Sample records for nature neuroscience advance

  1. Advancing Ethical Neuroscience Research.

    PubMed

    Borah, B Rashmi; Strand, Nicolle K; Chillag, Kata L

    2016-12-01

    As neuroscience research advances, researchers, clinicians, and other stakeholders will face a host of ethical challenges. The Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) has published two reports that provide recommendations on how to advance research endeavors ethically. The commission addressed, among other issues, how to prioritize different types of neuroscience research and how to include research participants who have impaired consent capacity. The Bioethics Commission's recommendations provide a foundation for ethical guidelines as neuroscience research advances and progresses. © 2016 American Medical Association. All Rights Reserved.

  2. Nature Neuroscience Review

    PubMed Central

    Maze, Ian; Shen, Li; Zhang, Bin; Garcia, Benjamin A.; Shao, Ningyi; Mitchell, Amanda; Sun, HaoSheng; Akbarian, Schahram; Allis, C. David; Nestler, Eric J.

    2014-01-01

    Over the past decade, rapid advances in epigenomics research have extensively characterized critical roles for chromatin regulatory events during normal periods of eukaryotic cell development and plasticity, as well as part of aberrant processes implicated in human disease. Application of such approaches to studies of the central nervous system (CNS), however, is more recent. Here, we provide a comprehensive overview of currently available tools to analyze neuroepigenomics data, as well as a discussion of pending challenges specific to the field of neuroscience. Integration of numerous unbiased genome-wide and proteomic approaches will be necessary to fully understand the neuroepigenome and the extraordinarily complex nature of the human brain. This will be critical to the development of future diagnostic and therapeutic strategies aimed at alleviating the vast array of heterogeneous and genetically distinct disorders of the CNS. PMID:25349914

  3. How neuroscience might advance the law.

    PubMed Central

    O'Hara, Erin Ann

    2004-01-01

    This essay discusses the strengths and limitations of the new, growing field of law and biology and suggests that advancements in neuroscience can help to bolster that field. It also briefly discusses some ways that neuroscience can help to improve the workings of law more generally. PMID:15590609

  4. Ten years of Nature Reviews Neuroscience: insights from the highly cited

    PubMed Central

    Luo, Liqun; Rodriguez, Eugenio; Jerbi, Karim; Lachaux, Jean-Philippe; Martinerie, Jacques; Corbetta, Maurizio; Shulman, Gordon L.; Piomelli, Daniele; Turrigiano, Gina G.; Nelson, Sacha B.; Joëls, Marian; de Kloet, E. Ronald; Holsboer, Florian; Amodio, David M.; Frith, Chris D.; Block, Michelle L.; Zecca, Luigi; Hong, Jau-Shyong; Dantzer, Robert; Kelley, Keith W.; Craig, A. D. (Bud)

    2012-01-01

    To celebrate the first 10 years of Nature Reviews Neuroscience, we invited the authors of the most cited article of each year to look back on the state of their field of research at the time of publication and the impact their article has had, and to discuss the questions that might be answered in the next 10 years. This selection of highly cited articles provides interesting snapshots of the progress that has been made in diverse areas of neuroscience. They show the enormous influence of neuroimaging techniques and highlight concepts that have generated substantial interest in the past decade, such as neuroimmunology, social neuroscience and the `network approach' to brain function. These advancements will pave the way for further exciting discoveries that lie ahead. PMID:20852655

  5. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.

    PubMed

    Govorunova, Elena G; Sineshchekov, Oleg A; Janz, Roger; Liu, Xiaoqin; Spudich, John L

    2015-08-07

    Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision. Copyright © 2015, American Association for the Advancement of Science.

  6. Cultural Neuroscience: Progress and Promise

    PubMed Central

    Chiao, Joan Y.; Cheon, Bobby K.; Pornpattanangkul, Narun; Mrazek, Alissa J.; Blizinsky, Katherine D.

    2013-01-01

    The nature and origin of human diversity has been a source of intellectual curiosity since the beginning of human history. Contemporary advances in cultural and biological sciences provide unique opportunities for the emerging field of cultural neuroscience. Research in cultural neuroscience examines how cultural and genetic diversity shape the human mind, brain and behavior across multiple time scales: situation, ontogeny and phylogeny. Recent progress in cultural neuroscience provides novel theoretical frameworks for understanding the complex interaction of environmental, cultural and genetic factors in the production of adaptive human behavior. Here, we provide a brief history of cultural neuroscience, theoretical and methodological advances, as well as empirical evidence of the promise of and progress in the field. Implications of this research for population health disparities and public policy are discussed. PMID:23914126

  7. Advances in neuroscience and the biological and toxin weapons convention.

    PubMed

    Dando, Malcolm

    2011-01-01

    This paper investigates the potential threat to the prohibition of the hostile misuse of the life sciences embodied in the Biological and Toxin Weapons Convention from the rapid advances in the field of neuroscience. The paper describes how the implications of advances in science and technology are considered at the Five Year Review Conferences of the Convention and how State Parties have developed their appreciations since the First Review Conference in 1980. The ongoing advances in neurosciences are then assessed and their implications for the Convention examined. It is concluded that State Parties should consider a much more regular and systematic review system for such relevant advances in science and technology when they meet at the Seventh Review Conference in late 2011, and that neuroscientists should be much more informed and engaged in these processes of protecting their work from malign misuse.

  8. Technical advances power neuroscience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barinaga, M.

    New techniques are helping researchers study the development of nerve cells in cell cultures and in vivo. These new methods are offering insights into the brain that were not available even a couple of years ago. Among the new advances discussed are imaging technology for evaluating the thinking human brain. One area in which researchers have made recent progress is the quest for ways to create immortal cell lines from specific types of nerve cells. Other projects using genetically engineered retroviruses and tumor-inducing genes, as well as gene regulation are discussed. Recent advances in neuroscience techniques apply not only tomore » neurons, but also to whole brains as well. One example is a high-resulution electroencephalogram (EEG). Although the EEG cannot pin down the actual sites of activity as precisely as static brain imaging methods, it complements them with real-time recording that can keep up with the very rapid pace of brain activity.« less

  9. Advances in Neuroscience and the Biological and Toxin Weapons Convention

    PubMed Central

    Dando, Malcolm

    2011-01-01

    This paper investigates the potential threat to the prohibition of the hostile misuse of the life sciences embodied in the Biological and Toxin Weapons Convention from the rapid advances in the field of neuroscience. The paper describes how the implications of advances in science and technology are considered at the Five Year Review Conferences of the Convention and how State Parties have developed their appreciations since the First Review Conference in 1980. The ongoing advances in neurosciences are then assessed and their implications for the Convention examined. It is concluded that State Parties should consider a much more regular and systematic review system for such relevant advances in science and technology when they meet at the Seventh Review Conference in late 2011, and that neuroscientists should be much more informed and engaged in these processes of protecting their work from malign misuse. PMID:21350673

  10. A survey of the neuroscience resource landscape: perspectives from the neuroscience information framework.

    PubMed

    Cachat, Jonathan; Bandrowski, Anita; Grethe, Jeffery S; Gupta, Amarnath; Astakhov, Vadim; Imam, Fahim; Larson, Stephen D; Martone, Maryann E

    2012-01-01

    The number of available neuroscience resources (databases, tools, materials, and networks) available via the Web continues to expand, particularly in light of newly implemented data sharing policies required by funding agencies and journals. However, the nature of dense, multifaceted neuroscience data and the design of classic search engine systems make efficient, reliable, and relevant discovery of such resources a significant challenge. This challenge is especially pertinent for online databases, whose dynamic content is largely opaque to contemporary search engines. The Neuroscience Information Framework was initiated to address this problem of finding and utilizing neuroscience-relevant resources. Since its first production release in 2008, NIF has been surveying the resource landscape for the neurosciences, identifying relevant resources and working to make them easily discoverable by the neuroscience community. In this chapter, we provide a survey of the resource landscape for neuroscience: what types of resources are available, how many there are, what they contain, and most importantly, ways in which these resources can be utilized by the research community to advance neuroscience research. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. A Model For Teaching Advanced Neuroscience Methods: A Student-Run Seminar to Increase Practical Understanding and Confidence

    PubMed Central

    Harrison, Theresa M.; Ching, Christopher R. K.; Andrews, Anne M.

    2016-01-01

    Neuroscience doctoral students must master specific laboratory techniques and approaches to complete their thesis work (hands-on learning). Due to the highly interdisciplinary nature of the field, learning about a diverse range of methodologies through literature surveys and coursework is also necessary for student success (hands-off learning). Traditional neuroscience coursework stresses what is known about the nervous system with relatively little emphasis on the details of the methods used to obtain this knowledge. Furthermore, hands-off learning is made difficult by a lack of detail in methods sections of primary articles, subfield-specific jargon and vague experimental rationales. We designed a student-taught course to enable first-year neuroscience doctoral students to overcome difficulties in hands-off learning by introducing a new approach to reading and presenting primary research articles that focuses on methodology. In our literature-based course students were encouraged to present a method with which they had no previous experience. To facilitate weekly discussions, “experts” were invited to class sessions. Experts were advanced graduate students who had hands-on experience with the method being covered and served as discussion co-leaders. Self-evaluation worksheets were administered on the first and last days of the 10-week course and used to assess students’ confidence in discussing research and methods outside of their primary research expertise. These evaluations revealed that the course significantly increased the students’ confidence in reading, presenting and discussing a wide range of advanced neuroscience methods. PMID:27980464

  12. Considerations and recent advances in neuroscience.

    PubMed

    Gorman, Adrienne M; Doyle, Karen M

    2009-02-01

    Neuroscience is a rapidly developing area of science which has benefitted from the blurring of interdisciplinary boundaries. This was apparent in the range of papers presented at this year's Neuroscience Ireland Conference, held in Galway during August 2008. The event was attended by academics, postdoctoral and postgraduate researchers, scientists from industry and clinicians. The themes of this year's conference, neurodegeneration, neuroregeneration, pain, glial cell biology and psychopharmacology, were chosen for their reflection of areas of strength in neuroscience within Ireland. In addition to basic science, translational research also featured strongly.

  13. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging.

    PubMed

    Zamroziewicz, Marta K; Barbey, Aron K

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition-from entire diets to specific nutrients-affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  14. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    PubMed Central

    Zamroziewicz, Marta K.; Barbey, Aron K.

    2016-01-01

    Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition—from entire diets to specific nutrients—affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging. PMID:27375409

  15. Building a functional multiple intelligences theory to advance educational neuroscience

    PubMed Central

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators’ complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a “functional MI” theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers’ concerns about teaching and learning. PMID:24391613

  16. Building a functional multiple intelligences theory to advance educational neuroscience.

    PubMed

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators' complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a "functional MI" theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers' concerns about teaching and learning.

  17. Neuroscience and Ethics.

    PubMed

    Liao, S Matthew

    2017-03-01

    A number of people believe that results from neuroscience have the potential to settle seemingly intractable debates concerning the nature, practice, and reliability of moral judgments. In particular, Joshua Greene has argued that evidence from neuroscience can be used to advance the long-standing debate between consequentialism and deontology. This paper first argues that charitably interpreted, Greene's neuroscientific evidence can contribute to substantive ethical discussions by being part of an epistemic debunking argument. It then argues that taken as an epistemic debunking argument, Greene's argument falls short in undermining deontological judgments. Lastly, it proposes that accepting Greene's methodology at face value, neuroimaging results may in fact call into question the reliability of consequentialist judgments. The upshot is that Greene's empirical results do not undermine deontology and that Greene's project points toward a way by which empirical evidence such as neuroscientific evidence can play a role in normative debates.

  18. Anthropology and cultural neuroscience: creating productive intersections in parallel fields.

    PubMed

    Brown, R A; Seligman, R

    2009-01-01

    Partly due to the failure of anthropology to productively engage the fields of psychology and neuroscience, investigations in cultural neuroscience have occurred largely without the active involvement of anthropologists or anthropological theory. Dramatic advances in the tools and findings of social neuroscience have emerged in parallel with significant advances in anthropology that connect social and political-economic processes with fine-grained descriptions of individual experience and behavior. We describe four domains of inquiry that follow from these recent developments, and provide suggestions for intersections between anthropological tools - such as social theory, ethnography, and quantitative modeling of cultural models - and cultural neuroscience. These domains are: the sociocultural construction of emotion, status and dominance, the embodiment of social information, and the dual social and biological nature of ritual. Anthropology can help locate unique or interesting populations and phenomena for cultural neuroscience research. Anthropological tools can also help "drill down" to investigate key socialization processes accountable for cross-group differences. Furthermore, anthropological research points at meaningful underlying complexity in assumed relationships between social forces and biological outcomes. Finally, ethnographic knowledge of cultural content can aid with the development of ecologically relevant stimuli for use in experimental protocols.

  19. Experimenting with theoretical motor neuroscience.

    PubMed

    Ajemian, Robert; Hogan, Neville

    2010-11-01

    Motor neuroscience is well over 100 years old, with seminal work such as G. T. Fritz and E. Hitzig's discovery of motor cortex occurring in 1870. Theoretical motor neuroscience has been ongoing for at least the last 50 years. How mature a scientific discipline is motor neuroscience? Are experimentalists and theoreticians working together productively to help the field progress? This article addresses these questions by advancing the following theses. Motor neuroscience remains at a descriptive stage due to the incredible complexity of the problem to be solved. The proliferation of models--and distinct modeling camps--stems from the absence of unifying conceptual constructs. To advance the field, theoreticians must rely more heavily on the concept of falsification by producing models that lend themselves to clear experimental testing.

  20. Nature, Nurture and Neuroscience: Some Future Directions for Historians of Education

    ERIC Educational Resources Information Center

    Aldrich, Richard

    2014-01-01

    Following a short introduction this article is divided into three main sections. The first provides definitions and brief histories of the nature-nurture debate and of neuroscience. The second section shows how in recent decades neuroscientific research has impacted on the debate with particular reference to our understanding of human intelligence…

  1. The metaphysical lessons of synthetic biology and neuroscience.

    PubMed

    Baertschi, Bernard

    2015-01-01

    In this paper, I examine some important metaphysical lessons that are often presented as derived from two new scientific disciplines: synthetic biology and neuroscience. I analyse four of them: the nature of life, the existence of a soul (the mind-body problem), personhood, and free will. Many caveats are in order, and each 'advance' or each case should be assessed for itself. I conclude that a main lesson can nevertheless be learned: in conjunction with modern science, neuroscience and synthetic biology allow us to enrich old metaphysical debates, to deepen and even renew them. In particular, it becomes less and less plausible to consider life, mind, person, and agency as non-natural or non-physical entities. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. What The Cognitive Neurosciences Mean To Me

    PubMed Central

    Pereira, Alfredo

    2007-01-01

    Cognitive Neuroscience is an interdisciplinary area of research that combines measurement of brain activity (mostly by means of neuroimaging) with a simultaneous performance of cognitive tasks by human subjects. These investigations have been successful in the task of connecting the sciences of the brain (Neurosciences) and the sciences of the mind (Cognitive Sciences). Advances on this kind of research provide a map of localization of cognitive functions in the human brain. Do these results help us to understand how mind relates to the brain? In my view, the results obtained by the Cognitive Neurosciences lead to new investigations in the domain of Molecular Neurobiology, aimed at discovering biophysical mechanisms that generate the activity measured by neuroimaging instruments. In this context, I argue that the understanding of how ionic/molecular processes support cognition and consciousness cannot be made by means of the standard reductionist explanations. Knowledge of ionic/molecular mechanisms can contribute to our understanding of the human mind as long as we assume an alternative form of explanation, based on psycho-physical similarities, together with an ontological view of mentality and spirituality as embedded in physical nature (and not outside nature, as frequently assumed in western culture). PMID:22058629

  3. What the cognitive neurosciences mean to me.

    PubMed

    Pereira, Alfredo

    2007-01-01

    Cognitive Neuroscience is an interdisciplinary area of research that combines measurement of brain activity (mostly by means of neuroimaging) with a simultaneous performance of cognitive tasks by human subjects. These investigations have been successful in the task of connecting the sciences of the brain (Neurosciences) and the sciences of the mind (Cognitive Sciences). Advances on this kind of research provide a map of localization of cognitive functions in the human brain. Do these results help us to understand how mind relates to the brain? In my view, the results obtained by the Cognitive Neurosciences lead to new investigations in the domain of Molecular Neurobiology, aimed at discovering biophysical mechanisms that generate the activity measured by neuroimaging instruments. In this context, I argue that the understanding of how ionic/molecular processes support cognition and consciousness cannot be made by means of the standard reductionist explanations. Knowledge of ionic/molecular mechanisms can contribute to our understanding of the human mind as long as we assume an alternative form of explanation, based on psycho-physical similarities, together with an ontological view of mentality and spirituality as embedded in physical nature (and not outside nature, as frequently assumed in western culture).

  4. A physiological perspective on the neuroscience of eating.

    PubMed

    Geary, Nori

    2014-09-01

    I present the thesis that 'being physiological,' i.e., analyzing eating under conditions that do not perturb, or minimally perturb, the organism's endogenous processes, should be a central goal of the neuroscience of eating. I describe my understanding of 'being physiological' based on [i] the central neural-network heuristic of CNS function that traces back to Cajal and Sherrington, [ii] research on one of the simpler problems in the neuroscience of eating, identification of endocrine signals that control eating. In this context I consider natural meals, physiological doses and ranges, and antagonist studies. Several examples involve CCK. Next I describe my view of the cutting edge in the molecular neuroscience of eating as it has evolved from the discovery of leptin signaling through the application of optogenetic and pharmacogenetic methods. Finally I describe some novel approaches that may advance the neuroscience of eating in the foreseeable future. I conclude that [i] the neuroscience of eating may soon be able to discern 'physiological' function in the operation of CNS networks mediating eating, [ii] the neuroscience of eating should capitalize on methods developed in other areas of neuroscience, e.g., improved methods to record and manipulate CNS function in behaving animals, identification of canonical regional circuits, use of population electrophysiology, etc., and [iii] subjective aspects of eating are crucial aspects of eating science, but remain beyond mechanistic understanding. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Promises, promises for neuroscience and law.

    PubMed

    Buckholtz, Joshua W; Faigman, David L

    2014-09-22

    Stunning technical advances in the ability to image the human brain have provoked excited speculation about the application of neuroscience to other fields. The 'promise' of neuroscience for law has been touted with particular enthusiasm. Here, we contend that this promise elides fundamental conceptual issues that limit the usefulness of neuroscience for law. Recommendations for overcoming these challenges are offered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Neuroscience-Inspired Artificial Intelligence.

    PubMed

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  7. Attitudes toward neuroscience education among psychiatry residents and fellows.

    PubMed

    Fung, Lawrence K; Akil, Mayada; Widge, Alik; Roberts, Laura Weiss; Etkin, Amit

    2014-04-01

    The purpose of this study is to assess the attitudes of psychiatry trainees toward neuroscience education in psychiatry residency and subsequent training in order to inform neuroscience education approaches in the future. This online survey was designed to capture demographic information, self-assessed neuroscience knowledge, attitudes toward neuroscience education, preferences in learning modalities, and interest in specific neuroscience topics. Volunteers were identified through the American Psychiatric Association, which invited 2,563 psychiatry trainees among their members. Four hundred thirty-six trainees completed the survey. Nearly all agreed that there is a need for more neuroscience education in psychiatry residency training (94%) and that neuroscience education could help destigmatize mental illness (91%). Nearly all (94%) expressed interest in attending a 3-day course on neuroscience. Many neuroscience topics and modes of learning were viewed favorably by participants. Residents in their first 2 years of training expressed attitudes similar to those of more advanced residents and fellows. Some differences were found based on the level of interest in a future academic role. This web-based study demonstrates that psychiatry residents see neuroscience education as important in their training and worthy of greater attention. Our results suggest potential opportunities for advancing neuroscience education.

  8. Network neuroscience

    PubMed Central

    Bassett, Danielle S; Sporns, Olaf

    2017-01-01

    Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844

  9. An evaluation of post-registration neuroscience focused education and neuroscience nurses' perceived educational needs.

    PubMed

    Braine, Mary E; Cook, Neal

    2015-11-01

    People with complex neurological conditions require co-ordinated care provided by nurses educated in meeting service needs, understanding the pathophysiological processes of disease and the preparation to care for those with complex needs. However, evidence suggests that neuroscience specific education provision is largely unregulated and set outside of a cohesive professional development context. Furthermore, it largely seems to only address the induction phase into working within neurosciences. To evaluate the nature of post-registration neuroscience focused education across Europe and neuroscience nurses' perceived educational needs. Post qualifying nurses working in the field of neurosciences were invited to complete a self-reported 29-item on-line questionnaire that contained closed and open-ended questions exploring professional background, clinical and educational experience, educational opportunities available to them and their perspectives on their educational needs. 154 participants from fourteen countries across Europe completed the survey. 75% (n=110) of respondents had undertaken neuroscience focused education with the most accessible education opportunities found to be conferences 77% (n=96) and study days 69% (n=86). Overall, 52.6% of courses were multidisciplinary in nature, and 47.4% were exclusively nursing. Most identified that their courses were funded by their employer (57%, n=63) or partly funded by their employer. Results illustrate a significant variance across Europe, highlighting the need for more effective communication between neuroscience nurses across Europe. Implications for future education provision, recruitment/retention, and funding are discussed, resulting in recommendations for the future of neuroscience nursing. This study, the largest of its kind to survey neuroscience nurses, illustrates the absence of a cohesive career development pathway for neuroscience nurses in Europe. Nurses need quality assured specialist education to

  10. Current emotion research in cultural neuroscience

    PubMed Central

    Chiao, Joan Y.

    2013-01-01

    Classical theories of emotion have long debated the extent to which human emotion is a universal or culturally-constructed experience. Recent advances in emotion research in cultural neuroscience highlight several aspects of emotional generation and experience that are both phylogenetically conserved as well as constructed within human cultural contexts. This review highlights theories and methods from cultural neuroscience that examine how cultural and biological processes shape emotional generation, experience and regulation across multiple time scales. Recent advances in the neurobiological basis of culture-bound syndromes, such as Hwa-Byung (fire illness), provide further novel insights into emotion and mental health across cultures. Implications of emotion research in cultural neuroscience for population health disparities in psychopathology and global mental health will be discussed. PMID:26346827

  11. Advancing Neuroscience Research in Africa: Invertebrate Species to the Rescue.

    PubMed

    Balogun, Wasiu Gbolahan; Cobham, Ansa Emmanuel; Amin, Abdulbasit; Seeni, Azman

    2018-03-15

    Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Teaching Neuroscience at a Religious Institution: Pedagogical Models for Handling Neuroscience and Theology

    PubMed Central

    Struthers, William M.

    2003-01-01

    The interdisciplinary nature of neuroscience makes it one of the most fascinating and complex subjects to address in the classroom. This can be compounded, however, by the addition of theology or a faith-related context at a religious institution (RI). The addition of theology and faith can enrich student appreciation and understanding of neuroscience and stimulate discussion in the classroom. This provides a practical way to make the course content relevant to students who may see neuroscience as antagonistic towards their faith. Over the past century questions of human experience and personhood that were long held to be under the authority of religion now can be addressed from findings in neuroscience. While there has been debate on a variety of topics which range from positions on origins to ethical questions about the nature of research (i.e. stem cells, cloning), it is important that teaching faculty at RIs be prepared to deal with the hard questions faced by students of faith. Recommendations for faculty are given including: self assessment of personal position on matters of faith and science, framing a number of models for the integration of neuroscience and theology, ‘Worldviews’, and mentoring students who are struggling with reconciling their faith with neuroscience. While this paper is designed for teachers at RIs, it may also aid teaching faculty at other institutions who may benefit from an awareness of this framework and aid in teaching students of faith in a secular setting. PMID:23741199

  13. Social neuroscience and theory of mind.

    PubMed

    Westby, Carol E

    2014-01-01

    The role of theory of mind (ToM) in autism spectrum disorders and other communication impairments has been an active area of research in the last 30 years. Advances in neuroimaging in the last 10 years have led to the rise of the field of social neuroscience, which has markedly increased the understanding of the neurophysiological/neuroanatomical and neurochemical nature of ToM functioning and deficits in typically developing individuals and in children and adults with a variety of social and communication impairments. The goal of this paper is to (a) describe the current concepts of ToM based on neuroscience research, and (b) present a framework for the dimensions of ToM that have been identified, which can be used to guide assessment and intervention for persons with deficits in ToM that affect social interactions. This article presents neuroscience research that has documented the neurophysiological/neuroanatomical bases for cognitive and affective ToM and interpersonal and intrapersonal ToM as well as neurochemical and epigenetic influences on ToM. This information provides an important framework for assessing ToM deficits in persons with social and communication impairments and developing interventions that target the specific dimensions of ToM deficits. © 2014 S. Karger AG, Basel.

  14. Are We Ready for Real-world Neuroscience?

    PubMed

    Matusz, Pawel J; Dikker, Suzanne; Huth, Alexander G; Perrodin, Catherine

    2018-06-19

    Real-world environments are typically dynamic, complex, and multisensory in nature and require the support of top-down attention and memory mechanisms for us to be able to drive a car, make a shopping list, or pour a cup of coffee. Fundamental principles of perception and functional brain organization have been established by research utilizing well-controlled but simplified paradigms with basic stimuli. The last 30 years ushered a revolution in computational power, brain mapping, and signal processing techniques. Drawing on those theoretical and methodological advances, over the years, research has departed more and more from traditional, rigorous, and well-understood paradigms to directly investigate cognitive functions and their underlying brain mechanisms in real-world environments. These investigations typically address the role of one or, more recently, multiple attributes of real-world environments. Fundamental assumptions about perception, attention, or brain functional organization have been challenged-by studies adapting the traditional paradigms to emulate, for example, the multisensory nature or varying relevance of stimulation or dynamically changing task demands. Here, we present the state of the field within the emerging heterogeneous domain of real-world neuroscience. To be precise, the aim of this Special Focus is to bring together a variety of the emerging "real-world neuroscientific" approaches. These approaches differ in their principal aims, assumptions, or even definitions of "real-world neuroscience" research. Here, we showcase the commonalities and distinctive features of the different "real-world neuroscience" approaches. To do so, four early-career researchers and the speakers of the Cognitive Neuroscience Society 2017 Meeting symposium under the same title answer questions pertaining to the added value of such approaches in bringing us closer to accurate models of functional brain organization and cognitive functions.

  15. Neuroethics: a modern context for ethics in neuroscience

    PubMed Central

    Illes, Judy; Bird, Stephanie J.

    2006-01-01

    Neuroethics, a recently modernized field at the intersection of bioethics and neuroscience, is founded on centuries of discussion of the ethical issues associated with mind and behavior. Broadly defined, neuroethics is concerned with ethical, legal and social policy implications of neuroscience, and with aspects of neuroscience research itself. Advances in neuroscience increasingly challenge long-held views of the self and the individual's relationship to society. Neuroscience also has led to innovations in clinical medicine that have not only therapeutic but also non-therapeutic dimensions that extend well beyond previously charted boundaries. The exponential increase in cross-disciplinary research, the commercialization of cognitive neuroscience, the impetus for training in ethics, and the increased attention being paid to public understanding of science all illuminate the important role of neuroethics in neuroscience. PMID:16859760

  16. The role of neuroscience within psychology: A call for inclusiveness over exclusiveness.

    PubMed

    Schwartz, Seth J; Lilienfeld, Scott O; Meca, Alan; Sauvigné, Katheryn C

    2016-01-01

    In the present article, we appraise the increasingly prominent role of neuroscience within psychology and offer cautions and recommendations regarding the future of psychology as a field. We contend that the conflict between eliminative reductionism (the belief that the neural level of analysis will eventually render the psychological level of analysis superfluous) and emergent properties (the assumption that higher-order mental functions are not directly reducible to neural processes) is critical if we are to identify the optimal role for neuroscience within psychology. We argue for an interdisciplinary future for psychology in which the considerable strengths of neuroscience complement and extend the strengths of other subfields of psychology. For this goal to be achieved, a balance must be struck between an increasing focus on neuroscience and the continued importance of other areas of psychology. We discuss the implications of the growing prominence of neuroscience for the broader profession of psychology, especially with respect to funding agency priorities, hiring practices in psychology departments, methodological rigor, and the training of future generations of students. We conclude with recommendations for advancing psychology as both a social science and a natural science. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Neuroscience in the residency curriculum: the psychoanalytic psychotherapy perspective.

    PubMed

    Watson, Brendon O; Michels, Robert

    2014-04-01

    Educators of future psychiatrists tend to teach an array of approaches to the mind and brain, including among them the neurobiologic perspective and the psychoanalytic perspective. These may be considered at opposite ends of many spectra, including the fact that psychoanalysis takes a large-scale and treatment-oriented perspective and has helped countless patients over the years, while neuroscience has tended to be reductionistic, focused on understanding, and has helped very few people. A tension, therefore, exists for the educator in teaching neuroscience: is it wise to spend valuable time and energy teaching this interesting but, thus far, impractical field to future practitioners? Here, we argue that neuroscience is re-orienting itself towards more psychoanalytically relevant questions and is likely, in future years, to give new insights into the nature of basic drives and social relations. We additionally argue for balance on the part of providers in both acknowledging biologic underpinnings for clinical phenomena and yet continuing to take a stance oriented towards appropriate change. Given the burgeoning new focus within neuroscience on topics directly relating to the human internal experience and the novel challenges in both understanding those advances and appropriately using them, we encourage educators to continue to give future psychiatrists the educational foundation they need to follow neuroscientific discoveries into the future.

  18. Neuroscience and crime.

    PubMed

    Markowitsch, Hans J

    2008-01-01

    Jurisprudence will profit considerably from methods and applications of the neurosciences. In fact, it is proposed that the neurosciences will provide unique possibilities and advantages in understanding motivations and causes for staying lawful or for becoming unlawful. Neuroscientific models on brain-behavior interactions have profited considerably from the advent of neuroimaging techniques and genetic analyses. Furthermore, advances in interdisciplinary investigations, which combine conventional psychological and sociological explorations with biological examinations, provide refined insights into the question 'What makes us tick?' (Weiskrantz, 1973, British Journal of Psychology, 64, 511-520). The search for such interactions from the time of the nineteenth century to the present is briefly surveyed and it is concluded that the interdisciplinary approaches within and across neuroscientific fields will lead and have already led to a considerable expansion of our knowledge. The articles in this issue devoted to highlighting the latest neuroscience research related to criminal behavior underline the power of this new approach.

  19. Women in neuroscience (WIN): the first twenty years.

    PubMed

    Haak, Laurel L

    2002-03-01

    Women in Neuroscience (WIN) is an international organization whose major goal is to promote the professional advancement of women neuroscientists. To this end, WIN facilitates contacts and communication among women working in neuroscience, and organizes appropriate activities at the annual Society for Neuroscience (SfN) meeting. WIN was created in 1980, when despite major changes and advances in 'equal opportunities', women were still not achieving a proportionate level of success in the subdiscipline of neurosciences. In 1980, women made up 40 to 50% of entering classes in medical schools or graduate programs, but often comprised only 5 to 15% of leadership in respective organizations. Although there had been women elected to serve as SfN presidents, council, and committee members, women were under-represented in other positions of the Society, such as symposium and session chairs. There was an even lesser degree of representation in leadership positions at universities and medical schools in terms of full professorships, chairs, and program directors, as well as on editorial boards, advisory boards, and councils. Over the years, WIN has worked with success toward increasing the participation of women in neuroscience.

  20. Neuroscience and humanistic psychiatry: a residency curriculum.

    PubMed

    Griffith, James L

    2014-04-01

    Psychiatry residencies with a commitment to humanism commonly prioritize training in psychotherapy, cultural psychiatry, mental health policy, promotion of human rights, and similar areas reliant upon dialogue and collaborative therapeutic relationships. The advent of neuroscience as a defining paradigm for psychiatry has challenged residencies with a humanistic focus due to common perceptions that it would entail constriction of psychiatric practice to diagnostic and psychopharmacology roles. The author describes a neuroscience curriculum that has taught psychopharmacology effectively, while also advancing effectiveness of language-based and relationship-based therapeutics. In 2000, the George Washington University psychiatry residency initiated a neuroscience curriculum consisting of (1) a foundational postgraduate year 2 seminar teaching cognitive and social neuroscience and its integration into clinical psychopharmacology, (2) advanced seminars that utilized a neuroscience perspective in teaching specific psychotherapeutic skill sets, and (3) case-based teaching in outpatient clinical supervisions that incorporated a neuroscience perspective into traditional psychotherapy supervisions. Curricular assessment was conducted by (1) RRC reaccreditation site visit feedback, (2) examining career trajectories of residency graduates, (3) comparing PRITE exam Somatic Treatments subscale scores for 2010-2012 residents with pre-implementation residents, and (4) postresidency survey assessment by 2010-2012 graduates. The 2011 RRC site visit report recommended a "notable practice" citation for "innovative neurosciences curriculum." Three of twenty 2010-2012 graduates entered neuroscience research fellowships, as compared to none before the new curriculum. PRITE Somatic Treatments subscale scores improved from the 23rd percentile to the 62nd percentile in pre- to post-implementation of curriculum (p < .001). Recent graduates rated effectiveness of clinical

  1. Towards an Understanding of Neuroscience for Science Educators

    ERIC Educational Resources Information Center

    Oliver, Mary

    2011-01-01

    Advances in neuroscience have brought new insights to the development of cognitive functions. These data are of considerable interest to educators concerned with how students learn. This review documents some of the recent findings in neuroscience, which is richer in describing cognitive functions than affective aspects of learning. A brief…

  2. Implementation of an Integrated Neuroscience Unit.

    PubMed

    Breslin, Rory P; Franker, Lauren; Sterchi, Suzanne; Sani, Sepehr

    2016-02-01

    Many challenges exist in today's health care delivery system, and much focus and research are invested into ways to improve care with cost-effective measures. Specialty-specific dedicated care units are one solution for inpatient hospital care because they improve outcomes and decrease mortality. The neuroscience population encompasses a wide variety of diagnoses of spinal to cranial issues with a wide spectrum of needs varying from one patient to the next. Neuroscience care must be patient-specific during the course of frequent acuity changes, and one way to achieve this is through a neuroscience-focused unit. Few resources are available on how to implement this type of unit. Advanced practice nurses are committed to providing high-quality, safe, and cost-effective care and are instrumental in the success of instituting a unit dedicated to the care of neuroscience patients.

  3. Behavior analysis and neuroscience: Complementary disciplines.

    PubMed

    Donahoe, John W

    2017-05-01

    Behavior analysis and neuroscience are disciplines in their own right but are united in that both are subfields of a common overarching field-biology. What most fundamentally unites these disciplines is a shared commitment to selectionism, the Darwinian mode of explanation. In selectionism, the order and complexity observed in nature are seen as the cumulative products of selection processes acting over time on a population of variants-favoring some and disfavoring others-with the affected variants contributing to the population on which future selections operate. In the case of behavior analysis, the central selection process is selection by reinforcement; in neuroscience it is natural selection. The two selection processes are inter-related in that selection by reinforcement is itself the product of natural selection. The present paper illustrates the complementary nature of behavior analysis and neuroscience through considering their joint contributions to three central problem areas: reinforcement-including conditioned reinforcement, stimulus control-including equivalence classes, and memory-including reminding and remembering. © 2017 Society for the Experimental Analysis of Behavior.

  4. Neuroscience in Schools

    ERIC Educational Resources Information Center

    Schachter, Ron

    2012-01-01

    For generations, teachers in the early elementary years have urged their young pupils to use their brains. They're still offering the same encouragement, but nowadays they can know even more about what they're talking about. Recent advances in neuroscience--from detailed scans of the brain to ongoing research on teaching methods that increase…

  5. [Social neuroscience and psychiatry].

    PubMed

    Takahashi, Hidehiko

    2013-01-01

    The topics of emotion, decision-making, and consciousness have been traditionally dealt with in the humanities and social sciences. With the dissemination of noninvasive human neuroimaging techniques such as fMRI and the advancement of cognitive science, neuroimaging studies focusing on emotions, social cognition, and decision-making have become established. I overviewed the history of social neurosciences. The emerging field of social brain research or social neuroscience will greatly contribute to clinical psychiatry. In the first part. I introduced our early fMRI studies on social emotions such as guilt, embarrassment, pride, and envy. Dysfunction of social emotions can be observed in various forms of psychiatric disorder, and the findings should contribute to a better understanding of the pathophysiology of psychiatric conditions. In the second part, I introduced our recent interdisciplinary neuroscience approach combining molecular neuroimaging techniques(positron emission tomography: PET), cognitive sciences, and economics to understand the neural as well as molecular basis of altered decision-making in neuropsychiatric disorders. An interdisciplinary approach combing molecular imaging techniques and cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of impaired decision-making in neuropsychiatric disorders and drug development.

  6. Building sustainable neuroscience capacity in Africa: the role of non-profit organisations.

    PubMed

    Karikari, Thomas K; Cobham, Ansa E; Ndams, Iliya S

    2016-02-01

    While advances in neuroscience are helping to improve many aspects of human life, inequalities exist in this field between Africa and more scientifically-advanced continents. Many African countries lack the infrastructure and appropriately-trained scientists for neuroscience education and research. Addressing these challenges would require the development of innovative approaches to help improve scientific competence for neuroscience across the continent. In recent years, science-based non-profit organisations (NPOs) have been supporting the African neuroscience community to build state-of-the-art scientific capacity for sustainable education and research. Some of these contributions have included: the establishment of training courses and workshops to introduce African scientists to powerful-yet-cost-effective experimental model systems; research infrastructural support and assistance to establish research institutes. Other contributions have come in the form of the promotion of scientific networking, public engagement and advocacy for improved neuroscience funding. Here, we discuss the contributions of NPOs to the development of neuroscience in Africa.

  7. Bio-inspired nano tools for neuroscience.

    PubMed

    Das, Suradip; Carnicer-Lombarte, Alejandro; Fawcett, James W; Bora, Utpal

    2016-07-01

    Research and treatment in the nervous system is challenged by many physiological barriers posing a major hurdle for neurologists. The CNS is protected by a formidable blood brain barrier (BBB) which limits surgical, therapeutic and diagnostic interventions. The hostile environment created by reactive astrocytes in the CNS along with the limited regeneration capacity of the PNS makes functional recovery after tissue damage difficult and inefficient. Nanomaterials have the unique ability to interface with neural tissue in the nano-scale and are capable of influencing the function of a single neuron. The ability of nanoparticles to transcend the BBB through surface modifications has been exploited in various neuro-imaging techniques and for targeted drug delivery. The tunable topography of nanofibers provides accurate spatio-temporal guidance to regenerating axons. This review is an attempt to comprehend the progress in understanding the obstacles posed by the complex physiology of the nervous system and the innovations in design and fabrication of advanced nanomaterials drawing inspiration from natural phenomenon. We also discuss the development of nanomaterials for use in Neuro-diagnostics, Neuro-therapy and the fabrication of advanced nano-devices for use in opto-electronic and ultrasensitive electrophysiological applications. The energy efficient and parallel computing ability of the human brain has inspired the design of advanced nanotechnology based computational systems. However, extensive use of nanomaterials in neuroscience also raises serious toxicity issues as well as ethical concerns regarding nano implants in the brain. In conclusion we summarize these challenges and provide an insight into the huge potential of nanotechnology platforms in neuroscience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neuroscience Fiction as Eidolá: Social Reflection and Neuroethical Obligations in Depictions of Neuroscience in Film.

    PubMed

    Wurzman, Rachel; Yaden, David; Giordano, James

    2017-04-01

    Neuroscience and neurotechnology are increasingly being employed to assess and alter cognition, emotions, and behaviors, and the knowledge and implications of neuroscience have the potential to radically affect, if not redefine, notions of what constitutes humanity, the human condition, and the "self." Such capability renders neuroscience a compelling theme that is becoming ubiquitous in literary and cinematic fiction. Such neuro-SciFi (or "NeuroS/F") may be seen as eidolá: a created likeness that can either accurately-or superficially, in a limited way-represent that which it depicts. Such eidolá assume discursive properties implicitly, as emotionally salient references for responding to cultural events and technological objects reminiscent of fictional portrayal; and explicitly, through characters and plots that consider the influence of neurotechnological advances from various perspectives. We argue that in this way, neuroS/F eidolá serve as allegorical discourse on sociopolitical or cultural phenomena, have power to restructure technological constructs, and thereby alter the trajectory of technological development. This fosters neuroethical responsibility for monitoring neuroS/F eidolá and the sociocultural context from which-and into which-the ideas of eidolá are projected. We propose three approaches to this: evaluating reciprocal effects of imaginary depictions on real-world neurotechnological development; tracking changing sociocultural expectations of neuroscience and its uses; and analyzing the actual process of social interpretation of neuroscience to reveal shifts in heuristics, ideas, and attitudes. Neuroethicists are further obliged to engage with other discourse actors about neuroS/F interpretations to ensure that meanings assigned to neuroscientific advances are well communicated and more fully appreciated.

  9. Implications of Affective and Social Neuroscience for Educational Theory

    ERIC Educational Resources Information Center

    Immordino-Yang, Mary Helen

    2011-01-01

    The past decade has seen major advances in cognitive, affective and social neuroscience that have the potential to revolutionize educational theories about learning. The importance of emotion and social learning has long been recognized in education, but due to technological limitations in neuroscience research techniques, treatment of these…

  10. Neurosciences

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007456.htm Neurosciences To use the sharing features on this page, please enable JavaScript. Neurosciences (or clinical neurosciences) refers to the branch of ...

  11. Can Neuroscience Contribute to Practical Ethics? A Critical Review and Discussion of the Methodological and Translational Challenges of the Neuroscience of Ethics.

    PubMed

    Racine, Eric; Dubljević, Veljko; Jox, Ralf J; Baertschi, Bernard; Christensen, Julia F; Farisco, Michele; Jotterand, Fabrice; Kahane, Guy; Müller, Sabine

    2017-06-01

    Neuroethics is an interdisciplinary field that arose in response to novel ethical challenges posed by advances in neuroscience. Historically, neuroethics has provided an opportunity to synergize different disciplines, notably proposing a two-way dialogue between an 'ethics of neuroscience' and a 'neuroscience of ethics'. However, questions surface as to whether a 'neuroscience of ethics' is a useful and unified branch of research and whether it can actually inform or lead to theoretical insights and transferable practical knowledge to help resolve ethical questions. In this article, we examine why the neuroscience of ethics is a promising area of research and summarize what we have learned so far regarding its most promising goals and contributions. We then review some of the key methodological challenges which may have hindered the use of results generated thus far by the neuroscience of ethics. Strategies are suggested to address these challenges and improve the quality of research and increase neuroscience's usefulness for applied ethics and society at large. Finally, we reflect on potential outcomes of a neuroscience of ethics and discuss the different strategies that could be used to support knowledge transfer to help different stakeholders integrate knowledge from the neuroscience of ethics. © 2017 John Wiley & Sons Ltd.

  12. Undergraduate Neuroscience Education: Blueprints for the 21st Century

    PubMed Central

    Wiertelak, Eric P.; Ramirez, Julio J.

    2008-01-01

    Paralleling the explosive growth of neuroscientific knowledge over the last two decades, numerous institutions from liberal arts colleges to research universities have either implemented or begun exploring the possibility of implementing undergraduate programs in neuroscience. In 1995, Faculty for Undergraduate Neuroscience (FUN) partnered with Project Kaleidoscope (PKAL) to offer a workshop exploring how undergraduate neuroscience education should proceed. Four blueprints were created to provide direction to the burgeoning interest in developing programs in undergraduate neuroscience education: 1) Neuroscience nested in psychology; 2) Neuroscience nested in biology; 3) Neuroscience as a minor; and 4) Neuroscience as a major. In 2005, FUN again partnered with PKAL to revisit the blueprints in order to align the blueprints with modern pedagogical philosophy and technology. The original four blueprints were modified and updated. One particularly exciting outgrowth of the 2005 workshop was the introduction of a fifth curricular blueprint that strongly emphasizes the integration of the humanities and social sciences into neuroscience: Neuroscience Studies. Because of the interdisciplinary nature of neuroscience, an education in neuroscience will prepare the next generation of students to think critically, synthetically, and creatively as they confront the problems facing humanity in the 21st century. PMID:23493318

  13. What Can Cognitive Neuroscience Teach Us About Anorexia Nervosa?

    PubMed Central

    Kidd, Amelia; Steinglass, Joanna

    2012-01-01

    Anorexia nervosa (AN) is a complex illness and highly challenging to treat. One promising approach to significantly advance our understanding of the underlying pathophysiology of AN involves developing a cognitive neuroscience model of illness. Cognitive neuroscience uses probes such as neuropsychological tasks and neuroimaging techniques to identify the neural underpinnings of behavior. With this approach, advances have been made in identifying higher order cognitive processes that likely mediate symptom expression in AN. Identification of related neuropathology is beginning. Such findings have led to the development of complex neurobehavioral models that aim to explain the etiology and persistence of AN. Future research will use these advanced tools to test and refine hypotheses about the underlying mechanisms of AN. PMID:22660896

  14. A neuroscience agenda for counseling psychology research.

    PubMed

    Gonçalves, Oscar F; Perrone-McGovern, Kristin M

    2014-10-01

    Recent advances in the field of neuroscience have dramatically changed our understanding of brain-behavior relationships. In this article, we illustrate how neuroscience can provide a conceptual and methodological framework to understand our clients within a transdiagnostic developmental perspective. We provide directions for integrating neuroscience into future process and outcome research. We present examples on how neuroscience can be integrated into researching the effects of contextual counseling interventions. We posit that interpersonal and environmental factors, such as neurotoxic factors (e.g., emotional neglect, stress), positive neurodevelopmental factors (e.g., nurturing and caring, environmental enrichment), and therapeutic interventions influence psychological processes (executive control, behavioral flexibility, reinforcement learning and approach motivation, emotional expression and regulation, self-representation and theory of mind). These psychological processes influence brain networks (attention, motivational, emotional regulation, social cognition), which influence cognitive, social, emotional, identity, and vocational development. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. A Model for Bridging the Gap between Neuroscience and Education

    ERIC Educational Resources Information Center

    Tommerdahl, Jodi

    2010-01-01

    As the brain sciences make advances in our understanding of how the human brain functions, many educators are looking to findings from the neurosciences to inform classroom teaching methodologies. This paper takes the view that the neurosciences are an excellent source of knowledge regarding learning processes, but also provides a warning…

  16. Neuroscience thinks big (and collaboratively).

    PubMed

    Kandel, Eric R; Markram, Henry; Matthews, Paul M; Yuste, Rafael; Koch, Christof

    2013-09-01

    Despite cash-strapped times for research, several ambitious collaborative neuroscience projects have attracted large amounts of funding and media attention. In Europe, the Human Brain Project aims to develop a large-scale computer simulation of the brain, whereas in the United States, the Brain Activity Map is working towards establishing a functional connectome of the entire brain, and the Allen Institute for Brain Science has embarked upon a 10-year project to understand the mouse visual cortex (the MindScope project). US President Barack Obama's announcement of the BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies Initiative) in April 2013 highlights the political commitment to neuroscience and is expected to further foster interdisciplinary collaborations, accelerate the development of new technologies and thus fuel much needed medical advances. In this Viewpoint article, five prominent neuroscientists explain the aims of the projects and how they are addressing some of the questions (and criticisms) that have arisen.

  17. [Neuroethics as the neuroscience of ethics].

    PubMed

    Álvarez-Díaz, Jorge Alberto

    2013-10-16

    The neurosciences have developed at a stunningly fast rate. Key points accounting for this progression include the introduction of functional neuroimaging techniques and the boost resulting from the Decade of the Brain project. This expansion has also allowed new disciplines such as neuroethics to appear. Those who have worked on neuroethics can be divided into three groups (neuroreductionists, neurosceptics and neurocritics), and each group has its own standpoint as regards what neuroethics is, with several scopes and limitations in their proposals. Neuroethics is a discipline that, prior to the year 2002, was understood only as an ethics of neuroscience (a branch of bioethics). As of that date, however, it is also understood as a neuroscience of ethics (a new discipline). Neuroreductionism proposes that all ethical life has a basis in the brain that determines ethical actions; neuroscepticism holds that neuroscience cannot be considered a normative function; and neurocriticism considers that the neuroscientific advances cannot be ignored and must be taken into account in some way in order to draw up ethical theories.

  18. Interactive social neuroscience to study autism spectrum disorder.

    PubMed

    Rolison, Max J; Naples, Adam J; McPartland, James C

    2015-03-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.

  19. All the Vice Chancellor's Neuroscientists: Unity to Achieve Success in Solving Malaysia's Diseases via Upgrading Clinical Services and Neuroscience Research.

    PubMed

    Abdullah, Jafri Malin

    2013-05-01

    President Obama of the United States of America announced this April the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN for short) investment, while Professor Henry Markram's team based in the European Union will spend over a billion euros on the Human Brain Project, breaking through the unknowns in the fifth science of the decade: Neuroscience. Malaysia's growth in the same field needs to be augmented, and thus the Universiti Sains Malaysia's vision is to excel in the field of clinical brain sciences, mind sciences and neurosciences. This will naturally bring up the level of research in the country simultaneously. Thus, a center was recently established to coordinate this venture. The four-year Integrated Neuroscience Program established recently will be a sustainable source of neuroscientists for the country. We hope to establish ourselves by 2020 as a global university with neurosciences research as an important flagship.

  20. Advances in the Use of Neuroscience Methods in Research on Learning and Instruction

    ERIC Educational Resources Information Center

    De Smedt, Bert

    2014-01-01

    Cognitive neuroscience offers a series of tools and methodologies that allow researchers in the field of learning and instruction to complement and extend the knowledge they have accumulated through decades of behavioral research. The appropriateness of these methods depends on the research question at hand. Cognitive neuroscience methods allow…

  1. All the Vice Chancellor’s Neuroscientists: Unity to Achieve Success in Solving Malaysia’s Diseases via Upgrading Clinical Services and Neuroscience Research

    PubMed Central

    Abdullah, Jafri Malin

    2013-01-01

    President Obama of the United States of America announced this April the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN for short) investment, while Professor Henry Markram’s team based in the European Union will spend over a billion euros on the Human Brain Project, breaking through the unknowns in the fifth science of the decade: Neuroscience. Malaysia's growth in the same field needs to be augmented, and thus the Universiti Sains Malaysia’s vision is to excel in the field of clinical brain sciences, mind sciences and neurosciences. This will naturally bring up the level of research in the country simultaneously. Thus, a center was recently established to coordinate this venture. The four-year Integrated Neuroscience Program established recently will be a sustainable source of neuroscientists for the country. We hope to establish ourselves by 2020 as a global university with neurosciences research as an important flagship. PMID:23966818

  2. «Interventional Neuroradiology: a Neuroscience sub-specialty?»

    PubMed Central

    Rodesch, Georges; Picard, Luc; Berenstein, Alex; Biondi, Alessandra; Bracard, Serge; Choi, In Sup; Feng, Ling; Hyogo, Toshio; LeFeuvre, David; Leonardi, Marco; Mayer, Thomas; Miyashi, Shigeru; Muto, Mario; Piske, Ronie; Pongpech, Sirintara; Reul, Jurgen; Söderman, Michael; Suh, Dae Chul; Tampieri, Donatella; Taylor, Allan; Terbrugge, Karel; Valavanis, Anton; van den Berg, René

    2013-01-01

    Summary Interventional Neuroradiology (INR) is not bound by the classical limits of a speciality, and is not restricted by standard formats of teaching and education. Open and naturally linked towards neurosciences, INR has become a unique source of novel ideas for research, development and progress allowing new and improved approaches to challenging pathologies resulting in better anatomo-clinical results. Opening INR to Neurosciences is the best way to keep it alive and growing. Anchored in Neuroradiology, at the crossroad of neurosciences, INR will further participate to progress and innovation as it has often been in the past. PMID:24355160

  3. «Interventional Neuroradiology: a Neuroscience sub-specialty?»

    PubMed Central

    Rodesch, Georges; Picard, Luc; Berenstein, Alex; Biondi, Alessandra; Bracard, Serge; Choi, In Sup; Feng, Ling; Hyogo, Toshio; LeFeuvre, David; Leonardi, Marco; Mayer, Thomas; Miyashi, Shigeru; Muto, Mario; Piske, Ronie; Pongpech, Sirintara; Reul, Jurgen; Soderman, Michael; Chuh, Dae Sul; Tampieri, Donatella; Taylor, Allan; Terbrugge, Karel; Valavanis, Anton; van den Berg, René

    2013-01-01

    Summary Interventional Neuroradiology (INR) is not bound by the classical limits of a speciality, and is not restricted by standard formats of teaching and education. Open and naturally linked towards neurosciences, INR has become a unique source of novel ideas for research, development and progress allowing new and improved approaches to challenging pathologies resulting in better anatomo-clinical results. Opening INR to Neurosciences is the best way to keep it alive and growing. Anchored in Neuroradiology, at the crossroad of neurosciences, INR will further participate to progress and innovation as it has often been in the past. PMID:24070073

  4. Principles of Learning, Implications for Teaching: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Goswami, Usha

    2008-01-01

    Cognitive neuroscience aims to improve our understanding of aspects of human learning and performance by combining data acquired with the new brain imaging technologies with data acquired in cognitive psychology paradigms. Both neuroscience and psychology use the philosophical assumptions underpinning the natural sciences, namely the scientific…

  5. Integrated neuroscience program: an alternative approach to teaching neurosciences to chiropractic students.

    PubMed

    He, Xiaohua; La Rose, James; Zhang, Niu

    2009-01-01

    Most chiropractic colleges do not offer independent neuroscience courses because of an already crowded curriculum. The Palmer College of Chiropractic Florida has developed and implemented an integrated neuroscience program that incorporates neurosciences into different courses. The goals of the program have been to bring neurosciences to students, excite students about the interrelationship of neuroscience and chiropractic, improve students' understanding of neuroscience, and help the students understand the mechanisms underpinning the chiropractic practice. This study provides a descriptive analysis on how the integrated neuroscience program is taught via students' attitudes toward neuroscience and the comparison of students' perceptions of neuroscience content knowledge at different points in the program. A questionnaire consisting of 58 questions regarding the neuroscience courses was conducted among 339 students. The questionnaire was developed by faculty members who were involved in teaching neuroscience and administered in the classroom by faculty members who were not involved in the study. Student perceptions of their neuroscience knowledge, self-confidence, learning strategies, and knowledge application increased considerably through the quarters, especially among the 2nd-year students. The integrated neuroscience program achieved several of its goals, including an increase in students' confidence, positive attitude, ability to learn, and perception of neuroscience content knowledge. The authors believe that such gains can expand student ability to interpret clinical cases and inspire students to become excited about chiropractic research. The survey provides valuable information for teaching faculty to make the course content more relevant to chiropractic students.

  6. Neuroscience in Nigeria: the past, the present and the future.

    PubMed

    Balogun, Wasiu Gbolahan; Cobham, Ansa Emmanuel; Amin, Abdulbasit

    2018-04-01

    The science of the brain and nervous system cuts across almost all aspects of human life and is one of the fastest growing scientific fields worldwide. This necessitates the demand for pragmatic investment by all nations to ensure improved education and quality of research in Neurosciences. Although obvious efforts are being made in advancing the field in developed societies, there is limited data addressing the state of neuroscience in sub-Saharan Africa. Here, we review the state of neuroscience development in Nigeria, Africa's most populous country and its largest economy, critically evaluating the history, the current situation and future projections. This review specifically addresses trends in clinical and basic neuroscience research and education. We conclude by highlighting potentially helpful strategies that will catalyse development in neuroscience education and research in Nigeria, among which are an increase in research funding, provision of tools and equipment for training and research, and upgrading of the infrastructure at hand.

  7. Wikipedia neuroscience stub editing in an introductory undergraduate neuroscience course.

    PubMed

    Burdo, Joseph R

    2012-01-01

    In response to the Society for Neuroscience initiative to help improve the neuroscience related content in Wikipedia, I implemented Wikipedia article construction and revision in my Introduction to Neuroscience course at Boston College as a writing intensive and neuroscience related outreach activity. My students worked in small groups to revise neuroscience "stubs" of their choice, many of which had little or no useful content. The exercise resulted in the successful development of well-written Wikipedia neuroscience articles, and was received well by my students, receiving positive marks in our course evaluations. Much of the student guidance and assessment was done by student peer groups as well as other Wikipedia editors outside of our course, reducing the instructor involvement to below that of a typical term paper.

  8. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience.

    PubMed

    Paninski, L; Cunningham, J P

    2018-06-01

    Modern large-scale multineuronal recording methodologies, including multielectrode arrays, calcium imaging, and optogenetic techniques, produce single-neuron resolution data of a magnitude and precision that were the realm of science fiction twenty years ago. The major bottlenecks in systems and circuit neuroscience no longer lie in simply collecting data from large neural populations, but also in understanding this data: developing novel scientific questions, with corresponding analysis techniques and experimental designs to fully harness these new capabilities and meaningfully interrogate these questions. Advances in methods for signal processing, network analysis, dimensionality reduction, and optimal control-developed in lockstep with advances in experimental neurotechnology-promise major breakthroughs in multiple fundamental neuroscience problems. These trends are clear in a broad array of subfields of modern neuroscience; this review focuses on recent advances in methods for analyzing neural time-series data with single-neuronal precision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Neuroscience research on aging and implications for counseling psychology.

    PubMed

    Wright, Stephen L; Díaz, Fernando

    2014-10-01

    The advances in neuroscience have led to an increase in scientific understanding of the aging process, and counseling psychologists can benefit from familiarity with the research on the neuroscience of aging. In this article, we have focused on the cognitive neuroscience of aging, and we describe the progression of healthy aging to Alzheimer's disease, given its high prevalence rate among older adults (Alzheimer's Association, 2013). Common techniques used to study the cognitive neuroscience of aging are explained in regards to measuring age-related changes in the brain and the role of biomarkers in identifying cognitive decline related to Alzheimer's disease. Using this information and in collaboration with cognitive neuroscientists, it is our hope that counseling psychologists may further pursue research areas on aging as well as design appropriate interventions for older individuals who may be experiencing cognitive impairment. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Neuromarketing and consumer neuroscience: contributions to neurology.

    PubMed

    Javor, Andrija; Koller, Monika; Lee, Nick; Chamberlain, Laura; Ransmayr, Gerhard

    2013-02-06

    'Neuromarketing' is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods 'neuromarketing' and scientific ones 'consumer neuroscience'. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience. In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research. We identify the following areas where consumer neuroscience could contribute to the field of neurology:First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson's disease, frontotemporal dementia, epilepsy, and Huntington's disease.Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson's disease and frontotemporal dementia to advance knowledge of this important behavioral symptom.Third, trust research in the medical context lacks

  11. Virtual Reality for Research in Social Neuroscience

    PubMed Central

    Parsons, Thomas D.; Gaggioli, Andrea; Riva, Giuseppe

    2017-01-01

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters—either driven by a human or by a computer—allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature. PMID:28420150

  12. Virtual Reality for Research in Social Neuroscience.

    PubMed

    Parsons, Thomas D; Gaggioli, Andrea; Riva, Giuseppe

    2017-04-16

    The emergence of social neuroscience has significantly advanced our understanding of the relationship that exists between social processes and their neurobiological underpinnings. Social neuroscience research often involves the use of simple and static stimuli lacking many of the potentially important aspects of real world activities and social interactions. Whilst this research has merit, there is a growing interest in the presentation of dynamic stimuli in a manner that allows researchers to assess the integrative processes carried out by perceivers over time. Herein, we discuss the potential of virtual reality for enhancing ecological validity while maintaining experimental control in social neuroscience research. Virtual reality is a technology that allows for the creation of fully interactive, three-dimensional computerized models of social situations that can be fully controlled by the experimenter. Furthermore, the introduction of interactive virtual characters-either driven by a human or by a computer-allows the researcher to test, in a systematic and independent manner, the effects of various social cues. We first introduce key technical features and concepts related to virtual reality. Next, we discuss the potential of this technology for enhancing social neuroscience protocols, drawing on illustrative experiments from the literature.

  13. Genome Engineering with TALE and CRISPR Systems in Neuroscience.

    PubMed

    Lee, Han B; Sundberg, Brynn N; Sigafoos, Ashley N; Clark, Karl J

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.

  14. Notes on the Recent History of Neuroscience in Africa

    PubMed Central

    Russell, Vivienne A.

    2017-01-01

    Neuroscience began with neuroanatomy and neurosurgery in Egypt more than 5000 years ago. Knowledge grew over time and specialized neurosurgery centers were established in north Africa in the eleventh century. However, it was not until the twentieth century that neuroscience research became established in sub-Saharan Africa. In most African countries, clinical research focused on understanding the rationale and improving treatment of epilepsy, infections, nutritional neuropathies, stroke and tumors. Significant advances were made. In the twenty-first century, African knowledge expanded to include all branches of neuroscience, contributing to genetic, biochemical and inflammatory determinants of brain disorders. A major focus of basic neuroscience research has been, and is, investigation of plant extracts, drugs and stress in animal models, providing insight and identifying potential novel therapies. A significant event in the history of African neuroscience was the founding of the Society of Neuroscientists of Africa (SONA) in 1993. The International Brain Research Organization (IBRO) supported SONA conferences, as well as workshops and neuroscience training schools in Africa. Thanks to their investment, as well as that of funding agencies, such as the National Institutes of Health (NIH), International Society for Neurochemistry (ISN), World Federation of Neurosurgical Societies (WFNS), World Federation of Neurology (WFN) and the International League Against Epilepsy (ILAE), neuroscience research is well-established in Africa today. However, in order to continue to develop, African neuroscience needs continued international support and African neuroscientists need to engage in policy and decision-making to persuade governments to fund studies that address the unique regional needs in Africa. PMID:29163069

  15. Interactive Social Neuroscience to Study Autism Spectrum Disorder

    PubMed Central

    Rolison, Max J.; Naples, Adam J.; McPartland, James C.

    2015-01-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative “interactive social neuroscience” methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD. PMID:25745371

  16. The Neuroscience of Growth Mindset and Intrinsic Motivation.

    PubMed

    Ng, Betsy

    2018-01-26

    Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed.

  17. Clinical management departments for the neurosciences.

    PubMed

    Matías-Guiu, J; García-Ramos, R; Ramos, M; Soto, J

    2016-01-01

    Neuroscience-related clinical management departments (UGC in Spanish) represent a means of organising hospitals to deliver patient-centred care as well as specific clinical and administrative management models. The authors review the different UGC models in Spain and their implementation processes as well as any functional problems. We pay special attention to departments treating neurological patients. Neuroscience-related specialties may offer a good framework for the units that they contain. This may be due to the inherent variability and costs associated with neurological patients, the vital level of coordination that must be present between units providing care, and probably to the dynamic nature of the neurosciences as well. Difficulties associated with implementing and gaining acceptance for the new model have limited such UGCs until now. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  18. Neuromarketing and consumer neuroscience: contributions to neurology

    PubMed Central

    2013-01-01

    Background ‘Neuromarketing’ is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods ‘neuromarketing’ and scientific ones ‘consumer neuroscience’. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience. Discussion In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research. Summary We identify the following areas where consumer neuroscience could contribute to the field of neurology: First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson’s disease, frontotemporal dementia, epilepsy, and Huntington’s disease. Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson’s disease and frontotemporal dementia to advance knowledge of this important behavioral symptom

  19. The neuroscience information framework: a data and knowledge environment for neuroscience.

    PubMed

    Gardner, Daniel; Akil, Huda; Ascoli, Giorgio A; Bowden, Douglas M; Bug, William; Donohue, Duncan E; Goldberg, David H; Grafstein, Bernice; Grethe, Jeffrey S; Gupta, Amarnath; Halavi, Maryam; Kennedy, David N; Marenco, Luis; Martone, Maryann E; Miller, Perry L; Müller, Hans-Michael; Robert, Adrian; Shepherd, Gordon M; Sternberg, Paul W; Van Essen, David C; Williams, Robert W

    2008-09-01

    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience's Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov , http://neurogateway.org , and other sites as they come on line.

  20. Application of neuroscience to technology in stroke rehabilitation.

    PubMed

    Burns, Martha S

    2008-01-01

    The past decade has seen remarkable advances in our understanding of mechanisms that drive functional neuroplastic change after brain injury and the mirror neuron system that appears essential for language learning and communicative interaction. This article describes five neuroscience-based interventions available for clinical practice, with a discussion of the potential value of mirror neurons in stroke rehabilitation. Case-study data on three adults with aphasia who received various combinations of neuroscience-derived technological interventions are provided to inform the clinician of the potential advantages of technology as an adjunct to, not a substitution for, conventional therapeutic intervention.

  1. Mapping the semantic structure of cognitive neuroscience.

    PubMed

    Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A

    2014-09-01

    Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.

  2. Genome Engineering with TALE and CRISPR Systems in Neuroscience

    PubMed Central

    Lee, Han B.; Sundberg, Brynn N.; Sigafoos, Ashley N.; Clark, Karl J.

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience. PMID:27092173

  3. Seven challenges for neuroscience.

    PubMed

    Markram, Henry

    2013-01-01

    Although twenty-first century neuroscience is a major scientific enterprise, advances in basic research have not yet translated into benefits for society. In this paper, I outline seven fundamental challenges that need to be overcome. First, neuroscience has to become "big science" - we need big teams with the resources and competences to tackle the big problems. Second, we need to create interlinked sets of data providing a complete picture of single areas of the brain at their different levels of organization with "rungs" linking the descriptions for humans and other species. Such "data ladders" will help us to meet the third challenge - the development of efficient predictive tools, enabling us to drastically increase the information we can extract from expensive experiments. The fourth challenge goes one step further: we have to develop novel hardware and software sufficiently powerful to simulate the brain. In the future, supercomputer-based brain simulation will enable us to make in silico manipulations and recordings, which are currently completely impossible in the lab. The fifth and sixth challenges are translational. On the one hand we need to develop new ways of classifying and simulating brain disease, leading to better diagnosis and more effective drug discovery. On the other, we have to exploit our knowledge to build new brain-inspired technologies, with potentially huge benefits for industry and for society. This leads to the seventh challenge. Neuroscience can indeed deliver huge benefits but we have to be aware of widespread social concern about our work. We need to recognize the fears that exist, lay them to rest, and actively build public support for neuroscience research. We have to set goals for ourselves that the public can recognize and share. And then we have to deliver on our promises. Only in this way, will we receive the support and funding we need.

  4. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience.

    PubMed

    Hall, Catherine N; Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-10-05

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  5. The Neuroscience of Growth Mindset and Intrinsic Motivation

    PubMed Central

    Ng, Betsy

    2018-01-01

    Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed. PMID:29373496

  6. Advances in understanding the anxiety disorders: the cognitive-affective neuroscience of 'false alarms'.

    PubMed

    Stein, Dan J

    2006-01-01

    There have been significant advances in our understanding of the anxiety disorders; a range of data is now available on their epidemiology, nosology, psychobiology, and management. An integrative framework is required in order to conceptualize this data and to apply it in the clinic. This is a nonsystematic review of literature on the psychobiology of some the major anxiety disorders, focused on the idea that each of these conditions can be conceptualized in terms of a different "false alarm," mediated by specific neurocircuitry and with a particular evolutionary origin. The "false alarm" concept is able to integrate a range of data on the proximal mechanisms of anxiety disorders (including their mediating neurochemistry and neurogenetics), as well as hypotheses about the distal or evolutionary underpinnings of these conditions. Fortunately, serotonergic antidepressants and cognitive-behavioral psychotherapy appear to be able to normalize the putative "false alarms" in anxiety disorders. A better understanding of the cognitive-affective neuroscience of anxiety disorders will hopefully lead to improved treatments.

  7. Developing a Team-taught Capstone Course in Neuroscience.

    PubMed

    Kennedy, Susan; Hassebrock, Frank

    2012-01-01

    Capstone courses are becoming increasingly visible on college and university campuses. In this paper, we describe a capstone experience for undergraduate students pursuing our neuroscience concentration. The course is intended to provide an in-depth and interdisciplinary examination of contemporary topics in the field of neuroscience, and is designed for students who have completed the majority of requirements for the concentration. We describe the evolution of such a course, the goals and objectives of the course, and offer a workable model for similar courses in the context of a liberal arts institution. We summarize the positive aspects of such a course, describe the challenges involved in creating a course of this nature, and offer suggestions for successful similar capstone courses in Neuroscience.

  8. Developing a Team-taught Capstone Course in Neuroscience

    PubMed Central

    Kennedy, Susan; Hassebrock, Frank

    2012-01-01

    Capstone courses are becoming increasingly visible on college and university campuses. In this paper, we describe a capstone experience for undergraduate students pursuing our neuroscience concentration. The course is intended to provide an in-depth and interdisciplinary examination of contemporary topics in the field of neuroscience, and is designed for students who have completed the majority of requirements for the concentration. We describe the evolution of such a course, the goals and objectives of the course, and offer a workable model for similar courses in the context of a liberal arts institution. We summarize the positive aspects of such a course, describe the challenges involved in creating a course of this nature, and offer suggestions for successful similar capstone courses in Neuroscience. PMID:23493882

  9. The Neuroscience of Consumer Choice

    PubMed Central

    Hsu, Ming; Yoon, Carolyn

    2015-01-01

    We review progress and challenges relating to scientific and applied goals of the nascent field of consumer neuroscience. Scientifically, substantial progress has been made in understanding the neurobiology of choice processes. Further advances, however, require researchers to begin clarifying the set of developmental and cognitive processes that shape and constrain choices. First, despite the centrality of preferences in theories of consumer choice, we still know little about where preferences come from and the underlying developmental processes. Second, the role of attention and memory processes in consumer choice remains poorly understood, despite importance ascribed to them in interpreting data from the field. The applied goal of consumer neuroscience concerns our ability to translate this understanding to augment prediction at the population level. Although the use of neuroscientific data for market-level predictions remains speculative, there is growing evidence of superiority in specific cases over existing market research techniques. PMID:26665152

  10. Canis familiaris As a Model for Non-Invasive Comparative Neuroscience.

    PubMed

    Bunford, Nóra; Andics, Attila; Kis, Anna; Miklósi, Ádám; Gácsi, Márta

    2017-07-01

    There is an ongoing need to improve animal models for investigating human behavior and its biological underpinnings. The domestic dog (Canis familiaris) is a promising model in cognitive neuroscience. However, before it can contribute to advances in this field in a comparative, reliable, and valid manner, several methodological issues warrant attention. We review recent non-invasive canine neuroscience studies, primarily focusing on (i) variability among dogs and between dogs and humans in cranial characteristics, and (ii) generalizability across dog and dog-human studies. We argue not for methodological uniformity but for functional comparability between methods, experimental designs, and neural responses. We conclude that the dog may become an innovative and unique model in comparative neuroscience, complementing more traditional models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    PubMed Central

    Akil, Huda; Ascoli, Giorgio A.; Bowden, Douglas M.; Bug, William; Donohue, Duncan E.; Goldberg, David H.; Grafstein, Bernice; Grethe, Jeffrey S.; Gupta, Amarnath; Halavi, Maryam; Kennedy, David N.; Marenco, Luis; Martone, Maryann E.; Miller, Perry L.; Müller, Hans-Michael; Robert, Adrian; Shepherd, Gordon M.; Sternberg, Paul W.; Van Essen, David C.; Williams, Robert W.

    2009-01-01

    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line. PMID:18946742

  12. The emperor's new wardrobe: Rebalancing diversity of animal models in neuroscience research.

    PubMed

    Yartsev, Michael M

    2017-10-27

    The neuroscience field is steaming ahead, fueled by a revolution in cutting-edge technologies. Concurrently, another revolution has been underway-the diversity of species utilized for neuroscience research is sharply declining, as the field converges on a few selected model organisms. Here, from the perspective of a young scientist, I naively ask: Is the great diversity of questions in neuroscience best studied in only a handful of animal models? I review some of the limitations the field is facing following this convergence and how these can be rectified by increasing the diversity of appropriate model species. I propose that at this exciting time of revolution in genetics and device technologies, neuroscience might be ready to diversify again, if provided the appropriate support. Copyright © 2017, American Association for the Advancement of Science.

  13. Cognitive neuroscience: the troubled marriage of cognitive science and neuroscience.

    PubMed

    Cooper, Richard P; Shallice, Tim

    2010-07-01

    We discuss the development of cognitive neuroscience in terms of the tension between the greater sophistication in cognitive concepts and methods of the cognitive sciences and the increasing power of more standard biological approaches to understanding brain structure and function. There have been major technological developments in brain imaging and advances in simulation, but there have also been shifts in emphasis, with topics such as thinking, consciousness, and social cognition becoming fashionable within the brain sciences. The discipline has great promise in terms of applications to mental health and education, provided it does not abandon the cognitive perspective and succumb to reductionism. Copyright © 2010 Cognitive Science Society, Inc.

  14. Using personality neuroscience to study personality disorder.

    PubMed

    Abram, Samantha V; DeYoung, Colin G

    2017-01-01

    Personality neuroscience integrates techniques from personality psychology and neuroscience to elucidate the neural basis of individual differences in cognition, emotion, motivation, and behavior. This endeavor is pertinent not only to our understanding of healthy personality variation, but also to the aberrant trait manifestations present in personality disorders and severe psychopathology. In the current review, we focus on the advances and limitations of neuroimaging methods with respect to personality neuroscience. We discuss the value of personality theory as a means to link specific neural mechanisms with various traits (e.g., the neural basis of the "Big Five"). Given the overlap between dimensional models of normal personality and psychopathology, we also describe how researchers can reconceptualize psychopathological disorders along key dimensions, and, in turn, formulate specific neural hypotheses, extended from personality theory. Examples from the borderline personality disorder literature are used to illustrate this approach. We provide recommendations for utilizing neuroimaging methods to capture the neural mechanisms that underlie continuous traits across the spectrum from healthy to maladaptive. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Challenges and Opportunities in Mining Neuroscience Data

    PubMed Central

    Akil, Huda; Martone, Maryann E.; Van Essen, David C.

    2011-01-01

    Understanding the brain requires a broad range of approaches and methods from the domains of biology, psychology, chemistry, physics, and mathematics. The fundamental challenge is to decipher the “neural choreography” associated with complex behaviors and functions, including thoughts, memories, actions, and emotions. This demands the acquisition and integration of vast amounts of data of many types, at multiple scales in time and in space. Here, we discuss the need for neuroinformatics approaches to accelerate progress, using several illustrative examples. The nascent field of ‘connectomics’ aims to comprehensively describe neuronal connectivity at either a macroscopic level (long-distance pathways for the entire brain) or a microscopic level (axons, dendrites, synapses in a small brain region). The Neuroscience Information Framework encompasses all of neuroscience and facilitates integration of existing knowledge and databases of many types. These examples illustrate the opportunities and challenges of data mining across multiple tiers of neuroscience information and underscore the need for cultural and infrastructure changes if neuroinformatics is to fulfill its potential to advance our understanding of the brain. PMID:21311009

  16. The Muscle Sensor for on-site neuroscience lectures to pave the way for a better understanding of brain-machine-interface research.

    PubMed

    Koizumi, Amane; Nagata, Osamu; Togawa, Morio; Sazi, Toshiyuki

    2014-01-01

    Neuroscience is an expanding field of science to investigate enigmas of brain and human body function. However, the majority of the public have never had the chance to learn the basics of neuroscience and new knowledge from advanced neuroscience research through hands-on experience. Here, we report that we produced the Muscle Sensor, a simplified electromyography, to promote educational understanding in neuroscience. The Muscle Sensor can detect myoelectric potentials which are filtered and processed as 3-V pulse signals to shine a light bulb and emit beep sounds. With this educational tool, we delivered "On-Site Neuroscience Lectures" in Japanese junior-high schools to facilitate hands-on experience of neuroscientific electrophysiology and to connect their text-book knowledge to advanced neuroscience researches. On-site neuroscience lectures with the Muscle Sensor pave the way for a better understanding of the basics of neuroscience and the latest topics such as how brain-machine-interface technology could help patients with disabilities such as spinal cord injuries. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Developments in cognitive neuroscience: I. Conflict, compromise, and connectionism.

    PubMed

    Westen, Drew; Gabbard, Glen O

    2002-01-01

    The strength of psychoanalysis has always been its understanding of affect and motivation. Contemporary developments in cognitive neuroscience offer possibilities of integrating sophisticated, experimentally informed models of thought and memory with an understanding of dynamically and clinically meaningful processes. Aspects of contemporary theory and research in cognitive neuroscience are integrated with psychoanalytic theory and technique, particularly theories of conflict and compromise. After a description of evolving models of the mind in cognitive neuroscience, several issues relevant to psychoanalytic theory and practice are addressed. These include the nature of representations, the interaction of cognition and affect, and the mechanisms by which the mind unconsciously forges compromise solutions that best fit multiple cognitive and affective-motivational constraints.

  18. Cultural neuroscience and global mental health: addressing grand challenges

    PubMed Central

    Chiao, Joan Y.; Li, Shu-Chen; Turner, Robert; Lee-Tauler, Su Yeon; Pringle, Beverly A.

    2016-01-01

    Mental, neurological and substance-use (MNS) disorders comprise approximately 13% of the global burden of disease. The Grand Challenges in Global Mental Health Initiative has recently identified research priorities for the next decade to address prevention and treatment of MNS disorders. One main research priority is to identify the root causes, risks and protective factors associated with global mental health. Recent advances in cultural neuroscience have identified theoretical, methodological, and empirical methods of identifying biomarkers associated with mental health disorders across nations. Here we review empirical research in cultural neuroscience that address meeting the grand challenges in global mental health. PMID:28642836

  19. What is important in transdisciplinary pain neuroscience education? A qualitative study.

    PubMed

    Wijma, Amarins J; Speksnijder, Caroline M; Crom-Ottens, Astrid F; Knulst-Verlaan, J M Corine; Keizer, Doeke; Nijs, Jo; van Wilgen, C Paul

    2017-05-19

    Neuroscience Education. Repetitions of Pain Neuroscience Education, in different forms (verbal and written information, examples, drawings, etc.) help patients to understand the theory of neurophysiology. Pain Neuroscience Education induces insight into the patient's complaints, improved coping with complaints, improved self-control, and induces in some cases peace of mind. Healthcare professionals providing Pain Neuroscience Education should be aware of the possible confronting nature of the contributing factors.

  20. What is a representative brain? Neuroscience meets population science.

    PubMed

    Falk, Emily B; Hyde, Luke W; Mitchell, Colter; Faul, Jessica; Gonzalez, Richard; Heitzeg, Mary M; Keating, Daniel P; Langa, Kenneth M; Martz, Meghan E; Maslowsky, Julie; Morrison, Frederick J; Noll, Douglas C; Patrick, Megan E; Pfeffer, Fabian T; Reuter-Lorenz, Patricia A; Thomason, Moriah E; Davis-Kean, Pamela; Monk, Christopher S; Schulenberg, John

    2013-10-29

    The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain-behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective--population neuroscience--that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas.

  1. Development and use of Ontologies Inside the Neuroscience Information Framework: A Practical Approach

    PubMed Central

    Imam, Fahim T.; Larson, Stephen D.; Bandrowski, Anita; Grethe, Jeffery S.; Gupta, Amarnath; Martone, Maryann E.

    2012-01-01

    An initiative of the NIH Blueprint for neuroscience research, the Neuroscience Information Framework (NIF) project advances neuroscience by enabling discovery and access to public research data and tools worldwide through an open source, semantically enhanced search portal. One of the critical components for the overall NIF system, the NIF Standardized Ontologies (NIFSTD), provides an extensive collection of standard neuroscience concepts along with their synonyms and relationships. The knowledge models defined in the NIFSTD ontologies enable an effective concept-based search over heterogeneous types of web-accessible information entities in NIF’s production system. NIFSTD covers major domains in neuroscience, including diseases, brain anatomy, cell types, sub-cellular anatomy, small molecules, techniques, and resource descriptors. Since the first production release in 2008, NIF has grown significantly in content and functionality, particularly with respect to the ontologies and ontology-based services that drive the NIF system. We present here on the structure, design principles, community engagement, and the current state of NIFSTD ontologies. PMID:22737162

  2. Neuroscience, moral reasoning, and the law.

    PubMed

    Knabb, Joshua J; Welsh, Robert K; Ziebell, Joseph G; Reimer, Kevin S

    2009-01-01

    Modern advancements in functional magnetic resonance imaging (fMRI) technology have given neuroscientists the opportunity to more fully appreciate the brain's contribution to human behavior and decision making. Morality and moral reasoning are relative newcomers to the growing literature on decision neuroscience. With recent attention given to the salience of moral factors (e.g. moral emotions, moral reasoning) in the process of decision making, neuroscientists have begun to offer helpful frameworks for understanding the interplay between the brain, morality, and human decision making. These frameworks are relatively unfamiliar to the community of forensic psychologists, despite the fact that they offer an improved understanding of judicial decision making from a biological perspective. This article presents a framework reviewing how event-feature-emotion complexes (EFEC) are relevant to jurors and understanding complex criminal behavior. Future directions regarding converging fields of neuroscience and legal decision making are considered. Copyright 2009 John Wiley & Sons, Ltd.

  3. Global mental health and neuroscience: potential synergies.

    PubMed

    Stein, Dan J; He, Yanling; Phillips, Anthony; Sahakian, Barbara J; Williams, John; Patel, Vikram

    2015-02-01

    Global mental health has emerged as an important specialty. It has drawn attention to the burden of mental illness and to the relative gap in mental health research and services around the world. Global mental health has raised the question of whether this gap is a developmental issue, a health issue, a human rights issue, or a combination of these issues-and it has raised awareness of the need to develop new approaches for building capacity, mobilising resources, and closing the research and treatment gap. Translational neuroscience has also advanced. It comprises an important conceptual approach to understanding the neurocircuitry and molecular basis of mental disorders, to rethinking how best to undertake research on the aetiology, assessment, and treatment of these disorders, with the ultimate aim to develop entirely new approaches to prevention and intervention. Some apparent contrasts exist between these fields; global mental health emphasises knowledge translation, moving away from the bedside to a focus on health systems, whereas translational neuroscience emphasises molecular neuroscience, focusing on transitions between the bench and bedside. Meanwhile, important opportunities exist for synergy between the two paradigms, to ensure that present opportunities in mental health research and services are maximised. Here, we review the approaches of global mental health and clinical neuroscience to diagnosis, pathogenesis, and intervention, and make recommendations for facilitating an integration of these two perspectives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Perspectives on the neuroscience of alcohol from the National Institute on Alcohol Abuse and Alcoholism.

    PubMed

    Reilly, Matthew T; Noronha, Antonio; Warren, Kenneth

    2014-01-01

    Mounting evidence over the last 40 years clearly indicates that alcoholism (alcohol dependence) is a disorder of the brain. The National Institute on Alcohol Abuse and Alcoholism (NIAAA) has taken significant steps to advance research into the neuroscience of alcohol. The Division of Neuroscience and Behavior (DNB) was formed within NIAAA in 2002 to oversee, fund, and direct all research areas that examine the effects of alcohol on the brain, the genetic underpinnings of alcohol dependence, the neuroadaptations resulting from excessive alcohol consumption, advanced behavioral models of the various stages of the addiction cycle, and preclinical medications development. This research portfolio has produced important discoveries in the etiology, treatment, and prevention of alcohol abuse and dependence. Several of these salient discoveries are highlighted and future areas of neuroscience research on alcohol are presented. © 2014 Elsevier B.V. All rights reserved.

  5. Mental illness from the perspective of theoretical neuroscience.

    PubMed

    Thagard, Paul

    2008-01-01

    Theoretical neuroscience, which characterizes neural mechanisms using mathematical and computational models, is highly relevant to central problems in the philosophy of psychiatry. These models can help to solve the explanation problem of causally connecting neural processes with the behaviors and experiences found in mental illnesses. Such explanations will also be useful for generating better classifications and treatments of psychiatric disorders. The result should help to eliminate concerns that mental illnesses such as depression and schizophrenia are not objectively real. A philosophical approach to mental illness based on neuroscience need not neglect the inherently social and historical nature of mental phenomena.

  6. Fever Management Practices of Neuroscience Nurses, Part II: Nurse, Patient, and Barriers

    PubMed Central

    Thompson, Hilaire J.; Kirkness, Catherine J.; Mitchell, Pamela H.

    2008-01-01

    Fever is frequently encountered by neuroscience nurses in patients with neurological insults and often results in worsened patient outcomes when compared with similar patients who do not have fever. Best practices in fever management are then essential to optimizing patient outcomes. Yet the topic of best nursing practices for fever management is largely ignored in the clinical and research literature, which can complicate the achievement of best practices. A national survey to gauge fever management practices and decision making by neuroscience nurses was administered to members of the American Association of Neuroscience Nurses. Results of the questionnaire portion of the survey were previously published. This report presents a content analysis of the responses of neuroscience nurses to the open–ended-question portion of the survey (n = 106), which revealed a dichotomous primary focus on nursing- or patient-related issues. In addition, respondents described barriers and issues in the provision of fever-management care to neuroscience patients. In order to advance national best practices for fever management in neurologically vulnerable patients, further work needs to be conducted, particularly with regard to necessary continuing education for staff, facilitation of interdisciplinary communication, and development of patient care protocols. Neuroscience nurses are in an excellent position to provide leadership in these areas. PMID:17847665

  7. Collaborative modelling: the future of computational neuroscience?

    PubMed

    Davison, Andrew P

    2012-01-01

    Given the complexity of biological neural circuits and of their component cells and synapses, building and simulating robust, well-validated, detailed models increasingly surpasses the resources of an individual researcher or small research group. In this article, I will briefly review possible solutions to this problem, argue for open, collaborative modelling as the optimal solution for advancing neuroscience knowledge, and identify potential bottlenecks and possible solutions.

  8. The modern search for the Holy Grail: is neuroscience a solution?

    PubMed Central

    Naor, Navot; Ben-Ze'ev, Aaron; Okon-Singer, Hadas

    2014-01-01

    Neuroscience has become prevalent in recent years; nevertheless, its value in the examination of psychological and philosophical phenomena is still a matter of debate. The examples reviewed here suggest that neuroscientific tools can be significant in the investigation of such complex phenomena. In this article, we argue that it is important to study concepts that do not have a clear characterization and emphasize the role of neuroscience in this quest for knowledge. The data reviewed here suggest that neuroscience may (1) enrich our knowledge; (2) outline the nature of an explanation; and (3) lead to substantial empirical and theoretical discoveries. To that end, we review work on hedonia and eudaimonia in the fields of neuroscience, psychology, and philosophy. These studies demonstrate the importance of neuroscientific tools in the investigation of phenomena that are difficult to define using other methods. PMID:24926246

  9. A Role for Neuroscience in Shaping Contemporary Education Policy

    ERIC Educational Resources Information Center

    Shore, Rebecca; Bryant, Joel

    2011-01-01

    Advanced technologies have made it possible for neuroscientists to make remarkable discoveries regarding how our brains learn. This research should provide new insights into the designs of learning environments. This essay is an attempt to suggest how the possibilities of neuroscience might be employed to meet contemporary educational demands,…

  10. Interactionist Neuroscience.

    PubMed

    Badre, David; Frank, Michael J; Moore, Christopher I

    2015-12-02

    We argue that bidirectional interaction between animal and human studies is essential for understanding the human brain. The revolution in meso-scale study of circuits in non-human species provides a historical opportunity. However, to fully realize its potential requires integration with human neuroscience. We describe three strategies for successful interactionist neuroscience. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Pathological choice: the neuroscience of gambling and gambling addiction.

    PubMed

    Clark, Luke; Averbeck, Bruno; Payer, Doris; Sescousse, Guillaume; Winstanley, Catharine A; Xue, Gui

    2013-11-06

    Gambling is pertinent to neuroscience research for at least two reasons. First, gambling is a naturalistic and pervasive example of risky decision making, and thus gambling games can provide a paradigm for the investigation of human choice behavior and "irrationality." Second, excessive gambling involvement (i.e., pathological gambling) is currently conceptualized as a behavioral addiction, and research on this condition may provide insights into addictive mechanisms in the absence of exogenous drug effects. This article is a summary of topics covered in a Society for Neuroscience minisymposium, focusing on recent advances in understanding the neural basis of gambling behavior, including translational findings in rodents and nonhuman primates, which have begun to delineate neural circuitry and neurochemistry involved.

  12. Linking neuroscience and psychoanalysis from a developmental perspective: why and how?

    PubMed

    Ouss-Ryngaert, Lisa; Golse, Bernard

    2010-12-01

    This paper aims to develop the rational to support why and how we should link neuroscience and psychoanalysis. Many of these points are derived from child development and child psychiatry. Neuroscience investigates developmental questions in a different way than psychoanalysis, while psychoanalysis itself has shifted towards new developmental paradigms. The rapprochement between neuroscience and psychoanalysis allows a new understanding of some concepts, including embodiment of mind, consciousness and attachment. The "double reading" paradigm allows a better understanding of symptomatic configurations. Linking neuroscience and psychoanalysis may improve treatments and result in new experimental neuroscientific paradigms involving changing the research object, changing the state of the research object, and investigating the structural changes in the brain following psychotherapy. The last aim is to create an epistemology of the articulation between the theoretical frameworks through phenomenology, "complementarism" and neuropsychoanalysis. We argue that it is necessary for clinicians to be aware of the advancements in each field. This is not only an epistemological question; we assume that new findings in neuroscience will change the way psychoanalysts think and approach treatment of their patients. We hope the present research will contribute to change the way that neuroscientists think and will provide new options to their set of experimental paradigms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Bridging the Gap: establishing the necessary infrastructure and knowledge for teaching and research in neuroscience in Africa.

    PubMed

    Yusuf, Sadiq; Baden, Tom; Prieto-Godino, Lucia L

    2014-06-01

    Advances in neuroscience research over the last few decades have increased our understanding of how individual neurons acquire their specific properties and assemble into complex circuits, and how these circuits are affected in disease. One of the important motives driving neuroscience research is the development of new scientific techniques and interdisciplinary cooperation. Compared to developed countries, many countries on the African continent are confronted with poor facilities, lack of funding or career development programs for neuroscientists, all of which deter young scientists from taking up neuroscience as a career choice. This article highlights some steps that are being taken to promote neuroscience education and research in Africa.

  14. Telemedicine and neurosciences.

    PubMed

    Ganapathy, K

    2005-11-01

    It is well known that in most countries there is a perennial shortage of specialists in neurosciences. The available neurologists and neurosurgeons are clustered in the metropolitan, urban areas. Those living in suburban and rural areas may have limited or no access to neurological care. Concurrently, there has been an unprecedented growth in information and communication technology (ICT). In this article, the author will demonstrate how the practice of neurosciences will change, with increasing use of telemedicine and ICT. In addition to presenting the author's personal experience, the literature on telemedicine in neurosciences is reviewed.

  15. The principles and practices of educational neuroscience: Comment on Bowers (2016).

    PubMed

    Howard-Jones, Paul A; Varma, Sashank; Ansari, Daniel; Butterworth, Brian; De Smedt, Bert; Goswami, Usha; Laurillard, Diana; Thomas, Michael S C

    2016-10-01

    In his recent critique of Educational Neuroscience, Bowers argues that neuroscience has no role to play in informing education, which he equates with classroom teaching. Neuroscience, he suggests, adds nothing to what we can learn from psychology. In this commentary, we argue that Bowers' assertions misrepresent the nature and aims of the work in this new field. We suggest that, by contrast, psychological and neural levels of explanation complement rather than compete with each other. Bowers' analysis also fails to include a role for educational expertise-a guiding principle of our new field. On this basis, we conclude that his critique is potentially misleading. We set out the well-documented goals of research in Educational Neuroscience, and show how, in collaboration with educators, significant progress has already been achieved, with the prospect of even greater progress in the future. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Text Mining for Neuroscience

    NASA Astrophysics Data System (ADS)

    Tirupattur, Naveen; Lapish, Christopher C.; Mukhopadhyay, Snehasis

    2011-06-01

    Text mining, sometimes alternately referred to as text analytics, refers to the process of extracting high-quality knowledge from the analysis of textual data. Text mining has wide variety of applications in areas such as biomedical science, news analysis, and homeland security. In this paper, we describe an approach and some relatively small-scale experiments which apply text mining to neuroscience research literature to find novel associations among a diverse set of entities. Neuroscience is a discipline which encompasses an exceptionally wide range of experimental approaches and rapidly growing interest. This combination results in an overwhelmingly large and often diffuse literature which makes a comprehensive synthesis difficult. Understanding the relations or associations among the entities appearing in the literature not only improves the researchers current understanding of recent advances in their field, but also provides an important computational tool to formulate novel hypotheses and thereby assist in scientific discoveries. We describe a methodology to automatically mine the literature and form novel associations through direct analysis of published texts. The method first retrieves a set of documents from databases such as PubMed using a set of relevant domain terms. In the current study these terms yielded a set of documents ranging from 160,909 to 367,214 documents. Each document is then represented in a numerical vector form from which an Association Graph is computed which represents relationships between all pairs of domain terms, based on co-occurrence. Association graphs can then be subjected to various graph theoretic algorithms such as transitive closure and cycle (circuit) detection to derive additional information, and can also be visually presented to a human researcher for understanding. In this paper, we present three relatively small-scale problem-specific case studies to demonstrate that such an approach is very successful in

  17. What is a representative brain? Neuroscience meets population science

    PubMed Central

    Falk, Emily B.; Hyde, Luke W.; Mitchell, Colter; Faul, Jessica; Gonzalez, Richard; Heitzeg, Mary M.; Keating, Daniel P.; Langa, Kenneth M.; Martz, Meghan E.; Maslowsky, Julie; Morrison, Frederick J.; Noll, Douglas C.; Patrick, Megan E.; Pfeffer, Fabian T.; Reuter-Lorenz, Patricia A.; Thomason, Moriah E.; Davis-Kean, Pamela; Monk, Christopher S.; Schulenberg, John

    2013-01-01

    The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain–behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective—population neuroscience—that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas. PMID:24151336

  18. Preservice Teachers' Perceptions of Neuroscience, Medicine, and Students with ADHD

    ERIC Educational Resources Information Center

    Zambo, Debby; Zambo, Ron; Sidlik, Lawrence

    2013-01-01

    Neuroscience is revealing how the brains of individuals with Attention Deficit Hyperactivity Disorder (ADHD) function, and advances in medicine are leading to treatments. This study investigated preservice teachers' knowledge and beliefs about students with ADHD. The majority of preservice teachers knew someone with ADHD, which, along with courses…

  19. What Can Neuroscience Bring to Education?

    ERIC Educational Resources Information Center

    Ferrari, Michel

    2011-01-01

    Educational neuroscience promises to incorporate emerging insights from neuroscience into education, and is an exiting renovation of cognitive science in education. But unlike cognitive neuroscience--which aims to explain how the mind is embodied--educational neuroscience necessarily incorporates values that reflect the kind of citizen and the…

  20. Interacting and paradoxical forces in neuroscience and society

    PubMed Central

    Singh, Jennifer; Hallmayer, Joachim; Illes, Judy

    2007-01-01

    Discoveries in the field of neuroscience are a natural source of discourse among scientists and have long been disseminated to the public. Historically, as news of findings has travelled between communities, it has elicited both expected and unusual reactions. What scientific landmarks promote discourse within the professional community? Do the same findings achieve a place in the public eye? How does the media choose what is newsworthy, and why does the public react the way it does? Drawing on examples of past challenges at the crossroads of neuroscience and society and on a case study of trends in one neurogenetic disease, autism, we explore the dialectical forces interacting in scientific and public discourse. PMID:17237806

  1. Epigenetics: An Emerging Framework for Advanced Practice Psychiatric Nursing.

    PubMed

    DeSocio, Janiece E

    2016-07-01

    The aims of this paper are to synthesize and report research findings from neuroscience and epigenetics that contribute to an emerging explanatory framework for advanced practice psychiatric nursing. Discoveries in neuroscience and epigenetics reveal synergistic mechanisms that support the integration of psychotherapy, psychopharmacology, and psychoeducation in practice. Advanced practice psychiatric nurses will benefit from an expanded knowledge base in neuroscience and epigenetics that informs and explains the scientific rationale for our integrated practice. © 2015 Wiley Periodicals, Inc.

  2. From Cognitive to Educational Neuroscience

    ERIC Educational Resources Information Center

    Dündar, Sefa; Ayvaz, Ülkü

    2016-01-01

    In recent years, several theoretical discussions as to the relationship between neuroscience and education have been held. Researchers have started to have cooperation over neuroscience and the interdisciplinary researches in which education is included. It was found that there were interactions between cognitive neuroscience and educational…

  3. Recent advances in basic neurosciences and brain disease: from synapses to behavior

    PubMed Central

    Bi, Guo-Qiang; Bolshakov, Vadim; Bu, Guojun; Cahill, Catherine M; Chen, Zhou-Feng; Collingridge, Graham L; Cooper, Robin L; Coorssen, Jens R; El-Husseini, Alaa; Galhardo, Vasco; Gan, Wen-Biao; Gu, Jianguo; Inoue, Kazuhide; Isaac, John; Iwata, Koichi; Jia, Zhengping; Kaang, Bong-Kiun; Kawamata, Mikito; Kida, Satoshi; Klann, Eric; Kohno, Tatsuro; Li, Min; Li, Xiao-Jiang; MacDonald, John F; Nader, Karim; Nguyen, Peter V; Oh, Uhtaek; Ren, Ke; Roder, John C; Salter, Michael W; Song, Weihong; Sugita, Shuzo; Tang, Shao-Jun; Tao, Yuanxiang; Wang, Yu Tian; Woo, Newton; Woodin, Melanie A; Yan, Zhen; Yoshimura, Megumu; Xu, Ming; Xu, Zao C; Zhang, Xia; Zhen, Mei; Zhuo, Min

    2006-01-01

    Understanding basic neuronal mechanisms hold the hope for future treatment of brain disease. The 1st international conference on synapse, memory, drug addiction and pain was held in beautiful downtown Toronto, Canada on August 21–23, 2006. Unlike other traditional conferences, this new meeting focused on three major aims: (1) to promote new and cutting edge research in neuroscience; (2) to encourage international information exchange and scientific collaborations; and (3) to provide a platform for active scientists to discuss new findings. Up to 64 investigators presented their recent discoveries, from basic synaptic mechanisms to genes related to human brain disease. This meeting was in part sponsored by Molecular Pain, together with University of Toronto (Faculty of Medicine, Department of Physiology as well as Center for the Study of Pain). Our goal for this meeting is to promote future active scientific collaborations and improve human health through fundamental basic neuroscience researches. The second international meeting on Neurons and Brain Disease will be held in Toronto (August 29–31, 2007). PMID:17196111

  4. Understanding and accounting for relational context is critical for social neuroscience

    PubMed Central

    Clark-Polner, Elizabeth; Clark, Margaret S.

    2014-01-01

    Scientists have increasingly turned to the brain and to neuroscience more generally to further an understanding of social and emotional judgments and behavior. Yet, many neuroscientists (certainly not all) do not consider the role of relational context. Moreover, most have not examined the impact of relational context in a manner that takes advantage of conceptual and empirical advances in relationship science. Here we emphasize that: (1) all social behavior takes place, by definition, within the context of a relationship (even if that relationship is a new one with a stranger), and (2) relational context shapes not only social thoughts, feelings, and behaviors, but also some seemingly non-social thoughts, feelings, and behaviors in profound ways. We define relational context and suggest that accounting for it in the design and interpretation of neuroscience research is essential to the development of a coherent, generalizable neuroscience of social behavior. We make our case in two ways: (a) we describe some existing neuroscience research in three substantive areas (perceiving and reacting to others’ emotions, providing help, and receiving help) that already has documented the powerful impact of relational context. (b) We describe some other neuroscience research from these same areas that has not taken relational context into account. Then, using findings from social and personality psychology, we make a case that different results almost certainly would have been found had the research been conducted in a different relational context. We neither attempt to review all evidence that relational context shapes neuroscience findings nor to put forward a theoretical analysis of all the ways relational context ought to shape neuroscience findings. Our goal is simply to urge greater and more systematic consideration of relational context in neuroscientific research. PMID:24723868

  5. Understanding and accounting for relational context is critical for social neuroscience.

    PubMed

    Clark-Polner, Elizabeth; Clark, Margaret S

    2014-01-01

    Scientists have increasingly turned to the brain and to neuroscience more generally to further an understanding of social and emotional judgments and behavior. Yet, many neuroscientists (certainly not all) do not consider the role of relational context. Moreover, most have not examined the impact of relational context in a manner that takes advantage of conceptual and empirical advances in relationship science. Here we emphasize that: (1) all social behavior takes place, by definition, within the context of a relationship (even if that relationship is a new one with a stranger), and (2) relational context shapes not only social thoughts, feelings, and behaviors, but also some seemingly non-social thoughts, feelings, and behaviors in profound ways. We define relational context and suggest that accounting for it in the design and interpretation of neuroscience research is essential to the development of a coherent, generalizable neuroscience of social behavior. We make our case in two ways: (a) we describe some existing neuroscience research in three substantive areas (perceiving and reacting to others' emotions, providing help, and receiving help) that already has documented the powerful impact of relational context. (b) We describe some other neuroscience research from these same areas that has not taken relational context into account. Then, using findings from social and personality psychology, we make a case that different results almost certainly would have been found had the research been conducted in a different relational context. We neither attempt to review all evidence that relational context shapes neuroscience findings nor to put forward a theoretical analysis of all the ways relational context ought to shape neuroscience findings. Our goal is simply to urge greater and more systematic consideration of relational context in neuroscientific research.

  6. Empathy Examined From Perspectives of Neuroscience and Artistic Imagination.

    PubMed

    Franklin, Michael A; Grossenbacher, Peter G

    2016-01-01

    This response to Ian E. Wickramasekera II's article, Mysteries of Hypnosis and the Self Are Revealed by the Psychology and Neuroscience of Empathy, is addressed from a joint perspective on consciousness comprising two related orientations: neuroscience and artistic imagination. We find that the central importance of empathy to empathic involvement theory (Wickramasekera II, 2015) reflects the pivotal nature of empathy in the brain and in the relational exchange implicit in the psychotherapeutic process, particularly when using art in therapy. We offer a preliminary unpacking of the roles related to key psychological processes, such as imagination, that are implicated in clinical uses of verbal and visual empathic resonance.

  7. Brain-Based Learning and Educational Neuroscience: Boundary Work

    ERIC Educational Resources Information Center

    Edelenbosch, Rosanne; Kupper, Frank; Krabbendam, Lydia; Broerse, Jacqueline E. W.

    2015-01-01

    Much attention has been given to "bridging the gap" between neuroscience and educational practice. In order to gain better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on…

  8. Decreasing Neuroscience Anxiety in an Introductory Neuroscience Course: An Analysis Using Data from a Modified Science Anxiety Scale

    PubMed Central

    Birkett, Melissa; Shelton, Kerisa

    2011-01-01

    To determine whether participation in a neuroscience course reduced neuroscience anxiety, a modified version of the Science Anxiety Scale was administered to students at the beginning and end of an introductory course. Neuroscience anxiety scores were significantly reduced at the end of the course and correlated with higher final grades. Reduced neuroscience anxiety did not correlate with reduced science anxiety, suggesting that neuroscience anxiety is a distinct subtype of anxiety. PMID:23626491

  9. Power-up: A Reanalysis of 'Power Failure' in Neuroscience Using Mixture Modeling

    PubMed Central

    Wood, John

    2017-01-01

    Recently, evidence for endemically low statistical power has cast neuroscience findings into doubt. If low statistical power plagues neuroscience, then this reduces confidence in the reported effects. However, if statistical power is not uniformly low, then such blanket mistrust might not be warranted. Here, we provide a different perspective on this issue, analyzing data from an influential study reporting a median power of 21% across 49 meta-analyses (Button et al., 2013). We demonstrate, using Gaussian mixture modeling, that the sample of 730 studies included in that analysis comprises several subcomponents so the use of a single summary statistic is insufficient to characterize the nature of the distribution. We find that statistical power is extremely low for studies included in meta-analyses that reported a null result and that it varies substantially across subfields of neuroscience, with particularly low power in candidate gene association studies. Therefore, whereas power in neuroscience remains a critical issue, the notion that studies are systematically underpowered is not the full story: low power is far from a universal problem. SIGNIFICANCE STATEMENT Recently, researchers across the biomedical and psychological sciences have become concerned with the reliability of results. One marker for reliability is statistical power: the probability of finding a statistically significant result given that the effect exists. Previous evidence suggests that statistical power is low across the field of neuroscience. Our results present a more comprehensive picture of statistical power in neuroscience: on average, studies are indeed underpowered—some very seriously so—but many studies show acceptable or even exemplary statistical power. We show that this heterogeneity in statistical power is common across most subfields in neuroscience. This new, more nuanced picture of statistical power in neuroscience could affect not only scientific understanding, but

  10. Power-up: A Reanalysis of 'Power Failure' in Neuroscience Using Mixture Modeling.

    PubMed

    Nord, Camilla L; Valton, Vincent; Wood, John; Roiser, Jonathan P

    2017-08-23

    Recently, evidence for endemically low statistical power has cast neuroscience findings into doubt. If low statistical power plagues neuroscience, then this reduces confidence in the reported effects. However, if statistical power is not uniformly low, then such blanket mistrust might not be warranted. Here, we provide a different perspective on this issue, analyzing data from an influential study reporting a median power of 21% across 49 meta-analyses (Button et al., 2013). We demonstrate, using Gaussian mixture modeling, that the sample of 730 studies included in that analysis comprises several subcomponents so the use of a single summary statistic is insufficient to characterize the nature of the distribution. We find that statistical power is extremely low for studies included in meta-analyses that reported a null result and that it varies substantially across subfields of neuroscience, with particularly low power in candidate gene association studies. Therefore, whereas power in neuroscience remains a critical issue, the notion that studies are systematically underpowered is not the full story: low power is far from a universal problem. SIGNIFICANCE STATEMENT Recently, researchers across the biomedical and psychological sciences have become concerned with the reliability of results. One marker for reliability is statistical power: the probability of finding a statistically significant result given that the effect exists. Previous evidence suggests that statistical power is low across the field of neuroscience. Our results present a more comprehensive picture of statistical power in neuroscience: on average, studies are indeed underpowered-some very seriously so-but many studies show acceptable or even exemplary statistical power. We show that this heterogeneity in statistical power is common across most subfields in neuroscience. This new, more nuanced picture of statistical power in neuroscience could affect not only scientific understanding, but potentially

  11. Neuroscience-informed psychoeducation for addiction medicine: A neurocognitive perspective

    PubMed Central

    Ekhtiari, Hamed; Rezapour, Tara; Aupperle, Robin L.; Paulus, Martin P.

    2018-01-01

    Psychoeducation (PE) is defined as an intervention with systematic, structured, and didactic knowledge transfer for an illness and its treatment, integrating emotional and motivational aspects to enable patients to cope with the illness and to improve its treatment adherence and efficacy. PE is considered an important component of treatment in both medical and psychiatric disorders, especially for mental health disorders associated with lack of insight, such as alcohol and substance use disorders (ASUDs). New advancements in neuroscience have shed light on how various aspects of ASUDs may relate to neural processes. However, the actual impact of neuroscience in the real-life clinical practice of addiction medicine is minimal. In this chapter, we provide a perspective on how PE in addiction medicine can be informed by neuroscience in two dimensions: content (knowledge we transfer in PE) and structure (methods we use to deliver PE). The content of conventional PE targets knowledge about etiology of illness, treatment process, adverse effects of prescribed medications, coping strategies, family education, and life skill training. Adding neuroscience evidence to the content of PE could be helpful in communicating not only the impact of drug use but also the beneficial impact of various treatments (i.e., on brain function), thus enhancing motivation for compliance and further destigmatizing their symptoms. PE can also be optimized in its “structure” by implicitly and explicitly engaging different neurocognitive processes, including salience/attention, memory, and self-awareness. There are many interactions between these two dimensions, structure and content, in the delivery of neuroscience-informed psychoeducation (NIPE). We explore these interactions in the development of a cartoon-based NIPE to promote brain recovery during addiction treatment as a part of the brain awareness for addiction recovery initiative. PMID:29054291

  12. Neuroscience-informed psychoeducation for addiction medicine: A neurocognitive perspective.

    PubMed

    Ekhtiari, Hamed; Rezapour, Tara; Aupperle, Robin L; Paulus, Martin P

    2017-01-01

    Psychoeducation (PE) is defined as an intervention with systematic, structured, and didactic knowledge transfer for an illness and its treatment, integrating emotional and motivational aspects to enable patients to cope with the illness and to improve its treatment adherence and efficacy. PE is considered an important component of treatment in both medical and psychiatric disorders, especially for mental health disorders associated with lack of insight, such as alcohol and substance use disorders (ASUDs). New advancements in neuroscience have shed light on how various aspects of ASUDs may relate to neural processes. However, the actual impact of neuroscience in the real-life clinical practice of addiction medicine is minimal. In this chapter, we provide a perspective on how PE in addiction medicine can be informed by neuroscience in two dimensions: content (knowledge we transfer in PE) and structure (methods we use to deliver PE). The content of conventional PE targets knowledge about etiology of illness, treatment process, adverse effects of prescribed medications, coping strategies, family education, and life skill training. Adding neuroscience evidence to the content of PE could be helpful in communicating not only the impact of drug use but also the beneficial impact of various treatments (i.e., on brain function), thus enhancing motivation for compliance and further destigmatizing their symptoms. PE can also be optimized in its "structure" by implicitly and explicitly engaging different neurocognitive processes, including salience/attention, memory, and self-awareness. There are many interactions between these two dimensions, structure and content, in the delivery of neuroscience-informed psychoeducation (NIPE). We explore these interactions in the development of a cartoon-based NIPE to promote brain recovery during addiction treatment as a part of the brain awareness for addiction recovery initiative. © 2017 Elsevier B.V. All rights reserved.

  13. Decision Neuroscience: Neuroeconomics

    PubMed Central

    Smith, David V.; Huettel, Scott A.

    2012-01-01

    Few aspects of human cognition are more personal than the choices we make. Our decisions – from the mundane to the impossibly complex – continually shape the courses of our lives. In recent years, researchers have applied the tools of neuroscience to understand the mechanisms that underlie decision making, as part of the new discipline of decision neuroscience. A primary goal of this emerging field has been to identify the processes that underlie specific decision variables, including the value of rewards, the uncertainty associated with particular outcomes, and the consequences of social interactions. Recent work suggests potential neural substrates that integrate these variables, potentially reflecting a common neural currency for value, to facilitate value comparisons. Despite the successes of decision neuroscience research for elucidating brain mechanisms, significant challenges remain. These include building new conceptual frameworks for decision making, integrating research findings across disparate techniques and species, and extending results from neuroscience to shape economic theory. To overcome these challenges, future research will likely focus on interpersonal variability in decision making, with the eventual goal of creating biologically plausible models for individual choice. PMID:22754602

  14. Methodological Problems on the Way to Integrative Human Neuroscience.

    PubMed

    Kotchoubey, Boris; Tretter, Felix; Braun, Hans A; Buchheim, Thomas; Draguhn, Andreas; Fuchs, Thomas; Hasler, Felix; Hastedt, Heiner; Hinterberger, Thilo; Northoff, Georg; Rentschler, Ingo; Schleim, Stephan; Sellmaier, Stephan; Tebartz Van Elst, Ludger; Tschacher, Wolfgang

    2016-01-01

    Neuroscience is a multidisciplinary effort to understand the structures and functions of the brain and brain-mind relations. This effort results in an increasing amount of data, generated by sophisticated technologies. However, these data enhance our descriptive knowledge , rather than improve our understanding of brain functions. This is caused by methodological gaps both within and between subdisciplines constituting neuroscience, and the atomistic approach that limits the study of macro- and mesoscopic issues. Whole-brain measurement technologies do not resolve these issues, but rather aggravate them by the complexity problem. The present article is devoted to methodological and epistemic problems that obstruct the development of human neuroscience. We neither discuss ontological questions (e.g., the nature of the mind) nor review data, except when it is necessary to demonstrate a methodological issue. As regards intradisciplinary methodological problems, we concentrate on those within neurobiology (e.g., the gap between electrical and chemical approaches to neurophysiological processes) and psychology (missing theoretical concepts). As regards interdisciplinary problems, we suggest that core disciplines of neuroscience can be integrated using systemic concepts that also entail human-environment relations. We emphasize the necessity of a meta-discussion that should entail a closer cooperation with philosophy as a discipline of systematic reflection. The atomistic reduction should be complemented by the explicit consideration of the embodiedness of the brain and the embeddedness of humans. The discussion is aimed at the development of an explicit methodology of integrative human neuroscience , which will not only link different fields and levels, but also help in understanding clinical phenomena.

  15. Methodological Problems on the Way to Integrative Human Neuroscience

    PubMed Central

    Kotchoubey, Boris; Tretter, Felix; Braun, Hans A.; Buchheim, Thomas; Draguhn, Andreas; Fuchs, Thomas; Hasler, Felix; Hastedt, Heiner; Hinterberger, Thilo; Northoff, Georg; Rentschler, Ingo; Schleim, Stephan; Sellmaier, Stephan; Tebartz Van Elst, Ludger; Tschacher, Wolfgang

    2016-01-01

    Neuroscience is a multidisciplinary effort to understand the structures and functions of the brain and brain-mind relations. This effort results in an increasing amount of data, generated by sophisticated technologies. However, these data enhance our descriptive knowledge, rather than improve our understanding of brain functions. This is caused by methodological gaps both within and between subdisciplines constituting neuroscience, and the atomistic approach that limits the study of macro- and mesoscopic issues. Whole-brain measurement technologies do not resolve these issues, but rather aggravate them by the complexity problem. The present article is devoted to methodological and epistemic problems that obstruct the development of human neuroscience. We neither discuss ontological questions (e.g., the nature of the mind) nor review data, except when it is necessary to demonstrate a methodological issue. As regards intradisciplinary methodological problems, we concentrate on those within neurobiology (e.g., the gap between electrical and chemical approaches to neurophysiological processes) and psychology (missing theoretical concepts). As regards interdisciplinary problems, we suggest that core disciplines of neuroscience can be integrated using systemic concepts that also entail human-environment relations. We emphasize the necessity of a meta-discussion that should entail a closer cooperation with philosophy as a discipline of systematic reflection. The atomistic reduction should be complemented by the explicit consideration of the embodiedness of the brain and the embeddedness of humans. The discussion is aimed at the development of an explicit methodology of integrative human neuroscience, which will not only link different fields and levels, but also help in understanding clinical phenomena. PMID:27965548

  16. School-Based Sex Education and Neuroscience: What We Know About Sex, Romance, Marriage, and Adolescent Brain Development.

    PubMed

    Ballonoff Suleiman, Ahna; Johnson, Megan; Shirtcliff, Elizabeth A; Galván, Adriana

    2015-08-01

    Many school-based abstinence-only sex education curricula state that sexual activity outside of marriage is likely to have harmful psychological effects. Recent advances in neuroscience have expanded our understanding of the neural underpinnings of romantic love, marriage, sexual desire, and sexual behavior and improved our understanding of adolescent brain development. In this article, we review recent advances in neuroscience and clarify what is known about the link between neural development and adolescent romantic and sexual behavior and what opportunities exist for future research. Whereas the evidence from neuroscience does not yet allow for clear conclusions about the cost or benefits of early romantic relationships and sexual behavior, it does indicate that providing developmentally appropriate education contributes to lifelong sexual health. Developing policies and practices for school-based sex education that reflect current research will best support the sexual and reproductive health of adolescents throughout their lives. © 2015, American School Health Association.

  17. Towards new human rights in the age of neuroscience and neurotechnology.

    PubMed

    Ienca, Marcello; Andorno, Roberto

    2017-12-01

    Rapid advancements in human neuroscience and neurotechnology open unprecedented possibilities for accessing, collecting, sharing and manipulating information from the human brain. Such applications raise important challenges to human rights principles that need to be addressed to prevent unintended consequences. This paper assesses the implications of emerging neurotechnology applications in the context of the human rights framework and suggests that existing human rights may not be sufficient to respond to these emerging issues. After analysing the relationship between neuroscience and human rights, we identify four new rights that may become of great relevance in the coming decades: the right to cognitive liberty, the right to mental privacy, the right to mental integrity, and the right to psychological continuity.

  18. Interoperability of Neuroscience Modeling Software

    PubMed Central

    Cannon, Robert C.; Gewaltig, Marc-Oliver; Gleeson, Padraig; Bhalla, Upinder S.; Cornelis, Hugo; Hines, Michael L.; Howell, Fredrick W.; Muller, Eilif; Stiles, Joel R.; Wils, Stefan; De Schutter, Erik

    2009-01-01

    Neuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse. Development practices and technologies that support interoperability between software systems therefore play an important role in making the modeling process more efficient and in ensuring that published models can be reliably and easily reused. Various forms of interoperability are possible including the development of portable model description standards, the adoption of common simulation languages or the use of standardized middleware. Each of these approaches finds applications within the broad range of current modeling activity. However more effort is required in many areas to enable new scientific questions to be addressed. Here we present the conclusions of the “Neuro-IT Interoperability of Simulators” workshop, held at the 11th computational neuroscience meeting in Edinburgh (July 19-20 2006; http://www.cnsorg.org). We assess the current state of interoperability of neural simulation software and explore the future directions that will enable the field to advance. PMID:17873374

  19. The BRAIN Initiative: developing technology to catalyse neuroscience discovery.

    PubMed

    Jorgenson, Lyric A; Newsome, William T; Anderson, David J; Bargmann, Cornelia I; Brown, Emery N; Deisseroth, Karl; Donoghue, John P; Hudson, Kathy L; Ling, Geoffrey S F; MacLeish, Peter R; Marder, Eve; Normann, Richard A; Sanes, Joshua R; Schnitzer, Mark J; Sejnowski, Terrence J; Tank, David W; Tsien, Roger Y; Ugurbil, Kamil; Wingfield, John C

    2015-05-19

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions.

  20. The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    PubMed Central

    Jorgenson, Lyric A.; Newsome, William T.; Anderson, David J.; Bargmann, Cornelia I.; Brown, Emery N.; Deisseroth, Karl; Donoghue, John P.; Hudson, Kathy L.; Ling, Geoffrey S. F.; MacLeish, Peter R.; Marder, Eve; Normann, Richard A.; Sanes, Joshua R.; Schnitzer, Mark J.; Sejnowski, Terrence J.; Tank, David W.; Tsien, Roger Y.; Ugurbil, Kamil; Wingfield, John C.

    2015-01-01

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  1. Mathematical methods in medicine: neuroscience, cardiology and pathology

    PubMed Central

    Amigó, José M.

    2017-01-01

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507240

  2. Mathematical methods in medicine: neuroscience, cardiology and pathology.

    PubMed

    Amigó, José M; Small, Michael

    2017-06-28

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

  3. The future of psychiatry as clinical neuroscience.

    PubMed

    Reynolds, Charles F; Lewis, David A; Detre, Thomas; Schatzberg, Alan F; Kupfer, David J

    2009-04-01

    Psychiatry includes the assessment, treatment, and prevention of complex brain disorders, such as depression, bipolar disorder, anxiety disorders, schizophrenia, developmental disorders (e.g., autism), and neurodegenerative disorders (e.g., Alzheimer dementia). Its core mission is to prevent and alleviate the distress and impairment caused by these disorders, which account for a substantial part of the global burden of illness-related disability. Psychiatry is grounded in clinical neuroscience. Its core mission, now and in the future, is best served within this context because advances in assessment, treatment, and prevention of brain disorders are likely to originate from studies of etiology and pathophysiology based in clinical and translational neuroscience. To ensure its broad public health relevance in the future, psychiatry must also bridge science and service, ensuring that those who need the benefits of its science are also its beneficiaries. To do so effectively, psychiatry as clinical neuroscience must strengthen its partnerships with the disciplines of public health (including epidemiology), community and behavioral health science, and health economics.The authors present a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of psychiatry and identify strategies for strengthening its future and increasing its relevance to public health and the rest of medicine. These strategies encompass new approaches to strengthening the relationship between psychiatry and neurology, financing psychiatry's mission, emphasizing early and sustained multidisciplinary training (research and clinical), bolstering the academic infrastructure, and reorganizing and refinancing mental health services both for preventive intervention and cost-effective chronic disease management.

  4. The Future of Psychiatry as Clinical Neuroscience

    PubMed Central

    Reynolds, Charles F.; Lewis, David A.; Detre, Thomas; Schatzberg, Alan F.; Kupfer, David J.

    2009-01-01

    Psychiatry includes the assessment, treatment, and prevention of complex brain disorders, such as depression, bipolar disorder, anxiety disorders, schizophrenia, developmental disorders (e.g., autism), and neurodegenerative disorders (e.g., Alzheimer dementia). Its core mission is to prevent and alleviate the distress and impairment caused by these disorders, which account for a substantial part of the global burden of illness-related disability. Psychiatry is grounded in clinical neuroscience. Its core mission, now and in the future, is best served within this context because advances in assessment, treatment, and prevention of brain disorders are likely to originate from studies of etiology and pathophysiology based in clinical and translational neuroscience. To ensure its broad public health relevance in the future, psychiatry must also bridge science and service, ensuring that those who need the benefits of its science are also its beneficiaries. To do so effectively, psychiatry as clinical neuroscience must strengthen its partnerships with the disciplines of public health (including epidemiology), community and behavioral health science, and health economics. The authors present a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of psychiatry and identify strategies for strengthening its future and increasing its relevance to public health and the rest of medicine. These strategies encompass new approaches to strengthening the relationship between psychiatry and neurology, financing psychiatry’s mission, emphasizing early and sustained multidisciplinary training (research and clinical), bolstering the academic infrastructure, and reorganizing and refinancing mental health services both for preventive intervention and cost-effective chronic disease management. PMID:19318776

  5. Introduction to Natural Resources: Advanced Applications.

    ERIC Educational Resources Information Center

    Crummett, Dan

    This guide, which is designed for use with student and teacher guides to a 10-unit secondary-level course in natural resources, contains a series of student supplements and advanced assignment and job sheets that provide students with additional opportunities to explore the following areas of natural resources and conservation education: outdoor…

  6. Neuroscience and approach/avoidance personality traits: a two stage (valuation-motivation) approach.

    PubMed

    Corr, Philip J; McNaughton, Neil

    2012-11-01

    Many personality theories link specific traits to the sensitivities of the neural systems that control approach and avoidance. But there is no consensus on the nature of these systems. Here we combine recent advances in economics and neuroscience to provide a more solid foundation for a neuroscience of approach/avoidance personality. We propose a two-stage integration of valuation (loss/gain) sensitivities with motivational (approach/avoidance/conflict) sensitivities. Our key conclusions are: (1) that valuation of appetitive and aversive events (e.g. gain and loss as studied by behavioural economists) is an independent perceptual input stage--with the economic phenomenon of loss aversion resulting from greater negative valuation sensitivity compared to positive valuation sensitivity; (2) that valuation of an appetitive stimulus then interacts with a contingency of presentation or omission to generate a motivational 'attractor' or 'repulsor', respectively (vice versa for an aversive stimulus); (3) the resultant behavioural tendencies to approach or avoid have distinct sensitivities to those of the valuation systems; (4) while attractors and repulsors can reinforce new responses they also, more usually, elicit innate or previously conditioned responses and so the perception/valuation-motivation/action complex is best characterised as acting as a 'reinforcer' not a 'reinforcement'; and (5) approach-avoidance conflict must be viewed as activating a third motivation system that is distinct from the basic approach and avoidance systems. We provide examples of methods of assessing each of the constructs within approach-avoidance theories and of linking these constructs to personality measures. We sketch a preliminary five-element reinforcer sensitivity theory (RST-5) as a first step in the integration of existing specific approach-avoidance theories into a coherent neuroscience of personality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Educational Neuroscience: Neuroethical Considerations

    ERIC Educational Resources Information Center

    Lalancette, Helene; Campbell, Stephen R.

    2012-01-01

    Research design and methods in educational neuroscience involve using neuroscientific tools such as brain image technologies to investigate cognitive functions and inform educational practices. The ethical challenges raised by research in social neuroscience have become the focus of neuroethics, a sub-discipline of bioethics. More specifically…

  8. Neuroimaging and psychophysiological measurement in organizational research: an agenda for research in organizational cognitive neuroscience.

    PubMed

    Lee, Nick; Chamberlain, Laura

    2007-11-01

    Although organizational research has made tremendous strides in the last century, recent advances in neuroscience and the imaging of functional brain activity remain underused. In fact, even the use of well-established psychophysiological measurement tools is comparatively rare. Following the lead of social cognitive neuroscience, in this review, we conceptualize organizational cognitive neuroscience as a field dedicated to exploring the processes within the brain that underlie or influence human decisions, behaviors, and interactions either (a) within organizations or (b) in response to organizational manifestations or institutions. We discuss organizational cognitive neuroscience, bringing together work that may previously have been characterized rather atomistically, and provide a brief overview of individual methods that may be of use. Subsequently, we discuss the possible convergence and integration of the different neuroimaging and psychophysiological measurement modalities. A brief review of prior work in the field shows a significant need for a more coherent and theory-driven approach to organizational cognitive neuroscience. In response, we discuss a recent example of such work, along with three hypothetical case studies that exemplify the link between organizational and psychological theory and neuroscientific methods.

  9. Theory and methods in cultural neuroscience

    PubMed Central

    Hariri, Ahmad R.; Harada, Tokiko; Mano, Yoko; Sadato, Norihiro; Parrish, Todd B.; Iidaka, Tetsuya

    2010-01-01

    Cultural neuroscience is an emerging research discipline that investigates cultural variation in psychological, neural and genomic processes as a means of articulating the bidirectional relationship of these processes and their emergent properties. Research in cultural neuroscience integrates theory and methods from anthropology, cultural psychology, neuroscience and neurogenetics. Here, we review a set of core theoretical and methodological challenges facing researchers when planning and conducting cultural neuroscience studies, and provide suggestions for overcoming these challenges. In particular, we focus on the problems of defining culture and culturally appropriate experimental tasks, comparing neuroimaging data acquired from different populations and scanner sites and identifying functional genetic polymorphisms relevant to culture. Implications of cultural neuroscience research for addressing current issues in population health disparities are discussed. PMID:20592044

  10. Getting to the Heart of the Brain: Using Cognitive Neuroscience to Explore the Nature of Human Ability and Performance

    ERIC Educational Resources Information Center

    Kalbfleisch, M. Layne

    2008-01-01

    This article serves as a primer to make the neuroimaging literature more accessible to the lay reader and to increase the evaluative capability of the educated consumer of cognitive neuroscience. This special issue gives gifted education practitioners and researchers a primary source view of current neuroscience relevant to modern definitions and…

  11. Neuroscience from a mathematical perspective: key concepts, scales and scaling hypothesis, universality.

    PubMed

    van Hemmen, J Leo

    2014-10-01

    This article analyzes the question of whether neuroscience allows for mathematical descriptions and whether an interaction between experimental and theoretical neuroscience can be expected to benefit both of them. It is argued that a mathematization of natural phenomena never happens by itself. First, appropriate key concepts must be found that are intimately connected with the phenomena one wishes to describe and explain mathematically. Second, the scale on, and not beyond, which a specific description can hold must be specified. Different scales allow for different conceptual and mathematical descriptions. This is the scaling hypothesis. Third, can a mathematical description be universally valid and, if so, how? Here we put forth the argument that universals also exist in theoretical neuroscience, that evolution proves the rule, and that theoretical neuroscience is a domain with still lots of space for new developments initiated by an intensive interaction with experiment. Finally, major insight is provided by a careful analysis of the way in which particular brain structures respond to perceptual input and in so doing induce action in an animal's surroundings.

  12. Fractals in the neurosciences, Part II: clinical applications and future perspectives.

    PubMed

    Di Ieva, Antonio; Esteban, Francisco J; Grizzi, Fabio; Klonowski, Wlodzimierz; Martín-Landrove, Miguel

    2015-02-01

    It has been ascertained that the human brain is a complex system studied at multiple scales, from neurons and microcircuits to macronetworks. The brain is characterized by a hierarchical organization that gives rise to its highly topological and functional complexity. Over the last decades, fractal geometry has been shown as a universal tool for the analysis and quantification of the geometric complexity of natural objects, including the brain. The fractal dimension has been identified as a quantitative parameter for the evaluation of the roughness of neural structures, the estimation of time series, and the description of patterns, thus able to discriminate different states of the brain in its entire physiopathological spectrum. Fractal-based computational analyses have been applied to the neurosciences, particularly in the field of clinical neurosciences including neuroimaging and neuroradiology, neurology and neurosurgery, psychiatry and psychology, and neuro-oncology and neuropathology. After a review of the basic concepts of fractal analysis and its main applications to the basic neurosciences in part I of this series, here, we review the main applications of fractals to the clinical neurosciences for a holistic approach towards a fractal geometry model of the brain. © The Author(s) 2013.

  13. Psychoanalysis and social cognitive neuroscience: a new framework for a dialogue.

    PubMed

    Georgieff, Nicolas

    2011-12-01

    The fields of psychoanalysis and neuroscience use different methods of description, analysis and comprehension of reality, and because each is based on a different methodology, each approach constructs a different representation of reality. Thus, psychoanalysis could contribute to a general psychology involving neuroscience to the extent that a "psychoanalytical psychology" (the theory of mental functioning that is extrapolated from psychoanalytical practice) defines natural objects of study (mind functions) for a multidisciplinary approach. However, the so called "naturalisation" of psychoanalytical concepts (metapsychology) does not imply the reduction of these concepts to biology; rather, it suggests a search for compatibility between psychoanalytical concepts and neuroscientific description. Such compatibility would mean the search for common objects that could be described from either a psychoanalytic or a neuroscientific point of view. We suggest that inter-subjectivity, empathy or "co-thinking" processes, from early development to the psychoanalytic relationship or the interaction between the patient and the analyst, could be such a common object for cognitive social neuroscience and psychoanalysis. Together, neuroscience and psychoanalysis could then contribute to a multidisciplinary approach of psychic inter- or co-activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Using developmental cognitive neuroscience to study behavioral and attentional control.

    PubMed

    Astle, Duncan E; Scerif, Gaia

    2009-03-01

    Adult cognitive neuroscience employs a wide variety of techniques to investigate a broad range of behavioral and cognitive functions. One prominent area of study is that of executive control, complemented by a smaller but growing literature exploring the developmental cognitive neuroscience of executive control. To date this approach has often compared children with specific developmental disorders, such as ADHD and ASD, with typically developing controls. Whilst these comparisons have done much to advance our understanding of the neural markers that underpin behavioral difficulties at specific time-points in development, we contend that they should leave developmental cognitive neuroscientists wanting. Studying the neural correlates of typical changes in executive control in their own right can reveal how different neural mechanisms characteristic of the adult end-state emerge, and it can therefore inform the adult cognitive neuroscience of executive control itself. The current review addresses the extent to which developmentalists and adult cognitive neuroscientists have tapped this common ground. Some very elegant investigations illustrate how seemingly common processes in adulthood present as separable in childhood, on the basis of their distinctive developmental trajectories. These demonstrations have implications not only for an understanding of changing behavior from infancy through childhood and adolescence into adulthood, but, moreover, for our grasp of the adult end-state per se. We contend that, if used appropriately, developmental cognitive neuroscience could enable us to construct a more mechanistic account of executive control.

  15. Invertebrate neuroscience and CephsInAction at the Mediterranean Society for Neuroscience Meeting Cagliari 2015.

    PubMed

    Holden-Dye, Lindy; Fiorito, Graziano; Ponte, Giovanna

    2015-12-01

    Invertebrate neuroscience, and in particular cephalopod research, is well represented in the Mediterranean region. Therefore, the recent meeting of the Mediterranean Society for Neuroscience in Santa Margherita di Pula, Sardinia (12-15 June 2015) provided an excellent opportunity for invertebrate contributions. Furthermore, the Chair of an EU COST Action for cephalopod research (FA1301; www.cephsinaction.org ), Giovanna Ponte, together with Graziano Fiorito from the Stazione Zoologica, Naples, aligned a meeting of research groups working in the field of cephalopod neurophysiology from across Europe to coincide with the neuroscience meeting. This provided an exciting forum for exchange of ideas. Here we provide brief highlights of both events and an explanation of the activities of the COST Action for the broader invertebrate neuroscience community.

  16. The neurosciences research program at MIT and the beginning of the modern field of neuroscience.

    PubMed

    Adelman, George

    2010-01-15

    The interdisciplinary field, "neuroscience," began at MIT in 1962 with the founding of the Neurosciences Research Program (NRP) by Francis O. Schmitt and a group of US and international scientists - physical, biological, medical, and behavioral - interested in understanding the brain basis of behavior and mind. They organized and held specialist meetings of basic topics in neuroscience, and the journal and book publications over the next 20 years, based on these meetings, helped establish the new field.

  17. [Neurosciences in Bordeaux].

    PubMed

    Le Moal, Michel; Battin, Jacques; Bioulac, Bernard; Bourgeois, Marc Louis; Henry, Patrick; Vital, Claude; Vincent, Jean-Didier

    2008-04-01

    The Bordeaux Neuroscience Institute brings together all the disciplines that constitute the clinical and experimental neurosciences. Outside of the Paris region, the Institute represents the largest community of researchers working on the nervous system. The aim of this brief historical piece is to describe how neuroscientists in Bordeaux are the heirs to a long neuropsychiatric tradition established by pioneers of national and international renown. This tradition has been maintained, without interruption, through many generations. The careers and scientific work of these great neurologists and psychiatrists are briefly evoked, and particularly those of A. Pitres, E. Régis and E. Azam in the 19th century; and, in the 20th century, J. Abadie, H. Verger and R. Cruchet. The determining influence of P Delmas-Marsalet (1898-1977), Professor of Neuropsychiatry, on the development of modern neurosciences in Bordeaux is recalled through his work, his teachings, and his numerous students.

  18. Addressing Literacy through Neuroscience

    ERIC Educational Resources Information Center

    Miller, Steve; Tallal, Paula A.

    2006-01-01

    Brain is the source of all human thoughts, feelings and emotions. Now the mysteries of the human brain are rapidly being elucidated by neuroscience research. For more than 150 years, neuroscience has held that most of the brain's functionality develops during critical periods in early childhood and that once past these critical periods, the window…

  19. Characterizing the Undergraduate Neuroscience Major in the U.S.: An Examination of Course Requirements and Institution-Program Associations

    PubMed Central

    Pinard-Welyczko, Kira M.; Garrison, Anna C. S.; Ramos, Raddy L.; Carter, Bradley S.

    2017-01-01

    Neuroscience is a rapidly expanding field, and many colleges and universities throughout the country are implementing new neuroscience degree programs. Despite the field’s growth and popularity, little data exists on the structural character of current undergraduate neuroscience programs. We collected and examined comprehensive data on existing undergraduate neuroscience programs, including academic major requirements and institution characteristics such as size, financial resources, and research opportunities. Thirty-one variables covering information about course requirements, department characteristics, financial resources, and institution characteristics were collected from 118 colleges and universities in the United States that offer a major titled “neuroscience” or “neural sciences.” Data was collected from publicly available sources (online databases, institutions’ neuroscience program websites) and then analyzed to define the average curriculum and identify associations between institution and program characteristics. Our results suggest that the average undergraduate neuroscience major requires 3 chemistry, 3 biology, 3 laboratory, 2–3 neuroscience, 1 physics, 1 math, and 2 psychology courses, suggesting that most neuroscience programs emphasize the natural sciences over the social sciences. Additionally, while 98% of institutions in our database offer research opportunities, only 31% required majors to perform research. Of note, 70% of institutions offering a neuroscience major do not have a neuroscience department, suggesting that most institutions offer neuroscience as an interdisciplinary major spanning several departments. Finally, smaller liberal arts colleges account for the majority of institutions offering a neuroscience major. Overall, these findings may be useful for informing groups interested in undergraduate neuroscience training, including institutions looking to improve or establish programs, students wanting to major in

  20. What multiple sclerosis could bring to cognitive neuroscience?

    PubMed

    Naccache, L

    2009-01-01

    The relevance of multiple sclerosis for cognitive neuroscience has evolved significantly during the last decades. After a relative and enduring disinterest, the 1980's has been marked by a first wave of studies aiming at characterizing the cognitive dysfunctions associated with this disease. Once identified, and grouped under the relatively vague and nonspecific concept of "subcorticofrontal syndrome", these cognitive symptoms had to wait until the end of the 1990's to give rise to a new and vigorous resurgence of attention. Interestingly, this genuine contemporary revival of interest originates in the promotion of the very same arguments that served until there to explain the weak investment of multiple sclerosis by neuropsychology and cognitive neuroscience. The early disseminated nature of brain lesions, their dynamic and unstable nature, the prevalence of white-matter lesions, and the alteration of non-modular aspects of cognition: all these arguments have discouraged neuropsychologists for a long time. Today, these very same specific properties of multiple sclerosis offer an extremely relevant model to explore cognitive dimensions of brain plasticity, to revivify the concept of disconnection in neuropsychology, and to evaluate some neuroscientific models of consciousness.

  1. Time to connect: bringing social context into addiction neuroscience.

    PubMed

    Heilig, Markus; Epstein, David H; Nader, Michael A; Shaham, Yavin

    2016-09-01

    Research on the neural substrates of drug reward, withdrawal and relapse has yet to be translated into significant advances in the treatment of addiction. One potential reason is that this research has not captured a common feature of human addiction: progressive social exclusion and marginalization. We propose that research aimed at understanding the neural mechanisms that link these processes to drug seeking and drug taking would help to make addiction neuroscience research more clinically relevant.

  2. The scientist-practitioner model: how do advances in clinical and cognitive neuroscience affect neuropsychology in the courtroom?

    PubMed

    Wood, Rodger Ll

    2009-01-01

    One of the core tenets of the scientist-practitioner model, slightly modified to make it applicable to modern neuropsychology, is that assessment procedures should be developed, applied, and interpreted in a relevant scientific framework. However, over the last 30 years, the general structure of a neuropsychological assessment has changed little, if at all. It has continued to focus mainly on the assessment of cognitive constructs such as intelligence, memory, attention, and perception. During the same time period, cognitive neuroscience has focused on integrative systems, largely controlled by frontal mechanisms, that allow individuals to utilize cognitive functions in an adaptive way, especially in the context of novel situations or when social stimuli are ambiguous. Consequently, the gulf between cognitive neuroscience and the practice of clinical neuropsychology has grown uncomfortably large. This article attempts to review some of the developments in cognitive and affective neuroscience that are relevant to an evaluation of neuropsychological abilities, especially in a medicolegal context, to determine whether conventional neuropsychological methods can be considered fit for purpose.

  3. Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience Research Biocomputation. To study human disorders of balance and space motion sickness. Shown here is a 3D reconstruction of a nerve ending in inner ear, nature's wiring of balance organs.

  4. New frontiers in the neuroscience of the sense of agency

    PubMed Central

    David, Nicole

    2012-01-01

    The sense that I am the author of my own actions, including the ability to distinguish my own from other people's actions, is a fundamental building block of our sense of self, on the one hand, and successful social interactions, on the other. Using cognitive neuroscience techniques, researchers have attempted to elucidate the functional basis of this intriguing phenomenon, also trying to explain pathological abnormalities of action awareness in certain psychiatric and neurological disturbances. Recent conceptual, technological, and methodological advances suggest several interesting and necessary new leads for future research on the neuroscience of agency. Here I will describe new frontiers for the field such as the need for novel and multifactorial paradigms, anatomically plausible network models for the sense of agency, investigations of the temporal dynamics during agentic processing and ecologically valid virtual reality (VR) applications. PMID:22670145

  5. Psychiatry as a Clinical Neuroscience Discipline

    PubMed Central

    Insel, Thomas R.; Quirion, Remi

    2006-01-01

    One of the fundamental insights emerging from contemporary neuroscience is that mental illnesses are brain disorders. In contrast to classic neurological illnesses that involve discrete brain lesions, mental disorders need to be addressed as disorders of distributed brain systems with symptoms forged by developmental and social experiences. While genomics will be important for revealing risk, and cellular neuroscience should provide targets for novel treatments for these disorders, it is most likely that the tools of systems neuroscience will yield the biomarkers needed to revolutionize psychiatric diagnosis and treatment. This essay considers the discoveries that will be necessary over the next two decades to translate the promise of modern neuroscience into strategies for prevention and cures of mental disorders. To deliver on this spectacular new potential, clinical neuroscience must be integrated into the discipline of psychiatry, thereby transforming current psychiatric training, tools, and practices. PMID:16264165

  6. The Contributions of Cognitive Neuroscience and Neuroimaging to Understanding Mechanisms of Behavior Change in Addiction

    PubMed Central

    Morgenstern, Jon; Naqvi, Nasir H.; Debellis, Robert; Breiter, Hans C.

    2013-01-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. PMID:23586452

  7. The contributions of cognitive neuroscience and neuroimaging to understanding mechanisms of behavior change in addiction.

    PubMed

    Morgenstern, Jon; Naqvi, Nasir H; Debellis, Robert; Breiter, Hans C

    2013-06-01

    In the last decade, there has been an upsurge of interest in understanding the mechanisms of behavior change (MOBC) and effective behavioral interventions as a strategy to improve addiction-treatment efficacy. However, there remains considerable uncertainty about how treatment research should proceed to address the MOBC issue. In this article, we argue that limitations in the underlying models of addiction that inform behavioral treatment pose an obstacle to elucidating MOBC. We consider how advances in the cognitive neuroscience of addiction offer an alternative conceptual and methodological approach to studying the psychological processes that characterize addiction, and how such advances could inform treatment process research. In addition, we review neuroimaging studies that have tested aspects of neurocognitive theories as a strategy to inform addiction therapies and discuss future directions for transdisciplinary collaborations across cognitive neuroscience and MOBC research. 2013 APA, all rights reserved

  8. Customizing microarrays for neuroscience drug discovery.

    PubMed

    Girgenti, Matthew J; Newton, Samuel S

    2007-08-01

    Microarray-based gene profiling has become the centerpiece of gene expression studies in the biological sciences. The ability to now interrogate the entire genome using a single chip demonstrates the progress in technology and instrumentation that has been made over the last two decades. Although this unbiased approach provides researchers with an immense quantity of data, obtaining meaningful insight is not possible without intensive data analysis and processing. Custom developed arrays have emerged as a viable and attractive alternative that can take advantage of this robust technology and tailor it to suit the needs and requirements of individual investigations. The ability to simplify data analysis, reduce noise and carefully optimize experimental conditions makes it a suitable tool that can be effectively utilized in neuroscience drug discovery efforts. Furthermore, incorporating recent advancements in fine focusing gene profiling to include specific cellular phenotypes can help resolve the complex cellular heterogeneity of the brain. This review surveys the use of microarray technology in neuroscience paying special attention to customized arrays and their potential in drug discovery. Novel applications of microarrays and ancillary techniques, such as laser microdissection, FAC sorting and RNA amplification, have also been discussed. The notion that a hypothesis-driven approach can be integrated into drug development programs is highlighted.

  9. Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience

    PubMed Central

    WANNER, A. A.; KIRSCHMANN, M. A.

    2015-01-01

    Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464

  10. Time to connect: bringing social context into addiction neuroscience

    PubMed Central

    Heilig, Markus; Epstein, David H.; Nader, Michael A.; Shaham, Yavin

    2017-01-01

    Research on the neural substrates of drug reward, withdrawal and relapse has yet to be translated into significant advances in the treatment of addiction. One potential reason is that this research has not captured a common feature of human addiction: progressive social exclusion and marginalization. We propose that research aimed at understanding the neural mechanisms that link these processes to drug seeking and drug taking would help to make addiction neuroscience research more clinically relevant. PMID:27277868

  11. Advances in natural language processing.

    PubMed

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area. Copyright © 2015, American Association for the Advancement of Science.

  12. Can Neuroscience Construct a Literate Gendered Culture?

    ERIC Educational Resources Information Center

    Whitehead, David

    2011-01-01

    The construction of boys as a gendered culture is not usually associated with neuroscience. Exceptions are publications and presentations by consultants on boys' education who adopt a "brain-based" perspective. From a neuroscience perspective, my analysis indicates the selective use of primary neuroscience research to construct and perpetuate…

  13. Primate comparative neuroscience using magnetic resonance imaging: promises and challenges

    PubMed Central

    Mars, Rogier B.; Neubert, Franz-Xaver; Verhagen, Lennart; Sallet, Jérôme; Miller, Karla L.; Dunbar, Robin I. M.; Barton, Robert A.

    2014-01-01

    Primate comparative anatomy is an established field that has made rich and substantial contributions to neuroscience. However, the labor-intensive techniques employed mean that most comparisons are often based on a small number of species, which limits the conclusions that can be drawn. In this review we explore how new developments in magnetic resonance imaging have the potential to apply comparative neuroscience to a much wider range of species, allowing it to realize an even greater potential. We discuss (1) new advances in the types of data that can be acquired, (2) novel methods for extracting meaningful measures from such data that can be compared between species, and (3) methods to analyse these measures within a phylogenetic framework. Together these developments will allow researchers to characterize the relationship between different brains, the ecological niche they occupy, and the behavior they produce in more detail than ever before. PMID:25339857

  14. Cognitive Neuroscience Meets Mathematics Education

    ERIC Educational Resources Information Center

    De Smedt, Bert; Ansari, Daniel; Grabner, Roland H.; Hannula, Minna M.; Schneider, Michael; Verschaffel, Lieven

    2010-01-01

    While there has been much theoretical debate concerning the relationship between neuroscience and education, researchers have started to collaborate across both disciplines, giving rise to the interdisciplinary research field of neuroscience and education. The present contribution tries to reflect on the challenges of this new field of empirical…

  15. The practical and principled problems with educational neuroscience.

    PubMed

    Bowers, Jeffrey S

    2016-10-01

    The core claim of educational neuroscience is that neuroscience can improve teaching in the classroom. Many strong claims are made about the successes and the promise of this new discipline. By contrast, I show that there are no current examples of neuroscience motivating new and effective teaching methods, and argue that neuroscience is unlikely to improve teaching in the future. The reasons are twofold. First, in practice, it is easier to characterize the cognitive capacities of children on the basis of behavioral measures than on the basis of brain measures. As a consequence, neuroscience rarely offers insights into instruction above and beyond psychology. Second, in principle, the theoretical motivations underpinning educational neuroscience are misguided, and this makes it difficult to design or assess new teaching methods on the basis of neuroscience. Regarding the design of instruction, it is widely assumed that remedial instruction should target the underlying deficits associated with learning disorders, and neuroscience is used to characterize the deficit. However, the most effective forms of instruction may often rely on developing compensatory (nonimpaired) skills. Neuroscience cannot determine whether instruction should target impaired or nonimpaired skills. More importantly, regarding the assessment of instruction, the only relevant issue is whether the child learns, as reflected in behavior. Evidence that the brain changed in response to instruction is irrelevant. At the same time, an important goal for neuroscience is to characterize how the brain changes in response to learning, and this includes learning in the classroom. Neuroscientists cannot help educators, but educators can help neuroscientists. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Culture and neuroscience: additive or synergistic?

    PubMed Central

    Dapretto, Mirella; Iacoboni, Marco

    2010-01-01

    The investigation of cultural phenomena using neuroscientific methods—cultural neuroscience (CN)—is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings. PMID:20083533

  17. The Neuroscience Peer Review Consortium

    PubMed Central

    Saper, Clifford B; Maunsell, John HR

    2009-01-01

    As the Neuroscience Peer Review Consortium (NPRC) ends its first year, it is worth looking back to see how the experiment has worked. In order to encourage dissemination of the details outlined in this Editorial, it will also be published in other journals in the Neuroscience Peer Review Consortium. PMID:19284614

  18. Trends in authorship based on gender and nationality in published neuroscience literature.

    PubMed

    Dubey, Divyanshu; Sawhney, Anshudha; Atluru, Aparna; Amritphale, Amod; Dubey, Archana; Trivedi, Jaya

    2016-01-01

    To evaluate the disparity in authorship based on gender and nationality of institutional affiliation among journals from developed and developing countries. Original articles from two neuroscience journals, with a 5 year impact factor >15 (Neuron and Nature Neuroscience) and from two neurology journals from a developing country (Neurology India and Annals of Indian Academy of Neurology) were categorized by gender and institutional affiliation of first and senior authors. Articles were further divided by the type of research (basic/translational/clinical), study/target population (adult/pediatrics/both) and field of neurology. Data was collected for the years 2002 and 2012. There are large disparities in authorship by women and from developing countries in high impact factor neuroscience journals. However, there was a non-statistical rise in female first and senior authorship over a 10 year period. Additionally there was a significant increase in first authorship from institutions based in developing countries in the two neuroscience journals examined (P < 0.05). In the two neurology journals based in India there was a significant increase in the number of articles published by international investigators between 2002 and 2012 (P < 0.05). Over the last decade, there has been a non-statistical increase in proportion of female first and senior authors, and a significant increase in authors from developing countries in high impact factor neuroscience journals. However they continue to constitute a minority. The disparity in authorship based on gender also exists in neurology journals based in a developing country (India).

  19. We Feel, Therefore We Learn: The Relevance of Affective and Social Neuroscience to Education

    ERIC Educational Resources Information Center

    Immordino-Yang, Mary Helen; Damasio, Antonio

    2007-01-01

    Recent advances in neuroscience are highlighting connections between emotion, social functioning, and decision making that have the potential to revolutionize our understanding of the role of affect in education. In particular, the neurobiological evidence suggests that the aspects of cognition that we recruit most heavily in schools, namely…

  20. Neurogaming Technology Meets Neuroscience Education: A Cost-Effective, Scalable, and Highly Portable Undergraduate Teaching Laboratory for Neuroscience

    PubMed Central

    de Wit, Bianca; Badcock, Nicholas A.; Grootswagers, Tijl; Hardwick, Katherine; Teichmann, Lina; Wehrman, Jordan; Williams, Mark; Kaplan, David Michael

    2017-01-01

    Active research-driven approaches that successfully incorporate new technology are known to catalyze student learning. Yet achieving these objectives in neuroscience education is especially challenging due to the prohibitive costs and technical demands of research-grade equipment. Here we describe a method that circumvents these factors by leveraging consumer EEG-based neurogaming technology to create an affordable, scalable, and highly portable teaching laboratory for undergraduate courses in neuroscience. This laboratory is designed to give students hands-on research experience, consolidate their understanding of key neuroscience concepts, and provide a unique real-time window into the working brain. Survey results demonstrate that students found the lab sessions engaging. Students also reported the labs enhanced their knowledge about EEG, their course material, and neuroscience research in general. PMID:28690430

  1. Advances in Light Microscopy for Neuroscience

    PubMed Central

    Wilt, Brian A.; Burns, Laurie D.; Ho, Eric Tatt Wei; Ghosh, Kunal K.; Mukamel, Eran A.

    2010-01-01

    Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists. PMID:19555292

  2. Laughter as a scientific problem: An adventure in sidewalk neuroscience.

    PubMed

    Provine, Robert R

    2016-06-01

    Laughter is a stereotyped, innate, human play vocalization that provides an ideal simple system for neurobehavioral analyses of the sort usually associated with such animal models as walking, wing-flapping, and bird song. Laughter research is in its early stages, where the frontiers are near and accessible to simple observational procedures termed "sidewalk neuroscience." The basic, nontechnical approach of describing the act of laughter and when humans do it has revealed a variety of phenomena of social and neurological significance. Findings include the acoustic structure of laughter, the minimal voluntary control of laughter, contagiousness, the "punctuation effect" that describes the placement of laughter in conversation, the dominance of speech over laughter, the role of breath control in the evolution of speech, the evolutionary trajectory of laughter in primates, and the role of laughter in human matching and mating. If one knows where to look and how to see, advances in neuroscience are accessible to anyone and require minimal resources. © 2015 Wiley Periodicals, Inc.

  3. A Social-Interactive Neuroscience Approach to Understanding the Developing Brain.

    PubMed

    Redcay, Elizabeth; Warnell, Katherine Rice

    2018-01-01

    From birth onward, social interaction is central to our everyday lives. Our ability to seek out social partners, flexibly navigate and learn from social interactions, and develop social relationships is critically important for our social and cognitive development and for our mental and physical health. Despite the importance of our social interactions, the neurodevelopmental bases of such interactions are underexplored, as most research examines social processing in noninteractive contexts. We begin this chapter with evidence from behavioral work and adult neuroimaging studies demonstrating how social-interactive context fundamentally alters cognitive and neural processing. We then highlight four brain networks that play key roles in social interaction and, drawing on existing developmental neuroscience literature, posit the functional roles these networks may play in social-interactive development. We conclude by discussing how a social-interactive neuroscience approach holds great promise for advancing our understanding of both typical and atypical social development. © 2018 Elsevier Inc. All rights reserved.

  4. Assessing the American Association of Neuroscience Nurses' Progress on the Institute of Medicine Report.

    PubMed

    Madden, Lori Kennedy; Hundley, Lynn; Summers, Debbie; Villanueva, Nancy; Walter, Suzy Mascaro

    2017-06-01

    The American Association of Neuroscience Nurses (AANN) has worked toward meeting the challenges and addressing the key messages from the 2010 Institute of Medicine report on the future of nursing. In 2012, AANN developed an article summarizing how the association has addressed key issues. Since that time, new recommendations have been made to advance nursing, and AANN has updated its strategic plan. The AANN has assessed organizational progress in these initiatives in a 2017 white paper. This process included review of plans since the initial report and proposal of further efforts the organization can make in shaping the future of neuroscience nursing. The purpose of this manuscript is to provide an overview of the AANN white paper.

  5. Culture in social neuroscience: a review.

    PubMed

    Rule, Nicholas O; Freeman, Jonathan B; Ambady, Nalini

    2013-01-01

    The aim of this review is to highlight an emerging field: the neuroscience of culture. This new field links cross-cultural psychology with cognitive neuroscience across fundamental domains of cognitive and social psychology. We present a summary of studies on emotion, perspective-taking, memory, object perception, attention, language, and the self, showing cultural differences in behavior as well as in neural activation. Although it is still nascent, the broad impact of merging the study of culture with cognitive neuroscience holds mutual distributed benefits for multiple related fields. Thus, cultural neuroscience may be uniquely poised to provide insights and breakthroughs for longstanding questions and problems in the study of behavior and thought, and its capacity for integration across multiple levels of analysis is especially high. These findings attest to the plasticity of the brain and its adaptation to cultural contexts.

  6. Constructivist developmental theory is needed in developmental neuroscience

    NASA Astrophysics Data System (ADS)

    Arsalidou, Marie; Pascual-Leone, Juan

    2016-12-01

    Neuroscience techniques provide an open window previously unavailable to the origin of thoughts and actions in children. Developmental cognitive neuroscience is booming, and knowledge from human brain mapping is finding its way into education and pediatric practice. Promises of application in developmental cognitive neuroscience rests however on better theory-guided data interpretation. Massive amounts of neuroimaging data from children are being processed, yet published studies often do not frame their work within developmental models—in detriment, we believe, to progress in this field. Here we describe some core challenges in interpreting the data from developmental cognitive neuroscience, and advocate the use of constructivist developmental theories of human cognition with a neuroscience interpretation.

  7. Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain?

    PubMed

    Frégnac, Yves

    2017-10-27

    New technologies in neuroscience generate reams of data at an exponentially increasing rate, spurring the design of very-large-scale data-mining initiatives. Several supranational ventures are contemplating the possibility of achieving, within the next decade(s), full simulation of the human brain. Copyright © 2017, American Association for the Advancement of Science.

  8. For the law, neuroscience changes nothing and everything.

    PubMed Central

    Greene, Joshua; Cohen, Jonathan

    2004-01-01

    The rapidly growing field of cognitive neuroscience holds the promise of explaining the operations of the mind in terms of the physical operations of the brain. Some suggest that our emerging understanding of the physical causes of human (mis)behaviour will have a transformative effect on the law. Others argue that new neuroscience will provide only new details and that existing legal doctrine can accommodate whatever new information neuroscience will provide. We argue that neuroscience will probably have a transformative effect on the law, despite the fact that existing legal doctrine can, in principle, accommodate whatever neuroscience will tell us. New neuroscience will change the law, not by undermining its current assumptions, but by transforming people's moral intuitions about free will and responsibility. This change in moral outlook will result not from the discovery of crucial new facts or clever new arguments, but from a new appreciation of old arguments, bolstered by vivid new illustrations provided by cognitive neuroscience. We foresee, and recommend, a shift away from punishment aimed at retribution in favour of a more progressive, consequentialist approach to the criminal law. PMID:15590618

  9. Natural product-based nanomedicine: recent advances and issues

    PubMed Central

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  10. A Call for a Neuroscience Approach to Cancer-Related Cognitive Impairment.

    PubMed

    Horowitz, Todd S; Suls, Jerry; Treviño, Melissa

    2018-05-23

    Cancer-related cognitive impairment (CRCI) is a widespread problem for the increasing population of cancer survivors. Our understanding of the nature, causes, and prevalence of CRCI is hampered by a reliance on clinical neuropsychological methods originally designed to detect focal lesions. Future progress will require collaboration between neuroscience and clinical neuropsychology. Published by Elsevier Ltd.

  11. Applying the neuroscience of creativity to creativity training

    PubMed Central

    Onarheim, Balder; Friis-Olivarius, Morten

    2013-01-01

    This article investigates how neuroscience in general, and neuroscience of creativity in particular, can be used in teaching “applied creativity” and the usefulness of this approach to creativity training. The article is based on empirical data and our experiences from the Applied NeuroCreativity (ANC) program, taught at business schools in Denmark and Canada. In line with previous studies of successful creativity training programs the ANC participants are first introduced to cognitive concepts of creativity, before applying these concepts to a relevant real world creative problem. The novelty in the ANC program is that the conceptualization of creativity is built on neuroscience, and a crucial aspect of the course is giving the students a thorough understanding of the neuroscience of creativity. Previous studies have reported that the conceptualization of creativity used in such training is of major importance for the success of the training, and we believe that the neuroscience of creativity offers a novel conceptualization for creativity training. Here we present pre/post-training tests showing that ANC students gained more fluency in divergent thinking (a traditional measure of trait creativity) than those in highly similar courses without the neuroscience component, suggesting that principles from neuroscience can contribute effectively to creativity training and produce measurable results on creativity tests. The evidence presented indicates that the inclusion of neuroscience principles in a creativity course can in 8 weeks increase divergent thinking skills with an individual relative average of 28.5%. PMID:24137120

  12. Infusing Neuroscience into Teacher Professional Development

    PubMed Central

    Dubinsky, Janet M; Roehrig, Gillian; Varma, Sashank

    2015-01-01

    Bruer (1997) advocated connecting neuroscience and education indirectly through the intermediate discipline of psychology. We argue for a parallel route: the neurobiology of learning, and in particular the core concept of plasticity, have the potential to directly transform teacher preparation and professional development, and ultimately to affect how students think about their own learning. We present a case study of how the core concepts of neuroscience can be brought to in-service teachers – the BrainU workshops. We then discuss how neuroscience can be meaningfully integrated into pre-service teacher preparation, focusing on institutional and cultural barriers. PMID:26139861

  13. How cognitive theory guides neuroscience.

    PubMed

    Frank, Michael J; Badre, David

    2015-02-01

    The field of cognitive science studies latent, unobservable cognitive processes that generate observable behaviors. Similarly, cognitive neuroscience attempts to link latent cognitive processes with the neural mechanisms that generate them. Although neural processes are partially observable (with imaging and electrophysiology), it would be a mistake to 'skip' the cognitive level and pursue a purely neuroscientific enterprise to studying behavior. In fact, virtually all of the major advances in understanding the neural basis of behavior over the last century have relied fundamentally on principles of cognition for guiding the appropriate measurements, manipulations, tasks, and interpretations. We provide several examples from the domains of episodic memory, working memory and cognitive control, and decision making in which cognitive theorizing and prior experimentation has been essential in guiding neuroscientific investigations and discoveries. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Imaging Mass Spectrometry in Neuroscience

    PubMed Central

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  15. Life science-based neuroscience education at large Western Public Universities.

    PubMed

    Coskun, Volkan; Carpenter, Ellen M

    2016-12-01

    The last 40 years have seen a remarkable increase in the teaching of neuroscience at the undergraduate level. From its origins as a component of anatomy or physiology departments to its current status as an independent interdisciplinary field, neuroscience has become the chosen field of study for many undergraduate students, particularly for those interested in medical school or graduate school in neuroscience or related fields. We examined how life science-based neuroscience education is offered at large public universities in the Western United States. By examining publicly available materials posted online, we found that neuroscience education may be offered as an independent program, or as a component of biological or physiological sciences at many institutions. Neuroscience programs offer a course of study involving a core series of courses and a collection of topical electives. Many programs provide the opportunity for independent research, or for laboratory-based training in neuroscience. Features of neuroscience programs at Western universities closely matched those seen at the top 25 public universities, as identified by U.S. News & World Report. While neuroscience programs were identified in many Western states, there were several states in which public universities appeared not to provide opportunities to major in neuroscience. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Cognitive Neuroscience Discoveries and Educational Practices

    ERIC Educational Resources Information Center

    Sylwester, Robert

    2006-01-01

    In this article, the author describes seven movement-related areas of cognitive neuroscience research that will play key roles in shifting the current behavioral orientation of teaching and learning to an orientation that also incorporates cognitive neuroscience discoveries. These areas of brain research include: (1) mirroring system; (2) plastic…

  17. Teachers' Beliefs about Neuroscience and Education

    ERIC Educational Resources Information Center

    Zambo, Debby; Zambo, Ron

    2011-01-01

    Information from neuroscience is readily available to educators, yet instructors of educational psychology and related fields have not investigated teachers' beliefs regarding this information. The purpose of this survey study was to uncover the beliefs 62 teachers held about neuroscience and education. Results indicate there were three types of…

  18. Instructional Methods for Neuroscience in Nurse Anesthesia Graduate Programs: A Survey of Educational Programs

    DTIC Science & Technology

    1999-10-01

    Instructional Methods 4 December 5, 1998). Taught simultaneously with the Human Anatomy course, the neuroscience courses clinically orient the students...drama. His medical writings showed penetrating and often accurate observations on human anatomy , including the nervous system. He established the...Pathophysiology, Advanced Anesthesia Courses, Pharmacology and Human Anatomy . Research Question # 2 The second research question was What are the

  19. Reflections on 50 Years of Neuroscience Nursing: Neuro-Oncology, Moving Forward by Looking Back.

    PubMed

    Reed, Marilyn E; Anthony, Patricia P; Rosenfeld, Priscilla B; Ligon, Brandi L; Doris, Estelle M; Fox, Sherry W

    2018-06-01

    During the past 50 years, there have been more than 100 articles published in the Journal of Neuroscience Nursing covering the topic of neuro-oncology. This article will explore the historical implications and milestones from these articles. The analysis highlights the scope and depth of the many articles as they relate to the advancements in neuro-oncology.

  20. Challenges and opportunities in social neuroscience

    PubMed Central

    Cacioppo, John T.; Decety, Jean

    2010-01-01

    Social species are so characterized because they form organizations that extend beyond the individual. The goal of social neuroscience is to investigate the biological mechanisms that underlie these social structures, processes, and behavior and the influences between social and neural structures and processes. Such an endeavor is challenging because it necessitates the integration of multiple levels. Mapping across systems and levels (from genome to social groups and cultures) requires interdisciplinary expertise, comparative studies, innovative methods, and integrative conceptual analysis. Examples of how social neuroscience is contributing to our understanding of the functions of the brain and nervous system are described, and societal implications of social neuroscience are considered. PMID:21251011

  1. A room with a view of integrity and professionalism: personal reflections on teaching responsible conduct of research in the neurosciences.

    PubMed

    Bell, Emily

    2015-04-01

    Neuroscientists are increasingly put into situations which demand critical reflection about the ethical and appropriate use of research tools and scientific knowledge. Students or trainees also have to know how to navigate the ethical domains of this context. At a time when neuroscience is expected to advance policy and practice outcomes, in the face of academic pressures and complex environments, the importance of scientific integrity comes into focus and with it the need for training at the graduate level in the responsible conduct of research (RCR). I describe my experience teaching RCR in a graduate neuroscience program and identify three personal reflections where further dialogue could be warranted: (1) mobilizing a common set of competencies and virtues standing for professionalism in the neurosciences; (2) tailoring RCR for the neurosciences and empowering students through the active engagement of mentors; (3) soliciting shared responsibility for RCR training between disciplines, institutions and governmental or funding agencies.

  2. Reflections on Neuroscience in Teacher Education

    ERIC Educational Resources Information Center

    Coch, Donna

    2018-01-01

    The majority of teacher preparation programs do not address neuroscience in their curricula. This is curious, as learning occurs in the brain in context and teachers fundamentally foster and facilitate learning. On the one hand, merging neuroscience knowledge into teacher training programs is fraught with challenges, such as reconciling how…

  3. Strategies for Fostering Synergy between Neuroscience Programs and Chemistry Departments

    PubMed Central

    Ulness, Darin J.; Mach, Julie R.

    2011-01-01

    The successful model of the Neuroscience Program at Concordia College is used as a source of illustrative examples in a presentation of strategies to foster synergy between neuroscience programs and chemistry departments. Chemistry is an increasing voice in the dialog of modern neuroscience. To be well-prepared to engage in this dialog, students must have strong chemistry training and be comfortable applying it to situations in neuroscience. The strategies presented here are designed to stimulate thought and discussion in the undergraduate neuroscience education community. Hopefully this will lead to greater interaction between chemistry and neuroscience at the undergraduate level in other institutions. PMID:23626488

  4. John Hughlings Jackson and the conceptual foundations of the neurosciences.

    PubMed

    Greenblatt, S H

    1999-01-01

    Cerebral localization, including hierarchical organization of the nervous system, was the critical conceptual advance that made possible the development of modern neuroscience in the nineteenth century. Some of our most basic ideas about neural organization were contributed by Hughlings Jackson. In the early twentieth century, Charles Sherrington combined localization with the neurone theory to create the paradigm of neurophysiological integration. Because Sherrington was educated in the Jacksonian tradition of British neurology, Sherringtonian integration contains ideas that are derived from Jackson and from Herbert Spencer.

  5. Neuroscience Investigations: An Overview of Studies Conducted

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.

    1999-01-01

    The neural processes that mediate human spatial orientation and adaptive changes occurring in response to the sensory rearrangement encountered during orbital flight are primarily studied through second and third order responses. In the Extended Duration Orbiter Medical Project (EDOMP) neuroscience investigations, the following were measured: (1) eye movements during acquisition of either static or moving visual targets, (2) postural and locomotor responses provoked by unexpected movement of the support surface, changes in the interaction of visual, proprioceptive, and vestibular information, changes in the major postural muscles via descending pathways, or changes in locomotor pathways, and (3) verbal reports of perceived self-orientation and self-motion which enhance and complement conclusions drawn from the analysis of oculomotor, postural, and locomotor responses. In spaceflight operations, spatial orientation can be defined as situational awareness, where crew member perception of attitude, position, or motion of the spacecraft or other objects in three-dimensional space, including orientation of one's own body, is congruent with actual physical events. Perception of spatial orientation is determined by integrating information from several sensory modalities. This involves higher levels of processing within the central nervous system that control eye movements, locomotion, and stable posture. Spaceflight operational problems occur when responses to the incorrectly perceived spatial orientation are compensatory in nature. Neuroscience investigations were conducted in conjunction with U. S. Space Shuttle flights to evaluate possible changes in the ability of an astronaut to land the Shuttle or effectively perform an emergency post-landing egress following microgravity adaptation during space flights of variable length. While the results of various sensory motor and spatial orientation tests could have an impact on future space flights, our knowledge of

  6. Progressive Education Standards: A Neuroscience Framework

    ERIC Educational Resources Information Center

    O'Grady, Patty

    2011-01-01

    This paper proposes a coherent and unique set of 12 standards, adopting a neuroscience framework for biologically based on school reform. This model of educational principles and practices aligns with the long-standing principles and practices of the Progressive Education Movement in the United States and the emerging principles of neuroscience.…

  7. The value of neuroscience strategies to accelerate progress in psychological treatment research.

    PubMed

    Moras, Karla

    2006-11-01

    Major findings from the past 55 years of psychological treatment research indicate that 3 questions are now pivotal to continued practice-relevant progress: What is the nature of the problem(s) to be treated? What are the causal change mechanisms of efficacious psychological treatments? Can more efficient and broadly effective psychological treatments be developed? Contemporary cognitive, affective, and behavioural neurosciences offer particularly promising resources for psychological treatment research that can help accelerate progress regarding these questions. This article explains why the questions are pivotal and presents neuroscience findings to illustrate how progress can be made on each one and for diverse problems and disorders such as major depression, posttraumatic stress disorder, obsessive-compulsive disorder, drug addiction, and regulation of negative affect.

  8. Applications of neuroscience in criminal law: legal and methodological issues.

    PubMed

    Meixner, John B

    2015-01-01

    The use of neuroscience in criminal law applications is an increasingly discussed topic among legal and psychological scholars. Over the past 5 years, several prominent federal criminal cases have referenced neuroscience studies and made admissibility determinations regarding neuroscience evidence. Despite this growth, the field is exceptionally young, and no one knows for sure how significant of a contribution neuroscience will make to criminal law. This article focuses on three major subfields: (1) neuroscience-based credibility assessment, which seeks to detect lies or knowledge associated with a crime; (2) application of neuroscience to aid in assessments of brain capacity for culpability, especially among adolescents; and (3) neuroscience-based prediction of future recidivism. The article briefly reviews these fields as applied to criminal law and makes recommendations for future research, calling for the increased use of individual-level data and increased realism in laboratory studies.

  9. Neuroscience and Special Education. inForum

    ERIC Educational Resources Information Center

    Muller, Eve

    2011-01-01

    The purpose of this document is to provide a brief overview of how links are being developed between the rapidly expanding field of neuroscience and the practice of special education. The first part of the document introduces definitions and terminology, provides an overview of how findings from neuroscience are being applied to the field of…

  10. Cultural neuroscience and psychopathology: prospects for cultural psychiatry

    PubMed Central

    Choudhury, Suparna; Kirmayer, Laurence J.

    2016-01-01

    There is a long tradition that seeks to understand the impact of culture on the causes, form, treatment, and outcome of psychiatric disorders. An early, colonialist literature attributed cultural characteristics and variations in psychopathology and behavior to deficiencies in the brains of colonized peoples. Contemporary research in social and cultural neuroscience holds the promise of moving beyond these invidious comparisons to a more sophisticated understanding of cultural variations in brain function relevant to psychiatry. To achieve this, however, we need better models of the nature of psychopathology and of culture itself. Culture is not simply a set of traits or characteristics shared by people with a common geographic, historical, or ethnic background. Current anthropology understands culture as fluid, flexible systems of discourse, institutions, and practices, which individuals actively use for self-fashioning and social positioning. Globalization introduces new cultural dynamics and demands that we rethink culture in relation to a wider domain of evolving identities, knowledge, and practice. Psychopathology is not reducible to brain dysfunction in either its causes, mechanisms, or expression. In addition to neuropsychiatric disorders, the problems that people bring to psychiatrists may result from disorders in cognition, the personal and social meanings of experience, and the dynamics of interpersonal interactions or social systems and institutions. The shifting meanings of culture and psychopathology have implications for efforts to apply cultural neuroscience to psychiatry. We consider how cultural neuroscience can refine use of culture and its role in psychopathology using the example of adolescent aggression as a symptom of conduct disorder. PMID:19874976

  11. Cultural neuroscience and psychopathology: prospects for cultural psychiatry.

    PubMed

    Choudhury, Suparna; Kirmayer, Laurence J

    2009-01-01

    There is a long tradition that seeks to understand the impact of culture on the causes, form, treatment, and outcome of psychiatric disorders. An early, colonialist literature attributed cultural characteristics and variations in psychopathology and behavior to deficiencies in the brains of colonized peoples. Contemporary research in social and cultural neuroscience holds the promise of moving beyond these invidious comparisons to a more sophisticated understanding of cultural variations in brain function relevant to psychiatry. To achieve this, however, we need better models of the nature of psychopathology and of culture itself. Culture is not simply a set of traits or characteristics shared by people with a common geographic, historical, or ethnic background. Current anthropology understands culture as fluid, flexible systems of discourse, institutions, and practices, which individuals actively use for self-fashioning and social positioning. Globalization introduces new cultural dynamics and demands that we rethink culture in relation to a wider domain of evolving identities, knowledge, and practice. Psychopathology is not reducible to brain dysfunction in either its causes, mechanisms, or expression. In addition to neuropsychiatric disorders, the problems that people bring to psychiatrists may result from disorders in cognition, the personal and social meanings of experience, and the dynamics of interpersonal interactions or social systems and institutions. The shifting meanings of culture and psychopathology have implications for efforts to apply cultural neuroscience to psychiatry. We consider how cultural neuroscience can refine use of culture and its role in psychopathology using the example of adolescent aggression as a symptom of conduct disorder.

  12. Scientific and Pragmatic Challenges for Bridging Education and Neuroscience

    ERIC Educational Resources Information Center

    Varma, Sashank; McCandliss, Bruce D.; Schwartz, Daniel L.

    2008-01-01

    Educational neuroscience is an emerging effort to integrate neuroscience methods, particularly functional neuroimaging, with behavioral methods to address issues of learning and instruction. This article consolidates common concerns about connecting education and neuroscience. One set of concerns is scientific: in-principle differences in methods,…

  13. A Plea for Cross-species Social Neuroscience.

    PubMed

    Keysers, Christian; Gazzola, Valeria

    2017-01-01

    Over the past two decades, the question of how our brain makes us sensitive to the state of conspecifics and how that affects our behaviour has undergone a profound change. Twenty years ago what would now be called social neuroscience was focused on the visual processing of facial expressions and body movements in temporal lobe structures of primates (Puce and Perrett 2003). With the discovery of mirror neurons, this changed rapidly towards the modern field of social neuroscience, in which high-level vision is but one of many focuses of interest. In this essay, we will argue that for the further progress of the field, the integration of animal neuroscience and human neuroscience is paramount. We will do so, by focusing on the field of embodied social cognition. We will first show how the combination of animal and human neuroscience was critical in how the discovery of mirror neurons placed the motor system on the map of social cognition. We will then argue why an integrated cross-species approach will be pivotal to our understanding of the neural basis of emotional empathy and its link to prosocial behaviour.

  14. NeuroTalk: Improving the Communication of Neuroscience

    PubMed Central

    Moser, Mary Anne; McCormick, Jennifer B.; Racine, Eric; Blakeslee, Sandra; Caplan, Arthur; Hayden, Erika Check; Ingram, Jay; Lohwater, Tiffany; McKnight, Peter; Nicholson, Christie; Phillips, Anthony; Sauvé, Kevin D.; Snell, Elaine; Weiss, Sam

    2010-01-01

    There is increasing pressure for neuroscientists to communicate their research and the societal implications of their findings to the public. Communicating science is challenging and the transformation of communication by digital and interactive media makes the challenge even greater. To successfully facilitate dialogue with the public in this new media landscape we suggest three courses of action for the neuroscience community: a cultural shift that explicitly recognizes and rewards public outreach, the identification and development of neuroscience communication experts, and ongoing empirical research on public communication of neuroscience. PMID:19953102

  15. The case for neuropsychoanalysis: Why a dialogue with neuroscience is necessary but not sufficient for psychoanalysis.

    PubMed

    Yovell, Yoram; Solms, Mark; Fotopoulou, Aikaterini

    2015-12-01

    Recent advances in the cognitive, affective and social neurosciences have enabled these fields to study aspects of the mind that are central to psychoanalysis. These developments raise a number of possibilities for psychoanalysis. Can it engage the neurosciences in a productive and mutually enriching dialogue without compromising its own integrity and unique perspective? While many analysts welcome interdisciplinary exchanges with the neurosciences, termed neuropsychoanalysis, some have voiced concerns about their potentially deleterious effects on psychoanalytic theory and practice. In this paper we outline the development and aims of neuropsychoanalysis, and consider its reception in psychoanalysis and in the neurosciences. We then discuss some of the concerns raised within psychoanalysis, with particular emphasis on the epistemological foundations of neuropsychoanalysis. While this paper does not attempt to fully address the clinical applications of neuropsychoanalysis, we offer and discuss a brief case illustration in order to demonstrate that neuroscientific research findings can be used to enrich our models of the mind in ways that, in turn, may influence how analysts work with their patients. We will conclude that neuropsychoanalysis is grounded in the history of psychoanalysis, that it is part of the psychoanalytic worldview, and that it is necessary, albeit not sufficient, for the future viability of psychoanalysis. Copyright © 2015 Institute of Psychoanalysis.

  16. Soft materials in neuroengineering for hard problems in neuroscience.

    PubMed

    Jeong, Jae-Woong; Shin, Gunchul; Park, Sung Il; Yu, Ki Jun; Xu, Lizhi; Rogers, John A

    2015-04-08

    We describe recent advances in soft electronic interface technologies for neuroscience research. Here, low modulus materials and/or compliant mechanical structures enable modes of soft, conformal integration and minimally invasive operation that would be difficult or impossible to achieve using conventional approaches. We begin by summarizing progress in electrodes and associated electronics for signal amplification and multiplexed readout. Examples in large-area, surface conformal electrode arrays and flexible, multifunctional depth-penetrating probes illustrate the power of these concepts. A concluding section highlights areas of opportunity in the further development and application of these technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. School-Based Sex Education and Neuroscience: What We Know about Sex, Romance, Marriage, and Adolescent Brain Development

    ERIC Educational Resources Information Center

    Ballonoff Suleiman, Ahna; Johnson, Megan; Shirtcliff, Elizabeth A.; Galván, Adriana

    2015-01-01

    Background: Many school-based abstinence-only sex education curricula state that sexual activity outside of marriage is likely to have harmful psychological effects. Recent advances in neuroscience have expanded our understanding of the neural underpinnings of romantic love, marriage, sexual desire, and sexual behavior and improved our…

  18. Neuroscience and education.

    PubMed

    Goswami, Usha

    2004-03-01

    Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional, emotional and mnemonic functions is also making progress, particularly since the advent of the cognitive neurosciences, which focus specifically on understanding higher level processes of cognition via imaging technology. Neuroimaging has enabled scientists to study the human brain at work in vivo, deepening our understanding of the very complex processes underpinning speech and language, thinking and reasoning, reading and mathematics. It seems timely, therefore, to consider how we might implement our increased understanding of brain development and brain function to explore educational questions.

  19. Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience

    PubMed Central

    Hoedjes, Katja M.; Kruidhof, H. Marjolein; Huigens, Martinus E.; Dicke, Marcel; Vet, Louise E. M.; Smid, Hans M.

    2011-01-01

    Although the neural and genetic pathways underlying learning and memory formation seem strikingly similar among species of distant animal phyla, several more subtle inter- and intraspecific differences become evident from studies on model organisms. The true significance of such variation can only be understood when integrating this with information on the ecological relevance. Here, we argue that parasitoid wasps provide an excellent opportunity for multi-disciplinary studies that integrate ultimate and proximate approaches. These insects display interspecific variation in learning rate and memory dynamics that reflects natural variation in a daunting foraging task that largely determines their fitness: finding the inconspicuous hosts to which they will assign their offspring to develop. We review bioassays used for oviposition learning, the ecological factors that are considered to underlie the observed differences in learning rate and memory dynamics, and the opportunities for convergence of ecology and neuroscience that are offered by using parasitoid wasps as model species. We advocate that variation in learning and memory traits has evolved to suit an insect's lifestyle within its ecological niche. PMID:21106587

  20. Neuroscience of Meditation

    PubMed Central

    Deshmukh, Vinod D.

    2006-01-01

    Dhyana-Yoga is a Sanskrit word for the ancient discipline of meditation, as a means to Samadhi or enlightenment. Samadhi is a self-absorptive, adaptive state with realization of ones being in harmony with reality. It is unitive, undifferentiated, reality-consciousness, an essential being, which can only be experienced by spontaneous intuition and self-understanding. Modern neuroscience can help us to better understand Dhyana-Yoga. This article discusses topics including brain-mind-reality, consciousness, attention, emotional intelligence, sense of self, meditative mind, and meditative brain. A new hypothesis is proposed for a better understanding of the meditative mind. Meditation is an art of being serene and alert in the present moment, instead of constantly struggling to change or to become. It is an art of efficient management of attentional energy with total engagement (poornata, presence, mindfulness) or disengagement (shunyata, silence, emptiness). In both states, there is an experience of spontaneous unity with no sense of situational interactive self or personal time. It is a simultaneous, participatory consciousness rather than a dualistic, sequential attentiveness. There is a natural sense of well being with self-understanding, spontaneous joy, serenity, freedom, and self-fulfillment. It is where the ultimate pursuit of happiness and the search for meaning of life resolve. One realizes the truth of ones harmonious being in nature and nature in oneself. It is being alive at its fullest, when each conscious moment becomes a dynamic process of discovery and continuous learning of the ever-new unfolding reality. PMID:17370019

  1. History and neuroscience: an integrative legacy.

    PubMed

    Casper, Stephen T

    2014-03-01

    The attitudes that characterize the contemporary "neuro-turn" were strikingly commonplace as part of the self-fashioning of social identity in the biographies and personal papers of past neurologists and neuroscientists. Indeed, one fundamental connection between nineteenth- and twentieth-century neurology and contemporary neuroscience appears to be the value that workers in both domains attach to the idea of integration, a vision of neural science and medicine that connected reductionist science to broader inquiries about the mind, brain, and human nature and in so doing supposedly resolved once and for all questions germane to the human sciences, humanities, and arts. How those attitudes were produced and reproduced first in neurology and then in neuroscience; in what way they were constructed and disciplined, thereby eventuating in the contested sciences and medicines of the mind, brain, and nervous system; and even how they garnered ever-wider contemporary purchase in cultures and societies are thus fascinating problems for historians of science and medicine. Such problems shed light on ethics, practices, controversies, and the uneasy social relations within those scientific and medical domains. But more to the point of this essay: they also account for the apparent epistemological weight now accorded "the neuro" in our contemporary moment. They thus illuminate in a rather different way why historians have suddenly discovered the value of "the neuro".

  2. Neuroscience and the soul: competing explanations for the human experience.

    PubMed

    Preston, Jesse Lee; Ritter, Ryan S; Hepler, Justin

    2013-04-01

    The development of fMRI techniques has generated a boom of neuroscience research across the psychological sciences, and revealed neural correlates for many psychological phenomena seen as central to the human experience (e.g., morality, agency). Meanwhile, the rise of neuroscience has reignited old debates over mind-body dualism and the soul. While some scientists use neuroscience to bolster a material account of consciousness, others point to unexplained neural phenomena to defend dualism and a spiritual perspective on the mind. In two experiments we examine how exposure to neuroscience research impacts belief in the soul. We find that belief in soul decreases when neuroscience provides strong mechanistic explanations for mind. But when explanatory gaps in neuroscience research are emphasized, belief in soul is enhanced, suggesting that physical and metaphysical explanations may be used reflexively as alternative theories for mind. Implications for the future of belief in soul and neuroscience research are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. "Thinking like a Neuroscientist": Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course.

    PubMed

    Köver, Hania; Wirt, Stacey E; Owens, Melinda T; Dosmann, Andrew J

    2014-01-01

    Learning and practicing scientific inquiry is an essential component of a STEM education, but it is often difficult to teach to novices or those outside of a laboratory setting. To promote scientific thinking in a freshmen introductory neuroscience course without a lab component, we developed a series of learning activities and assignments designed to foster scientific thinking through the use of scientific grant proposals. Students wrote three short grant proposals on topics ranging from molecular to cognitive neuroscience during a 10-week class (one quarter). We made this challenging and advanced task feasible for novice learners through extensive instructional scaffolding, opportunity for practice, and frequent peer and instructor feedback. Student and instructor reports indicate that the assignments were highly intellectually engaging and that they promoted critical thinking, a deeper understanding of neuroscience material, and effective written communication skills. Here we outline the mechanics of the assignment, student and instructor impressions of learning outcomes, and the advantages and disadvantages of implementing this approach.

  4. From Faculty for Undergraduate Neuroscience: Encouraging Innovation in Undergraduate Neuroscience Education by Supporting Student Research and Faculty Development

    ERIC Educational Resources Information Center

    Hardwick, Jean C.; Kerchner, Michael; Lom, Barbara; Ramirez, Julio J.; Wiertelak, Eric P.

    2006-01-01

    This article features the organization Faculty for Undergraduate Neuroscience. FUN was established by a group of neuroscientists dedicated to innovation and excellence in undergraduate neuroscience education and research. In the years since its inception, FUN has grown into a dynamic organization making a significant impact on the quality of…

  5. Three requirements for justifying an educational neuroscience.

    PubMed

    Hruby, George G

    2012-03-01

    Over the past quarter century, efforts to bridge between research in the neurosciences and research, theory, and practice in education have grown from a mere hope to noteworthy scholarly sophistication. Many dedicated educational researchers have developed the secondary expertise in the necessary neurosciences and related fields to generate both empirical research and theoretical syntheses of noteworthy promise. Nonetheless, thoughtful and critical scholars in education have expressed concern about both the intellectual coherence and ethical dangers of this new area. It is still an open question whether educational neuroscience is for some time yet to remain only a formative study area for adventurous scholars or is already a fully fledged field of educational scholarship. In this paper, I suggest that to be a worthy field of educational research, educational neuroscience will need to address three issues: intellectual coherence, mutually informing and respected scholarly expertise, and an ethical commitment to the moral implications and obligations shared within educational research generally. I shall set forth some examples of lapses in this regard, focusing primarily on work on reading development, as that is my area of expertise, and make recommendations for due diligence. Arguments. First, intellectual coherence requires both precision in definition of technical terms (so that diverse scholars and professionals may communicate findings and insights consistently across fields), and precision in the logical warrants by which educational implications are drawn from empirical data from the neurosciences. Both needs are facilitated by careful attention to categorical boundary and avoidance of category error. Second, educational neuroscientists require focused and broad expertise in both the neurosciences and educational scholarship on teaching and learning in classrooms (and/or ancillary fields). If history is our guide, neuroscience implications for practice will

  6. A Developmental Neuroscience Approach to the Search for Biomarkers in Autism Spectrum Disorder

    PubMed Central

    Varcin, Kandice J.; Nelson, Charles A.

    2016-01-01

    Purpose of review The delineation of biomarkers in autism spectrum disorder (ASD) offers a promising approach to inform precision-medicine based approaches to ASD diagnosis and treatment and to move toward a mechanistic description of the disorder. However, biomarkers with sufficient sensitivity or specificity for clinical application in ASD are yet to be realized. Here, we review recent evidence for early, low-level alterations in brain and behavior development that may offer promising avenues for biomarker development in ASD. Recent findings Accumulating evidence suggests that signs associated with ASD may unfold in a manner that maps onto the hierarchical organization of brain development. Genetic and neuroimaging evidence points towards perturbations in brain development early in life, and emerging evidence indicates that sensorimotor development may be amongst the earliest emerging signs associated with ASD, preceding social and cognitive impairment. Summary The search for biomarkers of risk, prediction and stratification in ASD may be advanced through a developmental neuroscience approach that looks outside of the core signs of ASD and considers the bottom-up nature of brain development alongside the dynamic nature of development over time. We provide examples of assays that could be incorporated in studies to target low-level circuits. PMID:26953849

  7. Community-based, Experiential Learning for Second Year Neuroscience Undergraduates

    PubMed Central

    Yu, Heather J.; Ramos-Goyette, Sharon; McCoy, John G.; Tirrell, Michael E.

    2013-01-01

    Service learning is becoming a keystone of the undergraduate learning experience. At Stonehill College, we implemented a service learning course, called a Learning Community, in Neuroscience. This course was created to complement the basic research available to Stonehill Neuroscience majors with experience in a more applied and “clinical” setting. The Neuroscience Learning Community is designed to promote a deep understanding of Neuroscience by combining traditional classroom instruction with clinical perspectives and real-life experiences. This Neuroscience Learning Community helps students translate abstract concepts within the context of neurodevelopment by providing students with contextual experience in a real-life, unscripted setting. The experiential learning outside of the classroom enabled students to participate in informed discussions in the classroom, especially with regard to neurodevelopmental disorders. We believe that all students taking this course gain an understanding of the importance of basic and applied Neuroscience as it relates to the individual and the community. Students also have used this concrete, learning-by-doing experience to make informed decisions about career paths and choice of major. PMID:24319392

  8. Attitudes toward neuroscience education in psychiatry: a national multi-stakeholder survey.

    PubMed

    Fung, Lawrence K; Akil, Mayada; Widge, Alik; Roberts, Laura Weiss; Etkin, Amit

    2015-04-01

    The objective of this study is to assess the attitudes of chairs of psychiatry departments, psychiatrists, and psychiatry trainees toward neuroscience education in residency programs and beyond in order to inform future neuroscience education approaches. This multi-stakeholder survey captured data on demographics, self-assessments of neuroscience knowledge, attitudes toward neuroscience education, preferences in learning modalities, and interests in specific neuroscience topics. In 2012, the authors distributed the surveys: by paper to 133 US psychiatry department chairs and electronically through the American Psychiatric Association to 3,563 of its members (1,000 psychiatrists and 2,563 trainees). The response rates for the chair, psychiatrist, and trainee surveys were 53, 9, and 18 %, respectively. A large majority of respondents agreed with the need for more neuroscience education in general and with respect to their own training. Most respondents believed that neuroscience will help destigmatize mental illness and begin producing new treatments or personalized medicines in 5-10 years. Only a small proportion of trainees and psychiatrists, however, reported a strong knowledge base in neuroscience. Respondents also reported broad enthusiasm for transdiagnostic topics in neuroscience (such as emotion regulation and attention/cognition) and description at the level of neural circuits. This study demonstrates the opportunity and enthusiasm for teaching more neuroscience in psychiatry among a broad range of stakeholder groups. A high level of interest was also found for transdiagnostic topics and approaches. We suggest that a transdiagnostic framework may be an effective way to deliver neuroscience education to the psychiatric community and illustrate this through a case example, drawing the similarity between this neuroscience approach and problem-based formulations familiar to clinicians.

  9. Palliative care in Parkinson's disease: implications for neuroscience nursing.

    PubMed

    Bunting-Perry, Lisette K

    2006-04-01

    Parkinson's disease (PD) is a chronic, progressive neurological disease affecting 1.5 million Americans. The modern success of pharmacology and deep-brain stimulation surgery to treat the motor symptoms of tremor, rigidity, and bradykinesia provide PD patients with longer lives and increased motor functioning. However, in the moderate and advanced stages of disease, the therapeutic benefits of pharmacology diminish and motor symptoms are more complicated to treat. The nonmotor symptoms of PD receive little attention in clinical settings, although they can lead to disability and caregiver burden. The Center to Advance Palliative Care advocates applying the principles of palliative care to chronic disease. Likewise, the World Health Organization has redefined palliative care to include life-threatening illness. The Parkinson's Disease Model of Care (PDMC) takes the precepts of palliative care and presents a model for the neuroscience nurse to use in individual care planning across the trajectory of disease. The PDMC guides the nurse in providing relief from suffering for PD patients and their families, from diagnosis through bereavement, with an emphasis on advance care planning.

  10. Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research

    PubMed Central

    2017-01-01

    Optical coherence tomography is a micrometer-scale imaging modality that permits label-free, cross-sectional imaging of biological tissue microstructure using tissue backscattering properties. After its invention in the 1990s, OCT is now being widely used in several branches of neuroscience as well as other fields of biomedical science. This review study reports an overview of OCT's applications in several branches or subbranches of neuroscience such as neuroimaging, neurology, neurosurgery, neuropathology, and neuroembryology. This study has briefly summarized the recent applications of OCT in neuroscience research, including a comparison, and provides a discussion of the remaining challenges and opportunities in addition to future directions. The chief aim of the review study is to draw the attention of a broad neuroscience community in order to maximize the applications of OCT in other branches of neuroscience too, and the study may also serve as a benchmark for future OCT-based neuroscience research. Despite some limitations, OCT proves to be a useful imaging tool in both basic and clinical neuroscience research. PMID:29214158

  11. Non-human primates in neuroscience research: The case against its scientific necessity.

    PubMed

    Bailey, Jarrod; Taylor, Kathy

    2016-03-01

    Public opposition to non-human primate (NHP) experiments is significant, yet those who defend them cite minimal harm to NHPs and substantial human benefit. Here we review these claims of benefit, specifically in neuroscience, and show that: a) there is a default assumption of their human relevance and benefit, rather than robust evidence; b) their human relevance and essential contribution and necessity are wholly overstated; c) the contribution and capacity of non-animal investigative methods are greatly understated; and d) confounding issues, such as species differences and the effects of stress and anaesthesia, are usually overlooked. This is the case in NHP research generally, but here we specifically focus on the development and interpretation of functional magnetic resonance imaging (fMRI), deep brain stimulation (DBS), the understanding of neural oscillations and memory, and investigation of the neural control of movement and of vision/binocular rivalry. The increasing power of human-specific methods, including advances in fMRI and invasive techniques such as electrocorticography and single-unit recordings, is discussed. These methods serve to render NHP approaches redundant. We conclude that the defence of NHP use is groundless, and that neuroscience would be more relevant and successful for humans, if it were conducted with a direct human focus. We have confidence in opposing NHP neuroscience, both on scientific as well as on ethical grounds. 2016 FRAME.

  12. Insight in schizophrenia: from conceptualization to neuroscience.

    PubMed

    Ouzir, Mounir; Azorin, Jean Michel; Adida, Marc; Boussaoud, Driss; Battas, Omar

    2012-04-01

    Lack of insight into illness is a prevalent and distinguishing feature of schizophrenia, which has a complex history and has been given a variety of definitions. Currently, insight is measured and treated as a multidimensional phenomenon, because it is believed to result from psychological, neuropsychological and organic factors. Thus, schizophrenia patients may display dramatic disorders including demoralization, depression and a higher risk of suicide, all of which are directly or indirectly related to a lack of insight into their illness, and make the treatment difficult. To improve the treatment of people with schizophrenia, it is thus crucial to advance research on insight into their illness. Insight is studied in a variety of ways. Studies may focus on the relationship between insight and psychopathology, may view behavioral outcomes or look discretely at the cognitive dysfunction versus anatomy level of insight. All have merit but they are dispersed across a wide body of literature and rarely are the findings integrated and synthesized in a meaningful way. The aim of this study was to synthesize findings across the large body of literature dealing with insight, to highlight its multidimensional nature, measurement, neuropsychology and social impact in schizophrenia. The extensive literature on the cognitive consequences of lack of insight and the contribution of neuroimaging techniques to elucidating neurological etiology of insight deficits, is also reviewed. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  13. Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression

    PubMed Central

    Panksepp, Jaak

    2010-01-01

    Cross-species affective neuroscience studies confirm that primary-process emotional feelings are organized within primitive subcortical regions of the brain that are anatomically, neurochemically, and functionally homologous in all mammals that have been studied. Emotional feelings (affects) are intrinsic values that inform animals how they are faring in the quest to survive. The various positive affects indicate that animals are returning to “comfort zones” that support survival, and negative affects reflect “discomfort zones” that indicate that animals are in situations that may impair survival. They are ancestral tools for living - evolutionary memories of such importance that they were coded into the genome in rough form (as primary brain processes), which are refined by basic learning mechanisms (secondary processes) as well as by higher-order cognitions/thoughts (tertiary processes). To understand why depression feels horrible, we must fathom the affective infrastructure of the mammalian brain. Advances in our understanding of the nature of primary-process emotional affects can promote the development of better preclinical models of psychiatric disorders and thereby also allow clinicians new and useful ways to understand the foundational aspects of their clients' problems. These networks are of clear importance for understanding psychiatric disorders and advancing psychiatric practice. PMID:21319497

  14. Attachment Theory and Neuroscience for Care Managers.

    PubMed

    Blakely, Thomas J; Dziadosz, Gregory M

    2016-09-01

    This article describes a model for care managers that is based on attachment theory supplemented by knowledge from neuroscience. Together, attachment theory and basic knowledge from neuroscience provide for both an organizing conceptual framework and a scientific, measureable approach to assessment and planning interventions in a care plan.

  15. Promoting a Dialogue between Neuroscience and Education

    ERIC Educational Resources Information Center

    Turner, David A.

    2011-01-01

    There have been a number of calls for a 'dialogue' between neuroscience and education. However, 'dialogue' implies an equal conversation between partners. The outcome of collaboration between neuroscientists and educators not normally expected to be so balanced. Educationists are expected to learn from neuroscience how to conduct research with…

  16. Three Requirements for Justifying an Educational Neuroscience

    ERIC Educational Resources Information Center

    Hruby, George G.

    2012-01-01

    Background: Over the past quarter century, efforts to bridge between research in the neurosciences and research, theory, and practice in education have grown from a mere hope to noteworthy scholarly sophistication. Many dedicated educational researchers have developed the secondary expertise in the necessary neurosciences and related fields to…

  17. Revolutions in Neuroscience: Tool Development

    PubMed Central

    Bickle, John

    2016-01-01

    Thomas Kuhn’s famous model of the components and dynamics of scientific revolutions is still dominant to this day across science, philosophy, and history. The guiding philosophical theme of this article is that, concerning actual revolutions in neuroscience over the past 60 years, Kuhn’s account is wrong. There have been revolutions, and new ones are brewing, but they do not turn on competing paradigms, anomalies, or the like. Instead, they turn exclusively on the development of new experimental tools. I adopt a metascientific approach and examine in detail the development of two recent neuroscience revolutions: the impact of engineered genetically mutated mammals in the search for causal mechanisms of “higher” cognitive functions; and the more recent impact of optogenetics and designer receptors exclusively activated by designer drugs (DREADDs). The two key metascientific concepts, I derive from these case studies are a revolutionary new tool’s motivating problem, and its initial and second-phase hook experiments. These concepts hardly exhaust a detailed metascience of tool development experiments in neuroscience, but they get that project off to a useful start and distinguish the subsequent account of neuroscience revolutions clearly from Kuhn’s famous model. I close with a brief remark about the general importance of molecular biology for a current philosophical understanding of science, as comparable to the place physics occupied when Kuhn formulated his famous theory of scientific revolutions. PMID:27013992

  18. Neuroart: picturing the neuroscience of intentional actions in art and science.

    PubMed

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979-82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics.

  19. Classics in Chemical Neuroscience: Haloperidol.

    PubMed

    Tyler, Marshall W; Zaldivar-Diez, Josefa; Haggarty, Stephen J

    2017-03-15

    The discovery of haloperidol catalyzed a breakthrough in our understanding of the biochemical basis of schizophrenia, improved the treatment of psychosis, and facilitated deinstitutionalization. In doing so, it solidified the role for chemical neuroscience as a means to elucidate the molecular underpinnings of complex neuropsychiatric disorders. In this Review, we will cover aspects of haloperidol's synthesis, manufacturing, metabolism, pharmacology, approved and off-label indications, and adverse effects. We will also convey the fascinating history of this classic molecule and the influence that it has had on the evolution of neuropsychopharmacology and neuroscience.

  20. “Thinking like a Neuroscientist”: Using Scaffolded Grant Proposals to Foster Scientific Thinking in a Freshman Neuroscience Course

    PubMed Central

    Köver, Hania; Wirt, Stacey E.; Owens, Melinda T.; Dosmann, Andrew J.

    2014-01-01

    Learning and practicing scientific inquiry is an essential component of a STEM education, but it is often difficult to teach to novices or those outside of a laboratory setting. To promote scientific thinking in a freshmen introductory neuroscience course without a lab component, we developed a series of learning activities and assignments designed to foster scientific thinking through the use of scientific grant proposals. Students wrote three short grant proposals on topics ranging from molecular to cognitive neuroscience during a 10-week class (one quarter). We made this challenging and advanced task feasible for novice learners through extensive instructional scaffolding, opportunity for practice, and frequent peer and instructor feedback. Student and instructor reports indicate that the assignments were highly intellectually engaging and that they promoted critical thinking, a deeper understanding of neuroscience material, and effective written communication skills. Here we outline the mechanics of the assignment, student and instructor impressions of learning outcomes, and the advantages and disadvantages of implementing this approach. PMID:25565917

  1. Educational Neuroscience: Its Position, Aims and Expectations

    ERIC Educational Resources Information Center

    van der Meulen, Anna; Krabbendam, Lydia; de Ruyter, Doret

    2015-01-01

    An important issue in the discussion on educational neuroscience is the transfer of thought and findings between neuroscience and education. In addition to factual confusions in this transfer in the form of neuromyths, logical confusions, or neuro-misconceptions, can be identified. We consider these transfer difficulties in light of the way…

  2. The origin of the term plasticity in the neurosciences: Ernesto Lugaro and chemical synaptic transmission.

    PubMed

    Berlucchi, Giovanni

    2002-09-01

    The Italian psychiatrist Ernesto Lugaro can be regarded as responsible for introducing the term plasticity into the neurosciences as early as 1906. By this term he meant that throughout life the anatomo-functional relations between neurons can change in an adaptive fashion to enable psychic maturation, learning, and even functional recovery after brain damage. Lugaro's concept of plasticity was strongly inspired by a neural hypothesis of learning and memory put forward in 1893 by his teacher Eugenio Tanzi. Tanzi postulated that practice and experience promote neuronal growth and shorten the minute spatial gaps between functionally associated neurons, thus facilitating their interactions. In addition to discovering the cerebellar cells known by his name and advancing profound speculations about the functions of the glia, Lugaro lucidly foresaw the chemical nature of synaptic transmission in the central nervous system, and was the first to propose the usage of the terms "nervous conduction" and "nervous transmission" in their currently accepted meaning.

  3. Neuroscience and Psychoanalysis

    PubMed Central

    2007-01-01

    There exists an enormous amount of biological and scientific data in the field of neuroscience, which are daunting and laborious to those who are not directly engaged in these specialized areas. The intricacies and complexities of the role of the central nervous system (CNS) in psychiatric disorders and human behavior are, of course, acknowledged. In this article, observations and speculations of some prominent workers in the field of neuroscience are described with focus on their conclusions, rather than specific findings as they pertain to the mind-body relationship. The mind-brain/body issue has not been resolved insofar as clarifying the connections between CNS activity and thinking is concerned. Currently, it is useful to accept the concept of parallelism between CNS activity and thought. An argument will be made for the inclusion of the psychoanalytic method as an essential component of the scientific effort to elucidate consciousness and thinking. PMID:20711329

  4. Tools of the trade: theory and method in mindfulness neuroscience.

    PubMed

    Tang, Yi-Yuan; Posner, Michael I

    2013-01-01

    Mindfulness neuroscience is an emerging research field that investigates the underlying mechanisms of different mindfulness practices, different stages and different states of practice as well as different effects of practice over the lifespan. Mindfulness neuroscience research integrates theory and methods from eastern contemplative traditions, western psychology and neuroscience, and from neuroimaging techniques, physiological measures and behavioral tests. We here review several key theoretical and methodological challenges in the empirical study of mindfulness neuroscience and provide suggestions for overcoming these challenges.

  5. Cognitive theory and brain fact: Insights for the future of cognitive neuroscience. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Bowling, Daniel

    2014-09-01

    A central challenge in neuroscience is to understand the relationship between the mechanistic operation of the nervous system and the psychological phenomena we experience everyday (e.g., perception, memory, attention, emotion, and consciousness). Supported by revolutionary advances in technology, knowledge of neural mechanisms has grown dramatically over recent decades, but with few exceptions our understanding of how these mechanisms relate to psychological phenomena remains poor.

  6. Intentional Excellence in the Baldwin Wallace University Neuroscience Program

    PubMed Central

    Morris, Jacqueline K.; Peppers, Kieth; Mickley, G. Andrew

    2015-01-01

    The Society for Neuroscience recognized Baldwin Wallace University’s (BWU) undergraduate Neuroscience program as their Program of the Year for 2012. This award acknowledged the “accomplishments of a neuroscience department or program for excellence in educating neuroscientists and providing innovative models to which other programs can aspire.” The Neuroscience program grew out of students interested in studying the biological basis of behavior. BWU’s neuroscience major is research-intensive, and all students are required to produce an empirically-based senior thesis. This requirement challenges program resources, and the demand for faculty attention is high. Thus, we developed an intentional 3-step peer mentoring system that encourages our students to collaborate with and learn from, not only faculty, but each other. Peer mentoring occurs in the curriculum, faculty research labs, and as students complete their senior theses. As the program has grown with over 80 current majors, we have developed a new Neuroscience Methods course to train students on the safety, ethics, and practice of research in the neuroscience laboratory space. Students in this course leave with the skills and knowledge to assist senior level students with their theses and to begin the process of developing their own projects in the laboratory. Further, our students indicate that their “peer mentorship was excellent,” “helped them gain confidence,” and “allowed them to be more successful in their research.” PMID:26240522

  7. Allegheny College Hosts Neuroscience and Humanities Summer Institute

    PubMed Central

    Macel, Emily M.

    2004-01-01

    The Neuroscience and Humanities Summer Institute, hosted by Allegheny College, opened doors of opportunity, perception, and creativity for faculty and students across the nation. Offered first in 2002, and a second time in June of 2004, this weeklong event was designed to provide a medium for fostering development of interdisciplinary courses linking neuroscience and the humanities (e.g., the fine arts, philosophy and language). During the Institute, participants attended presentations by Allegheny faculty introducing the six courses of this type that they have developed starting in 2000, lectures by guest speakers, workshops, and discussion modules. Participants were encouraged to gather ideas about Allegheny’s neuroscience and humanities courses and formulate specific plans to take back to their schools. These opportunities and experiences resulted in the formation of valuable connections and the development of ideas around the links between neuroscience and humanities. PMID:23493745

  8. When neuroscience met clinical pathology: partitioning experimental variation to aid data interpretation in neuroscience.

    PubMed

    Jeffery, Nick D; Bate, Simon T; Safayi, Sina; Howard, Matthew A; Moon, Lawrence; Jeffery, Unity

    2018-03-01

    In animal experiments, neuroscientists typically assess the effectiveness of interventions by comparing the average response of groups of treated and untreated animals. While providing useful insights, focusing only on group effects risks overemphasis of small, statistically significant but physiologically unimportant, differences. Such differences can be created by analytical variability or physiological within-individual variation, especially if the number of animals in each group is small enough that one or two outlier values can have considerable impact on the summary measures for the group. Physicians face a similar dilemma when comparing two results from the same patient. To determine whether the change between two values reflects disease progression or known analytical and physiological variation, the magnitude of the difference between two results is compared to the reference change value. These values are generated by quantifying analytical and within-individual variation, and differences between two results from the same patient are considered clinically meaningful only if they exceed the combined effect of these two sources of 'noise'. In this article, we describe how the reference change interval can be applied within neuroscience. This form of analysis provides a measure of outcome at an individual level that complements traditional group-level comparisons, and therefore, introduction of this technique into neuroscience can enrich interpretation of experimental data. It can also safeguard against some of the possible misinterpretations that may occur during analysis of the small experimental groups that are common in neuroscience and, by illuminating analytical error, may aid in design of more efficient experimental methods. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Will big data yield new mathematics? An evolving synergy with neuroscience.

    PubMed

    Feng, S; Holmes, P

    2016-06-01

    New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin-Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics.

  10. Will big data yield new mathematics? An evolving synergy with neuroscience

    PubMed Central

    Feng, S.; Holmes, P.

    2016-01-01

    New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin–Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics. PMID:27516705

  11. Enabling an Open Data Ecosystem for the Neurosciences.

    PubMed

    Wiener, Martin; Sommer, Friedrich T; Ives, Zachary G; Poldrack, Russell A; Litt, Brian

    2016-11-02

    As the pace and complexity of neuroscience data grow, an open data ecosystem must develop and grow with it to allow neuroscientists the ability to reach for new heights of discovery. However, the problems and complexities of neuroscience data sharing must first be addressed. Among the challenges facing data sharing in neuroscience, the problem of incentives, discoverability, and sustainability may be the most pressing. We here describe these problems and provide potential future solutions to help cultivate an ecosystem for data sharing. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cyber-workstation for computational neuroscience.

    PubMed

    Digiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C; Fortes, Jose; Sanchez, Justin C

    2010-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface.

  13. Cyber-Workstation for Computational Neuroscience

    PubMed Central

    DiGiovanna, Jack; Rattanatamrong, Prapaporn; Zhao, Ming; Mahmoudi, Babak; Hermer, Linda; Figueiredo, Renato; Principe, Jose C.; Fortes, Jose; Sanchez, Justin C.

    2009-01-01

    A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface. PMID:20126436

  14. The interface of self psychology, infant research, and neuroscience in clinical practice.

    PubMed

    Rustin, Judith

    2009-04-01

    This article focuses on the integration of self psychology with findings from infant research and neuroscience. While Kohut's psychology of the self provides a useful theoretical model for psychoanalytic practice, aspects of infant research and neuroscience offer specificity and nuance to basic self-psychological concepts. Kohut proposed that self-psychological psychoanalysis ameliorates derailed development through patient-analyst interaction, while a listening stance of empathic immersion begins the curative process of derailed development and sets the stage for reparative psychoanalytic work. Findings from infant research delineate much more specifically the nature of attunement both in early mother-infant and analyst-patient interactions. Findings from neuroscientific research delineate how early mother-infant experiences are encoded in implicit memory and explicates the emotional substrate of affects and feelings. This emotional substrate exists at birth and provides a means of communication both in infancy and adulthood. Additionally, infant research delineates the mutuality of the interactive process. Thus, both infant research and neuroscience add subtlety and nuance to basic self-psychological concepts. This subtlety opens up new ways of understanding patients and expands the clinical repertoire. Three clinical vignettes demonstrate how this nuance and expansion of self-psychological concepts are applied in the context of an ongoing psychoanalytic treatment.

  15. The cognitive neuroscience of ageing.

    PubMed

    Grady, Cheryl

    2012-06-20

    The availability of neuroimaging technology has spurred a marked increase in the human cognitive neuroscience literature, including the study of cognitive ageing. Although there is a growing consensus that the ageing brain retains considerable plasticity of function, currently measured primarily by means of functional MRI, it is less clear how age differences in brain activity relate to cognitive performance. The field is also hampered by the complexity of the ageing process itself and the large number of factors that are influenced by age. In this Review, current trends and unresolved issues in the cognitive neuroscience of ageing are discussed.

  16. Superfluous neuroscience information makes explanations of psychological phenomena more appealing.

    PubMed

    Fernandez-Duque, Diego; Evans, Jessica; Christian, Colton; Hodges, Sara D

    2015-05-01

    Does the presence of irrelevant neuroscience information make explanations of psychological phenomena more appealing? Do fMRI pictures further increase that allure? To help answer these questions, 385 college students in four experiments read brief descriptions of psychological phenomena, each one accompanied by an explanation of varying quality (good vs. circular) and followed by superfluous information of various types. Ancillary measures assessed participants' analytical thinking, beliefs on dualism and free will, and admiration for different sciences. In Experiment 1, superfluous neuroscience information increased the judged quality of the argument for both good and bad explanations, whereas accompanying fMRI pictures had no impact above and beyond the neuroscience text, suggesting a bias that is conceptual rather than pictorial. Superfluous neuroscience information was more alluring than social science information (Experiment 2) and more alluring than information from prestigious "hard sciences" (Experiments 3 and 4). Analytical thinking did not protect against the neuroscience bias, nor did a belief in dualism or free will. We conclude that the "allure of neuroscience" bias is conceptual, specific to neuroscience, and not easily accounted for by the prestige of the discipline. It may stem from the lay belief that the brain is the best explanans for mental phenomena.

  17. Neuroart: picturing the neuroscience of intentional actions in art and science

    PubMed Central

    Siler, Todd

    2015-01-01

    Intentional actions cover a broad spectrum of human behaviors involving consciousness, creativity, innovative thinking, problem-solving, critical thinking, and other related cognitive processes self-evident in the arts and sciences. The author discusses the brain activity associated with action intentions, connecting this activity with the creative process. Focusing on one seminal artwork created and exhibited over a period of three decades, Thought Assemblies (1979–82, 2014), he describes how this symbolic art interprets the neuropsychological processes of intuition and analytical reasoning. It explores numerous basic questions concerning observed interactions between artistic and scientific inquiries, conceptions, perceptions, and representations connecting mind and nature. Pointing to some key neural mechanisms responsible for forming and implementing intentions, he considers why and how we create, discover, invent, and innovate. He suggests ways of metaphorical thinking and symbolic modeling that can help integrate the neuroscience of intentional actions with the neuroscience of creativity, art and neuroaesthetics. PMID:26257629

  18. The historical development of neuroscience in physical rehabilitation.

    PubMed

    Cohen, H; Reed, K L

    1996-01-01

    Neuroscience and occupational therapy in physical rehabilitation have developed along parallel tracks. As physicians began to study the neural bases of motor control, they also began to reconsider the sequelae of "hopeless" diagnoses as conditions that they could influence. This change in some physicians' understanding of the neural mechanisms of motor control influenced other clinicians' ideas about patient care. Early work on treatment of patients with cerebral palsy and polio led to improvements in treatment approaches used to facilitate motor skill and functional motor ability in patients with upper motor neuron disorders. From the 1950s to the present, therapists have refined their treatment techniques as knowledge from neuroscience has become available. A few therapists, who are gradually increasing in number, have turned to the laboratory to study basic neuroscience problems that affect clinical treatment. This article describes the development of neuroscience research and neurorehabilitation theories and indicates common themes.

  19. The promise of educational neuroscience: Comment on Bowers (2016).

    PubMed

    Gabrieli, John D E

    2016-10-01

    Bowers (2016) argues that there are practical and principled problems with how educational neuroscience may contribute to education, including lack of direct influences on teaching in the classroom. Some of the arguments made are convincing, including the critique of unsubstantiated claims about the impact of educational neuroscience and the reminder that the primary outcomes of education are behavioral, such as skill in reading or mathematics. Bowers' analysis falls short in 3 major respects. First, educational neuroscience is a basic science that has made unique contributions to basic education research; it is not part of applied classroom instruction. Second, educational neuroscience contributes to ideas about education practices and policies beyond classroom curriculum that are important for helping vulnerable students. Third, educational neuroscience studies using neuroimaging have not only revealed for the first time the brain basis of neurodevelopmental differences that have profound influences on educational outcomes, but have also identified individual brain differences that predict which students learn more or learn less from various curricula. In several cases, the brain measures significantly improved or vastly outperformed conventional behavioral measures in predicting what works for individual children. These findings indicate that educational neuroscience, at a minimum, has provided novel insights into the possibilities of individualized education for students, rather than the current practice of learning through failure that a curriculum did not support a student. In the best approach to improving education, educational neuroscience ought to contribute to basic research addressing the needs of students and teachers. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. And the Winner Is: Inviting Hollywood into the Neuroscience Classroom

    PubMed Central

    Wiertelak, Eric P.

    2002-01-01

    Both short excerpts from, and full-length presentation of feature films have been used with success in undergraduate instruction. Studies of such use of films has revealed that incorporation of film viewing within courses can promote both content mastery and the development of critical thinking skills. This article discusses and provides examples of successful use of two methods that may be used to incorporate a variety of full-length feature films into neuroscience instruction. One, the “neuro-cinema” pairs the presentation of a film featuring extensive neuroscience content with primary literature reading assignments, group discussion and writing exercises. The second, a neuroscience film series, features group discussion of movies of perhaps more limited relevance to neuroscience. An additional goal of this article is provide the reader with initial resources for the selection of potential film titles for use in neuroscience education. Three extensive tables are included to provide a wide range of title suggestions appropriate for use in activities such as the neuro-cinema, the neuroscience film series, or for more limited use as short “clips” in classroom instruction. PMID:23493171

  1. Neuroscience and Education

    ERIC Educational Resources Information Center

    Goswami, U.

    2004-01-01

    Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional,…

  2. The marmoset monkey as a model for visual neuroscience

    PubMed Central

    Mitchell, Jude F.; Leopold, David A.

    2015-01-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset’s small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. PMID:25683292

  3. Games people play-toward an enactive view of cooperation in social neuroscience.

    PubMed

    Engemann, Denis A; Bzdok, Danilo; Eickhoff, Simon B; Vogeley, Kai; Schilbach, Leonhard

    2012-01-01

    The field of social neuroscience has made considerable progress in unraveling the neural correlates of human cooperation by making use of brain imaging methods. Within this field, neuroeconomic research has drawn on paradigms from experimental economics, such as the Prisoner's Dilemma (PD) and the Trust Game. These paradigms capture the topic of conflict in cooperation, while focusing strongly on outcome-related decision processes. Cooperation, however, does not equate with that perspective, but relies on additional psychological processes and events, including shared intentions and mutually coordinated joint action. These additional facets of cooperation have been successfully addressed by research in developmental psychology, cognitive science, and social philosophy. Corresponding neuroimaging data, however, is still sparse. Therefore, in this paper, we present a juxtaposition of these mutually related but mostly independent trends in cooperation research. We propose that the neuroscientific study of cooperation could benefit from paradigms and concepts employed in developmental psychology and social philosophy. Bringing both to a neuroimaging environment might allow studying the neural correlates of cooperation by using formal models of decision-making as well as capturing the neural responses that underlie joint action scenarios, thus, promising to advance our understanding of the nature of human cooperation.

  4. The rebirth of neuroscience in psychosomatic medicine, Part I: historical context, methods, and relevant basic science.

    PubMed

    Lane, Richard D; Waldstein, Shari R; Chesney, Margaret A; Jennings, J Richard; Lovallo, William R; Kozel, Peter J; Rose, Robert M; Drossman, Douglas A; Schneiderman, Neil; Thayer, Julian F; Cameron, Oliver G

    2009-02-01

    Neuroscience was an integral part of psychosomatic medicine at its inception in the early 20th century. Since the mid-20th century, however, psychosomatic research has largely ignored the brain. The field of neuroscience has burgeoned in recent years largely because a variety of powerful new methods have become available. Many of these methods allow for the noninvasive study of the living human brain and thus are potentially available for integration into psychosomatic medicine research at this time. In this first paper we examine various methods available for human neuroscientific investigation and discuss their relative strengths and weaknesses. We next review some basic functional neuroanatomy involving structures that are increasingly being identified as relevant for psychosomatic processes. We then discuss, and provide examples of, how the brain influences end organs through "information transfer systems," including the autonomic, neuroendocrine, and immune systems. The evidence currently available suggests that neuroscience holds great promise for advancing the goal of understanding the mechanisms by which psychosocial variables influence physical disease outcomes. An increased focus on such mechanistic research in psychosomatic medicine is needed to further its acceptance into the field of medicine.

  5. Opera and neuroscience.

    PubMed

    Lorusso, Lorenzo; Franchini, Antonia Francesca; Porro, Alessandro

    2015-01-01

    Opera is the most complete form of theatrical representation, characterized by musical accompaniment, both instrumental and vocal. It has played an important role in sociocultural spheres, affecting the various social strata and reflecting customs and ideas in different centuries. Composers have created pieces that have also shown the development of medicine. Since the birth of opera in seventeenth century in Italy, neuroscience has played an important role in influencing the representation of madness and neurological aspects. From the Folly of the Renaissance, a path toward a representation of madness was developed, initially linked to the myths of classical antiquity. In the seventeenth and eighteenth centuries, madness was represented as comical or funny, of a loving nature and influenced by the spread of the Commedia dell'Arte (Comedy of Art). In the nineteenth century, with the rise of the first scientific theories of the mind, insanity took more precise connotations and was separated from other psychiatric and neurological diseases. The operas of the twentieth century depicted psychiatric and neurological diseases, taking into account newer medical and scientific discoveries. © 2015 Elsevier B.V. All rights reserved.

  6. Neuroscience and the fallacies of functionalism.

    PubMed

    Reddy, William M

    2010-01-01

    Smail's "On Deep History and the Brain" is rightly critical of the functionalist fallacies that have plagued evolutionary theory, sociobiology, and evolutionary psychology. However, his attempt to improve on these efforts relies on functional explanations that themselves oversimplify the lessons of neuroscience. In addition, like explanations in evolutionary psychology, they are highly speculative and cannot be confirmed or disproved by evidence. Neuroscience research is too diverse to yield a single picture of brain functioning. Some recent developments in neuroscience research, however, do suggest that cognitive processing provides a kind of “operating system” that can support a great diversity of cultural material. These developments include evidence of “top-down” processing in motor control, in visual processing, in speech recognition, and in “emotion regulation.” The constraints that such a system may place on cultural learning and transmission are worth investigating. At the same time, historians are well advised to remain wary of the pitfalls of functionalism.

  7. Assessing Development of an Interdisciplinary Perspective in an Undergraduate Neuroscience Course

    PubMed Central

    Crisp, Kevin M.; Muir, Gary M.

    2012-01-01

    Neuroscience is an intrinsically interdisciplinary (ID) field yet little has been published regarding assessment of ID learning in undergraduate neuroscience students. This study attempted to empirically assess the development of an interdisciplinary perspective in 25 undergraduate neuroscience students in a neuroscience program core course. Data were collected using two simple assessment instruments: 1) written responses to the open-ended question “What is neuroscience?” and 2) a term-discipline relevance survey in which students indicated all disciplinary perspectives to which terms (such as electrode, taste, dx/dt) were relevant. Comparison of student responses early in the course (week 1 or 5) and at the end of the course (week 15) showed evidence of development of an interdisciplinary perspective, with students using significantly more integrative terms in their responses and demonstrating an increased awareness of the complexity of the field of neuroscience. PMID:23504673

  8. Introduction to the special issue from the 2014 meeting of the International Behavioral Neuroscience Society.

    PubMed

    Young, Jared W; Hall, F Scott; Pletnikov, Mikhail; Kent, Stephen

    2015-11-01

    In 2013, President Obama launched what has been optimistically described as the "decade of the brain". The launch of this effort comes on the back of widespread acknowledgement that more is required to aid those suffering from mental health disorders. Specifically, a greater understanding of the neural circuitry related to behaviors specific to mental health disorders is needed. The field of research that relates the circuitry of the brain to specific aspects of behavior is referred to as behavioral neuroscience. The International Behavioral Neuroscience Society (IBNS) was founded in 1992 specifically to meet on an annual basis and present the latest research findings in this field, and to gather together the international research community to discuss issues important for the development and progress of this scientific discipline. This special issue includes reviews of topics of emerging interest and advancing knowledge in behavioral neuroscience, based on symposia presented at the 2014 IBNS meeting. Topics discussed at the annual IBNS meeting ranged from investigations of the neural mechanisms underlying bipolar disorder, schizophrenia, depression, traumatic brain injury, and risk-taking behavior, to behavioral consequences of obesity and immune dysfunction. Novel treatment areas are covered such as the use of deep brain stimulation, as well as investigation of the behavioral impacts of nicotine withdrawal and how this research will influence the development of nicotine cessation treatments. Hence, this special issue covers a wide-range of topics in behavioral neuroscience offering an insight into the challenges faced by researchers in this decade of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Neuroscience curriculum changes and outcomes: medical university of South Carolina, 2006 to 2010.

    PubMed

    Holden, Kenton R; Cooper, S Lewis; Wong, Jeffrey G

    2012-07-01

    To develop future neurologists and translational neuroscientists, we created a neurosciences pathway throughout our medical school curriculum that included early exposure to clinical neurosciences decision-making and added variety to the choices of later clinical neurosciences experiences. Our curricular innovation had 3 parts: (1) integrating basic neurosciences content into an explicit clinical context in a College of Medicine (COM) first year of medical school; (2) expanding pathophysiological principles related to neurosciences in COM second year of medical school; and (3) creating a variety of 3-week clinical neurosciences selectives in COM third year of medical school and 4-week electives/externships for interested learners in COM fourth year of medical school. These new changes were evaluated (1) by comparing national standardized examinations including Neurology Subject examination scores for students choosing clinical neurosciences selectives; (2) by student satisfaction Graduate Questionnaires; and (3) by the total number of our graduates matching in US neurosciences disciplines. Students taking neuroscience selectives demonstrated a nonsignificant trend toward higher Step 2 Clinical Knowledge scores. The students' Neurology Subject examination scores were comparable with those scores reported nationally for other US COM third year of medical school students on 4-week rotations. Student-reported satisfaction in clinical neurology teaching improved from 43.9% (before) to 81.8% (after). The percentage of students matching into clinical neuroscience disciplines rose from 2% (before) to 6% (after). Our neurosciences curricular innovation increased graduating student satisfaction scores, had a mild positive impact on Step 2 Clinical Knowledge scores, and increased the number of students choosing careers in the clinical neurosciences. This model may be a consideration for other medical schools who wish to integrate neurosciences teaching throughout their

  10. The nature of advanced reasoning and science instruction

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    Although the development of reasoning is recognized as an important goal of science instruction, its nature remains somewhat of a mystery. This article discusses two key questions: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? Aspects of a model of advanced reasoning are presented in which hypothesis generation and testing are viewed as central processes in intellectual development. It is argued that a number of important advanced reasoning schemata are linked by these processes and should be made a part of science instruction designed to improve students' reasoning abilities.Concerning students' development and use of formal reasoning, Linn (1982) calls for research into practical issues such as the roles of task-specific knowledge and individual differences in performance, roles not emphasized by Piaget in his theory and research. From a science teacher's point of view, this is good advice. Accordingly, this article will expand upon some of the issues raised by Linn in a discussion of the nature of advanced reasoning which attempts to reconcile the apparent contradiction between students' differential use of advanced reasoning schemata in varying contexts with the notion of a general stage of formal thought. Two key questions will be discussed: Does formal thought constitute a structured whole? And what role does propositional logic play in advanced reasoning? The underlying assumption of the present discussion is that, among other things, science instruction should concern itself with the improvement of students' reasoning abilities (cf. Arons, 1976; Arons & Karplus, 1976; Bady, 1979; Bauman, 1976; Educational Policies Commission, 1966; Herron, 1978; Karplus, 1979; Kohlberg & Mayer, 1972; Moshman & Thompson, 1981; Lawson, 1979; Levine & linn, 1977; Pallrand, 1977; Renner & Lawson, 1973; Sayre & Ball, 1975; Schneider & Renner, 1980; Wollman, 1978). The questions are of interest because to

  11. Modular Digital Course in Undergraduate Neuroscience Education (MDCUNE): A Website Offering Free Digital Tools for Neuroscience Educators.

    PubMed

    Grisham, William

    2009-01-01

    We are providing free digital resources for teaching neuroscience labs at http://mdcune.psych.ucla.edu/. These resources will ultimately include materials for teaching laboratories in electrophysiology of neuronal circuits (SWIMMY), a Neuroinformatics/Bioinformatics module, and two modules for investigating the effects of hormones on early CNS development-one focusing on the development of the song system and one focusing on sex differences in spinal cord motor neurons. All of these modules are inquiry based-students gain from genuine experiences in doing actual studies rather than just simulations. These materials should provide instructors the ability to provide good quality laboratory experiences regardless of resource limitations. Currently, modules on sex differences in the spinal cord and virtual neural circuits (SWIMMY) are available on our website. More will be available in summer 2009 and 2010. SWIMMY was demonstrated at the Faculty for Undergraduate Neuroscience (FUN) Workshop-The Undergraduate Neuroscience Education: Interactions, interdisciplines, and curricular best practices at Macalester College in July 2008.

  12. Conceptual Challenges and Directions for Social Neuroscience

    PubMed Central

    Adolphs, Ralph

    2010-01-01

    Social neuroscience has been enormously successful and is making major contributions to fields ranging from psychiatry to economics. Yet deep and interesting conceptual challenges abound. Is social information processing domain specific? Is it universal or susceptible to individual differences and effects of culture? Are there uniquely human social cognitive abilities? What is the “social brain,” and how do we map social psychological processes onto it? Animal models together with fMRI and other cognitive neuroscience approaches in humans are providing an unprecedented level of detail and many surprising results. It may well be that social neuroscience in the near future will give us an entirely new view of who we are, how we evolved, and what might be in store for the future of our species. PMID:20346753

  13. Fear Extinction as a Model for Translational Neuroscience: Ten Years of Progress

    PubMed Central

    Milad, Mohammed R.; Quirk, Gregory J.

    2016-01-01

    The psychology of extinction has been studied for decades. Approximately 10 years ago, however, there began a concerted effort to understand the neural circuits of extinction of fear conditioning, in both animals and humans. Progress during this period has been facilitated by an unusual degree of coordination between rodent and human researchers examining fear extinction. This successful research program could serve as a model for translational research in other areas of behavioral neuroscience. Here we review the major advances and highlight new approaches to understanding and exploiting fear extinction. PMID:22129456

  14. Scandinavian neuroscience during the Nazi era.

    PubMed

    Kondziella, Daniel; Hansen, Klaus; Zeidman, Lawrence A

    2013-07-01

    Although Scandinavian neuroscience has a proud history, its status during the Nazi era has been overlooked. In fact, prominent neuroscientists in German-occupied Denmark and Norway, as well as in neutral Sweden, were directly affected. Mogens Fog, Poul Thygesen (Denmark) and Haakon Sæthre (Norway) were resistance fighters, tortured by the Gestapo: Thygesen was imprisoned in concentration camps and Sæthre executed. Jan Jansen (Norway), another neuroscientist resistor, escaped to Sweden, returning under disguise to continue fighting. Fritz Buchthal (Denmark) was one of almost 8000 Jews escaping deportation by fleeing from Copenhagen to Sweden. In contrast, Carl Værnet (Denmark) became a collaborator, conducting inhuman experiments in Buchenwald concentration camp, and Herman Lundborg (Sweden) and Thorleif Østrem (Norway) advanced racial hygiene in order to maintain the "superior genetic pool of the Nordic race." Compared to other Nazi-occupied countries, there was a high ratio of resistance fighters to collaborators and victims among the neuroscientists in Scandinavia.

  15. After p Values: The New Statistics for Undergraduate Neuroscience Education.

    PubMed

    Calin-Jageman, Robert J

    2017-01-01

    Statistical inference is a methodological cornerstone for neuroscience education. For many years this has meant inculcating neuroscience majors into null hypothesis significance testing with p values. There is increasing concern, however, about the pervasive misuse of p values. It is time to start planning statistics curricula for neuroscience majors that replaces or de-emphasizes p values. One promising alternative approach is what Cumming has dubbed the "New Statistics", an approach that emphasizes effect sizes, confidence intervals, meta-analysis, and open science. I give an example of the New Statistics in action and describe some of the key benefits of adopting this approach in neuroscience education.

  16. Can Cognitive Neuroscience Ground a Science of Learning?

    ERIC Educational Resources Information Center

    Kelly, Anthony E.

    2011-01-01

    In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.

  17. Psychiatry chief resident opinions toward basic and clinical neuroscience training and practice.

    PubMed

    Bennett, Jeffrey I; Handa, Kamna; Mahajan, Aman; Deotale, Pravesh

    2014-04-01

    The authors queried attendees to a chief resident conference on whether program education and training in neuroscience or in translating neuroscience research into practice is sufficient and what changes are needed. The authors developed and administered a 26-item voluntary questionnaire to each attendee at the Chief Residents' Leadership Conference at the American Psychiatric Association 2013 annual meeting in San Francisco, CA. Out of 94 attendees, 55 completed and returned questionnaires (58.5%). A majority of respondents stated that their program provided adequate training in neuroscience (61.8%); opportunities for neuroscience research existed for them (78.2%), but that their program did not prepare them for translating future neuroscience research findings into clinical practice (78.9%) or educate them on the NIMH Research Domain Criteria (83.3%). A majority of respondents stated that the ACGME should require a specific neuroscience curriculum (79.6%). Chief residents believe that curricular and cultural change is needed in psychiatry residency neuroscience education.

  18. Applied Neuroscience at the AFRL 711th Human Performance Wing

    DTIC Science & Technology

    2010-09-01

    Support teaming and collaboration research performed by RHCPT 25 History of Applied Neuroscience Research First EEG studies of workload at AFRL...First to classify mental workload based on integrated EEG /ECG 26 First successful real- time workload classification Measured EEG workload in...complex tasks Closed-loop adaptive aiding based on EEG /ECG History of Applied Neuroscience Research 27 Current Applied Neuroscience Research • Mix of in

  19. Advances in natural biomaterials for nerve tissue repair.

    PubMed

    Khaing, Zin Z; Schmidt, Christine E

    2012-06-25

    Natural biomaterials are well positioned to play a significant role in the development of the next generation of biomaterials for nervous system repair. These materials are derived from naturally occurring substances and are highly diverse and versatile. They are generally biocompatible and are well tolerated in vivo, and therefore have a high potential to be successful as part of clinical repair strategies in the nervous system. Here we review recent reports on acellular tissue grafts, collagen, hyaluronan, fibrin, and agarose in their use to repair the nervous system. In addition, newly developed advanced fabrication techniques to further develop the next generation natural biomaterials-based therapeutic devices are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Philosophy, Neuroscience and Education

    ERIC Educational Resources Information Center

    Clark, John

    2015-01-01

    This short note takes two quotations from Snooks' recent editorial on neuroeducation and teases out some further details on the philosophy of neuroscience and neurophilosophy along with consideration of the implications of both for philosophy of education.

  1. Neuroscience and morality.

    PubMed

    Allison, T

    2001-10-01

    Humans are social animals who use specialized brain mechanisms to assess the actions of others. This system for social cognition can be studied by imaging techniques, and its damage can lead to inappropriate social and moral behavior. Neuroscience can thus enrich our understanding of behaviors traditionally thought to be outside the province of science.

  2. The NIFSTD and BIRNLex Vocabularies: Building Comprehensive Ontologies for Neuroscience

    PubMed Central

    Bug, William J.; Ascoli, Giorgio A.; Grethe, Jeffrey S.; Gupta, Amarnath; Fennema-Notestine, Christine; Laird, Angela R.; Larson, Stephen D.; Rubin, Daniel; Shepherd, Gordon M.; Turner, Jessica A.; Martone, Maryann E.

    2009-01-01

    A critical component of the Neuroscience Information Framework (NIF) project is a consistent, flexible terminology for describing and retrieving neuroscience-relevant resources. Although the original NIF specification called for a loosely structured controlled vocabulary for describing neuroscience resources, as the NIF system evolved, the requirement for a formally structured ontology for neuroscience with sufficient granularity to describe and access a diverse collection of information became obvious. This requirement led to the NIF standardized (NIFSTD) ontology, a comprehensive collection of common neuroscience domain terminologies woven into an ontologically consistent, unified representation of the biomedical domains typically used to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital resources (tools, databases) being created throughout the neuroscience community. NIFSTD builds upon a structure established by the BIRNLex, a lexicon of concepts covering clinical neuroimaging research developed by the Biomedical Informatics Research Network (BIRN) project. Each distinct domain module is represented using the Web Ontology Language (OWL). As much as has been practical, NIFSTD reuses existing community ontologies that cover the required biomedical domains, building the more specific concepts required to annotate NIF resources. By following this principle, an extensive vocabulary was assembled in a relatively short period of time for NIF information annotation, organization, and retrieval, in a form that promotes easy extension and modification. We report here on the structure of the NIFSTD, and its predecessor BIRNLex, the principles followed in its construction and provide examples of its use within NIF. PMID:18975148

  3. The NIFSTD and BIRNLex vocabularies: building comprehensive ontologies for neuroscience.

    PubMed

    Bug, William J; Ascoli, Giorgio A; Grethe, Jeffrey S; Gupta, Amarnath; Fennema-Notestine, Christine; Laird, Angela R; Larson, Stephen D; Rubin, Daniel; Shepherd, Gordon M; Turner, Jessica A; Martone, Maryann E

    2008-09-01

    A critical component of the Neuroscience Information Framework (NIF) project is a consistent, flexible terminology for describing and retrieving neuroscience-relevant resources. Although the original NIF specification called for a loosely structured controlled vocabulary for describing neuroscience resources, as the NIF system evolved, the requirement for a formally structured ontology for neuroscience with sufficient granularity to describe and access a diverse collection of information became obvious. This requirement led to the NIF standardized (NIFSTD) ontology, a comprehensive collection of common neuroscience domain terminologies woven into an ontologically consistent, unified representation of the biomedical domains typically used to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital resources (tools, databases) being created throughout the neuroscience community. NIFSTD builds upon a structure established by the BIRNLex, a lexicon of concepts covering clinical neuroimaging research developed by the Biomedical Informatics Research Network (BIRN) project. Each distinct domain module is represented using the Web Ontology Language (OWL). As much as has been practical, NIFSTD reuses existing community ontologies that cover the required biomedical domains, building the more specific concepts required to annotate NIF resources. By following this principle, an extensive vocabulary was assembled in a relatively short period of time for NIF information annotation, organization, and retrieval, in a form that promotes easy extension and modification. We report here on the structure of the NIFSTD, and its predecessor BIRNLex, the principles followed in its construction and provide examples of its use within NIF.

  4. Criminal Responsibility, Free Will, and Neuroscience

    NASA Astrophysics Data System (ADS)

    Hodgson, David

    This chapter identifies retributive and consequentialist purposes of the criminal law, and it outlines arguments that retribution should be abandoned, in cluding arguments, based on philosophy and neuroscience, that free will and re sponsibility are illusions. The author suggests that there are good reasons to retain retribution, and identifies ways in which this might be supported, including com patibilist and libertarian views of free will. The author gives reasons for preferring libertarian views, and concludes by considering the role that neuroscience may be expected to play in the future development of the law.

  5. Neuroscience Study Abroad: Developing a Short-Term Summer Course

    PubMed Central

    Ruscio, Michael G.; Korey, Christopher

    2012-01-01

    Collaborative and international scientific efforts continue to be of increasing importance in the development of successful educational and research programs. The goal of our study abroad program, Neuroscience Seminar in Germany, is to bring this fact to light for undergraduates and make them aware of the global opportunities that exist in the neurosciences and related biological sciences. Here we discuss our experience of conducting a four-week summer study abroad course in collaboration with two universities associated with the German Graduate Schools of Neuroscience: Munich Center for Neurosciences – Ludwig-Maximilians-Universität (MCN-LMU) and Charité – Universitätsmedizin, Berlin (a joint institution of the Freie Universität and the Humboldt-Universität). This course combined the historical foundations of neuroscience in Germany with current research programs at these two prominent German research universities. Two weeks were spent at each location and faculty members from the participating universities provided seminars, laboratory exercises, demonstrations and tours. Students were presented with background reading and lecture material prior to the seminars and activities. Additionally, they were responsible for leading seminar-style class discussions through brief presentations and submitting written critical analyses of primary research papers associated with the laboratory exercises. These assignments provided a means to assess learning outcomes, coupled with course evaluations. Overall, this experience may serve as a template for those interested in study abroad course development and research opportunities in the neurosciences. PMID:23493243

  6. Neuroscience study abroad: developing a short-term summer course.

    PubMed

    Ruscio, Michael G; Korey, Christopher

    2012-01-01

    Collaborative and international scientific efforts continue to be of increasing importance in the development of successful educational and research programs. The goal of our study abroad program, Neuroscience Seminar in Germany, is to bring this fact to light for undergraduates and make them aware of the global opportunities that exist in the neurosciences and related biological sciences. Here we discuss our experience of conducting a four-week summer study abroad course in collaboration with two universities associated with the German Graduate Schools of Neuroscience: Munich Center for Neurosciences - Ludwig-Maximilians-Universität (MCN-LMU) and Charité - Universitätsmedizin, Berlin (a joint institution of the Freie Universität and the Humboldt-Universität). This course combined the historical foundations of neuroscience in Germany with current research programs at these two prominent German research universities. Two weeks were spent at each location and faculty members from the participating universities provided seminars, laboratory exercises, demonstrations and tours. Students were presented with background reading and lecture material prior to the seminars and activities. Additionally, they were responsible for leading seminar-style class discussions through brief presentations and submitting written critical analyses of primary research papers associated with the laboratory exercises. These assignments provided a means to assess learning outcomes, coupled with course evaluations. Overall, this experience may serve as a template for those interested in study abroad course development and research opportunities in the neurosciences.

  7. Aphasia therapy on a neuroscience basis

    PubMed Central

    Pulvermüller, Friedemann; Berthier, Marcelo L.

    2008-01-01

    Background Brain research has documented that the cortical mechanisms for language and action are tightly interwoven and, concurrently, new approaches to language therapy in neurological patients are being developed that implement language training in the context of relevant linguistic and non-linguistic actions, therefore taking advantage of the mutual connections of language and action systems in the brain. A further well-known neuroscience principle is that learning at the neuronal level is driven by correlation; consequently, new approaches to language therapy emphasise massed practice in a short time, thus maximising therapy quantity and frequency and, therefore, correlation at the behavioural and neuronal levels. Learned non-use of unsuccessful actions plays a major role in the chronification of neurological deficits, and behavioural approaches to therapy have therefore employed shaping and other learning techniques to counteract such non-use. Aims Advances in theoretical and experimental neuroscience have important implications for clinical practice. We exemplify this in the domain of aphasia rehabilitation. Main Contribution Whereas classical wisdom had been that aphasia cannot be significantly improved at a chronic stage, we here review evidence that one type of intensive language-action therapy (ILAT)—constraint-induced aphasia therapy—led to significant improvement of language performance in patients with chronic aphasia. We discuss perspectives for further improving speech-language therapy, including drug treatment that may be particularly fruitful when applied in conjunction with behavioural treatment. In a final section we highlight intensive and rapid therapy studies in chronic aphasia as a unique tool for exploring the cortical reorganisation of language. Conclusions We conclude that intensive language action therapy is an efficient tool for improving language functions even at chronic stages of aphasia. Therapy studies using this technique can

  8. Teaching laboratory neuroscience at bowdoin: the laboratory instructor perspective.

    PubMed

    Hauptman, Stephen; Curtis, Nancy

    2009-01-01

    Bowdoin College is a small liberal arts college that offers a comprehensive Neuroscience major. The laboratory experience is an integral part of the major, and many students progress through three stages. A core course offers a survey of concepts and techniques. Four upper-level courses function to give students more intensive laboratory research experience in neurophysiology, molecular neurobiology, social behavior, and learning and memory. Finally, many majors choose to work in the individual research labs of the Neuroscience faculty. We, as laboratory instructors, are vital to the process, and are actively involved in all aspects of the lab-based courses. We provide student instruction in state of the art techniques in neuroscience research. By sharing laboratory teaching responsibilities with course professors, we help to prepare students for careers in laboratory neuroscience and also support and facilitate faculty research programs.

  9. Iranians' contribution to world literature on neuroscience.

    PubMed

    Ashrafi, Farzad; Mohammadhassanzadeh, Hafez; Shokraneh, Farhad; Valinejadi, Ali; Johari, Karim; Saemi, Nazanin; Zali, Alireza; Mohaghegh, Niloofar; Ashayeri, Hassan

    2012-12-01

    The purpose of this study is to analyse Iranian scientific publications in the neuroscience subfields by librarians and neuroscientists, using Science Citation Index Expanded (SCIE) via Web of Science data over the period, 2002-2008. Data were retrieved from the SCIE. Data were collected from the 'subject area' of the database and classified by neuroscience experts into 14 subfields. To identify the citation patterns, we applied the 'impact factor' and the 'number of publication'. Data were also analysed using HISTCITE, Excel 2007 and SPSS. Seven hundred and thirty-four papers have been published by Iranian between 2002 and 2008. Findings showed a growing trend of neuroscience papers in the last 3 years with most papers (264) classified in the neuropharmacology subfield. There were fewer papers in neurohistory, psychopharmacology and artificial intelligence. International contributions of authors were mostly in the neurology subfield, and 'Collaboration Coefficient' for the neuroscience subfields in Iran was 0.686 which is acceptable. Most international collaboration between Iranians and developed countries was from USA. Eighty-seven percent of the published papers were in journals with the impact factor between 0 and 4; 25% of papers were published by the researchers affiliated to Tehran University of Medical Sciences. Progress of neuroscience in Iran is mostly seen in the neuropharmacology and the neurology subfields. Other subfields should also be considered as a research priority by health policymakers. As this study was carried out by the collaboration of librarians and neuroscientists, it has been proved valuable for both librarians and policymakers. This study may be encouraging for librarians from other developing countries. © 2012 The authors. Health Information and Libraries Journal © 2012 Health Libraries Group.

  10. Visualizing Neuroscience: Learning about the Brain through Art

    ERIC Educational Resources Information Center

    Chudler, Eric H.; Konrady, Paula

    2006-01-01

    Neuroscience is a subject that can motivate, excite, and stimulate the curiosity of everyone However, the study of the brain is made difficult by an abundance of new vocabulary words and abstract concepts. Although neuroscience has the potential to inspire students, many teachers find it difficult to include a study of the brain in their…

  11. Reflections on 50 Years of Neuroscience Nursing: Publication Trends in Neurotrauma.

    PubMed

    McNett, Molly; Keiser, Megan; Douglas, Heather; McNair, Norma D

    2018-04-01

    In 2018, the American Association of Neuroscience Nurses will celebrate its 50th anniversary as the premier member organization for neuroscience nurses. In recent decades, one of the highest rated member benefits has been the ability for members to join special focus groups (SFGs). The SFGs were initiated to allow an avenue for information sharing and communication for neuroscience nurses in a variety of subspecialties. In this anniversary edition, the neurotrauma SFG presents a review of trends in the publication of articles in the Journal of Neuroscience Nursing related to neurotrauma. Findings from this article illustrate how these publications have impacted the nursing care of patients who have sustained traumatic injuries of the central and peripheral nervous system and the integral role of neuroscience nurses throughout the decades.

  12. Written pain neuroscience education in fibromyalgia: a multicenter randomized controlled trial.

    PubMed

    van Ittersum, Miriam W; van Wilgen, C Paul; van der Schans, Cees P; Lambrecht, Luc; Groothoff, Johan W; Nijs, Jo

    2014-11-01

    Mounting evidence supports the use of face-to-face pain neuroscience education for the treatment of chronic pain patients. This study aimed at examining whether written education about pain neuroscience improves illness perceptions, catastrophizing, and health status in patients with fibromyalgia. A double-blind, multicenter randomized controlled clinical trial with 6-month follow-up was conducted. Patients with FM (n = 114) that consented to participate were randomly allocated to receive either written pain neuroscience education or written relaxation training. Written pain neuroscience education comprised of a booklet with pain neuroscience education plus a telephone call to clarify any difficulties; the relaxation group received a booklet with relaxation education and a telephone call. The revised illness perception questionnaire, Pain Catastrophizing Scale, and fibromyalgia impact questionnaire were used as outcome measures. Both patients and assessors were blinded. Repeated-measures analyses with last observation carried forward principle were performed. Cohen's d effect sizes (ES) were calculated for all within-group changes and between-group differences. The results reveal that written pain neuroscience education does not change the impact of FM on daily life, catastrophizing, or perceived symptoms of patients with FM. Compared with written relaxation training, written pain neuroscience education improved beliefs in a chronic timeline of FM (P = 0.03; ES = 0.50), but it does not impact upon other domains of illness perceptions. Compared with written relaxation training, written pain neuroscience education slightly improved illness perceptions of patients with FM, but it did not impart clinically meaningful effects on pain, catastrophizing, or the impact of FM on daily life. Face-to-face sessions of pain neuroscience education are required to change inappropriate cognitions and perceived health in patients with FM. © 2013 World Institute of Pain.

  13. An Analysis of the Abstracts Presented at the Annual Meetings of the Society for Neuroscience from 2001 to 2006

    PubMed Central

    Lin, John M.; Bohland, Jason W.; Andrews, Peter; Burns, Gully A. P. C.; Allen, Cara B.; Mitra, Partha P.

    2008-01-01

    Annual meeting abstracts published by scientific societies often contain rich arrays of information that can be computationally mined and distilled to elucidate the state and dynamics of the subject field. We extracted and processed abstract data from the Society for Neuroscience (SFN) annual meeting abstracts during the period 2001–2006 in order to gain an objective view of contemporary neuroscience. An important first step in the process was the application of data cleaning and disambiguation methods to construct a unified database, since the data were too noisy to be of full utility in the raw form initially available. Using natural language processing, text mining, and other data analysis techniques, we then examined the demographics and structure of the scientific collaboration network, the dynamics of the field over time, major research trends, and the structure of the sources of research funding. Some interesting findings include a high geographical concentration of neuroscience research in the north eastern United States, a surprisingly large transient population (66% of the authors appear in only one out of the six studied years), the central role played by the study of neurodegenerative disorders in the neuroscience community, and an apparent growth of behavioral/systems neuroscience with a corresponding shrinkage of cellular/molecular neuroscience over the six year period. The results from this work will prove useful for scientists, policy makers, and funding agencies seeking to gain a complete and unbiased picture of the community structure and body of knowledge encapsulated by a specific scientific domain. PMID:18446237

  14. Neuropsychiatry and neuroscience education of psychiatry trainees: attitudes and barriers.

    PubMed

    Benjamin, Sheldon; Travis, Michael J; Cooper, Joseph J; Dickey, Chandlee C; Reardon, Claudia L

    2014-04-01

    The American Association of Directors of Psychiatric Residency Training (AADPRT) Task Force on Neuropsychiatry and Neuroscience Education of Psychiatry Residents was established in 2011 with the charge to seek information about what the field of psychiatry considers the core topics in neuropsychiatry and neuroscience to which psychiatry residents should be exposed; whether there are any "competencies" in this area on which the field agrees; whether psychiatry departments have the internal capacity to teach these topics if they are desirable; and what the reception would be for "portable curricula" in neuroscience. The task force reviewed the literature and developed a survey instrument to be administered nationwide to all psychiatry residency program directors. The AADPRT Executive Committee assisted with the survey review, and their feedback was incorporated into the final instrument. In 2011-2012, 226 adult and child and adolescent psychiatry residency program directors responded to the survey, representing over half of all US adult and child psychiatry training directors. About three quarters indicated that faculty resources were available in their departments but 39% felt the lack of neuropsychiatry faculty and 36% felt the absence of neuroscience faculty to be significant barriers. Respectively, 64 and 60% felt that neuropsychiatry and psychiatric neuroscience knowledge were very important or critically important to the provision of excellent care. Ninety-two percent were interested in access to portable neuroscience curricula. There is widespread agreement among training directors on the importance of neuropsychiatry and neuroscience knowledge to general psychiatrists but barriers to training exist, including some programs that lack faculty resources and a dearth of portable curricula in these areas.

  15. Undergraduate Neuroscience Majors: A Missed Opportunity for Psychiatry Workforce Development.

    PubMed

    Goldenberg, Matthew N; Krystal, John H

    2017-04-01

    This study sought to determine whether and to what extent medical students with an undergraduate college major in neuroscience, relative to other college majors, pursue psychiatry relative to other brain-based specialties (neurology and neurosurgery) and internal medicine. The authors analyzed data from AAMC matriculation and graduation surveys for all students who graduated from US medical schools in 2013 and 2014 (n = 29,714). Students who majored in neuroscience, psychology, and biology were compared to all other students in terms of their specialty choice at both time points. For each major, the authors determined rates of specialty choice of psychiatry, neurology, neurosurgery, and, for comparison, internal medicine. This study employed Chi-square statistic to compare odds of various specialty choices among different majors. Among medical students with an undergraduate neuroscience major (3.5% of all medical students), only 2.3% preferred psychiatry at matriculation, compared to 21.5% who chose neurology, 13.1% neurosurgery, and 11% internal medicine. By graduation, psychiatry specialty choice increased to 5.1% among neuroscience majors while choice of neurology and neurosurgery declined. Psychology majors (OR = 3.16, 95% CI 2.60-4.47) but not neuroscience majors (OR 1.28, 0.92-1.77) were more likely than their peers to choose psychiatry. Psychiatry struggles to attract neuroscience majors to the specialty. This missed opportunity is an obstacle to developing the neuroscience literacy of the workforce and jeopardizes the neuroscientific future of our field. Several potential strategies to address the recruitment challenges exist.

  16. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  17. Extending the seductive allure of neuroscience explanations effect to popular articles about educational topics.

    PubMed

    Im, Soo-Hyun; Varma, Keisha; Varma, Sashank

    2017-12-01

    The seductive allure of neuroscience explanations (SANE) is the finding that people overweight psychological arguments when framed in terms of neuroscience findings. This study extended this finding to arguments concerning the application of psychological findings to educational topics. Participants (n = 320) were recruited from the general public, specifically among English-speaking Amazon Mechanical Turk workers residing in the United States. We developed eight articles that orthogonally varied two processes (learning vs. development) with two disciplines (cognitive vs. affective psychology). We increased neuroscience framing across four levels: psychological finding alone, with an extraneous neuroscience finding (verbal), with an extraneous neuroscience finding (verbal) and graph, and with an extraneous neuroscience finding (verbal) and brain image. Participants were randomly assigned to one level of neuroscience framing and rated the credibility of each article's argument. Seductive allure of neuroscience explanations effects were not ubiquitous. Extraneous verbal neuroscience framings, either alone or accompanied by graphs, did not influence the credibility of the application of psychological findings to educational topics. However, there was a SANE effect when educational articles were accompanied by both extraneous verbal neuroscience findings and brain images. This effect persisted even after controlling for individual differences in familiarity with education, attitude towards psychology, and knowledge of neuroscience. The results suggest that there is a SANE effect for articles about educational topics among the general public when they are accompanied by both extraneous verbal neuroscience findings and brain images. © 2017 The British Psychological Society.

  18. Mood dysregulation and stabilization: perspectives from emotional cognitive neuroscience.

    PubMed

    Yamawaki, Shigeto; Okada, Go; Okamoto, Yasumasa; Liberzon, Israel

    2012-06-01

    Mood is conceptualized as a long-lasting emotional state, which can have profound implications for mental and physical health. The development of neuroimaging methods has enabled significant advances towards elucidating the mechanisms underlying regulation of mood and emotion; however, our understanding of mood and emotion dysregulation in stress-related psychiatric disorders is still largely lacking. From the cognitive-affective neuroscience perspective, achieving deeper, more mechanistic understanding of mood disorders necessitates detailed understanding of specific components of neural systems involved in mood dysregulation and stabilization. In this review, we provide an overview of neural systems implicated in the development of a long-term negative mood state, as well as those related to emotion and emotion regulation, and discuss their proposed involvement in mood and anxiety disorders.

  19. Emerging perspectives in social neuroscience and neuroeconomics of aging

    PubMed Central

    Mather, Mara

    2011-01-01

    This article introduces the special issue of ‘Social Cognitive and Affective Neuroscience’ on Aging Research, and offers a broad conceptual and methodological framework for considering advances in life course research in social neuroscience and neuroeconomics. The authors highlight key areas of inquiry where aging research is raising new insights about how to conceptualize and examine critical questions about the links between cognition, emotion and motivation in social and economic behavior, as well as challenges that need to be addressed when taking a life course perspective in these fields. They also point to several emerging approaches that hold the potential for addressing these challenges, through bridging approaches from laboratory and population-based science, bridging inquiry across life stages and expanding measurement of core psychological phenotypes. PMID:21482573

  20. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond.

    PubMed

    Zhang, Hongkang; Cohen, Adam E

    2017-07-01

    Recent advances in optogenetics have opened new routes to drug discovery, particularly in neuroscience. Physiological cellular assays probe functional phenotypes that connect genomic data to patient health. Optogenetic tools, in particular tools for all-optical electrophysiology, now provide a means to probe cellular disease models with unprecedented throughput and information content. These techniques promise to identify functional phenotypes associated with disease states and to identify compounds that improve cellular function regardless of whether the compound acts directly on a target or through a bypass mechanism. This review discusses opportunities and unresolved challenges in applying optogenetic techniques throughout the discovery pipeline - from target identification and validation, to target-based and phenotypic screens, to clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neuroscience discipline science plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  2. NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration with the NIF

    PubMed Central

    Halavi, Maryam; Polavaram, Sridevi; Donohue, Duncan E.; Hamilton, Gail; Hoyt, Jeffrey; Smith, Kenneth P.; Ascoli, Giorgio A.

    2009-01-01

    exciting new possibilities in data mining and knowledge discovery. The outcome of such coordination is the rapid and powerful advancement of neuroscience research at both the conceptual and technological level. PMID:18949582

  3. NeuroMorpho.Org implementation of digital neuroscience: dense coverage and integration with the NIF.

    PubMed

    Halavi, Maryam; Polavaram, Sridevi; Donohue, Duncan E; Hamilton, Gail; Hoyt, Jeffrey; Smith, Kenneth P; Ascoli, Giorgio A

    2008-09-01

    exciting new possibilities in data mining and knowledge discovery. The outcome of such coordination is the rapid and powerful advancement of neuroscience research at both the conceptual and technological level.

  4. The functional-cognitive framework as a tool for accelerating progress in cognitive neuroscience: On the benefits of bridging rather than reducing levels of analyses.

    PubMed

    Vahey, Nigel; Whelan, Robert

    2016-02-01

    The subject matter of neuroscience research is complex, and synthesising the wealth of data from this research to better understand mental processes is challenging. A useful strategy, therefore, may be to distinguish explicitly between the causal effects of the environment on behaviour (i.e. functional analyses) and the mental processes that mediate these effects (i.e. cognitive analyses). In this article, we describe how the functional-cognitive (F-C) framework can accelerate cognitive neuroscience and also advance a functional treatment of brain activity. We first highlight that cognitive neuroscience can particularly benefit from the F-C approach by providing an alternative to the problematic practice of reducing cognitive constructs to behavioural and/or neural proxies. Next, we outline how functional (behaviour-environment) relations can serve as a bridge between cognitive and neural processes by restoring mental constructs to their original role as heuristic tools. Finally, we give some examples of how both cognitive neuroscience and traditional functional approaches can mutually benefit from the F-C framework. © 2015 International Union of Psychological Science.

  5. Security implications and governance of cognitive neuroscience.

    PubMed

    Kosal, Margaret E; Huang, Jonathan Y

    2015-01-01

    In recent years, significant efforts have been made toward elucidating the potential of the human brain. Spanning fields as disparate as psychology, biomedicine, computer science, mathematics, electrical engineering, and chemistry, research venturing into the growing domains of cognitive neuroscience and brain research has become fundamentally interdisciplinary. Among the most interesting and consequential applications to international security are the military and defense community's interests in the potential of cognitive neuroscience findings and technologies. In the United States, multiple governmental agencies are actively pursuing such endeavors, including the Department of Defense, which has invested over $3 billion in the last decade to conduct research on defense-related innovations. This study explores governance and security issues surrounding cognitive neuroscience research with regard to potential security-related applications and reports scientists' views on the role of researchers in these areas through a survey of over 200 active cognitive neuroscientists.

  6. Struggle for life, struggle for love and recognition: the neglected self in social cognitive neuroscience

    PubMed Central

    Paradiso, Sergio; Rudrauf, David

    2012-01-01

    In the following article we present a view that social cognition and social neuroscience, as shaped by the current research paradigms, are not sufficient to improve our understanding of psychopathological phenomena. We hold that the self, self-awareness, and inter-subjectivity are integral to social perception and actions. In addition, we emphasize that the self and self-awareness are, by their very nature and function, involved over the entire lifespan with the way the individual is perceived in the social environment. Likewise, the modes of operation and identification of the self and self-awareness receive strong developmental contributions from social interactions with parental figures, siblings, peers, and significant others. These contributions are framed by a competitive and cooperative struggle for love and recognition. We suggest that in humans social cognitive neuroscience should be informed by a thoughtful appreciation of the equal significance of the struggle for “life” and that for love and recognition. In order to be better positioned to improve the research agenda and practice of clinical psychiatry, we propose that cognitive and social neurosciences explicitly incorporate in their models phenomena relative to the self, self-awareness, and inter-subjectivity. PMID:22577306

  7. Struggle for life, struggle for love and recognition: the neglected self in social cognitive neuroscience.

    PubMed

    Paradiso, Sergio; Rudrauf, David

    2012-03-01

    In the following article we present a view that social cognition and social neuroscience, as shaped by the current research paradigms, are not sufficient to improve our understanding of psychopathological phenomena. We hold that the self, self-awareness, and inter-subjectivity are integral to social perception and actions. In addition, we emphasize that the self and self-awareness are, by their very nature and function, involved over the entire lifespan with the way the individual is perceived in the social environment. Likewise, the modes of operation and identification of the self and self-awareness receive strong developmental contributions from social interactions with parental figures, siblings, peers, and significant others. These contributions are framed by a competitive and cooperative struggle for love and recognition. We suggest that in humans social cognitive neuroscience should be informed by a thoughtful appreciation of the equal significance of the struggle for "life" and that for love and recognition. In order to be better positioned to improve the research agenda and practice of clinical psychiatry, we propose that cognitive and social neurosciences explicitly incorporate in their models phenomena relative to the self, self-awareness, and inter-subjectivity.

  8. Neuroscience: viable applications in education?

    PubMed

    Devonshire, Ian M; Dommett, Eleanor J

    2010-08-01

    As a relatively young science, neuroscience is still finding its feet in potential collaborations with other disciplines. One such discipline is education, with the field of neuroeducation being on the horizon since the 1960s. However, although its achievements are now growing, the partnership has not been as successful as first hopes suggested it should be. Here the authors discuss the theoretical barriers and potential solutions to this, which have been suggested previously, with particular focus on levels of research in neuroscience and their applicability to education. Moreover, they propose that these theoretical barriers are driven and maintained by practical barriers surrounding common language and research literacy. They propose that by overcoming these practical barriers through appropriate training and shared experience, neuroeducation can reach its full potential.

  9. Advanced solid-state NMR spectroscopy of natural organic matter

    USDA-ARS?s Scientific Manuscript database

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially the systematic approach to NOM characterization, and their ...

  10. Building bridges between neuroscience, cognition and education with predictive modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringer, Steve; Tommerdahl, Jodi

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. In this article, we present a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include representations from the neural level to the policy level. Researchers could calibrate, test, and question the model, potentially providing quicker, more efficient, and more responsible ways of making advances in the developing educational field. Likewise, virtual investigations using models with this sort of capability can supplement themore » valuable information derived from carrying out policy and instructional experiments in real educational contexts.« less

  11. Building bridges between neuroscience, cognition and education with predictive modeling

    DOE PAGES

    Stringer, Steve; Tommerdahl, Jodi

    2015-05-06

    As the field of Mind, Brain, and Education seeks new ways to credibly bridge the gap between neuroscience, the cognitive sciences, and education, various connections are being developed and tested. In this article, we present a framework and offers examples of one approach, predictive modeling within a virtual educational system that can include representations from the neural level to the policy level. Researchers could calibrate, test, and question the model, potentially providing quicker, more efficient, and more responsible ways of making advances in the developing educational field. Likewise, virtual investigations using models with this sort of capability can supplement themore » valuable information derived from carrying out policy and instructional experiments in real educational contexts.« less

  12. Neuroscience and Global Learning

    PubMed Central

    Ruscio, Michael G.; Korey, Chris; Birck, Anette

    2015-01-01

    Traditional study abroad experiences take a variety of forms with most incorporating extensive cultural emersion and a focus on global learning skills. Here we ask the question: Can this type of experience co-exist with a quality scientific experience and continued progression through a typically rigorous undergraduate neuroscience curriculum? What are the potential costs and benefits of this approach? How do we increase student awareness of study abroad opportunities and inspire them to participate? We outline programs that have done this with some success and point out ways to cultivate this approach for future programs. These programs represent a variety of approaches in both their duration and role in a given curriculum. We discuss a one-week first year seminar program in Berlin, a summer study abroad course in Munich and Berlin, semester experiences and other options offered through the Danish Institute for Study Abroad in Copenhagen. Each of these experiences offers opportunities for interfacing global learning with neuroscience. PMID:26240528

  13. A Neurosciences-in-Psychiatry Curriculum Project for Medical Students

    ERIC Educational Resources Information Center

    Dunstone, David C.

    2006-01-01

    Objective: Incorporating new neuroscience findings relevant to psychiatry into the medical school curriculum is challenging, especially at the level of clinical learning. In this pilot project, third-year medical student volunteers in their required 8-week clerkship participated in an e-mail-based experience relating contemporary neuroscience to…

  14. "The developmental and functional logic of neuronal circuits": commentary on the Kavli Prize in Neuroscience.

    PubMed

    Glover, J C

    2009-11-10

    The first Kavli Prize in Neuroscience recognizes a confluence of career achievements that together provide a fundamental understanding of how brain and spinal cord circuits are assembled during development and function in the adult. The members of the Kavli Neuroscience Prize Committee have decided to reward three scientists (Sten Grillner, Thomas Jessell, and Pasko Rakic) jointly "for discoveries on the developmental and functional logic of neuronal circuits". Pasko Rakic performed groundbreaking studies of the developing cerebral cortex, including the discovery of how radial glia guide the neuronal migration that establishes cortical layers and for the radial unit hypothesis and its implications for cortical connectivity and evolution. Thomas Jessell discovered molecular principles governing the specification and patterning of different neuron types and the development of their synaptic interconnection into sensorimotor circuits. Sten Grillner elucidated principles of network organization in the vertebrate locomotor central pattern generator, along with its command systems and sensory and higher order control. The discoveries of Rakic, Jessell and Grillner provide a framework for how neurons obtain their identities and ultimate locations, establish appropriate connections with each other, and how the resultant neuronal networks operate. Their work has significantly advanced our understanding of brain development and function and created new opportunities for the treatment of neurological disorders. Each has pioneered an important area of neuroscience research and left a legacy of exceptional scientific achievement, insight, communication, mentoring and leadership.

  15. Neuroaesthetics: The Cognitive Neuroscience of Aesthetic Experience.

    PubMed

    Pearce, Marcus T; Zaidel, Dahlia W; Vartanian, Oshin; Skov, Martin; Leder, Helmut; Chatterjee, Anjan; Nadal, Marcos

    2016-03-01

    The field of neuroaesthetics has gained in popularity in recent years but also attracted criticism from the perspectives both of the humanities and the sciences. In an effort to consolidate research in the field, we characterize neuroaesthetics as the cognitive neuroscience of aesthetic experience, drawing on long traditions of research in empirical aesthetics on the one hand and cognitive neuroscience on the other. We clarify the aims and scope of the field, identifying relations among neuroscientific investigations of aesthetics, beauty, and art. The approach we advocate takes as its object of study a wide spectrum of aesthetic experiences, resulting from interactions of individuals, sensory stimuli, and context. Drawing on its parent fields, a cognitive neuroscience of aesthetics would investigate the complex cognitive processes and functional networks of brain regions involved in those experiences without placing a value on them. Thus, the cognitive neuroscientific approach may develop in a way that is mutually complementary to approaches in the humanities. © The Author(s) 2016.

  16. Concerns about cultural neurosciences: a critical analysis.

    PubMed

    Martínez Mateo, Marina; Cabanis, Maurice; Cruz de Echeverría Loebell, Nicole; Krach, Sören

    2012-01-01

    Ten years ago, neuroscientists began to study cultural phenomena by using functional MRI. Since then the number of publications in this field, termed cultural neuroscience (CN), has tremendously increased. In these studies, particular concepts of culture are implied, but rarely explicitly discussed. We argue that it is necessary to make these concepts a topic of debate in order to unravel the foundations of CN. From 40 fMRI studies we extracted two strands of reasoning: models investigating universal mechanisms for the formation of cultural groups and habits and, models assessing differences in characteristics among cultural groups. Both strands simplify culture as an inflexible set of traits and specificities. We question this rigid understanding of culture and highlight its hidden evaluative nature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Indestructible plastic: the neuroscience of the new aging brain.

    PubMed

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain's capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static.

  18. Indestructible plastic: the neuroscience of the new aging brain

    PubMed Central

    Holman, Constance; de Villers-Sidani, Etienne

    2014-01-01

    In recent years, research on experience-dependent plasticity has provided valuable insight on adaptation to environmental input across the lifespan, and advances in understanding the minute cellular changes underlying the brain’s capacity for self-reorganization have opened exciting new possibilities for treating illness and injury. Ongoing work in this line of inquiry has also come to deeply influence another field: cognitive neuroscience of the normal aging. This complex process, once considered inevitable or beyond the reach of treatment, has been transformed into an arena of intense investigation and strategic intervention. However, important questions remain about this characterization of the aging brain, and the assumptions it makes about the social, cultural, and biological space occupied by cognition in the older individual and body. The following paper will provide a critical examination of the move from basic experiments on the neurophysiology of experience-dependent plasticity to the growing market for (and public conception of) cognitive aging as a medicalized space for intervention by neuroscience-backed technologies. Entangled with changing concepts of normality, pathology, and self-preservation, we will argue that this new understanding, led by personalized cognitive training strategies, is approaching a point where interdisciplinary research is crucial to provide a holistic and nuanced understanding of the aging process. This new outlook will allow us to move forward in a space where our knowledge, like our new conception of the brain, is never static. PMID:24782746

  19. Visual thinking and neuroscience.

    PubMed

    Smith, C U M

    2008-01-01

    After a consideration of visual thinking in science the role of such thinking in neuroscience is discussed. Three instances are examined - cortical column, retina, impulse - and it is argued that visual thinking is employed, though in different ways, in each. It lies at the core of neurobiological thought.

  20. Linking Neuroscience and Psychoanalysis.

    ERIC Educational Resources Information Center

    Habicht, Manuela H.

    This review discusses the relationship between neuroscience and psychoanalysis and introduces a new scientific method called neuro-psychoanalysis, a combination of the two phenomena. A significant difference between the two is that psychoanalysis has not evolved scientifically since it has not developed objective methods for testing ideas that it…

  1. What does addiction medicine expect from neuroscience? From genes and neurons to treatment responses.

    PubMed

    Le Foll, Bernard

    2016-01-01

    The field of neuroscience is rapidly growing as evidenced by the mapping of the human genome, the progress in brain imaging technologies, and the refinement of sophisticated molecular tools that can be combined with innovative preclinical models. With these advances, it seems that our understanding of processes underlying addiction has never been so great. In comparison, the clinical domain has evolved at a much slower pace. Nonetheless, the addiction medical field has seen some gradual improvements in clinical care with the availability of a larger range of pharmacological options. Notably, several therapeutic alternatives are now offered for the treatment of nicotine, alcohol, and opioid use disorders. Some of these developments in treatment regimens have directly emerged from basic neuroscience research and represent a success story for the bench to beside translational approach. However, the clinical and research needs in addiction medicine are huge. There are still no pharmacological interventions available for psychostimulant and cannabis use disorders. Further, major questions remain unanswered: Would a better understanding of the neurocircuitry of addiction lead to therapeutic intervention? Would a better understanding of the neurochemical signature of addiction lead to the validation of a therapeutic target? Will pharmacogenetics hold its promise as a personalized medicine treatment approach? Using recent research developments, we will illustrate the potential of neuroscience to address some of the pressing questions in Addiction Medicine. © 2016 Elsevier B.V. All rights reserved.

  2. Games people play—toward an enactive view of cooperation in social neuroscience

    PubMed Central

    Engemann, Denis A.; Bzdok, Danilo; Eickhoff, Simon B.; Vogeley, Kai; Schilbach, Leonhard

    2012-01-01

    The field of social neuroscience has made considerable progress in unraveling the neural correlates of human cooperation by making use of brain imaging methods. Within this field, neuroeconomic research has drawn on paradigms from experimental economics, such as the Prisoner's Dilemma (PD) and the Trust Game. These paradigms capture the topic of conflict in cooperation, while focusing strongly on outcome-related decision processes. Cooperation, however, does not equate with that perspective, but relies on additional psychological processes and events, including shared intentions and mutually coordinated joint action. These additional facets of cooperation have been successfully addressed by research in developmental psychology, cognitive science, and social philosophy. Corresponding neuroimaging data, however, is still sparse. Therefore, in this paper, we present a juxtaposition of these mutually related but mostly independent trends in cooperation research. We propose that the neuroscientific study of cooperation could benefit from paradigms and concepts employed in developmental psychology and social philosophy. Bringing both to a neuroimaging environment might allow studying the neural correlates of cooperation by using formal models of decision-making as well as capturing the neural responses that underlie joint action scenarios, thus, promising to advance our understanding of the nature of human cooperation. PMID:22675293

  3. Cognitive neuroscience of obsessive-compulsive disorder.

    PubMed

    Stern, Emily R; Taylor, Stephan F

    2014-09-01

    Cognitive neuroscience investigates neural responses to cognitive and emotional probes, an approach that has yielded critical insights into the neurobiological mechanisms of psychiatric disorders. This article reviews some of the major findings from neuroimaging studies using a cognitive neuroscience approach to investigate obsessive-compulsive disorder (OCD). It evaluates the consistency of results and interprets findings within the context of OCD symptoms, and proposes a model of OCD involving inflexibility of internally focused cognition. Although further research is needed, this body of work probing cognitive-emotional processes in OCD has already shed considerable light on the underlying mechanisms of the disorder. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Benjamin Franklin and the neurosciences.

    PubMed

    Finger, Stanley

    2006-01-01

    Benjamin Franklin (1706-1790), who is better known in other fields, especially colonial politics and international diplomacy, was an early, major contributor to the neurosciences from the New World. Among his accomplishments are: experiments on medical electricity as a possible cure for the palsies and hysteria; the first descriptions of how electricity affecting the brain can cause a specific type of amnesia; supporting the idea that cranial shocks might provide a cure for melancholia; showing that the cures performed by the Mesmerists to remove obstructions, including nerve blockages, rest on gullibility and suggestion, and recognizing the dangers, including those to the nerves, posed by exposure to lead. Franklin?s neuroscience was firmly based on experiments, careful observations, and hard data ? and finding clinical relevance for new discoveries was always on his mind.

  5. Soul, mind, brain: Greek philosophy and the birth of neuroscience.

    PubMed

    Crivellato, Enrico; Ribatti, Domenico

    2007-01-09

    The nature of "soul" and the source of "psychic life", the anatomical seat of cognitive, motor and sensory functions, and the origin of neural diseases were broadly debated by ancient Greek scientists since the earliest times. Within the space of few centuries, speculation of philosophers and medical thinkers laid the foundations of modern experimental and clinical neuroscience. This review provides a brief history of the leading doctrines on the essence of soul and the properties of mind professed by Greek philosophers and physicians as well as the early attempts to localize brain faculties and to explain neural disorders.

  6. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    DTIC Science & Technology

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a.  CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a

  7. [Spanish neuroscience in times of Don Quixote].

    PubMed

    Martín-Araguz, Antonio; Mikola, Yvett; Almendral-Doncel, Raquel; Campos-Bueno, Javier

    2016-02-16

    Miguel de Cervantes Saavedra published his immortal work Don Quixote of La Mancha in a time of crisis and decadence in Spain that occurred during the transition between the 16th and 17th centuries. In 2016 we commemorate the fourth centenary of the death of our distinguished man of letters, and thus in this article we analyse the status of Hispanic neuroscience, both in the Quixote itself and in other works by the most significant contemporary writers of that time. Despite the adverse historical circumstances, the shift from the Renaissance to the Baroque periods, in the Crown of Castile, was a flourishing period for literature (Spanish Golden Age) and other Hispanic arts (painting, sculpture, architecture and music), as well as bearing witness to a prodigious creativity in the field of neuroscience, including the field of natural philosophy. In his book Antoniana Margarita the physician Gomez Pereira laid the foundations for brain mechanism and the concept of conditioned reflexes several decades ahead of his time. The apothecary Miguel Sabuco also anticipated the concept of neurotransmission centuries ahead of his time in his New Philosophy. The physician Juan Huarte de San Juan was the founder of neuropsychology and experimental psychology, and his Examination of Men's Wits has been one of the most influential and widely translated scientific texts of all times. Its concepts are clearly reflected in Cervantes' Quixote. This analysis of Cervantes' work within the cultural setting of the book is intended as a homage to the immortal figure of our 'Prince of Wits' in the fourth centenary of his death.

  8. Extending the mind: a review of ethnographies of neuroscience practice.

    PubMed

    Mahfoud, Tara

    2014-01-01

    THIS PAPER REVIEWS ETHNOGRAPHIES OF NEUROSCIENCE LABORATORIES IN THE UNITED STATES AND EUROPE, ORGANIZING THEM INTO THREE MAIN SECTIONS: (1) descriptions of the capabilities and limitations of technologies used in neuroimaging laboratories to map "activity" or "function" onto structural models of the brain; (2) discussions of the "distributed" or "extended" mind in neuroscience practice; and (3) the implications of neuroscience research and the power of brain images outside the laboratory. I will try to show the importance of ethnographic work in such settings, and place this body of ethnographic work within its historical framework-such ethnographies largely emerged within the Decade of the Brain, as announced by former President of the United States George H. W. Bush in 1990. The main argument is that neuroscience research and the context within which it is taking place has changed since the 1990's-specifically with the launch of "big science" projects such as the Human Brain Project (HBP) in the European Union and the BRAIN initiative in the United States. There is an opportunity for more research into the institutional and politico-economic context within which neuroscience research is taking place, and for continued engagement between the social and biological sciences.

  9. Enhancing Capability for Cognitive Neuroscience Research at UNLV

    DTIC Science & Technology

    2017-10-31

    Report: Enhancing Capability for Cognitive Neuroscience Research at UNLV The views, opinions and/or findings contained in this report are those of the...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 REPORT...Neuroscience Research at UNLV Report Term: 0-Other Email: joel.snyder@unlv.edu Distribution Statement: 1-Approved for public release; distribution is

  10. The law and neuroscience.

    PubMed

    Gazzaniga, Michael S

    2008-11-06

    Some of the implications for law of recent discoveries in neuroscience are considered in a new program established by the MacArthur Foundation. A group of neuroscientists, lawyers, philosophers, and jurists are examining issues in criminal law and, in particular, problems in responsibility and prediction and problems in legal decision making.

  11. Neuroanatomy and Global Neuroscience.

    PubMed

    DeFelipe, Javier

    2017-07-05

    Our brains are like a dense forest-a complex, seemingly impenetrable terrain of interacting cells mediating cognition and behavior. However, we should view the challenge of understanding the brain with optimism, provided that we choose appropriate strategies for the development of global neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Neuroscience of Improvisation

    ERIC Educational Resources Information Center

    Landau, Andrew T.; Limb, Charles J.

    2017-01-01

    Current research in the neuroscience of musical creativity reveals promising implications for the value of learning to improvise. This article outlines the neuroscientific literature on musical improvisation and relates these findings to the benefits of musical creativity. We begin by describing the neural substrates of flow with respect to the…

  13. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis.

    PubMed

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or "phantoms." Results of adopting the "dual aspect monism" approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.

  14. K-12 Neuroscience Education Outreach Program: Interactive Activities for Educating Students about Neuroscience

    PubMed Central

    Deal, Alex L.; Erickson, Kristen J.; Bilsky, Edward J.; Hillman, Susan J.; Burman, Michael A.

    2014-01-01

    The University of New England’s Center for Excellence in the Neurosciences has developed a successful and growing K-12 outreach program that incorporates undergraduate and graduate/professional students. The program has several goals, including raising awareness about fundamental issues in neuroscience, supplementing science education in area schools and enhancing undergraduate and graduate/professional students’ academic knowledge and skill set. The outreach curriculum is centered on core neuroscience themes including: Brain Safety, Neuroanatomy, Drugs of Abuse and Addiction, Neurological and Psychiatric Disorders, and Cognition and Brain Function. For each theme, lesson plans were developed based upon interactive, small-group activities. Additionally, we’ve organized our themes in a “Grow-up, Grow-out” approach. Grow-up refers to returning to a common theme, increasing in complexity as we revisit students from early elementary through high school. Grow-out refers to integrating other scientific fields into our lessons, such as the chemistry of addiction, the physics of brain injury and neuronal imaging. One of the more successful components of our program is our innovative team-based model of curriculum design. By creating a team of undergraduate, graduate/professional students and faculty, we create a unique multi-level mentoring opportunity that appears to be successful in enhancing undergraduate students’ skills and knowledge. Preliminary assessments suggest that undergraduates believe they are enhancing their content knowledge and professional skills through our program. Additionally, we’re having a significant, short-term impact on K-12 interest in science. Overall, our program appears to be enhancing the academic experience of our undergraduates and exciting K-12 students about the brain and science in general. PMID:25565921

  15. K-12 Neuroscience Education Outreach Program: Interactive Activities for Educating Students about Neuroscience.

    PubMed

    Deal, Alex L; Erickson, Kristen J; Bilsky, Edward J; Hillman, Susan J; Burman, Michael A

    2014-01-01

    The University of New England's Center for Excellence in the Neurosciences has developed a successful and growing K-12 outreach program that incorporates undergraduate and graduate/professional students. The program has several goals, including raising awareness about fundamental issues in neuroscience, supplementing science education in area schools and enhancing undergraduate and graduate/professional students' academic knowledge and skill set. The outreach curriculum is centered on core neuroscience themes including: Brain Safety, Neuroanatomy, Drugs of Abuse and Addiction, Neurological and Psychiatric Disorders, and Cognition and Brain Function. For each theme, lesson plans were developed based upon interactive, small-group activities. Additionally, we've organized our themes in a "Grow-up, Grow-out" approach. Grow-up refers to returning to a common theme, increasing in complexity as we revisit students from early elementary through high school. Grow-out refers to integrating other scientific fields into our lessons, such as the chemistry of addiction, the physics of brain injury and neuronal imaging. One of the more successful components of our program is our innovative team-based model of curriculum design. By creating a team of undergraduate, graduate/professional students and faculty, we create a unique multi-level mentoring opportunity that appears to be successful in enhancing undergraduate students' skills and knowledge. Preliminary assessments suggest that undergraduates believe they are enhancing their content knowledge and professional skills through our program. Additionally, we're having a significant, short-term impact on K-12 interest in science. Overall, our program appears to be enhancing the academic experience of our undergraduates and exciting K-12 students about the brain and science in general.

  16. The 9th annual computational and systems neuroscience (cosyne) meeting

    PubMed Central

    2012-01-01

    The 9th annual Computational and Systems Neuroscience meeting (Cosyne) was held 23–26 February in Salt Lake City, Utah. Cosyne meeting is the forum for exchange of experimental and theoretical/computational approaches to studying systems neuroscience. PMID:22464174

  17. Brain Matters: A Journey with Neuroscience and Religious Education

    ERIC Educational Resources Information Center

    Blevins, Dean G.

    2011-01-01

    Neuroscience continues to enjoy a renaissance of study and a range of responses, both in explorations of religious experience and in educational practice. Neuroscience, as an interdisciplinary field, attained a new ascendancy at the end of the 20th century, known as the decade of the brain. New insights continue to influence education and public…

  18. Advanced Natural Gas Reciprocating Engine(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Edward

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less

  19. Neuroscience nursing practice in a new millennium.

    PubMed

    Hickey, J V; Minton, M S

    1999-09-01

    Neuroscience nursing practice in the 21st century is considered from two perspectives: 1) scope of care and roles within a collaborative interdisciplinary model of care; and 2) patient-focused care within the challenging health care system. The implications of illness trends for neuroscience nursing practice are discussed, as are the developing changes in the health care delivery system driven by economics. The article focuses on the futuristic role of disease management in shaping practice and the models for practice which will prevail in this new health care environment.

  20. Brain literate: making neuroscience accessible to a wider audience of undergraduates.

    PubMed

    Salomon, Danielle; Martin-Harris, Laurel; Mullen, Brian; Odegaard, Brian; Zvinyatskovskiy, Aleksey; Chandler, Scott H

    2015-01-01

    The ability to critically evaluate neuroscientific findings is a skill that is rapidly becoming important in non-science professions. As neuroscience research is increasingly being used in law, business, education, and politics, it becomes imperative to educate future leaders in all areas of society about the brain. Undergraduate general education courses are an ideal way to expose students to issues of critical importance, but non-science students may avoid taking a neuroscience course because of the perception that neuroscience is more challenging than other science courses. A recently developed general education cluster course at UCLA aims to make neuroscience more palatable to undergraduates by pairing neuroscientific concepts with philosophy and history, and by building a learning community that supports the development of core academic skills and intellectual growth over the course of a year. This study examined the extent to which the course was successful in delivering neuroscience education to a broader undergraduate community. The results indicate that a majority of students in the course mastered the basics of the discipline regardless of their major. Furthermore, 77% of the non-life science majors (approximately two-thirds of students in the course) indicated that they would not have taken an undergraduate neuroscience course if this one was not offered. The findings also demonstrate that the course helped students develop core academic skills and improved their ability to think critically about current events in neuroscience. Faculty reported that teaching the course was highly rewarding and did not require an inordinate amount of time.

  1. History of neurosciences at the School of Medical Sciences, Universiti Sains Malaysia.

    PubMed

    Idris, Badrisyah; Sayuti, Sani; Abdullah, Jafri Malin

    2007-02-01

    Universiti Sains Malaysia is the only institution in Malaysia which incorporates all fields of the neurosciences under one roof. The integration of basic and clinical neurosciences has made it possible for this institution to become an excellent academic and research centre. This article describes the history, academic contributions and scientific progress of neurosciences at Universiti Sains Malaysia.

  2. Neuroscience, Magic, and Counseling

    ERIC Educational Resources Information Center

    Echterling, Lennis G.; Presbury, Jack; Cowan, Eric

    2012-01-01

    Recent findings in neuroscience have identified principles, such as attention management and change blindness, which stage magicians exploit to create illusions. Neuroscientists have also revealed how mirror neurons and oxytocin enhance the impact of magic. In other words, magicians are just as much practitioners of sleight of mind as they are of…

  3. CADDIS Volume 4. Data Analysis: Advanced Analyses - Controlling for Natural Variability

    EPA Pesticide Factsheets

    Methods for controlling natural variability, predicting environmental conditions from biological observations method, biological trait data, species sensitivity distributions, propensity scores, Advanced Analyses of Data Analysis references.

  4. Neuroscience Has the Power to Change the Criminal Justice System.

    PubMed

    Altimus, Cara M

    2016-01-01

    As a neuroscientist working in the Department of Justice for the past year, I observed that many of the challenges of crime and justice have solutions rooted in our understanding of neuroscience. However, the neuroscience community seems absent from conversations regarding these solutions.

  5. Neuroscience and education: myths and messages.

    PubMed

    Howard-Jones, Paul A

    2014-12-01

    For several decades, myths about the brain - neuromyths - have persisted in schools and colleges, often being used to justify ineffective approaches to teaching. Many of these myths are biased distortions of scientific fact. Cultural conditions, such as differences in terminology and language, have contributed to a 'gap' between neuroscience and education that has shielded these distortions from scrutiny. In recent years, scientific communications across this gap have increased, although the messages are often distorted by the same conditions and biases as those responsible for neuromyths. In the future, the establishment of a new field of inquiry that is dedicated to bridging neuroscience and education may help to inform and to improve these communications.

  6. Culturing the adolescent brain: what can neuroscience learn from anthropology?

    PubMed Central

    2010-01-01

    Cultural neuroscience is set to flourish in the next few years. As the field develops, it is necessary to reflect on what is meant by ‘culture’ and how this can be translated for the laboratory context. This article uses the example of the adolescent brain to discuss three aspects of culture that may help us to shape and reframe questions, interpretations and applications in cultural neuroscience: cultural contingencies of categories, cultural differences in experience and cultural context of neuroscience research. The last few years have seen a sudden increase in the study of adolescence as a period of both structural and functional plasticity, with new brain-based explanations of teenage behaviour being taken up in education, policy and medicine. However, the concept of adolescence, as an object of behavioural science, took shape relatively recently, not much more than a hundred years ago and was shaped by a number of cultural and historical factors. Moreover, research in anthropology and cross-cultural psychology has shown that the experience of adolescence, as a period of the lifespan, is variable and contingent upon culture. The emerging field of cultural neuroscience has begun to tackle the question of cultural differences in social cognitive processing in adults. In this article, I explore what a cultural neuroscience can mean in the case of adolescence. I consider how to integrate perspectives from social neuroscience and anthropology to conceptualize, and to empirically study, adolescence as a culturally variable phenomenon, which, itself, has been culturally constructed. PMID:19959484

  7. Enhanced decision making through neuroscience

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Jung, TP; Makeig, Scott

    2012-06-01

    We propose to enhance the decision making of pilot, co-pilot teams, over a range of vehicle platforms, with the aid of neuroscience. The goal is to optimize this collaborative decision making interplay in time-critical, stressful situations. We will research and measure human facial expressions, personality typing, and brainwave measurements to help answer questions related to optimum decision-making in group situations. Further, we propose to examine the nature of intuition in this decision making process. The brainwave measurements will be facilitated by a University of California, San Diego (UCSD) developed wireless Electroencephalography (EEG) sensing cap. We propose to measure brainwaves covering the whole head area with an electrode density of N=256, and yet keep within the limiting wireless bandwidth capability of m=32 readouts. This is possible because solving Independent Component Analysis (ICA) and finding the hidden brainwave sources allow us to concentrate selective measurements with an organized sparse source -->s sensing matrix [Φs], rather than the traditional purely random compressive sensing (CS) matrix[Φ].

  8. The Use of Case Studies in Teaching Undergraduate Neuroscience

    PubMed Central

    Meil, William M.

    2007-01-01

    Case studies have been the cornerstone of many discoveries in neurology and continue to be an indispensable source of knowledge. Attaching a name, face, and story to the study of neurological disorders makes them more “real” and memorable. This article describes the value of the case study methodology and its advantages as a pedagogical approach. It also illustrates how the seminal case of H.M. can be used to highlight the advantages and disadvantages of the case study methodology. Three exercises are described for incorporating case studies into neuroscience courses. The first exercise requires students to conduct a literature review regarding their assigned case and then design an experiment to address a lingering question regarding that neurological disorder. Survey results of 90 students provide quantitative and qualitative support for this approach. The vast majority of students indicated this exercise was a valuable learning experience; sparked interest in the topic and in biopsychology; increased their knowledge and stimulated critical thinking. The second exercise discusses how students might conduct their own case studies. The third exercise emphasizes the use of case studies as a platform to examine competing hypotheses regarding neurological conditions and their treatment. A table listing case studies appropriate for undergraduate neuroscience courses is included. Cases are categorized by the type of neurological disorder and notes regarding the nature of and content of each case are provided. PMID:23493154

  9. Advanced Displays and Natural User Interfaces to Support Learning

    ERIC Educational Resources Information Center

    Martin-SanJose, Juan-Fernando; Juan, M. -Carmen; Mollá, Ramón; Vivó, Roberto

    2017-01-01

    Advanced displays and natural user interfaces (NUI) are a very suitable combination for developing systems to provide an enhanced and richer user experience. This combination can be appropriate in several fields and has not been extensively exploited. One of the fields that this combination is especially suitable for is education. Nowadays,…

  10. Integrative Convergence in Neuroscience: Trajectories, Problems, and the Need for a Progressive Neurobioethics

    NASA Astrophysics Data System (ADS)

    Giordano, J.

    The advanced integrative scientific convergence (AISC) model represents a viable approach to neuroscience. Beyond simple multi-disciplinarity, the AISC model unifies constituent scientific and technological fields to foster innovation, invention and new ways of addressing seemingly intractable questions. In this way, AISC can yield novel methods and foster new trajectories of knowledge and discovery, and yield new epistemologies. As stand-alone disciplines, each and all of the constituent fields generate practical and ethical issues, and their convergence may establish a unique set of both potential benefits and problems. To effectively attend to these contingencies requires pragmatic assessment of the actual capabilities and limits of neurofocal AISC, and an openness to what new knowledge and scientific/technological achievements may be produced, and how such outcomes can affect humanity, the human condition, society and the global environment. It is proposed that a progressive neurobioethics may be needed to establish both a meta-ethical framework upon which to structure ethical decisions, and a system and method of ethics that is inclusive, convergent and innovative, and in thus aligned with and meaningful to use of an AISC model in neuroscience.

  11. Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences

    PubMed Central

    Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi

    2006-01-01

    Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384

  12. Contributions of Philip Teitelbaum to affective neuroscience.

    PubMed

    Berridge, Kent C

    2012-06-01

    As part of a festschrift issue for Philip Teitelbaum, I offer here the thesis that Teitelbaum deserves to be viewed as an important forefather to the contemporary field of affective neuroscience (which studies motivation, emotion and affect in the brain). Teitelbaum's groundbreaking analyses of motivation deficits induced by lateral hypothalamic damage, of roles of food palatability in revealing residual function, and of recovery of 'lost' functions helped shape modern understanding of how motivation circuits operate within the brain. His redefinition of the minimum requirement for identifying motivation raised the conceptual bar for thinking about the topic among behavioral neuroscientists. His meticulous analyses of patterned stages induced by brain manipulations, life development and clinical disorders added new dimensions to our appreciation of how brain systems work. His steadfast highlighting of integrative functions and behavioral complexity helped provide a healthy functionalist counterbalance to reductionist trends in science of the late 20th century. In short, Philip Teitelbaum can be seen to have made remarkable contributions to several domains of psychology and neuroscience, including affective neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Revolutionary Impact of Nanodrug Delivery on Neuroscience

    PubMed Central

    Khanbabaie, Reza; Jahanshahi, Mohsen

    2012-01-01

    Brain research is the most expanding interdisciplinary research that is using the state of the art techniques to overcome limitations in order to conduct more accurate and effective experiments. Drug delivery to the target site in the central nervous system (CNS) is one of the most difficult steps in neuroscience researches and therapies. Taking advantage of the nanoscale structure of neural cells (both neurons and glia); nanodrug delivery (second generation of biotechnological products) has a potential revolutionary impact into the basic understanding, visualization and therapeutic applications of neuroscience. Current review article firstly provides an overview of preparation and characterization, purification and separation, loading and delivering of nanodrugs. Different types of nanoparticle bioproducts and a number of methods for their fabrication and delivery systems including (carbon) nanotubes are explained. In the second part, neuroscience and nervous system drugs are deeply investigated. Different mechanisms in which nanoparticles enhance the uptake and clearance of molecules form cerebrospinal fluid (CSF) are discussed. The focus is on nanodrugs that are being used or have potential to improve neural researches, diagnosis and therapy of neurodegenerative disorders. PMID:23730260

  14. Contributions of Philip Teitelbaum to affective neuroscience

    PubMed Central

    Berridge, Kent C.

    2011-01-01

    As part of a festschrift issue for Philip Teitelbaum, I offer here the thesis that Teitelbaum deserves to be viewed as an important forefather to the contemporary field of affective neuroscience (which studies motivation, emotion and affect in the brain). Teitelbaum’s groundbreaking analyses of motivation deficits induced by lateral hypothalamic damage, of roles of food palatability in revealing residual function, and of recovery of ‘lost’ functions helped shape modern understanding of how motivation circuits operate within the brain. His redefinition of the minimum requirement for identifying motivation raised the conceptual bar for thinking about the topic among behavioral neuroscientists. His meticulous analyses of patterned stages induced by brain manipulations, life development and clinical disorders added new dimensions to our appreciation of how brain systems work. His steadfast highlighting of integrative functions and behavioral complexity helped provide a healthy functionalist counterbalance to reductionist trends in science of the late 20th century. In short, Philip Teitelbaum can be seen to have made remarkable contributions to several domains of psychology and neuroscience, including affective neuroscience. PMID:22051942

  15. Neuroscience, power and culture: an introduction.

    PubMed

    Vrecko, Scott

    2010-01-01

    In line with their vast expansion over the last few decades, the brain sciences -- including neurobiology, psychopharmacology, biological psychiatry, and brain imaging -- are becoming increasingly prominent in a variety of cultural formations, from self-help guides and the arts to advertising and public health programmes. This article, which introduces the special issue of "History of the Human Science" on "Neuroscience, Power and Culture," considers the ways that social and historical research can, through empirical investigations grounded in the observation of what is actually happening and has already happened in the sciences of mind and brain, complement speculative discussions of the possible social implications of neuroscience that now appear regularly in the media and in philosophical bioethics. It suggests that the neurosciences are best understood in terms of their lineage within the "psy"-disciplines, and that, accordingly, our analyses of them will be strengthened by drawing on existing literatures on the history and politics of psychology -- particularly those that analyze formations of knowledge, power and subjectivity associated with the discipline and its practical applications. Additionally, it argues against taking today's neuroscientific facts and brain-targetting technologies as starting points for analysis, and for greater recognition of the ways that these are shaped by historical, cultural and political-economic forces.

  16. Population Neuroscience: Dementia Epidemiology Serving Precision Medicine and Population Health.

    PubMed

    Ganguli, Mary; Albanese, Emiliano; Seshadri, Sudha; Bennett, David A; Lyketsos, Constantine; Kukull, Walter A; Skoog, Ingmar; Hendrie, Hugh C

    2018-01-01

    Over recent decades, epidemiology has made significant contributions to our understanding of dementia, translating scientific discoveries into population health. Here, we propose reframing dementia epidemiology as "population neuroscience," blending techniques and models from contemporary neuroscience with those of epidemiology and biostatistics. On the basis of emerging evidence and newer paradigms and methods, population neuroscience will minimize the bias typical of traditional clinical research, identify the relatively homogenous subgroups that comprise the general population, and investigate broader and denser phenotypes of dementia and cognitive impairment. Long-term follow-up of sufficiently large study cohorts will allow the identification of cohort effects and critical windows of exposure. Molecular epidemiology and omics will allow us to unravel the key distinctions within and among subgroups and better understand individuals' risk profiles. Interventional epidemiology will allow us to identify the different subgroups that respond to different treatment/prevention strategies. These strategies will inform precision medicine. In addition, insights into interactions between disease biology, personal and environmental factors, and social determinants of health will allow us to measure and track disease in communities and improve population health. By placing neuroscience within a real-world context, population neuroscience can fulfill its potential to serve both precision medicine and population health.

  17. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis

    PubMed Central

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160

  18. Cognitive neuroscience 2.0: building a cumulative science of human brain function

    PubMed Central

    Yarkoni, Tal; Poldrack, Russell A.; Van Essen, David C.; Wager, Tor D.

    2010-01-01

    Cognitive neuroscientists increasingly recognize that continued progress in understanding human brain function will require not only the acquisition of new data, but also the synthesis and integration of data across studies and laboratories. Here we review ongoing efforts to develop a more cumulative science of human brain function. We discuss the rationale for an increased focus on formal synthesis of the cognitive neuroscience literature, provide an overview of recently developed tools and platforms designed to facilitate the sharing and integration of neuroimaging data, and conclude with a discussion of several emerging developments that hold even greater promise in advancing the study of human brain function. PMID:20884276

  19. Optical Brain Imaging: A Powerful Tool for Neuroscience.

    PubMed

    Zhu, Xinpei; Xia, Yanfang; Wang, Xuecen; Si, Ke; Gong, Wei

    2017-02-01

    As the control center of organisms, the brain remains little understood due to its complexity. Taking advantage of imaging methods, scientists have found an accessible approach to unraveling the mystery of neuroscience. Among these methods, optical imaging techniques are widely used due to their high molecular specificity and single-molecule sensitivity. Here, we overview several optical imaging techniques in neuroscience of recent years, including brain clearing, the micro-optical sectioning tomography system, and deep tissue imaging.

  20. Explaining the Alluring Influence of Neuroscience Information on Scientific Reasoning

    ERIC Educational Resources Information Center

    Rhodes, Rebecca E.; Rodriguez, Fernando; Shah, Priti

    2014-01-01

    Previous studies have investigated the influence of neuroscience information or images on ratings of scientific evidence quality but have yielded mixed results. We examined the influence of neuroscience information on evaluations of flawed scientific studies after taking into account individual differences in scientific reasoning skills, thinking…

  1. No Brain Left Behind: Consequences of Neuroscience Discourse for Education

    ERIC Educational Resources Information Center

    Busso, Daniel S.; Pollack, Courtney

    2015-01-01

    Educational neuroscience represents a concerted interdisciplinary effort to bring the fields of cognitive science, neuroscience and education to bear on classroom practice. This article draws attention to the current and potential implications of importing biological ideas, language and imagery into education. By analysing examples of brain-based…

  2. Measuring up: Advances in How We Assess Reading Ability

    ERIC Educational Resources Information Center

    Sabatini, John; Albro, Elizabeth; O'Reilly, Tenaha

    2012-01-01

    In recent decades, the science of reading acquisition, processes, and individual differences in general and special populations has been continuously advancing through interdisciplinary research in cognitive, psycholinguistic, developmental, genetic, neuroscience, cross-language studies, and experimental comparison studies of effective…

  3. Toward an affective neuroscience account of financial risk taking.

    PubMed

    Wu, Charlene C; Sacchet, Matthew D; Knutson, Brian

    2012-01-01

    To explain human financial risk taking, economic, and finance theories typically refer to the mathematical properties of financial options, whereas psychological theories have emphasized the influence of emotion and cognition on choice. From a neuroscience perspective, choice emanates from a dynamic multicomponential process. Recent technological advances in neuroimaging have made it possible for researchers to separately visualize perceptual input, intermediate processing, and motor output. An affective neuroscience account of financial risk taking thus might illuminate affective mediators that bridge the gap between statistical input and choice output. To test this hypothesis, we conducted a quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic resonance imaging experiments that focused on neural responses to financial options with varying statistical moments (i.e., mean, variance, skewness). Results suggested that different statistical moments elicit both common and distinct patterns of neural activity. Across studies, high versus low mean had the highest probability of increasing ventral striatal activity, but high versus low variance had the highest probability of increasing anterior insula activity. Further, high versus low skewness had the highest probability of increasing ventral striatal activity. Since ventral striatal activity has been associated with positive aroused affect (e.g., excitement), whereas anterior insular activity has been associated with negative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with the notion that statistical input influences choice output by eliciting anticipatory affect. The findings also imply that neural activity can be used to predict financial risk taking - both when it conforms to and violates traditional models of choice.

  4. Toward an Affective Neuroscience Account of Financial Risk Taking

    PubMed Central

    Wu, Charlene C.; Sacchet, Matthew D.; Knutson, Brian

    2012-01-01

    To explain human financial risk taking, economic, and finance theories typically refer to the mathematical properties of financial options, whereas psychological theories have emphasized the influence of emotion and cognition on choice. From a neuroscience perspective, choice emanates from a dynamic multicomponential process. Recent technological advances in neuroimaging have made it possible for researchers to separately visualize perceptual input, intermediate processing, and motor output. An affective neuroscience account of financial risk taking thus might illuminate affective mediators that bridge the gap between statistical input and choice output. To test this hypothesis, we conducted a quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic resonance imaging experiments that focused on neural responses to financial options with varying statistical moments (i.e., mean, variance, skewness). Results suggested that different statistical moments elicit both common and distinct patterns of neural activity. Across studies, high versus low mean had the highest probability of increasing ventral striatal activity, but high versus low variance had the highest probability of increasing anterior insula activity. Further, high versus low skewness had the highest probability of increasing ventral striatal activity. Since ventral striatal activity has been associated with positive aroused affect (e.g., excitement), whereas anterior insular activity has been associated with negative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with the notion that statistical input influences choice output by eliciting anticipatory affect. The findings also imply that neural activity can be used to predict financial risk taking – both when it conforms to and violates traditional models of choice. PMID:23129993

  5. The brain commission of the international association of academies: the first international society of neurosciences.

    PubMed

    Richter, J

    2000-08-01

    International associations of scientists, set up to organize cooperative scientific investigations in an international scope and to lay down global binding standards of research, are of great and still growing importance for the advancement of science. This was also recognized at the beginning of the 20th century by the community of researchers in basic and clinical neurological sciences, who created their first international organization following the trend initiated by scholars in astronomy and geophysics. Thus, the so-called "Brain Commission" of the International Association of Academies was founded in 1903 and was active until the outbreak of the First World War. The Brain Commission had no successor for nearly half a century, until the "International Brain Research Organization" (IBRO) was founded in 1961. Although the Brain Commission could exert an impact on neurosciences only for one decade, this international scientific association inspired and promoted the foundation of a series of Brain Research Institutes, which in part still exist in Europe, and long-lasting innovations in the neurosciences.

  6. The future of fMRI in cognitive neuroscience.

    PubMed

    Poldrack, Russell A

    2012-08-15

    Over the last 20 years, fMRI has revolutionized cognitive neuroscience. Here I outline a vision for what the next 20 years of fMRI in cognitive neuroscience might look like. Some developments that I hope for include increased methodological rigor, an increasing focus on connectivity and pattern analysis as opposed to "blobology", a greater focus on selective inference powered by open databases, and increased use of ontologies and computational models to describe underlying processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The Brain Goes to School: Strengthening the Education-Neuroscience Connection

    ERIC Educational Resources Information Center

    Ansari, Daniel

    2008-01-01

    Investigations on the brain processes using a technology such as functional magnetic resonance imaging (fMRI) have led to the creation of a new field of research that bridges the gap between cognitive psychology and neuroscience: "cognitive neuroscience." Within this new field, studies examining the processes of learning and developing are…

  8. Jack Nicholson: A Reel and Real-Life Contribution to Neurosciences.

    PubMed

    Tripathi, Manjul; Purkayastha, Moushumi; Rai, Ashutosh; Mukherjee, Kanchan K

    2017-05-01

    Though primarily considered entertainment, cinema is a mirror of society. The portrayal of neurosciences is common in cinema, but none could do it better than Jack Nicholson. We give a brief overview of his contribution to neurosciences by analyzing his acting skills. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Neuroscience Club in SKKK3 and SMSTMFP: The Brain Apprentice Project.

    PubMed

    Mohd Ibrahim, Seri Dewi; Muda, Mazinah

    2015-01-01

    Sekolah Menengah Sains Tengku Muhammad Faris Petra (SMSTMFP) and Sekolah Kebangsaan Kubang Kerian (3) (SKKK3) were selected by the Department of Neurosciences, Universiti Sains Malaysia (USM), in 2011 to be a 'school-based Neuroscience Club' via the 'Knowledge Transfer Programme (KTP) - Community' project. This community project was known as "The Brain Apprentice Project". The objectives of this project were to promote science and the neurosciences beyond conventional classroom teachings whilst guiding creativity and innovation as well as to assist in the delivery of neuroscience knowledge through graduate interns as part of the cultivation of neuroscience as a fruitful future career option. All of the planned club activities moulded the students to be knowledgeable individuals with admirable leadership skills, which will help the schools produce more scientists, technocrats and professionals who can fulfil the requirements of our religion, race and nation in the future. Some of the activities carried out over the years include the "My Brain Invention Competition", "Mini Brain Bee Contest", "Recycled Melody" and "Brain Dissection". These activities educated the students well and improved their confidence levels in their communication and soft skills. The participation of the students in international-level competition, such as the "International Brain Bee", was one of the ways future professionals were created for the nation. The implementation of Neuroscience Club as one of the organisations in the school's cocurriculum was an appropriate step in transferring science and neuroscience knowledge and skills from a higher education institution, namely USM, to both of the schools, SMSTMFP and SKKK3. The club members showed great interest in all of the club's activities and their performance on the Ujian Pencapaian Sekolah Rendah (UPSR) or Primary School Achievement Test and Sijil Pelajaran Malaysia (SPM) or Malaysian Certificate of Education examinations improved

  10. Neuroscience Club in SKKK3 and SMSTMFP: The Brain Apprentice Project

    PubMed Central

    MOHD IBRAHIM, Seri Dewi; MUDA, Mazinah

    2015-01-01

    Sekolah Menengah Sains Tengku Muhammad Faris Petra (SMSTMFP) and Sekolah Kebangsaan Kubang Kerian (3) (SKKK3) were selected by the Department of Neurosciences, Universiti Sains Malaysia (USM), in 2011 to be a ‘school-based Neuroscience Club’ via the ‘Knowledge Transfer Programme (KTP) – Community’ project. This community project was known as “The Brain Apprentice Project”. The objectives of this project were to promote science and the neurosciences beyond conventional classroom teachings whilst guiding creativity and innovation as well as to assist in the delivery of neuroscience knowledge through graduate interns as part of the cultivation of neuroscience as a fruitful future career option. All of the planned club activities moulded the students to be knowledgeable individuals with admirable leadership skills, which will help the schools produce more scientists, technocrats and professionals who can fulfil the requirements of our religion, race and nation in the future. Some of the activities carried out over the years include the “My Brain Invention Competition”, “Mini Brain Bee Contest”, “Recycled Melody” and “Brain Dissection”. These activities educated the students well and improved their confidence levels in their communication and soft skills. The participation of the students in international-level competition, such as the “International Brain Bee”, was one of the ways future professionals were created for the nation. The implementation of Neuroscience Club as one of the organisations in the school’s cocurriculum was an appropriate step in transferring science and neuroscience knowledge and skills from a higher education institution, namely USM, to both of the schools, SMSTMFP and SKKK3. The club members showed great interest in all of the club’s activities and their performance on the Ujian Pencapaian Sekolah Rendah (UPSR) or Primary School Achievement Test and Sijil Pelajaran Malaysia (SPM) or Malaysian Certificate of

  11. The influence of Dr. Hsiang-Tung Chang on neuroscience in Union of Soviet Socialist Republics.

    PubMed

    Jiang, Chun

    2012-10-25

    As one of the founders of Chinese neuroscience, Dr. Hsiang-Tung Chang's return to China has a profound impact on neuroscience in China. As many people expected, this action also may have influenced the development of neuroscience in other Eastern countries. Therefore, Dr. Chang's move may have changed the history of neuroscience in a greater area than China.

  12. NeuroPigPen: A Scalable Toolkit for Processing Electrophysiological Signal Data in Neuroscience Applications Using Apache Pig.

    PubMed

    Sahoo, Satya S; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A; Lhatoo, Samden D

    2016-01-01

    The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This "neuroscience Big data" represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability-the ability to efficiently process increasing volumes of data; (b) Adaptability-the toolkit can be deployed across different computing configurations; and (c) Ease of programming-the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that the toolkit

  13. Dyslexia, Learning, and Pedagogical Neuroscience

    ERIC Educational Resources Information Center

    Fawcett, Angela J; Nicolson, Roderick I

    2007-01-01

    The explosion in neuroscientific knowledge has profound implications for education, and we advocate the establishment of the new discipline of "pedagogical neuroscience" designed to combine psychological, medical, and educational perspectives. We propose that specific learning disabilities provide the crucible in which the discipline may be…

  14. Optimising, generalising and integrating educational practice using neuroscience

    NASA Astrophysics Data System (ADS)

    Colvin, Robert

    2016-07-01

    Practical collaboration at the intersection of education and neuroscience research is difficult because the combined discipline encompasses both the activity of microscopic neurons and the complex social interactions of teachers and students in a classroom. Taking a pragmatic view, this paper discusses three education objectives to which neuroscience can be effectively applied: optimising, generalising and integrating instructional techniques. These objectives are characterised by: (1) being of practical importance; (2) building on existing education and cognitive research; and (3) being infeasible to address based on behavioural experiments alone. The focus of the neuroscientific aspect of collaborative research should be on the activity of the brain before, during and after learning a task, as opposed to performance of a task. The objectives are informed by literature that highlights possible pitfalls with educational neuroscience research, and are described with respect to the static and dynamic aspects of brain physiology that can be measured by current technology.

  15. Neuroscience-driven discovery and development of sleep therapeutics.

    PubMed

    Dresler, M; Spoormaker, V I; Beitinger, P; Czisch, M; Kimura, M; Steiger, A; Holsboer, F

    2014-03-01

    Until recently, neuroscience has given sleep research and discovery of better treatments of sleep disturbances little attention, despite the fact that disturbed sleep has overwhelming impact on human health. Sleep is a complex phenomenon in which specific psychological, electrophysiological, neurochemical, endocrinological, immunological and genetic factors are involved. The brain as both the generator and main object of sleep is obviously of particular interest, which makes a neuroscience-driven view the most promising approach to evaluate clinical implications and applications of sleep research. Polysomnography as the gold standard of sleep research, complemented by brain imaging, neuroendocrine testing, genomics and other laboratory measures can help to create composite biomarkers that allow maximizing the effects of individualized therapies while minimizing adverse effects. Here we review the current state of the neuroscience of sleep, sleep disorders and sleep therapeutics and will give some leads to promote the discovery and development of sleep medicines that are better than those we have today. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A Guerilla Guide to Common Problems in 'Neurostatistics': Essential Statistical Topics in Neuroscience.

    PubMed

    Smith, Paul F

    2017-01-01

    Effective inferential statistical analysis is essential for high quality studies in neuroscience. However, recently, neuroscience has been criticised for the poor use of experimental design and statistical analysis. Many of the statistical issues confronting neuroscience are similar to other areas of biology; however, there are some that occur more regularly in neuroscience studies. This review attempts to provide a succinct overview of some of the major issues that arise commonly in the analyses of neuroscience data. These include: the non-normal distribution of the data; inequality of variance between groups; extensive correlation in data for repeated measurements across time or space; excessive multiple testing; inadequate statistical power due to small sample sizes; pseudo-replication; and an over-emphasis on binary conclusions about statistical significance as opposed to effect sizes. Statistical analysis should be viewed as just another neuroscience tool, which is critical to the final outcome of the study. Therefore, it needs to be done well and it is a good idea to be proactive and seek help early, preferably before the study even begins.

  17. An Algebra-Based Introductory Computational Neuroscience Course with Lab.

    PubMed

    Fink, Christian G

    2017-01-01

    A course in computational neuroscience has been developed at Ohio Wesleyan University which requires no previous experience with calculus or computer programming, and which exposes students to theoretical models of neural information processing and techniques for analyzing neural data. The exploration of theoretical models of neural processes is conducted in the classroom portion of the course, while data analysis techniques are covered in lab. Students learn to program in MATLAB and are offered the opportunity to conclude the course with a final project in which they explore a topic of their choice within computational neuroscience. Results from a questionnaire administered at the beginning and end of the course indicate significant gains in student facility with core concepts in computational neuroscience, as well as with analysis techniques applied to neural data.

  18. Neuroscience and the Soul: Competing Explanations for the Human Experience

    ERIC Educational Resources Information Center

    Preston, Jesse Lee; Ritter, Ryan S.; Hepler, Justin

    2013-01-01

    The development of fMRI techniques has generated a boom of neuroscience research across the psychological sciences, and revealed neural correlates for many psychological phenomena seen as central to the human experience (e.g., morality, agency). Meanwhile, the rise of neuroscience has reignited old debates over mind-body dualism and the soul.…

  19. Plasticity of the aging brain: new directions in cognitive neuroscience.

    PubMed

    Gutchess, Angela

    2014-10-31

    Cognitive neuroscience has revealed aging of the human brain to be rich in reorganization and change. Neuroimaging results have recast our framework around cognitive aging from one of decline to one emphasizing plasticity. Current methods use neurostimulation approaches to manipulate brain function, providing a direct test of the ways that the brain differently contributes to task performance for younger and older adults. Emerging research into emotional, social, and motivational domains provides some evidence for preservation with age, suggesting potential avenues of plasticity, alongside additional evidence for reorganization. Thus, we begin to see that aging of the brain, amidst interrelated behavioral and biological changes, is as complex and idiosyncratic as the brain itself, qualitatively changing over the life span. Copyright © 2014, American Association for the Advancement of Science.

  20. Closing the Loop: From Motor Neuroscience to Neurorehabilitation.

    PubMed

    Roemmich, Ryan T; Bastian, Amy J

    2018-04-25

    The fields of human motor control, motor learning, and neurorehabilitation have long been linked by the intuition that understanding how we move (and learn to move) leads to better rehabilitation. In reality, these fields have remained largely separate. Our knowledge of the neural control of movement has expanded, but principles that can directly impact rehabilitation efficacy remain somewhat sparse. This raises two important questions: What can basic studies of motor learning really tell us about rehabilitation, and are we asking the right questions to improve the lives of patients? This review aims to contextualize recent advances in computational and behavioral studies of human motor learning within the framework of neurorehabilitation.Wealso discuss our views of the current challenges facing rehabilitation and outline potential clinical applications from recent theoretical and basic studies of motor learning and control. Expected final online publication date for the Annual Review of Neuroscience Volume 41 is July 8, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline.

    PubMed

    Naselaris, Thomas; Bassett, Danielle S; Fletcher, Alyson K; Kording, Konrad; Kriegeskorte, Nikolaus; Nienborg, Hendrikje; Poldrack, Russell A; Shohamy, Daphna; Kay, Kendrick

    2018-05-01

    Understanding the computational principles that underlie complex behavior is a central goal in cognitive science, artificial intelligence, and neuroscience. In an attempt to unify these disconnected communities, we created a new conference called Cognitive Computational Neuroscience (CCN). The inaugural meeting revealed considerable enthusiasm but significant obstacles remain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Critical ethnography: An under-used research methodology in neuroscience nursing.

    PubMed

    Ross, Cheryl; Rogers, Cath; Duff, Diane

    2016-01-01

    Critical ethnography is a qualitative research method that endeavours to explore and understand dominant discourses that are seen as being the 'right' way to think, see, talk about or enact a particular 'action' or situation in society and recommend ways to re-dress social power inequities. In health care, vulnerable populations, including many individuals who have experienced neurological illnesses or injuries that leave them susceptible to the influence of others, would be suitable groups for study using critical ethnography methodology. Critical ethnography has also been used to study workplace culture. While ethnography has been effectively used to underpin other phenomena of interest to neuroscience nurses, only one example of the use of critical ethnography exists in the published literature related to neuroscience nursing. In our "Research Corner" in this issue of the Canadian Journal of Neuroscience Nursing (CJNN) our guest editors, Dr. Cheryl Ross and Dr. Cath Rogers will briefly highlight the origins of qualitative research, ethnography, and critical ethnography and describe how they are used and, as the third author, I will discuss the relevance of critical ethnography findings for neuroscience nurses.

  3. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2013-07-01

    extending the period of performance soon. The Ivy Center for Advanced Brain Tumor Treatment at the Swedish Neuroscience Institute (SNI) has...markers: (A) GFAP/astrocytes, (B), TUJ-1/neurons and (C) O4/oligodendrocytes. Cells were grown in NSA media without growth factors (EGF and FGF-2...Treatment at the Swedish Neuroscience Institute (SNI) has collected potentially eligible tumor tissue from over forty GBM patients. • Primary GBM cell

  4. The University of Ibadan/Grass Foundation Workshop in Neuroscience Teaching

    PubMed Central

    Dzakpasu, Rhonda; Johnson, Bruce R.; Olopade, James O.

    2017-01-01

    The University of Ibadan/Grass Foundation Workshop in Neuroscience Teaching (March 31st to April 2nd, 2017) in Ibadan, Nigeria was sponsored by the Grass Foundation as a “proof of principle” outreach program for young neuroscience faculty at Nigerian universities with limited educational and research resources. The workshop’s goal was to introduce low cost equipment for student lab exercises and computational tutorials that could enhance the teaching and research capabilities of local neuroscience educators. Participant assessment of the workshop’s activities was very positive and suggested that similar workshops for other faculty from institutions with limited resources could have a great impact on the quality of both the undergraduate and faculty experience. PMID:29371853

  5. Can the Differences between Education and Neuroscience Be Overcome by Mind, Brain, and Education?

    ERIC Educational Resources Information Center

    Samuels, Boba M.

    2009-01-01

    The new field of Mind, Brain, and Education (MBE)--sometimes called educational neuroscience--is posited as a mediator between neuroscience and education. Several foundational concerns, however, can be raised about this emerging field. The differences between neuroscience and education are many, including differences in their histories,…

  6. Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study.

    PubMed

    Olivera, Baldomero M; Raghuraman, Shrinivasan; Schmidt, Eric W; Safavi-Hemami, Helena

    2017-09-01

    From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products-venom components from predatory marine cone snails-this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as "Chemical Neuroethology", linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.

  7. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience.

    PubMed

    Gabrieli, John D E; Ghosh, Satrajit S; Whitfield-Gabrieli, Susan

    2015-01-07

    Neuroimaging has greatly enhanced the cognitive neuroscience understanding of the human brain and its variation across individuals (neurodiversity) in both health and disease. Such progress has not yet, however, propelled changes in educational or medical practices that improve people's lives. We review neuroimaging findings in which initial brain measures (neuromarkers) are correlated with or predict future education, learning, and performance in children and adults; criminality; health-related behaviors; and responses to pharmacological or behavioral treatments. Neuromarkers often provide better predictions (neuroprognosis), alone or in combination with other measures, than traditional behavioral measures. With further advances in study designs and analyses, neuromarkers may offer opportunities to personalize educational and clinical practices that lead to better outcomes for people. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A hybrid human and machine resource curation pipeline for the Neuroscience Information Framework.

    PubMed

    Bandrowski, A E; Cachat, J; Li, Y; Müller, H M; Sternberg, P W; Ciccarese, P; Clark, T; Marenco, L; Wang, R; Astakhov, V; Grethe, J S; Martone, M E

    2012-01-01

    The breadth of information resources available to researchers on the Internet continues to expand, particularly in light of recently implemented data-sharing policies required by funding agencies. However, the nature of dense, multifaceted neuroscience data and the design of contemporary search engine systems makes efficient, reliable and relevant discovery of such information a significant challenge. This challenge is specifically pertinent for online databases, whose dynamic content is 'hidden' from search engines. The Neuroscience Information Framework (NIF; http://www.neuinfo.org) was funded by the NIH Blueprint for Neuroscience Research to address the problem of finding and utilizing neuroscience-relevant resources such as software tools, data sets, experimental animals and antibodies across the Internet. From the outset, NIF sought to provide an accounting of available resources, whereas developing technical solutions to finding, accessing and utilizing them. The curators therefore, are tasked with identifying and registering resources, examining data, writing configuration files to index and display data and keeping the contents current. In the initial phases of the project, all aspects of the registration and curation processes were manual. However, as the number of resources grew, manual curation became impractical. This report describes our experiences and successes with developing automated resource discovery and semiautomated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. We also describe the DISCO framework, a suite of automated web services that significantly reduce manual curation efforts to periodically check for resource updates. Lastly, we discuss DOMEO, a semi-automated annotation tool that improves the discovery and curation of resources that are not necessarily website-based (i.e. reagents, software tools). Although the ultimate goal of automation was to

  9. A hybrid human and machine resource curation pipeline for the Neuroscience Information Framework

    PubMed Central

    Bandrowski, A. E.; Cachat, J.; Li, Y.; Müller, H. M.; Sternberg, P. W.; Ciccarese, P.; Clark, T.; Marenco, L.; Wang, R.; Astakhov, V.; Grethe, J. S.; Martone, M. E.

    2012-01-01

    The breadth of information resources available to researchers on the Internet continues to expand, particularly in light of recently implemented data-sharing policies required by funding agencies. However, the nature of dense, multifaceted neuroscience data and the design of contemporary search engine systems makes efficient, reliable and relevant discovery of such information a significant challenge. This challenge is specifically pertinent for online databases, whose dynamic content is ‘hidden’ from search engines. The Neuroscience Information Framework (NIF; http://www.neuinfo.org) was funded by the NIH Blueprint for Neuroscience Research to address the problem of finding and utilizing neuroscience-relevant resources such as software tools, data sets, experimental animals and antibodies across the Internet. From the outset, NIF sought to provide an accounting of available resources, whereas developing technical solutions to finding, accessing and utilizing them. The curators therefore, are tasked with identifying and registering resources, examining data, writing configuration files to index and display data and keeping the contents current. In the initial phases of the project, all aspects of the registration and curation processes were manual. However, as the number of resources grew, manual curation became impractical. This report describes our experiences and successes with developing automated resource discovery and semiautomated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. We also describe the DISCO framework, a suite of automated web services that significantly reduce manual curation efforts to periodically check for resource updates. Lastly, we discuss DOMEO, a semi-automated annotation tool that improves the discovery and curation of resources that are not necessarily website-based (i.e. reagents, software tools). Although the ultimate goal of automation was to

  10. Integrating Neuroscience Knowledge and Neuropsychiatric Skills Into Psychiatry: The Way Forward.

    PubMed

    Schildkrout, Barbara; Benjamin, Sheldon; Lauterbach, Margo D

    2016-05-01

    Increasing the integration of neuroscience knowledge and neuropsychiatric skills into general psychiatric practice would facilitate expanded approaches to diagnosis, formulation, and treatment while positioning practitioners to utilize findings from emerging brain research. There is growing consensus that the field of psychiatry would benefit from more familiarity with neuroscience and neuropsychiatry. Yet there remain numerous factors impeding the integration of these domains of knowledge into general psychiatry.The authors make recommendations to move the field forward, focusing on the need for advocacy by psychiatry and medical organizations and changes in psychiatry education at all levels. For individual psychiatrists, the recommendations target obstacles to attaining expanded neuroscience and neuropsychiatry education and barriers stemming from widely held, often unspoken beliefs. For the system of psychiatric care, recommendations address the conceptual and physical separation of psychiatry from medicine, overemphasis on the Diagnostic and Statistical Manual of Mental Disorders and on psychopharmacology, and different systems in medicine and psychiatry for handling reimbursement and patient records. For psychiatry residency training, recommendations focus on expanding neuroscience/neuropsychiatry faculty and integrating neuroscience education throughout the curriculum.Psychiatry traditionally concerns itself with helping individuals construct meaningful life narratives. Brain function is one of the fundamental determinants of individuality. It is now possible for psychiatrists to integrate knowledge of neuroscience into understanding the whole person by asking, What person has this brain? How does this brain make this person unique? How does this brain make this disorder unique? What treatment will help this disorder in this person with this brain?

  11. A Neuroscience Perspective on Learning

    ERIC Educational Resources Information Center

    Sloan, Dendy; Norrgran, Cynthia

    2016-01-01

    We briefly discuss memory types and three modern principles of neuroscience: 1) Protein growth at the synapse, 2) the three-brain theory, and 3) the interplay of the hippocampus, the neocortex, and the prefrontal cortex. To illustrate the potential of this perspective, four applications of these principles are provided.

  12. Integrating Levels of Analysis in Systems and Cognitive Neurosciences: Selective Attention as a Case Study.

    PubMed

    Itthipuripat, Sirawaj; Serences, John T

    2016-06-01

    Neuroscience is inherently interdisciplinary, rapidly expanding beyond its roots in biological sciences to many areas of the social and physical sciences. This expansion has led to more sophisticated ways of thinking about the links between brains and behavior and has inspired the development of increasingly advanced tools to characterize the activity of large populations of neurons. However, along with these advances comes a heightened risk of fostering confusion unless efforts are made to better integrate findings across different model systems and to develop a better understanding about how different measurement techniques provide mutually constraining information. Here we use selective visuospatial attention as a case study to highlight the importance of these issues, and we suggest that exploiting multiple measures can better constrain models that relate neural activity to animal behavior. © The Author(s) 2015.

  13. The NIF DISCO Framework: facilitating automated integration of neuroscience content on the web.

    PubMed

    Marenco, Luis; Wang, Rixin; Shepherd, Gordon M; Miller, Perry L

    2010-06-01

    This paper describes the capabilities of DISCO, an extensible approach that supports integrative Web-based information dissemination. DISCO is a component of the Neuroscience Information Framework (NIF), an NIH Neuroscience Blueprint initiative that facilitates integrated access to diverse neuroscience resources via the Internet. DISCO facilitates the automated maintenance of several distinct capabilities using a collection of files 1) that are maintained locally by the developers of participating neuroscience resources and 2) that are "harvested" on a regular basis by a central DISCO server. This approach allows central NIF capabilities to be updated as each resource's content changes over time. DISCO currently supports the following capabilities: 1) resource descriptions, 2) "LinkOut" to a resource's data items from NCBI Entrez resources such as PubMed, 3) Web-based interoperation with a resource, 4) sharing a resource's lexicon and ontology, 5) sharing a resource's database schema, and 6) participation by the resource in neuroscience-related RSS news dissemination. The developers of a resource are free to choose which DISCO capabilities their resource will participate in. Although DISCO is used by NIF to facilitate neuroscience data integration, its capabilities have general applicability to other areas of research.

  14. Views on Careers in Clinical Neurosciences Among Neurosurgeons and Neurologists in China.

    PubMed

    Lukas, Rimas V; Ma, Chao; Chen, Jingcao; Dong, Hongmei; Li, Jinxin; Wang, Zefen; Jiang, Ivy; Fu, Kai; Satnarayan, Samita; Albert, Dara V F; Sherer, Renslow

    2017-02-01

    China has a large and aging population. The need for physicians with training in clinical neurosciences will grow. There is little known regarding the factors that lead physicians in China to pursue careers in clinical neurosciences. The objective of this study was to garner a clearer understanding of factors that influence physicians to pursue careers in neurosurgery and neurology in China. We surveyed attendees at a national neuroscience conference on the factors that influence their pursuit of careers in clinical neurosciences. Responses were quantified on a Likert scale. One-way analysis of variance was used to compare different groups of respondents. Factors associated with the intellectual elements of the specialties were rated most highly. Differences were noted between respondents, with trainees rating lifestyle-related factors more highly compared with attending physicians. The intellectual challenges are important factors for physicians in China influencing the pursuit of careers in the clinical neurosciences. This finding echoes results found elsewhere in the world. However, differences with trainees elsewhere in the world emerge when evaluating additional factors influencing trainees pursuing careers in the clinical neurosciences. Trainees in China rate educational experiences and mentorship more highly, whereas U.S. trainees rate altruistic goals more highly. This study provides a clearer understanding of factors influencing career choice among clinical neuroscientists in China. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Why bother with the brain? A role for decision neuroscience in understanding strategic variability.

    PubMed

    Venkatraman, Vinod

    2013-01-01

    Neuroscience, by its nature, seems to hold considerable promise for understanding the fundamental mechanisms of decision making. In recent years, several studies in the domain of "neuroeconomics" or "decision neuroscience" have provided important insights into brain function. Yet, the apparent success and value of each of these domains are frequently called into question by researchers in economics and behavioral decision making. Critics often charge that knowledge about the brain is unnecessary for understanding decision preferences. In this chapter, I contend that knowledge about underlying brain mechanisms helps in the development of biologically plausible models of behavior, which can then help elucidate the mechanisms underlying individual choice biases and strategic preferences. Using a novel risky choice paradigm, I will demonstrate that people vary in whether they adopt compensatory or noncompensatory rules in economic decision making. Importantly, neuroimaging studies using functional magnetic resonance imaging reveal that distinct neural mechanisms support variability in choices and variability in strategic preferences. Converging evidence from a study involving decisions between hypothetical stocks illustrates how knowledge about the underlying mechanisms can help inform neuroanatomical models of cognitive control. Last, I will demonstrate how knowledge about these underlying neural mechanisms can provide novel insights into the effects of decision states like sleep deprivation on decision preferences. Together, these findings suggest that neuroscience can play a critical role in creating robust and flexible models of real-world decision behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials.

    PubMed

    Ng, Joanna L; Knothe, Lillian E; Whan, Renee M; Knothe, Ulf; Tate, Melissa L Knothe

    2017-01-11

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  17. Neuroscience, Education and Special Education

    ERIC Educational Resources Information Center

    Goswami, Usha

    2004-01-01

    The discipline of neuroscience draws from the fields of neurology, psychology, physiology and biology, but is best understood in the wider world as brain science. Of particular interest for education is the development of techniques for imaging the brain as it performs different cognitive functions. Cognitive neuroimaging has already led to…

  18. Pain Neuroscience Education: State of the Art and Application in Pediatrics.

    PubMed

    Robins, Hannah; Perron, Victoria; Heathcote, Lauren C; Simons, Laura E

    2016-12-21

    Chronic pain is a widespread problem in the field of pediatrics. Many interventions to ameliorate pain-related dysfunction have a biobehavioral focus. As treatments for chronic pain (e.g., increased movement) often stand in stark contrast to treatments for an acute injury (e.g., rest), providing a solid rationale for treatment is necessary to gain patient and parent buy-in. Most pain treatment interventions incorporate psychoeducation, or pain neuroscience education (PNE), as an essential component, and in some cases, as a stand-alone approach. The current topical review focuses on the state of pain neuroscience education and its application to pediatric chronic pain. As very little research has examined pain neuroscience education in pediatrics, we aim to describe this emerging area and catalyze further work on this important topic. As the present literature has generally focused on adults with chronic pain, pain neuroscience education merits further attention in the realm of pediatric pain in order to be tailored and implemented in this population.

  19. Pain Neuroscience Education: State of the Art and Application in Pediatrics

    PubMed Central

    Robins, Hannah; Perron, Victoria; Heathcote, Lauren C.; Simons, Laura E.

    2016-01-01

    Chronic pain is a widespread problem in the field of pediatrics. Many interventions to ameliorate pain-related dysfunction have a biobehavioral focus. As treatments for chronic pain (e.g., increased movement) often stand in stark contrast to treatments for an acute injury (e.g., rest), providing a solid rationale for treatment is necessary to gain patient and parent buy-in. Most pain treatment interventions incorporate psychoeducation, or pain neuroscience education (PNE), as an essential component, and in some cases, as a stand-alone approach. The current topical review focuses on the state of pain neuroscience education and its application to pediatric chronic pain. As very little research has examined pain neuroscience education in pediatrics, we aim to describe this emerging area and catalyze further work on this important topic. As the present literature has generally focused on adults with chronic pain, pain neuroscience education merits further attention in the realm of pediatric pain in order to be tailored and implemented in this population. PMID:28009822

  20. Current educational issues in the clinical neurosciences.

    PubMed

    Desbiens, R; Elleker, M G; Goldsand, G; Hugenholtz, H; Puddester, D; Toyota, B; Findlay, J M

    2001-11-01

    Canadian training in the clinical neurosciences, neurology and neurosurgery, faces significant challenges. New balances are being set by residents, their associations and the Royal College of Physicians and Surgeons of Canada between clinical service, education and personal time. The nature of hospital-provided medical service has changed significantly over the past decade, impacting importantly on resident training. Finally, future manpower needs are of concern, especially in the field of neurosurgery, where it appears that soon more specialists will be trained than can be absorbed into the Canadian health care system. A special symposium on current challenges in clinical neuroscience training was held at the Canadian Congress of Neurological Sciences in June 2000. Representatives from the Canadian Association of Interns and Residents, the Royal College of Physicians and Surgeons of Canada and English and French neurology and neurosurgery training programs made presentations, which are summarized in this report. Residency training has become less service-oriented, and this trend will continue. In order to manage the increasingly sophisticated hospital services of neurology and neurosurgery, resident-alternatives in the form of physician "moonlighters" or more permanent hospital-based clinicians or "hospitalists" will be necessary in order to operate major neuroclinical units. Health authorities and hospitals will need to recognize and assume this responsibility. As clinical experience diminishes during residency training, inevitably so will the concept of the fully competent "generalist" at the end of specialty training. Additional subspecialty training is being increasingly sought by graduates, particularly in neurosurgery. Training in neurology and neurosurgery, as in all medical specialties, has changed significantly in recent years and continues to change. Programs and hospitals need to adapt to these changes in order to ensure the production of fully

  1. The cognitive atlas: toward a knowledge foundation for cognitive neuroscience.

    PubMed

    Poldrack, Russell A; Kittur, Aniket; Kalar, Donald; Miller, Eric; Seppa, Christian; Gil, Yolanda; Parker, D Stott; Sabb, Fred W; Bilder, Robert M

    2011-01-01

    Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what "mental processes" exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe a new open collaborative project that aims to provide a knowledge base for cognitive neuroscience, called the Cognitive Atlas (accessible online at http://www.cognitiveatlas.org), and outline how this project has the potential to drive novel discoveries about both mind and brain.

  2. The Cognitive Atlas: Toward a Knowledge Foundation for Cognitive Neuroscience

    PubMed Central

    Poldrack, Russell A.; Kittur, Aniket; Kalar, Donald; Miller, Eric; Seppa, Christian; Gil, Yolanda; Parker, D. Stott; Sabb, Fred W.; Bilder, Robert M.

    2011-01-01

    Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what “mental processes” exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe a new open collaborative project that aims to provide a knowledge base for cognitive neuroscience, called the Cognitive Atlas (accessible online at http://www.cognitiveatlas.org), and outline how this project has the potential to drive novel discoveries about both mind and brain. PMID:21922006

  3. Applying a cognitive neuroscience perspective to the disorder of psychopathy.

    PubMed

    Blair, R J R

    2005-01-01

    Four models of psychopathy (frontal lobe dysfunction, response set modulation, fear dysfunction, and violence inhibition mechanism hypotheses) are reviewed from the perspective of cognitive neuroscience. Each model is considered both with respect to the psychopathy data and, more importantly, for the present purposes, with respect to the broader cognitive neuroscience fields to which the model refers (e.g., models of attention with respect to the response set modulation account and models of emotion with respect to the fear dysfunction and violence inhibition mechanism models). The paper concludes with an articulation of the more recent integrated emotion systems model, an account inspired both by recent findings in affective cognitive neuroscience as well as in the study of psychopathy. Some directions for future work are considered.

  4. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough Kevin Burns...4. TITLE AND SUBTITLE Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough...Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS) Phase 1 challenge problem. The pages include screen shots

  5. Dreaming of mathematical neuroscience for half a century.

    PubMed

    Amari, Shun-ichi

    2013-01-01

    Theoreticians have been enchanted by the secrets of the brain for many years: how and why does it work so well? There has been a long history of searching for its mechanisms. Theoretical or even mathematical scientists have proposed various models of neural networks which has led to the birth of a new field of research. We can think of the 'pre-historic' period of Rashevski and Wiener, and then the period of perceptrons which is the beginning of learning machines, neurodynamics approaches, and further connectionist approaches. Now is currently the period of computational neuroscience. I have been working in this field for nearly half a century, and have experienced its repeated rise and fall. Now having reached very old age, I would like to state my own endeavors on establishing mathematical neuroscience for half a century, from a personal, even biased, point of view. It would be my pleasure if my experiences could encourage young researchers to participate in mathematical neuroscience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Unformed minds: juveniles, neuroscience, and the law.

    PubMed

    Harman, Oren

    2013-09-01

    Recently, the question of adolescent culpability has been brought before the Supreme Court of the United States for reconsideration. Neuroscience, adolescent advocates claim, is teaching us that young people cannot be found fully responsible for their actions. The reason: their brains are not fully formed. Here I consider the history of the use of scientific evidence in the courtroom, a number of adolescent murder cases, and the data now emerging from neuroscience, and argue that when it comes to brains, judges, just like the rest of us, are unnecessarily impressed. Ultimately, how we determine culpability should rest on normative and ethical considerations rather than on scientific ones. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Recent advances in exploring the neural underpinnings of auditory scene perception

    PubMed Central

    Snyder, Joel S.; Elhilali, Mounya

    2017-01-01

    Studies of auditory scene analysis have traditionally relied on paradigms using artificial sounds—and conventional behavioral techniques—to elucidate how we perceptually segregate auditory objects or streams from each other. In the past few decades, however, there has been growing interest in uncovering the neural underpinnings of auditory segregation using human and animal neuroscience techniques, as well as computational modeling. This largely reflects the growth in the fields of cognitive neuroscience and computational neuroscience and has led to new theories of how the auditory system segregates sounds in complex arrays. The current review focuses on neural and computational studies of auditory scene perception published in the past few years. Following the progress that has been made in these studies, we describe (1) theoretical advances in our understanding of the most well-studied aspects of auditory scene perception, namely segregation of sequential patterns of sounds and concurrently presented sounds; (2) the diversification of topics and paradigms that have been investigated; and (3) how new neuroscience techniques (including invasive neurophysiology in awake humans, genotyping, and brain stimulation) have been used in this field. PMID:28199022

  8. Some Thoughts on the Relationship of Developmental Science and Population Neuroscience

    ERIC Educational Resources Information Center

    Paus, Tomáš

    2012-01-01

    This essay describes briefly population neuroscience, the merging of genetics and epidemiology with neuroscience, and its goals with regard to (1) gaining new knowledge about "processes" leading to a particular "state" of brain structure and function, and (2) using this knowledge to predict the risk (and resilience) of an…

  9. NeuroLex.org: an online framework for neuroscience knowledge

    PubMed Central

    Larson, Stephen D.; Martone, Maryann E.

    2013-01-01

    The ability to transmit, organize, and query information digitally has brought with it the challenge of how to best use this power to facilitate scientific inquiry. Today, few information systems are able to provide detailed answers to complex questions about neuroscience that account for multiple spatial scales, and which cross the boundaries of diverse parts of the nervous system such as molecules, cellular parts, cells, circuits, systems and tissues. As a result, investigators still primarily seek answers to their questions in an increasingly densely populated collection of articles in the literature, each of which must be digested individually. If it were easier to search a knowledge base that was structured to answer neuroscience questions, such a system would enable questions to be answered in seconds that would otherwise require hours of literature review. In this article, we describe NeuroLex.org, a wiki-based website and knowledge management system. Its goal is to bring neurobiological knowledge into a framework that allows neuroscientists to review the concepts of neuroscience, with an emphasis on multiscale descriptions of the parts of nervous systems, aggregate their understanding with that of other scientists, link them to data sources and descriptions of important concepts in neuroscience, and expose parts that are still controversial or missing. To date, the site is tracking ~25,000 unique neuroanatomical parts and concepts in neurobiology spanning experimental techniques, behavioral paradigms, anatomical nomenclature, genes, proteins and molecules. Here we show how the structuring of information about these anatomical parts in the nervous system can be reused to answer multiple neuroscience questions, such as displaying all known GABAergic neurons aggregated in NeuroLex or displaying all brain regions that are known within NeuroLex to send axons into the cerebellar cortex. PMID:24009581

  10. Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Walkthrough

    DTIC Science & Technology

    2014-11-01

    Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Walkthrough Kevin Burns...neuroscience Architectures for Understanding Sensemaking (ICArUS) Phase 2 challenge problem. The pages include screen shots from the tutorial that...Burns, K., Fine, M., Bonaceto, C., & Oertel, C. (2014). Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS

  11. The Future of Educational Neuroscience

    ERIC Educational Resources Information Center

    Fischer, Kurt W.; Goswami, Usha; Geake, John

    2010-01-01

    The primary goal of the emerging field of educational neuroscience and the broader movement called Mind, Brain, and Education is to join biology with cognitive science, development, and education so that education can be grounded more solidly in research on learning and teaching. To avoid misdirection, the growing worldwide movement needs to avoid…

  12. Brain Matters: Neuroscience and Creativity

    ERIC Educational Resources Information Center

    Blevins, Dean G.

    2012-01-01

    This article introduces a relationship between neuroscience and creativity for the sake of religious education. Citing creativity as a process that involves both originality and value, the writing articulates Howard Gardner's interplay between the talent of the person, the internal demands of a discipline, and the quality judgment of the field.…

  13. Neuroscience, Education and Mental Health

    ERIC Educational Resources Information Center

    Arboccó de los Heros, Manuel

    2016-01-01

    The following article presents a series of investigations, reflections, and quotes about neuroscience, education, and psychology. Each area is specialized in some matters but at some point they share territory and mutually benefit one another, and help us to increasingly understand the complex world of learning, the brain, and human behavior. We…

  14. Teaching Ethics Informed by Neuroscience

    ERIC Educational Resources Information Center

    Sayre, Molly Malany

    2016-01-01

    New findings about the brain are explicating how we make moral and ethical decisions. The neuroscience of morality is relevant to ethical decision making in social work because of a shared biopsychosocial perspective and the field's explanatory power to understand possible origins of universally accepted morals and personal attitudes at play in…

  15. Some revolutions in neuroscience.

    PubMed

    Gross, Charles

    2013-01-01

    In the long history of the study of the nervous system, there have been a number of major developments that involved radical and permanent changes in fundamental beliefs and assumptions about the nervous system and in tactics and strategies for studying it. These may be termed Revolutions in Neuroscience. This essay considers eight of these, ranging from the 6th century BCE to the end of the 20th century.

  16. A Guerilla Guide to Common Problems in ‘Neurostatistics’: Essential Statistical Topics in Neuroscience

    PubMed Central

    Smith, Paul F.

    2017-01-01

    Effective inferential statistical analysis is essential for high quality studies in neuroscience. However, recently, neuroscience has been criticised for the poor use of experimental design and statistical analysis. Many of the statistical issues confronting neuroscience are similar to other areas of biology; however, there are some that occur more regularly in neuroscience studies. This review attempts to provide a succinct overview of some of the major issues that arise commonly in the analyses of neuroscience data. These include: the non-normal distribution of the data; inequality of variance between groups; extensive correlation in data for repeated measurements across time or space; excessive multiple testing; inadequate statistical power due to small sample sizes; pseudo-replication; and an over-emphasis on binary conclusions about statistical significance as opposed to effect sizes. Statistical analysis should be viewed as just another neuroscience tool, which is critical to the final outcome of the study. Therefore, it needs to be done well and it is a good idea to be proactive and seek help early, preferably before the study even begins. PMID:29371855

  17. A developmental social neuroscience model for understanding loneliness in adolescence.

    PubMed

    Wong, Nichol M L; Yeung, Patcy P S; Lee, Tatia M C

    2018-02-01

    Loneliness is prevalent in adolescents. Although it can be a normative experience, children and adolescents who experience loneliness are often at risk for anxiety, depression, and suicide. Research efforts have been made to identify the neurobiological basis of such distressful feelings in our social brain. In adolescents, the social brain is still undergoing significant development, which may contribute to their increased and differential sensitivity to the social environment. Many behavioral studies have shown the significance of attachment security and social skills in adolescents' interactions with the social world. In this review, we propose a developmental social neuroscience model that extends from the social neuroscience model of loneliness. In particular, we argue that the social brain and social skills are both important for the development of adolescents' perceived loneliness and that adolescents' familial attachment sets the baseline for neurobiological development. By reviewing the related behavioral and neuroimaging literature, we propose a developmental social neuroscience model to explain the heightened perception of loneliness in adolescents using social skills and attachment style as neurobiological moderators. We encourage future researchers to investigate adolescents' perceived social connectedness from the developmental neuroscience perspective.

  18. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore or...

  19. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore or...

  20. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore or...

  1. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore or...

  2. A translational neuroscience perspective on mindfulness meditation as a prevention strategy.

    PubMed

    Tang, Yi-Yuan; Leve, Leslie D

    2016-03-01

    Mindfulness meditation research mainly focuses on psychological outcomes such as behavioral, cognitive, and emotional functioning. However, the neuroscience literature on mindfulness meditation has grown in recent years. This paper provides an overview of relevant neuroscience and psychological research on the effects of mindfulness meditation. We propose a translational prevention framework of mindfulness and its effects. Drawing upon the principles of prevention science, this framework integrates neuroscience and prevention research and postulates underlying brain regulatory mechanisms that explain the impact of mindfulness on psychological outcomes via self-regulation mechanisms linked to underlying brain systems. We conclude by discussing potential clinical and practice implications of this model and directions for future research.

  3. Best Practices: The Neuroscience Program at Central Michigan University

    PubMed Central

    Dunbar, Gary L.

    2015-01-01

    The original design of our program at Central Michigan University (CMU) and its evolving curriculum were directly influenced by Faculty for Undergraduate (FUN) workshops at Davidson College, Oberlin College, Trinity College, and Macalester College. The course content, laboratory exercises, and pedagogy used were informed by excellent articles in the Journal of Undergraduate Neuroscience Education (JUNE) and presentations at these FUN workshops and meetings over the years. Like the program at Baldwin-Wallace College, which was a previous winner of the Undergraduate Neuroscience Program of the Year Award, as selected by the Committee on Neuroscience Departments and Programs (CNDP) of the Society for Neuroscience (SfN, our program stresses the importance of inquiry-based, hands-on research experience for our undergraduates and utilizes a peer-mentoring system. A distinct advantage that is employed at CMU is the use of graduate student mentors, which allows us to expand our peer-mentorship to distinct research teams that are focused on a specific research project. Developing our program was not easy. The present manuscript reviews the long and arduous journey (including ways in which we navigated some difficult internal political issues) we made to build a strong program. Hopefully, this description may prove helpful for other evolving programs, in terms of avoiding certain pitfalls and overcoming obstacles, as well as selecting practices that have proven to be successful at our institution. PMID:26240523

  4. The NIF DISCO Framework: Facilitating Automated Integration of Neuroscience Content on the Web

    PubMed Central

    Marenco, Luis; Wang, Rixin; Shepherd, Gordon M.; Miller, Perry L.

    2013-01-01

    This paper describes the capabilities of DISCO, an extensible approach that supports integrative Web-based information dissemination. DISCO is a component of the Neuroscience Information Framework (NIF), an NIH Neuroscience Blueprint initiative that facilitates integrated access to diverse neuroscience resources via the Internet. DISCO facilitates the automated maintenance of several distinct capabilities using a collection of files 1) that are maintained locally by the developers of participating neuroscience resources and 2) that are “harvested” on a regular basis by a central DISCO server. This approach allows central NIF capabilities to be updated as each resource’s content changes over time. DISCO currently supports the following capabilities: 1) resource descriptions, 2) “LinkOut” to a resource’s data items from NCBI Entrez resources such as PubMed, 3) Web-based interoperation with a resource, 4) sharing a resource’s lexicon and ontology, 5) sharing a resource’s database schema, and 6) participation by the resource in neuroscience-related RSS news dissemination. The developers of a resource are free to choose which DISCO capabilities their resource will participate in. Although DISCO is used by NIF to facilitate neuroscience data integration, its capabilities have general applicability to other areas of research. PMID:20387131

  5. Work–Family Conflict and Health Among Working Parents: Potential Linkages for Family Studies and Social Neuroscience

    PubMed Central

    Grzywacz, Joseph G.; Smith, Amy M.

    2016-01-01

    In this paired article the authors review research on paid work, parenting, and health in order to isolate fundamental questions and issues that remain unaddressed. Next, consistent with the theme of this special issue, the authors introduce social neuroscience and highlight how this emerging multidisciplinary science offers substantial promise for advancing key unresolved issues in the paid work, parenting, and health literature. The article concludes with suggestions for promising areas of research wherein family scientists and social neuroscientists could build collaborative research to address gaps in the work–family literature. PMID:27840467

  6. The Brain in Space: A Teacher's Guide with Activities for Neuroscience.

    ERIC Educational Resources Information Center

    MacLeish, Marlene Y.; McLean, Bernice R.

    This educators guide discusses the brain and contains activities on neuroscience. Activities include: (1) "The Space Life Sciences"; (2) "Space Neuroscience: A Special Area within the Space Life Sciences"; (3) "Space Life Sciences Research"; (4) "Neurolab: A Special Space Mission to Study the Nervous System"; (5) "The Nervous System"; (6)…

  7. Integrating Neuroscience Knowledge into Social Work Education: A Case-Based Approach

    ERIC Educational Resources Information Center

    Egan, Marcia; Neely-Barnes, Susan L.; Combs-Orme, Terri

    2011-01-01

    New knowledge from the rapidly growing field of neuroscience has important implications for our understanding of human behavior in the social environment, yet little of this knowledge has made its way into social work education. This article presents a model for integrating neuroscience into instruction on human development, the bio psychosocial…

  8. Memory and law: what can cognitive neuroscience contribute?

    PubMed

    Schacter, Daniel L; Loftus, Elizabeth F

    2013-02-01

    A recent decision in the United States by the New Jersey Supreme Court has led to improved jury instructions that incorporate psychological research showing that memory does not operate like a video recording. Here we consider how cognitive neuroscience could contribute to addressing memory in the courtroom. We discuss conditions in which neuroimaging can distinguish true and false memories in the laboratory and note reasons to be skeptical about its use in courtroom cases. We also discuss neuroscience research concerning false and imagined memories, misinformation effects and reconsolidation phenomena that may enhance understanding of why memory does not operate like a video recording.

  9. Contemplative Neuroscience as an Approach to Volitional Consciousness

    NASA Astrophysics Data System (ADS)

    Thompson, Evan

    This chapter presents a methodological approach to volitional consciousness for cognitive neuroscience based on studying the voluntary self-generation and self-regulation of mental states in meditation. Called contemplative neuroscience, this approach views attention, awareness, and emotion regulation as flexible and trainable skills, and works with experimental participants who have undergone training in contemplative practices designed to hone these skills. Drawing from research on the dynamical neural correlates of contemplative mental states and theories of large-scale neural coordination dynamics, I argue for the importance of global system causation in brain activity and present an "interventionist" approach to intentional causation.

  10. New perspectives on forced migration in the history of twentieth-century neuroscience.

    PubMed

    Stahnisch, Frank W; Russell, Gül

    2016-01-01

    This special issue of the Journal of the History of the Neurosciences, comprised of six articles and one commentary, reflects on the multifold dimensions of intellectual migration in the neurosciences and illustrates them by relevant case studies, biographies, and surveys from twentieth-century history of science and medicine perspectives. The special issue as a whole strives to emphasize the impact of forced migration in the neurosciences and psychiatry from an interdisciplinary perspective by, first, describing the general research topic, second, by showing how new models can be applied to the historiography and social studies of twentieth-century neuroscience, and, third, by providing a deeper understanding of the impact of European émigré researchers on emerging allied fields, such as neurogenetics, biological psychiatry, psychosomatics, and public mental health, etc. as resulting from this process at large.

  11. Brain profiling and clinical-neuroscience.

    PubMed

    Peled, Avi

    2006-01-01

    The current psychiatric diagnostic system, the diagnostic statistic manual, has recently come under increasing criticism. The major reason for the shortcomings of the current psychiatric diagnosis is the lack of a scientific brain-related etiological knowledge about mental disorders. The advancement toward such knowledge is further hampered by the lack of a theoretical framework or "language" that translates clinical findings of mental disorders to brain disturbances and insufficiencies. Here such a theoretical construct is proposed based on insights from neuroscience and neural-computation models. Correlates between clinical manifestations and presumed neuronal network disturbances are proposed in the form of a practical diagnostic system titled "Brain Profiling". Three dimensions make-up brain profiling, "neural complexity disorders", "neuronal resilience insufficiency", and "context-sensitive processing decline". The first dimension relates to disturbances occurring to fast neuronal activations in the millisecond range, it incorporates connectivity and hierarchical imbalances appertaining typically to psychotic and schizophrenic clinical manifestations. The second dimension relates to disturbances that alter slower changes namely long-term synaptic modulations, and incorporates disturbances to optimization and constraint satisfactions within relevant neuronal circuitry. Finally, the level of internal representations related to personality disorders is presented by a "context-sensitive process decline" as the third dimension. For practical use of brain profiling diagnosis a consensual list of psychiatric clinical manifestations provides a "diagnostic input vector", clinical findings are coded 1 for "detection" and 0 for "non-detection", 0.5 is coded for "questionable". The entries are clustered according to their presumed neuronal dynamic relationships and coefficients determine their relevance to the specific related brain disturbance. Relevant equations

  12. Does Neuroscience Matter for Education?

    ERIC Educational Resources Information Center

    Schrag, Francis

    2011-01-01

    In this review essay, Francis Schrag focuses on two recent anthologies dealing completely or in part with the role of neuroscience in learning and education: The "Jossey-Bass Reader on the Brain and Learning", edited by Jossey-Bass Publishers, and "New Philosophies of Learning", edited by Ruth Cigman and Andrew Davis. Schrag argues that…

  13. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  14. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Astrophysics Data System (ADS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-06-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  15. Natural language processing and advanced information management

    NASA Technical Reports Server (NTRS)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  16. From neuroscience to evidence based psychological treatments - The promise and the challenge, ECNP March 2016, Nice, France.

    PubMed

    Goodwin, Guy M; Holmes, Emily A; Andersson, Erik; Browning, Michael; Jones, Andrew; Lass-Hennemann, Johanna; Månsson, Kristoffer Nt; Moessnang, Carolin; Salemink, Elske; Sanchez, Alvaro; van Zutphen, Linda; Visser, Renée M

    2018-02-01

    This ECNP meeting was designed to build bridges between different constituencies of mental illness treatment researchers from a range of backgrounds with a specific focus on enhancing the development of novel, evidence based, psychological treatments. In particular we wished to explore the potential for basic neuroscience to support the development of more effective psychological treatments, just as this approach is starting to illuminate the actions of drugs. To fulfil this aim, a selection of clinical psychologists, psychiatrists and neuroscientists were invited to sit at the same table. The starting point of the meeting was the proposition that we know certain psychological treatments work, but we have only an approximate understanding of why they work. The first task in developing a coherent mental health science would therefore be to uncover the mechanisms (at all levels of analysis) of effective psychological treatments. Delineating these mechanisms, a task that will require input from both the clinic and the laboratory, will provide a key foundation for the rational optimisation of psychological treatments. As reviewed in this paper, the speakers at the meeting reviewed recent advances in the understanding of clinical and cognitive psychology, neuroscience, experimental psychopathology, and treatment delivery technology focussed primarily on anxiety disorders and depression. We started by asking three rhetorical questions: What has psychology done for treatment? What has technology done for psychology? What has neuroscience done for psychology? We then addressed how research in five broad research areas could inform the future development of better treatments: Attention, Conditioning, Compulsions and addiction, Emotional Memory, and Reward and emotional bias. Research in all these areas (and more) can be harnessed to neuroscience since psychological therapies are a learning process with a biological basis in the brain. Because current treatment approaches

  17. Buildings, Beauty, and the Brain: A Neuroscience of Architectural Experience.

    PubMed

    Coburn, Alex; Vartanian, Oshin; Chatterjee, Anjan

    2017-09-01

    A burgeoning interest in the intersection of neuroscience and architecture promises to offer biologically inspired insights into the design of spaces. The goal of such interdisciplinary approaches to architecture is to motivate construction of environments that would contribute to peoples' flourishing in behavior, health, and well-being. We suggest that this nascent field of neuroarchitecture is at a pivotal point in which neuroscience and architecture are poised to extend to a neuroscience of architecture. In such a research program, architectural experiences themselves are the target of neuroscientific inquiry. Here, we draw lessons from recent developments in neuroaesthetics to suggest how neuroarchitecture might mature into an experimental science. We review the extant literature and offer an initial framework from which to contextualize such research. Finally, we outline theoretical and technical challenges that lie ahead.

  18. [From brain imaging to good teaching? implicating from neuroscience for research on learning and instruction].

    PubMed

    Stubenrauch, Christa; Krinzinger, Helga; Konrad, Kerstin

    2014-07-01

    Psychiatric disorders in childhood and adolescence, in particular attention deficit disorder or specific learning disorders like developmental dyslexia and developmental dyscalculia, affect academic performance and learning at school. Recent advances in neuroscientific research have incited an intensive debate both in the general public and in the field of educational and instructional science as well as to whether and to what extent these new findings in the field of neuroscience might be of importance for school-related learning and instruction. In this review, we first summarize neuroscientific findings related to the development of attention, working memory and executive functions in typically developing children and then evaluate their relevance for school-related learning. We present an overview of neuroimaging studies of specific learning disabilities such as developmental dyslexia and developmental dyscalculia, and critically discuss their practical implications for educational and teaching practice, teacher training, early diagnosis as well as prevention and disorder-specific therapy. We conclude that the new interdisciplinary field of neuroeducation cannot be expected to provide direct innovative educational applications (e.g., teaching methods). Rather, the future potential of neuroscience lies in creating a deeper understanding of the underlying cognitive mechanisms and pathomechanisms of learning processes and learning disorders.

  19. Mapping of Indian neuroscience research: a scientometric analysis of research output during 1999-2008.

    PubMed

    Bala, Adarsh; Gupta, B M

    2010-01-01

    This study analyses the research output in India in neurosciences during the period 1999-2008 and the analyses included research growth, rank, global publications' share, citation impact, share of international collaborative papers and major collaborative partner countries and patterns of research communication in most productive journals. It also analyses the characteristics of most productive institutions, authors and high-cited papers. The publication output and impact of India is also compared with China, Brazil and South Korea. Scopus Citation database was used for retrieving the publications' output of India and other countries in neurosciences during 1999-2008. India's global publications' share in neurosciences during the study period was 0.99% (with 4503 papers) and it ranked 21 st among the top 26 countries in neurosciences. The average annual publication growth rate was 11.37%, shared 17.34% of international collaborative papers and the average citation per paper was 4.21. India was far behind China, Brazil and South Korea in terms of publication output, citation quality and share of international collaborative papers in neurosciences. India is far behind in terms of publication output, citation quality and share of international collaborative papers in neurosciences when compared to other countries with an emerging economy. There is an urgent need to substantially increase the research activities in the field of neurosciences in India.

  20. The social life of the brain: Neuroscience in society

    PubMed Central

    2013-01-01

    Neuroscience is viewed by a range of actors and institutions as a powerful means of creating new knowledge about our selves and societies. This article documents the shifts in expertise and identities potentially being propelled by neuroscientific research. It details the framing and effects of neuroscience within several social domains, including education and mental health, discussing some of the intellectual and professional projects it has animated therein (such as neuroethics). The analysis attends to the cultural logics by which the brain is sometimes made salient in society; simultaneously, it points towards some of parameters of the territory within which the social life of the brain plays out. Instances of societal resistance and agnosticism are discussed, which may render problematic sociological research on neuroscience in society that assumes the universal import of neuroscientific knowledge (as either an object of celebration or critique). This article concludes with reflections on how sociotechnical novelty is produced and ascribed, and the implications of this. PMID:24285875

  1. Media Reporting of Neuroscience Depends on Timing, Topic and Newspaper Type

    PubMed Central

    van Atteveldt, Nienke M.; van Aalderen-Smeets, Sandra I.; Jacobi, Carina; Ruigrok, Nel

    2014-01-01

    The rapid developments in neuroscientific techniques raise high expectations among the general public and therefore warrant close monitoring of the translation to the media and daily-life applications. The need of empirical research into neuroscience communication is emphasized by its susceptibility to evoke misconceptions and polarized beliefs. As the mass media are the main sources of information about (neuro-)science for a majority of the general public, the objective of the current research is to quantify how critically and accurately newspapers report on neuroscience as a function of the timing of publication (within or outside of periods of heightened media attention to neuroscience, termed “news waves”), the topic of the research (e.g. development, health, law) and the newspaper type (quality, popular, free newspapers). The results show that articles published during neuroscience news waves were less neutral and more optimistic, but not different in accuracy. Furthermore, the overall tone and accuracy of articles depended on the topic; for example, articles on development often had an optimistic tone whereas articles on law were often skeptical or balanced, and articles on health care had highest accuracy. Average accuracy was rather low, but articles in quality newspapers were relatively more accurate than in popular and free newspapers. Our results provide specific recommendations for researchers and science communicators, to improve the translation of neuroscience findings through the media: 1) Caution is warranted during periods of heightened attention (news waves), as reporting tends to be more optimistic; 2) Caution is also warranted not to follow topic-related biases in optimism (e.g., development) or skepticism (e.g., law); 3) Researchers should keep in mind that overall accuracy of reporting is low, and especially articles in popular and free newspapers provide a minimal amount of details. This indicates that researchers themselves may need to

  2. Media reporting of neuroscience depends on timing, topic and newspaper type.

    PubMed

    van Atteveldt, Nienke M; van Aalderen-Smeets, Sandra I; Jacobi, Carina; Ruigrok, Nel

    2014-01-01

    The rapid developments in neuroscientific techniques raise high expectations among the general public and therefore warrant close monitoring of the translation to the media and daily-life applications. The need of empirical research into neuroscience communication is emphasized by its susceptibility to evoke misconceptions and polarized beliefs. As the mass media are the main sources of information about (neuro-)science for a majority of the general public, the objective of the current research is to quantify how critically and accurately newspapers report on neuroscience as a function of the timing of publication (within or outside of periods of heightened media attention to neuroscience, termed "news waves"), the topic of the research (e.g. development, health, law) and the newspaper type (quality, popular, free newspapers). The results show that articles published during neuroscience news waves were less neutral and more optimistic, but not different in accuracy. Furthermore, the overall tone and accuracy of articles depended on the topic; for example, articles on development often had an optimistic tone whereas articles on law were often skeptical or balanced, and articles on health care had highest accuracy. Average accuracy was rather low, but articles in quality newspapers were relatively more accurate than in popular and free newspapers. Our results provide specific recommendations for researchers and science communicators, to improve the translation of neuroscience findings through the media: 1) Caution is warranted during periods of heightened attention (news waves), as reporting tends to be more optimistic; 2) Caution is also warranted not to follow topic-related biases in optimism (e.g., development) or skepticism (e.g., law); 3) Researchers should keep in mind that overall accuracy of reporting is low, and especially articles in popular and free newspapers provide a minimal amount of details. This indicates that researchers themselves may need to be

  3. Neuroscience in the public sphere.

    PubMed

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-04-26

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Psychological constructionism and cultural neuroscience.

    PubMed

    Hechtman, Lisa A; Pornpattananangkul, Narun; Chiao, Joan Y

    2012-06-01

    Lindquist et al. argue that emotional categories do not map onto distinct regions within the brain, but rather, arise from basic psychological processes, including conceptualization, executive attention, and core affect. Here, we use examples from cultural neuroscience to argue that psychological constructionism, not locationism, captures the essential role of emotion in the social and cultural brain.

  5. Brain-(Not) Based Education: Dangers of Misunderstanding and Misapplication of Neuroscience Research

    ERIC Educational Resources Information Center

    Alferink, Larry A.; Farmer-Dougan, Valeri

    2010-01-01

    Oversimplification or inappropriate interpretation of complex neuroscience research is widespread among curricula claiming that brain-based approaches are effective for improved learning and retention. We examine recent curricula claiming to be based on neuroscience research, discuss the implications of such misinterpretation for special…

  6. Integrating Brain Science into Health Studies: An Interdisciplinary Course in Contemplative Neuroscience and Yoga

    PubMed Central

    Wolfe, Uta; Moran, Amy

    2017-01-01

    As neuroscience knowledge grows in its scope of societal applications so does the need to educate a wider audience on how to critically evaluate its research findings. Efforts at finding teaching approaches that are interdisciplinary, accessible and highly applicable to student experience are thus ongoing. The article describes an interdisciplinary undergraduate health course that combines the academic study of contemplative neuroscience with contemplative practice, specifically yoga. The class aims to reach a diverse mix of students by teaching applicable, health-relevant neuroscience material while directly connecting it to first-hand experience. Outcomes indicate success on these goals: The course attracted a wide range of students, including nearly 50% non-science majors. On a pre/post test, students showed large increases in their knowledge of neuroscience. Students’ ratings of the course overall, of increases in positive feelings about its field, and of their progress on specific course objectives were highly positive. Finally, students in their written work applied neuroscience course content to their personal and professional lives. Such results indicate that this approach could serve as a model for the interdisciplinary, accessible and applied integration of relevant neuroscience material into the undergraduate health curriculum. PMID:29371845

  7. Vision and art: an interdisciplinary approach to neuroscience education.

    PubMed

    Lafer-Sousa, Rosa; Conway, Bevil R

    2009-01-01

    Undergraduate institutions are increasingly adopting neuroscience within their curricula, although it is unclear how best to implement this material given the interdisciplinary nature of the field, which requires knowledge of basic physics, chemistry, biology and psychology. This difficulty is compounded by declines over recent decades in the amount of physics education that students receive in high school, which hinders students' ability to grasp basic principles of neuroscience. Here we discuss our experiences as teacher (BRC) and student (RLS) with an undergraduate course in Vision and Art. The course capitalizes on students' prior interest in visual art to motivate an understanding of the physiological and computational neural processes that underlie vision; our aim is that the learning strategies that students acquire as a result of the format and interdisciplinary approach of the course will increase students' critical thinking skills and benefit them as they pursue other domains of inquiry. The course includes both expert lectures on central themes of vision along with a problem-based learning (PBL) laboratory component that directly engages the students as empirical scientists. We outline the syllabus, the motivation for using PBL, and describe a number of hands-on laboratory exercises, many of which require only inexpensive and readily available equipment. We have developed a website that we hope will facilitate student-driven inquiry beyond the classroom and foster inter-institutional collaboration in this endeavor. We conclude the paper with a discussion of the potential limitations of the course and how to evaluate the success of the course and the website.

  8. NeuroPigPen: A Scalable Toolkit for Processing Electrophysiological Signal Data in Neuroscience Applications Using Apache Pig

    PubMed Central

    Sahoo, Satya S.; Wei, Annan; Valdez, Joshua; Wang, Li; Zonjy, Bilal; Tatsuoka, Curtis; Loparo, Kenneth A.; Lhatoo, Samden D.

    2016-01-01

    The recent advances in neurological imaging and sensing technologies have led to rapid increase in the volume, rate of data generation, and variety of neuroscience data. This “neuroscience Big data” represents a significant opportunity for the biomedical research community to design experiments using data with greater timescale, large number of attributes, and statistically significant data size. The results from these new data-driven research techniques can advance our understanding of complex neurological disorders, help model long-term effects of brain injuries, and provide new insights into dynamics of brain networks. However, many existing neuroinformatics data processing and analysis tools were not built to manage large volume of data, which makes it difficult for researchers to effectively leverage this available data to advance their research. We introduce a new toolkit called NeuroPigPen that was developed using Apache Hadoop and Pig data flow language to address the challenges posed by large-scale electrophysiological signal data. NeuroPigPen is a modular toolkit that can process large volumes of electrophysiological signal data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood oxygen levels (SpO2), using a new distributed storage model called Cloudwave Signal Format (CSF) that supports easy partitioning and storage of signal data on commodity hardware. NeuroPigPen was developed with three design principles: (a) Scalability—the ability to efficiently process increasing volumes of data; (b) Adaptability—the toolkit can be deployed across different computing configurations; and (c) Ease of programming—the toolkit can be easily used to compose multi-step data processing pipelines using high-level programming constructs. The NeuroPigPen toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results demonstrate that

  9. Dissociative Experience and Cultural Neuroscience: Narrative, Metaphor and Mechanism

    PubMed Central

    Kirmayer, Laurence J.

    2016-01-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical “either/or” arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context. PMID:18213511

  10. Dissociative experience and cultural neuroscience: narrative, metaphor and mechanism.

    PubMed

    Seligman, Rebecca; Kirmayer, Laurence J

    2008-03-01

    Approaches to trance and possession in anthropology have tended to use outmoded models drawn from psychodynamic theory or treated such dissociative phenomena as purely discursive processes of attributing action and experience to agencies other than the self. Within psychology and psychiatry, understanding of dissociative disorders has been hindered by polemical "either/or" arguments: either dissociative disorders are real, spontaneous alterations in brain states that reflect basic neurobiological phenomena, or they are imaginary, socially constructed role performances dictated by interpersonal expectations, power dynamics and cultural scripts. In this paper, we outline an approach to dissociative phenomena, including trance, possession and spiritual and healing practices, that integrates the neuropsychological notions of underlying mechanism with sociocultural processes of the narrative construction and social presentation of the self. This integrative model, grounded in a cultural neuroscience, can advance ethnographic studies of dissociation and inform clinical approaches to dissociation through careful consideration of the impact of social context.

  11. A Hospital-Based Neuroscience Nursing Course Designed to Improve Competence and Confidence.

    PubMed

    Shields, Lisa B E; Perkins, Lewis; Clark, Lisa; Shields, Christopher B

    2018-06-01

    After experiencing growth in a neuroscience service line, nurse leaders identified a need for increased competencies among clinical staff. This hospital met the need by developing a unique multidisciplinary neuroscience nursing course to improve the clinical competence, confidence, and professional development of bedside nurses.

  12. Conceptions and Misconceptions about Neuroscience in Preschool Teachers: A Study from Argentina

    ERIC Educational Resources Information Center

    Hermida, M. J.; Segretin, M. S.; Soni García, A.; Lipina, S. J.

    2016-01-01

    Background: Teachers' conceptions and misconceptions about neuroscience are crucial in establishing a proper dialogue between neuroscience and education. In recent years, studies in different countries have examined primary and secondary school teachers' conceptions. However, although preschool education has proved its importance to later academic…

  13. Infusing Neuroscience into Teacher Professional Development

    ERIC Educational Resources Information Center

    Dubinsky, Janet M.; Roehrig, Gillian; Varma, Sashank

    2013-01-01

    Bruer advocated connecting neuroscience and education indirectly through the intermediate discipline of psychology. We argue for a parallel route: The neurobiology of learning, and in particular the core concept of "plasticity," have the potential to directly transform teacher preparation and professional development, and ultimately to…

  14. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports, and Inspections § 40.66 Requirements for advance notice of export shipments of...

  15. The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology

    PubMed Central

    Meloni, Maurizio

    2014-01-01

    The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism “memories” of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate. PMID:24904353

  16. Early experiences in developing and managing the neuroscience gateway.

    PubMed

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas T

    2015-02-01

    The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway.

  17. Early experiences in developing and managing the neuroscience gateway

    PubMed Central

    Sivagnanam, Subhashini; Majumdar, Amit; Yoshimoto, Kenneth; Astakhov, Vadim; Bandrowski, Anita; Martone, MaryAnn; Carnevale, Nicholas. T.

    2015-01-01

    SUMMARY The last few decades have seen the emergence of computational neuroscience as a mature field where researchers are interested in modeling complex and large neuronal systems and require access to high performance computing machines and associated cyber infrastructure to manage computational workflow and data. The neuronal simulation tools, used in this research field, are also implemented for parallel computers and suitable for high performance computing machines. But using these tools on complex high performance computing machines remains a challenge because of issues with acquiring computer time on these machines located at national supercomputer centers, dealing with complex user interface of these machines, dealing with data management and retrieval. The Neuroscience Gateway is being developed to alleviate and/or hide these barriers to entry for computational neuroscientists. It hides or eliminates, from the point of view of the users, all the administrative and technical barriers and makes parallel neuronal simulation tools easily available and accessible on complex high performance computing machines. It handles the running of jobs and data management and retrieval. This paper shares the early experiences in bringing up this gateway and describes the software architecture it is based on, how it is implemented, and how users can use this for computational neuroscience research using high performance computing at the back end. We also look at parallel scaling of some publicly available neuronal models and analyze the recent usage data of the neuroscience gateway. PMID:26523124

  18. The journal of undergraduate neuroscience education: history, challenges, and future developments.

    PubMed

    Dunbar, Gary L; Lom, Barbara; Grisham, William; Ramirez, Julio J

    2009-01-01

    The 'JUNE and You' sessions presented at the July 2008 Undergraduate Neuroscience Education workshop, sponsored jointly by Faculty for Undergraduate Neuroscience (FUN) and Project Kaleidoscope (PKAL), featured background information about the history and mission of the Journal of Undergraduate Neuroscience Education (JUNE), followed by an informative discussion about the challenges facing JUNE, including new ideas for future developments. This article will highlight some of the information and ideas generated and shared at this conference. Critical discussion points included the need to keep members of FUN actively engaged in submitting and reviewing articles for JUNE. Ways in which authors, reviewers, and interested faculty members could best help in promoting the mission and vision of JUNE were discussed. Concerns about recent hackings into the JUNE website were also raised, and possible solutions and measures that can be taken to minimize this in the future were discussed. In addition, ideas for expanding the role of JUNE to provide a forum to evaluate new and emerging website information that is pertinent to undergraduate neuroscience education was discussed. Ideas for future developments of JUNE included revolving postings of articles as they are accepted, providing links to several related websites, and allowing updates for articles that have been previously published in JUNE. Finally, ideas for maintaining and expanding JUNE's stature as the resource for undergraduate neuroscience education included ensuring that JUNE is listed on important search vehicles, such as PubMed.

  19. Taking an educational psychology course improves neuroscience literacy but does not reduce belief in neuromyths

    PubMed Central

    Cho, Joo-Yun; Dubinsky, Janet M.

    2018-01-01

    Educators are increasingly interested in applying neuroscience findings to improve educational practice. However, their understanding of the brain often lags behind their enthusiasm for the brain. We propose that educational psychology can serve as a bridge between basic research in neuroscience and psychology on one hand and educational practice on the other. We evaluated whether taking an educational psychology course is associated with increased neuroscience literacy and reduced belief in neuromyths in a sample of South Korean pre-service teachers. The results showed that taking an educational psychology course was associated with the increased neuroscience literacy, but there was no impact on belief in neuromyths. We consider the implications of these and other findings of the study for redesigning educational psychology courses and textbooks for improving neuroscience literacy. PMID:29401508

  20. Taking an educational psychology course improves neuroscience literacy but does not reduce belief in neuromyths.

    PubMed

    Im, Soo-Hyun; Cho, Joo-Yun; Dubinsky, Janet M; Varma, Sashank

    2018-01-01

    Educators are increasingly interested in applying neuroscience findings to improve educational practice. However, their understanding of the brain often lags behind their enthusiasm for the brain. We propose that educational psychology can serve as a bridge between basic research in neuroscience and psychology on one hand and educational practice on the other. We evaluated whether taking an educational psychology course is associated with increased neuroscience literacy and reduced belief in neuromyths in a sample of South Korean pre-service teachers. The results showed that taking an educational psychology course was associated with the increased neuroscience literacy, but there was no impact on belief in neuromyths. We consider the implications of these and other findings of the study for redesigning educational psychology courses and textbooks for improving neuroscience literacy.

  1. Review of Research: Neuroscience and Reading--A Review for Reading Education Researchers

    ERIC Educational Resources Information Center

    Hruby, George G.; Goswami, Usha

    2011-01-01

    In this review, we lay the groundwork for an interdisciplinary conversation between literacy education research and relevant neuroscience research. We review recent neuroscience research on correlates of proposed cognitive subprocesses in text decoding and reading comprehension and analyze some of the methodological and conceptual challenges of…

  2. Coherence, causation, and the future of cognitive neuroscience research.

    PubMed

    Ramey, Christopher H; Chrysikou, Evangelia G

    2014-01-01

    Nachev and Hacker's conceptual analysis of the neural antecedents of voluntary action underscores the real danger of ignoring the meta-theoretical apparatus of cognitive neuroscience research. In this response, we temper certain claims (e.g., whether or not certain research questions are incoherent), consider a more extreme consequence of their argument against cognitive neuroscience (i.e., whether or not one can speak about causation with neural antecedents at all), and, finally, highlight recent methodological developments that exemplify cognitive neuroscientists' focus on studying the brain as a parallel, dynamic, and highly complex biological system.

  3. Brainhack: a collaborative workshop for the open neuroscience community.

    PubMed

    Cameron Craddock, R; S Margulies, Daniel; Bellec, Pierre; Nolan Nichols, B; Alcauter, Sarael; A Barrios, Fernando; Burnod, Yves; J Cannistraci, Christopher; Cohen-Adad, Julien; De Leener, Benjamin; Dery, Sebastien; Downar, Jonathan; Dunlop, Katharine; R Franco, Alexandre; Seligman Froehlich, Caroline; J Gerber, Andrew; S Ghosh, Satrajit; J Grabowski, Thomas; Hill, Sean; Sólon Heinsfeld, Anibal; Matthew Hutchison, R; Kundu, Prantik; R Laird, Angela; Liew, Sook-Lei; J Lurie, Daniel; G McLaren, Donald; Meneguzzi, Felipe; Mennes, Maarten; Mesmoudi, Salma; O'Connor, David; H Pasaye, Erick; Peltier, Scott; Poline, Jean-Baptiste; Prasad, Gautam; Fraga Pereira, Ramon; Quirion, Pierre-Olivier; Rokem, Ariel; S Saad, Ziad; Shi, Yonggang; C Strother, Stephen; Toro, Roberto; Q Uddin, Lucina; D Van Horn, John; W Van Meter, John; C Welsh, Robert; Xu, Ting

    2016-01-01

    Brainhack events offer a novel workshop format with participant-generated content that caters to the rapidly growing open neuroscience community. Including components from hackathons and unconferences, as well as parallel educational sessions, Brainhack fosters novel collaborations around the interests of its attendees. Here we provide an overview of its structure, past events, and example projects. Additionally, we outline current innovations such as regional events and post-conference publications. Through introducing Brainhack to the wider neuroscience community, we hope to provide a unique conference format that promotes the features of collaborative, open science.

  4. Sensitivity, Specificity, and Receiver Operating Characteristics: A Primer for Neuroscience Nurses.

    PubMed

    McNett, Molly; Amato, Shelly; Olson, DaiWai M

    2017-04-01

    It is important for neuroscience nurses to have a solid understanding of the instruments they use in clinical practice. Specifically, when reviewing reports of research instruments, nurses should be knowledgeable of analytical terms when determining the applicability of instruments for use in clinical practice. The purpose of this article is to review 3 such analytical terms: sensitivity, specificity, and receiver operating characteristic curves. Examples of how these terms are used in the neuroscience literature highlight the relevance of these terms to neuroscience nursing practice. As the role of the nurse continues to expand, it is important not to simply accept all instruments as valid but to be able to critically evaluate their properties for applicability to nursing practice and evidence-based care of our patients.

  5. Big behavioral data: psychology, ethology and the foundations of neuroscience.

    PubMed

    Gomez-Marin, Alex; Paton, Joseph J; Kampff, Adam R; Costa, Rui M; Mainen, Zachary F

    2014-11-01

    Behavior is a unifying organismal process where genes, neural function, anatomy and environment converge and interrelate. Here we review the current state and discuss the future effect of accelerating advances in technology for behavioral studies, focusing on rodents as an example. We frame our perspective in three dimensions: the degree of experimental constraint, dimensionality of data and level of description. We argue that 'big behavioral data' presents challenges proportionate to its promise and describe how these challenges might be met through opportunities afforded by the two rival conceptual legacies of twentieth century behavioral science, ethology and psychology. We conclude that, although 'more is not necessarily better', copious, quantitative and open behavioral data has the potential to transform and unify these two disciplines and to solidify the foundations of others, including neuroscience, but only if the development of new theoretical frameworks and improved experimental designs matches the technological progress.

  6. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    PubMed

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The Interface between Neuroscience and Neuro-Psychoanalysis: Focus on Brain Connectivity

    PubMed Central

    Salone, Anatolia; Di Giacinto, Alessandra; Lai, Carlo; De Berardis, Domenico; Iasevoli, Felice; Fornaro, Michele; De Risio, Luisa; Santacroce, Rita; Martinotti, Giovanni; Giannantonio, Massimo Di

    2016-01-01

    Over the past 20 years, the advent of advanced techniques has significantly enhanced our knowledge on the brain. Yet, our understanding of the physiological and pathological functioning of the mind is still far from being exhaustive. Both the localizationist and the reductionist neuroscientific approaches to psychiatric disorders have proven to be largely unsatisfactory and are outdated. Accruing evidence suggests that psychoanalysis can engage the neurosciences in a productive and mutually enriching dialogue that may further our understanding of psychiatric disorders. In particular, advances in brain connectivity research have provided evidence supporting the convergence of neuroscientific findings and psychoanalysis and helped characterize the circuitry and mechanisms that underlie higher brain functions. In the present paper we discuss how knowledge on brain connectivity can impact neuropsychoanalysis, with a particular focus on schizophrenia. Brain connectivity studies in schizophrenic patients indicate complex alterations in brain functioning and circuitry, with particular emphasis on the role of cortical midline structures (CMS) and the default mode network (DMN). These networks seem to represent neural correlates of psychodynamic concepts central to the understanding of schizophrenia and of core psychopathological alterations of this disorder (i.e., ego disturbances and impaired primary process thinking). PMID:26869904

  8. Using invertebrate model organisms for neuroscience research and training: an opportunity for Africa.

    PubMed

    Balogun, Wasiu Gbolahan; Cobham, Ansa Emmanuel; Amin, Abdulbasit; Seeni, Azman

    2018-05-24

    Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.

  9. Humans, brains, and their environment: marriage between neuroscience and anthropology?

    PubMed

    Northoff, Georg

    2010-03-25

    How do we define ourselves as humans and interact with our various environments? Recently, neuroscience has extended into other disciplines in the humanities and social sciences, questioning the existence of distinct disciplines like anthropology, which describes the relationship between humans and their various environments. However, rather than being incorporated into neuroscience, anthropology may be considered complementary, and a marriage of the two disciplines can provide deep insight into these fundamental questions. (c) 2010 Elsevier Inc. All rights reserved.

  10. CSP- 5th Champalimaud Neuroscience Symposium

    DTIC Science & Technology

    2017-03-20

    combination of circuit neuroscience and state of the art genomic engineering approaches such as CRISPR are likely to lead to a new wave of exciting...USA presented the power of zebrafish for developing novel technologies. He showed · ho creative the use of genome engineering methods based on CRISPR

  11. Foundationalism and Neuroscience; Silence and Language

    ERIC Educational Resources Information Center

    Keestra, Machiel; Cowley, Stephen J.

    2009-01-01

    Neuroscience offers more than new empirical evidence about the details of cognitive functions such as language, perception and action. Since it also shows many functions to be highly distributed, interconnected and dependent on mechanisms at different levels of processing, it challenges concepts that are traditionally used to describe these…

  12. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale

    PubMed Central

    Bird, Mark D.; Frydman, Lucio; Long, Joanna R.; Mareci, Thomas H.; Rooney, William D.; Rosen, Bruce; Schenck, John F.; Schepkin, Victor D.; Sherry, A. Dean; Sodickson, Daniel K.; Springer, Charles S.; Thulborn, Keith R.; Uğurbil, Kamil; Wald, Lawrence L.

    2017-01-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond. PMID:27194154

  13. How does our brain constitute defense mechanisms? First-person neuroscience and psychoanalysis.

    PubMed

    Northoff, Georg; Bermpohl, Felix; Schoeneich, Frank; Boeker, Heinz

    2007-01-01

    Current progress in the cognitive and affective neurosciences is constantly influencing the development of psychoanalytic theory and practice. However, despite the emerging dialogue between neuroscience and psychoanalysis, the neuronal processes underlying psychoanalytic constructs such as defense mechanisms remain unclear. One of the main problems in investigating the psychodynamic-neuronal relationship consists in systematically linking the individual contents of first-person subjective experience to third-person observation of neuronal states. We therefore introduced an appropriate methodological strategy, 'first-person neuroscience', which aims at developing methods for systematically linking first- and third-person data. The utility of first-person neuroscience can be demonstrated by the example of the defense mechanism of sensorimotor regression as paradigmatically observed in catatonia. Combined psychodynamic and imaging studies suggest that sensorimotor regression might be associated with dysfunction in the neural network including the orbitofrontal, the medial prefrontal and the premotor cortices. In general sensorimotor regression and other defense mechanisms are psychoanalytic constructs that are hypothesized to be complex emotional-cognitive constellations. In this paper we suggest that specific functional mechanisms which integrate neuronal activity across several brain regions (i.e. neuronal integration) are the physiological substrates of defense mechanisms. We conclude that first-person neuroscience could be an appropriate methodological strategy for opening the door to a better understanding of the neuronal processes of defense mechanisms and their modulation in psychoanalytic psychotherapy. Copyright 2007 S. Karger AG, Basel.

  14. Conference report: the Nour Foundation Georgetown University & Blackfriars Hall,Oxford University Symposium Series Technology, Neuroscience & the Nature of Being: Considerations of Meaning, Morality and Transcendence part I: The Paradox of Neurotechnology 8 May 2009.

    PubMed

    Palchik, Guillermo

    2009-07-17

    This reviews the first of a tripartite symposia series dealing with novel neuroscientific technologies, the nature of consciousness and being, and the questions that arise from such interactions. The event took place on May 8 2009, at Georgetown University, and brought together ten leading figures on fields ranging from Neuroscience and Robotics to Philosophy, that commented on their research and provided ethical, moral and practical insight and perspectives into how these technologies can shape the future of neuroscientific and human development, as well as denoting the potential abuses and the best way to proceed about them.

  15. Two-Person Neuroscience and Naturalistic Social Communication: The Role of Language and Linguistic Variables in Brain-Coupling Research

    PubMed Central

    García, Adolfo M.; Ibáñez, Agustín

    2014-01-01

    Social cognitive neuroscience (SCN) seeks to understand the brain mechanisms through which we comprehend others’ emotions and intentions in order to react accordingly. For decades, SCN has explored relevant domains by exposing individual participants to predesigned stimuli and asking them to judge their social (e.g., emotional) content. Subjects are thus reduced to detached observers of situations that they play no active role in. However, the core of our social experience is construed through real-time interactions requiring the active negotiation of information with other people. To gain more relevant insights into the workings of the social brain, the incipient field of two-person neuroscience (2PN) advocates the study of brain-to-brain coupling through multi-participant experiments. In this paper, we argue that the study of online language-based communication constitutes a cornerstone of 2PN. First, we review preliminary evidence illustrating how verbal interaction may shed light on the social brain. Second, we advance methodological recommendations to design experiments within language-based 2PN. Finally, we formulate outstanding questions for future research. PMID:25249986

  16. [Neuropathology in the neurosciences. A system in transition].

    PubMed

    Seitelberger, F

    1993-08-01

    Neuropathology (Np) is a full member of the neurosciences. As a basic neuroscience it is directed to the behaviour of nervous tissues under pathogenic conditions. The theoretical and methodical core of Np concerns the morphological features of pathological disorders and processes of the nervous system. The goal of Np data presentation is an objective description of the structural changes; their time course as processes, and if possible their causal constellations. Complementary to this analytical task is that of reconstructing the pathological process and at a higher level the conception of pathomorphological entities, e.g. as syndromes. Clinical Np is an alliance of Np with neurology, psychiatry and neurosurgery for representing the structural basis of diseases and the role of morphology in diagnosis and clinical management. Prerequisite for the proper functioning of Np is an integration with these other specialist fields. The clinical neuropathologist therefore has to be in certain respects also a neurologist. The same is true of the alliances of Np with other neurosciences, which is already reflected in recent neuropathological methodology. Detailed training programs are necessary for clinical Np, covering all aspects of its medical and social implications. Enough options should be offered for horizontal flexibility of curricula, futherance of secondary special training and support of good unconventional approaches by junior scientists.

  17. Physical activity as a model for health neuroscience.

    PubMed

    Stillman, Chelsea M; Erickson, Kirk I

    2018-05-06

    Health neuroscience is a new interdisciplinary field that combines theories and techniques from health psychology and cognitive and social-affective neuroscience in order to understand how the brain affects and is affected by health behaviors. Physical activity (PA) research can serve as a useful model for various ways in which the brain can be incorporated into health neuroscience studies to better understand variability in the adoption and maintenance of, as well as benefits gained from, health behaviors. Here, we summarize evidence linking PA to brain and cognitive performance from studies conceptualizing the brain as either an outcome or mediator of cognitive change. We then discuss an emerging body of studies using a brain as a predictor approach. We discuss how studies using this approach complement existing PA studies and provide insight into a major source of variability in the outcomes of PA interventions, above and beyond the variability accounted for by known biological and demographic moderators. A more complete understanding of the bidirectional relationships between brain and behaviors, such as PA, could provide valuable insight into how to tailor interventions to optimally affect individuals, identify key barriers, and inform the development of novel policies to promote public health. © 2018 New York Academy of Sciences.

  18. Foundation for practice. Neuroassessment for neuroscience nurses.

    PubMed

    Neatherlin, J S

    1999-09-01

    Neuroassessment is the basis for clinical reasoning and nursing interventions in the neuroscience patient. This article discusses various types of assessment tools, and provides practical tips to help the nurse conduct a neurological exam and interpret the findings.

  19. Critical neuroscience—or critical science? A perspective on the perceived normative significance of neuroscience

    PubMed Central

    Schleim, Stephan

    2014-01-01

    Members of the Critical Neuroscience initiative raised the question whether the perceived normative significance of neuroscience is justified by the discipline’s actual possibilities. In this paper I show how brain research was assigned the ultimate political, social, and moral authority by some leading researchers who suggested that neuroscientists should change their research priorities, promising solutions to social challenges in order to increase research funds. Discussing the two examples of cognitive enhancement and the neuroscience of (im)moral behavior I argue that there is indeed a gap between promises and expectations on the one hand and knowledge and applications on the other. However it would be premature to generalize this to the neurosciences at large, whose knowledge-producing, innovative, and economic potentials have just recently been confirmed by political and scientific decision-makers with the financial support for the Human Brain Project and the BRAIN Initiative. Finally, I discuss two explanations for the analyzed communication patterns and argue why Critical Neuroscience is necessary, but not sufficient. A more general Critical Science movement is required to improve the scientific incentive system. PMID:24904376

  20. Embedding a Recovery Orientation into Neuroscience Research: Involving People with a Lived Experience in Research Activity.

    PubMed

    Stratford, Anthony; Brophy, Lisa; Castle, David; Harvey, Carol; Robertson, Joanne; Corlett, Philip; Davidson, Larry; Everall, Ian

    2016-03-01

    This paper highlights the importance and value of involving people with a lived experience of mental ill health and recovery in neuroscience research activity. In this era of recovery oriented service delivery, involving people with the lived experience of mental illness in neuroscience research extends beyond their participation as "subjects". The recovery paradigm reconceptualises people with the lived experience of mental ill health as experts by experience. To support this contribution, local policies and procedures, recovery-oriented training for neuroscience researchers, and dialogue about the practical applications of neuroscience research, are required.

  1. Systems Neuroscience of Psychosis: Mapping Schizophrenia Symptoms onto Brain Systems.

    PubMed

    Strik, Werner; Stegmayer, Katharina; Walther, Sebastian; Dierks, Thomas

    2017-01-01

    Schizophrenia research has been in a deadlock for many decades. Despite important advances in clinical treatment, there are still major concerns regarding long-term psychosocial reintegration and disease management, biological heterogeneity, unsatisfactory predictors of individual course and treatment strategies, and a confusing variety of controversial theories about its etiology and pathophysiological mechanisms. In the present perspective on schizophrenia research, we first discuss a methodological pitfall in contemporary schizophrenia research inherent in the attempt to link mental phenomena with the brain: we claim that the time-honored phenomenological method of defining mental symptoms should not be contaminated with the naturalistic approach of modern neuroscience. We then describe our Systems Neuroscience of Psychosis (SyNoPsis) project, which aims to overcome this intrinsic problem of psychiatric research. Considering schizophrenia primarily as a disorder of interindividual communication, we developed a neurobiologically informed semiotics of psychotic disorders, as well as an operational clinical rating scale. The novel psychopathology allows disentangling the clinical manifestations of schizophrenia into behavioral domains matching the functions of three well-described higher-order corticobasal brain systems involved in interindividual human communication, namely, the limbic, associative, and motor loops, including their corticocortical sensorimotor connections. The results of several empirical studies support the hypothesis that the proposed three-dimensional symptom structure, segregated into the affective, the language, and the motor domain, can be specifically mapped onto structural and functional abnormalities of the respective brain systems. New pathophysiological hypotheses derived from this brain system-oriented approach have helped to develop and improve novel treatment strategies with noninvasive brain stimulation and practicable clinical

  2. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB.

    PubMed

    Nichols, David F

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience.

  3. A Series of Computational Neuroscience Labs Increases Comfort with MATLAB

    PubMed Central

    Nichols, David F.

    2015-01-01

    Computational simulations allow for a low-cost, reliable means to demonstrate complex and often times inaccessible concepts to undergraduates. However, students without prior computer programming training may find working with code-based simulations to be intimidating and distracting. A series of computational neuroscience labs involving the Hodgkin-Huxley equations, an Integrate-and-Fire model, and a Hopfield Memory network were used in an undergraduate neuroscience laboratory component of an introductory level course. Using short focused surveys before and after each lab, student comfort levels were shown to increase drastically from a majority of students being uncomfortable or with neutral feelings about working in the MATLAB environment to a vast majority of students being comfortable working in the environment. Though change was reported within each lab, a series of labs was necessary in order to establish a lasting high level of comfort. Comfort working with code is important as a first step in acquiring computational skills that are required to address many questions within neuroscience. PMID:26557798

  4. A Case Study in the Use of Primary Literature in the Context of Authentic Learning Pedagogy in the Undergraduate Neuroscience Classroom

    PubMed Central

    O’Keeffe, Gerard W.; McCarthy, Marian M.

    2017-01-01

    Providing opportunities for undergraduate science students to develop causal reasoning skills and the ability to think like research scientists is a crucial part of their preparation for professional practice as a scientist and/or a clinician. This has led many to question whether the traditional academic in-class lecture still has a functional role in today’s undergraduate science education. Here, we performed a case study to attempt to maximize the use of in-class time to create a more authentic learning opportunity for undergraduate neuroscience students in our institution, the majority of whom go on to be research active scientists. We hypothesised that using seminal research papers as a teaching tool in a flipped classroom setting would model for neuroscience students what it means to think like a research scientist, would provide an opportunity for them to develop their causal reasoning skills and allow them to become more comfortable with the nature of professional practice (i.e., research) in the context of the discipline. We describe the design and implementation of this teaching approach to undergraduate final year neuroscience students, and evaluate their perception of it. We provide evidence that this approach models for the students what it means to reason like a research scientist, and discuss the implications of these findings for future practice. We propose that these findings will help add to the educational experience of all Neuroscience students whether they are on pre-med or on a research track. PMID:29371836

  5. A Case Study in the Use of Primary Literature in the Context of Authentic Learning Pedagogy in the Undergraduate Neuroscience Classroom.

    PubMed

    O'Keeffe, Gerard W; McCarthy, Marian M

    2017-01-01

    Providing opportunities for undergraduate science students to develop causal reasoning skills and the ability to think like research scientists is a crucial part of their preparation for professional practice as a scientist and/or a clinician. This has led many to question whether the traditional academic in-class lecture still has a functional role in today's undergraduate science education. Here, we performed a case study to attempt to maximize the use of in-class time to create a more authentic learning opportunity for undergraduate neuroscience students in our institution, the majority of whom go on to be research active scientists. We hypothesised that using seminal research papers as a teaching tool in a flipped classroom setting would model for neuroscience students what it means to think like a research scientist, would provide an opportunity for them to develop their causal reasoning skills and allow them to become more comfortable with the nature of professional practice (i.e., research) in the context of the discipline. We describe the design and implementation of this teaching approach to undergraduate final year neuroscience students, and evaluate their perception of it. We provide evidence that this approach models for the students what it means to reason like a research scientist, and discuss the implications of these findings for future practice. We propose that these findings will help add to the educational experience of all Neuroscience students whether they are on pre-med or on a research track.

  6. Educational Neuroscience: What Can We Learn?

    ERIC Educational Resources Information Center

    Bell, Derek

    2014-01-01

    There has been a marked increase in interest, research, and publications exploring ways in which educational practices might be influenced by neuroscience. The idea that a greater understanding of how the brain works can improve teaching and learning is very seductive, but what can teachers and other professionals working in education learn from…

  7. Enactive neuroscience, the direct perception hypothesis, and the socially extended mind.

    PubMed

    Froese, Tom

    2015-01-01

    Pessoa's The Cognitive-Emotional Brain (2013) is an integrative approach to neuroscience that complements other developments in cognitive science, especially enactivism. Both accept complexity as essential to mind; both tightly integrate perception, cognition, and emotion, which enactivism unifies in its foundational concept of sense-making; and both emphasize that the spatial extension of mental processes is not reducible to specific brain regions and neuroanatomical connectivity. An enactive neuroscience is emerging.

  8. The Global Challenge in Neuroscience Education and Training: The MBL Perspective.

    PubMed

    Nishi, Rae; Castañeda, Edward; Davis, Graeme W; Fenton, André A; Hofmann, Hans A; King, Jean; Ryan, Timothy A; Trujillo, Keith A

    2016-11-02

    The greatest challenge in moving neuroscience research forward in the 21st century is recruiting, training, and retaining the brightest, rigorous, and most diverse scientists. The MBL research training courses Neurobiology and Neural Systems & Behavior, and the Summer Program in Neuroscience, Excellence, and Success provide a model for full immersion, discovery-based training while enhancing cultural, geographic, and racial diversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Teaching with Big Data: Report from the 2016 Society for Neuroscience Teaching Workshop

    PubMed Central

    Grisham, William; Brumberg, Joshua C.; Gilbert, Terri; Lanyon, Linda; Williams, Robert W.; Olivo, Richard

    2017-01-01

    As part of a series of workshops on teaching neuroscience at the Society for Neuroscience annual meetings, William Grisham and Richard Olivo organized the 2016 workshop on “Teaching Neuroscience with Big Data.” This article presents a summary of that workshop. Speakers provided overviews of open datasets that could be used in teaching undergraduate courses. These included resources that already appear in educational settings, including the Allen Brain Atlas (presented by Joshua Brumberg and Terri Gilbert), and the Mouse Brain Library and GeneNetwork (presented by Robert Williams). Other resources, such as NeuroData (presented by William R. Gray Roncal), and OpenFMRI, NeuroVault, and Neurosynth (presented by Russell Poldrack) have not been broadly utilized by the neuroscience education community but offer obvious potential. Finally, William Grisham discussed the iNeuro Project, an NSF-sponsored effort to develop the necessary curriculum for preparing students to handle Big Data. Linda Lanyon further elaborated on the current state and challenges in educating students to deal with Big Data and described some training resources provided by the International Neuroinformatics Coordinating Facility. Neuroinformatics is a subfield of neuroscience that deals with data utilizing analytical tools and computational models. The feasibility of offering neuroinformatics programs at primarily undergraduate institutions was also discussed. PMID:29371844

  10. Teaching with Big Data: Report from the 2016 Society for Neuroscience Teaching Workshop.

    PubMed

    Grisham, William; Brumberg, Joshua C; Gilbert, Terri; Lanyon, Linda; Williams, Robert W; Olivo, Richard

    2017-01-01

    As part of a series of workshops on teaching neuroscience at the Society for Neuroscience annual meetings, William Grisham and Richard Olivo organized the 2016 workshop on "Teaching Neuroscience with Big Data." This article presents a summary of that workshop. Speakers provided overviews of open datasets that could be used in teaching undergraduate courses. These included resources that already appear in educational settings, including the Allen Brain Atlas (presented by Joshua Brumberg and Terri Gilbert), and the Mouse Brain Library and GeneNetwork (presented by Robert Williams). Other resources, such as NeuroData (presented by William R. Gray Roncal), and OpenFMRI, NeuroVault, and Neurosynth (presented by Russell Poldrack) have not been broadly utilized by the neuroscience education community but offer obvious potential. Finally, William Grisham discussed the iNeuro Project, an NSF-sponsored effort to develop the necessary curriculum for preparing students to handle Big Data. Linda Lanyon further elaborated on the current state and challenges in educating students to deal with Big Data and described some training resources provided by the International Neuroinformatics Coordinating Facility. Neuroinformatics is a subfield of neuroscience that deals with data utilizing analytical tools and computational models. The feasibility of offering neuroinformatics programs at primarily undergraduate institutions was also discussed.

  11. Details for Manuscript Number: SSM-D-09-00651 R2 “Contemporary neuroscience in the media”

    PubMed Central

    Racine, Eric; Waldman, Sarah; Rosenberg, Jarett; Illes, Judy

    2010-01-01

    Technological innovations in neuroscience have opened new windows to the understanding of brain function and the neuronal underpinnings of brain activity in neuropsychiatric disorders and social behavior. Public interest and support for neuroscience research through initiatives like the Decade of the Brain project and increasingly diverse brain-related initiatives have created new interfaces between neuroscience and society. Against this backdrop of dynamic innovation, we set out to examine how different features of neuroscience are depicted in print media. We used the ‘guided news’ function of the LexisNexis Academic database with keyword searches to find news articles published between 1995 and 2004 in major U.S. and U.K. English-language news sources. We performed searches on headlines, lead paragraphs, and body terms to maximize search yields. All articles were coded for overall tone of coverage, details on reported studies, presence of ethical, legal, and social discussion as well as the emerging interpretations of neuroscience – in the form of neuro-essentialism, neuro-realism, and neuro-policy. We found that print media coverage of the use of neurotechnology for diagnosis or therapy in neuropsychiatric disorders was generally optimistic. We also found that, even within articles that were identified as research reports, many did not provide details about research studies. We also gained additional insights into the previously identified phenomena of neuro-essentialism, neuro-realism, and neuro-policy showing some profound impacts of neuroscience on personal identity and policy-making. Our results highlight the implications of transfer of neuroscience knowledge to society given the substantial and authoritative weight ascribed to neuroscience knowledge in defining who we are. We also discuss the impact of these findings on neuroscience and on the respective contributions of the social sciences and the biological sciences in contemporary psychiatry and

  12. Biochemistry and neuroscience: the twain need to meet.

    PubMed

    Kennedy, Mary B

    2017-04-01

    Neuroscience has come to mean the study of electrophysiology of neurons and synapses, micro and macro-scale neuroanatomy, and the functional organization of brain areas. The molecular axis of the field, as reflected in textbooks, often includes only descriptions of the structure and function of individual channels and receptor proteins, and the extracellular signals that guide development and repair. Studies of cytosolic 'molecular machines', large assemblies of proteins that orchestrate regulation of neuronal functions, have been neglected. However, a complete understanding of brain function that will enable new strategies for treatment of the most intractable neural disorders will require that in vitro biochemical studies of molecular machines be reintegrated into the field of neuroscience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Statistical Learning Analysis in Neuroscience: Aiming for Transparency

    PubMed Central

    Hanke, Michael; Halchenko, Yaroslav O.; Haxby, James V.; Pollmann, Stefan

    2009-01-01

    Encouraged by a rise of reciprocal interest between the machine learning and neuroscience communities, several recent studies have demonstrated the explanatory power of statistical learning techniques for the analysis of neural data. In order to facilitate a wider adoption of these methods, neuroscientific research needs to ensure a maximum of transparency to allow for comprehensive evaluation of the employed procedures. We argue that such transparency requires “neuroscience-aware” technology for the performance of multivariate pattern analyses of neural data that can be documented in a comprehensive, yet comprehensible way. Recently, we introduced PyMVPA, a specialized Python framework for machine learning based data analysis that addresses this demand. Here, we review its features and applicability to various neural data modalities. PMID:20582270

  14. Theory and method at the intersection of anthropology and cultural neuroscience

    PubMed Central

    Brown, Ryan A.

    2010-01-01

    Anthropologists have become increasingly interested in embodiment—that is, the ways that socio-cultural factors influence the form, behavior and subjective experience of human bodies. At the same time, social cognitive neuroscience has begun to reveal the mechanisms of embodiment by investigating the neural underpinnings and consequences of social experience. Despite this overlap, the two fields have barely engaged one another. We suggest three interconnected domains of inquiry in which the intersection of neuroscience and anthropology can productively inform our understanding of the relationship between human brains and their socio-cultural contexts. These are: the social construction of emotion, cultural psychiatry, and the embodiment of ritual. We build on both current research findings in cultural neuroscience and ethnographic data on cultural differences in thought and behavior, to generate novel, ecologically informed hypotheses for future study. In addition, we lay out a specific suggestion for operationalizing insights from anthropology in the context of cultural neuroscience research. Specifically, we advocate the development of field studies that use portable measurement technologies to connect individual patterns of biological response with socio-cultural processes. We illustrate the potential of such an approach with data from a study of psychophysiology and religious devotion in Northeastern Brazil. PMID:19965815

  15. Problems and Progress regarding Sex Bias and Omission in Neuroscience Research

    PubMed Central

    Will, Tyler R.; Proaño, Stephanie B.; Thomas, Anly M.; Kunz, Lindsey M.; Thompson, Kelly C.; Ginnari, Laura A.; Jones, Clay H.; Lucas, Sarah-Catherine; Reavis, Elizabeth M.

    2017-01-01

    Neuroscience research has historically ignored female animals. This neglect comes in two general forms. The first is sex bias, defined as favoring one sex over another; in this case, male over female. The second is sex omission, which is the lack of reporting sex. The recognition of this phenomenon has generated fierce debate across the sciences. Here we test whether sex bias and omission are still present in the neuroscience literature, whether studies employing both males and females neglect sex as an experimental variable, and whether sex bias and omission differs between animal models and journals. To accomplish this, we analyzed the largest-ever number of neuroscience articles for sex bias and omission: 6636 articles using mice or rats in 6 journals published from 2010 to 2014. Sex omission is declining, as increasing numbers of articles report sex. Sex bias remains present, as increasing numbers of articles report the sole use of males. Articles using both males and females are also increasing, but few report assessing sex as an experimental variable. Sex bias and omission varies substantially by animal model and journal. These findings are essential for understanding the complex status of sex bias and omission in neuroscience research and may inform effective decisions regarding policy action. PMID:29134192

  16. Theory and method at the intersection of anthropology and cultural neuroscience.

    PubMed

    Seligman, Rebecca; Brown, Ryan A

    2010-06-01

    Anthropologists have become increasingly interested in embodiment-that is, the ways that socio-cultural factors influence the form, behavior and subjective experience of human bodies. At the same time, social cognitive neuroscience has begun to reveal the mechanisms of embodiment by investigating the neural underpinnings and consequences of social experience. Despite this overlap, the two fields have barely engaged one another. We suggest three interconnected domains of inquiry in which the intersection of neuroscience and anthropology can productively inform our understanding of the relationship between human brains and their socio-cultural contexts. These are: the social construction of emotion, cultural psychiatry, and the embodiment of ritual. We build on both current research findings in cultural neuroscience and ethnographic data on cultural differences in thought and behavior, to generate novel, ecologically informed hypotheses for future study. In addition, we lay out a specific suggestion for operationalizing insights from anthropology in the context of cultural neuroscience research. Specifically, we advocate the development of field studies that use portable measurement technologies to connect individual patterns of biological response with socio-cultural processes. We illustrate the potential of such an approach with data from a study of psychophysiology and religious devotion in Northeastern Brazil.

  17. Neurotree: a collaborative, graphical database of the academic genealogy of neuroscience.

    PubMed

    David, Stephen V; Hayden, Benjamin Y

    2012-01-01

    Neurotree is an online database that documents the lineage of academic mentorship in neuroscience. Modeled on the tree format typically used to describe biological genealogies, the Neurotree web site provides a concise summary of the intellectual history of neuroscience and relationships between individuals in the current neuroscience community. The contents of the database are entirely crowd-sourced: any internet user can add information about researchers and the connections between them. As of July 2012, Neurotree has collected information from 10,000 users about 35,000 researchers and 50,000 mentor relationships, and continues to grow. The present report serves to highlight the utility of Neurotree as a resource for academic research and to summarize some basic analysis of its data. The tree structure of the database permits a variety of graphical analyses. We find that the connectivity and graphical distance between researchers entered into Neurotree early has stabilized and thus appears to be mostly complete. The connectivity of more recent entries continues to mature. A ranking of researcher fecundity based on their mentorship reveals a sustained period of influential researchers from 1850-1950, with the most influential individuals active at the later end of that period. Finally, a clustering analysis reveals that some subfields of neuroscience are reflected in tightly interconnected mentor-trainee groups.

  18. The Neuroscience of Mathematical Cognition and Learning. OECD Education Working Papers, No. 136

    ERIC Educational Resources Information Center

    Looi, Chung Yen; Thompson, Jacqueline; Krause, Beatrix; Kadosh, Roi Cohen

    2016-01-01

    The synergistic potential of cognitive neuroscience and education for efficient learning has attracted considerable interest from the general public, teachers, parents, academics and policymakers alike. This review is aimed at providing 1) an accessible and general overview of the research progress made in cognitive neuroscience research in…

  19. A competency-based longitudinal core curriculum in medical neuroscience.

    PubMed

    Merlin, Lisa R; Horak, Holli A; Milligan, Tracey A; Kraakevik, Jeff A; Ali, Imran I

    2014-07-29

    Current medical educational theory encourages the development of competency-based curricula. The Accreditation Council for Graduate Medical Education's 6 core competencies for resident education (medical knowledge, patient care, professionalism, interpersonal and communication skills, practice-based learning, and systems-based practice) have been embraced by medical schools as the building blocks necessary for becoming a competent licensed physician. Many medical schools are therefore changing their educational approach to an integrated model in which students demonstrate incremental acquisition and mastery of all competencies as they progress through medical school. Challenges to medical schools include integration of preclinical and clinical studies as well as development of learning objectives and assessment measures for each competency. The Undergraduate Education Subcommittee (UES) of the American Academy of Neurology (AAN) assembled a group of neuroscience educators to outline a longitudinal competency-based curriculum in medical neuroscience encompassing both preclinical and clinical coursework. In development of this curriculum, the committee reviewed United States Medical Licensing Examination content outlines, Liaison Committee on Medical Education requirements, prior AAN-mandated core curricula for basic neuroscience and clinical neurology, and survey responses from educators in US medical schools. The newly recommended curriculum provides an outline of learning objectives for each of the 6 competencies, listing each learning objective in active terms. Documentation of experiences is emphasized, and assessment measures are suggested to demonstrate adequate achievement in each competency. These guidelines, widely vetted and approved by the UES membership, aspire to be both useful as a stand-alone curriculum and also provide a framework for neuroscience educators who wish to develop a more detailed focus in certain areas of study. © 2014 American Academy

  20. Integrating neuroscience in the training of psychiatrists: a patient-centered didactic curriculum based on adult learning principles.

    PubMed

    Ross, David A; Rohrbaugh, Robert

    2014-04-01

    The authors describe the development and implementation of a new adult psychiatry residency didactic curriculum based on adult learning principles and an integrative, patient-centered approach that includes a progressive 4-year neuroscience curriculum. The authors describe the process of conducting a needs assessment, engaging stakeholders and developing guiding principles for the new curriculum. The curriculum was evaluated using qualitative measures, a resident survey, course evaluations, and a pilot version of a specialized assessment tool. Feedback from the resident survey and from course evaluations was positive, and residents indicated interest in receiving additional training in neuroscience. Residents self-reported not incorporating neuroscience into formulation and treatment planning as often as other perspectives. They also reported that neuroscience was reinforced less by clinical faculty than other perspectives. Performance on the curriculum assessment corroborated that clinical application of neuroscience may benefit from additional reinforcement. Residents responded well to the design and content of the new didactic curriculum. The neuroscience component appears to have achieved its primary objective of enhancing attitudes to the field. Continued work including enhancing the culture of neuroscience at the clinical sites may be required to achieve broader behavioral goals.