butylene glycol, carboxyvinylpolymer, diisopropanolamine, polyoxyethylene (2) oleylether and benzyl alcohol. The gel formulations added different hydrophilic surfactants and isopropyl myristate or propylene glycol dicaprylate (PGDC) as oily solvents were applied in vitro permeation study through excised rat skin on unocclusive condition. The gel formulations added polyoxyethylene (20) oleylether (Oleth-20) as hydrophilic surfactant and PGDC were applied in vivo single- and repeated-dose transdermal absorption study of rat on unocclusive condition. The results of evaluation of the gel formulations by an in vitro skin permeation study revealed a high flux of Prog from the formulation containing Oleth-20 and Oleth-20 with PGDC. The results of single and repeated in vivo transdermal absorption studies confirmed that good plasma levels of Prog were achieved and maintained by Oleth-20 and PGDC containing gel formulation. The Oleth-20 and PGDC containing ethanolic gel formulation seemed to have the ability to maintain a high activity of Prog and high diffusivity or solubility of Prog in the epidermis on the practical formulation application.

  6. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-07-08

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  7. Major bioactive metabolites from marine fungi: A Review.

    PubMed

    Hasan, Saba; Ansari, Mohammad Israil; Ahmad, Anis; Mishra, Maitreyi

    2015-01-01

    Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.

  8. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.

    PubMed

    Xavier-Junior, Francisco Humberto; Huang, Nicolas; Vachon, Jean-Jacques; Rehder, Vera Lucia Garcia; do Egito, Eryvaldo Sócrates Tabosa; Vauthier, Christine

    2016-12-01

    Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil. Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed. Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained. O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.

  9. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis

    PubMed Central

    Suyama, Takashi L.; Gerwick, William H.; McPhail, Kerry L.

    2011-01-01

    The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with the modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products which were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable ‘detective work’ remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques. PMID:21715178

  10. Effects of Surfactants on Chlorobenzene Absorption on Pyrite Surface

    NASA Astrophysics Data System (ADS)

    Hoa, P. T.; Suto, K.; Inoue, C.; Hara, J.

    2007-03-01

    Recently, both surfactant extraction of chlorinated compounds from contaminated soils and chemical reduction of chlorinated compounds by pyrite have had received a lot of attention. The reaction of the natural mineral pyrite was found as a surface controlling process which strongly depends on absorption of contaminants on the surface. Surfactants were not only aggregated into micelle which increase solubility of hydrophobic compounds but also tend to absorb on the solid surface. This study investigated effects of different kinds of Surfactants on absorption of chlorobenzene on pyrite surface in order to identify coupling potential of surfactant application and remediation by pyrite. Surfactants used including non-ionic, anionic and cationic which were Polyoxyethylene (23) Lauryl Ether (Brij35), Sodium Dodecyl Sulfate (SDS) and Cetyl TrimethylAmmonium Bromide (CTAB) respectively were investigated with a wide range of surfactant concentration up to 4 times of each critical micelle concentration (CMC). Chlorobenzene was chosen as a representative compound. The enhancement or competition effects of Surfactants on absorption were discussed.

  11. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    NASA Astrophysics Data System (ADS)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  12. Surfactants tailored by the class Actinobacteria

    PubMed Central

    Kügler, Johannes H.; Le Roes-Hill, Marilize; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Globally the change towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application. PMID:25852670

  13. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants

    EPA Science Inventory

    One-step green synthesis of gold (Au) nanostructures is described using naturally occurring biodegradable plant surfactants such as VeruSOL-3™ (mixture of d-limonene and plant-based surfactants), VeruSOL-10™, VeruSOL-11™ and VeruSOL-12™ (individual plant-based surfactants deri...

  14. Surfactant-Enhanced Size-Excluded Transport of Bacteria Through Unsaturated Porous Media.

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    US domestic waste water is rich in surfactants because of the intensive usage of surfactants-containing household product. It results in a surfactants presence environment when this untreated waste water released into subsurface. It was reported that surfactants enhance the colloidal transport in porous media, which have significant effect on issues such as subsurface pathogens contamination and biodegradation. In this study, soil column experiments were conducted. The soil column was remained unsaturated and with a steady flow passing through it. Escherichia coli K-12 transported in the soil column and its breakthrough data was collected in presence of surfactant anionic surfactant linear alkylbenzene sulfonate (LAS) concentration range over 0, 0.25, 0.5, 0.75, 1, and 2 times Critical Micelle Concentration (CMC). It was found that the increase in LAS concentration greatly increases breakthrough concentration C/C0 and decreases breakthrough time tb until LAS concentration reaches 1 xCMC. Numerical models were built simulating and investigating this phenomenon. The goodness of model fitting was greatly improved by adding exclusion factor into the model, which indicated that the presence of surfactant might enhance the exclusion effect. The relationships between LAS concentration and the two coefficients, deposition rate coefficient k and exclusion effect coefficient θim, were found can be fitted by a quasi-Langmuir equation. And the model validation with observed data showed that the model has an acceptable reliability.

  15. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  17. Marine Natural Products from New Caledonia—A Review

    PubMed Central

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-01-01

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs. PMID:26999165

  18. Marine Natural Products from New Caledonia--A Review.

    PubMed

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-03-16

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.

  19. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  20. Assessing the natural and anthropogenic influences on basin-wide fish species richness.

    PubMed

    Cheng, Su-Ting; Herricks, Edwin E; Tsai, Wen-Ping; Chang, Fi-John

    2016-12-01

    Theory predicts that the number of fish species increases with river size in natural free-flowing rivers, but the relationship is lost under intensive exploitation of water resources associated with dams and/or landscape developments. In this paper, we aim to identify orthomorphic issues that disrupt theoretical species patterns based on a multi-year, basin-wide assessment in the Danshuei River Watershed of Taiwan. We hypothesize that multiple human-induced modifications fragment habitat areas leading to decreases of local fish species richness. We integrally relate natural and anthropogenic influences on fish species richness by a multiple linear regression model that is driven by a combination of factors including river network structure controls, water quality alterations of habitat, and disruption of channel connectivity with major discontinuities in habitat caused by dams. We found that stream order is a major forcing factor representing natural influence on fish species richness. In addition to stream order, we identified dams, dissolved oxygen deficiency (DO), and excessive total phosphorus (TP) as major anthropogenic influences on the richness of fish species. Our results showed that anthropogenic influences were operating at various spatial scales that inherently regulate the physical, chemical, and biological condition of fish habitats. Moreover, our probability-based risk assessment revealed causes of species richness reduction and opportunities for mitigation. Risks of species richness reduction caused by dams were determined by the position of dams and the contribution of tributaries in the drainage network. Risks associated with TP and DO were higher in human-activity-intensified downstream reaches. Our methodology provides a structural framework for assessing changes in basin-wide fish species richness under the mixed natural and human-modified river network and habitat conditions. Based on our analysis results, we recommend that a focus on landscape

  1. Middle Adriatic Study of the Sea Surface Films as a Sink and Source of Trace Organics of Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Frka Milosavljevic, S.; Cvitešić, A.; Kroflič, A.; Šala, M.; Ciglenečki, I.; Grgic, I.

    2016-02-01

    Properties, (trans)formation, and removal of organic particles remain the least understood aspects of atmospheric chemistry despite the importance of organic aerosol (OA) for both human health and climate change. Recently, organosulfur compounds (OS) have come into the focus of atmospheric research as significant reservoirs of S in the atmosphere, being potentially important components of gas-to-particle conversion and formation of secondary organic aerosol (SOA) especially in the oceanic region. Moreover, nitroaromatic compounds (NAC), as (methyl)nitrocatehols recently reported as potentially toxic constituents of aerosol water soluble organic matter (WSOM) and significant SOA tracers, have not been studied over marine atmosphere till now. A range of global exchange processes between the sea and the atmosphere is hindered by the sea surface microlayer (SML) generally enriched in surface active organics which form films and serve both as a sink and a source of marine OA. To better understand the role of surfactant films at the air-sea interface in global biogeochemistry as well as the sources and transport pathways of marine OA and to estimate their importance in global climate, it is necessary to study chemical composition and properties of trace organics, OS and NAC, in both the SML and marine aerosols as an integrated whole. We will present the first attempt to study marine aerosol WSOM as well as the SML collected in the Middle Adriatic with a special emphasis on its total S and OS content as well as on specific NAC. For that purpose a novel methodological approach capable of their quantification as well as determination of their surfactant nature is applied by combining liquid chromatography mass spectrometry, ion chromatography, inductively coupled plasma mass spectrometry, and electrochemistry. The obtained data are correlated with those for dissolved and particulate organic carbon, water soluble anions and cations, chlorophyll a, nutrients, and surfactants.

  2. Marine shrimp aquaculture and natural resource degradation in Thailand

    NASA Astrophysics Data System (ADS)

    Flaherty, Mark; Karnjanakesorn, Choomjet

    1995-01-01

    Rising demand for shrimp in the developed nations has helped to foster a dramatic growth in marine shrimp aquaculture, particularly in South America and South Asia. In Thailand, Marine shrimp aquaculture is now an important earmer of foreign exchange. The growth in Production has been achieved through the expansion of the culture area and the adoption of intensive production methods. The conversion of near-shore areas to shrimp culture, however, is proving to have many consequences that impinge on the environmental integrity of coastal areas. This paper reviews the development of Thailand's marine shrimp culture industry and examines the nature of the environmental impacts that are emerging. It then discusses the implications these have for rural poor and the long-term viability of the culture industry.

  3. Marine transportation of liquefied natural gas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curt, R.P.; Delaney, T.D.

    1973-01-01

    This report covers in some detail most of the major areas of consideration involved in the marine carriage of LNG. Some of the fields investigated and reviewed are the world's total energy picture and the particular requirements of natural gas in the United States in the near future. (GRA)

  4. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    NASA Astrophysics Data System (ADS)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  5. Agri-Business, Natural Resources, Marine Science; Grade 7. Cluster V.

    ERIC Educational Resources Information Center

    Calhoun, Olivia H.

    A curriculum guide for grade 7, the document is devoted to the occupational clusters "Agri-business, Natural Resources, and Marine Science." It is divided into five units: natural resources, ecology, landscaping, conservation, oceanography. Each unit is introduced by a statement of the topic, the unit's purpose, main ideas, quests, and a…

  6. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  7. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies

    PubMed Central

    Timmermans, Marshall L.; Paudel, Yagya P.; Ross, Avena C.

    2017-01-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria. PMID:28762997

  8. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies.

    PubMed

    Timmermans, Marshall L; Paudel, Yagya P; Ross, Avena C

    2017-08-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria.

  9. Response of the bacterial community in oil-contaminated marine water to the addition of chemical and biological dispersants.

    PubMed

    Couto, Camila Rattes de Almeida; Jurelevicius, Diogo de Azevedo; Alvarez, Vanessa Marques; van Elsas, Jan Dirk; Seldin, Lucy

    2016-12-15

    The use of dispersants in different stages of the oil production chain and for the remediation of water and soil is a well established practice. However, the choice for a chemical or biological dispersant is still a controversial subject. Chemical surfactants that persist long in the environment may pose problems of toxicity themselves; therefore, biosurfactants are considered to constitute an environmentally friendly and effective alternative. Nevertheless, the putative effects of such agents on the microbiomes of oil-contaminated and uncontaminated marine environments have not been sufficiently evaluated. Here, we studied the effects of the surfactant Ultrasperse II ® and the surfactin (biosurfactant) produced by Bacillus sp. H2O-1 on the bacterial communities of marine water. Specifically, we used quantitative PCR and genetic fingerprint analyses to study the abundance and structure of the bacterial communities in marine water collected from two regions with contrasting climatic conditions. The addition of either chemical surfactant or biosurfactant influenced the structure and abundance of total and oil-degrading bacterial communities of oil-contaminated and uncontaminated marine waters. Remarkably, the bacterial communities responded similarly to the addition of oil and/or either the surfactant or the biosurfactant in both set of microcosms. After 30 days of incubation, the addition of surfactin enhanced the oil-degrading bacteria more than the chemical surfactant. However, no increase of hydrocarbon biodegradation values was observed, irrespective of the dispersant used. These data contribute to an increased understanding of the impact of novel dispersants on marine bacteriomes before commercial release into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Physicochemical signatures of natural surfactant sea films from coastal Middle Adriatic stations

    NASA Astrophysics Data System (ADS)

    Frka, Sanja; Pogorzelski, Stanislaw; Kozarac, Zlatica; Ćosović, Božena

    2013-04-01

    Boundary layers between different environmental compartments represent critical interfaces for biological, chemical and physical processes. The sea surface microlayer (SSM) as a top layer of the sea surface represents natural interface between the atmosphere and ocean. Although < 1 mm in thickness the SML plays a key role in the global biogeochemical cycling because all gaseous, liquid and particulate materials must pass through this interface when exchanging between the ocean and the atmosphere. The SSM thus represents a very important driver enhancing air-water exchange processes. A variety of natural and anthropogenic organic compounds, particularly those which are surface active (SA) are generally enriched in the SML. It is widely acknowledged that the SSM is complex matrix of SA organics as carbohydrates, proteins, lipids and humic substances. Although lipid material is much less abundant than carbohydrates and proteins in the SML, their contribution to surface activity may be disproportionately large. The surfactant films at the air-sea interface change its physicochemical properties reducing air-sea exchange possesses by impeding molecular diffusion across the interface and influencing the hydrodynamic characteristics of water motion at the interface. Various biological, chemical and physical processes lead to the alteration of the film chemical composition, surface physical properties, surface concentration and spatial distribution of film-forming components. Instead of analyzing its chemical composition, it should be possible to scale the SML surface pressure-area (π-A) isotherms in terms of structural parameters which appear to be a sensitive and quantitative measure of the film physicochemical composition, surface concentration and miscibility of its film-forming components. We will present a large data set obtained by electrochemical and monolayer techniques, accompanied with the novel scaling approach for physicochemical characterization of SA

  11. Nascent Marine Aerosol Acting as Ultra-Efficient Cloud Nuclei

    NASA Astrophysics Data System (ADS)

    Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, C.; Seinfeld, J.; O'Dowd, C. D. D.

    2017-12-01

    Marine aerosol is an important part of the natural aerosol and often dominates the total burden in remote locations. Moreover, it contributes significantly to the global radiative budget through the formation of haze and cloud layers. Even if these layers are optically-thin at times, they can have a profound impact on the radiative budget as they overly a dark and extensive ocean surface. Since the postulation of marine aerosol global importance several decades ago1, understanding has progressed from evaluation of the nss-sulphate and sea salt effects to the acknowledgement of a significant role of organic aerosol2. Dependence of organic matter (OM) fraction enrichment in sea spray on phytoplankton biomass has been shown3 as well as an apparent dichotomous OM behaviour in terms of water uptake4. Hygroscopicity of organic aerosol in sub-saturated humidity fields is typically less than most common salts found in the atmospheric aerosol; however, the ability of organic aerosol to activate cloud droplets is predicted to be greatly increased in supersaturated air due a lowering of the droplets surface tension5. While this phenomenon has been acknowledged for some time, it has yet to be demonstrated in the real atmosphere. Here, we present evidence that recently-formed secondary organic aerosol particles, in marine air, lead to enhanced cloud droplet activation resulting from surface tension reduction. Whilst the surface tension lowering is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of solute ions by surfactant molecules at the droplet-vapour interface, we present new observational and theoretical evidence illustrating that, in ambient air, the former can prevail over the latter. Consideration of liquid-liquid phase-separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, explains the lack of suppression of the Raoult effect, while maintaining

  12. Differential scanning calorimetric study of nonionic surfactant mixtures with a room temperature ionic liquid, bmimBF4.

    PubMed

    Inoue, Tohru; Higuchi, Yuka; Misono, Takeshi

    2009-10-01

    The melting behavior of polyethyleneglycol dodecyl ethers (C(12)E(6), C(12)E(7), and C(12)E(8)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), was investigated by means of differential scanning calorimetry (DSC). The melting temperature as a function of the surfactant concentration, combined with the cmc curve and cloud point curve, provided phase diagrams for the surfactant/bmimBF(4) mixtures in solvent-rich region. The characteristic feature of the mixtures is an existence of the Krafft temperature which is usually not observed with aqueous solutions of nonionic surfactants. The heat of fusion as a function of the surfactant concentration provided the interaction energy between the surfactant and bmimBF(4). The interaction energy shows a linear dependence on the length of polyoxyethylene (POE) chain of the surfactants, which suggests that the solvation takes place around the POE chain.

  13. Surfactant selection for a liquid foam-bed photobioreactor.

    PubMed

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  14. Thermally cleavable surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhanon, James R; Simmons, Blake A; Zifer, Thomas

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Thermally cleavable surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElhanon, James R; Simmons, Blake A; Zifer, Thomas

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R [Manteca, CA; Simmons, Blake A [San Francisco, CA; Zifer, Thomas [Manteca, CA; Jamison, Gregory M [Albuquerque, NM; Loy, Douglas A [Albuquerque, NM; Rahimian, Kamyar [Albuquerque, NM; Long, Timothy M [Urbana, IL; Wheeler, David R [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  18. [New natural products from the marine-derived Aspergillus fungi-A review].

    PubMed

    Zhao, Chengying; Liu, Haishan; Zhu, Weiming

    2016-03-04

    Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.

  19. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications

    PubMed Central

    Sable, Rushikesh; Parajuli, Pravin; Jois, Seetharama

    2017-01-01

    Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market. PMID:28441741

  20. Remediation of soil-bound polynuclear aromatic hydrocarbons using nonionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, IckTae; Ghosh, Mriganka; Cox, C.

    1996-12-31

    The solubilization and biodegradation of soil-bound PAHs from a manufactured gas plant (MGP) site soil was investigated using surfactants. Three nonionic polyoxyethylene (POE) surfactants, Triton X-100, Tween 80, and Brij 35, were used. The fate of four PAHs, phenanthrene, anthracene, pyrene, and benzo(a)pyrene were monitored during the remediation process. The measured concentrations of solubilized PAHs agreed well with those estimated using micelle-water partitioning coefficient, K{sub m}, and Raoult`s law. The solubilization of soil-bound PAHs by surfactants is a slow, nonequilibrium process. Diffusion of PAH molecules within the weathered soil-tar matrix is proposed as the rate-limiting step in solubilizing PAHs frommore » such soils. A radial diffusion model is used to describe solubilization of PAHs by surfactant washing. The model predicts experimental results fairly well at low surfactant dosages while at high dosages it somewhat overestimates the extent of solubilization. Biodegradation studies were performed using a natural consortium of microorganisms enriched from PAH-contaminated soils. Surfactants enhanced biodegradation of PAHs except for Tween 80. However, biodegradation of surfactants themselves appear to attenuate the beneficial effects of surfactant-mediated bioremediation.« less

  1. Future direction in marine bacterial agarases for industrial applications.

    PubMed

    Jahromi, Saeid Tamadoni; Barzkar, Noora

    2018-06-16

    The marine ecosystem has been known to be a rich source of novel enzymes. Agarase is a key enzyme that can hydrolyze agar in the marine environment. Marine bacterial agarase has been isolated from various sources, such as sediments, coastal water, and deep sea and from the surface of crustaceans and seaweeds. This review presents an account of the agarase production of marine bacteria. General information about agar, agarase, isolation, and purification of marine bacterial agarases; the biochemical properties of native agarase from marine bacteria; the biochemical properties of recombinant marine bacterial agarases from engineered microorganisms; and the industrial future of marine bacterial agarases is analyzed. With recent biotechnological processes, researchers need novel functional enzymes like agarase from marine resources, such as marine bacteria, that can be used for diverse applications in the biotechnological industry. Marine bacterial agarases might be of significant interest to the industry because they are safe and are a natural source. This review highlights the potential of marine bacteria as important sources of agarase for application in various industries.

  2. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties

    PubMed Central

    2013-01-01

    For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs. PMID:23724847

  3. Adsorptive removal of naphthalene induced by structurally different Gemini surfactants in a soil-water system.

    PubMed

    Wei, Jia; Li, Jun; Huang, Guohe; Wang, Xiujie; Chen, Guanghui; Zhao, Baihang

    2016-09-01

    A new generation of surfactant, Gemini surfactants, have been synthesized and have attracted the attention of various industrial and academic research groups. This study focused on the use of symmetric and dissymmetric quaternary ammonium Gemini surfactants to immobilize naphthalene onto soil particles, and is used as an example of an innovative application to remove HOC in situ using the surfactant-enhanced sorption zone. The sorption capacity of modified soils by Gemini surfactant and natural soils was compared and the naphthalene sorption efficiency, in the absence and presence of Gemini surfactants with different alkyl chain lengths, was investigated in the soil-water system. The results have shown that the increased added Gemini surfactant formed admicelles at the interface of soil/water having superior capability to retard contaminant. Symmetric and dissymmetric Gemini surfactants have opposite effect on the aspect of removing of PAH attributing to their solubilization and sorption behavior in soil-water system. Compared with the natural soil, sorption of naphthalene by Gemini-modified soil is noticeably enhanced following the order of C12-2-16 < C12-2-12 < C12-2-8. However, the symmetric Gemini surfactant C12-2-12 is the optimized one for in situ barrier remediation, which is not only has relative high retention ability but also low dosage.

  4. Effect of Hydrotropic Compounds on the Self-Organization and Solubilization Properties of Cationic Surfactants

    NASA Astrophysics Data System (ADS)

    Gaynanova, G. A.; Valeeva, F. G.; Kushnazarova, R. A.; Bekmukhametova, A. M.; Zakharov, S. V.; Mirgorodskaya, A. B.; Zakharova, L. Ya.

    2018-07-01

    The effect hydrotropic additives (salts of aromatic acids and choline chloride) have on the micelle-forming properties (the critical concentrations of micelle formation and the Krafft temperature) of cationic surfactants, and on the solubilization capability of mono- and dicationic surfactants toward such hydrophobic compounds as a Sudan I spectral probe and curcumin natural dye, is considered. The factors that govern solubilization capacity, e.g., the structure of the head group of surfactants, the nature of the solubilizate and hydrotropic additives, and the pH of the medium are determined.

  5. Surfactant-laden drop jellyfish-breakup mode induced by the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2017-03-01

    Drop breakup is a familiar event in both nature and technology. In this study, we find that the bag breakup mode can be replaced by a new breakup mode: jellyfish breakup, when the surfactant concentration of a surfactant-laden drop is high. This new breakup mode has a morphology resembling a jellyfish with many long tentacles. This is due to the inhomogeneous distribution of surfactant in the process of drop deformation and breakup. The thin film of liquid can remain stable as a result of the Marangoni effect. Finally, we propose that the dimensionless surfactant concentration can serve as a criterion for breakup mechanisms.

  6. Around a camphoric-acid boat, is the surfactant adsorbed on to the interface or dissolved in the bulk?

    NASA Astrophysics Data System (ADS)

    Mandre, Shreyas; Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2016-11-01

    A camphoric-acid boat (c-boat for short), a cylindrical gel tablet infused with camphoric acid, moves spontaneously when placed on an air-water interface. This system is a classic example of propulsion driven by Marangoni forces. Despite rich history on particles propelled by Marangoni forces, including contributions by figures such as Benjamin Franklin, Allesandro Volta, and Giovanni Venturi, the underlying fluid dynamics remains poorly understood. A key missing piece is the nature of the surfactant; in our case, the question is whether the camphoric acid is dissolved in the bulk or adsorbed on to the interface. We gain insight into this piece by holding the c-boat stationary and measuring the surrounding axisymmetric flow velocity to a precision needed to distinguish between the two possibilities. For soluble surfactants, it is known that the velocity field decays as r - 2 / 3, where r is the distance from the center of the c-boat. Whereas, for surfactant adsorbed on to the air-water interface, we derive that the surrounding velocity fields decays as r - 3 / 5. Based on our measurements we deduce that, even though soluble in water, the Marangoni flow results from a layer of camphoric acid adsorbed to the air-water interface.

  7. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success

    PubMed Central

    Martins, Ana; Vieira, Helena; Gaspar, Helena; Santos, Susana

    2014-01-01

    The marine environment harbors a number of macro and micro organisms that have developed unique metabolic abilities to ensure their survival in diverse and hostile habitats, resulting in the biosynthesis of an array of secondary metabolites with specific activities. Several of these metabolites are high-value commercial products for the pharmaceutical and cosmeceutical industries. The aim of this review is to outline the paths of marine natural products discovery and development, with a special focus on the compounds that successfully reached the market and particularly looking at the approaches tackled by the pharmaceutical and cosmetic companies that succeeded in marketing those products. The main challenges faced during marine bioactives discovery and development programs were analyzed and grouped in three categories: biodiversity (accessibility to marine resources and efficient screening), supply and technical (sustainable production of the bioactives and knowledge of the mechanism of action) and market (processes, costs, partnerships and marketing). Tips to surpass these challenges are given in order to improve the market entry success rates of highly promising marine bioactives in the current pipelines, highlighting what can be learned from the successful and unsuccessful stories that can be applied to novel and/or ongoing marine natural products discovery and development programs. PMID:24549205

  8. Development of novel drugs from marine surface associated microorganisms.

    PubMed

    Penesyan, Anahit; Kjelleberg, Staffan; Egan, Suhelen

    2010-03-01

    While the oceans cover more than 70% of the Earth's surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds ("bioactives") to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds ("antimicrobials"), may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta-) genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.

  9. Ocean warming expands habitat of a rich natural resource and benefits a national economy.

    PubMed

    Jansen, Teunis; Post, Søren; Kristiansen, Trond; Óskarsson, Guðmundur J; Boje, Jesper; MacKenzie, Brian R; Broberg, Mala; Siegstad, Helle

    2016-10-01

    Geographic redistribution of living natural resources changes access and thereby harvesting opportunities between countries. Internationally shared fish resources can be sensitive to shifts in the marine environment and this may have great impact on the economies of countries and regions that rely most heavily on fisheries to provide employment and food supply. Here we present a climate change-related biotic expansion of a rich natural resource with substantial economic consequences, namely the appearance of northeast Atlantic mackerel (Scomber scombrus) in Greenlandic waters. In recent years, the summer temperature has reached record highs in the Irminger Current, and this development has expanded the available and realized mackerel habitat in time and space. Observations in the Irminger Current in east Greenland in 2011 of this temperature-sensitive epipelagic fish were the first records so far northwest in the Atlantic. This change in migration pattern was followed by a rapid development of a large-scale fishery of substantial importance for the national economy of Greenland (23% of Greenland's export value of all goods in 2014). A pelagic trawl survey was conducted in mid-summer 2014 and the results showed that the bulk of ~1 million Mg (=t) of mackerel in the Irminger Current in southeast Greenland were located in the relatively warm (>8.5°C) surface layer. Mackerel was also observed in southwest Greenland. Finally, 15 CMIP5 Earth System Model projections of future marine climate were used to evaluate the epipelagic environment in Greenland. These projections for moderate and high CO 2 emission scenarios (representative concentration pathways [RCP] 4.5 and 8.5) suggest how the available mackerel habitat may expand further in space and time. Overall, our results indicate that, if the stock remains large, productive, and continues its current migration pattern, then climate change has provided Greenland with a new unique opportunity for commercial exploitation

  10. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites.

    PubMed

    Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G

    2011-03-21

    Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.

  11. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    PubMed

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents. © 2015 Wiley Periodicals, Inc.

  12. A database of natural products and chemical entities from marine habitat

    PubMed Central

    Babu, Padavala Ajay; Puppala, Suma Sree; Aswini, Satyavarapu Lakshmi; Vani, Metta Ramya; Kumar, Chinta Narasimha; Prasanna, Tallapragada

    2008-01-01

    Marine compound database consists of marine natural products and chemical entities, collected from various literature sources, which are known to possess bioactivity against human diseases. The database is constructed using html code. The 12 categories of 182 compounds are provided with the source, compound name, 2-dimensional structure, bioactivity and clinical trial information. The database is freely available online and can be accessed at http://www.progenebio.in/mcdb/index.htm PMID:19238254

  13. Perstraction of Intracellular Pigments through Submerged Fermentation of Talaromyces spp. in a Surfactant Rich Media: A Novel Approach for Enhanced Pigment Recovery

    PubMed Central

    Oliveira, Jorge; Sousa-Gallagher, Maria; Méndez-Zavala, Alejandro; Montañez, Julio Cesar

    2017-01-01

    A high percentage of the pigments produced by Talaromyces spp. remains inside the cell, which could lead to a high product concentration inhibition. To overcome this issue an extractive fermentation process, perstraction, was suggested, which involves the extraction of the intracellular products out of the cell by using a two-phase system during the fermentation. The present work studied the effect of various surfactants on secretion of intracellular pigments produced by Talaromyces spp. in submerged fermentation. Surfactants used were: non-ionic surfactants (Tween 80, Span 20 and Triton X-100) and a polyethylene glycerol polymer 8000, at different concentrations (5, 20, 35 g/L). The highest extracellular pigment yield (16 OD500nm) was reached using Triton X-100 (35 g/L), which was 44% higher than the control (no surfactant added). The effect of addition time of the selected surfactant was further studied. The highest extracellular pigment concentration (22 OD500nm) was achieved when the surfactant was added at 120 h of fermentation. Kinetics of extracellular and intracellular pigments were examined. Total pigment at the end of the fermentation using Triton X-100 was 27.7% higher than the control, confirming that the use of surfactants partially alleviated the product inhibition during the pigment production culture. PMID:29371551

  14. Research progress of surfactant

    NASA Astrophysics Data System (ADS)

    Zheng, Minyi; Mo, Lingyun; Qin, Ruqiong; Liang, Liying; Zhang, Fan

    2017-01-01

    With the rapid development of surfactant and the large growing use of the materials, the safety of surfactant may be a problem that draw worldwide attention. The surfactant can be discharged into environment through various approach and may cause toxic effects in organism. This paper reviews the environmental effects of surfactant materials for plants and animals, and raises some questions by describing the results of environmental toxicology. We put it that it is a great significant of promote the sustainable development of surfactant industry through a comprehensive understanding of surfactant environmental safety.

  15. What contribution do detergent fatty alcohols make to sewage discharges and the marine environment?

    PubMed

    Mudge, Stephen M; Meier-Augenstein, Wolfram; Eadsforth, Charles; DeLeo, Paul

    2010-10-06

    To investigate the potential sources of fatty alcohols arriving at a WWTP and entering the receiving waters, a study was conducted at Treborth North Wales using compound specific stable isotope mass spectrometry (¹³C and ²H). Samples were collected from soils, marine sediments, detergents used in the catchment and in the WWTP. Total fatty alcohol concentrations decreased in the liquid phases through the treatment works with the majority of the compounds accumulating in the sludge (biosolids). Natural plant based detergents have δ¹³C values between -26 and -32‰ while petroleum-based detergents occupy a range between -25 and -30‰. The corresponding δ²H values are -250‰ for natural sourced materials and -50‰ for oil-based detergents which enable these two sources to be separated. The influent to the WWTP contained fatty alcohols which originated mainly from faecal sources and natural surfactants (∼75%) with a smaller amount potentially derived from petroleum-based surfactants (∼25%). The effluents from the WWTP contained mainly short chain compounds with a chain length less than C¹⁶. Their δ²H stable isotope signature was different to the other potential sources examined and suggests bacterial synthesis during the treatment processes. The sludge had relatively high concentrations of fatty alcohols as would be expected from their low water solubility. The stable isotopic signatures were consistent with a mixture of faecal and detergent sources. The sludge in this area is routinely spread on agricultural land as a fertiliser and may find its way back into the sea via land runoff. On the basis of the mean discharge rates and the mean C₁₂ concentration in the effluent, this WWTP would contribute ∼300 g day⁻¹ to the receiving waters. The marine sediment samples had short chain fatty alcohols that are typical of marine production and with stable isotope values that indicate exclusive marine production for the C₁₄ potentially mixed with

  16. Natural seepage of crude oil into the marine environment

    USGS Publications Warehouse

    Kvenvolden, K.A.; Cooper, C.K.

    2003-01-01

    Recent global estimates of crude-oil seepage rates suggest that about 47% of crude oil currently entering the marine environment is from natural seeps, whereas 53% results from leaks and spills during the extraction, transportation, refining, storage, and utilization of petroleum. The amount of natural crude-oil seepage is currently estimated to be 600,000 metric tons per year, with a range of uncertainty of 200,000 to 2,000,000 metric tons per year. Thus, natural oil seeps may be the single most important source of oil that enters the ocean, exceeding each of the various sources of crude oil that enters the ocean through its exploitation by humankind.

  17. Water-Rich Fluid Material Containing Orderly Condensed Proteins.

    PubMed

    Nojima, Tatsuya; Iyoda, Tomokazu

    2017-01-24

    A fluid material with high protein content (120-310 mg mL -1 ) was formed through the ordered self-assembly of native proteins segregated from water. This material is instantly prepared by the simple mixing of a protein solution with anionic and cationic surfactants. By changing the ratio of the surfactants based on the electrostatic characteristics of the target protein, we observed that the surfactants could function as a versatile molecular glue for protein assembly. Moreover, these protein assemblies could be disassembled back into an aqueous solution depending on the salt conditions. Owing to the water-retaining properties of the hydrophilic part of surfactants, the proteins in this material are in a water-rich environment, which maintains their native structure and function. The inclusion of water also provides functional extensibility to this material, as demonstrated by the preparation of an enzymatically active gel. We anticipate that the unique features of this material will permit the use of proteins not only in solution but also as elements of integrated functionalized materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    PubMed Central

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 106 acetate-utilizing manganese-reducing cells cm−3 in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments. PMID:22572639

  19. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    PubMed

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  20. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    PubMed Central

    Lopez, Dioxelis; Martinez-Luis, Sergio

    2014-01-01

    P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

  1. Antiviral Activity of Natural Products Extracted from Marine Organisms

    PubMed Central

    Uzair, Bushra; Mahmood, Zahra; Tabassum, Sobia

    2011-01-01

    Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and preclinical stages. Marine compounds are paving the way for a new trend in modern medicine. PMID:23678429

  2. Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives

    PubMed Central

    Mehbub, Mohammad Ferdous; Lei, Jie; Franco, Christopher; Zhang, Wei

    2014-01-01

    Marine sponges belonging to the phylum Porifera (Metazoa), evolutionarily the oldest animals are the single best source of marine natural products. The present review presents a comprehensive overview of the source, taxonomy, country of origin or geographical position, chemical class, and biological activity of sponge-derived new natural products discovered between 2001 and 2010. The data has been analyzed with a view to gaining an outlook on the future trends and opportunities in the search for new compounds and their sources from marine sponges. PMID:25196730

  3. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  4. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-01-27

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  5. Phylogenetic Tree Analysis of the Cold-Hot Nature of Traditional Chinese Marine Medicine for Possible Anticancer Activity

    PubMed Central

    Song, Xuxia; Li, Xuebo; Zhang, Fengcong; Wang, Changyun

    2017-01-01

    Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources. PMID:28191021

  6. Amino acid-based surfactants – do they deserve more attention?

    PubMed

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cadmium and zinc isotopes of organic-rich marine sediments during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Sweere, T.; Dickson, A. J.; Jenkyns, H. C.; Porcelli, D.; Henderson, G. M.; van den Boorn, S.

    2017-12-01

    Mesozoic Oceanic Anoxic Events (OAEs) are characterized by widespread deposition of organic-rich sediments and the spread of low-oxygen marine environments. To drive and sustain unusually efficient carbon-burial during these events requires high export productivity rates, which has to be supported by an abundance of nutrients in the surface ocean. The presence of redox-sensitive bio-essential micronutrients may be particularly important, and potentially bio-limiting, during such events as they may be drawn down into sediment under low-oxygen conditions. Cadmium and zinc isotopes have potential as tracers for past (micro)nutrient dynamics considering their nutrient-like distribution in the modern ocean and isotope fractionation with uptake by primary producers. The modern deep ocean is generally well mixed for Cd and Zn while short-term cycling of these elements in the surface ocean imposes regional variation. Additional regional variation may be caused by sulfide formation and associated isotope fractionation in euxinic environments. The impact of such regional environmental conditions on the Cd- and Zn-isotope composition of the sediment therefore needs to be addressed in order to explore the use of these elements as a proxy for past nutrient conditions. Here we present an extensive dataset of cadmium- and zinc-isotope compositions of organic-rich marine sediments from different basins deposited during OAE 2 (Late Cretaceous). This comparison highlights regional differences in Cd- and Zn-isotope compositions. However, despite regional environmental controls, a correlation between δ114Cd and δ66Zn across the different sites is observed, which implies a largely similar control on the two isotope systems. When regional environmental controls are accounted for, the data may provide insight in the δ66Zn and δ114Cd evolution of global seawater during OAE 2 as well as information on the global cycling of redox-sensitive micronutrients during the event

  8. Recent Advances in the Discovery and Development of Marine Natural Products with Cardiovascular Pharmacological Effects.

    PubMed

    Zhou, Jie-Bin; Luo, Rong; Zheng, Ying-Lin; Pang, Ji-Yan

    2018-01-01

    Numerous studies have indicated that marine natural products are one of the most important sources of the lead compounds in drug discovery for their unique structures, various bioactivities and less side effects. In this review, the marine natural products with cardiovascular pharmacological effects reported after 2000 will be presented. Their structural types, relevant biological activities, origin of isolation and information of strain species will be discussed in detail. Finally, by describing our studies as an example, we also discuss the chances and challenges for translating marine-derived compounds into preclinical or clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Radiochemical techniques for determining some naturally occurring radionuclides in marine environmental materials

    NASA Astrophysics Data System (ADS)

    Baker, C. W.

    1984-06-01

    The determination of some of the naturally-occurring, alpha-emitting radionuclides in marine environmental materials, is of interest for several reasons. Radium and radon nuclides are potentially useful as oceanographic tracers. Lead and thorium nuclides may be used to study sedimentation rates, mixing processes and bioturbation in sediments. Radium and polonium nuclides are incorporated into food chains and the data may provide a perspective against which to assess the significance, for marine organisms, of exposure to radiation in a marine radioactive waste disposal situation. This paper discusses the manner in which samples are taken, and the radiochemical methods which have been employed to measure the nuclides, together with some data produced.

  10. Plate tectonic regulation of global marine animal diversity.

    PubMed

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E

    2017-05-30

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  11. Plate tectonic regulation of global marine animal diversity

    NASA Astrophysics Data System (ADS)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  12. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  13. Current applications of foams formed from mixed surfactant-polymer solutions.

    PubMed

    Bureiko, Andrei; Trybala, Anna; Kovalchuk, Nina; Starov, Victor

    2015-08-01

    Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications

    NASA Astrophysics Data System (ADS)

    Heinz, Hendrik; Pramanik, Chandrani; Heinz, Ozge; Ding, Yifu; Mishra, Ratan K.; Marchon, Delphine; Flatt, Robert J.; Estrela-Lopis, Irina; Llop, Jordi; Moya, Sergio; Ziolo, Ronald F.

    2017-02-01

    Nanostructures of diverse chemical nature are used as biomarkers, therapeutics, catalysts, and structural reinforcements. The decoration with surfactants has a long history and is essential to introduce specific functions. The definition of surfactants in this review is very broad, following its lexical meaning ;surface active agents;, and therefore includes traditional alkyl modifiers, biological ligands, polymers, and other surface active molecules. The review systematically covers covalent and non-covalent interactions of such surfactants with various types of nanomaterials, including metals, oxides, layered materials, and polymers as well as their applications. The major themes are (i) molecular recognition and noncovalent assembly mechanisms of surfactants on the nanoparticle and nanocrystal surfaces, (ii) covalent grafting techniques and multi-step surface modification, (iii) dispersion properties and surface reactions, (iv) the use of surfactants to influence crystal growth, as well as (v) the incorporation of biorecognition and other material-targeting functionality. For the diverse materials classes, similarities and differences in surfactant assembly, function, as well as materials performance in specific applications are described in a comparative way. Major factors that lead to differentiation are the surface energy, surface chemistry and pH sensitivity, as well as the degree of surface regularity and defects in the nanoparticle cores and in the surfactant shell. The review covers a broad range of surface modifications and applications in biological recognition and therapeutics, sensors, nanomaterials for catalysis, energy conversion and storage, the dispersion properties of nanoparticles in structural composites and cement, as well as purification systems and classical detergents. Design principles for surfactants to optimize the performance of specific nanostructures are discussed. The review concludes with challenges and opportunities.

  15. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands.

    PubMed

    Ockinger, Erik; Smith, Henrik G

    2006-09-01

    During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6-10 ha) and one small (0.5-2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km(2) landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at

  16. Effectiveness of the Surfactant Dioctyl Sodium Sulfosuccinate (DOSS) to Disperse Oil in a Changing Marine Environment

    NASA Astrophysics Data System (ADS)

    Steffy, D. A.; Nichols, A.; Kiplagat, G.

    2011-12-01

    We investigated the surfactant which was used to disperse the oil spill which occurred in the Gulf of Mexico during the summer 2010. The surfactant DOSS is an organic sulfonic acid salt which is a synthetic detergent that disrupts the interfacial tension between the saltwater and crude oil phases. The disruption becomes maximum at or above the critical micelle concentration (CMC). The CMC for the surfactant was determined to be at 0.13 % solution in deionized water at a pH of 7.2 and a temperature of 70oF. The CMC is lower at 0.09% solution in salt water. The effect has been identified as a "salting out" effect (Somasundaran, 2006). The CMC of DOSS in both saline and deionized water occurred at lower percent solutions at higher temperatures. The surface tension versus % solution plots are modeled by a power equation, with correlation coefficients consistently over 0.94. Surface tension versus percent solution plots are scalable to fit a temperature desired by the function f(x)= (1/(1+X^α)), where α = T1/T2.

  17. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    PubMed Central

    Hegazy, Mohamed Elamir F.; Mohamed, Tarik A.; Alhammady, Montaser A.; Shaheen, Alaa M.; Reda, Eman H.; Elshamy, Abdelsamed I.; Aziz, Mina; Paré, Paul W.

    2015-01-01

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species. PMID:26006713

  18. Molecular architecture and biomedical leads of terpenes from red sea marine invertebrates.

    PubMed

    Hegazy, Mohamed Elamir F; Mohamed, Tarik A; Alhammady, Montaser A; Shaheen, Alaa M; Reda, Eman H; Elshamy, Abdelsamed I; Aziz, Mina; Paré, Paul W

    2015-05-20

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  19. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    PubMed Central

    Mohanty, Sagarika; Jasmine, Jublee

    2013-01-01

    Surfactant enhanced bioremediation (SEB) of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL) pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs). Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review. PMID:24350261

  20. [Biophysical models in investigations of exogenous surfactant activities on the surface tension and their theurapeutic effectiveness].

    PubMed

    Todorov, R; Iordanova, A; Georgiev, G A; Petkova, Kh; Stoimenova, E; Georgieva, R; Khristova, E; Vasiliev, Kh; Lalchev, Z

    2007-01-01

    Surfactant therapy leads to significant clinical improvement in infants at risk for, or having, respiratory distress syndrome (RDS). The development of exogenous surfactant (ES) as a therapy for neonatal respiratory disorders was a significant advance in neonatal intensive care that has led to a decrease in neonatal mortality. Two broad categories of surfactants are available for exogenous therapy: surfactants derived from animal sources or 'natural' surfactants; and synthetic surfactants. The physical properties of natural and synthetic surfactants have been studied using techniques such as the Wilhelmy surface balance and the bilayer black film (BBF) method. Here we report some data from a comparative study of ES (Exosurf, Survanta, Curosurf and Alveofact) and clinical samples of tracheal aspirate (TA) of newborns with RDS treated with Curosurf. Measured interfacial physico-chemical parameters prove "better" properties in vitro of the surfactant proteins (SP-B and SP-C) containing preparations Curosurf and Alveofact. Their properties are similar, Alveofact showing a higher surface tension lowering capacity under dynamic conditions. A compendious comparison of results for dynamic surface properties of monolayers of TA from newborns treated with Curosurf with data for newborns treated with Exosurf is presented. Both ES yield the desired lowering of the surface tension during cyclic film compression, being larger after treatment with Curosurf. Observations concerning the properties of BFF of ES (dependence on surfactant concentration, adsorption time, film drainage time and BFF formation time) are also reported and discussed.

  1. Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles.

    PubMed

    Wang, Dali; Lin, Zhifen; Yao, Zhifeng; Yu, Hongxia

    2014-08-01

    The potential toxicities of nanoparticles (NPs) have been intensively discussed over the past decade. In addition to their single toxicities, NPs can interact with other environmental chemicals and thereby exert joint effects on biological systems and the environment. The present study investigated the combined toxicities of NPs and surfactants, which are among the chemicals that most likely coexist with NPs. Photobacterium phosphoreum was employed as the model organism. The results indicate that surfactants with different ion types can alter the properties of NPs (i.e., particle size and surface charge) in different ways and present complex joint effects on NP toxicities. Mixtures of different NPs and surfactants exhibited antagonistic, synergistic, and additive effects. In particular, the toxicity of ZnO was observed to result from its dissolved Zn(2+); thus, the joint effects of the ZnO NPs and surfactants can be explained by the interactions between the Zn ions and the surfactants. Our study suggests that the potential hazards caused by mixtures of NPs and surfactants are different from those caused by single NPs. Because surfactants are extensively used in the field of nanotechnology and are likely to coexist with NPs in natural waters, the ecological risk assessments of NPs should consider the impacts of surfactants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Distribution of surfactant protein A in rat lung.

    PubMed

    Doyle, I R; Barr, H A; Nicholas, T E

    1994-10-01

    Although surfactant protein A (SP-A) is an integral component of alveolar surfactant, its relative abundance in lamellar bodies, regarded as the intracellular storage organelles for surfactant, remains contentious. We have previously shown that lamellar bodies, isolated from rat lung by upward flotation on a sucrose gradient, can be subfractionated into classic-appearing lamellar bodies (Lb-A) and a vesicular fraction (Lb-B), which we have speculated may be a second release form of surfactant. In the present study, we have used two-dimensional protein electrophoresis and immunochemical analysis to clarify the origin and the composition of these two subcellular fractions. In addition, we have examined the hypothesis that the secretion of SP-A and surfactant phospholipids occurs by independent pathways by examining the distribution of SP-A, total protein, and disaturated phospholipids (DSP) in the tubular myelin-rich (Alv-1) and tubular myelin-poor (Alv-2) fractions separated from lavaged material and in Lb-A and Lb-B isolated from both lung homogenate and purified alveolar type II cells. Our findings indicate that Lb-B is derived from type II cells, although they do not indicate whether it is a secretory form of surfactant, a reuptake vesicle, or a mixture of both. We found that the lung has a large tissue pool of immunoreactive SP-A. The %SP-A/DSP of total lamellar bodies isolated from type II cells was 0.96 +/- 0.1 (mean +/- SE), intermediate between that in Lb-A (1.67 +/- 0.13) and in Lb-B (0.65 +/- 0.04). In contrast, the %SP-A/DSP was 11.16 +/- 0.84 in whole lung homogenate and 13.14 +/- 1.71 in whole type II cells. In the alveolar compartment, the %SP-A/DSP was 17.38 +/- 3.40 in Alv-1, 6.34 +/- 0.31 in Alv-2, and 10.49 +/- 1.43 in macrophages, values an order of magnitude greater than found with the lamellar bodies. Our results indicate that only a relatively small portion of alveolar SP-A is derived from lamellar bodies, and we suggest that secretion of SP

  3. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    species richness for a given habitat, in the characterization of communities of differentially impacted coastal marine ecosystems.

  4. Gels and lyotropic liquid crystals: using an imidazolium-based catanionic surfactant in binary solvents.

    PubMed

    Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li

    2014-08-05

    The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.

  5. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  6. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    PubMed

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  7. Influence of surfactant on the drop bag breakup in a continuous air jet stream

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhang, Wen-Bin; Xu, Jian-Liang; Li, Wei-Feng; Liu, Hai-Feng

    2016-05-01

    The deformation and breakup of surfactant-laden drops is a common phenomenon in nature and numerous practical applications. We investigate influence of surfactant on the drop bag breakup in a continuous air jet stream. The airflow would induce the advection diffusion of surfactant between interface and bulk of drop. Experiments indicate that the convective motions of deforming drop would induce the non-equilibrium distribution of surfactant, which leads to the change of surface tension. When the surfactant concentration is smaller than critical micelle concentration (CMC), with the increase of surface area of drop, the surface tension of liquid-air interface and the critical Weber number will increase. When the surfactant concentration is bigger than CMC, the micelle can be considered as the source term, which can supply the monomers. So in the presence of surfactant, there would be the significant nonlinear variation on the critical Weber number of bag breakup. We build the dynamic non-monotonic relationship between concentrations of surfactant and critical Weber number theoretically. In the range of parameters studied, the experimental results are consistent with the model estimates.

  8. Unique crystal structure of a novel surfactant protein from the foam nest of the frog Leptodactylus vastus.

    PubMed

    Cavalcante Hissa, Denise; Arruda Bezerra, Gustavo; Birner-Gruenberger, Ruth; Paulino Silva, Luciano; Usón, Isabel; Gruber, Karl; Maciel Melo, Vânia Maria

    2014-02-10

    Breeding by releasing eggs into stable biofoams ("foam nests") is a peculiar reproduction mode within anurans, fish, and tunicates; not much is known regarding the biochemistry or molecular mechanisms involved. Lv-ranaspumin (Lv-RSN-1) is the predominant protein from the foam nest of the frog Leptodactylus vastus. This protein shows natural surfactant activity, which is assumed to be crucial for stabilizing foam nests. We elucidated the amino acid sequence of Lv-RSN-1 by de novo sequencing with mass-spectrometry and determined the high-resolution X-ray structure of the protein. It has a unique fold mainly composed of a bundle of 11 α-helices and two small antiparallel β-strands. Lv-RSN-1 has a surface rich in hydrophilic residues and a lipophilic cavity in the region of the antiparallel β-sheet. It possesses intrinsic surface-active properties, reducing the surface tension of water from 73 to 61 mN m(-1) (15 μg mL(-1)). Lv-RSN-1 belongs to a new class of surfactants proteins for which little has been reported regarding structure or function. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Atrazine and Diuron partitioning within a soil-water-surfactant system

    NASA Astrophysics Data System (ADS)

    Wang, P.; Keller, A.

    2006-12-01

    The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar

  10. Plate tectonic regulation of global marine animal diversity

    PubMed Central

    Zaffos, Andrew; Finnegan, Seth

    2017-01-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657–659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence–breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity. PMID:28507147

  11. Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.

    PubMed

    Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi

    2013-04-16

    The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.

  12. Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity.

    PubMed

    Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra

    2012-07-01

    The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from

  13. The fate of instilled pulmonary surfactant in normal and quartz-treated rats.

    PubMed Central

    Lewis, R W; Harwood, J L; Richards, R J

    1987-01-01

    Naturally prepared radiolabelled pulmonary surfactant can be rapidly cleared from the alveolar surface to the lung tissue after intratracheal instillation into experimental rats. This clearance is both time- and dose-dependent, a large dose (10 mg/animal) becoming associated with lung tissue more rapidly than a smaller more physiological dose (0.75 mg/animal). The data indicate that extracellular dipalmitoyl-phosphatidylcholine, the major component of pulmonary surfactant, is not catabolized at the alveolar surface. Alveolar free cells (mainly macrophages) appear to play a minor role in surfactant clearance. Quartz-induced phospholipidosis does not lead to an alteration in the rate of bulk surfactant clearance from the alveolar surface, although the initial distribution of the removed phospholipid complex may change in relation to the enlarged heterogenous free cell population. PMID:2821988

  14. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  15. Repeat surfactant therapy for postsurfactant slump.

    PubMed

    Katz, L A; Klein, J M

    2006-07-01

    To evaluate repeat surfactant therapy for the treatment of respiratory failure associated with postsurfactant slump in extremely low birth weight infants (ELBW) by characterizing the population of premature infants who develop postsurfactant slump and measuring their response to a secondary course of surfactant therapy. A retrospective analysis of a cohort of all patients admitted over a 3-year period with birth weights <1000 g (ELBW infants). Information was collected by chart review and the patients were categorized into three distinct groups for analysis. Initial surfactant only, patients who received surfactant replacement therapy only for respiratory distress syndrome (RDS); repeat surfactant, patients who received both initial surfactant replacement for RDS and repeat surfactant therapy for postsurfactant slump (defined as respiratory failure after 6 days of age), and no surfactant, patients in whom no surfactant was ever administered. A respiratory severity score (RSS) was used to measure the severity of lung disease and response to surfactant therapy. Over 3 years, there were 165 ELBW infants who could develop postsurfactant slump and be eligible for repeat surfactant therapy. There were 39 infants who never received any surfactant therapy estimated gestational age (EGA) 27.7 +/- 1.7, birth weight 856 +/- 109 g) either at birth or after 6 days of life. There were 126 patients treated for RDS with initial surfactant replacement therapy (EGA 25.6 +/- 1.9 weeks, birth weight 713 +/- 179 g). Out of these RDS patients, 101 improved with an initial course of surfactant therapy (EGA 26 +/- 1.8, birth weight 751 +/- 143 g), but 25 (20% of the patients with RDS) developed postsurfactant slump and received a repeat course of surfactant therapy (EGA 24.7 +/- 1.2, birth weight 647 +/- 120 g). The repeat surfactant group (postsurfactant slump) was significantly more premature and had significantly lower birth weights compared to both the initial surfactant only group

  16. Interactions of structurally modified surfactants with reservoir minerals: Calorimetric, spectroscopic and electrokinetic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, P.; Sivakumar, A.; Xu, Q.

    1991-03-01

    The objective of this project is to elucidate mechanisms of adsorption of structurally modified surfactants on reservoir minerals and to develop a full understanding of the effect of the surfactant structure on the nature of the adsorbed layers at the molecular level. An additional aim is to study the adsorption of surfactant mixtures on simple well-characterized minerals and on complex minerals representing real conditions. The practical goal of these studies is the identification of the optimum surfactant structures and their combinations for micellar flooding. In this work, the experiments on adsorption were focussed on the position of sulfonate and methylmore » groups on the aromatic ring of alkyl xylene sulfonates. A multi-pronged approach consisting of calorimetry, electrokinetics, wettability and spectroscopy is planned to elucidate the adsorption mechanism of surfactants and their mixtures on minerals such as alumina and kaolinite. 32 refs., 15 figs., 7 tabs.« less

  17. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata.

    PubMed

    Anand, Prachi; Grigoryan, Alexandre; Bhuiyan, Mohammed H; Ueberheide, Beatrix; Russell, Victoria; Quinoñez, Jose; Moy, Patrick; Chait, Brian T; Poget, Sébastien F; Holford, Mandë

    2014-01-01

    Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng) specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.

  18. Shedding light on the different behavior of ionic and nonionic surfactants in emulsion polymerization: from atomistic simulations to experimental observations.

    PubMed

    Magi Meconi, Giulia; Ballard, Nicholas; Asua, José M; Zangi, Ronen

    2017-12-06

    Although surfactants are known to play a vital role in polymerization reactions carried out in dispersed media, many aspects of their use are poorly understood, perhaps none more so than the vastly different action of ionic and nonionic surfactants in emulsion polymerization. In this work, we combine experimental measurements of emulsion polymerization of styrene with atomistic molecular dynamics simulations to better understand the behavior of surfactants at monomer/polymer-water interfaces. In a batch emulsion polymerization of styrene, the nonionic surfactant Disponil AFX 1080 leads to two nucleation periods, in contrast to the behavior observed for the ionic surfactant SDS. This can be explained by the absorption of the nonionic surfactant into the organic phase at the early stages of the polymerization reaction which is then released as the reaction progresses. Indeed, we find that the partition coefficient of the surfactant between the organic phase and water increases with the amount of monomer in the former, and preferential partitioning is detected to organic phases containing at least 55% styrene. Results from molecular dynamics simulations confirm that spontaneous dissolution of the non-ionic surfactant into a styrene-rich organic phase occurs above a critical concentration of the surfactant adsorbed at the interface. Above this critical concentration, a linear correlation between the amount of surfactant adsorbed at the interface and that absorbed inside the organic phase is observed. To facilitate this absorption into a completely hydrophobic medium, water molecules accompany the intruding surfactants. Similar simulations but with the ionic surfactant instead did not result in any absorption of the surfactant into a neat styrene phase, likely because of its strongly hydrophilic head group. The unusual partitioning behavior of nonionic surfactants explains a number of observable features of emulsion polymerization reactions which use nonionic

  19. Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance

    PubMed Central

    2017-01-01

    Polymer solar cells based on PDPP5T and PCBM as donor and acceptor materials, respectively, were processed from aqueous nanoparticle dispersions. Careful monitoring and optimization of the concentration of free and surface-bound surfactants in the dispersion, by measuring the conductivity and ζ-potential, is essential to avoid aggregation of nanoparticles at low concentration and dewetting of the film at high concentration. The surfactant concentration is crucial for creating reproducible processing conditions that aid in further developing aqueous nanoparticle processed solar cells. In addition, the effects of adding ethanol, of aging the dispersion, and of replacing [60]PCBM with [70]PCBM to enhance light absorption were studied. The highest power conversion efficiencies (PCEs) obtained are 2.0% for [60]PCBM and 2.4% for [70]PCBM-based devices. These PCEs are limited by bimolecular recombination of photogenerated charges. Cryo-TEM reveals that the two components phase separate in the nanoparticles, forming a PCBM-rich core and a PDPP5T-rich shell and causing a nonoptimal film morphology. PMID:28345859

  20. Anthropogenic and natural disturbances to marine benthic communities in Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenihan, H.; Oliver, J.S.

    1995-05-01

    Sampling and field experiments were conducted from 1975 to 1990 to test how the structure of marine benthic communities around McMurdo Station, Antarctica varied with levels of anthropogenic contaminants in marine sediments. The structure of communities (e.g., infauna density, species composition, and life history characteristics) in contaminated and uncontaminated areas were compared with the structure of communities influenced by two large-scale natural disturbances, anchor ice formation and uplift or iceberg scour. Benthic communities changed radically along a steep spatial gradient of anthropogenic hydrocarbon, metal, and PCB contamination around McMurdo Station. The heavily contaminated end of the gradient, Winter Quarters Bay,more » was low in infaunal and epifaunal abundance and was dominated by a few opportunistic species of polychaete worms. The edge of the heavily contaminated bay, the transition area, contained several motile polychaete species with less opportunistic life histories. Uncontaminated sedimentary habitats harbored dense tube mats of infaunal animals numerically dominated by populations of polychaete worms, crustaceans, and a large suspension feeding bivalve. These species are generally large and relatively sessile, except for several crustacean species living among the tubes. Although the community patterns around anthropogenic and natural disturbances were similar, particularly motile and opportunistic species at heavily disturbed and marginal areas, the natural disturbances cover much greater areas of the sea floor about the entire Antarctic continent. On the other hand, recovery from chemical contamination is likely to take many more decades than recovery from natural disturbances as contaminant degradation is a slow process. 77 refs., 6 figs., 5 tabs.« less

  1. Surfactant for Pediatric Acute Lung Injury

    PubMed Central

    Willson, Douglas F.; Chess, Patricia R.; Notter, Robert H.

    2008-01-01

    Synopsis This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is on reviewing clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS, including the multifaceted pathology of inflammatory lung injury, the effectiveness of surfactant delivery in injured lungs, and composition-based activity differences among clinical exogenous surfactant preparations. PMID:18501754

  2. Recent Advances in the Discovery and Development of Marine Microbial Natural Products

    PubMed Central

    Xiong, Zhi-Qiang; Wang, Jian-Feng; Hao, Yu-You; Wang, Yong

    2013-01-01

    Marine microbial natural products (MMNPs) have attracted increasing attention from microbiologists, taxonomists, ecologists, agronomists, chemists and evolutionary biologists during the last few decades. Numerous studies have indicated that diverse marine microbes appear to have the capacity to produce an impressive array of MMNPs exhibiting a wide variety of biological activities such as antimicrobial, anti-tumor, anti-inflammatory and anti-cardiovascular agents. Marine microorganisms represent an underexplored reservoir for the discovery of MMNPs with unique scaffolds and for exploitation in the pharmaceutical and agricultural industries. This review focuses on MMNPs discovery and development over the past decades, including innovative isolation and culture methods, strategies for discovering novel MMNPs via routine screenings, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology. The potential problems and future directions for exploring MMNPs are also discussed. PMID:23528949

  3. Recent advances in the discovery and development of marine microbial natural products.

    PubMed

    Xiong, Zhi-Qiang; Wang, Jian-Feng; Hao, Yu-You; Wang, Yong

    2013-03-08

    Marine microbial natural products (MMNPs) have attracted increasing attention from microbiologists, taxonomists, ecologists, agronomists, chemists and evolutionary biologists during the last few decades. Numerous studies have indicated that diverse marine microbes appear to have the capacity to produce an impressive array of MMNPs exhibiting a wide variety of biological activities such as antimicrobial, anti-tumor, anti-inflammatory and anti-cardiovascular agents. Marine microorganisms represent an underexplored reservoir for the discovery of MMNPs with unique scaffolds and for exploitation in the pharmaceutical and agricultural industries. This review focuses on MMNPs discovery and development over the past decades, including innovative isolation and culture methods, strategies for discovering novel MMNPs via routine screenings, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology. The potential problems and future directions for exploring MMNPs are also discussed.

  4. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  5. Marine Biota and Psychological Well-Being

    PubMed Central

    Cracknell, Deborah; White, Mathew P.; Pahl, Sabine; Nichols, Wallace J.; Depledge, Michael H.

    2015-01-01

    Exposure to natural environments can have calming and stress-reducing effects on humans. Moreover, previous studies suggest that these benefits may be greater in areas with higher species richness. Our study took advantage of a “natural experiment” to examine people’s behavioral, physiological, and psychological reactions to increases in levels of marine biota in a large aquarium exhibit during three stages of restocking: Unstocked, Partially stocked, and Fully stocked. We found that increased biota levels were associated with longer spontaneous viewing of the exhibit, greater reductions in heart rate, greater increases in self-reported mood, and higher interest. We suggest that higher biota levels, even in managed settings, may be associated with important well-being and health benefits, particularly for individuals not able to access the natural analogues of managed environments. PMID:27818525

  6. Adsorption of surfactants and polymers at interfaces

    NASA Astrophysics Data System (ADS)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  7. Integrating natural and social sciences to manage sustainably vectors of change in the marine environment: Dogger Bank transnational case study

    NASA Astrophysics Data System (ADS)

    Burdon, Daryl; Boyes, Suzanne J.; Elliott, Michael; Smyth, Katie; Atkins, Jonathan P.; Barnes, Richard A.; Wurzel, Rüdiger K.

    2018-02-01

    The management of marine resources is a complex process driven by the dynamics of the natural system and the influence of stakeholders including policy-makers. An integration of natural and social sciences research is required by policy-makers to better understand, and manage sustainably, natural changes and anthropogenic activities within particular marine systems. Given the uncertain development of activities in the marine environment, future scenarios assessments can be used to investigate whether marine policy measures are robust and sustainable. This paper develops an interdisciplinary framework, which incorporates future scenarios assessments, and identifies four main types of evaluation needed to integrate natural and social sciences research to support the integrated management of the marine environment: environmental policy and governance assessments; ecosystem services, indicators and valuation; modelling tools for management evaluations, and risk assessment and risk management. The importance of stakeholder engagement within each evaluation method is highlighted. The paper focuses on the transnational spatial marine management of the Dogger Bank, in the central North Sea, a site which is very important ecologically, economically and politically. Current management practices are reviewed, and research tools to support future management decisions are applied and discussed in relation to two main vectors of change affecting the Dogger Bank, namely commercial fisheries and offshore wind farm developments, and in relation to the need for nature conservation. The input of local knowledge through stakeholder engagement is highlighted as a necessary requirement to produce site-specific policy recommendations for the future management of the Dogger Bank. We present wider policy recommendations to integrate natural and social sciences in a global marine context.

  8. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-10-28

    The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity.

  9. Phase Behavior of Salt-Free Polyelectrolyte Gel-Surfactant Systems.

    PubMed

    Andersson, Martin; Hansson, Per

    2017-06-22

    Ionic surfactants tend to collapse the outer parts of polyelectrolyte gels, forming shells that can be used to encapsulate other species including protein and peptide drugs. In this paper, the aqueous phase behavior of covalently cross-linked polyacrylate networks containing sodium ions and dodecyltrimethylammonium ions as counterions is investigated by means of swelling isotherms, dye staining, small-angle X-ray scattering, and confocal Raman spectroscopy. The equilibrium state is approached by letting the networks absorb pure water. With an increasing fraction of surfactant ions, the state of the water-saturated gels is found to change from being swollen and monophasic, via multiphasic states, to collapsed and monophasic. The multiphasic gels have a swollen, micelle-lean core surrounded by a collapsed, micelle-rich shell, or a collapsed phase forming a spheroidal inner shell separating two micelle-lean parts. It is shown that the transition between monophasic and core-shell states can be induced by variation of the osmotic pressure and variation of the charge of the micelles by forming mixed micelles with the nonionic surfactant octaethyleneglycol monododecylether. The experimental data are compared with theoretical predictions of a model derived earlier. In the calculations, the collapsed shell is assumed to be homogeneous, an approximation introduced here and shown to be excellent for a wide range of compositions. The theoretical results highlight the electrostatic and hydrophobic driving forces behind phase separation.

  10. Hemolysis by surfactants--A review.

    PubMed

    Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine

    2016-02-01

    An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Surfactant replacement therapy--economic impact.

    PubMed

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  12. Survival, mobility, and membrane-bound enzyme activities of freshwater planarian, Dugesia japonica, exposed to synthetic and natural surfactants.

    PubMed

    Li, Mei-Hui

    2012-04-01

    Surfactants are a major class of emerging pollutants widely used in large quantities in everyday life and commonly found in surface waters worldwide. Freshwater planarian was selected to examine the effects of different surfactants by measuring mortality, mobility, and membrane-bound enzyme activities. Among the 10 surfactants tested, the acute toxicities of betaine and polyethylene glycol (PEG-200) to planarians were relatively low, with a median lethal concentration (LC50) greater than 10,000 mg/L. The toxicity to planarians of the other eight surfactants based on 48-h LC50 could be arranged in the descending order of cetylpyridinum chloride (CPC) > 4-tert-octylphenol (4-tert-OP) > ammonium lauryl sulfate > benzalkonium chloride > saponin > sodium lauroylsarcosinate > dioctyl sulfosuccinate > dodecyl trimethyl ammonium bromide (DTAB). Both CPC and 4-tert-OP were very toxic to planarians, with 48-h LC50 values <1 mg/L. The median effective concentrations (EC50s) of planarian mobility were in the 0.1 to 50 mg/L range and were in the same range as the 24-h LC50 of planarians exposed to different surfactants, except for DTAB. In addition, significant inhibition of cholinesterase activity activities was found in planarians exposed to 4-tert-OP at 2.5 and 5 mg/L and to saponin at 10 mg/L after 2-h treatments. This result suggests that planarian mobility responses can be used as an alternative indicator for acute toxicity of surfactants after a very short exposure period. Copyright © 2012 SETAC.

  13. Global patterns and predictors of fish species richness in estuaries.

    PubMed

    Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N

    2015-09-01

    1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these

  14. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  15. Ion-exchange controls the kinetics of deswelling of polyelectrolyte microgels in solutions of oppositely charged surfactant.

    PubMed

    Nilsson, Peter; Hansson, Per

    2005-12-22

    The kinetics of deswelling of sodium polyacrylate microgels (radius 30-140 microm) in aqueous solutions of dodecyltrimethylammonium bromide is investigated by means of micropipet-assisted light microscopy. The purpose of the study is to test a recent model (J. Phys. Chem. B 2003, 107, 9203) proposing that the rate of the volume change is controlled by the transport of surfactant from the solution to the gel core (ion exchange) via the surfactant-rich surface phase appearing in the gel during the volume transition. Equilibrium swelling characteristics of the gel network in surfactant-free solutions and with various amounts of surfactant present are presented and discussed with reference to related systems. A relationship between gel volume and degree of surfactant binding is determined and used in theoretical predictions of the deswelling kinetics. Experimental data for single gel beads observed during deswelling under conditions of forced convection are presented and compared with model calculations. It is demonstrated that the dependences of the kinetics on initial gel size, the surfactant concentration in the solution, and the liquid flow rate are well accounted for by the model. It is concluded that the deswelling rates of the studied gels are strongly influenced by the mass transport of surfactant between gel and solution (stagnant layer diffusion), but only to a minor extent by the transport through the surface phase. The results indicate that, during the volume transition, swelling equilibrium (network relaxation/transport of water) is established on a relatively short time scale and, therefore, can be treated as independent of the ion-exchange kinetics. Theoretical aspects of the kinetics and mechanisms of surfactant transport through the surface phase are discussed.

  16. Discontinuous hygroscopic growth of an aqueous surfactant/salt aerosol particle levitated in an electrodynamic balance

    NASA Astrophysics Data System (ADS)

    Soonsin, V.; Krieger, U. K.; Peter, T.

    2010-12-01

    surfactant molecules on the aqueous aerosol particle surface upon growing. The number of molecules of the disaggregating micelle can be deduced from the known polar surface area of the C8E4 molecule and the surface area increase of the aerosol particle calculated from the step increase in radius. Our measurements yield a broad distribution of aggregation numbers with a peak aggregation number of 105 molecules. This number agrees reasonably well with aggregate sizes directly observed with Cryo-TEM in a related system [5]. References: [1] Oppo, C., Bellandi, S., Degli Innocenti, N., Stortini, A.M., Loglio, G., Schiavuta, E., & Cini, R., Marine Chemistry, 63, 235-253, 1999. [2] O'Dowd, C.D., Facchini, M.C., Cavalli, F., Ceburnis, D., Mircea, M., Decesari, S., Fuzzi, S., Yoon, Y.J., & Putaud, J.P., Nature, 431, 676-680, 2004. [3] Israelachvili, J.N., Intermolecular and surface forces, Academic press London, 1991. [4] Zardini, A.A., Krieger, U.K., & Marcolli, C., Optics Express, 14, 6951-6962, 2006. [5] Bernheim-Groswasser, A., Wachtel E., & Talmon, Y., Langmuir, 16, 4131-4140, 2000.

  17. [Isolation and structural elucidation of secondary metabolites from marine Streptomyces sp. SCSIO 1934].

    PubMed

    Niu, Siwen; Li, Sumei; Tian, Xinpeng; Hu, Tao; Ju, Jianhua; Ynag, Xiaohong; Zhang, Si; Zhang, Changsheng

    2011-07-01

    Marine Actinobacteria are emerging as new resources for bioactive natural products with promise in novel drug discovery. In recent years, the richness and diversity of marine Actinobacteria from the South China Sea and their ability in producing bioactive products have been investigated. The objective of this work is to isolate and identify bioactive secondary metabolites from a marine actinobacterium SCSIO 1934 derived from sediments of South China Sea. The strain was identified as a Streptomyces spieces by analyzing its 16S rDNA sequence. Streptomyces sp. SCSIO 1934 was fermented under optimized conditions and seven bioactive secondary metabolites were isolated and purified by chromatographic methods including colum chromatography over silica gel and Sephadex LH-20. Their structures were elucidated as 17-O-demethylgeldanamycin (1), lebstatin (2), 17-O-demethyllebstatin (3), nigericin (4), nigericin sodium salt (5), abierixin (6), respectively, by detailed NMR spectroscopic data (1H, 13C, COSY, HSQC and HMBC). This work provided a new marine actinobacterium Streptomyces sp. SCSIO 1934, capable of producing diverse bioactive natural products.

  18. Surfactant Therapy of ALI and ARDS

    PubMed Central

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exogenous surfactant therapy is a routine intervention in neonatal intensive care, and is life-saving in preventing or treating the neonatal respiratory distress syndrome (NRDS) in premature infants. In applications relevant for lung injury-related respiratory failure and ALI/ARDS, surfactant therapy has been shown to be beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. Coverage here reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, particularly focusing on its potential advantages in patients with direct pulmonary forms of these syndromes. Also discussed is the rationale for mechanism-based therapies utilizing exogenous surfactant in combination with agents targeting other aspects of the multifaceted pathophysiology of inflammatory lung injury. Additional factors affecting the efficacy of exogenous surfactant therapy in ALI/ARDS are also described, including the difficulty of effectively delivering surfactants to injured lungs and the existence of activity differences between clinical surfactant drugs. PMID:21742216

  19. Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid.

    PubMed

    Trillo, Juan V; Vázquez Tato, José; Jover, Aida; de Frutos, Santiago; Soto, Victor H; Galantini, Luciano; Meijide, Francisco

    2014-11-01

    The compounds presented here constitute a clear example of molecular biomimetics as their design is inspired on the structure and properties of natural phospholipids. Thus novel double-armed surfactants have been obtained in which nitrilotriacetic acid plays the role of glycerol in phospholipids. The hydrophobic arms are linked to the head group through amide bonds (which is also the case of sphingomyelin): (R1NHCOCH2)(R2NHCOCH2)NCH2CO2H (R1 being CH3(CH2)11, CH3(CH2)17, CH3(CH2)7CHCH(CH2)8, and adamantyl, and R2=adamantyl). The dependence of the surface tension with concentration shows the typical profile of surfactants since a breaking point, which corresponds to the critical aggregation concentration (cac), is observed in all cases. The cac of these diarmed derivatives are about 1-3 orders of magnitude lower than those of classical monoalkyl derivatives used as reference compounds. In contrast to conventional surfactants, reversed trends in cac values and molecular areas at the solution-air interface have been observed. This anomalous behavior is tied to the structure of the surfactants and suggests that long and flexible alkyl chains should self-coil previous to the aggregation or adsorption phenomena. Above cac all compounds form large aggregates, globular in shape, which tend to associate forming giant aggregates. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Surfactant-induced flow compromises determination of air-water interfacial areas by surfactant miscible-displacement.

    PubMed

    Costanza-Robinson, Molly S; Henry, Eric J

    2017-03-01

    Surfactant miscible-displacement (SMD) column experiments are used to measure air-water interfacial area (A I ) in unsaturated porous media, a property that influences solute transport and phase-partitioning. The conventional SMD experiment results in surface tension gradients that can cause water redistribution and/or net drainage of water from the system ("surfactant-induced flow"), violating theoretical foundations of the method. Nevertheless, the SMD technique is still used, and some suggest that experimental observations of surfactant-induced flow represent an artifact of improper control of boundary conditions. In this work, we used numerical modeling, for which boundary conditions can be perfectly controlled, to evaluate this suggestion. We also examined the magnitude of surfactant-induced flow and its impact on A I measurement during multiple SMD flow scenarios. Simulations of the conventional SMD experiment showed substantial surfactant-induced flow and consequent drainage of water from the column (e.g., from 75% to 55% S W ) and increases in actual A I of up to 43%. Neither horizontal column orientation nor alternative boundary conditions resolved surfactant-induced flow issues. Even for simulated flow scenarios that avoided surfactant-induced drainage of the column, substantial surfactant-induced internal water redistribution occurred and was sufficient to alter surfactant transport, resulting in up to 23% overestimation of A I . Depending on the specific simulated flow scenario and data analysis assumptions used, estimated A I varied by nearly 40% and deviated up to 36% from the system's initial A I . We recommend methods for A I determination that avoid generation of surface-tension gradients and urge caution when relying on absolute A I values measured via SMD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Contribution of synthetic and naturally occurring organobromine compounds to bromine mass in marine organisms.

    PubMed

    Wan, Yi; Jones, Paul D; Wiseman, Steve; Chang, Hong; Chorney, Dave; Kannan, Kurunthachalam; Zhang, Kun; Hu, Jian-Ying; Khim, Jong Seong; Tanabe, Shinsuke; Lam, Michael H W; Giesy, John P

    2010-08-15

    An extraction, separation, and purification method was developed for the identification and quantification of total bromine (TBr), extractable organobromine (EOBr), and five classes of identified EOBrs. Instrumental neutron activation analysis (INAA) was utilized to quantify EOBr and TBr. The method was then applied to liver samples of tuna, albatross, and polar bear collected from remote marine locations. Polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), bromophenols (BRPs), hydroxylated (OH-) and methoxylated (MeO-) PBDEs were analyzed as identified EOBr. The majority of the bromine in these marine organisms was nonextractable or inorganic, with EOBr accounting for 10-28% of the TBr. Of the identified EOBr, in tuna and albatross, naturally occurring compounds, including MeO-PBDEs, OH-PBDEs, and BPRs, were prevalent. However, the identifiable EOBr in polar bears consisted primarily of synthetic compounds, including PBDEs and PBBs. Overall, 0.08-0.11% and 0.008-0.012% of EOBr and TBr, respectively, were identified. The proportion of EOBr that was identified in marine organisms was relatively small compared to the proportions for organofluorine and organochlorine compounds. This could be related to the great diversity of naturally occurring organobromine compounds in the environment. Naturally occurring brominated fatty acids were estimated to be the predominant compounds in the EOBr fraction.

  2. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM; Loy, Douglas A [Tucson, AZ; Simmons, Blake A [San Francisco, CA; Long, Timothy M [Evanston, IL; McElhanon, James R [Manteca, CA; Rahimian, Kamyar [Albuquerque, NM; Staiger, Chad L [Albuquerque, NM

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  3. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.

    PubMed

    Brandani, Giovanni B; Vance, Steven J; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O; MacPhee, Cait E; Cheung, David L

    2017-03-22

    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.

  4. Half a Century of Hawaiian Marine Natural Products.

    PubMed

    Hagiwara, Kehau A; Wright, Anthony D

    2016-06-01

    The following review covers the primary literature concerning marine natural products isolated for the first time from organisms collected around the islands of Hawaii published in the 51-year period 1964 to July 2015. The review is divided into seven main sections based on major taxonomic groupings; algae, sponges, mollusks, miscellaneous invertebrates, cyanobacteria, bacteria, and fungi. The aim of the review is to discuss the compounds and information concerning their original biological activity and other potentially interesting properties. The majority of the 320 structures of isolated compounds are not shown directly in the review but are contained in the Supporting Information section in 22 figures, Figs. 1 S-22 S. The Supporting Information section also contains Table 1 S that has information relating to the taxonomic identification of the source organism of each compound, collection location of the source organism, a trivial or semi-systematic name for each compound, as well as its general structural class. The authors hope that this review will be the spawning ground for other reviews and the basis for a great deal more research into the marine life found in Hawaiian waters. Georg Thieme Verlag KG Stuttgart · New York.

  5. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012.

    PubMed

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-07

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.

  6. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012

    PubMed Central

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-01

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736

  7. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  8. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China.

    PubMed

    Lauer, Nancy; Vengosh, Avner; Dai, Shifeng

    2017-11-21

    Most coals in China have uranium concentrations up to 3 ppm, yet several coal deposits are known to be enriched in uranium. Naturally occurring radioactive materials (NORM) in these U-rich coals and associated coal combustion residues (CCRs) have not been well characterized. Here we measure NORM (Th, U, 228 Ra, 226 Ra, and 210 Pb) in coals from eight U-rich coal deposits in China and the associated CCRs from one of these deposits. We compared NORM in these U-rich coals and associated CCRs to CCRs collected from the Beijing area and natural loess sediments from northeastern China. We found elevated U concentrations (up to 476 ppm) that correspond to low 232 Th/ 238 U and 228 Ra/ 226 Ra activity ratios (≪1) in the coal samples. 226 Ra and 228 Ra activities correlate with 238 U and 232 Th activities, respectively, and 226 Ra activities correlate well with 210 Pb activities across all coal samples. We used measured NORM activities and ash yields in coals to model the activities of CCRs from all U-rich coals analyzed in this study. The activities of measured and modeled CCRs derived from U-rich coals exceed the standards for radiation in building materials, particularly for CCRs originating from coals with U > 10 ppm. Since beneficial use of high-U Chinese CCRs in building materials is not a suitable option, careful consideration needs to be taken to limit potential air and water contamination upon disposal of U- and Ra-rich CCRs.

  9. Influence of the Surfactant Structure on Photoluminescent π-Conjugated Polymer Nanoparticles: Interfacial Properties and Protein Binding.

    PubMed

    Urbano, Laura; Clifton, Luke; Ku, Hoi Ki; Kendall-Troughton, Hannah; Vandera, Kalliopi-Kelli A; Matarese, Bruno F E; Abelha, Thais; Li, Peixun; Desai, Tejal; Dreiss, Cécile A; Barker, Robert D; Green, Mark A; Dailey, Lea Ann; Harvey, Richard D

    2018-05-17

    π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.

  10. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  11. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    PubMed Central

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  12. Microwave Synthesis and Characterization of Waste Soybean Oil-Based Gemini Imidazolinium Surfactants with Carbonate Linkage

    NASA Astrophysics Data System (ADS)

    Tripathy, Divya Bajpai; Mishra, Anuradha

    Gemini surfactants are presently gaining attention due to their unusual self-assembling characteristics and incomparable interfacial activity. Current research work involves the cost-effective microwave (MW) synthesis of waste soybean oil-based gemini imidazolinium surfactants (GIS) having a carbonate linkage in its spacer moiety. Structural characterizations of the materials have been done using FT-IR, 1H-NMR and 13C-NMR. Using indigenous and natural material as base and MW as energy source for synthesizing the GIS with easily degradable chemical moiety make them to be labeled as green surfactants.

  13. A New Mass Spectrometry-compatible Degradable Surfactant for Tissue Proteomics

    PubMed Central

    Chang, Ying-Hua; Gregorich, Zachery R.; Chen, Albert J.; Hwang, Leekyoung; Guner, Huseyin; Yu, Deyang; Zhang, Jianyi; Ge, Ying

    2015-01-01

    Tissue proteomics is increasingly recognized for its role in biomarker discovery and disease mechanism investigation. However, protein solubility remains a significant challenge in mass spectrometry (MS)-based tissue proteomics. Conventional surfactants such as sodium dodecyl sulfate (SDS), the preferred surfactant for protein solubilization, are not compatible with MS. Herein, we have screened a library of surfactant-like compounds and discovered an MS-compatible degradable surfactant (MaSDeS) for tissue proteomics that solubilizes all categories of proteins with performance comparable to SDS. The use of MaSDeS in the tissue extraction significantly improves the total number of protein identifications from commonly used tissues, including tissue from the heart, liver, and lung. Notably, MaSDeS significantly enriches membrane proteins, which are often under-represented in proteomics studies. The acid degradable nature of MaSDeS makes it amenable for high-throughput mass spectrometry-based proteomics. In addition, the thermostability of MaSDeS allows for its use in experiments requiring high temperature to facilitate protein extraction and solubilization. Furthermore, we have shown that MaSDeS outperforms the other MS-compatible surfactants in terms of overall protein solubility and the total number of identified proteins in tissue proteomics. Thus, the use of MaSDeS will greatly advance tissue proteomics and realize its potential in basic biomedical and clinical research. MaSDeS could be utilized in a variety of proteomics studies as well as general biochemical and biological experiments that employ surfactants for protein solubilization. PMID:25589168

  14. Bacteria From Marine Sponges: A Source of New Drugs.

    PubMed

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana A; Kamal, Mohammad A; Ullah, Ikram; Naseer, Muhammad I

    2017-01-01

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. For this review, we have performed a non-systematic search of the available literature though various online search engines. This review provides an insight that how majority of active metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Effect of phytoplackton-derived organic matter on the behavior of marine aerosols

    NASA Astrophysics Data System (ADS)

    Fuentes, E.; Coe, H.; McFiggans, G.; Green, D.

    2009-04-01

    The presence of significant concentrations of organic material in marine aerosols has been appreciated for several decades; however, only recently has significant progress been made towards demonstrating that this organic content is biogenically formed. Biogenic organics of placktonic life origin are incorporated in marine aerosol composition as a result of bubble bursting/breaking waves mechanisms that occur at the ocean surface. The presence of organic surfactants in the marine aerosol composition might have a significant impact on the properties of the generated aerosols by affecting the particles surface tension and solution balance properties. Nevertheless, it remains uncertain the role of such organics on the physical-chemical behavior of marine aerosols. In this work an experimental study was performed in order to determine the influence of biogenic marine organic compounds on the size distribution, hygroscopicity and cloud-nucleating properties of marine aerosols. For the experimental study a laboratory water recirculation system (bubble tank), designed for the simulation of bubble-burst aerosol formation, was used as marine aerosol generator. The bubble spectra produced by such system was characterized by means of an optical bubble measuring device (BMS) and it was found to be consistent with oceanic bubble spectra properties. Seawater proxy solutions were prepared from laboratory biologically-synthesized exudates produced by oceanic representative algal species and introduced in the tank for the generation of marine aerosol by bubble bursting. Two experimental methods were employed for seawater proxies preparation: the formation of surface monolayers from the biogenic surfactants extracted by a solid phase extraction technique (monolayer method) and the mixing of the exudates in the sea salt water bulk (bulk mixing method). Particle size distribution, hygroscopicity and cloud condensation nuclei experiments for different monolayers, and exudate mixtures

  16. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria

    PubMed Central

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  17. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.

    PubMed

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-05-21

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds.

  18. A Novel Aqueous Micellar Two-Phase System Composed of Surfactant and Sorbitol for Purification of Pectinase Enzyme from Psidium guajava and Recycling Phase Components

    PubMed Central

    Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme. PMID:25756051

  19. A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.

  20. Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling

    NASA Astrophysics Data System (ADS)

    Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.

    2016-02-01

    In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.

  1. Surfactants in the management of rhinopathologies

    PubMed Central

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  2. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  3. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.

    PubMed

    Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng

    2013-08-01

    The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.

  4. cDNA, deduced polypeptide structure and chromosomal assignment of human pulmonary surfactant proteolipid, SPL(pVal)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.

    1988-01-05

    In hyaline membrane disease of premature infants, lack of surfactant leads to pulmonary atelectasis and respiratory distress. Hydrophobic surfactant proteins of M/sub r/ = 5000-14,000 have been isolated from mammalian surfactants which enhance the rate of spreading and the surface tension lowering properties of phospholipids during dynamic compression. The authors have characterized the amino-terminal amino acid sequence of pulmonary proteolipids from ether/ethanol extracts of bovine, canine, and human surfactant. Two distinct peptides were identified and termed SPL(pVal) and SPL(Phe). An oligonucleotide probe based on the valine-rich amino-terminal amino acid sequence of SPL(pVal) was utilized to isolate cDNA and genomic DNAmore » encoding the human protein, termed surfactant proteolipid SPL(pVal) on the basis of its unique polyvaline domain. The primary structure of a precursor protein of 20,870 daltons, containing the SPL(pVal) peptide, was deduced from the nucleotide sequence of the cDNAs. Hybrid-arrested translation and immunoprecipitation of labeled translation products of human mRNA demonstrated a precursor protein, the active hydrophobic peptide being produced by proteolytic processing. Two classes of cDNAs encoding SPL(pVal) were identified. Human SPL(pVal) mRNA was more abundant in the adult than in fetal lung. The SPL(pVal) gene locus was assigned to chromosome 8.« less

  5. Biogeochemical assessment of natural attenuation of JP-4-contaminated ground water in the presence of fluorinated surfactants.

    PubMed

    Levine, A D; Libelo, E L; Bugna, G; Shelley, T; Mayfield, H; Stauffer, T B

    1997-12-22

    The biogeochemistry of the natural attenuation of petroleum-contaminated ground water was investigated in a field study. The focus of the study was a fire training site located on Tyndall Air Force Base in Florida. The site has been used by the Air Force for approximately 11 years in fire fighting exercises. An on-site above-ground tank of JP-4 provided fuel for setting controlled fires for the exercises. Various amounts of water and aqueous film forming foams (AFFF) were applied to extinguish the fires. The sources of contamination included leaks from pipelines transporting the fuel, leaks from an oil/water separator and runoff and percolation from the fire fighting activities. Previous investigations had identified jet fuel contamination at the site, however, no active remediation efforts have been conducted to date. The goal of this study was to use biogeochemical monitoring data to delineate redox zones within the site and to identify evidence of natural attenuation of JP-4 contamination. In addition to identifying several hydrocarbon metabolites, fluorinated surfactants (AFFF) were detected down-gradient of the hydrocarbon plume.

  6. Marine Natural Products Revisited.

    ERIC Educational Resources Information Center

    Chang, Clifford W. J.

    1978-01-01

    Reports the chemistry of saxitoxin, a paralytic shellfish poison, and other toxins, including the structure of aplysiatoxins. Discusses the chemical signals and defense agents used in intra- and inter- species communication; anticancer agents; and organometallics in the marine environment. (MA)

  7. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  8. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A novel liquid/liquid extraction process composed of surfactant and acetonitrile for purification of polygalacturonase enzyme from Durio zibethinus.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam

    2015-07-01

    Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fluorescent visualization of a spreading surfactant

    NASA Astrophysics Data System (ADS)

    Fallest, David W.; Lichtenberger, Adele M.; Fox, Christopher J.; Daniels, Karen E.

    2010-07-01

    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R~tδ. We find spreading exponents δH≈0.30 and δΓ≈0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.

  11. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases

    PubMed Central

    Gul, Waseem; Hamann, Mark T.

    2016-01-01

    The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets. Historically marine natural products have largely been explored as anticancer agents. The indole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. This report reviews the literature on indole alkaloids of marine origin and also highlights our own research. Specific biological activities of indole alkaloids presented here include: cytotoxicity, antiviral, antiparasitic, anti-inflammatory, serotonin antagonism, Ca-releasing, calmodulin antagonism, and other pharmacological activities. PMID:16236327

  12. Influence of surfactants and proteins on the properties of wet edible calcium alginate meat coatings.

    PubMed

    Comaposada, J; Marcos, B; Bou, R; Gou, P

    2018-06-01

    Calcium alginate structures are of interest as replacers for natural casings due to their high availability, biodegradability and low price. The aim of this paper is to study the effect of oil, surfactants and proteins (pea and collagen) on the water transfer, mechanical and microstructural properties of the wet calcium alginate films. The addition of oil and surfactants tended to reduce the water permeance and the weight loss rate, reaching values between those shown by natural and collagen artificial casings. The addition of proteins did not improve the adherence of the films and it decreased the maximum force of the film at puncture test, which was even lower with the presence of the surfactant E475. The TEM micrographs showed that the differences in mechanical properties are mainly related to the differences in the compaction of the microstructure. Wet alginate films with E475 are envisaged as a substitute of natural and collagen artificial casings in the stuffed meat products industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  14. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    NASA Astrophysics Data System (ADS)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  15. Effect of chemical and biological surfactants on activated sludge of MBR system: microscopic analysis and foam test.

    PubMed

    Capodici, Marco; Di Bella, Gaetano; Nicosia, Salvatore; Torregrossa, Michele

    2015-02-01

    A bench-scale MBR unit was operated, under stressing condition, with the aim of stimulating the onset of foaming in the activated sludge. Possible synergies between synthetic surfactants in the wastewater and biological surfactants (Extra-Cellular Polymeric Substances, EPSs) were investigated by changing C/N ratio. The growth of filamentous bacteria was also discussed. The MBR unit provided satisfactory overall carbon removal overall efficiencies: in particular, synthetic surfactants were removed with efficiency higher than 90% and 95% for non-ionic and ionic surfactants, respectively. Lab investigation suggested also the importance to reduce synthetic surfactants presence entering into mixed liquor: otherwise, their presence can significantly worsen the natural foaming caused by biological surfactants (EPSs) produced by bacteria. Finally, a new analytic method based on "ink test" has been proposed as a useful tool to achieve a valuation of EPSs bound fraction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. FUSION-Guided Hypothesis Development Leads to the Identification of N⁶,N⁶-Dimethyladenosine, a Marine-Derived AKT Pathway Inhibitor. | Office of Cancer Genomics

    Cancer.gov

    Chemicals found in nature have evolved over geological time scales to productively interact with biological molecules, and thus represent an effective resource for pharmaceutical development. Marine-derived bacteria are rich sources of chemically diverse, bioactive secondary metabolites, but harnessing this diversity for biomedical benefit is limited by challenges associated with natural product purification and determination of biochemical mechanism.

  17. Seafloor off Natural Bridges State Beach, Santa Cruz, California

    USGS Publications Warehouse

    Storlazzi, Curt D.; Golden, Nadine E.; Gibbons, Helen

    2013-01-01

    The seafloor off Natural Bridges State Beach, Santa Cruz, California, is extremely varied, with sandy flats, boulder fields, faults, and complex bedrock ridges. These ridges support rich marine ecosystems; some of them form the "reefs" that produce world-class surf breaks. Colors indicate seafloor depth, from red-orange (about 2 meters or 7 feet) to magenta (25 meters or 82 feet).

  18. Rapid clearance of surfactant-associated palmitic acid from the lungs of developing and adult animals.

    PubMed

    Tabor, B; Ikegami, M; Yamada, T; Jobe, A

    1990-03-01

    Palmitic acid is a minor component of natural surfactant and has been used to modify lipid extracts of natural surfactants to optimize their in vitro surface properties. The metabolic fate of palmitic acid in surfactant is unknown. The clearance of surfactant-associated radiolabeled palmitic acid after intratracheal administration was investigated with trace doses of surfactant in the adult rabbit and with trace and treatment doses in the 28-d fetal rabbit and the 132-d fetal sheep. Palmitic acid was cleared rapidly from the airways, with less than 2% of the radiolabel recovered as free palmitic acid in the alveolar wash by 1 h in all models. Recovery as free palmitic acid in the total lung at 2 h was 2% in the adult rabbit and 3% both doses in the preterm rabbit. In the preterm sheep, the recovery as free palmitic acid in the total lung was approximately 2% of the trace dose and 1% of the treatment dose by 5 h. Between 5 and 15% of the instilled palmitic acid was used as substrate for phospholipid synthesis by the lung in the different models. About 30% of the palmitate derived label was recovered in lipid extracts of liver 30 min after tracheal instillation of labeled surfactant in adult rabbits, whereas only 5-10% of the palmitate derived label was found in liver lipids in the preterm animals. In contrast to palmitic acid, radiolabeled triglyceride was cleared much more slowly from the airspaces and lungs of preterm sheep. Inasmuch as large amounts of palmitic acid are cleared rapidly from airspaces and lung tissue, it will not have a prolonged effect on the surface properties of surfactant but it may serve as a precursor for lung lipid metabolism.

  19. Current and Future Patterns of Global Marine Mammal Biodiversity

    PubMed Central

    Kaschner, Kristin; Tittensor, Derek P.; Ready, Jonathan; Gerrodette, Tim; Worm, Boris

    2011-01-01

    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available. PMID:21625431

  20. How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry.

    PubMed

    Reich, Marlis; Labes, Antje

    2017-12-01

    Marine fungi have attracted attention in recent years due to increased appreciation of their functional role in ecosystems and as important sources of new natural products. The concomitant development of various "omic" technologies has boosted fungal research in the fields of biodiversity, physiological ecology and natural product biosynthesis. Each of these research areas has its own research agenda, scientific language and quality standards, which have so far hindered an interdisciplinary exchange. Inter- and transdisciplinary interactions are, however, vital for: (i) a detailed understanding of the ecological role of marine fungi, (ii) unlocking their hidden potential for natural product discovery, and (iii) designing access routes for biotechnological production. In this review and opinion paper, we describe the two different "worlds" of marine fungal natural product chemists and marine fungal molecular ecologists. The individual scientific approaches and tools employed are summarised and explained, and enriched with a first common glossary. We propose a strategy to find a multidisciplinary approach towards a comprehensive view on marine fungi and their chemical potential. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Rational selection of alternative, environmentally compatible surfactants for biotechnological production of pharmaceuticals--a step toward green biotechnology.

    PubMed

    Straub, Jürg Oliver; Shearer, Russel; Studer, Martin

    2014-09-01

    The biotechnological production of pharmaceutical active substances needs ancillary substances. Surfactants are used at the end of the cell culture as a protection against potential viral or bacterial contamination and to lyse the producing cells for isolation and purification of the products. To find a replacement for a surfactant that had raised environmental concern, environmentally relevant data for potential alternatives were searched for in the literature. Significant data gaps were filled with additional tests: biodegradability, algal growth inhibition, acute daphnid immobilization and chronic daphnid reproduction toxicity, acute fish toxicity, and activated sludge respiration inhibition. The results were used to model removal in the wastewater treatment plants (WWTPs) serving 3 biotechnological production sites in the Roche Group. Predicted environmental concentrations (PECs) were calculated using realistic amounts of surfactants and site-specific wastewater fluxes, modeled removals for the WWTPs and dilution factors by the respective receiving waters. Predicted no-effect concentrations (PNECs) were derived for WWTPs and for both fresh and marine receiving waters as the treated wastewater of 1 production site is discharged into a coastal water. This resulted in a spreadsheet showing PECs, PNECs, and PEC ÷ PNEC risk characterization ratios for the WWTPs and receiving waters for all investigated surfactants and all 3 sites. This spreadsheet now serves as a selection support for the biotechnological developers. This risk-based prioritization of surfactants is a step toward green biotechnological production. © 2014 SETAC.

  2. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms.

    PubMed

    Choi, Dong-Young; Choi, Hyukjae

    2015-02-01

    Continuous increases in the incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain stroke demand the urgent development of therapeutics. Marine organisms are well-known producers of natural products with diverse structures and pharmacological activities. Therefore, researchers have endeavored to identify marine natural products with neuroprotective effects. In this regard, this review summarizes therapeutic targets for AD, PD, and ischemic brain stroke and marine natural products with pharmacological activities on the targets according to taxonomies of marine organisms. Furthermore, several marine natural products on the clinical trials for the treatment of neurological disorders are discussed.

  3. Augmentative Biocontrol in Natural Marine Habitats: Persistence, Spread and Non-Target Effects of the Sea Urchin Evechinus chloroticus

    PubMed Central

    Atalah, Javier; Hopkins, Grant A.; Forrest, Barrie M.

    2013-01-01

    Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m−2). Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m−2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests. PMID:24260376

  4. OCEANFILMS-2: Representing coadsorption of saccharides in marine films and potential impacts on modeled marine aerosol chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Susannah M.; Gobrogge, Eric; Fu, Li

    Here we show that the addition of chemical interactions of soluble polysaccharides with a surfactant monolayer improves agreement of modeled sea spray chemistry with observed marine aerosol chemistry. In particular, the fraction of hydroxyl functional groups in modeled sea spray organic matter is increased, improving agreement with FTIR observations of marine aerosol composition. The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5 – 0.7 for submicron sea spray particles over highly active phytoplankton blooms. We show results from Sum Frequency Generation (SFG) experiments that support the modeling approach, by demonstrating thatmore » soluble polysaccharides can strongly adsorb to a lipid monolayer via columbic interactions under appropriate conditions.« less

  5. Molecular simulation of surfactant-assisted protein refolding

    NASA Astrophysics Data System (ADS)

    Lu, Diannan; Liu, Zheng; Liu, Zhixia; Zhang, Minlian; Ouyang, Pingkai

    2005-04-01

    Protein refolding to its native state in vitro is a challenging problem in biotechnology, i.e., in the biomedical, pharmaceutical, and food industry. Protein aggregation and misfolding usually inhibit the recovery of proteins with their native states. These problems can be partially solved by adding a surfactant into a suitable solution environment. However, the process of this surfactant-assisted protein refolding is not well understood. In this paper, we wish to report on the first-ever simulations of surfactant-assisted protein refolding. For these studies, we defined a simple model for the protein and the surfactant and investigated how a surfactant affected the folding behavior of a two-dimensional lattice protein molecule. The model protein and model surfactant were chosen such that we could capture the important features of the folding process and the interaction between the protein and the surfactant, namely, the hydrophobic interaction. It was shown that, in the absence of surfactants, a protein in an "energy trap" conformation, i.e., a local energy minima, could not fold into the native form, which was characterized by a global energy minimum. The addition of surfactants created folding pathways via the formation of protein-surfactant complexes and thus enabled the conformations that fell into energy trap states to escape from these traps and to form the native proteins. The simulation results also showed that it was necessary to match the hydrophobicity of surfactant to the concentration of denaturant, which was added to control the folding or unfolding of a protein. The surfactants with different hydrophobicity had their own concentration range on assisting protein refolding. All of these simulations agreed well with experimental results reported elsewhere, indicating both the validity of the simulations presented here and the potential application of the simulations for the design of a surfactant on assisting protein refolding.

  6. Positive diversity–invasibility relationship in species-rich semi-natural grassland at the neighbourhood scale

    PubMed Central

    Zeiter, Michaela; Stampfli, Andreas

    2012-01-01

    Background and Aims Attempts to answer the old question of whether high diversity causes high invasion resistance have resulted in an invasion paradox: while large-scale studies often find a positive relationship between diversity and invasibility, small-scale experimental studies often find a negative relationship. Many of the small-scale studies are conducted in artificial communities of even-aged plants. Species in natural communities, however, do not represent one simultaneous cohort and occur at various levels of spatial aggregation at different scales. This study used natural patterns of diversity to assess the relationship between diversity and invasibility within a uniformly managed, semi-natural community. Methods In species-rich grassland, one seed of each of ten species was added to each of 50 contiguous 16 cm2 quadrats within seven plots (8 × 100 cm). The emergence of these species was recorded in seven control plots, and establishment success was measured in relation to the species diversity of the resident vegetation at two spatial scales, quadrat (64 cm2) within plots (800 cm2) and between plots within the site (approx. 400 m2) over 46 months. Key Results Invader success was positively related to resident species diversity and richness over a range of 28–37 species per plot. This relationship emerged 7 months after seed addition and remained over time despite continuous mortality of invaders. Conclusions Biotic resistance to plant invasion may play only a sub-ordinate role in species-rich, semi-natural grassland. As possible alternative explanations for the positive diversity–invasibility relationship are not clear, it is recommended that future studies elaborate fine-scale environmental heterogeneity in resource supplies or potential resource flows from resident species to seedlings by means of soil biological networks established by arbuscular mycorrhizal fungi. PMID:22956533

  7. Amphiphilic Ferrocene-Containing PEG Block Copolymers as Micellar Nanocarriers and Smart Surfactants.

    PubMed

    Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R

    2017-01-10

    An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of

  8. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  9. Wettability of Complex Fluids and Surfactant Capped Nanoparticle-Induced Quasi-Universal Wetting Behavior.

    PubMed

    Harikrishnan, A R; Dhar, Purbarun; Agnihotri, Prabhat K; Gedupudi, Sateesh; Das, Sarit Kumar

    2017-06-22

    Even though there are quite large studies on wettability of aqueous surfactants and a few studies on effects of nanoparticles on wettability of colloids, to the best of authors' knowledge, there is no study reported on the combined effect of surfactant and nanoparticles in altering the wettability. The present study, for the first time, reports an extensive experimental and theoretical study on the combined effect of surfactants and nanoparticles on the wettability of complex fluids such as nanocolloids on different substrates, ranging from hydrophilic with a predominantly polar surface energy component (silicon wafer and glass) to near hydrophobic range with a predominantly dispersive component of surface energy (aluminum and copper substrates). Systematically planned experiments are carried out to segregate the contributing effects of surfactants, particles, and combined particle and surfactants in modulating the wettability. The mechanisms and the governing parameters behind the interactions of nanocolloids alone and of surfactant capped nanocolloids with different surfaces are found to be grossly different. The article, for the first time, also analyzes the interplay of the nature of surfaces, surfactant and particle concentrations on contact angle, and contact angle hysteresis (CAH) of particle and surfactant impregnated colloidal suspensions. In the case of nanoparticle suspensions, the contact angle is observed to decrease for the hydrophobic system and increase for the hydrophilic systems considered. On the contrary, the combined particle and surfactant colloidal system shows a quasi-unique wetting behavior of decreasing contact angle with particle concentration on all substrates. Also interestingly, the combined particle surfactant system at all particle concentrations shows a wetting angle much lower than that of the only-surfactant case at the same surfactant concentration. Such counterintuitive observations have been explained based on the near

  10. Lung gas volumes and expiratory time constant in immature newborn rabbits treated with natural or synthetic surfactant or detergents.

    PubMed

    Bongrani, S; Fornasier, M; Papotti, M; Razzetti, R; Robertson, B

    1994-01-01

    Immature newborn rabbits delivered at a gestational age of 27 days were tracheotomized and treated, via the tracheal cannula, with clinically recommended doses of natural or synthetic surfactant (Curosurf and Exosurf, respectively). Littermates received 0.1% tyloxapol, 5% Tween 20, or saline. The dose volume of Curosurf was 2.5 ml/kg, that of the other materials 5 ml/kg. Animals were kept in a multiplethysmograph system and ventilated for 30 min with a standardized sequence of insufflation pressures. End-expiratory lung gas volume was calculated at the end of the experiment from measurements of lung weight and total lung volume. Tidal volumes were significantly improved in all groups of animals receiving surfactant or detergents. However, expiratory time constant (determined from the tidal volume tracing) was significantly longer, and end-expiratory gas volume significantly larger, in animals treated with Curosurf than in those receiving Exosurf or detergents. These differences were confirmed by semiquantitative evaluation of alveolar air expansion in histological sections. In addition, airway epithelial necrosis was reduced in animals receiving Curosurf, Exosurf, or Tween 20, but not in animals treated with tyloxapol. The discrepancy between improvements in tidal volume, expiratory time constant, and end-expiratory gas volume reflects failure of lung stabilization in animals treated with Exosurf or detergents, probably due to absence of specific hydrophobic proteins in the synthetic products.

  11. The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl; Zawadzki, Witold; Słowik, Grzegorz

    Highlights: • Synthesis of novel ZnO−Al{sub 2}O{sub 3} oxides in the presence of CTAB surfactant. • Determination of the structural, surface and optical properties. • Nanocrystalline, high-surface area ZnO−Al{sub 2}O{sub 3} oxides. • ZnO-Al{sub 2}O{sub 3} materials of different gap energy. - Abstract: Novel alumina modified zinc oxide materials were prepared by co-precipitation method in the presence of different amounts of cetyltrimethylammonium bromide (CTAB) surfactant. X-ray diffraction, {sup 27}Al magic-angle spinning Nuclear Magnetic Resonance Spectroscopy, and transmission electron microscopy studies evidenced formation of 10–15 nm zinc oxide nanoparticles in the presence of the small amounts of surfactant. Amorphous alumina andmore » zinc aluminate phases of different coordination environment of Al sites were identified. An increase of surfactant concentration led to the elongation of nanoparticles and changes of the nature of hydroxyl groups. Precipitation in the high CTAB concentration conditions facilitated formation of mesoporous materials of high specific surface area. The materials were composed of very small (2–3 nm) zinc aluminate spinel nanoparticles. High concentration of CTAB induced widening of band gap energy.« less

  12. Possible existence of convective currents in surfactant bulk solution in experimental pendant-bubble dynamic surface tension measurements.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2009-02-03

    the actual surfactant bulk solution in which the DST measurement was conducted, most likely, cannot be considered to be quiescent at time scales greater than 100 s. Accordingly, the observed superdiffusive adsorption behavior is interpreted as resulting from convection currents present in a nonquiescent surfactant bulk solution. Convection currents accelerate the surfactant adsorption process by increasing the rate of surfactant transport in the bulk solution. The systematic nature of the deviations observed between the predicted DST profiles and the experimental DST behavior for C12E4 and C12E6 suggests that the nonquiescent nature of the surfactant bulk solution may be intrinsic to the experimental pendant-bubble DST measurement approach. To validate this possibility, we identified generic features in the experimental DST data when DST measurements are conducted in a nonquiescent surfactant bulk solution, and the DST measurements are analyzed assuming that the surfactant bulk solution is quiescent. An examination of the DST literature reveals that these identified generic features are quite general and are observed in the experimental DST data of several other surfactants (decanol, nonanol, C10E8, C14E8, C12E8, and C10E4) measured using the pendant-bubble apparatus.

  13. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc

  14. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Re-Structuring of Marine Communities Exposed to Environmental Change: A Global Study on the Interactive Effects of Species and Functional Richness

    PubMed Central

    Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; da Gama, Bernardo A. P.; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, Mark

    2011-01-01

    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research. PMID:21611170

  16. Impact of Quality of Life on the Reenlistment Intentions of Junior Enlisted United States Marines

    DTIC Science & Technology

    2002-03-01

    rich source of data concerning the impact that QOL programs and related domains have on the reenlistment intentions of junior enlisted Marines...partial effects of QOL programs on retention. The FY 2001 USMC Retention Survey offers a rich source of recent data that can be used to determine the...Marines said they were dissatisfied with their family life in the Marine Corps. Thus, the sense of community QOL domain is a rich source of

  17. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Man; He, Feng; Zhao, Dongye

    2011-01-01

    Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited bymore » desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, {approx}44% of TCE sorbed in the potting soil was degraded in 30 h, compared to {approx}82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1 x cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith

  18. Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials.

    PubMed

    Guégan, Régis; Veron, Emmanuel; Le Forestier, Lydie; Ogawa, Makoto; Cadars, Sylvian

    2017-09-26

    The aggregation of surfactants on solid surfaces as they are adsorbed from solution is the basis of numerous technological applications such as colloidal stabilization, ore flotation, and floor cleaning. The understanding of both the structure and the dynamics of surfactant aggregates applies to the development of alternative ways of preparing hybrid layered materials. For this purpose, we study the adsorption of the triethylene glycol mono n-decyl ether (C 10 E 3 ) nonionic surfactant onto a synthetic montmorillonite (Mt), an aluminosilicate clay mineral for organoclay preparation with important applications in materials sciences, catalysis, wastewater treatment, or as drug delivery. The aggregation mechanisms follow those observed in an analogous natural Mt, with the condensation of C 10 E 3 in a bilayer arrangement once the surfactant self-assembles in a lamellar phase beyond the critical micelle concentration, underlining the importance of the surfactant state in solution. Solid-state 1 H nuclear magnetic resonance (NMR) at fast magic-angle spinning (MAS) and high magnetic field combined with 1 H- 13 C correlation experiments and different types of 13 C NMR experiments selectively probes mobile or rigid moieties of C 10 E 3 in three different aggregate organizations: (i) a lateral monolayer, (ii) a lateral bilayer, and (iii) a normal bilayer. High-resolution 1 H{ 27 Al} CP- 1 H- 1 H spin diffusion experiments shed light on the proximities and dynamics of the different fragments and fractions of the intercalated surfactant molecules with respect to the Mt surface. 23 Na and 1 H NMR measurements combined with complementary NMR data, at both molecular and nanometer scales, precisely pointed out the location of the C 10 E 3 ethylene oxide hydrophilic group in close contact with the Mt surface interacting through ion-dipole or van der Waals interactions.

  19. Rhamnolipids--next generation surfactants?

    PubMed

    Müller, Markus Michael; Kügler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hörmann, Barbara; Pöhnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2012-12-31

    The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should

  20. Modeling of Marine Natural Hazards in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Zahibo, Narcisse; Nikolkina, Irina; Pelinovsky, Efim

    2010-05-01

    The Caribbean Sea countries are often affected by various marine natural hazards: hurricanes and cyclones, tsunamis and flooding. The historical data of marine natural hazards for the Lesser Antilles and specially, for Guadeloupe are presented briefly. Numerical simulation of several historical tsunamis in the Caribbean Sea (1755 Lisbon trans-Atlantic tsunami, 1867 Virgin Island earthquake tsunami, 2003 Montserrat volcano tsunami) are performed within the framework of the nonlinear-shallow theory. Numerical results demonstrate the importance of the real bathymetry variability with respect to the direction of propagation of tsunami wave and its characteristics. The prognostic tsunami wave height distribution along the Caribbean Coast is computed using various forms of seismic and hydrodynamics sources. These results are used to estimate the far-field potential for tsunami hazards at coastal locations in the Caribbean Sea. The nonlinear shallow-water theory is also applied to model storm surges induced by tropical cyclones, in particular, cyclones "Lilli" in 2002 and "Dean" in 2007. Obtained results are compared with observed data. The numerical models have been tested against known analytical solutions of the nonlinear shallow-water wave equations. Obtained results are described in details in [1-7]. References [1] N. Zahibo and E. Pelinovsky, Natural Hazards and Earth System Sciences, 1, 221 (2001). [2] N. Zahibo, E. Pelinovsky, A. Yalciner, A. Kurkin, A. Koselkov and A. Zaitsev, Oceanologica Acta, 26, 609 (2003). [3] N. Zahibo, E. Pelinovsky, A. Kurkin and A. Kozelkov, Science Tsunami Hazards. 21, 202 (2003). [4] E. Pelinovsky, N. Zahibo, P. Dunkley, M. Edmonds, R. Herd, T. Talipova, A. Kozelkov and I. Nikolkina, Science of Tsunami Hazards, 22, 44 (2004). [5] N. Zahibo, E. Pelinovsky, E. Okal, A. Yalciner, C. Kharif, T. Talipova and A. Kozelkov, Science of Tsunami Hazards, 23, 25 (2005). [6] N. Zahibo, E. Pelinovsky, T. Talipova, A. Rabinovich, A. Kurkin and I

  1. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  2. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  3. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  4. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  5. Enhanced biodiversity beyond marine reserve boundaries: the cup spillith over.

    PubMed

    Russ, Garry R; Alcala, Angel C

    2011-01-01

    Overfishing can have detrimental effects on marine biodiversity and the structure of marine ecosystems. No-take marine reserves (NTMRs) are much advocated as a means of protecting biodiversity and ecosystem structure from overharvest. In contrast to terrestrial protected areas, NTMRs are not only expected to conserve or recover biodiversity and ecosystems within their boundaries, but also to enhance biodiversity beyond their boundaries by exporting species richness and more complex biological communities. Here we show that species richness of large predatory reef fish increased fourfold and 11-fold inside two Philippine no-take marine reserves over 14 and 25 years, respectively. Outside one reserve (Apo) the species richness also increased. This increase beyond the Apo reserve boundary was 78% higher closer to the boundary (200-250 m) than farther from it (250-500 m). The increase in richness beyond the boundary could not be explained by improvements over time in habitat or prey availability. Furthermore, community composition of predatory fish outside but close to (200-250 m) the Apo reserve became very similar to that inside the reserve over time, almost converging with it in multivariate space after 26 years of reserve protection. This is consistent with the suggestion that, as community composition inside Apo reserve increased in complexity, this complexity spilled over the boundary into nearby fished areas. Clearly, the spillover of species richness and community complexity is a direct consequence of the spillover of abundance of multiple species. However, this spillover of species richness and community complexity demonstrates an important benefit of biodiversity and ecosystem export from reserves, and it provides hope that reserves can help to reverse the decline of marine ecosystems and biodiversity.

  6. Diester-containing Zwitterionic Gemini Surfactants with Different Spacer and Its Impact on Micellization Properties and Viscosity of Aqueous Micellar Solution.

    PubMed

    Patil, Sachin Vasant; Patil, Sanyukta Arun; Pratap, Amit Prabhakar

    2016-09-01

    A series of diester containing zwitterionic gemini surfactants, N,N-dimethyl-N-alkyl-2-[[hydroxy (alkoxy) phosphinyl]oxy]-alkylammonium designated as C8(-)-S-Cn(+), S = 2 and 3, n = 12, 14 and 16, were synthesized and characterized by instrumental techniques namely FT-IR, (1)H NMR, (13)C NMR, (31)P NMR and Mass spectral studies. These new gemini surfactants further investigated for their various surfactant properties. The critical micelle concentration (cmc) and the effectiveness of surface tension reduction (Πcmc) were determined as a function of surfactant concentration by means of surface tension measurement. Micellization and viscosity properties were investigated by surface tension, electrical conductivity, dye micellization and rheology techniques. The findings of the aqueous surfactant system obtained were impacted by polarity, size and the nature of zwitterions as the surface. The thermodynamic and viscosity properties of these surfactants found to be based on the structures of gemini surfactants.

  7. Cheminformatic Insight into the Differences between Terrestrial and Marine Originated Natural Products.

    PubMed

    Shang, Jun; Hu, Ben; Wang, Junmei; Zhu, Feng; Kang, Yu; Li, Dan; Sun, Huiyong; Kong, De-Xin; Hou, Tingjun

    2018-06-07

    This is a new golden age for drug discovery based on natural products derived from both marine and terrestrial sources. Herein, a straightforward but important question is "what are the major structural differences between marine natural products (MNPs) and terrestrial natural products (TNPs)?" To answer this question, we analyzed the important physicochemical properties, structural features, and drug-likeness of the two types of natural products and discussed their differences from the perspective of evolution. In general, MNPs have lower solubility and are often larger than TNPs. On average, particularly from the perspective of unique fragments and scaffolds, MNPs usually possess more long chains and large rings, especially 8- to 10-membered rings. MNPs also have more nitrogen atoms and halogens, notably bromines, and fewer oxygen atoms, suggesting that MNPs may be synthesized by more diverse biosynthetic pathways than TNPs. Analysis of the frequently occurring Murcko frameworks in MNPs and TNPS also reveals a striking difference between MNPs and TNPs. The scaffolds of the former tend to be longer and often contain ester bonds connected to 10-membered rings, while the scaffolds of the latter tend to be shorter and often bear more stable ring systems and bond types. Besides, the prediction from the naïve Bayesian drug-likeness classification model suggests that most compounds in MNPs and TNPs are drug-like, although MNPs are slightly more drug-like than TNPs. We believe that MNPs and TNPs with novel drug-like scaffolds have great potential to be drug leads or drug candidates in drug discovery campaigns.

  8. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    PubMed

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  9. Heparin-like entities from marine organisms.

    PubMed

    Colliec-Jouault, S; Bavington, C; Delbarre-Ladrat, C

    2012-01-01

    Polysaccharides are ubiquitous in animals and plant cells where they play a significant role in a number of physiological situations e.g. hydration, mechanical properties of cell walls and ionic regulation. This review concentrates on heparin-like entities from marine procaryotes and eukaryotes. Carbohydrates from marine prokaryotes offer a significant structural chemodiversity with novel material and biological properties. Cyanobacteria are Gram-negative photosynthetic prokaryotes considered as a rich source of novel molecules, and marine bacteria are a rich source of polysaccharides with novel structures, which may be a good starting point from which to synthesise heparinoid molecules. For example, some sulphated polysaccharides have been isolated from gamma-proteobacteria such as Alteromonas and Pseudoalteromonas sp. In contrast to marine bacteria, all marine algae contain sulphated wall polysaccharides, whereas such polymers are not found in terrestrial plants. In their native form, or after chemical modifications, a range of polysaccharides isolated from marine organisms have been described that have anticoagulant, anti-thrombotic, anti-tumour, anti-proliferative, anti-viral or anti-inflammatory activities.In spite of the enormous potential of sulphated oligosaccharides from marine sources, their technical and pharmaceutical usage is still limited because of the high complexity of these molecules. Thus, the production of tailor-made oligo- and polysaccharidic structures by biocatalysis is also a growing field of interest in biotechnology.

  10. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    PubMed

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  12. The Impact of Organic Surfactants and Coatings in Regulating Heterogeneous N2O5 Reaction Kinetics on Nascent Marine Aerosol

    NASA Astrophysics Data System (ADS)

    Ryder, O. S.; Campbell, N.; Schill, S.; Pöhlker, C.; Andreae, M. O.; Bertram, T. H.

    2013-12-01

    The heterogeneous reaction of N2O5 on aerosol particles impacts both the lifetime of nitrogen oxides, and the production rate of chlorine radicals following the activation of particulate chloride to nitryl chloride in both coastal and continental regions. The extent to which N2O5 reactivity impacts oxidant loadings depends on the heterogeneous reaction rate, which is directly influenced by aerosol chemical composition, morphology, and physical phase state. In the marine environment, the chemical composition of aerosol particles produced via wave induced bubble bursting mechanisms varies greatly and is influenced by the composition of the sea surface microlayer . Here, we present direct measurements of N2O5 reaction kinetics determined using model sea-spray particles generated in a novel Marine Aerosol Reference Tank (MART), capable of generating accurate mimics of ambient sea spray particles, in a lab environment. Here, a synthetic sea salt ocean was sequentially doped with organic molecules chosen to mimic organic species present in natural sea water over the course of a phytoplankton bloom in the open ocean. These included sterol, galactose, lippolysaccharide, BSA protein, and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA). These observations permit discussion of the role of marine organics in regulating heterogeneous reaction kinetics, as well a re-evaluation of potential organic lab proxies for marine organics.

  13. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... Infant ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (4 links) SURFACTANT METABOLISM DYSFUNCTION, PULMONARY, 1 SURFACTANT METABOLISM DYSFUNCTION, PULMONARY, 2 ...

  14. Lung Surfactant Microbubbles Increase Lipophilic Drug Payload for Ultrasound-Targeted Delivery

    PubMed Central

    Sirsi, Shashank R.; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y.; Mountford, Paul A.; Borden, Mark A.

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta®, Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload. PMID:23781287

  15. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.

    PubMed

    Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload.

  16. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  17. Marine Extremes and Natural Hazards: when the key is variability.

    NASA Astrophysics Data System (ADS)

    Marone, Eduardo; Camargo, Ricardo; Salcedo Castro, Julio

    2014-05-01

    At EGU2013 we used the work we are conducting regarding marine extreme events and natural hazards to exploit the distance that separate the scientific community and the non academic society, trying to show where bridges need to be built an how an ethical behavior among the scientists needs to be in place to succeed. We concluded that our actions as scientists have not been the most appropriate in communicating outside the academy our results, particularly when our findings have to do with natural hazards which could contribute to loss of life and the environmental quality that sustains it. Even if one of the barriers that separate the academy from society is the "language", too cryptic even for a well educated (not scientific) citizen in many cases, we scientists complicated even more the problems when we stop worrying about some basic concepts regarding the scientific method once upon a time were teach at basic school levels, particularly concerning differences as accuracy and precision, or the concept of uncertainty and the errors which permeate any observation or scientific "prediction". Science teaching at basic levels was not lost, but changed in the XXth century, concentrating in the so many new advancements and abandoning classical but necessary learning processes just about how sciences is done and why. When studying marine extreme events, we use statistic, stochastic methods, deterministic analysis, logical and numerical modeling, etc. However, our results are still very far away of being accurate, while our precision, however is improving just a little, it is still far away of ideal. That appears to be somehow obvious if we look just the observed vs. the modeled data. Nevertheless, if we look not the absolute values of our results, but the "rhythm" of their variability and compare these cadences with the beats observed in nature, new patterns arose, and clues about how to act regarding natural hazards and extreme events became more clear. We are being

  18. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  19. Poly(ethylene oxide) surfactant polymers.

    PubMed

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  20. Marine redox stratification during the early Cambrian (ca. 529-509 Ma) and its control on the development of organic-rich shales in Yangtze Platform

    NASA Astrophysics Data System (ADS)

    Zhang, Yuying; He, Zhiliang; Jiang, Shu; Gao, Bo; Liu, Zhongbao; Han, Bo; Wang, Hu

    2017-06-01

    High resolution geochemical data from nine sections representing shelf to basinal environments in the Yangtze Platform were analyzed to reconstruct the marine redox environment during early Cambrian. Based on Fe species and Mo/TOC ratios, we have supplemented marine redox stratification during Stage 4 (late Canglangpuian-Longwangmiaoan, ˜514-509 Ma) on basis of the previously studied Stage 2-Stage 3 (Meishucunian-Qiongzhusian, ˜529-514 Ma). A new proposed marine stratified redox model indicates that the middepth "euxinic wedge" developed at the base of slope during ˜514-509 Ma in contrast to that the "euxinic wedge" prevailed at the shelf margin during ˜529-514 Ma, even though these middepth euxinic waters both occurred between the oxic surface waters and ferruginous deep waters. This marine redox stratification resulted in high production and good preservation of organic matter during early Cambrian. TOC values in euxinic waters in the middle are generally higher than in ferruginous waters due to upwelling in slope. Therefore, the lower Cambrian organic-rich shales in the Yangtze Platform are inferred to be deposited under the anoxic-ferruginous and euxinic bottom waters with moderate-strong restriction.

  1. Some structures of marine natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finer-Moore, J.S.

    1979-07-01

    Applications of x-ray crystallographic methods to marine chemistry are discussed. Results of research on a biosynthetic problem: diterpenes from Dictyotaceae are discussed under the following section headings: history of the problem; dictyoxepin; dictyodial; and dictyolactone. Studies on marine ecology are reported under the following headings: symbiosis and antibiosis; metabolites from opisthobranch molluscs, including, dolabelladiene, 9-isocyanopupukeanane and 2-isocyanopupukeanane, and crispatone; metabolites of goronians and soft corals, including zooxanthellae and the metabolism of coelenterates, ophirin, sinularene, and erectene. (JGB)

  2. Adsorption of zwitterionic surfactant on limestone measured with high-performance liquid chromatography: micelle-vesicle influence.

    PubMed

    Nieto-Alvarez, David Aaron; Zamudio-Rivera, Luis S; Luna-Rojero, Erick E; Rodríguez-Otamendi, Dinora I; Marín-León, Adlaí; Hernández-Altamirano, Raúl; Mena-Cervantes, Violeta Y; Chávez-Miyauchi, Tomás Eduardo

    2014-10-21

    Herein is presented a new methodology to determine the static adsorption of a zwitterionic surfactant on limestone in three different aqueous media [high-performance liquid chromatography (HPLC) water, seawater, and connate water] with the use of HPLC at room temperature and 70 °C. The results showed that, in both HPLC water and seawater, the surfactant adsorption followed a monolayer Langmuir tendency. In contrast, for connate water, the surfactant presented a new adsorption profile, characterized by two regions: (i) At surfactant concentrations below 1500 mg L(-1), an increase of adsorption is observed as the amount of divalent cations increases in the aqueous media. (ii) At surfactant concentrations above 1500 mg L(-1), the adsorption decreases because the equilibrium, monomer ⇆ micelle ⇆ vesicle, is shifted to the formation of vesicles, giving as a result a decrease in the concentration of monomers, thus reducing the interaction between the surfactant and the rock, and therefore, lower adsorption values were obtained. The behavior of the surfactant adsorption under different concentrations of divalent cations was well-described by the use of a new modified Langmuir model: (dΓ/dt)ads = k(ads)c(Γ∞ - Γ) - k(cmc)(c - c(cmc))(n)ΓH(c - c(cmc)). It was also observed that, as the temperature increases, the adsorption is reduced because of the exothermic nature of the adsorption processes.

  3. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase.

    PubMed

    Adak, Sunita; Datta, Sougata; Bhattacharya, Santanu; Banerjee, Rintu

    2015-11-01

    An insight into the effects of new ionic liquid-type gemini imidazolium cationic surfactants on the structure and function of the lipases is of prime importance for their potential application. Changes in the activity, stability and structure of Rhizopus oryzae lipase in the presence of novel gemini surfactants, [C16-3-C16im]Br2 and [C16-12-C16im]Br2 were probed in the present study. Surfactant with shorter spacer length, [C16-3-C16im]Br2 was found to be better in improving the hydrolytic activity and thermal stability of the lipase. For both the surfactants, activation was concentration dependent. CD spectroscopy results showed a decrease in α-helix and an increase in β-sheet content in the presence of these surfactants. A higher structural change observed in presence of [C16-12-C16im]Br2 correlated with lower enzyme activity. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature based on sequential two site binding model. The forces involved in binding were found to differ for the two surfactants proving that the spacer length is an important factor which governs the interaction. These surfactants could be used as promising components both in enzyme modification and media engineering for attaining the desired goals in biocatalytic reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    EPA Science Inventory

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  5. Surfactant-assisted Nanocasting Route for Synthesis of Highly Ordered Mesoporous Graphitic Carbon and Its Application in CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Yangang; Bai, Xia; Wang, Fei; Qin, Hengfei; Yin, Chaochuang; Kang, Shifei; Li, Xi; Zuo, Yuanhui; Cui, Lifeng

    2016-05-01

    Highly ordered mesoporous graphitic carbon was synthesized from a simple surfactant-assisted nanocasting route, in which ordered mesoporous silica SBA-15 maintaining its triblock copolymer surfactant was used as a hard template and natural soybean oil (SBO) as a carbon precursor. The hydrophobic domain of the surfactant assisted SBO in infiltration into the template’s mesoporous channels. After the silica template was carbonized and removed, a higher yield of highly-ordered graphitic mesoporous carbon with rod-like morphology was obtained. Because of the improved structural ordering, the mesoporous carbon after amine modification could adsorb more CO2 compared with the amine-functionalized carbon prepared without the assistance of surfactant.

  6. Estimation hydrophilic-lipophilic balance number of surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawignya, Harsa, E-mail: harsa-paw@yahoo.co.id; Chemical Engineering Departement University of Pembangunan Nasional Yogyakarta; Prasetyaningrum, Aji, E-mail: ajiprasetyaningrum@gmail.com

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination ofmore » HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.« less

  7. Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?

    PubMed

    Pereira, Larissa Strictar; Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O

    2017-01-01

    Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes.

  8. Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?

    PubMed Central

    Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O.

    2017-01-01

    Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes. PMID:28122040

  9. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Aguilera, Angeles

    2016-10-01

    Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.

  10. Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant

    NASA Astrophysics Data System (ADS)

    Singh, Raman Preet; Jain, Sanyog; Ramarao, Poduri

    2013-10-01

    Nanoparticles (NPs) are thermodynamically unstable system and tend to aggregate to reduce free energy. The aggregation property of NPs results in inhomogeneous exposure of cells to NPs resulting in variable cellular responses. Several types of surfactants are used to stabilize NP dispersions and obtain homogenous dispersions. However, the effects of these surfactants, per se, on cellular responses are not completely known. The present study investigated the application of Pluronic F68 (PF68) for obtaining stable dispersion of NPs using carbon nanotubes as model NPs. PF68-stabilized NP suspensions are stable for long durations and do not show signs of aggregation or settling during storage or after autoclaving. The polyethylene oxide blocks in PF68 provide steric hindrance between adjacent NPs leading to stable NP dispersions. Further, PF68 is biocompatible in nature and does not affect integrity of mitochondria, lysosomes, DNA, and nuclei. Also, PF68 neither induce free radical or cytokine production nor does it interfere with cellular uptake mechanisms. The results of the present study suggest that PF68-assisted dispersion of NPs produced suspensions, which are stable after autoclaving. Further, PF68 does not interfere with normal physiological functions suggesting its application in nanomedicine and nanotoxicity evaluation.

  11. Remediation using trace element humate surfactant

    DOEpatents

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  12. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    PubMed

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng

    2017-03-17

    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of carbohydrate-based surfactants

    DOEpatents

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  14. Comparison of amphiphilic polyurethane nanoparticles to nonionic surfactants for flushing phenanthrene from soil.

    PubMed

    Kim, Ju-Young; Shim, Sun-Bo; Shim, Jin-Kie

    2004-12-31

    Amphiphilic polyurethane (APU) nanoparticles were synthesized through crosslinking polymerization of nano-aggregates of urethane acrylate nonionomer (UAN). The efficiency of in situ extraction of sorbed phenanthrene from aquifer material was tested using soil columns and compared with that of surfactants such as Triton X-100, Brij 30, and Tween 80. The extraction efficiency of those washing materials strongly depended on their concentration, flow rate, and the degree of sorption within soil column. That is, the extraction efficiency increased with the decrease of flow rate and the degree of sorption and the increase of the concentration. Even though the surfactants are superior to APU nanoparticles at solubilizing phenanthrene, at the same flow rate (0.02 mL/min) and concentration (4000 mg/L), the effectiveness of in situ soil washing of APU nanoparticles was about two times higher than those of surfactants. This is because, at the lower flow rates, the degree of sorption of APU nanoparticles was lower than that of surfactants, owing to the chemically crosslinked nature of APU nanoparticles.

  15. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product

    PubMed Central

    Fuwa, Haruhiko

    2016-01-01

    Tetrahydropyrans are structural motifs that are abundantly present in a range of biologically important marine natural products. As such, significant efforts have been paid to the development of efficient and versatile methods for the synthesis of tetrahydropyran derivatives. Neopeltolide, a potent antiproliferative marine natural product, has been an attractive target compound for synthetic chemists because of its complex structure comprised of a 14-membered macrolactone embedded with a tetrahydropyran ring, and twenty total and formal syntheses of this natural product have been reported so far. This review summarizes the total and formal syntheses of neopeltolide and its analogues, highlighting the synthetic strategies exploited for constructing the tetrahydropyran ring. PMID:27023567

  16. Marine Biodiversity in Japanese Waters

    PubMed Central

    Fujikura, Katsunori; Lindsay, Dhugal; Kitazato, Hiroshi; Nishida, Shuhei; Shirayama, Yoshihisa

    2010-01-01

    To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness), the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans. PMID:20689840

  17. Electrostatic Interactions Govern "Odd/Even" Effects in Water-Induced Gemini Surfactant Self-Assembly.

    PubMed

    Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun

    2017-01-26

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.

  18. Marine intervals in Neogene fluvial deposits of western Amazonia

    NASA Astrophysics Data System (ADS)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  19. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  20. Competitive substrate biodegradation during surfactant-enhanced remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudar, C.; Strevett, K.; Grego, J.

    The impact of synthetic surfactants on the aqueous phase biodegradation of benzene, toluene, and p-xylene (BTpX) was studied using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), and two nonionic surfactants, POE(20) sorbitan monooleate (T-maz-80) and octyl-phenolpoly(ethyleneoxy) ethanol (CA-620). Batch biodegradation experiments were performed to evaluate surfactant biodegradability using two different microbial cultures. Of the four surfactants used in this study, SDS and T-maz-80 were readily degraded by a microbial consortium obtained from an activated sludge treatment system, whereas only SDS was degraded by a microbial culture that was acclimated to BTpX. Biodegradation kinetic parametersmore » associated with SDS and T-maz-80 degradation by the activated sludge consortium were estimated using respirometric data in conjunction with a nonlinear parameter estimation technique as {mu}{sub max} = 0.93 h{sup {minus}1}, K{sub s}= 96.18 mg/L and {mu}{sub max} = 0.41 h{sup {minus}1}, K{sub s} = 31.92 mg/L, respectively. When both BTpX and surfactant were present in the reactor along with BTpX-acclimated microorganisms, two distinct biodegradation patterns were seen. SDS was preferentially utilized inhibiting hydrocarbon biodegradation, whereas, the other three surfactants had no impact on BTpX biodegradation. None of the four surfactants were toxic to the microbial cultures used in this study. Readily biodegradable surfactants are not very effective for subsurface remediation applications as they are rapidly consumed, and also because of their potential inhibitory effects on intrinsic hydrocarbon biodegradation. This greatly increases treatment costs as surfactant recovery and reuse are adversely affected.« less

  1. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion

    NASA Astrophysics Data System (ADS)

    Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2014-06-01

    Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.

  2. Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study.

    PubMed

    Bračič, Matej; Hansson, Per; Pérez, Lourdes; Zemljič, Lidija F; Kogej, Ksenija

    2015-11-10

    Mixtures of natural and biodegradable surfactants and ionic polysaccharides have attracted considerable research interest in recent years because they prosper as antimicrobial materials for medical applications. In the present work, interactions between the lysine-derived biocompatible cationic surfactant N(ε)-myristoyl-lysine methyl ester, abbreviated as MKM, and the sodium salt of hyaluronic acid (NaHA) are investigated in aqueous media by potentiometric titrations using the surfactant-sensitive electrode and pyrene-based fluorescence spectroscopy. The critical micelle concentration in pure surfactant solutions and the critical association concentration in the presence of NaHA are determined based on their dependence on the added electrolyte (NaCl) concentration. The equilibrium between the protonated (charged) and deprotonated (neutral) forms of MKM is proposed to explain the anomalous binding isotherms observed in the presence of the polyelectrolyte. The explanation is supported by theoretical model calculations of the mixed-micelle equilibrium and the competitive binding of the two MKM forms to the surface of the electrode membrane. It is suggested that the presence of even small amounts of the deprotonated form can strongly influence the measured electrode response. Such ionic-nonionic surfactant mixtures are a special case of mixed surfactant systems where the amount of the nonionic component cannot be varied independently as was the case for some of the earlier studies.

  3. Effect of different concentrations of sodium dodecyl sulfate and additional anionic surfactant on properties of low protein natural rubber latex

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurulhuda; Manaf, Siti Nor Qamarina; Hassan, Aziana Abu

    2017-12-01

    This paper describes the chemical deproteinization process of natural rubber latex (NRL) using chemical denaturants namely urea and sodium dodecyl sulfate (SDS). Commercial high ammoniated natural rubber latex (HANRL) was incubated with both denaturants - urea and SDS for selected period of time before centrifugation and characterization. The role of SDS in NRL deproteinization process was further elucidated by manipulating the concentration of SDS at 0.3 phr and 0.5 phr during the incubation process. It was found that the physical properties of NRL especially stability, were governed by the amount of SDS, whereby higher concentration of SDS used led to greater NRL stability. However, too much concentration of SDS in the system might cause detrimental effect on the properties of low protein NRL. The effects of additional anionic surfactant namely potassium laurate on the physical properties of low protein NRL and its stabilization were also scrutinized. Characterizations include nitrogen determination by Kjeldahl method, zeta potential, and morphological analysis by Field Emission Scanning Electron Microscopy (FESEM).

  4. [Preparation and antimicrobial effect of aromatic, natural and bacteriostatic foot wash with skin care].

    PubMed

    Gao, Su-Hua; Zhao, Guo-Xiang; Yang, Xiao-Dong; Xu, Ling-Ling

    2013-06-01

    To prepare the aromatic, natural and bacteriostatic foot wash with skin care and research the inhibition effect on the different bacteria and pathogenic fungus which cause dermatophytosis. It was prepared by using Sophoraflavescens and Dictamnus dasycarpus as materials with the addition of Aloe extract, essential oil, surfactant, etc. The antifungal and antibacterial activity was researched by the levitation liquid quantitative method. The foot wash smelled faintly scent. The use of this product can produce a rich foam. The inhibitory rate were all more than 90%. The preparation process of the foot wash was simple. It has obviously bacteriostatic and fungistatic effect.

  5. Marine derived bioactive compounds for treatment of Alzheimer's disease.

    PubMed

    Lakshmi, Sreeja; Prakash, Parvathi; Essa, Musthafa M; Qoronfleh, Walid M; Akbar, Mohammed; Song, Byoung-Joon; Kumar, Suresh; Elumalai, Preetham

    2018-06-01

    Alzheimer's disease (AD ) is mounting as social and economic encumbrance which are accompanied by deficits in cognition and memory. Over the past decades, Alzheimer's disease (AD) holds the frontline as one of the biggest healthcare issues in the world. AD is an age related neurodegenerative disorder marked by a decline in memory and an impairment of cognition. Inspite of tedious scientific effort, AD is still devoid of pharmacotherapeutic strategies for treatment as well as prevention. Current treatment strategies using drugs are symbolic in nature as they treat disease manifestation though are found effective in treating cognition. Inclination of science towards naturopathic treatments aiming at preventing the disease is highly vocal. Application of marine-derived bioactive compounds, has been gaining attention as mode of therapies against AD. Inspired by the vastness and biodiversity richness of the marine environment,  role of  marine metabolites in developing new therapies targeting brain with special emphasis to neurodegeneration is heading as an arable field. This review summarizes select-few examples highlighted as therapeutical applications for neurodegenerative disorders with special emphasis on AD.

  6. Effect of surfactants on sorption of atrazine by soil

    NASA Astrophysics Data System (ADS)

    Abu-Zreig, Majed; Rudra, R. P.; Dickinson, W. T.; Evans, L. J.

    1999-03-01

    This study investigates the effect of synthetic wastewater containing surfactants on the sorption of atrazine using an equilibrium batch technique. Laboratory experiments were conducted on three soils with two non-ionic (Rexol and Rexonic) surfactants and one anionic (Sulphonic) surfactant, specifically manufactured for the detergent industry. Four sets of experiments were conducted to examine the influence of surfactants on the equilibrium time of atrazine sorption, to explore the effect of surfactant concentration, pH and type of surfactant on the amount of atrazine sorbed and to determine sorption isotherms of atrazine in the presence of surfactants. The results indicate that the application of Sulphonic results in dramatic increase in the adsorption of atrazine on to soils, the increase being directly proportional to the concentration of the surfactant. Application of the Sulphonic surfactants with a concentration of 3000 mg/l can result in a significant increase in Kd values of atrazine for loam and sandy loam soils. On the other hand, the effect of non-ionic surfactants depends on their concentration. Generally, non-ionic surfactants can result in a slight increase in atrazine sorption at high concentration, an exception being Rexol on sandy loam soil. At low concentrations, non-ionic surfactants have shown a tendency to decrease atrazine sorption.

  7. Connecting to the Standards through Marine Science.

    ERIC Educational Resources Information Center

    New Jersey Marine Sciences Consortium, Fort Hancock. New Jersey Sea Grant Coll. Program.

    Marine and related environmental science topics represent a rich resource of meaningful material for New Jersey's educators as they seek to develop standards-based instructional strategies. By adopting and integrating the marine environment science programs and curriculum materials developed by the Education Program at the New Jersey Marine…

  8. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature.

    PubMed

    Cox, Daniel T C; Gaston, Kevin J

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder.

  9. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature

    PubMed Central

    Cox, Daniel T. C.; Gaston, Kevin J.

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder. PMID:26560968

  10. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant

    NASA Astrophysics Data System (ADS)

    Behera, M.; Giri, G.

    2014-12-01

    Herein, we report a facile green synthesis of Cu2O nanoparticles (NPs) using copper sulfate as precursor salt and hydrazine hydrate as reducing agent in presence of bio-surfactant (i.e. leaves extract of arka — a perennial shrub) at 60 to 70 °C in an aqueous medium. A broad band centered at 460 nm in absorption spectrum reveals the formation of surfactant stabilized Cu2O NPs. X-ray diffraction pattern of the surfactant stabilized NPs suggests the formation of only Cu2O phase in assistance of a bio-surfactant with the crystallite size of ˜8 nm. A negative zeta potential of -12 mV at 8.0 pH in surfactant stabilized Cu2O NPs hints non-bonding electron transfer from O-atom of saponin to the surface of NP. Red-shift in the vibrational band (Cu-O stretching) of Cu2O from 637 cm-1 to 640 cm-1 in presence of bio-surfactant suggests an interfacial interaction between NPs and O-atoms of -OH groups of saponin present in the plant (i.e. Calotropis gigantean) extract. From X-ray photoelectron spectroscopy spectra, a decrease in binding energy of both 2p3/2 and 2p1/2 bands in Cu2O with saponin molecules as compared to bulk Cu atom reveals a charge transfer interaction between NP and saponin surfactant molecules. Transmission electron microscopy images show crystalline nature of Cu2O NPs with an fcc lattice.

  11. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study.

    PubMed

    Patel, Salin Gupta; Bummer, Paul M

    2017-01-10

    This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (C sat ) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔH agg ° , ΔG agg ° , H agg ° , ΔS agg ° , and ΔC p were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the

  12. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial

    PubMed Central

    Jesionowski, Teofil; Norman, Małgorzata; Żółtowska-Aksamitowska, Sonia; Petrenko, Iaroslav; Ehrlich, Hermann

    2018-01-01

    The biosynthesis, chemistry, structural features and functionality of spongin as a halogenated scleroprotein of keratosan demosponges are still paradigms. This review has the principal goal of providing thorough and comprehensive coverage of spongin as a naturally prefabricated 3D biomaterial with multifaceted applications. The history of spongin’s discovery and use in the form of commercial sponges, including their marine farming strategies, have been analyzed and are discussed here. Physicochemical and material properties of spongin-based scaffolds are also presented. The review also focuses on prospects and trends in applications of spongin for technology, materials science and biomedicine. Special attention is paid to applications in tissue engineering, adsorption of dyes and extreme biomimetics. PMID:29522478

  13. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    NASA Astrophysics Data System (ADS)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  14. Self-assembled Gemini surfactant film-mediated dispersion stability.

    PubMed

    Rabinovich, Y I; Kanicky, J R; Pandey, S; Oskarsson, H; Holmberg, K; Moudgil, B M; Shah, D O

    2005-08-15

    The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).

  15. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase.more » A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as

  16. Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage

    PubMed Central

    Guillemot, Nicolas; Kulbicki, Michel; Chabanet, Pascale; Vigliola, Laurent

    2011-01-01

    The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species. PMID:22039543

  17. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less

  18. Next Generation Surfactants for Improved Chemical Flooding Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers,more » and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four

  19. Photocatalytic removal of SO2 using natural zeolite modified by TiO2 and polyoxypropylene surfactant.

    PubMed

    Amini, Nasibeh; Soleimani, Mohsen; Mirghaffari, Nourollah

    2018-01-25

    Air pollution due to emission of various hazardous gases such as SO 2 into the atmosphere and its control is an important environmental issue. Application of photocatalysts is considered as a suitable process to control the gaseous pollutants. In this study, the efficiency of clinoptilolite as a natural zeolite (Ze) modified by TiO 2 (Ze-Ti) and a polymeric surfactant polyoxypropylene (Ze-Ti-POP) for removal of SO 2 was investigated. The nanocomposites were characterized by SEM, EDX, and BET analyses. The photocatalytic oxidation experiments of SO 2 by the nanocomposites and natural zeolite were done under UV irradiation with initial SO 2 concentration of 500 ppm in a photoreactor. The effects of different factors including reaction time, catalyst dose, UV irradiation intensity, humidity content, and calcination temperature and dose of TiO 2 were studied. The modification of clinoptilolite by TiO 2 and POP increased considerably the BET specific surface area of the nanocomposites. The results showed that maximum removal efficiencies of SO 2 by Ze-Ti and Ze-Ti-POP under the optimum experimental conditions were 82.1 and 87.4%, respectively. Adsorption kinetics data well fitted with the Langmuir-Hinshelwood model. Moreover, reusing of nanocomposites after three regeneration cycles indicated that application of Ze-Ti and Ze-Ti-POP nanocomposites could be a promising approach for SO 2 removal. Graphical abstract ᅟ.

  20. Study on the sorption behaviour of estrone on marine sediments.

    PubMed

    Zhang, Jing; Yang, Gui-Peng; Li, Quan; Cao, Xiaoyan; Liu, Guangxing

    2013-11-15

    The sorption behaviour of estrone (E1) on marine sediments treated by different methods was systematically investigated. About 22 h was required for sorption equilibrium of E1. Sorption isotherms of E1 were well fitted with Freundlich model. The sorption behaviour of E1 on HCl-treatment and H2O-treatment sediments related significantly with the sediment organic carbon contents. Additionally, clay minerals and surface areas of sediments played dominant roles in the sorption of E1 on H2O2-treatment sediments. Some external factors which could affect sorption behaviour of E1 were also investigated. Our results showed that the sorption capacity of E1 on the sediments increased with the increasing concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB), nonionic surfactant polyoxyethylene (80) sorbitan esters (Tween 80) and salinity of seawater. In contrast, the sorption capacity of E1 decreased with the increasing concentration of anionic surfactant sodium dodecylbenzene sulfonate (SDBS), pH value and temperature of seawater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Nanoparticle-enabled delivery of surfactants in porous media.

    PubMed

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Syntheses and Biological Studies of Marine Terpenoids Derived from Inorganic Cyanide

    PubMed Central

    Schnermann, Martin J.; Shenvi, Ryan A.

    2015-01-01

    Isocyanoterpenes (ICTs) are marine natural products biosynthesized through an unusual pathway that adorns terpene scaffolds with nitrogenous functionality derived from cyanide. The appendage of nitrogen functional groups–isonitriles in particular–onto stereochemically-rich carbocyclic ring systems provides enigmatic, bioactive molecules that have required innovative chemical syntheses. This review discusses the challenges inherent to the synthesis of this diverse family and details the development of the field. We also present recent progress in isolation and discuss key aspects of the remarkable biological activity of these compounds. PMID:25514696

  3. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  4. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  5. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  6. The Pulmonary Surfactant: Impact of Tobacco Smoke and Related Compounds on Surfactant and Lung Development

    PubMed Central

    Scott, J Elliott

    2004-01-01

    Cigarette smoking, one of the most pervasive habits in society, presents many well established health risks. While lung cancer is probably the most common and well documented disease associated with tobacco exposure, it is becoming clear from recent research that many other diseases are causally related to smoking. Whether from direct smoking or inhaling environmental tobacco smoke (ETS), termed secondhand smoke, the cells of the respiratory tissues and the lining pulmonary surfactant are the first body tissues to be directly exposed to the many thousands of toxic chemicals in tobacco. Considering the vast surface area of the lung and the extreme attenuation of the blood-air barrier, it is not surprising that this organ is the primary route for exposure, not just to smoke but to most environmental contaminants. Recent research has shown that the pulmonary surfactant, a complex mixture of phospholipids and proteins, is the first site of defense against particulates or gas components of smoke. However, it is not clear what effect smoke has on the surfactant. Most studies have demonstrated that smoking reduces bronchoalveolar lavage phospholipid levels. Some components of smoke also appear to have a direct detergent-like effect on the surfactant while others appear to alter cycling or secretion. Ultimately these effects are reflected in changes in the dynamics of the surfactant system and, clinically in changes in lung mechanics. Similarly, exposure of the developing fetal lung through maternal smoking results in postnatal alterations in lung mechanics and higher incidents of wheezing and coughing. Direct exposure of developing lung to nicotine induces changes suggestive of fetal stress. Furthermore, identification of nicotinic receptors in fetal lung airways and corresponding increases in airway connective tissue support a possible involvement of nicotine in postnatal asthma development. Finally, at the level of the alveoli of the lung, colocalization of nicotinic

  7. Application of peptide gemini surfactants as novel solubilization surfactants for photosystems I and II of cyanobacteria.

    PubMed

    Koeda, Shuhei; Umezaki, Katsunari; Noji, Tomoyasu; Ikeda, Atsushi; Kawakami, Keisuke; Kondo, Masaharu; Yamamoto, Yasushi; Shen, Jian-Ren; Taga, Keijiro; Dewa, Takehisa; Ito, Shigeru; Nango, Mamoru; Tanaka, Toshiki; Mizuno, Toshihisa

    2013-09-17

    We designed novel peptide gemini surfactants (PG-surfactants), DKDKC12K and DKDKC12D, which can solubilize Photosystem I (PSI) of Thermosynecoccus elongatus and Photosystem II (PSII) of Thermosynecoccus vulcanus in an aqueous buffer solution. To assess the detailed effects of PG-surfactants on the original supramolecular membrane protein complexes and functions of PSI and PSII, we applied the surfactant exchange method to the isolated PSI and PSII. Spectroscopic properties, light-induced electron transfer activity, and dynamic light scattering measurements showed that PSI and PSII could be solubilized not only with retention of the original supramolecular protein complexes and functions but also without forming aggregates. Furthermore, measurement of the lifetime of light-induced charge-separation state in PSI revealed that both surfactants, especially DKDKC12D, displayed slight improvement against thermal denaturation below 60 °C compared with that using β-DDM. This degree of improvement in thermal resistance still seems low, implying that the peptide moieties did not interact directly with membrane protein surfaces. By conjugating an electron mediator such as methyl viologen (MV(2+)) to DKDKC12K (denoted MV-DKDKC12K), we obtained derivatives that can trap the generated reductive electrons from the light-irradiated PSI. After immobilization onto an indium tin oxide electrode, a cathodic photocurrent from the electrode to the PSI/MV-DKDKC12K conjugate was observed in response to the interval of light irradiation. These findings indicate that the PG-surfactants DKDKC12K and DKDKC12D provide not only a new class of solubilization surfactants but also insights into designing other derivatives that confer new functions on PSI and PSII.

  8. Influence of surfactants in forced dynamic dewetting.

    PubMed

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C 4 E 1 , C 8 E 3 and C 12 E 5 ) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s -1 the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  9. Structural study of surfactant-dependent interaction with protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  10. Structural study of surfactant-dependent interaction with protein

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-01

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  11. The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.

    PubMed

    Jin, Qiu; Yu, Huahua; Li, Pengcheng

    2018-01-01

    Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants.

    PubMed

    Nogueira, D R; Mitjans, M; Infante, M R; Vinardell, M P

    2011-07-01

    Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    PubMed

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  14. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    PubMed

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  15. Emerging biopharmaceuticals from marine actinobacteria.

    PubMed

    Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber

    2017-01-01

    Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Surfactants and the Mechanics of Respiration

    NASA Astrophysics Data System (ADS)

    Jbaily, Abdulrahman; Szeri, Andrew J.

    2016-11-01

    Alveoli are small sacs found at the end of terminal bronchioles in human lungs with a mean diameter of 200 μm. A thin layer of fluid (hypophase) coats the inner face of an alveolus and is in contact with the air in the lungs. The thickness of this layer varies among alveoli, but is in the range of 0.1 to 0.5 μm for many portions of the alveolar network. The interfacial tension σ at the air-hypophase interface tends to favor collapse of the alveolus, and resists its expansion during inhalation. Type II alveolar cells synthesize and secrete a mixture of phospholipids and proteins called pulmonary surfactant. These surfactant molecules adsorb to the interface causing σ of water at body temperature is 70 mN/m and falls to an equilibrium value of 25 mN/m when surfactants are present. Also, in a dynamic sense, it is known that σ is reduced to near 0 during exhalation when the surfactant film compresses. In this work, the authors develop a mechanical and transport model of the alveolus to study the effect of surfactants on various aspects of respiration. The model is composed of three principal parts: (i) air movement into and out of the alveolus; (ii) a balance of linear momentum across the two-layered membrane of the alveolus (hypophase and elastic wall); and (iii) a pulmonary surfactant transport problem in the hypophase. The goal is to evaluate the influence of pulmonary surfactant on respiratory mechanics.

  17. Influence of Surfactants on Sodium Chloride Crystallization in Confinement

    PubMed Central

    2017-01-01

    We study the influence of different surfactants on NaCl crystallization during evaporation of aqueous salt solutions. We found that at concentrations of sodium chloride close to saturation, only the cationic surfactant CTAB and the nonionic surfactant Tween 80 remain stable. For the nonionic surfactant, the high concentration of salt does not significantly change either the critical micellar concentration (CMC) or the surface tension at the CMC; for the cationic surfactant, the CMC is reduced by roughly 2 orders of magnitude upon adding the salt. The presence of both types of surfactants in the salt solution delays the crystallization of sodium chloride with evaporation. This, in turn, leads to high supersaturation which induces the rapid precipitation of a hopper crystal in the bulk. The crystallization inhibitor role of these surfactants is shown to be mainly due to the passivation of nucleation sites at both liquid/air and solid/liquid interfaces rather than a change in the evaporation rate which is found not to be affected by the presence of the surfactants. The adsorption of surfactants at the liquid/air interface prevents the crystallization at this location which is generally the place where the precipitation of sodium chloride is observed. Moreover, sum frequency generation spectroscopy measurements show that the surfactants are also present at the solid/liquid interface. The incorporation of the surfactants into the salt crystals is investigated using a novel, but simple, method based on surface tension measurements. Our results show that the nonionic surfactant Tween 80 is incorporated in the NaCl crystals but the cationic surfactant CTAB is not. Taken together, these results therefore allow us to establish the effect of the presence of surfactants on sodium chloride crystallization. PMID:28425711

  18. Natural marine bacteria as model organisms for the hazard-assessment of consumer products containing silver nanoparticles.

    PubMed

    Echavarri-Bravo, Virginia; Paterson, Lynn; Aspray, Thomas J; Porter, Joanne S; Winson, Michael K; Hartl, Mark G J

    2017-09-01

    Scarce information is available regarding the fate and toxicology of engineered silver nanoparticles (AgNPs) in the marine environment, especially when compared to other environmental compartments. Hence, the antibacterial activity of the NM-300 AgNPs (OECD programme) and a household product containing colloidal AgNPs (Mesosilver) was investigated using marine bacteria, pure cultures and natural mixed populations (microcosm approach). Bacterial susceptibility to AgNPs was species-specific, with Gram negative bacteria being more resistant than the Gram positive species (NM-300 concentration used ranged between 0.062 and 1.5 mg L -1 ), and the Mesosilver product was more toxic than the NM-300. Bacterial viability and the physiological status (O 2 uptake measured by respirometry) of the microbial community in the microcosm was negatively affected at an initial concentration of 1 mg L -1 NM-300. The high chloride concentrations in the media/seawater led to the formation of silver-chloro complexes thus enhancing AgNP toxicity. We recommend the use of natural marine bacteria as models when assessing the environmental relevant antibacterial properties of products containing nanosilver. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Stabilizing and destabilizing protein surfactant-based foams in the presence of a chemical surfactant: Effect of adsorption kinetics.

    PubMed

    Li, Huazhen; Le Brun, Anton P; Agyei, Dominic; Shen, Wei; Middelberg, Anton P J; He, Lizhong

    2016-01-15

    Stimuli-responsive protein surfactants promise alternative foaming materials that can be made from renewable sources. However, the cost of protein surfactants is still higher than their chemical counterparts. In order to reduce the required amount of protein surfactant for foaming, we investigated the foaming and adsorption properties of the protein surfactant, DAMP4, with addition of low concentrations of the chemical surfactant sodium dodecylsulfate (SDS). The results show that the small addition of SDS can enhance foaming functions of DAMP4 at a lowered protein concentration. Dynamic surface tension measurements suggest that there is a synergy between DAMP4 and SDS which enhances adsorption kinetics of DAMP4 at the initial stage of adsorption (first 60s), which in turn stabilizes protein foams. Further interfacial properties were revealed by X-ray reflectometry measurements, showing that there is a re-arrangement of adsorbed protein-surfactant layer over a long period of 1h. Importantly, the foaming switchability of DAMP4 by metal ions is not affected by the presence of SDS, and foams can be switched off by the addition of zinc ions at permissive pH. This work provides fundamental knowledge to guide formulation using a mixture of protein and chemical surfactants towards a high performance of foaming at a low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Adsorption of C.I. Natural Red 4 onto Spongin Skeleton of Marine Demosponge

    PubMed Central

    Norman, Małgorzata; Bartczak, Przemysław; Zdarta, Jakub; Tylus, Włodzimierz; Szatkowski, Tomasz; Stelling, Allison L.; Ehrlich, Hermann; Jesionowski, Teofil

    2014-01-01

    C.I. Natural Red 4 dye, also known as carmine or cochineal, was adsorbed onto the surface of spongin-based fibrous skeleton of Hippospongia communis marine demosponge for the first time. The influence of the initial concentration of dye, the contact time, and the pH of the solution on the adsorption process was investigated. The results presented here confirm the effectiveness of the proposed method for developing a novel dye/biopolymer hybrid material. The kinetics of the adsorption of carmine onto a marine sponge were also determined. The experimental data correspond directly to a pseudo-second-order model for adsorption kinetics (r2 = 0.979–0.999). The hybrid product was subjected to various types of analysis (FT-IR, Raman, 13C CP/MAS NMR, XPS) to investigate the nature of the interactions between the spongin (adsorbent) and the dye (the adsorbate). The dominant interactions between the dye and spongin were found to be hydrogen bonds and electrostatic effects. Combining the dye with a spongin support resulted with a novel hybrid material that is potentially attractive for bioactive applications and drug delivery systems. PMID:28787926

  1. Efficacy of glyphosate and five surfactants for controlling giant salvinia

    USGS Publications Warehouse

    Fairchild, J.F.; Allert, A.L.; Riddle, J.S.; Gladwin, D.R.

    2002-01-01

    Giant salvinia (Salvinia molesta Mitchell) is a non-native, invasive aquatic fern that was recently introduced to the southern United States. The aggressive nature of the species has led to concerns over its potential adverse impacts to native plants, fish, and invertebrates. We conducted a study to determine the efficacy of glyphosate [isopropylamine salt of N-(phosphono-methyl)glycine] and several surfactants for control of giant salvinia. Studies were conducted over a 42-day period using static renewals (twice weekly) with 4% Hoagland's medium (10 mg/L N equivalent) in replicated 2-L containers. Five concentrations of glyphosate (0, 0.45, 0.91, 1.82, and 3.60% v:v) and five surfactants (0.25% concentration, v:v; Optima???, Kinetic???, Mon 0818???, Cygnet Plus???, and LI-700???) were applied with a pressurized sprayer as a single surface application in a fully nested experimental design. Untreated giant salvinia grew rapidly and exhibited an increase of 800% wet weight biomass over the 42-day test duration. Glyphosate, with and without surfactants, exhibited efficacy at concentrations as low as 0.45% of the commercial formulation. Glyphosate with Optima was the only mixture that resulted in complete mortality of plants with no regrowth.

  2. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  3. Surfactant protein C: basics to bedside.

    PubMed

    Curstedt, Tore

    2005-05-01

    Development of clinically active synthetic surfactants has turned out to be more complicated than initially anticipated. Surfactant protein analogues must have the right conformation without forming oligomers. Furthermore, the lipid composition, as well as a high lipid concentration in the suspension seem to be important. For successful treatment of many respiratory diseases, it is desirable that the synthetic surfactant may stabilize the alveoli at end-expiration and may resist inactivation by components leaking into the alveoli.

  4. Salting-out and multivalent cation precipitation of anionic surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, R.D. Jr.; Keppel, R.A.; Cosper, M.B.

    1981-02-01

    In this surfactant/polymer flooding process, a carefully designed surfactant slug is injected into an oil-bearing formation with a view to reducing the oil/water interfacial tension substantially so as to facilitate mobilization of oil droplets trapped in the less accessible void spaces of the reservoir rock. When the surfactant comes into contact with reservoir brine, oil and rock, several phenomena can occur which result in loss of surfactant from the slug, i.e., salting-out of surfactant by NaCl, precipitation of insoluble soaps by multivalent cations such as calcium, partitioning to oil of both dissolved and precipitated surfactant, and adsorption of surfactant onmore » reservoir rock have been identified as important surfactant loss processes. This study presents some experimental data which illustrate the effects of salt and multivalent cations, identifies the mechanisms which are operative, and develops mathematical relationships which enable one to describe the behavior of surfactant systems when brought into contact with salt, multivalent cations, or both. 26 references.« less

  5. Splash Dynamics of Falling Surfactant-Laden Droplets

    NASA Astrophysics Data System (ADS)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  6. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system havemore » been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.« less

  7. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less

  8. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution.

    PubMed

    Matsaridou, Irini; Barmpalexis, Panagiotis; Salis, Andrea; Nikolakakis, Ioannis

    2012-12-01

    Self-emulsifying oil/surfactant mixtures can be incorporated into pellets that have the advantages of the oral administration of both microemulsions and a multiple-unit dosage form. The purpose of this work was to study the effects of surfactant hydrophilic-lipophilic balance (HLB) and oil/surfactant ratio on the formation and properties of self-emulsifying microcrystalline cellulose (MCC) pellets and microemulsion reconstitution. Triglycerides (C(8)-C(10)) was the oil and Cremophor ELP and RH grades and Solutol the surfactants. Pellets were prepared by extrusion/spheronization using microemulsions with fixed oil/surfactant content but with different water proportions to optimize size and shape parameters. Microemulsion reconstitution from pellets suspended in water was evaluated by turbidimetry and light scattering size analysis, and H-bonding interactions of surfactant with MCC from FT-IR spectra. It was found that water requirements for pelletization increased linearly with increasing HLB. Crushing load decreased and deformability increased with increasing oil/surfactant ratio. Incorporation of higher HLB surfactants enhanced H-bonding and resulted in faster and more extensive disintegration of MCC as fibrils. Reconstitution was greater at high oil/surfactant ratios and the droplet size of the reconstituted microemulsions was similar to that in the wetting microemulsions. The less hydrophilic ELP with a double bond in the fatty acid showed weaker H-bonding and greater microemulsion reconstitution. Purified ELP gave greater reconstitution than the unpurified grade. Thus, the work demonstrates that the choice of type and quantity of the surfactant used in the formulation of microemulsions containing pellets has an important influence on their production and performance.

  9. On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps

    NASA Astrophysics Data System (ADS)

    Callaghan, A. H.; Deane, G. B.; Stokes, M. D.

    2017-08-01

    Surfactants are ubiquitous in the global oceans: they help form the materially-distinct sea surface microlayer (SML) across which global ocean-atmosphere exchanges take place, and they reside on the surfaces of bubbles and whitecap foam cells prolonging their lifetime thus altering ocean albedo. Despite their importance, the occurrence, spatial distribution, and composition of surfactants within the upper ocean and the SML remains under-characterized during conditions of vigorous wave breaking when in-situ sampling methods are difficult to implement. Additionally, no quantitative framework exists to evaluate the importance of surfactant activity on ocean whitecap foam coverage estimates. Here we use individual laboratory breaking waves generated in filtered seawater and seawater with added soluble surfactant to identify the imprint of surfactant activity in whitecap foam evolution. The data show a distinct surfactant imprint in the decay phase of foam evolution. The area-time-integral of foam evolution is used to develop a time-varying stabilization function, ϕ>(t>) and a stabilization factor, Θ, which can be used to identify and quantify the extent of this surfactant imprint for individual breaking waves. The approach is then applied to wind-driven oceanic whitecaps, and the laboratory and ocean Θ distributions overlap. It is proposed that whitecap foam evolution may be used to determine the occurrence and extent of oceanic surfactant activity to complement traditional in-situ techniques and extend measurement capabilities to more severe sea states occurring at wind speeds in excess of about 10 m/s. The analysis procedure also provides a framework to assess surfactant-driven variability within and between whitecap coverage data sets.Plain Language SummaryThe foam patches made by breaking waves, also known as "whitecaps", are an important source of <span class="hlt">marine</span> sea spray, which impacts weather and climate through the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3253364','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3253364"><span>Spatial and Temporal Control of <span class="hlt">Surfactant</span> Systems</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Xiaoyang; Abbott, Nicholas L.</p> <p>2011-01-01</p> <p>This paper reviews some recent progress on approaches leading to spatial and temporal control of <span class="hlt">surfactant</span> systems. The approaches revolve around the use of redox-active and light-sensitive <span class="hlt">surfactants</span>. Perspectives are presented on experiments that have realized approaches for active control of interfacial properties of aqueous <span class="hlt">surfactant</span> systems, reversible control of microstructures and nanostructures formed within bulk solutions, and in situ manipulation of the interactions of <span class="hlt">surfactants</span> with polymers, DNA and proteins. A particular focus of this review is devoted to studies of amphiphiles that contain the redox-active group ferrocene – reversible control of the oxidation state of ferrocene leads to changes in the charge/hydrophobicity of these amphiphiles, resulting in substantial changes in their self-assembly. Light-sensitive <span class="hlt">surfactants</span> containing azobenzene, which undergo changes in shape/polarity upon illumination with light, are a second focus of this review. Examples of both redox-active and light-sensitive <span class="hlt">surfactants</span> that lead to large (> 20mN/m) and spatially localized (~mm) changes in surface tensions on a time scale of seconds are presented. Systems that permit reversible transformations of bulk solution nanostructures – such as micelle-to-vesicle transitions or monomer-to-micelle transitions – are also described. The broad potential utility of these emerging classes of amphiphiles are illustrated by the ability to drive changes in functional properties of <span class="hlt">surfactant</span> systems, such as rheological properties and reversible solubilization of oils, as well as the ability to control interactions of <span class="hlt">surfactants</span> with biomolecules to modulate their transport into cells. PMID:19665723</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20121208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20121208"><span>Interfacial reactions of ozone with <span class="hlt">surfactant</span> protein B in a model lung <span class="hlt">surfactant</span> system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Jang, Seung Soon; Neidholdt, Evan L; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L</p> <p>2010-02-24</p> <p>Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary <span class="hlt">surfactant</span> (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary <span class="hlt">surfactant</span> protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) <span class="hlt">surfactant</span> layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid <span class="hlt">surfactant</span> layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung <span class="hlt">surfactant</span> system subjected to oxidative stress.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=water+AND+resources&pg=3&id=EJ1057623','ERIC'); return false;" href="https://eric.ed.gov/?q=water+AND+resources&pg=3&id=EJ1057623"><span>Integrating Augmented Reality Technology to Enhance Children's Learning in <span class="hlt">Marine</span> Education</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lu, Su-Ju; Liu, Ying-Chieh</p> <p>2015-01-01</p> <p><span class="hlt">Marine</span> education comprises <span class="hlt">rich</span> and multifaceted issues. Raising general awareness of <span class="hlt">marine</span> environments and issues demands the development of new learning materials. This study adapts concepts from digital game-based learning to design an innovative <span class="hlt">marine</span> learning program integrating augmented reality (AR) technology for lower grade primary…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22276216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22276216"><span>Trends in the discovery of new <span class="hlt">marine</span> <span class="hlt">natural</span> products from invertebrates over the last two decades--where and what are we bioprospecting?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leal, Miguel Costa; Puga, João; Serôdio, João; Gomes, Newton C M; Calado, Ricardo</p> <p>2012-01-01</p> <p>It is acknowledged that <span class="hlt">marine</span> invertebrates produce bioactive <span class="hlt">natural</span> products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new <span class="hlt">marine</span> drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new <span class="hlt">marine</span> <span class="hlt">natural</span> products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of <span class="hlt">Marine</span> <span class="hlt">Natural</span> Products covering 1990-2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new <span class="hlt">natural</span> product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new <span class="hlt">natural</span> products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new <span class="hlt">natural</span> products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how <span class="hlt">marine</span> invertebrates, which in some cases have no commercial value</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3938532','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3938532"><span>Understanding the Distribution of <span class="hlt">Marine</span> Megafauna in the English Channel Region: Identifying Key Habitats for Conservation within the Busiest Seaway on Earth</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McClellan, Catherine M.; Brereton, Tom; Dell'Amico, Florence; Johns, David G.; Cucknell, Anna-C.; Patrick, Samantha C.; Penrose, Rod; Ridoux, Vincent; Solandt, Jean-Luc; Stephan, Eric; Votier, Stephen C.; Williams, Ruth; Godley, Brendan J.</p> <p>2014-01-01</p> <p>The temperate waters of the North-Eastern Atlantic have a long history of maritime resource <span class="hlt">richness</span> and, as a result, the European Union is endeavouring to maintain regional productivity and biodiversity. At the intersection of these aims lies potential conflict, signalling the need for integrated, cross-border management approaches. This paper focuses on the <span class="hlt">marine</span> megafauna of the region. This guild of consumers was formerly abundant, but is now depleted and protected under various national and international legislative structures. We present a meta-analysis of available megafauna datasets using presence-only distribution models to characterise suitable habitat and identify spatially-important regions within the English Channel and southern bight of the North Sea. The integration of studies from dedicated and opportunistic observer programmes in the United Kingdom and France provide a valuable perspective on the spatial and seasonal distribution of various taxonomic groups, including large pelagic fishes and sharks, <span class="hlt">marine</span> mammals, seabirds and <span class="hlt">marine</span> turtles. The Western English Channel emerged as a hotspot of biodiversity for megafauna, while species <span class="hlt">richness</span> was low in the Eastern English Channel. Spatial conservation planning is complicated by the highly mobile <span class="hlt">nature</span> of <span class="hlt">marine</span> megafauna, however they are important components of the <span class="hlt">marine</span> environment and understanding their distribution is a first crucial step toward their inclusion into <span class="hlt">marine</span> ecosystem management. PMID:24586985</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25906754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25906754"><span>Polyphenol-<span class="hlt">rich</span> diets improve glucose metabolism in people at high cardiometabolic risk: a controlled randomised intervention trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bozzetto, Lutgarda; Annuzzi, Giovanni; Pacini, Giovanni; Costabile, Giuseppina; Vetrani, Claudia; Vitale, Marilena; Griffo, Ettore; Giacco, Angela; De Natale, Claudia; Cocozza, Sara; Della Pepa, Giuseppe; Tura, Andrea; Riccardi, Gabriele; Rivellese, Angela A</p> <p>2015-07-01</p> <p>Dietary polyphenols and long chain n-3 polyunsaturated fatty acids (LCn3) are associated with lower cardiovascular risk. This may relate to their influence on glucose metabolism and diabetes risk. We evaluated the effects of diets <span class="hlt">naturally</span> <span class="hlt">rich</span> in polyphenols and/or LCn3 of <span class="hlt">marine</span> origin on glucose metabolism in people at high cardiometabolic risk. According to a 2 × 2 factorial design, individuals with high waist circumference and at least one more component of the metabolic syndrome were recruited at the obesity outpatient clinic. Eighty-six participants were randomly assigned by MINIM software to an isoenergetic diet: (1) control, low in LCn3 and polyphenol (analysed n = 20); (2) <span class="hlt">rich</span> in LCn3 (n = 19); (3) <span class="hlt">rich</span> in polyphenols (n = 19); or (4) <span class="hlt">rich</span> in LCn3 and polyphenols (n = 19). The assigned diets were known for the participants and blinded for people doing measurements. Before and after the 8 week intervention, participants underwent a 3 h OGTT and a test meal with a similar composition as the assigned diet for the evaluation of plasma glucose, insulin and glucagon-like peptide 1 (GLP-1) concentrations, and indices of insulin sensitivity and beta cell function. During OGTT, polyphenols significantly reduced plasma glucose total AUC (p = 0.038) and increased early insulin secretion (p = 0.048), while LCn3 significantly reduced beta cell function (p = 0.031) (two-factor ANOVA). Moreover, polyphenols improved post-challenge oral glucose insulin sensitivity (OGIS; p = 0.05 vs control diet by post hoc ANOVA). At test meal, LCn3 significantly reduced GLP-1 total postprandial AUC (p < 0.001; two-factor ANOVA). Diets <span class="hlt">naturally</span> <span class="hlt">rich</span> in polyphenols reduce blood glucose response, likely by increasing early insulin secretion and insulin sensitivity. These effects may favourably influence diabetes and cardiovascular risk. The implications of the decrease in insulin secretion and postprandial GLP-1 observed with diets <span class="hlt">rich</span> in <span class="hlt">marine</span> LCn3 need further clarification</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5091284','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5091284"><span>Modification of Escherichia coli–bacteriophage interactions by <span class="hlt">surfactants</span> and antibiotics in vitro</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scanlan, Pauline D.; Bischofberger, Anna M.</p> <p>2017-01-01</p> <p>Abstract Although experiments indicate that the abiotic environment plays an important role in bacterial interactions with their parasitic viruses (bacteriophages or phages), it is not yet clear how exposure to compounds present in <span class="hlt">nature</span> alters the impact of phages on bacterial growth and evolution. To address this question, we exposed Escherichia coli K12 MG1655, in combination with three lytic phages, to various substances that <span class="hlt">natural</span> and clinical microbial populations are likely to encounter: bile salts (present in mammalian gastrointestinal tracts), sodium dodecyl sulfate (SDS, a common <span class="hlt">surfactant</span> in cleaning and hygiene products) and four antibiotics (present at variable concentrations in <span class="hlt">natural</span> and clinical environments). Our results show that bile salts and SDS can reduce the detrimental effect of phages on bacterial growth. In some cases these compounds completely mitigated any negative effects of phages on bacterial growth and consequently bacteria did not evolve resistance to phages in these conditions. The proportional effects of phages were unaffected by antibiotics in most combinations, excepting three cases of phage-drug synergy. These results suggest that accounting for interactions between phages and environmental factors such as <span class="hlt">surfactants</span> and antibiotics will improve understanding of both bacterial growth and resistance evolution to phages in vivo and in <span class="hlt">nature</span>. PMID:27737900</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26057244','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26057244"><span>Tunable, antibacterial activity of silicone polyether <span class="hlt">surfactants</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A</p> <p>2015-08-01</p> <p>Silicone <span class="hlt">surfactants</span> are used in a variety of applications, however, limited data is available on the relationship between <span class="hlt">surfactant</span> structure and biological activity. A series of seven nonionic, silicone polyether <span class="hlt">surfactants</span> with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The <span class="hlt">surfactants</span> were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the <span class="hlt">surfactants</span>, antibacterial activity was higher at concentrations above the CMC. <span class="hlt">Surfactants</span> with smaller silicone head groups had as much as 4 times the bioactivity of <span class="hlt">surfactants</span> with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JChPh.135w4503T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JChPh.135w4503T"><span>Kinetics of phase separation and coarsening in dilute <span class="hlt">surfactant</span> pentaethylene glycol monododecyl ether solutions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.</p> <p>2011-12-01</p> <p>We investigated the phase separation phenomena in dilute <span class="hlt">surfactant</span> pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-<span class="hlt">rich</span> phase) nucleated as droplets and the minority phase (micelle-<span class="hlt">rich</span> phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26465504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26465504"><span>Tuning of protein-<span class="hlt">surfactant</span> interaction to modify the resultant structure.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim</p> <p>2015-09-01</p> <p>Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different <span class="hlt">surfactants</span> under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with <span class="hlt">surfactant</span> and the resultant structure are strongly modified by the charge head group of the <span class="hlt">surfactant</span>, ionic strength of the solution, and mixed <span class="hlt">surfactants</span>. The protein-<span class="hlt">surfactant</span> interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic <span class="hlt">surfactant</span>. This interaction of protein with ionic <span class="hlt">surfactants</span> is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic <span class="hlt">surfactant</span> with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic <span class="hlt">surfactants</span> with anionic proteins. Interestingly, the interaction of BSA protein with ionic <span class="hlt">surfactants</span> is significantly suppressed in the presence of nonionic <span class="hlt">surfactant</span>. These results with mixed <span class="hlt">surfactants</span> thus can be used to fold back the unfolded protein as well as to prevent <span class="hlt">surfactant</span>-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-<span class="hlt">surfactant</span> complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvE..92c2713M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvE..92c2713M"><span>Tuning of protein-<span class="hlt">surfactant</span> interaction to modify the resultant structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim</p> <p>2015-09-01</p> <p>Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different <span class="hlt">surfactants</span> under varying solution conditions. We show that the interaction of anionic BSA protein (p H 7 ) with <span class="hlt">surfactant</span> and the resultant structure are strongly modified by the charge head group of the <span class="hlt">surfactant</span>, ionic strength of the solution, and mixed <span class="hlt">surfactants</span>. The protein-<span class="hlt">surfactant</span> interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic <span class="hlt">surfactant</span>. This interaction of protein with ionic <span class="hlt">surfactants</span> is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic <span class="hlt">surfactant</span> with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic <span class="hlt">surfactants</span> with anionic proteins. Interestingly, the interaction of BSA protein with ionic <span class="hlt">surfactants</span> is significantly suppressed in the presence of nonionic <span class="hlt">surfactant</span>. These results with mixed <span class="hlt">surfactants</span> thus can be used to fold back the unfolded protein as well as to prevent <span class="hlt">surfactant</span>-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-<span class="hlt">surfactant</span> complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22554103','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22554103"><span>Kinetic studies of amino acid-based <span class="hlt">surfactant</span> binding to DNA.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Santhiya, Deenan; Dias, Rita S; Dutta, Sounak; Das, Prasanta Kumar; Miguel, Maria G; Lindman, Björn; Maiti, Souvik</p> <p>2012-05-24</p> <p>In this work, the binding kinetics of amino acid-based <span class="hlt">surfactants</span>, presenting different linkers and head groups, with calf thymus (CT)-DNA was studied using stopped-flow fluorescence spectroscopy. The kinetic studies were carried out as a function of Na(+) concentration and <span class="hlt">surfactant</span>-to-DNA charge ratio. The <span class="hlt">surfactant</span> binding on DNA took place in two consecutive steps, for which the corresponding first and second relative rate constants (k(1) and k(2)) were determined. The fast step was attributed to the <span class="hlt">surfactant</span> binding to DNA and micelle formation in its vicinity, the slower step to DNA condensation and possible rearrangement of the <span class="hlt">surfactant</span> aggregates. In general, both relative rate constants increase with <span class="hlt">surfactant</span> concentration and decrease with the ionic strength of the medium. The architecture of the <span class="hlt">surfactant</span> was found to have a significant impact on the kinetics of the DNA-<span class="hlt">surfactant</span> complexation. <span class="hlt">Surfactants</span> with amide linkers showed larger relative rate constants than those with ester linkers. The variation of the relative rate constants with the head groups of the <span class="hlt">surfactants</span>, alanine and proline, was found to be less obvious, being partially dependent on the <span class="hlt">surfactant</span> concentration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26829834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26829834"><span>[ANTIMICROBIAL ACTION OF NOCARDIA VACCINII IMV B-7405 <span class="hlt">SURFACTANTS</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pirog, T P; Beregova, K A; Savenko, I V; Shevchuk, T A; Iutynska, G O</p> <p>2015-01-01</p> <p>To study the effect of Nocardia vaccinii IMV B-7405 <span class="hlt">surfactants</span> on some bacteria (including pathogens of genera Proteus, Staphylococcus, Enterobacter), yeast of Candida species and fungi (Aspergillus niger R-3, Fusarium culmorum T-7). The antimi- crobial properties of <span class="hlt">surfactant</span> were determined in suspension culture by Koch method and also by index of the minimum inhibitory concentration. <span class="hlt">Surfactants</span> were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2:1). It is shown that the antimicrobial properties of N. vaccinii IMV B-7405 <span class="hlt">surfactant</span> depended on the degree of purification (supernatant, solution of <span class="hlt">surfactant</span>), concentration and exposure. Survival of Escherichia coli IEM-1 and Bacillus subtilis BT-2 (both vegetative cells and spores) after treatment for 1-2 hours with <span class="hlt">surfactants</span> solution and the supernatant (the <span class="hlt">surfactant</span> concentration 21 µg/ml) was 3-28%. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 <span class="hlt">surfactants</span> on studied bacteria, yeast and micromycetes were 11.5-85.0; 11.5-22.5 and 165.0-325.0 µ/ml respectively. Minimum inhibitory concentrations of N. vaccinii IMV B-7405 <span class="hlt">surfactants</span> are comparable to those of the known microbial <span class="hlt">surfactants</span>. The possibility of using the supernatant of culture liquid as an effective antimicrobial agent noticeably simplifies and reduces the cost of the technology of its obtaining.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC21C1102K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC21C1102K"><span><span class="hlt">Natural</span> analogue study of CO2 storage monitoring using probability statistics of CO2-<span class="hlt">rich</span> groundwater chemistry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.</p> <p>2016-12-01</p> <p>For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-<span class="hlt">rich</span> groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, <span class="hlt">natural</span> analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing <span class="hlt">naturally</span> occurring CO2-<span class="hlt">rich</span> groundwater. For the study, we used existing data of CO2-<span class="hlt">rich</span> groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-<span class="hlt">rich</span> groundwater, CO2 storage site, monitoring parameter, <span class="hlt">natural</span> analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26341818','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26341818"><span>Lipid nanocapsules containing the non-ionic <span class="hlt">surfactant</span> Solutol HS15 inhibit the transport of calcium through hyperforin-activated channels in neuronal cells.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chauvet, Sylvain; Barras, Alexandre; Boukherroub, Rabah; Bouron, Alexandre</p> <p>2015-12-01</p> <p>Hyperforin is described as a <span class="hlt">natural</span> antidepressant inhibiting the reuptake of neurotransmitters and also activating cation channels. However the blood-brain barrier limits the access to the brain of this biomolecule. To circumvent this problem it was envisaged to encapsulate hyperforin into biomimetic lipid nano-carriers like lipid nanocapsules (LNCs). When testing the safety of 25 nm LNCs it appeared that they strongly blocked hyperforin-activated Ca2+ channels of cultured cortical neurons. This inhibition was due to one of their main component: solutol HS15 (polyoxyethylene-660-12-hydroxy stearate), a non-ionic soluble <span class="hlt">surfactant</span>. Solutol HS15 rapidly depresses in a concentration-dependent manner the entry of Ca2+ through hyperforin-activated channels without influencing store-operated channels. This effect is mimicked by Brij58 but not by PEG600, indicating that the lipid chain of Solutol HS15 is important in determining its effects on the channels. The inhibition of the Ca2+ fluxes depends on the cellular cholesterol content; it is stronger after depleting cholesterol with methyl-β-cyclodextrin and is nearly absent on cells cultured in a cholesterol-<span class="hlt">rich</span> medium. When chronically applied for 24 h, Solutol HS15 slightly up-regulates the entry of Ca2+ through hyperforin-activated channels. Similar observations were made when testing 25 nm lipid nanocapsules containing the <span class="hlt">surfactant</span> Solutol HS15. Altogether, this study shows that Solutol HS15 perturbs in a cholesterol-dependent manner the activity of some neuronal channels. This is the first demonstration that LNCs containing this <span class="hlt">surfactant</span> can influence cellular calcium signaling in the brain, a finding that can have important clinical implications. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24641607','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24641607"><span><span class="hlt">Marine</span> cosmeceuticals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Se-Kwon</p> <p>2014-03-01</p> <p>Recently, a great deal of interest has been expressed in the cosmetic industry regarding <span class="hlt">marine</span>-derived cosmetic active ingredients due to their numerous beneficial effects on human skin health. Bioactive substances derived from <span class="hlt">marine</span> resources have diverse functional roles as <span class="hlt">natural</span> skin care agents, and these properties can be applied to the development of novel cosmetics as well as nutricosmetics (from edible seaweeds and edible <span class="hlt">marine</span> animals). This contribution focuses on <span class="hlt">marine</span>-derived cosmeceutical active ingredients and presents an overview of their health beneficial effects on human skin. © 2014 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21051693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21051693"><span><span class="hlt">Surfactant</span> properties of human meibomian lipids.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mudgil, Poonam; Millar, Thomas J</p> <p>2011-03-25</p> <p>Human meibomian lipids are the major part of the lipid layer of the tear film. Their <span class="hlt">surfactant</span> properties enable their spread across the aqueous layer and help maintain a stable tear film. The purpose of this study was to investigate <span class="hlt">surfactant</span> properties of human meibomian lipids in vitro and to determine effects of different physical conditions such as temperature and increased osmolarity, such as occur in dry eye, on these properties. Human meibomian lipids were spread on an artificial tear solution in a Langmuir trough. The lipid films were compressed and expanded to record the surface pressure-area (Π-A) isocycles. The isocycles were recorded under different physical conditions such as high pressure, increasing concentration and size of divalent cations, increasing osmolarity, and varying temperature. Π-A isocycles of meibomian lipids showed that they form liquid films that are compressible and multilayered. The isocycles were unaffected by increasing concentration or size of divalent cations and increasing osmolarity in the subphase. Temperature had a marked effect on the lipids. Increase in temperature caused lipid films to become fluid, an expected feature, but decrease in temperature unexpectedly caused expansion of lipids and an increase in pressure suggesting enhanced <span class="hlt">surfactant</span> properties. Human meibomian lipids form highly compressible, non-collapsible, multilayered liquid films. These lipids have <span class="hlt">surfactants</span> that allow them to spread across an aqueous subphase. Their <span class="hlt">surfactant</span> properties are unaffected by increasing divalent cations or hyperosmolarity but are sensitive to temperature. Cooling of meibomian lipids enhances their <span class="hlt">surfactant</span> properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23271433','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23271433"><span>Gemini ester quat <span class="hlt">surfactants</span> and their biological activity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław</p> <p>2013-03-01</p> <p>Cationic gemini <span class="hlt">surfactants</span> are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic <span class="hlt">surfactants</span> have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly <span class="hlt">surfactants</span> involves inserting a bond with limited stability into the <span class="hlt">surfactant</span> molecule to give a cleavable <span class="hlt">surfactant</span>. The best-known example of such a compound is the family of ester quats, which are cationic <span class="hlt">surfactants</span> with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat <span class="hlt">surfactants</span> were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by <span class="hlt">surfactants</span> and of their biological activity may assist in developing <span class="hlt">surfactants</span> with enhanced selectivity and in widening their range of application.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25748377','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25748377"><span>Novel fluorinated gemini <span class="hlt">surfactants</span> with γ-butyrolactone segments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kawase, Tokuzo; Okada, Kazuyuki; Oida, Tatsuo</p> <p>2015-01-01</p> <p>In this work, novel γ-butyrolactone-type monomeric and dimeric (gemini) <span class="hlt">surfactants</span> with a semifluoroalkyl group [Rf- (CH2)3-; Rf = C4F9, C6F13, C8F17] as the hydrophobic group were successfully synthesized. Dimethyl malonate was dimerized or connected using Br(CH2)sBr (s = 0, 1, 2, 3) to give tetraesters, and they were bis-allylated. Radical addition of fluoroalkyl using Rf-I and an initiator, i.e., 2,2'-azobisisobutyronitrile for C4F9 or di-t-butyl peroxide for C6F13 and C8F17, was perform at high temperature, with prolonged heating, to obtain bis(semifluoroalkyl)-dilactone diesters. These dilactone diesters were hydrolyzed using KOH/EtOH followed by decarboxylation in AcOH to afford γ-butyrolactonetype gemini <span class="hlt">surfactants</span>. Common 1 + 1 semifluoroalkyl lactone <span class="hlt">surfactants</span> were synthesized using the same method. Their <span class="hlt">surfactant</span> properties [critical micelle concentration (CMC), γCMC, pC20, ΓCMC, and AG] were investigated by measuring the surface tension of the γ-hydroxybutyrate form prepared in aqueous tetrabutylammonium hydroxide solution. As expected, the CMC values of the gemini <span class="hlt">surfactants</span> were more than one order of magnitude smaller than those of the corresponding 1 + 1 <span class="hlt">surfactants</span>. Other properties also showed the excellent ability of the gemini structure to reduce the surface tension. These <span class="hlt">surfactants</span> were easily and quantitatively recovered by acidification. The monomeric <span class="hlt">surfactant</span> was recovered in the γ-hydroxybutyric acid form, and the gemini <span class="hlt">surfactant</span> as a mixture of γ-butyrolactone and γ-hydroxybutyric acid forms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21890700','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21890700"><span>The <span class="hlt">surfactant</span> of Legionella pneumophila Is secreted in a TolC-dependent manner and is antagonistic toward other Legionella species.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stewart, Catherine R; Burnside, Denise M; Cianciotto, Nicholas P</p> <p>2011-11-01</p> <p>When Legionella pneumophila grows on agar plates, it secretes a <span class="hlt">surfactant</span> that promotes flagellum- and pilus-independent "sliding" motility. We isolated three mutants that were defective for <span class="hlt">surfactant</span>. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella <span class="hlt">surfactant</span> is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a <span class="hlt">surfactant</span>, confirming that TolC promotes <span class="hlt">surfactant</span> secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a <span class="hlt">surfactant</span>. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted <span class="hlt">surfactant</span>, suggesting that TolC and T2S conjoin to mediate <span class="hlt">surfactant</span> secretion, with one being the conduit for <span class="hlt">surfactant</span> export and the other the exporter of a molecule that is required for induction or maturation of <span class="hlt">surfactant</span> synthesis/secretion. Although the <span class="hlt">surfactant</span> was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the <span class="hlt">surfactant</span> provides L. pneumophila with a selective advantage over other legionellae in the <span class="hlt">natural</span> environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3956153','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3956153"><span>Surface shear inviscidity of soluble <span class="hlt">surfactants</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zell, Zachary A.; Nowbahar, Arash; Mansard, Vincent; Leal, L. Gary; Deshmukh, Suraj S.; Mecca, Jodi M.; Tucker, Christopher J.; Squires, Todd M.</p> <p>2014-01-01</p> <p>Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the <span class="hlt">surfactant</span> used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble <span class="hlt">surfactants</span>, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 103–104 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic <span class="hlt">surfactants</span> of high- and low-foaming character. No soluble, small-molecule <span class="hlt">surfactant</span> was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble <span class="hlt">surfactants</span>. PMID:24563383</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24947956','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24947956"><span>Effect of <span class="hlt">surfactants</span> on apparent oxygen consumption of photosystem I isolated from Arthrospira platensis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Daoyong; Huang, Guihong; Xu, Fengxi; Ge, Baosheng; Liu, Shuang; Xu, Hai; Huang, Fang</p> <p>2014-11-01</p> <p><span class="hlt">Surfactants</span> play a significant role in solubilization of photosystem I (PSI) in vitro. Triton X-100 (TX), n-Dodecyl-β-D-maltoside (DDM), and sodium dodecyl sulfate (SDS) were employed to solubilize PSI particles in MES buffer to compare the effect of <span class="hlt">surfactant</span> and its dosage on the apparent oxygen consumption rate of PSI. Through a combined assessment of sucrose density gradient centrifugation, Native PAGE and 77 K fluorescence with the apparent oxygen consumption, the <span class="hlt">nature</span> of the enhancement of the apparent oxygen consumption activity of PSI by <span class="hlt">surfactants</span> has been analyzed. Aggregated PSI particles can be dispersed by <span class="hlt">surfactant</span> molecules into micelles, and the apparent oxygen consumption rate is higher for <span class="hlt">surfactant</span>-solubilized PSI than for integral PSI particles. For DDM, PSI particles are solubilized mostly as the integral trimeric form. For TX, PSI particles are solubilized as incomplete trimeric and some monomeric forms. For the much harsher <span class="hlt">surfactant</span>, SDS, PSI particles are completely solubilized as monomeric and its subunit forms. The enhancement of the oxygen consumption rate cannot be explained only by the effects of <span class="hlt">surfactant</span> on the equilibrium between monomeric and trimeric forms of solubililized PSI. Care must be taken when the electron transfer activity of PSI is evaluated by methods based on oxygen consumption because the apparent oxygen consumption rate is influenced by uncoupled chlorophyll (Chl) from PSI, i.e., the larger the amount of uncoupled Chl, the higher the rate of apparent oxygen consumption. 77 K fluorescence spectra can be used to ensure that there is no uncoupled Chl present in the system. In order to eliminate the effect of trace uncoupled Chl, an efficient physical quencher of (1)O2, such as 1 mM NaN3, may be added into the mixture.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1134830','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1134830"><span>Degradation of <span class="hlt">surfactant</span>-associated protein B (SP-B) during in vitro conversion of large to small <span class="hlt">surfactant</span> aggregates.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Veldhuizen, R A; Inchley, K; Hearn, S A; Lewis, J F; Possmayer, F</p> <p>1993-01-01</p> <p>Pulmonary <span class="hlt">surfactant</span> obtained from lung lavages can be separated by differential centrifugation into two distinct subfractions known as large <span class="hlt">surfactant</span> aggregates and small <span class="hlt">surfactant</span> aggregates. The large-aggregate fraction is the precursor of the small-aggregate fraction. The ratio of the small non-surface-active to large surface-active <span class="hlt">surfactant</span> aggregates increases after birth and in several types of lung injury. We have utilized an in vitro system, surface area cycling, to study the conversion of large into small aggregates. Small aggregates generated by surface area cycling were separated from large aggregates by centrifugation at 40,000 g for 15 min rather than by the normal sucrose gradient centrifugation. This new separation method was validated by morphological studies. Surface-tension-reducing activity of total <span class="hlt">surfactant</span> extracts, as measured with a pulsating-bubble surfactometer, was impaired after surface area cycling. This impairment was related to the generation of small aggregates. Immunoblot analysis of large and small aggregates separated by sucrose gradient centrifugation revealed the presence of detectable amounts of <span class="hlt">surfactant</span>-associated protein B (SP-B) in large aggregates but not in small aggregates. SP-A was detectable in both large and small aggregates. PAGE of cycled and non-cycled <span class="hlt">surfactant</span> showed a reduction in SP-B after surface area cycling. We conclude that SP-B is degraded during the formation of small aggregates in vitro and that a change in surface area appears to be necessary for exposing SP-B to protease activity. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8216208</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26042703','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26042703"><span>Exploring the affinity binding of alkylmaltoside <span class="hlt">surfactants</span> to bovine serum albumin and their effect on the protein stability: A spectroscopic approach.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hierrezuelo, J M; Carnero Ruiz, C</p> <p>2015-08-01</p> <p>Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside <span class="hlt">surfactants</span>, i.e. n-decyl-β-D-maltoside (β-C10G2) and n-dodecyl-β-D-maltoside (β-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-<span class="hlt">surfactant</span> interaction and gave the corresponding binding curves, suggesting that the binding mechanism of <span class="hlt">surfactants</span> to protein is essentially cooperative in <span class="hlt">nature</span>. The behavior of both <span class="hlt">surfactants</span> is similar, so that the differences detected were attributed to the more hydrophobic <span class="hlt">nature</span> of β-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with <span class="hlt">surfactants</span> were analyzed by CD to determine the contents of α-helix and β-strand. It was noted that whereas the addition of β-C10G2 appears to stabilize the secondary structure of the protein, β-C12G2 causes a marginal denaturation of BSA for a protein:<span class="hlt">surfactant</span> molar ratio as high as 1 to 100. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11245829','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11245829"><span>Analysis of pulmonary <span class="hlt">surfactant</span> by Fourier-transform infrared spectroscopy following exposure to Stachybotrys chartarum (atra) spores.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCrae, K C; Rand, T; Shaw, R A; Mason, C; Oulton, M R; Hastings, C; Cherlet, T; Thliveris, J A; Mantsch, H H; MacDonald, J; Scott, J E</p> <p>2001-03-01</p> <p>Lung cells are among the first tissues of the body to be exposed to air-borne environmental contaminants. Consequently the function of these cells may be altered before other cells are affected. As gas exchange takes place in the lungs, changes in cellular function may have serious implications for the processes of oxygen uptake and carbon dioxide elimination. In order for these processes to occur, the lung must maintain a high degree of expandability. This latter function is accomplished in part by the pulmonary <span class="hlt">surfactant</span> which is synthesized and released by alveolar type II cells. Earlier studies have shown that exposure to gas phase materials such as smoke or organic solvents can alter the composition and function of the <span class="hlt">surfactant</span>. The present study examines the ability of highly toxigenic mold spores to alter <span class="hlt">surfactant</span> composition. Stachybotrys chartarum spores suspended in saline were instilled into mouse trachea as described earlier. After 24 h, the lungs were lavaged and the different processing stages of <span class="hlt">surfactant</span> isolated by repeated centrifugation. Intracellular <span class="hlt">surfactant</span> was isolated from the homogenized lung tissue by centrifugation on a discontinuous sucrose gradient. Samples were extracted into chloroform-methanol, dried and analyzed by Fourier-Transform infrared spectroscopy (FTIR). Exposure to S. chartarum induced an overall reduction of phospholipid among the three <span class="hlt">surfactant</span> subfractions. The intermediate and spent <span class="hlt">surfactant</span> fractions in particular were reduced to about half of the values observed in the saline-treated group. The relative distribution of phospholipid was also altered by spore exposure. Within the intracellular <span class="hlt">surfactant</span> pool, higher levels of phospholipid were detected after spore exposure. In addition, changes were observed in the <span class="hlt">nature</span> of the phospholipids. In particular strong intramolecular hydrogen bonding, together with other changes, suggested that spore exposure was associated with absence of an acyl chain</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27141925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27141925"><span><span class="hlt">Surfactant</span>-mediated amyloidogenesis behavior of stem bromelain; a biophysical insight.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaman, Masihuz; Zakariya, Syed Mohammad; Nusrat, Saima; Khan, Mohsin Vahid; Qadeer, Atiyatul; Ajmal, Mohammad Rehan; Khan, Rizwan Hasan</p> <p>2017-05-01</p> <p>Neurodegenerative disorders are mainly associated with amyloid fibril formation of different proteins. Stem bromelain (SB), a cysteine protease, is known to exist as a molten globule state at pH 10.0. It passes through the identical surrounding (pH 10.0) in the gut epithelium of intestine upon oral administration. Protein-<span class="hlt">surfactant</span> complexes are widely employed as drug carriers, so the <span class="hlt">nature</span> of <span class="hlt">surfactant</span> toward protein is of great interest. The present work describes the effect of cationic <span class="hlt">surfactants</span> (CTAB & DTAB) and their hydrophobic behavior toward amyloidogenesis behavior of SB at pH 10.0. Multiple approaches including light scattering, far UV-CD, turbidity measurements, and dye binding assay (ThT, Congo red and ANS) were performed to measure the aggregation propensity of SB. Further, we monitored the hydrodynamic radii of aggregates formed using dynamic light scattering technique. Structure of fibrils was also visualized through fluorescence microscopy as well as TEM. At pH 10.0, low concentration of CTAB (0-200 μM) induced amyloid formation in SB as evident from a prominent increase in turbidity and light scattering, gain in β-sheet content, and enhanced ThT fluorescence intensity. However, further increase in CTAB concentration suppressed the fibrillation phenomenon. In contrast, DTAB did not induce fibril formation at any concentration used (0-500 μM) due to lower hydrophobicity. Net negative charge developed on protein at high pH (10.0) might have facilitated amyloid formation at low concentration of cationic <span class="hlt">surfactant</span> (CTAB) due to electrostatic and hydrophobic interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1290309-surfactant-templated-mesoporous-metal-oxide-nanowires','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1290309-surfactant-templated-mesoporous-metal-oxide-nanowires"><span><span class="hlt">Surfactant</span>-Templated Mesoporous Metal Oxide Nanowires</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Luo, Hongmei; Lin, Qianglu; Baber, Stacy; ...</p> <p>2010-01-01</p> <p>We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by <span class="hlt">surfactant</span> assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic <span class="hlt">surfactant</span> sodium dodecyl sulfate (SDS) <span class="hlt">surfactant</span>, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25528485','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25528485"><span>Use of <span class="hlt">surfactants</span> for the remediation of contaminated soils: a review.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo</p> <p>2015-03-21</p> <p>Due to the great harm caused by soil contamination, there is an increasing interest to apply <span class="hlt">surfactants</span> to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using <span class="hlt">surfactants</span> as an enhancing agent. For the <span class="hlt">surfactant</span>-based remedial technologies, the adsorption behaviors of <span class="hlt">surfactants</span> onto soil, the solubilizing capability of <span class="hlt">surfactants</span>, and the toxicity and biocompatibility of <span class="hlt">surfactants</span> are important considerations. <span class="hlt">Surfactants</span> can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, <span class="hlt">surfactant</span>-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic <span class="hlt">surfactants</span>, gemini <span class="hlt">surfactants</span> and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed <span class="hlt">surfactant</span> systems and combined use of <span class="hlt">surfactants</span> with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using <span class="hlt">surfactant</span>-based technologies are yet limited, however, the already known cases reveal the good prospect of applying <span class="hlt">surfactant</span>-based technologies to soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=57836&Lab=NCER&keyword=Irradiation&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=57836&Lab=NCER&keyword=Irradiation&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">SURFACTANT</span> ENHANCED PHOTO-OXIDATION OF WASTEWATERS</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>Initial research projects using the nonionic <span class="hlt">surfactant</span> Brij-35 established that this <span class="hlt">surfactant</span> could successfully adsolublize aromatic organic pollutants such as anthracene, naphthalene, benzoic acid, chlorophenol, and benzene onto the surface of TiO<sub>2</sub> par...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28186197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28186197"><span>New <span class="hlt">natural</span> products identified by combined genomics-metabolomics profiling of <span class="hlt">marine</span> Streptomyces sp. MP131-18.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paulus, Constanze; Rebets, Yuriy; Tokovenko, Bogdan; Nadmid, Suvd; Terekhova, Larisa P; Myronovskyi, Maksym; Zotchev, Sergey B; Rückert, Christian; Braig, Simone; Zahler, Stefan; Kalinowski, Jörn; Luzhetskyy, Andriy</p> <p>2017-02-10</p> <p><span class="hlt">Marine</span> actinobacteria are drawing more and more attention as a promising source of new <span class="hlt">natural</span> products. Here we report isolation, genome sequencing and metabolic profiling of new strain Streptomyces sp. MP131-18 isolated from <span class="hlt">marine</span> sediment sample collected in the Trondheim Fjord, Norway. The 16S rRNA and multilocus phylogenetic analysis showed that MP131-18 belongs to the genus Streptomyces. The genome of MP131-18 isolate was sequenced, and 36 gene clusters involved in the biosynthesis of 18 different types of secondary metabolites were predicted using antiSMASH analysis. The combined genomics-metabolics profiling of the strain led to the identification of several new biologically active compounds. As a result, the family of bisindole pyrroles spiroindimicins was extended with two new members, spiroindimicins E and F. Furthermore, prediction of the biosynthetic pathway for unusual α-pyrone lagunapyrone isolated from MP131-18 resulted in foresight and identification of two new compounds of this family - lagunapyrones D and E. The diversity of identified and predicted compounds from Streptomyces sp. MP131-18 demonstrates that <span class="hlt">marine</span>-derived actinomycetes are not only a promising source of new <span class="hlt">natural</span> products, but also represent a valuable pool of genes for combinatorial biosynthesis of secondary metabolites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5301196','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5301196"><span>New <span class="hlt">natural</span> products identified by combined genomics-metabolomics profiling of <span class="hlt">marine</span> Streptomyces sp. MP131-18</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Paulus, Constanze; Rebets, Yuriy; Tokovenko, Bogdan; Nadmid, Suvd; Terekhova, Larisa P.; Myronovskyi, Maksym; Zotchev, Sergey B.; Rückert, Christian; Braig, Simone; Zahler, Stefan; Kalinowski, Jörn; Luzhetskyy, Andriy</p> <p>2017-01-01</p> <p><span class="hlt">Marine</span> actinobacteria are drawing more and more attention as a promising source of new <span class="hlt">natural</span> products. Here we report isolation, genome sequencing and metabolic profiling of new strain Streptomyces sp. MP131-18 isolated from <span class="hlt">marine</span> sediment sample collected in the Trondheim Fjord, Norway. The 16S rRNA and multilocus phylogenetic analysis showed that MP131-18 belongs to the genus Streptomyces. The genome of MP131-18 isolate was sequenced, and 36 gene clusters involved in the biosynthesis of 18 different types of secondary metabolites were predicted using antiSMASH analysis. The combined genomics-metabolics profiling of the strain led to the identification of several new biologically active compounds. As a result, the family of bisindole pyrroles spiroindimicins was extended with two new members, spiroindimicins E and F. Furthermore, prediction of the biosynthetic pathway for unusual α-pyrone lagunapyrone isolated from MP131-18 resulted in foresight and identification of two new compounds of this family – lagunapyrones D and E. The diversity of identified and predicted compounds from Streptomyces sp. MP131-18 demonstrates that <span class="hlt">marine</span>-derived actinomycetes are not only a promising source of new <span class="hlt">natural</span> products, but also represent a valuable pool of genes for combinatorial biosynthesis of secondary metabolites. PMID:28186197</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28472909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28472909"><span>Impact of <span class="hlt">Surfactants</span> on Skin Penetration of Dexpanthenol.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laffleur, Flavia; Pschick, Stefan; Barthelmes, Jan; Hauptstein, Sabine; Bernkop-Schnurch, Andreas</p> <p>2018-01-01</p> <p>It was the aim of this study to evaluate the impact of nonionic and ionic <span class="hlt">surfactants</span> on skin penetration of dexpanthenol. The relative potency of three <span class="hlt">surfactants</span> (two nonionic and one ionic) as enhancers in the permeability of a series of compounds was investigated. The influence of the enhancers was also studied. For this purpose, porcine abdominal skin was prepared and mounted on Franz diffusion cells, while different mixtures of Dexpanthenol containing Tween®85, SDS and Span®80 in concentrations of 0.5%, 1%, 2%, 5% (m/V) were evaluated in terms of their permeation enhancing effect. The amount of permeated drug was determined via HPLC analysis. Moreover, the cytotoxicity and skin irritating effect of the compounds were tested on Caco-2 cells. The cytotoxicity profile of Dexpanthenol showed no toxicity to the cells over 1 and 3 h of incubation. The permeation was evaluated over a time period of 180 min, whereas a ranking of SDS> Span>Tween could be determined as permeation enhancer. Taking these findings into consideration, concentration of 1% (w/w) <span class="hlt">surfactant</span> showed the most promising results. The increase in flux based on low concentrations of enhancer was ascribed to their ability to reduce skin´s barrier and improve drug permeation. The results showed that the <span class="hlt">nature</span> of enhancer greatly impacts cutaneous barrier impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25300548','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25300548"><span>Pharmaceutical, cosmeceutical, and traditional applications of <span class="hlt">marine</span> carbohydrates.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmed, Abdul Bakrudeen Ali; Adel, Mohaddeseh; Karimi, Pegah; Peidayesh, Mahvash</p> <p>2014-01-01</p> <p><span class="hlt">Marine</span> carbohydrates are most important organic molecules made by photosynthetic organisms. It is very essential for humankind: the role in being an energy source for the organism and they are considered as an important dissolve organic compound (DOC) in <span class="hlt">marine</span> environment's sediments. Carbohydrates found in different <span class="hlt">marine</span> environments in different concentrations. Polysaccharides of carbohydrates play an important role in various fields such as pharmaceutical, food production, cosmeceutical, and so on. <span class="hlt">Marine</span> organisms are good resources of nutrients, and they are <span class="hlt">rich</span> carbohydrate in sulfated polysaccharide. Seaweeds (<span class="hlt">marine</span> microalgae) are used in different pharmaceutical industries, especially in pharmaceutical compound production. Seaweeds have a significant amount of sulfated polysaccharides, which are used in cosmeceutical industry, besides based on the biological applications. Since then, traditional people, cosmetics products, and pharmaceutical applications consider many types of seaweed as an important organism used in food process. Sulfated polysaccharides containing seaweed have potential uses in the blood coagulation system, antiviral activity, antioxidant activity, anticancer activity, immunomodulating activity, antilipidepic activity, etc. Some species of <span class="hlt">marine</span> organisms are <span class="hlt">rich</span> in polysaccharides such as sulfated galactans. Various polysaccharides such as agar and alginates, which are extracted from <span class="hlt">marine</span> organisms, have several applications in food production and cosmeceutical industries. Due to their high health benefits, compound-derived extracts of <span class="hlt">marine</span> polysaccharides have various applications and traditional people were using them since long time ago. In the future, much attention is supposed to be paid to unraveling the structural, compositional, and sequential properties of <span class="hlt">marine</span> carbohydrate as well. © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004DSRI...51.1159H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004DSRI...51.1159H"><span>Global distribution of <span class="hlt">naturally</span> occurring <span class="hlt">marine</span> hypoxia on continental margins</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helly, John J.; Levin, Lisa A.</p> <p>2004-09-01</p> <p>Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of <span class="hlt">marine</span> species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of <span class="hlt">naturally</span> hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable <span class="hlt">marine</span> resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29704795','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29704795"><span>Silica micro- and nanoparticles reduce the toxicity of <span class="hlt">surfactant</span> solutions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela</p> <p>2018-04-20</p> <p>In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic <span class="hlt">surfactant</span> solution (ether carboxylic acid), a nonionic <span class="hlt">surfactant</span> solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of <span class="hlt">surfactants</span> onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic <span class="hlt">surfactants</span>. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of <span class="hlt">surfactant</span> solutions. Nevertheless, the toxicity reduction depends on the ionic character of the <span class="hlt">surfactants</span>. Differences can be explained by the different adsorption behavior of <span class="hlt">surfactants</span> onto the particle surface, which is weaker for nonionic <span class="hlt">surfactants</span> than for anionic <span class="hlt">surfactants</span>. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic <span class="hlt">surfactants</span> and considerably reduced their CMC, whereas in the case of nonionic <span class="hlt">surfactants</span>, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RJPCA..91.2690B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RJPCA..91.2690B"><span>Synergism and Physicochemical Properties of Anionic/Amphoteric <span class="hlt">Surfactant</span> Mixtures with Nonionic <span class="hlt">Surfactant</span> of Amine Oxide Type</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blagojević, S. M.; Pejić, N. D.; Blagojević, S. N.</p> <p>2017-12-01</p> <p>The physicochemical properties of initial formulation, that is anionic/amphoteric <span class="hlt">surfactants</span> mixture SLES/AOS/CAB (sodium lauryl ether sulfate (SLES), α-olefin sulfonates (AOS) and cocamidopropyl betaine (CAB) at ratio 80 : 15 : 5) with nonionic <span class="hlt">surfactant</span> of amine oxide type (lauramine oxide (AO)) in various concentration (1-5%) were studied. To characterize the <span class="hlt">surfactants</span> mixture, the critical micelle concentration (CMC), surface tension (γ), foam volume, biodegradability and irritability were determined. This study showed that adding of AO in those mixtures lowered both γ and CMC as well as enhanced SLES/AOS/CAB foaming properties, but did not significantly affect biodegradability and irritability of initial formulation. Moreover, an increase in AO concentration has a meaningful synergistic effect on the initial formulation properties. All those results indicates that a nonionic <span class="hlt">surfactant</span> of amine oxide type significantly improves the performance of anionic/amphoteric mixed micelle systems, and because of that anionic/amphoteric/nonionic mixture can be used in considerably lower concentrations as a cleaning formulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23010047','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23010047"><span>Interactions between ionic liquid <span class="hlt">surfactant</span> [C12mim]Br and DNA in dilute brine.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Yunfei; Shang, Yazhuo; Liu, Zhenhai; Shao, Shuang; Liu, Honglai; Hu, Ying</p> <p>2013-01-01</p> <p>Interactions between ionic liquid <span class="hlt">surfactant</span> [C(12)mim]Br and DNA in dilute brine were investigated in terms of various experimental methods and molecular dynamics (MD) simulation. It was shown that the aggregation of [C(12)mim]Br on DNA chains is motivated not only by electrostatic attractions between DNA phosphate groups and [C(12)mim]Br headgroups but also by hydrophobic interactions among [C(12)mim]Br alkyl chains. Isothermal titration calorimetry analysis indicated that the [C(12)mim]Br aggregation in the presence and absence of DNA are both thermodynamically favored driven by enthalpy and entropy. DNA undergoes size transition and conformational change induced by [C(12)mim]Br, and the charges of DNA are neutralized by the added [C(12)mim]Br. Various microstructures were observed such as DNA with loose coil conformation in <span class="hlt">nature</span> state, necklace-like structures, and compact spherical aggregates. MD simulation showed that the polyelectrolyte collapses upon the addition of oppositely charged <span class="hlt">surfactants</span> and the aggregation of <span class="hlt">surfactants</span> around the polyelectrolyte was reaffirmed. The simulation predicted the gradual neutralization of the negatively charged polyelectrolyte by the <span class="hlt">surfactant</span>, consistent with the experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1057833-lnapl-removal-from-unsaturated-porous-media-using-surfactant-infiltration','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1057833-lnapl-removal-from-unsaturated-porous-media-using-surfactant-infiltration"><span>LNAPL Removal from Unsaturated Porous Media using <span class="hlt">Surfactant</span> Infiltration</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhong, Lirong; Oostrom, Martinus</p> <p></p> <p>A series of unsaturated column experiments was performed to evaluate light non-aqueous phase liquid (LNAPL) fate and removal during <span class="hlt">surfactant</span> solution infiltration. <span class="hlt">Surfactant</span>-LNAPL phase behavior tests were conducted to optimize the remedial solutions. Packed sand and site sediment columns were first processed to establish representative LNAPL smear zone under unsaturated conditions. Infiltration of low-concentration <span class="hlt">surfactant</span> was then applied in a stepwise flush mode, with 0.3 column pore volume (PV) of solution in each flush. The influence of infiltrated <span class="hlt">surfactant</span> solution volume and pH on LNAPL removal was assessed. A LNAPL bank was observed at the very front of the firstmore » <span class="hlt">surfactant</span> infiltration in each column, indicating that a very low <span class="hlt">surfactant</span> concentration is needed to reduce the LNAPL-water interfacial tension sufficiently enough to mobilize trapped LNAPL under unsaturated conditions. More LNAPL was recovered as additional steps of <span class="hlt">surfactant</span> infiltration were applied. Up to 99% LNAPL was removed after six infiltration steps, with less than 2.0 PV of total <span class="hlt">surfactant</span> solution application, suggesting <span class="hlt">surfactant</span> infiltration may be an effective method for vadose zone LNAPL remediation. The influence of pH tested in this study (3.99~10.85) was insignificant because the buffering capacity of the sediment kept the pH in the column higher than the zero point charge, pHzpc, of the sediment and therefore the difference between <span class="hlt">surfactant</span> sorption was negligible.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMS...153...55L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMS...153...55L"><span><span class="hlt">Natural</span> variability of <span class="hlt">marine</span> ecosystems inferred from a coupled climate to ecosystem simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Mézo, Priscilla; Lefort, Stelly; Séférian, Roland; Aumont, Olivier; Maury, Olivier; Murtugudde, Raghu; Bopp, Laurent</p> <p>2016-01-01</p> <p>This modeling study analyzes the simulated <span class="hlt">natural</span> variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of <span class="hlt">marine</span> pelagic organisms' abundance is not only influenced by <span class="hlt">natural</span> climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of <span class="hlt">marine</span> ecosystems to climate variability could impact the sustainability of fisheries in a warming world.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5436193','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5436193"><span>Interfacial mechanisms for stability of <span class="hlt">surfactant</span>-laden films</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chai, Chew; Àlvarez-Valenzuela, Marco A.; Tajuelo, Javier; Fuller, Gerald G.</p> <p>2017-01-01</p> <p>Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary <span class="hlt">surfactants</span> in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these <span class="hlt">surfactants</span> produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the <span class="hlt">surfactant</span> molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble <span class="hlt">surfactant</span> systems in the limit of negligible adsorption-desorption dynamics. We show that <span class="hlt">surfactants</span> with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while <span class="hlt">surfactants</span> with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows. PMID:28520734</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5321621','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5321621"><span>What Explains Patterns of Diversification and <span class="hlt">Richness</span> among Animal Phyla?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jezkova, Tereza; Wiens, John J.</p> <p>2016-01-01</p> <p>Animal phyla vary dramatically in species <span class="hlt">richness</span> (from 1 species to >1.2 million), but the causes of this variation remain largely unknown. Animals have also evolved striking variation in morphology and ecology, including sessile <span class="hlt">marine</span> taxa lacking heads, eyes, limbs, and complex organs (e.g. sponges), parasitic worms (e.g. nematodes, platyhelminths), and taxa with eyes, skeletons, limbs, and complex organs that dominate terrestrial ecosystems (arthropods, chordates). Relating this remarkable variation in traits to the diversification and <span class="hlt">richness</span> of animal phyla is a fundamental yet unresolved problem in biology. Here, we test the impacts of 18 traits (including morphology, ecology, reproduction, and development) on diversification and <span class="hlt">richness</span> of extant animal phyla. Using phylogenetic multiple regression, the best-fitting model includes five traits that explain ~74% of the variation in diversification rates (dioecy, parasitism, eyes/photoreceptors, a skeleton, non-<span class="hlt">marine</span> habitat). However, a model including just three (skeleton, parasitism, habitat) explains nearly as much variation (~67%). Diversification rates then largely explain <span class="hlt">richness</span> patterns. Our results also identify many striking traits that have surprisingly little impact on diversification (e.g. head, limbs, and complex circulatory and digestive systems). Overall, our results reveal the key factors that shape large-scale patterns of diversification and <span class="hlt">richness</span> across >80% of all extant, described species. PMID:28221832</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26264003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26264003"><span>The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in <span class="hlt">Marine</span> Microorganisms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reen, F Jerry; Romano, Stefano; Dobson, Alan D W; O'Gara, Fergal</p> <p>2015-07-31</p> <p>Unlocking the <span class="hlt">rich</span> harvest of <span class="hlt">marine</span> microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of <span class="hlt">marine</span> biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this <span class="hlt">natural</span> ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic <span class="hlt">marine</span> biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel <span class="hlt">natural</span> products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and <span class="hlt">natural</span> product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic <span class="hlt">marine</span> gene clusters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4557003','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4557003"><span>The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in <span class="hlt">Marine</span> Microorganisms</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reen, F. Jerry; Romano, Stefano; Dobson, Alan D.W.; O’Gara, Fergal</p> <p>2015-01-01</p> <p>Unlocking the <span class="hlt">rich</span> harvest of <span class="hlt">marine</span> microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of <span class="hlt">marine</span> biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this <span class="hlt">natural</span> ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic <span class="hlt">marine</span> biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel <span class="hlt">natural</span> products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and <span class="hlt">natural</span> product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic <span class="hlt">marine</span> gene clusters. PMID:26264003</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111m1601X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111m1601X"><span>How nanobubbles lose stability: Effects of <span class="hlt">surfactants</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Zhang, Xianren</p> <p>2017-09-01</p> <p>In contrast to stability theories of nanobubbles, the molecular mechanism of how nanobubbles lose stability is far from being understood. In this work, we try to interpret recent experimental observations that the addition of <span class="hlt">surfactants</span> destabilizes nanobubbles with an unclear mechanism. Using molecular dynamics simulations, we identify two <span class="hlt">surfactant</span>-induced molecular mechanisms for nanobubbles losing stability, either through depinning of a contact line or reducing vapor-liquid surface tension. One corresponds to the case with significant adsorption of <span class="hlt">surfactants</span> on the substrates, which causes depinning of the nanobubble contact line and thus leads to nanobubble instability. The other stresses <span class="hlt">surfactant</span> adsorption on the vapor-liquid interface of nanobubbles, especially for insoluble <span class="hlt">surfactants</span>, which reduces the surface tension of the interface and leads to an irreversible liquid-to-vapor phase transition. Our finding can help improve our understanding in nanobubble stability, and the insight presented here has implications for surface nanobubbles involving with other amphiphilic molecules, such as proteins and contaminations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3262841','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3262841"><span>Trends in the Discovery of New <span class="hlt">Marine</span> <span class="hlt">Natural</span> Products from Invertebrates over the Last Two Decades – Where and What Are We Bioprospecting?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Leal, Miguel Costa; Puga, João; Serôdio, João; Gomes, Newton C. M.; Calado, Ricardo</p> <p>2012-01-01</p> <p>It is acknowledged that <span class="hlt">marine</span> invertebrates produce bioactive <span class="hlt">natural</span> products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new <span class="hlt">marine</span> drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new <span class="hlt">marine</span> <span class="hlt">natural</span> products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of <span class="hlt">Marine</span> <span class="hlt">Natural</span> Products covering 1990–2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new <span class="hlt">natural</span> product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new <span class="hlt">natural</span> products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new <span class="hlt">natural</span> products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how <span class="hlt">marine</span> invertebrates, which in some cases have no commercial value</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........93W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........93W"><span>MOCVD growth of gallium nitride with indium <span class="hlt">surfactant</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Won, Dong Jin</p> <p></p> <p> grow beyond the critical radius. Thus, introduction of indium <span class="hlt">surfactant</span> and Si doping was found to be the most favorable conditions for V-defect formation in Ga-polar GaN films grown on Si-face SiC substrates. The nucleation and growth model predicted that V-defects may not form in homoepitaxy because the energy barrier for V-defect formation approaches infinity due to zero misfit stress. When indium <span class="hlt">surfactant</span> and Si dopant were introduced simultaneously during the homoepitaxial growth, V-defects did not form in 1.8 microm thick Ga-polar GaN films grown at 950 °C on bulk GaN that had very low threading dislocation density, as predicted by the nucleation and growth model. Ga-polar GaN films grown on Si(111) substrates using indium <span class="hlt">surfactant</span> showed that additional tensile stress was induced by indium with respect to the reference GaN. Since cracking is known to be a stress relaxation mechanism for tension, the In-induced additional tensile stress is thus detrimental to the GaN films which experience the tensile thermal stress associated with the difference in coefficient of thermal expansion between GaN and the substrate during cooling after growth. The generation of tensile stress by indium seemed correlated with a reduction of V-defects since a high density of V-defects formed under the initial compressive stress at the GaN nucleation stage and then V-defect density decreased as the film grew. Even though the initial misfit stress of the GaN film grown on Si(111) was lower than that of GaN grown on SiC, a high density of V-defects were created under the initial compressive stress. Therefore, the high density of threading dislocations was believed to strongly drive the V-defect formation under In-<span class="hlt">rich</span> conditions. Consequently, without using high quality bulk GaN substrates, V-defects could not be avoided in Ga-polar GaN films grown on foreign substrates such as Si-face SiC and Si(111) in the presence of indium <span class="hlt">surfactant</span> and Si dopants during growth. Thus, N</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982IJER....6..247S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982IJER....6..247S"><span>Solar energy storage using <span class="hlt">surfactant</span> micelles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, R. C.; Marwadi, P. R.; Latha, P. K.; Bhise, S. B.</p> <p>1982-09-01</p> <p>The results of experiments designed to test the soluble reduced form of thionine dye as a suitable solar energy storage agent inside the hydrophobic core of <span class="hlt">surfactant</span> micelles are discussed. Aqueous solutions of thionine, methylene blue, cetyl pyridinium bromide, sodium lauryl sulphate, iron salts, and iron were employed as samples of anionic, cationic, and nonionic <span class="hlt">surfactants</span>. The solutions were exposed to light until the dye disappeared, and then added drop-by-drop to <span class="hlt">surfactant</span> solutions. The resultant solutions were placed in one cell compartment while an aqueous solution with Fe(2+) and Fe(3+) ions were placed in another, with the compartments being furnished with platinum electrodes connected using a saturated KCl-agar bridge. Data was gathered on the short circuit current, maximum power, and internal resistance encountered. Results indicate that dye-<span class="hlt">surfactant</span> systems are viable candidates for solar energy storage for later conversion to electrical power.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..MARZ17015B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..MARZ17015B"><span>Charging and Screening in Nonpolar Solutions of Nonionizable <span class="hlt">Surfactants</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behrens, Sven</p> <p>2010-03-01</p> <p>Nonpolar liquids do not easily accommodate electric charges, but <span class="hlt">surfactant</span> additives are often found to dramatically increase the solution conductivity and promote surface charging of suspended colloid particles. Such <span class="hlt">surfactant</span>-mediated electrostatic effects have been associated with equilibrium charge fluctuations among reverse <span class="hlt">surfactant</span> micelles and in some cases with the statistically rare ionization of individual <span class="hlt">surfactant</span> molecules. Here we present experimental evidence that even <span class="hlt">surfactants</span> without any ionizable group can mediate charging and charge screening in nonpolar oils, and that they can do so at <span class="hlt">surfactant</span> concentrations well below the critical micelle concentration (cmc). Precision conductometry, light scattering, and Karl-Fischer titration of sorbitan oleate solutions in hexane, paired with electrophoretic mobility measurements on suspended polymer particles, reveal a distinctly electrostatic action of the <span class="hlt">surfactant</span>. We interpret our observations in terms of a charge fluctuation model and argue that the observed charging processes are likely facilitated, but not limited, by the presence of ionizable impurities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26571346','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26571346"><span>Ordered DNA-<span class="hlt">Surfactant</span> Hybrid Nanospheres Triggered by Magnetic Cationic <span class="hlt">Surfactants</span> for Photon- and Magneto-Manipulated Drug Delivery and Release.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Lu; Wang, Yitong; Wei, Guangcheng; Feng, Lei; Dong, Shuli; Hao, Jingcheng</p> <p>2015-12-14</p> <p>Here we construct for the first time ordered <span class="hlt">surfactant</span>-DNA hybrid nanospheres of double-strand (ds) DNA and cationic <span class="hlt">surfactants</span> with magnetic counterion, [FeCl3Br](-). The specificity of the magnetic cationic <span class="hlt">surfactants</span> that can compact DNA at high concentrations makes it possible for building ordered nanospheres through aggregation, fusion, and coagulation. Cationic <span class="hlt">surfactants</span> with conventional Br(-) cannot produce spheres under the same condition because they lose the DNA compaction ability. When a light-responsive magnetic cationic <span class="hlt">surfactant</span> is used to produce nanospheres, a dual-controllable drug-delivery platform can be built simply by the applications of external magnetic force and alternative UV and visible light. These nanospheres obtain high drug absorption efficiency, slow release property, and good biocompatibility. There is potential for effective magnetic-field-based targeted drug delivery, followed by photocontrollable drug release. We deduce that our results might be of great interest for making new functional nucleic-acid-based nanomachines and be envisioned to find applications in nanotechnology and biochemistry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMoSt1144..199Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMoSt1144..199Z"><span>Synthesis and properties evaluation of sulfobetaine <span class="hlt">surfactant</span> with double hydroxyl</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Ming; Luo, Gang; Zhang, Ze; Li, Sisi; Wang, Chengwen</p> <p>2017-09-01</p> <p>A series of sulfobetaine <span class="hlt">surfactants</span> {N-[(3-alkoxy-2-hydroxyl)propoxy] ethyl-N,N-dimethyl-N-(2-hydroxyl)propyl sulfonate} ammonium chloride were synthesized with raw materials containing linear saturated alcohol, N,N-dimethylethanolamine, sodium 3-chloro-2-hydroxyl propane sulfonic acid and epichlorohydrin. The molecule structures of sulfobetaine <span class="hlt">surfactants</span> were characterized by FTIR, 1HNMR and elemental analysis. Surface tension measurements can provide us information about the surface tension at the CMC (γCMC), pC20, Γmax and Amin. The pC20 values of sulfobetaine <span class="hlt">surfactants</span> increase with the hydrophobic chain length increasing. Amin values of the <span class="hlt">surfactants</span> decrease with increasing hydrophobic chain length from 10 to 14. The critical micelle concentration (CMC) and surface tension (γCMC) values of the sulfobetaine <span class="hlt">surfactants</span> decrease with increasing hydrophobic chain length from 10 to 16. The lipophilicity of <span class="hlt">surfactant</span> was enhanced with the increase of the carbon chain, however, the ability of anti-hard water was weakened. The minimum oil/water interfacial tension of four kinds of sulfobetaine <span class="hlt">surfactants</span> is 10-2-10-3 mN/m magnitude, which indicates that the synthesized bis-hydroxy sulfobetaine <span class="hlt">surfactants</span> have a great ability to reduce interfacial tension in the <span class="hlt">surfactant</span> flooding system. The surface tension (γCMC) values of synthesized <span class="hlt">surfactants</span> were lower compared with conventional anionic <span class="hlt">surfactant</span> sodium dodecyl sulfonate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5692394-comparative-toxicity-two-oil-dispersants-early-life-stages-two-marine-species','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5692394-comparative-toxicity-two-oil-dispersants-early-life-stages-two-marine-species"><span>Comparative toxicity of two oil dispersants to the early life stages of two <span class="hlt">marine</span> species</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Singer, M.M.; George, S.; Benner, D.</p> <p>1993-10-01</p> <p>Acute, flow-through, spiked-exposure toxicity tests were performed on the early life stages of two <span class="hlt">marine</span> species using two oil dispersants. The species represent two common near-shore <span class="hlt">marine</span> taxa: molluscs (red abalone, Haliotis rufescens) and crustaceans (kelp forest mysid, Holmesimysis costata). The dispersants were composed of complex mixtures of anionic and nonionic <span class="hlt">surfactants</span> and solvents. The toxicity data showed that one dispersant, Slik-A-Way, was more toxic than the other, Nokomis[reg sign] 3, to both species. Median-effect concentration estimates for the two dispersants were significantly different between species. Slik-A-Way median-effect concentrations ranged from 16.8 to 23.9 initial ppm for Haliotis and 25.9more » to 34.6 initial ppm for Holmesimysis, whereas Nokomis[reg sign] 3 median-effect concentrations ranged from 21.0 to 24.0 initial ppm for Haliotis and from 118.0 to 123.2 initial ppm for Holmesimysis. Differences in toxicity seen in the two dispersants may be due to differences in <span class="hlt">surfactant</span> formulations.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26925230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26925230"><span>Aggregate-based sub-CMC Solubilization of Hexadecane by <span class="hlt">Surfactants</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhong, Hua; Yang, Lei; Zeng, Guangming; Brusseau, Mark L; Wang, Yake; Li, Yang; Liu, Zhifeng; Yuan, Xingzhong; Tan, Fei</p> <p></p> <p>Solubilization of hexadecane by two <span class="hlt">surfactants</span>, SDBS and Triton X-100, at concentrations near the critical micelle concentration (CMC) and the related aggregation behavior was investigated in this study. Solubilization was observed at <span class="hlt">surfactant</span> concentrations lower than CMC, and the apparent solubility of hexadecane increased linearly with <span class="hlt">surfactant</span> concentration for both <span class="hlt">surfactants</span>. The capacity of SDBS to solubilize hexadecane is stronger at concentrations below CMC than above CMC. In contrast, Triton X-100 shows no difference. The results of dynamic light scattering (DLS) and cryogenic TEM analysis show aggregate formation at <span class="hlt">surfactant</span> concentrations lower than CMC. DLS-based size of the aggregates ( d ) decreases with increasing <span class="hlt">surfactant</span> concentration. Zeta potential of the SDBS aggregates decreases with increasing SDBS concentration, whereas it increases for Triton X-100. The surface excess (Γ) of SDBS calculated based on hexadecane solubility and aggregate size data increases rapidly with increasing bulk concentration, and then asymptotically approaches the maximum surface excess (Γ max ). Conversely, there is only a minor increase in Γ for Triton X-100. Comparison of Γ and d indicates that excess of <span class="hlt">surfactant</span> molecules at aggregate surface has great impact on surface curvature. The results of this study demonstrate formation of aggregates at <span class="hlt">surfactant</span> concentrations below CMC for hexadecane solubilization, and indicate the potential of employing low-concentration strategy for <span class="hlt">surfactant</span> application such as remediation of HOC contaminated sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26109150','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26109150"><span><span class="hlt">Surfactants</span> have multi-fold effects on skin barrier function.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine</p> <p>2015-01-01</p> <p>The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, <span class="hlt">surfactants</span> interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of <span class="hlt">surfactant</span> on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic <span class="hlt">surfactant</span> solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of <span class="hlt">surfactants</span> was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic <span class="hlt">surfactant</span> increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic <span class="hlt">surfactant</span> displayed a detergency effect without disturbing the skin barrier. Several non-ionic <span class="hlt">surfactants</span> disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic <span class="hlt">surfactants</span> did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how <span class="hlt">surfactants</span> can interact with the skin and disturb the skin barrier function.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=352310','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=352310"><span>Inactivation of Herpes Simplex Viruses by Nonionic <span class="hlt">Surfactants</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Asculai, Samuel S.; Weis, Margaret T.; Rancourt, Martha W.; Kupferberg, A. B.</p> <p>1978-01-01</p> <p>Nonionic surface-active agents possessing ether or amide linkages between the hydrophillic and hydrophobic portions of the molecule rapidly inactivated the infectivity of herpes simplex viruses. The activity stemmed from the ability of nonionic <span class="hlt">surfactants</span> to dissolve lipid-containing membranes. This was confirmed by observing <span class="hlt">surfactant</span> destruction of mammalian cell plasma membranes and herpes simplex virus envelopes. Proprietary vaginal contraceptive formulations containing nonionic <span class="hlt">surfactants</span> also inactivated herpes simplex virus infectivity. This observation suggests that nonionic <span class="hlt">surfactants</span> in appropriate formulation could effectively prevent herpes simplex virus transmission. Images PMID:208460</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1414557','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1414557"><span>Reactive Oxygen Species Inactivation of <span class="hlt">Surfactant</span> Involves Structural and Functional Alterations to <span class="hlt">Surfactant</span> Proteins SP-B and SP-C</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rodríguez-Capote, Karina; Manzanares, Dahis; Haines, Thomas; Possmayer, Fred</p> <p>2006-01-01</p> <p>Exposing bovine lipid extract <span class="hlt">surfactant</span> (BLES), a clinical <span class="hlt">surfactant</span>, to reactive oxygen species arising from hypochlorous acid or the Fenton reaction resulted in an increase in lipid (conjugated dienes, lipid aldehydes) and protein (carbonyls) oxidation products and a reduction in surface activity. Experiments where oxidized phospholipids (PL) were mixed with BLES demonstrated that this addition hampered BLES biophysical activity. However the effects were only moderately greater than with control PL. These results imply a critical role for protein oxidation. BLES oxidation by either method resulted in alterations in <span class="hlt">surfactant</span> proteins SP-B and SP-C, as evidenced by altered Coomassie blue and silver staining. Western blot analyses showed depressed reactivity with specific antibodies. Oxidized SP-C showed decreased palmitoylation. Reconstitution experiments employing PL, SP-B, and SP-C isolated from control or oxidized BLES demonstrated that protein oxidation was more deleterious than lipid oxidation. Furthermore, addition of control SP-B can improve samples containing oxidized SP-C, but not vice versa. We conclude that <span class="hlt">surfactant</span> oxidation arising from reactive oxygen species generated by air pollution or leukocytes interferes with <span class="hlt">surfactant</span> function through oxidation of <span class="hlt">surfactant</span> PL and proteins, but that protein oxidation, in particular SP-B modification, produces the major deleterious effects. PMID:16443649</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870807','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870807"><span><span class="hlt">Surfactant</span> monitoring by foam generation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Mullen, Ken I.</p> <p>1997-01-01</p> <p>A device for monitoring the presence or absence of active <span class="hlt">surfactant</span> or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active <span class="hlt">surfactant</span> present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089618&hterms=marine+biology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmarine%2Bbiology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089618&hterms=marine+biology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmarine%2Bbiology"><span><span class="hlt">Natural</span> abundances of carbon isotopes in acetate from a coastal <span class="hlt">marine</span> sediment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blair, N. E.; Martens, C. S.; Des Marais, D. J.</p> <p>1987-01-01</p> <p>Measurements of the <span class="hlt">natural</span> abundances of carbon isotopes were made in acetate samples isolated from the anoxic <span class="hlt">marine</span> sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the <span class="hlt">natural</span> environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.8306B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.8306B"><span>OCEANFILMS-2: Representing coadsorption of saccharides in <span class="hlt">marine</span> films and potential impacts on modeled <span class="hlt">marine</span> aerosol chemistry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burrows, Susannah M.; Gobrogge, Eric; Fu, Li; Link, Katie; Elliott, Scott M.; Wang, Hongfei; Walker, Rob</p> <p>2016-08-01</p> <p>Here we show that the addition of chemical interactions between soluble monosaccharides and an insoluble lipid <span class="hlt">surfactant</span> monolayer improves agreement of modeled sea spray chemistry with observed <span class="hlt">marine</span> aerosol chemistry. In particular, the alkane:hydroxyl mass ratio in modeled sea spray organic matter is reduced from a median of 2.73 to a range of 0.41-0.69, reducing the discrepancy with previous Fourier transform infrared spectroscopy (FTIR) observations of clean <span class="hlt">marine</span> aerosol (ratio: 0.24-0.38). The overall organic fraction of submicron sea spray also increases, allowing organic mass fractions in the range 0.5-0.7 for submicron sea spray particles over highly active phytoplankton blooms. Sum frequency generation experiments support the modeling approach by demonstrating that soluble monosaccharides can strongly adsorb to a lipid monolayer likely via Coulomb interactions under appropriate conditions. These laboratory findings motivate further research to determine the relevance of coadsorption mechanisms for real-world, sea spray aerosol production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27324153','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27324153"><span>Elucidation of Lipid Binding Sites on Lung <span class="hlt">Surfactant</span> Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goh, Boon Chong; Wu, Huixing; Rynkiewicz, Michael J; Schulten, Klaus; Seaton, Barbara A; McCormack, Francis X</p> <p>2016-07-05</p> <p><span class="hlt">Surfactant</span> protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of <span class="hlt">surfactant</span> membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and <span class="hlt">surfactant</span> structures, we explored the role of the tyrosine-<span class="hlt">rich</span> binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from <span class="hlt">surfactant</span> DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...65a2035E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...65a2035E"><span>Performance of <span class="hlt">Surfactant</span> Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.</p> <p>2017-05-01</p> <p>Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of <span class="hlt">surfactant</span>. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic <span class="hlt">surfactant</span> derived from renewable <span class="hlt">natural</span> resource that environmental friendly is one of potential <span class="hlt">surfactant</span> types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-<span class="hlt">surfactant</span>-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are <span class="hlt">surfactant</span> that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT........99K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT........99K"><span>Structure, properties, and <span class="hlt">surfactant</span> adsorption behavior of fly ash carbon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulaots, Indrek</p> <p></p> <p>The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb <span class="hlt">surfactants</span> (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of <span class="hlt">surfactant</span> adsorption capacity. <span class="hlt">Surfactant</span> adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The <span class="hlt">nature</span> of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the <span class="hlt">nature</span> of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3261862','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3261862"><span>Site of Allergic Airway Narrowing and the Influence of Exogenous <span class="hlt">Surfactant</span> in the Brown Norway Rat</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Risse, Paul-André; Bullimore, Sharon R.; Benedetti, Andrea; Martin, James G.</p> <p>2012-01-01</p> <p>Background The parameters RN (Newtonian resistance), G (tissue damping), and H (tissue elastance) of the constant phase model of respiratory mechanics provide information concerning the site of altered mechanical properties of the lung. The aims of this study were to compare the site of allergic airway narrowing implied from respiratory mechanics to a direct assessment by morphometry and to evaluate the effects of exogenous <span class="hlt">surfactant</span> administration on the site and magnitude of airway narrowing. Methods We induced airway narrowing by ovalbumin sensitization and challenge and we tested the effects of a <span class="hlt">natural</span> <span class="hlt">surfactant</span> lacking <span class="hlt">surfactant</span> proteins A and D (Infasurf®) on airway responses. Sensitized, mechanically ventilated Brown Norway rats underwent an aerosol challenge with 5% ovalbumin or vehicle. Other animals received nebulized <span class="hlt">surfactant</span> prior to challenge. Three or 20 minutes after ovalbumin challenge, airway luminal areas were assessed on snap-frozen lungs by morphometry. Results At 3 minutes, RN and G detected large airway narrowing whereas at 20 minutes G and H detected small airway narrowing. <span class="hlt">Surfactant</span> inhibited RN at the peak of the early allergic response and ovalbumin-induced increase in bronchoalveolar lavage fluid cysteinyl leukotrienes and amphiregulin but not IgE-induced mast cell activation in vitro. Conclusion Allergen challenge triggers the rapid onset of large airway narrowing, detected by RN and G, and subsequent peripheral airway narrowing detected by G and H. <span class="hlt">Surfactant</span> inhibits airway narrowing and reduces mast cell-derived mediators. PMID:22276110</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24528741','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24528741"><span>Agarose drug delivery systems upgraded by <span class="hlt">surfactants</span> inclusion: critical role of the pore architecture.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marras-Marquez, T; Peña, J; Veiga-Ochoa, M D</p> <p>2014-03-15</p> <p>Anionic or non-ionic <span class="hlt">surfactants</span> have been introduced in agarose-based hydrogels aiming to tailor the release of drugs with different solubility. The release of a hydrophilic model drug, Theophylline, shows the predictable release enhancement that varies depending on the <span class="hlt">surfactant</span>. However, when the hydrophobic Tolbutamide is considered, an unexpected retarded release is observed. This effect can be explained not only considering the interactions established between the drug loaded micelles and agarose but also to the alteration of the freeze-dried hydrogels microstructure. It has been observed that the modification of the porosity percentage as well as the pore size distribution during the lyophilization plays a critical role in the different phenomena that take place as soon as desiccated hydrogel is rehydrated. The possibility of tailoring the pore architecture as a function of the <span class="hlt">surfactant</span> <span class="hlt">nature</span> and percentage can be applied from drug control release to the widespread and growing applications of materials based on hydrogel matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15177761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15177761"><span>Solubilization of pyrene by anionic-nonionic mixed <span class="hlt">surfactants</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Wenjun; Zhu, Lizhong</p> <p>2004-06-18</p> <p><span class="hlt">Surfactant</span>-enhanced remediation (SER) is an effective approach for the removal of sorbed hydrophobic organic compounds from contaminated soils. The solubilization of pyrene by four anionic-nonionic mixed <span class="hlt">surfactants</span>, sodium dodecyl sulfate (SDS) with Triton X-405 (TX405), Brij35, Brij58, and Triton X-100 (TX100), has been studied from measurements of the molar solubilization ratio (MSR), the micelle-water partition coefficient (Kmc), and the critical micelle concentration (CMC). The MSRs of pyrene in mixed <span class="hlt">surfactants</span> are found to be larger than those predicted according to an ideal mixing rule. The mixing effect of anionic and nonionic <span class="hlt">surfactants</span> on MSR for pyrene follows the order of SDS-TX405 > SDS-Brij35 > SDS-Brij58 > SDS-TX100 and increases with an increase in the hydrophile-lipophile balance (HLB) value of nonionic <span class="hlt">surfactant</span> in mixed systems. In addition, the mixture of anionic and nonionic <span class="hlt">surfactants</span> cause the Kmc value for pyrene to be greater than the ideal value in SDS-TX405 mixed system, but to be smaller than the ideal value in SDS-Brij35, SDS-Brij58, and SDS-TX100 mixed systems. Meanwhile, in the four mixed systems, the experimental CMCs are lower than the ideal CMCs at almost all mixed <span class="hlt">surfactant</span> solution compositions. The mixing effect of anionic and nonionic <span class="hlt">surfactants</span> on MSR for pyrene can be attributed to the conjunct or the net result of the negative deviation of the CMCs from ideal mixture and the increasing or decreasing Kmc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25513958','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25513958"><span>New serine-derived gemini <span class="hlt">surfactants</span> as gene delivery systems.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Amália S</p> <p>2015-01-01</p> <p>Gemini <span class="hlt">surfactants</span> have been extensively used for in vitro gene delivery. Amino acid-derived gemini <span class="hlt">surfactants</span> combine the special aggregation properties characteristic of the gemini <span class="hlt">surfactants</span> with high biocompatibility and biodegradability. In this work, novel serine-derived gemini <span class="hlt">surfactants</span>, differing in alkyl chain lengths and in the linker group bridging the spacer to the headgroups (amine, amide and ester), were evaluated for their ability to mediate gene delivery either per se or in combination with helper lipids. Gemini <span class="hlt">surfactant</span>-based DNA complexes were characterized in terms of hydrodynamic diameter, surface charge, stability in aqueous buffer and ability to protect DNA. Efficient formulations, able to transfect up to 50% of the cells without causing toxicity, were found at very low <span class="hlt">surfactant</span>/DNA charge ratios (1/1-2/1). The most efficient complexes presented sizes suitable for intravenous administration and negative surface charge, a feature known to preclude potentially adverse interactions with serum components. This work brings forward a new family of gemini <span class="hlt">surfactants</span> with great potential as gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6103358-solubilization-polycyclic-aromatic-hydrocarbons-micellar-nonionic-surfactant-solutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6103358-solubilization-polycyclic-aromatic-hydrocarbons-micellar-nonionic-surfactant-solutions"><span>Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic <span class="hlt">surfactant</span> solutions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Edwards, D.A.; Luthy, R.G.; Liu, Zhongbao</p> <p>1991-01-01</p> <p>Experimental data are presented on the enhanced apparent solubilities of naphthalene, phenanthrene, and pyrene resulting from solubilization in aqueous solutions of four commercial, nonionic <span class="hlt">surfactants</span>: an alkyl polyoxyethylene (POE) type, two octylphenol POE types, and a nonylphenol POE type. Apparent solubilities of the polycyclic aromatic hydrocarbon (PAH) compounds in <span class="hlt">surfactant</span> solutions were determined by radiolabeled techniques. Solubilization of each PAH compound commenced at the <span class="hlt">surfactant</span> critical micelle concentration and was proportional to the concentration of <span class="hlt">surfactant</span> in micelle form. The partitioning of organic compounds between <span class="hlt">surfactant</span> micelles and aqueous solution is characterized by a mole fraction micelle-phase/aqueous-phase partition coefficient, K{submore » m}. Values of log K{sub m} for PAH compounds in <span class="hlt">surfactant</span> solutions of this study range from 4.57 to 6.53. Log K{sub m} appears to be a linear function of log K{sub ow} for a given <span class="hlt">surfactant</span> solution. A knowledge of partitioning in aqueous <span class="hlt">surfactant</span> systems is a prerequisite to understanding mechanisms affecting the behavior of hydrophobic organic compounds in soil-water systems in which <span class="hlt">surfactants</span> play a role in contaminant remediation or facilitated transport.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940008714','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940008714"><span><span class="hlt">Surfactant</span> studies for bench-scale operation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hickey, Gregory S.; Sharma, Pramod K.</p> <p>1992-01-01</p> <p>A phase 2 study was initiated to investigate <span class="hlt">surfactant</span>-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This publication covers the first quarter of work. The major accomplishments were: the refurbishment of the high-pressure, high-temperature reactor autoclave, the completion of four coal liquefaction runs with Pittsburgh #8 coal, two each with and without sodium lignosulfonate <span class="hlt">surfactant</span>, and the development of an analysis scheme for the product liquid filtrate and filter cake. Initial results at low reactor temperatures show that the addition of the <span class="hlt">surfactant</span> produces an improvement in conversion yields and an increase in lighter boiling point fractions for the filtrate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19540804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19540804"><span><span class="hlt">Marine</span> snail venoms: use and trends in receptor and channel neuropharmacology.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Favreau, Philippe; Stöcklin, Reto</p> <p>2009-10-01</p> <p>Venoms are <span class="hlt">rich</span> mixtures of mainly peptides and proteins evolved by <span class="hlt">nature</span> to catch and digest preys or for protection against predators. They represent extensive sources of potent and selective bioactive compounds that can lead to original active ingredients, for use as drugs, as pharmacological tools in research and for the biotechnology industry. Among the most fascinating venomous animals, <span class="hlt">marine</span> snails offer a unique set of pharmacologically active components, targeting a wide diversity of receptors and ion channels. Recent advances still continue to demonstrate their huge neuropharmacological potential. In the quest for interesting pharmacological profiles, researchers face a vast number of venom components to investigate within time and technological constraints. A brief perspective on <span class="hlt">marine</span> snail venom's complexity and features is given followed by the different discovery strategies and pharmacological approaches, exemplified with some recent developments. These advances will hopefully help further uncovering new pharmacologically important venom molecules.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3672556','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3672556"><span>Clinical review: Exogenous <span class="hlt">surfactant</span> therapy for acute lung injury/acute respiratory distress syndrome - where do we go from here?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2012-01-01</p> <p>Acute lung injury and acute respiratory distress syndrome (ARDS) are characterised by severe hypoxemic respiratory failure and poor lung compliance. Despite advances in clinical management, morbidity and mortality remains high. Supportive measures including protective lung ventilation confer a survival advantage in patients with ARDS, but management is otherwise limited by the lack of effective pharmacological therapies. <span class="hlt">Surfactant</span> dysfunction with quantitative and qualitative abnormalities of both phospholipids and proteins are characteristic of patients with ARDS. Exogenous <span class="hlt">surfactant</span> replacement in animal models of ARDS and neonatal respiratory distress syndrome shows consistent improvements in gas exchange and survival. However, whilst some adult studies have shown improved oxygenation, no survival benefit has been demonstrated to date. This lack of clinical efficacy may be related to disease heterogeneity (where treatment responders may be obscured by nonresponders), limited understanding of <span class="hlt">surfactant</span> biology in patients or an absence of therapeutic effect in this population. Crucially, the mechanism of lung injury in neonates is different from that in ARDS: <span class="hlt">surfactant</span> inhibition by plasma constituents is a typical feature of ARDS, whereas the primary pathology in neonates is the deficiency of <span class="hlt">surfactant</span> material due to reduced synthesis. Absence of phenotypic characterisation of patients, the lack of an ideal <span class="hlt">natural</span> <span class="hlt">surfactant</span> material with adequate <span class="hlt">surfactant</span> proteins, coupled with uncertainty about optimal timing, dosing and delivery method are some of the limitations of published <span class="hlt">surfactant</span> replacement clinical trials. Recent advances in stable isotope labelling of <span class="hlt">surfactant</span> phospholipids coupled with analytical methods using electrospray ionisation mass spectrometry enable highly specific molecular assessment of phospholipid subclasses and synthetic rates that can be utilised for phenotypic characterisation and individualisation of exogenous <span class="hlt">surfactant</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29715426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29715426"><span>The Lγ Phase of Pulmonary <span class="hlt">Surfactant</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Kamlesh; Chavarha, Mariya; Loney, Ryan W; Weiss, Thomas M; Rananavare, Shankar B; Hall, Stephen B</p> <p>2018-06-05</p> <p>To determine how different components affect the structure of pulmonary <span class="hlt">surfactant</span>, we measured X-ray scattering by samples derived from calf <span class="hlt">surfactant</span>. The <span class="hlt">surfactant</span> phospholipids demonstrated the essential characteristics of the L γ phase: a unit cell with a lattice constant appropriate for two bilayers, and crystalline chains detected by wide-angle X-ray scattering (WAXS). The electron density profile, obtained from scattering by oriented films at different relative humidities (70-97%), showed that the two bilayers, arranged as mirror images, each contain two distinct leaflets with different thicknesses and profiles. The detailed structures suggest one ordered leaflet that would contain crystalline chains and one disordered monolayer likely to contain the anionic compounds, which constitute ∼10% of the <span class="hlt">surfactant</span> phospholipids. The spacing and temperature dependence detected by WAXS fit with an ordered leaflet composed of dipalmitoyl phosphatidylcholine. Physiological levels of cholesterol had no effect on this structure. Removing the anionic phospholipids prevented formation of the L γ phase. The cationic <span class="hlt">surfactant</span> proteins inhibited L γ structures, but at levels unlikely related to charge. Because the L γ phase, if arranged properly, could produce a self-assembled ordered interfacial monolayer, the structure could have important functional consequences. Physiological levels of the proteins, however, inhibit formation of the L γ structures at high relative humidities, making their physiological significance uncertain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162177','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162177"><span>Flexible digestion strategies and trace metal assimilation in <span class="hlt">marine</span> bivalves</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Decho, Alan W.; Luoma, Samuel N.</p> <p>1996-01-01</p> <p>Pulse-chase experiments show that two <span class="hlt">marine</span> bivalves take optimal advantage of different types of particulate food by varying food retention time in a flexible two-phase digestive system. For example, carbon is efficiently assimilated from bacteria by subjecting nearly all the ingested bacteria to prolonged digestion. Prolonging digestion also enhances assimilation of metals, many of which are toxic in minute quantities if they are biologically available. Detritus-feeding aquatic organisms have always lived in environments <span class="hlt">naturally</span> <span class="hlt">rich</span> in particle-reactive metals. We suggest that avoiding excess assimilation of metals could be a factor in the evolution of digestion strategies. We tested that suggestion by studying digestion of particles containing different Cr concentrations. We show that bivalves are capable of modifying the digestive processing of food to reduce exposure to high, biologically available, Cr concentrations. The evolution of a mechanism in some species to avoid high concentrations of metals in food could influence how effects of modern metal pollution are manifested in <span class="hlt">marine</span> ecosystems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17715959','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17715959"><span>Effect of salt and <span class="hlt">surfactant</span> concentration on the structure of polyacrylate gel/<span class="hlt">surfactant</span> complexes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nilsson, Peter; Unga, Johan; Hansson, Per</p> <p>2007-09-20</p> <p>Small-angle X-ray scattering was used to elucidate the structure of crosslinked polyacrylate gel/dodecyltrimethylammonium bromide complexes equilibrated in solutions of varying concentrations of <span class="hlt">surfactant</span> and sodium bromide (NaBr). Samples were swollen with no ordering (micelle free), or they were collapsed with either several distinct peaks (cubic Pm3n) or one broad correlation peak (disordered micellar). The main factor determining the structure of the collapsed complexes was found to be the NaBr concentration, with the cubic structure existing up to approximately 150 mM NaBr and above which only the disordered micellar structure was found. Increasing the salt concentration decreases the polyion mediated attractive forces holding the micelles together causing swelling of the gel. At sufficiently high salt concentration the micelle-micelle distance in the gel becomes too large for the cubic structure to be retained, and it melts into a disordered micellar structure. As most samples were above the critical micelle concentration, the bulk of the <span class="hlt">surfactant</span> was in the form of micelles in the solution and the <span class="hlt">surfactant</span> concentration thereby had only a minor influence on the structure. However, in the region around 150 mM NaBr, increasing the <span class="hlt">surfactant</span> concentration, at constant NaBr concentration, was found to change the structure from disordered micellar to ordered cubic and back to disordered again.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24905978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24905978"><span>Strong cooperative effect of oppositely charged <span class="hlt">surfactant</span> mixtures on their adsorption and packing at the air-water interface and interfacial water structure.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nguyen, Khoi T; Nguyen, Tuan D; Nguyen, Anh V</p> <p>2014-06-24</p> <p>Remarkable adsorption enhancement and packing of dilute mixtures of water-soluble oppositely-charged <span class="hlt">surfactants</span>, sodium dodecyl sulfate (SDS) and dodecyl amine hydrochloride (DAH), at the air-water interface were observed by using sum frequency generation spectroscopy and tensiometry. The interfacial water structure was also observed to be significantly influenced by the SDS-DAH mixtures, differently from the synergy of the single <span class="hlt">surfactants</span>. Most strikingly, the obtained spectroscopic evidence suggests that the interfacial hydrophobic alkyl chains of the binary mixtures assemble differently from those of single <span class="hlt">surfactants</span>. This study highlights the significance of the cooperative interaction between the headgroups of oppositely charged binary <span class="hlt">surfactant</span> systems and subsequently provides some insightful observations about the molecular structure of the air-aqueous interfacial water molecules and, more importantly, about the packing <span class="hlt">nature</span> of the <span class="hlt">surfactant</span> hydrophobic chains of dilute SDS-DAH mixtures of concentration below 1% of the CMC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3194911','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3194911"><span>The <span class="hlt">Surfactant</span> of Legionella pneumophila Is Secreted in a TolC-Dependent Manner and Is Antagonistic toward Other Legionella Species ▿†</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stewart, Catherine R.; Burnside, Denise M.; Cianciotto, Nicholas P.</p> <p>2011-01-01</p> <p>When Legionella pneumophila grows on agar plates, it secretes a <span class="hlt">surfactant</span> that promotes flagellum- and pilus-independent “sliding” motility. We isolated three mutants that were defective for <span class="hlt">surfactant</span>. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella <span class="hlt">surfactant</span> is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a <span class="hlt">surfactant</span>, confirming that TolC promotes <span class="hlt">surfactant</span> secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a <span class="hlt">surfactant</span>. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted <span class="hlt">surfactant</span>, suggesting that TolC and T2S conjoin to mediate <span class="hlt">surfactant</span> secretion, with one being the conduit for <span class="hlt">surfactant</span> export and the other the exporter of a molecule that is required for induction or maturation of <span class="hlt">surfactant</span> synthesis/secretion. Although the <span class="hlt">surfactant</span> was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the <span class="hlt">surfactant</span> provides L. pneumophila with a selective advantage over other legionellae in the <span class="hlt">natural</span> environment. PMID:21890700</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866872','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866872"><span>Measuring <span class="hlt">surfactant</span> concentration in plating solutions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.</p> <p>1989-01-01</p> <p>An arrangement for measuring the concentration of <span class="hlt">surfactants</span> in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the <span class="hlt">surfactant</span> concentration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28588116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28588116"><span>High Oxygen Concentrations Adversely Affect the Performance of Pulmonary <span class="hlt">Surfactant</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew</p> <p>2017-08-01</p> <p>Although effective in the neonatal population, exogenous pulmonary <span class="hlt">surfactant</span> has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal <span class="hlt">surfactant</span> replacement therapy is administered in conjunction with low fractional F IO 2 while pediatric/adult therapy is administered with high F IO 2 . We suspected a connection between F IO 2 and <span class="hlt">surfactant</span> performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary <span class="hlt">surfactant</span> is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary <span class="hlt">surfactant</span> was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of <span class="hlt">surfactant</span> to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary <span class="hlt">surfactant</span> particles in aqueous suspension. For both experiments, comparisons were made between <span class="hlt">surfactant</span> exposed to 21% and 100% oxygen. The δA of <span class="hlt">surfactant</span> was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively ( P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively ( P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary <span class="hlt">surfactant</span> were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of <span class="hlt">surfactant</span> film to high concentrations of oxygen expedited the frangibility of pulmonary <span class="hlt">surfactant</span>, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26792016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26792016"><span>Amino acid–based <span class="hlt">surfactants</span>: New antimicrobial agents.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L</p> <p>2016-02-01</p> <p>The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based <span class="hlt">surfactants</span> constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based <span class="hlt">surfactants</span>. Monocatenary, dicatenary and gemini <span class="hlt">surfactants</span> that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OSJ....46..299S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OSJ....46..299S"><span>Investigating the effectiveness of the <span class="hlt">surfactant</span> dioctyl sodium sulfosuccinate to disperse oil in a changing <span class="hlt">marine</span> environment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steffy, David A.; Nichols, Alfred C.; Kiplagat, George</p> <p>2011-12-01</p> <p>We investigated the <span class="hlt">surfactant</span> dioctyl sodium sulfosuccinate (DOSS) and its delivery system Corexit 9500A, used to disperse oil released during the Gulf of Mexico spill during the summer of 2010. DOSS is an organic sulfonic acid salt that acts as a synthetic detergent and disrupts the interfacial tension between the salt water and crude oil phases. The disruption reaches a maximum at or above the critical micelle concentration (CMC). The CMC for the <span class="hlt">surfactant</span> was determined to be 0.17% solution in deionized water at a pH of 7.2 and a temperature of 21.1 °C (70°F). The CMC is lower in salt water, at 0.125% solution. This has been identified as a "salting out" effect (Somasundaran, 2006). The CMC of DOSS in both saline and deionized water occurred at lower-percent solutions at higher temperatures. The surface tension versus concentration plots can be modeled using a power equation, with correlation coefficients consistently over 0.94. Surface tension versus concentration plots are scalable to fit the desired temperature by the function f(x) = (1/1+Xα), where α =T1/T2. Tests measured the stability of the DOSS micelles when exposed to a continuous UVA radiation. This photodegradation is directly related to the duration of exposure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29031155','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29031155"><span>The effect of nanoparticle aggregation on <span class="hlt">surfactant</span> foam stability.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>AlYousef, Zuhair A; Almobarky, Mohammed A; Schechter, David S</p> <p>2018-02-01</p> <p>The combination of nanoparticles (NPs) and <span class="hlt">surfactant</span> may offer a novel technique of generating stronger foams for gas mobility control. This study evaluates the potential of silica NPs to enhance the foam stability of three nonionic <span class="hlt">surfactants</span>. Results showed that the concentration of <span class="hlt">surfactant</span> and NPs is a crucial parameter for foam stability and that there is certain concentrations for strong foam generation. A balance in concentration between the nonionic <span class="hlt">surfactants</span> and the NPs can enhance the foam stability as a result of forming flocs in solutions. At fixed <span class="hlt">surfactant</span> concentration, the addition of NPs at low to intermediate concentrations can produce a more stable foam compared to the <span class="hlt">surfactant</span>. The production of small population of flocs as a result of mixing the <span class="hlt">surfactant</span> and NPs can enhance the foam stability by providing a barrier between the gas bubbles and delaying the coalescence of bubbles. Moreover, these flocs can increase the solution viscosity and, therefore, slow the drainage rate of thin aqueous film (lamellae). The measurements of foam half-life, bubble size, and mobility tests confirmed this conclusion. However, the addition of more solid particles or <span class="hlt">surfactant</span> might have a negative impact on foam stability and reduce the maximum capillary pressure of coalescence as a result of forming extensive aggregates. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26873883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26873883"><span>Critical micelle concentration values for different <span class="hlt">surfactants</span> measured with solid-phase microextraction fibers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haftka, Joris J-H; Scherpenisse, Peter; Oetter, Günter; Hodges, Geoff; Eadsforth, Charles V; Kotthoff, Matthias; Hermens, Joop L M</p> <p>2016-09-01</p> <p>The amphiphilic <span class="hlt">nature</span> of <span class="hlt">surfactants</span> drives the formation of micelles at the critical micelle concentration (CMC). Solid-phase microextraction (SPME) fibers were used in the present study to measure CMC values of 12 nonionic, anionic, cationic, and zwitterionic <span class="hlt">surfactants</span>. The SPME-derived CMC values were compared to values determined using a traditional surface tension method. At the CMC of a <span class="hlt">surfactant</span>, a break in the relationship between the concentration in SPME fibers and the concentration in water is observed. The CMC values determined with SPME fibers deviated by less than a factor of 3 from values determined with a surface tension method for 7 out of 12 compounds. In addition, the fiber-water sorption isotherms gave information about the sorption mechanism to polyacrylate-coated SPME fibers. A limitation of the SPME method is that CMCs for very hydrophobic cationic <span class="hlt">surfactants</span> cannot be determined when the cation exchange capacity of the SPME fibers is lower than the CMC value. The advantage of the SPME method over other methods is that CMC values of individual compounds in a mixture can be determined with this method. However, CMC values may be affected by the presence of compounds with other chain lengths in the mixture because of possible mixed micelle formation. Environ Toxicol Chem 2016;35:2173-2181. © 2016 SETAC. © 2016 SETAC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/570456-surfactant-detergent-titration-analysis-method-apparatus-machine-working-fluids-surfactant-containing-wastewater-like','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/570456-surfactant-detergent-titration-analysis-method-apparatus-machine-working-fluids-surfactant-containing-wastewater-like"><span><span class="hlt">Surfactant</span>/detergent titration analysis method and apparatus for machine working fluids, <span class="hlt">surfactant</span>-containing wastewater and the like</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smith, D.D.; Hiller, J.M.</p> <p>1998-02-24</p> <p>The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic <span class="hlt">surfactants</span>, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the <span class="hlt">surfactant</span> in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changesmore » in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of <span class="hlt">surfactant</span> present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed <span class="hlt">surfactants</span> and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing <span class="hlt">surfactants</span> with appropriate pre-treatments for concentration. 1 fig.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/570456','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/570456"><span><span class="hlt">Surfactant</span>/detergent titration analysis method and apparatus for machine working fluids, <span class="hlt">surfactant</span>-containing wastewater and the like</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, D.D.; Hiller, J.M.</p> <p>1998-02-24</p> <p>The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic <span class="hlt">surfactants</span>, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the <span class="hlt">surfactant</span> in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of <span class="hlt">surfactant</span> present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed <span class="hlt">surfactants</span> and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing <span class="hlt">surfactants</span> with appropriate pre-treatments for concentration. 1 fig.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871384','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871384"><span><span class="hlt">Surfactant</span>/detergent titration analysis method and apparatus for machine working fluids, <span class="hlt">surfactant</span>-containing wastewater and the like</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Smith, Douglas D.; Hiller, John M.</p> <p>1998-01-01</p> <p>The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic <span class="hlt">surfactants</span>, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the <span class="hlt">surfactant</span> in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of <span class="hlt">surfactant</span> present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed <span class="hlt">surfactants</span> and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing <span class="hlt">surfactants</span> with appropriate pre-treatments for concentration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28832154','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28832154"><span>Simulating Bilayers of Nonionic <span class="hlt">Surfactants</span> with the GROMOS-Compatible 2016H66 Force Field.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Senac, Caroline; Urbach, Wladimir; Kurtisovski, Erol; Hünenberger, Philippe H; Horta, Bruno A C; Taulier, Nicolas; Fuchs, Patrick F J</p> <p>2017-10-03</p> <p>Polyoxyethylene glycol alkyl ether amphiphiles (C i E j ) are important nonionic <span class="hlt">surfactants</span>, often used for biophysical and membrane protein studies. In this work, we extensively test the GROMOS-compatible 2016H66 force field in molecular dynamics simulations involving the lamellar phase of a series of C i E j <span class="hlt">surfactants</span>, namely C 12 E 2 , C 12 E 3 , C 12 E 4 , C 12 E 5 , and C 14 E 4 . The simulations reproduce qualitatively well the monitored structural properties and their experimental trends along the <span class="hlt">surfactant</span> series, although some discrepancies remain, in particular in terms of the area per <span class="hlt">surfactant</span>, the equilibrium phase of C 12 E 5 , and the order parameters of C 12 E 3 , C 12 E 4 , and C 12 E 5 . The polar head of the C i E j <span class="hlt">surfactants</span> is highly hydrated, almost like a single polyethyleneoxide (PEO) molecule at full hydration, resulting in very compact conformations. Within the bilayer, all C i E j <span class="hlt">surfactants</span> flip-flop spontaneously within tens of nanoseconds. Water-permeation is facilitated, and the bending rigidity is 4 to 5 times lower than that of typical phospholipid bilayers. In line with another recent theoretical study, the simulations show that the lamellar phase of C i E j contains large hydrophilic pores. These pores should be abundant in order to reproduce the comparatively low NMR order parameters. We show that their contour length is directly correlated to the order parameters, and we estimate that they should occupy approximately 7-10% of the total membrane area. Due to their highly dynamic <span class="hlt">nature</span> (rapid flip-flops, high water permeability, observed pore formation), C i E j <span class="hlt">surfactant</span> bilayers are found to represent surprisingly challenging systems in terms of modeling. Given this difficulty, the results presented here show that the 2016H66 parameters, optimized independently considering pure-liquid as well as polar and nonpolar solvation properties of small organic molecules, represent a good starting point for simulating these</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6199323-superheating-kerosene-surfactant-water-interface-formed-capillary','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6199323-superheating-kerosene-surfactant-water-interface-formed-capillary"><span>Superheating of kerosene-<span class="hlt">surfactant</span>-water interface formed in capillary</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kitamura, Y.; Huang, Q.; Takahashi, T.</p> <p>1993-03-01</p> <p>To provide fundamental information about the microexplosion of emulsified fuels, the effect of <span class="hlt">surfactants</span> on the superheating of a kerosene-water interface was experimentally investigated. <span class="hlt">Surfactants</span> such as Span 80, NPE[sub 2], NPE[sub 5], and NPE[sub 7.5] were used. The three-layer sample was prepared in a capillary; the bottom layer was kerosene, the middle layer was water, and the upper layer was kerosene. The <span class="hlt">surfactants</span> were dissolved in the upper kerosene layer. The 30-40 samples were used to determine the superheating temperature distribution. The superheating temperature decreases with increasing concentration of <span class="hlt">surfactant</span> and approaches a constant distribution over a critical concentration.more » The superheating temperature also depends on the hydrophilic group of NPE[sub x]. To explain such an effect, the authors assumed that the <span class="hlt">surfactant</span> was absorbed on the interface and accelerated the nucleation rate. The authors suggest a modified nucleation rate which includes the surface coverage by a <span class="hlt">surfactant</span>. The model predicts that the presence of <span class="hlt">surfactants</span> reduces the superheating temperature and makes the distribution broader. The prediction from this model is in good agreement with the experimental data.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25350777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25350777"><span><span class="hlt">Surfactant</span> titration of nanoparticle-protein corona.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maiolo, Daniele; Bergese, Paolo; Mahon, Eugene; Dawson, Kenneth A; Monopoli, Marco P</p> <p>2014-12-16</p> <p>Nanoparticles (NP), when exposed to biological fluids, are coated by specific proteins that form the so-called protein corona. While some adsorbing proteins exchange with the surroundings on a short time scale, described as a "dynamic" corona, others with higher affinity and long-lived interaction with the NP surface form a "hard" corona (HC), which is believed to mediate NP interaction with cellular machineries. In-depth NP protein corona characterization is therefore a necessary step in understanding the relationship between surface layer structure and biological outcomes. In the present work, we evaluate the protein composition and stability over time and we systematically challenge the formed complexes with <span class="hlt">surfactants</span>. Each challenge is characterized through different physicochemical measurements (dynamic light scattering, ζ-potential, and differential centrifugal sedimentation) alongside proteomic evaluation in titration type experiments (<span class="hlt">surfactant</span> titration). 100 nm silicon oxide (Si) and 100 nm carboxylated polystyrene (PS-COOH) NPs cloaked by human plasma HC were titrated with 3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, zwitterionic), Triton X-100 (nonionic), sodium dodecyl sulfate (SDS, anionic), and dodecyltrimethylammonium bromide (DTAB, cationic) <span class="hlt">surfactants</span>. Composition and density of HC together with size and ζ-potential of NP-HC complexes were tracked at each step after <span class="hlt">surfactant</span> titration. Results on Si NP-HC complexes showed that SDS removes most of the HC, while DTAB induces NP agglomeration. Analogous results were obtained for PS NP-HC complexes. Interestingly, CHAPS and Triton X-100, thanks to similar surface binding preferences, enable selective extraction of apolipoprotein AI (ApoAI) from Si NP hard coronas, leaving unaltered the dispersion physicochemical properties. These findings indicate that <span class="hlt">surfactant</span> titration can enable the study of NP-HC stability through <span class="hlt">surfactant</span> variation and also selective separation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23421901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23421901"><span>A novel continuous powder aerosolizer (CPA) for inhalative administration of highly concentrated recombinant <span class="hlt">surfactant</span> protein-C (rSP-C) <span class="hlt">surfactant</span> to preterm neonates.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pohlmann, G; Iwatschenko, P; Koch, W; Windt, H; Rast, M; de Abreu, M Gama; Taut, F J H; De Muynck, C</p> <p>2013-12-01</p> <p>In pulmonary medicine, aerosolization of substances for continuous inhalation is confined to different classes of nebulizers with their inherent limitations. Among the unmet medical needs is the lack of an aerosolized <span class="hlt">surfactant</span> preparation for inhalation by preterm neonates, to avoid the risks associated with endotracheal intubation and <span class="hlt">surfactant</span> bolus instillation. In the present report, we describe a high-concentration continuous powder aerosolization system developed for delivery of inhalable <span class="hlt">surfactant</span> to preterm neonates. The developed device uses a technique that allows efficient aerosolization of dry <span class="hlt">surfactant</span> powder, generating a <span class="hlt">surfactant</span> aerosol of high concentration. In a subsequent humidification step, the heated aerosol particles are covered with a surface layer of water. The wet <span class="hlt">surfactant</span> aerosol is then delivered to the patient interface (e.g., nasal prongs) through a tube. The performance characteristics of the system are given as mass concentration, dose rate, and size distribution of the generated aerosol. Continuous aerosol flows of about 0.84 L/min can be generated from dry recombinant <span class="hlt">surfactant</span> protein-C <span class="hlt">surfactant</span>, with concentrations of up to 12 g/m(3) and median particle sizes of the humidified particles in the range of 3 to 3.5 μm at the patient interface. The system has been successfully used in preclinical studies. The device with its continuous high-concentration delivery is promising for noninvasive delivery of <span class="hlt">surfactant</span> aerosol to neonates and has the potential for becoming a versatile disperser platform closing the gap between continuously operating nebulizers and discontinuously operating dry powder inhaler devices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/984972','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/984972"><span>Thermally stable <span class="hlt">surfactants</span> and compositions and methods of use thereof</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Chaiko, David J [Woodridge, IL</p> <p>2008-09-02</p> <p>There are provided novel thermally stable <span class="hlt">surfactants</span> for use with fillers in the preparation of polymer composites and nanocomposites. Typically, <span class="hlt">surfactants</span> of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided <span class="hlt">surfactants</span> having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable <span class="hlt">surfactants</span> and compositions, including composites and nanocomposites, using fillers coated with the <span class="hlt">surfactants</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5367019-surfactant-based-enhanced-oil-recovery-mediated-naturally-occurring-microorganisms','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5367019-surfactant-based-enhanced-oil-recovery-mediated-naturally-occurring-microorganisms"><span><span class="hlt">Surfactant</span> based enhanced oil recovery mediated by <span class="hlt">naturally</span> occurring microorganisms</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thomas, C.P.; Bala, G.A.; Duvall, M.L.</p> <p>1991-01-01</p> <p>Oil recovery experiments using Bacillus licheniformis JF-2 and a sucrose based nutrient were performed using Berea sandstone cores ranging in permeability from 85 to 510 md (0.084 to 0.503 {mu}m{sup 2}). Bacillus licheniformis JF-2, a <span class="hlt">surfactant</span> producing microorganism isolated from an oilfield environment, is nonpathogenic and will not reduce sulfate. Oil recovery efficiencies (E{sub r}) for four different crude oils ranging from 19.1 to 38.1{degrees}API (0.9396 to 0.8343 g/cm{sup 3}) varied from 2.8 to 42.6% of the waterflood residual oil. Injection of cell-free'' supernatants resulted in E{sub r} values from 7.0 to 16.4%. Microbially-mediated systems reduced interfacial tension (IFT) aboutmore » 20 mN/m for four different crude oils. Following microbial flood experimentation microorganisms were distributed throughout the core (110 md (0.109 {mu}m{sup 2}) Berea sandstone) with a predominance of cells located near the outlet end. 34 refs., 6 figs., 7 tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940009474','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940009474"><span><span class="hlt">Surfactant</span> studies for bench-scale operation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hickey, Gregory S.; Sharma, Pramod K.</p> <p>1993-01-01</p> <p>A phase 2 study has been initiated to investigate <span class="hlt">surfactant</span>-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the second quarter of work. The major accomplishments were: completion of coal liquefaction autoclave reactor runs with Illinois number 6 coal at processing temperatures of 300, 325, and 350 C, and pressures of 1800 psig; analysis of the filter cake and the filtrate obtained from the treated slurry in each run; and correlation of the coal conversions and the liquid yield quality to the <span class="hlt">surfactant</span> concentration. An increase in coal conversions and upgrading of the liquid product quality due to <span class="hlt">surfactant</span> addition was observed for all runs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26650419','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26650419"><span>Acute toxicity of anionic and non-ionic <span class="hlt">surfactants</span> to aquatic organisms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F</p> <p>2016-03-01</p> <p>The environmental risk of <span class="hlt">surfactants</span> requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the <span class="hlt">surfactant</span> as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic <span class="hlt">surfactants</span> ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of <span class="hlt">surfactants</span>, we have included a compilation of toxicity data of <span class="hlt">surfactants</span> collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the <span class="hlt">surfactants</span> than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for <span class="hlt">surfactants</span> may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the <span class="hlt">surfactants</span> regardless of the species tested. The toxicity data have been related to the structure of the <span class="hlt">surfactants</span>, giving a mathematical relationship that helps to predict the toxic potential of a <span class="hlt">surfactant</span> from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several <span class="hlt">surfactants</span> previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each <span class="hlt">surfactant</span> and the different test organisms in order to select efficient <span class="hlt">surfactants</span> with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5630888-marine-biology','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5630888-marine-biology"><span><span class="hlt">Marine</span> biology</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thurman, H.V.; Webber, H.H.</p> <p>1984-01-01</p> <p>This book discusses both taxonomic and ecological topics on <span class="hlt">marine</span> biology. Full coverage of <span class="hlt">marine</span> organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major <span class="hlt">marine</span> habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview <span class="hlt">marine</span> biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the naturemore » of water, the <span class="hlt">nature</span> and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; <span class="hlt">marine</span> organisms; monera, protista, mycota and metaphyta; the smaller <span class="hlt">marine</span> animals, the large animals <span class="hlt">marine</span> habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, <span class="hlt">marine</span> pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common <span class="hlt">marine</span> organisms, and glossary, and index.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3283952','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3283952"><span>Status of <span class="hlt">surfactants</span> as penetration enhancers in transdermal drug delivery</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Som, Iti; Bhatia, Kashish; Yasir, Mohd.</p> <p>2012-01-01</p> <p><span class="hlt">Surfactants</span> are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, <span class="hlt">surfactants</span> have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. <span class="hlt">Surfactants</span> have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the <span class="hlt">surfactant</span> molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of <span class="hlt">surfactant</span>. <span class="hlt">Surfactants</span> ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of <span class="hlt">surfactants</span> as permeation enhancer in transdermal drug delivery of various drugs. PMID:22368393</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..113a2135L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..113a2135L"><span>Influence of stability of polymer <span class="hlt">surfactant</span> on oil displacement mechanism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Li; Li, Chengliang; Pi, Yanming; Wu, Di; He, Ying; Geng, Liang</p> <p>2018-02-01</p> <p>At present, most of the oilfields of China have entered the late stage of high water-cut development, and three oil recovery technique has become the leading technology for improving oil recovery. With the improvement of three oil recovery techniques, the polymer <span class="hlt">surfactant</span> flooding technology has been widely promoted in oil fields in recent years. But in the actual field experiment, it has been found that the polymer <span class="hlt">surfactant</span> has chromatographic separation at the extraction end, which indicates that the property of the polymer <span class="hlt">surfactant</span> has changed during the displacement process. At present, there was few literature about how the stability of polymer <span class="hlt">surfactant</span> affects the oil displacement mechanism. This paper used HuaDing-I polymer <span class="hlt">surfactant</span> to conduct a micro photolithography glass flooding experiment, and then compared the oil displacement law of polymer <span class="hlt">surfactant</span> before and after static setting. Finally, the influence law of stability of polymer <span class="hlt">surfactant</span> on the oil displacement mechanism is obtained by comprehensive analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26776022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26776022"><span>Enhanced solubilization of curcumin in mixed <span class="hlt">surfactant</span> vesicles.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K</p> <p>2016-05-15</p> <p>Self-assemblies of equimolar double and single chain mixed ionic <span class="hlt">surfactants</span>, with increasing numbers of carbon atoms of double chain <span class="hlt">surfactant</span>, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed <span class="hlt">surfactant</span> systems. Mixed <span class="hlt">surfactant</span> assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed <span class="hlt">surfactant</span> formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27979235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27979235"><span>Polydiacetylene sensor interaction with food sanitizers and <span class="hlt">surfactants</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yueyuan; Northcutt, Julie; Hanks, Tim; Miller, Ian; Pennington, Bill; Jelinek, Raz; Han, Inyee; Dawson, Paul</p> <p>2017-04-15</p> <p>Polydiacetylene (PDA) vesicles are of interest as biosensors, particularly for pathogenic bacteria. As part of a food monitoring system, interaction with food sanitizers/<span class="hlt">surfactants</span> was investigated. PDA vesicles were prepared by inkjet-printing, photopolymerized and characterized by dynamic light scattering (DLS) and UV/Vis spectroscopy. The optical response of PDA vesicles at various concentrations verses a fixed sanitizer/<span class="hlt">surfactant</span> concentration was determined using a two variable factorial design. Sanitizer/<span class="hlt">surfactant</span> response at various concentrations over time was also measured. Results indicated that only Vigilquat and TritonX-100 interacted with PDA vesicles giving visible colour change out of 8 sanitizers/<span class="hlt">surfactants</span> tested. PDA vesicle concentration, sanitizer/<span class="hlt">surfactant</span> concentration, and time all had a significant (P<0.0001) effect on colour change. As they are highly sensitive to the presence of Vigilquat and TritonX-100, PDA sensors could be used to detect chemical residues as well as for detection of various contaminants in the food industry. Copyright © 2016. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120000060','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120000060"><span>Application of Emulsified Zero-Valent Iron to <span class="hlt">Marine</span> Environments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.</p> <p>2005-01-01</p> <p> same oil/<span class="hlt">surfactant</span> membrane used in EZVI. The removal of cadmium and lead from a seawater matrix is a unique challenge. It requires a system that is resistant to the corrosive <span class="hlt">nature</span> of seawater while removing specific ions that are in a relatively low concentration compared to <span class="hlt">naturally</span> occurring seawater salts. Laboratory studies conducted show greater than 99% removal of lead and 96% removal of cadmium from a seawater solution spiked at 5 mg/L that was treated with an Emulsified Zero-Valent Metal (EZVM). The cadmium and lead are removed from the solution as they transport across the emulsion membrane and plate out onto the zero-valent metal surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29859466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29859466"><span><span class="hlt">Marine</span> <span class="hlt">natural</span> products for multi-targeted cancer treatment: A future insight.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Maushmi S; Adki, Kaveri M</p> <p>2018-05-30</p> <p>Cancer is world's second largest alarming disease, which involves abnormal cell growth and have potential to spread to other parts of the body. Most of the available anticancer drugs are designed to act on specific targets by altering the activity of involved transporters and genes. As cancer cells exhibit complex cellular machinery, the regeneration of cancer tissues and chemo resistance towards the therapy has been the main obstacle in cancer treatment. This fact encourages the researchers to explore the multitargeted use of existing medicines to overcome the shortcomings of chemotherapy for alternative and safer treatment strategies. Recent developments in genomics-proteomics and an understanding of the molecular pharmacology of cancer have also challenged researchers to come up with target-based drugs. The literature supports the evidence of <span class="hlt">natural</span> compounds exhibiting antioxidant, antimitotic, anti-inflammatory, antibiotic as well as anticancer activity. In this review, we have selected <span class="hlt">marine</span> sponges as a prolific source of bioactive compounds which can be explored for their possible use in cancer and have tried to link their role in cancer pathway. To prove this, we revisited the literature for the selection of cancer genes for the multitargeted use of existing drugs and <span class="hlt">natural</span> products. We used Cytoscape network analysis and Search tool for retrieval of interacting genes/ proteins (STRING) to study the possible interactions to show the links between the antioxidants, antibiotics, anti-inflammatory and antimitotic agents and their targets for their possible use in cancer. We included total 78 pathways, their genes and <span class="hlt">natural</span> compounds from the above four pharmacological classes used in cancer treatment for multitargeted approach. Based on the Cytoscape network analysis results, we shortlist 22 genes based on their average shortest path length connecting one node to all other nodes in a network. These selected genes are CDKN2A, FH, VHL, STK11, SUFU, RB1</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022390','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022390"><span>Influence of a nonionic <span class="hlt">surfactant</span> (Triton X-100) on contaminant distribution between water and several soil solids</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, J.-F.; Liao, P.-M.; Kuo, C.-C.; Yang, H.-T.; Chiou, C.T.</p> <p>2000-01-01</p> <p>The influence of a nonionic <span class="hlt">surfactant</span> (Triton X-100) on the contaminant distribution coefficients in solid-water mixtures was determined for a number of relatively nonpolar compounds (contaminants) on several <span class="hlt">natural</span> solids. The studied compounds consisted of BTEX (benzene, toluene, ethylbenzene, and p-xylene) and chlorinated pesticides (lindane, ??-BHC, and heptachlor epoxide), which span several orders of magnitude in water solubility (S(W)); the solid samples comprised a bentonite, a peat, and two other soils, which cover a wide range of solid organic matter (SOM) content. The applied <span class="hlt">surfactant</span> concentrations (X) ranged from below the (nominal) CMC to 2-3 times the CMC. For relatively water-soluble BTEX compounds, the distribution coefficients with <span class="hlt">surfactant</span> (K*(d)) all exceeded those without <span class="hlt">surfactant</span> (K(d)); the K*(d)/K(d) ratios increased with increasing S(w) from p-xylene to benzene on each solid at a given X, with increasing X for each compound on a solid, and with decreasing solid SOM content for each compound over the range of X studied. For the less-soluble pesticides, the K*(d)/K(d) ratios exhibited a large increase with X for bentonite, a marginal change (increase or decrease) for a soil of 2.4% SOM, and a moderate-to-large decrease for two soils of 14.8% and 86.4% SOM. These unique observations were rationalized in terms of the properties of the compound, the amount of <span class="hlt">surfactant</span> sorbed on the solid, the enhanced solubilization of the compound by <span class="hlt">surfactant</span> in water, and the relative effects of the <span class="hlt">surfactant</span> when adsorbed on minerals and when partitioned into SOM. (C) 2000 Academic Press.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21721951','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21721951"><span>Neutral lipid trafficking regulates alveolar type II cell <span class="hlt">surfactant</span> phospholipid and <span class="hlt">surfactant</span> protein expression.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Torday, John; Rehan, Virender</p> <p>2011-08-01</p> <p>Adipocyte differentiation-related protein (ADRP) is a critically important protein that mediates lipid uptake, and is highly expressed in lung lipofibroblasts (LIFs). Triacylglycerol secreted from the pulmonary circulation and stored in lipid storage droplets is a robust hormonal-, growth factor-, and stretch-regulated precursor for <span class="hlt">surfactant</span> phospholipid synthesis by alveolar type II epithelial (ATII) cells. A549 lung epithelial cells rapidly take up green fluorescent protein (GFP)-ADRP fusion protein-associated lipid droplets (LDs) in a dose-dependent manner. The LDs initially localize to the perinuclear region of the cell, followed by localization in the cytoplasm. Uptake of ADRP-LDs causes a time- and dose-dependent increase in <span class="hlt">surfactant</span> protein-B (SP-B) expression. This mechanism can be inhibited by either actinomycin D or cycloheximide, indicating that ADRP-LDs induce newly synthesized SP-B. ADRP-LDs concomitantly stimulate saturated phosphatidylcholine (satPC) synthesis by A549 cells, which is inhibited by ADRP antibody, indicating that this is a receptor-mediated mechanism. Intravenous administration of GFP-ADRP LDs to adult rats results in dose-dependent increases in lung ADRP and SP-B expression. These data indicate that lipofibroblast-derived ADRP coordinates ATII cells' synthesis of the <span class="hlt">surfactant</span> phospholipid-protein complex by stimulating both satPC and SP-B. The authors propose, therefore, that ADRP is the physiologic determinant for the elusive coordinated, stoichiometric synthesis of <span class="hlt">surfactant</span> phospholipid and protein by pulmonary ATII cells.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24711964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24711964"><span>Is coral <span class="hlt">richness</span> related to community resistance to and recovery from disturbance?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Stacy Y; Speare, Kelly E; Long, Zachary T; McKeever, Kimberly A; Gyoerkoe, Megan; Ramus, Aaron P; Mohorn, Zach; Akins, Kelsey L; Hambridge, Sarah M; Graham, Nicholas A J; Nash, Kirsty L; Selig, Elizabeth R; Bruno, John F</p> <p>2014-01-01</p> <p>More diverse communities are thought to be more stable-the diversity-stability hypothesis-due to increased resistance to and recovery from disturbances. For example, high diversity can make the presence of resilient or fast growing species and key facilitations among species more likely. How <span class="hlt">natural</span>, geographic biodiversity patterns and changes in biodiversity due to human activities mediate community-level disturbance dynamics is largely unknown, especially in diverse systems. For example, few studies have explored the role of diversity in tropical <span class="hlt">marine</span> communities, especially at large scales. We tested the diversity-stability hypothesis by asking whether coral <span class="hlt">richness</span> is related to resistance to and recovery from disturbances including storms, predator outbreaks, and coral bleaching on tropical coral reefs. We synthesized the results of 41 field studies conducted on 82 reefs, documenting changes in coral cover due to disturbance, across a global gradient of coral <span class="hlt">richness</span>. Our results indicate that coral reefs in more species-<span class="hlt">rich</span> regions were marginally less resistant to disturbance and did not recover more quickly. Coral community resistance was also highly dependent on pre-disturbance coral cover, probably due in part to the sensitivity of fast-growing and often dominant plating acroporid corals to disturbance. Our results suggest that coral communities in biodiverse regions, such as the western Pacific, may not be more resistant and resilient to <span class="hlt">natural</span> and anthropogenic disturbances. Further analyses controlling for disturbance intensity and other drivers of coral loss and recovery could improve our understanding of the influence of diversity on community stability in coral reef ecosystems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27214208','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27214208"><span>Dicationic <span class="hlt">Surfactants</span> with Glycine Counter Ions for Oligonucleotide Transportation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej</p> <p>2016-08-04</p> <p>Gemini <span class="hlt">surfactants</span> are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini <span class="hlt">surfactants</span> for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of <span class="hlt">surfactants</span> was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied <span class="hlt">surfactants</span> appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon <span class="hlt">surfactant</span> addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-<span class="hlt">surfactant</span> complexes and a micellar phase was dominant with RNA. For the <span class="hlt">surfactant</span> with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27500370','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27500370"><span>Changes in hydration of the stratum corneum are the most suitable indicator to evaluate the irritation of <span class="hlt">surfactants</span> on the skin.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fujimura, T; Shimotoyodome, Y; Nishijima, T; Sugata, K; Taguchi, H; Moriwaki, S</p> <p>2017-02-01</p> <p>Irritancy levels of <span class="hlt">surfactants</span> on human skin have not been clarified completely. The relationships between skin damage and changes of skin properties caused by various <span class="hlt">surfactants</span> were investigated using non-invasive measurements. Aqueous solutions of seven kinds of anionic, non-ionic, and amphoteric <span class="hlt">surfactants</span> were exposed to the inside of forearm skin of 20 human subjects in two separate studies using the cup method. Hydration of the stratum corneum (SC), transepidermal water loss (TEWL), pH, skin surface roughness, and contents of the SC were measured before and after one exposure and after five and nine consecutive exposures to various <span class="hlt">surfactants</span>. The discontinuation ratio of subjects for testing in each <span class="hlt">surfactant</span> was determined by skin irritation symptoms and was defined as the degree of skin damage. Significant changes were observed only in hydration, TEWL, and <span class="hlt">natural</span> moisturizing factors (NMF) content in the SC following <span class="hlt">surfactant</span> exposure. A significant correlation was observed between the discontinuation ratio of each <span class="hlt">surfactant</span> and the changes of hydration, TEWL, and NMF. Especially, the change of SC hydration showed an excellent correlation with the discontinuation ratio both for single (r = 0.942, P < 0.001) and for chronic exposures (r = 0.934, P < 0.001). Our results indicate that the change of hydration of the SC is equivalent to the skin damage caused by <span class="hlt">surfactants</span>, and therefore is the most suitable indicator to evaluate the irritation of <span class="hlt">surfactants</span> on the skin. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26664063','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26664063"><span>Effective <span class="hlt">Surfactants</span> Blend Concentration Determination for O/W Emulsion Stabilization by Two Nonionic <span class="hlt">Surfactants</span> by Simple Linear Regression.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hassan, A K</p> <p>2015-01-01</p> <p>In this work, O/W emulsion sets were prepared by using different concentrations of two nonionic <span class="hlt">surfactants</span>. The two <span class="hlt">surfactants</span>, tween 80(HLB=15.0) and span 80(HLB=4.3) were used in a fixed proportions equal to 0.55:0.45 respectively. HLB value of the <span class="hlt">surfactants</span> blends were fixed at 10.185. The <span class="hlt">surfactants</span> blend concentration is starting from 3% up to 19%. For each O/W emulsion set the conductivity was measured at room temperature (25±2°), 40, 50, 60, 70 and 80°. Applying the simple linear regression least squares method statistical analysis to the temperature-conductivity obtained data determines the effective <span class="hlt">surfactants</span> blend concentration required for preparing the most stable O/W emulsion. These results were confirmed by applying the physical stability centrifugation testing and the phase inversion temperature range measurements. The results indicated that, the relation which represents the most stable O/W emulsion has the strongest direct linear relationship between temperature and conductivity. This relationship is linear up to 80°. This work proves that, the most stable O/W emulsion is determined via the determination of the maximum R² value by applying of the simple linear regression least squares method to the temperature-conductivity obtained data up to 80°, in addition to, the true maximum slope is represented by the equation which has the maximum R² value. Because the conditions would be changed in a more complex formulation, the method of the determination of the effective <span class="hlt">surfactants</span> blend concentration was verified by applying it for more complex formulations of 2% O/W miconazole nitrate cream and the results indicate its reproducibility.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MARS22010G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MARS22010G"><span>Self-assembly of polyelectrolyte <span class="hlt">surfactant</span> complexes using large scale MD simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goswami, Monojoy; Sumpter, Bobby</p> <p>2014-03-01</p> <p>Polyelectrolytes (PE) and <span class="hlt">surfactants</span> are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-<span class="hlt">surfactant</span> complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic <span class="hlt">surfactants</span> complexes in dilute condition. The importance of such complexes of PE with oppositely charged <span class="hlt">surfactants</span> can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE <span class="hlt">surfactant</span> complexes come from the highly ordered structures of <span class="hlt">surfactant</span> self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-<span class="hlt">surfactant</span> systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-<span class="hlt">surfactant</span> complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28213243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28213243"><span>Multi-residue analysis of 36 priority and emerging pollutants in <span class="hlt">marine</span> echinoderms (Holothuria tubulosa) and <span class="hlt">marine</span> sediments by solid-liquid extraction followed by dispersive solid phase extraction and liquid chromatography-tandem mass spectrometry analysis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martín, J; Zafra-Gómez, A; Hidalgo, F; Ibáñez-Yuste, A J; Alonso, E; Vilchez, J L</p> <p>2017-05-01</p> <p><span class="hlt">Marine</span> echinoderms are filter-feeding invertebrates widely distributed along the coasts, and which are therefore extensively exposed to anthropogenic xenobiotics. They can serve as good sentinels for monitoring a large variety of contaminants in <span class="hlt">marine</span> ecosystems. In this context, a multi-residue analytical method has been validated and applied to Holothuria tubulosa specimens and <span class="hlt">marine</span> sediments for the determination of 36 organic compounds, which belong to some of the most problematic groups of emerging and priority pollutants (perfluoroalkyl compounds, estrogens, parabens, benzophenones, plasticizers, <span class="hlt">surfactants</span>, brominated flame retardants and alkylphenols). Lyophilization of samples prior to solvent extraction and clean-up of extracts with C18, followed by liquid chromatography-tandem mass spectrometry analysis, is proposed. A Box-Behnken design was used for optimization of the most influential variables affecting the extraction and clean-up steps. For validation, matrix-matched calibration and recovery assay were applied. Linearity (% r 2 ) higher than 99%, recoveries between 80% and 114% (except in LAS and NP1EO), RSD (precision) lower than 15% and limits of quantification between 0.03 and 12.5ngg -1 dry weight (d.w.) were achieved. The method was applied to nine samples of Holothuria collected along the coast of Granada (Spain), and to <span class="hlt">marine</span> sediments around the animals. The results demonstrated high bioaccumulation of certain pollutants. A total of 25 out of the 36 studied compounds were quantified, being <span class="hlt">surfactants</span>, alkylphenols, perfluoroalkyl compounds, triclocarban and parabens the most frequently detected. Nonylphenol was found in the highest concentration (340 and 323ngg -1 d.w. in sediment and Holothuria samples, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16309620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16309620"><span>Mass transport in micellar <span class="hlt">surfactant</span> solutions: 2. Theoretical modeling of adsorption at a quiescent interface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Danov, K D; Kralchevsky, P A; Denkov, N D; Ananthapadmanabhan, K P; Lips, A</p> <p>2006-01-31</p> <p>Here, we apply the detailed theoretical model of micellar kinetics from part 1 of this study to the case of <span class="hlt">surfactant</span> adsorption at a quiescent interface, i.e., to the relaxation of surface tension and adsorption after a small initial perturbation. Our goal is to understand why for some <span class="hlt">surfactant</span> solutions the surface tension relaxes as inverse-square-root of time, 1/t(1/2), but two different expressions for the characteristic relaxation time are applicable to different cases. In addition, our aim is to clarify why for other <span class="hlt">surfactant</span> solutions the surface tension relaxes exponentially. For this goal, we carried out a computer modeling of the adsorption process, based on the general system of equations derived in part 1. This analysis reveals the existence of four different consecutive relaxation regimes (stages) for a given micellar solution: two exponential regimes and two inverse-square-root regimes, following one after another in alternating order. Experimentally, depending on the specific <span class="hlt">surfactant</span> and method, one usually registers only one of these regimes. Therefore, to interpret properly the data, one has to identify which of these four kinetic regimes is observed in the given experiment. Our numerical results for the relaxation of the surface tension, micelle concentration and aggregation number are presented in the form of kinetic diagrams, which reveal the stages of the relaxation process. At low micelle concentrations, "rudimentary" kinetic diagrams could be observed, which are characterized by merging of some stages. Thus, the theoretical modeling reveals a general and physically <span class="hlt">rich</span> picture of the adsorption process. To facilitate the interpretation of experimental data, we have derived convenient theoretical expressions for the time dependence of surface tension and adsorption in each of the four regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=345029','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=345029"><span>Transport and retention of <span class="hlt">surfactant</span>- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material</span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Packed column experiments were conducted to investigate the transport and blocking behavior of <span class="hlt">surfactant</span>- and polymer-stabilized engineered silver nanoparticles (Ag-ENPs) in saturated <span class="hlt">natural</span> aquifer material with varying silt and clay content, background solution chemistry, and flow velocity. Brea...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29413906','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29413906"><span>Dysfunction of pulmonary <span class="hlt">surfactant</span> mediated by phospholipid oxidation is cholesterol-dependent.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Al-Saiedy, Mustafa; Pratt, Ryan; Lai, Patrick; Kerek, Evan; Joyce, Heidi; Prenner, Elmar; Green, Francis; Ling, Chang-Chun; Veldhuizen, Ruud; Ghandorah, Salim; Amrein, Matthias</p> <p>2018-04-01</p> <p>Pulmonary <span class="hlt">surfactant</span> forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. <span class="hlt">Surfactant</span> function becomes impaired during inflammation due to degradation of the <span class="hlt">surfactant</span> lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on <span class="hlt">surfactant</span> function with and without physiological cholesterol levels (5-10%). Surface activity was assessed in vitro in a captive bubble surfactometer (CBS). <span class="hlt">Surfactant</span> chemistry, monolayer fluidity and thermodynamic behavior were also recorded before and after oxidation. We report that physiologic amounts of cholesterol combined with oxidation results in severe impairment of <span class="hlt">surfactant</span> function. We also show that <span class="hlt">surfactant</span> polyunsaturated phospholipids are the most susceptible to oxidative alteration. Membrane thermodynamic experiments showed significant <span class="hlt">surfactant</span> film stiffening after free radical exposure in the presence of cholesterol. These results point to a previously unappreciated role for cholesterol in amplifying defects in surface activity caused by oxidation of pulmonary <span class="hlt">surfactant</span>, a finding that may have implications for treating several lung diseases. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29876079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29876079"><span>Age and area predict patterns of species <span class="hlt">richness</span> in pumice rafts contingent on oceanic climatic zone encountered.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer</p> <p>2018-05-01</p> <p>The theory of island biogeography predicts that area and age explain species <span class="hlt">richness</span> patterns (or alpha diversity) in insular habitats. Using a unique <span class="hlt">natural</span> phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species <span class="hlt">richness</span>. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by <span class="hlt">marine</span> biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species <span class="hlt">richness</span> (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species <span class="hlt">richness</span> colonizing pumice clasts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20830555','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20830555"><span>Construction and screening of <span class="hlt">marine</span> metagenomic libraries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weiland, Nancy; Löscher, Carolin; Metzger, Rebekka; Schmitz, Ruth</p> <p>2010-01-01</p> <p><span class="hlt">Marine</span> microbial communities are highly diverse and have evolved during extended evolutionary processes of physiological adaptations under the influence of a variety of ecological conditions and selection pressures. They harbor an enormous diversity of microbes with still unknown and probably new physiological characteristics. Besides, the surfaces of <span class="hlt">marine</span> multicellular organisms are typically covered by a consortium of epibiotic bacteria and act as barriers, where diverse interactions between microorganisms and hosts take place. Thus, microbial diversity in the water column of the oceans and the microbial consortia on <span class="hlt">marine</span> tissues of multicellular organisms are <span class="hlt">rich</span> sources for isolating novel bioactive compounds and genes. Here we describe the sampling, construction of large-insert metagenomic libraries from <span class="hlt">marine</span> habitats and exemplarily one function based screen of metagenomic clones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H23I..07A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H23I..07A"><span>Application of Satellite SAR for Discovery and Quantification of <span class="hlt">Natural</span> <span class="hlt">Marine</span> Oil Seeps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amos, J.; Lai, R.; Zimmer, B.; Leiva, A.; MacDonald, I.</p> <p>2006-12-01</p> <p><span class="hlt">Natural</span> <span class="hlt">marine</span> oil seeps discharge gassy drops from the seafloor. Oil drops and gas bubbles reach the surface from water depths as great as 3000m. The oil spreads rapidly, forming an invisible layer that drifts down-wind and down-current in long, linear streaks called slicks. Oil slicks are visible in SAR data because the <span class="hlt">surfactant</span> dampens capillary waves and reduces backscatter. Application of SAR as an exploration tool in energy prospecting is well-established. We have applied this technique for discovering the chemosynthetic communities that colonize the seafloor in the vicinity of deep-water seeps on the continental margin of the Gulf of Mexico. The management goal for this effort is to prevent harmful impact to these communities resulting from exploration or production activities. The scientific goals are to delineate the zoogeography of the chemosynthetic fauna, which is widespread on continental margins, and to establish study sites where their life history can be investigated. In the course of an ongoing, multidisciplinary study in the spring and summer of 2006, we explored 20 possible sites where SAR and geophysical data indicated seeps might occur. SAR was only partly diagnostic: all sites with SAR-detected slicks were found to have biologic communities, but communities were also found at geophysical anomalies that did not produce slicks. We acquired over 60 RADARSAT SAR images from the northern Gulf of Mexico in cooperation with the Alaska Satellite Facility. The ship RV ATLANTIS was at sea during the acquisition and collected synoptic weather and oceanographic data. To automate interpretation of large image dataset we have employed texture recognition with use of a library of textons applied iteratively to the images. This treatment shows promise in distinguishing floating oil from false targets generated by rain fronts and other phenomena. One goal of the analysis is to delineate bounding boxes to quantify the ocean area covered by the thin oil layer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28651198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28651198"><span>The toxicity of cationic <span class="hlt">surfactant</span> HDTMA-Br, desorbed from <span class="hlt">surfactant</span> modified zeolite, towards faecal indicator and environmental microorganisms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reeve, Peter J; Fallowfield, Howard J</p> <p>2017-10-05</p> <p><span class="hlt">Surfactant</span> Modified Zeolite (SMZ) represents a versatile, cost-effective permeable reactive material, capable of treating multiple classes of contaminants. The potential for HDTMA-Br, a cationic <span class="hlt">surfactant</span> commonly used to modify zeolite, to desorb from the zeolite surface has been identified as a potential issue for the ongoing use of SMZ in water remediation contexts. This paper investigates the toxicity of HDTMA-Br towards enteric virus surrogates, F-RNA bacteriophage MS2 and E. coli, Bacillus subtilis, and soil microflora. The concentration of <span class="hlt">surfactant</span> desorbing from SMZ was quantified through a bioassay using E. coli. Results showed HDTMA-Br concentrations of ≥10 -5 M were toxic to MS2, ≥10 -4 M were toxic to E. coli and ≥10 -6 M were toxic to B. subtilis. No toxic relationship was established between HDTMA-Br and soil microflora. Desorption of ≥10 -4 M of HDTMA-Br was shown for the two SMZ samples under the mixing conditions used. Effects of this <span class="hlt">surfactant</span> on total soil microflora were ambiguous since no toxic relationship could be established, however, HDTMA-Br, at concentrations desorbing from SMZ, were shown to impact the soil bacterium B. subtilis. Further research is required to determine the effect of this <span class="hlt">surfactant</span> on microbial populations and species diversity in soils. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24641509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24641509"><span>Species <span class="hlt">richness</span> of arbuscular mycorrhizal fungi: associations with grassland plant <span class="hlt">richness</span> and biomass.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D</p> <p>2014-07-01</p> <p>Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species <span class="hlt">richness</span>, evidence from <span class="hlt">natural</span> ecosystems is scarce. Furthermore, there is little knowledge about how AMF <span class="hlt">richness</span> varies with belowground plant <span class="hlt">richness</span> and biomass. We examined relationships among AMF <span class="hlt">richness</span>, above- and belowground plant <span class="hlt">richness</span>, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF <span class="hlt">richness</span> and belowground plant <span class="hlt">richness</span> were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant <span class="hlt">richness</span> was 1.5 times greater belowground than aboveground. AMF <span class="hlt">richness</span> was significantly positively correlated with plant species <span class="hlt">richness</span>, and more strongly with below- than aboveground plant <span class="hlt">richness</span>. Belowground plant <span class="hlt">richness</span> was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant <span class="hlt">richness</span> was positively correlated only with belowground plant biomass. By contrast, AMF <span class="hlt">richness</span> was negatively correlated with belowground and total plant biomass. Our results indicate that AMF <span class="hlt">richness</span> and plant belowground <span class="hlt">richness</span> are more strongly related with each other and with plant community biomass than with the plant aboveground <span class="hlt">richness</span> measures that have been almost exclusively considered to date. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19384410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19384410"><span>Consumers control diversity and functioning of a <span class="hlt">natural</span> <span class="hlt">marine</span> ecosystem.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Altieri, Andrew H; Trussell, Geoffrey C; Ewanchuk, Patrick J; Bernatchez, Genevieve; Bracken, Matthew E S</p> <p>2009-01-01</p> <p>Our understanding of the functional consequences of changes in biodiversity has been hampered by several limitations of previous work, including limited attention to trophic interactions, a focus on species <span class="hlt">richness</span> rather than evenness, and the use of artificially assembled communities. In this study, we manipulated the density of an herbivorous snail in <span class="hlt">natural</span> tide pools and allowed seaweed communities to assemble in an ecologically relevant and non-random manner. Seaweed species evenness and biomass-specific primary productivity (mg O(2) h(-1) g(-1)) were higher in tide pools with snails because snails preferentially consumed an otherwise dominant seaweed species that can reduce biomass-specific productivity rates of algal assemblages. Although snails reduced overall seaweed biomass in tide pools, they did not affect gross primary productivity at the scale of tide pools (mg O(2) h(-1) pool(-1) or mg O(2) h(-1) m(-2)) because of the enhanced biomass-specific productivity associated with grazer-mediated increases in algal evenness. Our results suggest that increased attention to trophic interactions, diversity measures other than <span class="hlt">richness</span>, and particularly the effects of consumers on evenness and primary productivity, will improve our understanding of the relationship between diversity and ecosystem functioning and allow more effective links between experimental results and real-world changes in biodiversity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...711649Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...711649Z"><span>Therapeutic <span class="hlt">surfactant</span>-stripped frozen micelles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yumiao; Song, Wentao; Geng, Jumin; Chitgupi, Upendra; Unsal, Hande; Federizon, Jasmin; Rzayev, Javid; Sukumaran, Dinesh K.; Alexandridis, Paschalis; Lovell, Jonathan F.</p> <p>2016-05-01</p> <p>Injectable hydrophobic drugs are typically dissolved in <span class="hlt">surfactants</span> and non-aqueous solvents which can induce negative side-effects. Alternatives like `top-down' fine milling of excipient-free injectable drug suspensions are not yet clinically viable and `bottom-up' self-assembled delivery systems usually substitute one solubilizing excipient for another, bringing new issues to consider. Here, we show that Pluronic (Poloxamer) block copolymers are amenable to low-temperature processing to strip away all free and loosely bound <span class="hlt">surfactant</span>, leaving behind concentrated, kinetically frozen drug micelles containing minimal solubilizing excipient. This approach was validated for phylloquinone, cyclosporine, testosterone undecanoate, cabazitaxel and seven other bioactive molecules, achieving sizes between 45 and 160 nm and drug to solubilizer molar ratios 2-3 orders of magnitude higher than current formulations. Hypertonic saline or co-loaded cargo was found to prevent aggregation in some cases. Use of <span class="hlt">surfactant</span>-stripped micelles avoided potential risks associated with other injectable formulations. Mechanistic insights are elucidated and therapeutic dose responses are demonstrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SurSc.601.1988S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SurSc.601.1988S"><span>Adsorption of dissymmetric cationic gemini <span class="hlt">surfactants</span> at silica/water interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi</p> <p>2007-05-01</p> <p>Adsorption of a series of cationic gemini <span class="hlt">surfactants</span> 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini <span class="hlt">surfactants</span> in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini <span class="hlt">surfactants</span> adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini <span class="hlt">surfactants</span> were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of <span class="hlt">surfactant</span> molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini <span class="hlt">surfactants</span> on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini <span class="hlt">surfactants</span> are closely related to the dissymmetry of gemini molecules.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-03-01/pdf/2011-4539.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-03-01/pdf/2011-4539.pdf"><span>76 FR 11205 - Taking and Importing <span class="hlt">Marine</span> Mammals; Taking <span class="hlt">Marine</span> Mammals Incidental to Construction and...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-03-01</p> <p>... Importing <span class="hlt">Marine</span> Mammals; Taking <span class="hlt">Marine</span> Mammals Incidental to Construction and Operation of a Liquefied <span class="hlt">Natural</span> Gas Deepwater Port in the Gulf of Mexico AGENCY: National <span class="hlt">Marine</span> Fisheries Service (NMFS... request from Port Dolphin Energy LLC (Port Dolphin) for authorization for the take, by Level B harassment...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1512..160S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1512..160S"><span>Role of electrostatic interaction on <span class="hlt">surfactant</span> induced protein unfolding</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sumit, Kumar, Sugam; Aswal, V. K.</p> <p>2013-02-01</p> <p>Small Angle Neutron Scattering has been used to examine the effect of electrostatic interaction on <span class="hlt">surfactant</span> induced protein unfolding. Measurements are carried out from 1 wt% Bovine Serum Albumin (BSA) protein with 1 wt% Sodium Dodecyl Sulphate (SDS) <span class="hlt">surfactant</span> at pH 7 in presence of varying concentration of NaCl. It is found that both the components (protein and <span class="hlt">surfactant</span> micelle which are likely charged) exist individually without any interaction in absence of salt, whereas their interaction and protein unfolding is enhanced with the increase in salt concentration. The structure of protein-<span class="hlt">surfactant</span> interaction is characterized by fractal bead-necklace model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26946243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26946243"><span>Functionalized lipids and <span class="hlt">surfactants</span> for specific applications.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kepczynski, Mariusz; Róg, Tomasz</p> <p>2016-10-01</p> <p>Synthetic lipids and <span class="hlt">surfactants</span> that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and <span class="hlt">surfactants</span> are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and <span class="hlt">surfactants</span> embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and <span class="hlt">surfactants</span>, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23379165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23379165"><span>[Adsorption of phenol chemicals by <span class="hlt">surfactant</span>-modified zeolites].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie</p> <p>2012-12-01</p> <p>Two kinds of zeolites were prepared from fly ash and modified by <span class="hlt">surfactant</span> subsequently. <span class="hlt">Surfactant</span>-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after <span class="hlt">surfactant</span> modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two <span class="hlt">surfactant-surfactant</span> modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22606251-controlling-block-copolymer-phase-behavior-using-ionic-surfactant','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22606251-controlling-block-copolymer-phase-behavior-using-ionic-surfactant"><span>Controlling block copolymer phase behavior using ionic <span class="hlt">surfactant</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ray, D.; Aswal, V. K.</p> <p>2016-05-23</p> <p>The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic <span class="hlt">surfactant</span> sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and <span class="hlt">surfactants</span>. Each of the individual components (block copolymer and <span class="hlt">surfactant</span>) and the nanoparticle–<span class="hlt">surfactant</span> mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at highermore » temperatures. On the other hand, SDS <span class="hlt">surfactant</span> forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874681','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874681"><span>Process for making <span class="hlt">surfactant</span> capped nanocrystals</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Alivisatos, A Paul; Rockenberger, Joerg</p> <p>2002-01-01</p> <p>Disclosed is a process for making <span class="hlt">surfactant</span> capped nanocrystals of transition metal oxides. The process comprises reacting a metal cupferron complex of the formula M Cup, wherein M is a transition metal, and Cup is a cupferron, with a coordinating <span class="hlt">surfactant</span>, the reaction being conducted at a temperature ranging from about 250 to about 300 C., for a period of time sufficient to complete the reaction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22644643','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22644643"><span>Optimization of a <span class="hlt">natural</span> medium for cellulase by a <span class="hlt">marine</span> Aspergillus niger using response surface methodology.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing</p> <p>2012-08-01</p> <p>The components of a <span class="hlt">natural</span> medium were optimized to produce cellulase from a <span class="hlt">marine</span> Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and <span class="hlt">natural</span> seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of <span class="hlt">natural</span> seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum <span class="hlt">natural</span> medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and <span class="hlt">natural</span> seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the <span class="hlt">natural</span> medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The <span class="hlt">natural</span> medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT........92P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT........92P"><span>Solution rheology of polyelectrolytes and polyelectrolyte-<span class="hlt">surfactant</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plucktaveesak, Nopparat</p> <p></p> <p>The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/<span class="hlt">surfactant</span> systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various <span class="hlt">surfactants</span> to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic <span class="hlt">surfactants</span> with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic <span class="hlt">surfactants</span> with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added <span class="hlt">surfactant</span> play important roles in the interaction of PEO-PPO-PAA micelles and the <span class="hlt">surfactant</span>. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMoSt1119...12S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMoSt1119...12S"><span>Effect of <span class="hlt">surfactants</span> on Ra-sHSPI - A small heat shock protein from the cattle tick Rhipicephalus annulatus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siddiqi, Mohammad Khursheed; Shahein, Yasser E.; Hussein, Nahla; Khan, Rizwan H.</p> <p>2016-09-01</p> <p>Electrostatic interaction plays an important role in protein aggregation phenomenon. In this study, we have checked the effect of anionic - Sodium Dodecyl Sulfate (SDS) and cationic-Cetyltrimethyl Ammonium Bromide (CTAB) <span class="hlt">surfactant</span> on aggregation behavior of Ra-sHSPI, a small heat shock protein purified from Rhipicephalus annulatus tick. To monitor the effect of these <span class="hlt">surfactants</span>, we have employed several spectroscopic methods such as Rayleigh light scattering measurements, ANS (8-Anilinonaphthalene-1-sulfonic acid) fluorescence measurements, ThT (Thioflavin T) binding assays, Far-UV CD (Circular Dichroism) and dynamic light scattering measurements. In the presence of anionic <span class="hlt">surfactant</span>-SDS, Ra-sHSPI forms amyloid fibrils, in contrast, no amyloid formation was observed in presence of cationic <span class="hlt">surfactant</span> at low pH. Enhancement of ANS fluorescence intensity confirms the exposition of more hydrophobic patches during aggregation. ThT binding assay confirms the amyloid fibrillar <span class="hlt">nature</span> of the SDS induced Ra-sHSPI aggregates and supported by PASTA 2.0 (prediction of amyloid structural aggregation) software. This study demonstrates the crucial role of charge during amyloid fibril formation at low pH in Ra-sHSPI.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14996046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14996046"><span>Allergenic activity of an air-oxidized ethoxylated <span class="hlt">surfactant</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karlberg, Ann-Therese; Bodin, Anna; Matura, Mihaly</p> <p>2003-11-01</p> <p>Ethoxylated <span class="hlt">surfactants</span> are used in household and industrial cleaners, topical pharmaceuticals, cosmetics and laundry products. Polyethers, e.g. ethoxylated <span class="hlt">surfactants</span> and polyethylene glycols, are oxidized by atmospheric oxygen (autoxidized) when stored and handled. We have previously shown that a chemically well-defined non-ionic <span class="hlt">surfactant</span>, the ethoxylated alcohol penta-ethylene glycol mono-n-dodecyl ether (C12E5), forms a complex mixture of autoxidation products when exposed to air. Predictive testing in guinea pigs showed that the <span class="hlt">surfactant</span> itself is a non-sensitizer, but that oxidation products formed are skin sensitizers. The aim of this study was to investigate the sensitizing capacity of a total oxidation mixture of C12E5 obtained after autoxidation. The allergenic activity of different oxidation products is discussed as well as the clinical importance of the findings. This study shows that the non-ionic <span class="hlt">surfactant</span> C12E5 containing 20% oxidation products is a sensitizing mixture. The result accords with what is observed for other compounds that are unstable when in contact with air, e.g. limonene and linalool, major fragrance terpenes. Studies regarding the clinical relevance of our findings should be performed. However, it is already clear from this study that precautions must be taken in handling and storage of ethoxylated <span class="hlt">surfactants</span> to avoid formation of allergenic mixtures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28027477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28027477"><span>Aerobic biodegradation of amphoteric amine-oxide-based <span class="hlt">surfactants</span>: Effect of molecular structure, initial <span class="hlt">surfactant</span> concentration and pH.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro</p> <p>2017-03-01</p> <p>The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based <span class="hlt">surfactants</span> and the initial <span class="hlt">surfactant</span> concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based <span class="hlt">surfactants</span> with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R 12 ), Myristamine oxide (AO-R 14 ) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial <span class="hlt">surfactant</span> concentrations ranged from 5 to 75 mg L -1 and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based <span class="hlt">surfactants</span> are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the <span class="hlt">surfactant</span> from 5 to 75 mg L -1 resulted in an increase in the final biodegradation of AO-R 12 and AO-R 14 . However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R 12 and AO-R 14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3093257','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3093257"><span>Carotenoids in <span class="hlt">Marine</span> Animals</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Maoka, Takashi</p> <p>2011-01-01</p> <p><span class="hlt">Marine</span> animals contain various carotenoids that show structural diversity. These <span class="hlt">marine</span> animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in <span class="hlt">marine</span> animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe <span class="hlt">marine</span> animal carotenoids from <span class="hlt">natural</span> product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from <span class="hlt">marine</span> animals over the last decade. PMID:21566799</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11345457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11345457"><span>Sea urchin fertilization assay: an evaluation of assumptions related to sample salinity adjustment and use of <span class="hlt">natural</span> and synthetic <span class="hlt">marine</span> waters for testing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jonczyk, E; Gilron, G; Zajdlik, B</p> <p>2001-04-01</p> <p>Most industrial effluents discharged into the <span class="hlt">marine</span> coastal environment are freshwater in <span class="hlt">nature</span> and therefore require manipulation prior to testing with <span class="hlt">marine</span> organisms. The sea urchin fertilization test is a common <span class="hlt">marine</span> bioassay used for routine environmental monitoring, investigative evaluations, and/or regulatory testing of effluents and sediment pore waters. The existing Canadian and U.S. Environmental Protection Agencies test procedures using sea urchin (and sand dollar) gametes allow for sample salinity adjustment using either brine or dry salts. Moreover, these procedures also allow for the use of either <span class="hlt">natural</span> or synthetic <span class="hlt">marine</span> water for culturing/holding test organisms and for full-scale testing. At present, it is unclear to what extent these variables affect test results for whole effluents. The test methods simply state that there are no data available and that the use of artificial dry sea salts should be considered provisional. We conducted a series of concurrent experiments aimed at comparing the two different treatments of sample salinity adjustment and the use of <span class="hlt">natural</span> versus synthetic seawater in order to test these assumptions and evaluate effects on the estimated end points generated by the sea urchin fertilization sublethal toxicity test. Results from these experiments indicated that there is no significant difference in test end points when dry salts or brine are used for sample salinity adjustment. Similarly, results obtained from parallel (split-sample) industrial effluent tests with <span class="hlt">natural</span> and artificial seawater suggest that both dilution waters produce similar test results. However, data obtained from concurrent tests with the reference toxicant, copper sulfate, showed higher variability and greater sensitivity when using <span class="hlt">natural</span> seawater as control/dilution water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12775039','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12775039"><span>Effects of three pharmaceutical and personal care products on <span class="hlt">natural</span> freshwater algal assemblages.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, Brittan A; Smith, Val H; deNoyelles, Frank; Larive, Cynthia K</p> <p>2003-05-01</p> <p>Treated wastewaters in the United States contain detectable quantities of <span class="hlt">surfactants</span>, antibiotics, and other types of antimicrobial chemicals contained in pharmaceutical and personal-care products (PPCPs) that are released into stream ecosystems. The degradation characteristics of many of these chemicals are not yet known, nor are the chemical properties of their byproducts. They also are not currently mandated for removal under the U.S. Clean Water Act. Three representative PPCPs were individually tested in this study using a series of laboratory dilution bioassays: Ciprofloxacin (an antibiotic), Triclosan (an antimicrobial agent), and Tergitol NP 10 (a <span class="hlt">surfactant</span>), to determine their effects on <span class="hlt">natural</span> algal communities sampled both upstream and downstream of the Olathe, KS wastewater treatment plant (WWTP). There were no significant treatment effects on algal community growth rates during the exponential phase of growth, but significant differences were observed in the final biomass yields (p < 0.001). All three compounds caused marked shifts in the community structure of suspended and attached algae at both the upstream and downstream sites (p < 0.05). Increasing the concentrations of all three compounds over a 3 orders of magnitude range also caused a consistent decline in final algal genus <span class="hlt">richness</span> in the bioassays. Our results suggest that these three PPCPs may potentially influence both the structure and the function of algal communities in stream ecosystems receiving WWTP effluents. These changes could result in shifts in both the nutrient processing capacity and the <span class="hlt">natural</span> food web structure of these streams.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>