Science.gov

Sample records for nbn infrared detector

  1. nBn Infrared Detector Containing Graded Absorption Layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.

    2009-01-01

    It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.

  2. Room temperature performance of mid-wavelength infrared InAsSb nBn detectors

    SciTech Connect

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Hoglund, Linda; Rosenberg, Robert; Kowalczyk, Robert; Khoshakhlagh, Arezou; Fisher, Anita; Ting, David Z.-Y.; Gunapala, Sarath D.

    2014-07-14

    In this work, we investigate the high temperature performance of mid-wavelength infrared InAsSb-AlAsSb nBn detectors with cut-off wavelengths near 4.5 μm. The quantum efficiency of these devices is 35% without antireflection coatings and does not change with temperature in the 77–325 K temperature range, indicating potential for room temperature operation. The current generation of nBn detectors shows an increase of operational bias with temperature, which is attributed to a shift in the Fermi energy level in the absorber. Analysis of the device performance shows that operational bias and quantum efficiency of these detectors can be further improved. The device dark current stays diffusion limited in the 150 K–325 K temperature range and becomes dominated by generation-recombination processes at lower temperatures. Detector detectivities are D*(λ) = 1 × 10{sup 9} (cm Hz{sup 0.5}/W) at T = 300 K and D*(λ) = 5 × 10{sup 9} (cm Hz{sup 0.5}/W) at T = 250 K, which is easily achievable with a one stage TE cooler.

  3. Theoretical Study of Midwave Infrared HgCdTe nBn Detectors Operating at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Akhavan, Nima Dehdashti; Jolley, Gregory; Umana-Membreno, Gilberto A.; Antoszewski, Jarek; Faraone, Lorenzo

    2015-09-01

    We report a theoretical study of mercury cadmium telluride (HgCdTe) unipolar n-type/barrier/ n-type (nBn) detectors for midwave infrared (MWIR) applications at elevated temperatures. The results obtained indicate that the composition, doping, and thickness of the barrier layer in MWIR HgCdTe nBn detectors can be optimized to yield performance levels comparable with those of ideal HgCdTe p- n photodiodes. It is also shown that introduction of an additional barrier at the back contact layer of the detector structure (nBnn+) leads to substantial suppression of the Auger generation-recombination (GR) mechanism; this results in an order-of-magnitude reduction in the dark current level compared with conventional nBn or p- n junction-based detectors, thus enabling background-limited detector operation above 200 K.

  4. Nanopillar optical antenna nBn detectors for subwavelength infrared pixels

    NASA Astrophysics Data System (ADS)

    Hung, Chung Hong; Senanayake, Pradeep; Lee, Wook-Jae; Farrell, Alan; Hsieh, Nick; Huffaker, Diana L.

    2015-06-01

    The size, weight and power (SWaP) of state of the art infrared focal plane arrays are limited by the pixel size approaching the diffraction limit. We investigate a novel detector architecture which allows improvements in detectivity by shrinking the absorber volume while maintaining high quantum efficiency and wide field of view (FOV). It has been previously shown that the Nanopillar Optical Antenna (NOA) utilizes 3D plasmonic modes to funnel light into a subwavelength nanopillar absorber. We show detailed electro-optical simulations for the NOA-nBn architecture for overcoming generation recombination current with suitable surface passivation to achieve background limited infrared performance.

  5. nBn and pBp infrared detectors with graded barrier layer, graded absorption layer, or chirped strained layer super lattice absorption layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor)

    2010-01-01

    An nBn detector is described where for some embodiments the barrier layer has a concentration gradient, for some embodiments the absorption layer has a concentration gradient, and for some embodiments the absorption layer is a chirped strained layer super lattice. The use of a graded barrier or absorption layer, or the use of a chirped strained layer super lattice for the absorption layer, allows for design of the energy bands so that the valence band may be aligned across the device. Other embodiments are described and claimed.

  6. Gamma-ray irradiation effects on InAs/GaSb-based nBn IR detector

    NASA Astrophysics Data System (ADS)

    Cowan, Vincent M.; Morath, Christian P.; Swift, Seth M.; Myers, Stephen; Gautam, Nutan; Krishna, Sanjay

    2011-01-01

    IR detectors operated in a space environment are subjected to a variety of radiation effects while required to have very low noise performance. When properly passivated, conventional mercury cadmium telluride (MCT)-based infrared detectors have been shown to perform well in space environments. However, the inherent manufacturing difficulties associated with the growth of MCT has resulted in a research thrust into alternative detector technologies, specifically type-II Strained Layer Superlattice (SLS) infrared detectors. Theory predicts that SLS-based detector technologies have the potential of offering several advantages over MCT detectors including lower dark currents and higher operating temperatures. Experimentally, however, it has been found that both p-on-n and n-on-p SLS detectors have larger dark current densities than MCT-based detectors. An emerging detector architecture, complementary to SLS-technology and hence forth referred to here as nBn, mitigates this issue via a uni-polar barrier design which effectively blocks majority carrier conduction thereby reducing dark current to more acceptable levels. Little work has been done to characterize nBn IR detectors tolerance to radiation effects. Here, the effects of gamma-ray radiation on an nBn SLS detector are considered. The nBn IR detector under test was grown by solid source molecular beam epitaxy and is composed of an InAs/GaSb SLS absorber (n) and contact (n) and an AlxGa1-xSb barrier (B). The radiation effects on the detector are characterized by dark current density measurements as a function of bias, device perimeter-to-area ratio and total ionizing dose (TID).

  7. Rise time of voltage pulses in NbN superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Yu. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Yu.

    2016-08-01

    We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

  8. Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.

    2006-01-01

    We report on the fabrication and characterization of high-speed, single photon detectors using superconducting NbN nanowires at a wavelength of 1064 nm. A 15 by 15 micron detector with a detector efficiency of 40% has been measured. Due to kinetic inductance, the recovery time of such large area detectors is longer than that of smaller or single wire detectors. The recovery time of our detectors (50 ns) has been characterized by measuring the inter-arrival time statistics of our detector.

  9. Design and Fabrication of Microwave Kinetic Inductance Detectors using NbN Symmetric Spiral Resonator Array

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Saito, A.; Ogawa, Y.; Murata, M.; Sawada, T.; Nakajima, K.; Yamada, H.; Ariyoshi, S.; Taino, T.; Tanoue, H.; Otani, C.; Ohshima, S.

    2014-05-01

    We designed and fabricated a microwave kinetic inductance detector (MKID) using a niobium nitride (NbN) symmetric spiral resonator array. Previously we revealed that a rewound spiral structure works as not only a high-Q half-wavelength resonator but also as a broadband terahertz antenna. We conducted simulations for a 9 resonator array assuming NbN as the superconducting material and sapphire as the dielectric substrate, and obtained a maximum attenuation of over 30 dB and unloaded quality factors of over 2×105 for frequencies between 4.4 and 4.9 GHz. We fabricated the 9 resonator array MKID using NbN thin film deposited on an m-sapphire substrate by using dc magnetron sputtering. We observed half-wavelength resonances of around 4.5 GHz at 4 K. We measured the optical response of the MKID. The frequency shift was 0.5 MHz when illuminated with 650 nm photons.

  10. A superconducting NbN detector for neutral nanoparticles

    NASA Astrophysics Data System (ADS)

    Marksteiner, Markus; Divochiy, Alexander; Sclafani, Michele; Haslinger, Philipp; Ulbricht, Hendrik; Korneev, Alexander; Semenov, Alexander; Gol'tsman, Gregory; Arndt, Markus

    2009-11-01

    We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.

  11. Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content

    NASA Astrophysics Data System (ADS)

    Henrich, D.; Dörner, S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M.

    2012-10-01

    The spectral detection efficiency and the dark count rate of superconducting nanowire single-photon detectors (SNSPD) have been studied systematically on detectors made from thin NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm thick NbN films results in a decrease of the dark count rates more than two orders of magnitude and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed phenomena are explained by an improvement of uniformity of NbN films that has been confirmed by a decrease of resistivity and an increase of the ratio of the measured critical current to the depairing current. The latter factor is considered as the most crucial for both the cut-off wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria for material properties to optimize SNSPD in the infrared spectral region.

  12. NbN superconducting nanowire single-photon detector fabricated on MgF2 substrate

    NASA Astrophysics Data System (ADS)

    Wu, J. J.; You, L. X.; Zhang, L.; Zhang, W. J.; Li, H.; Liu, X. Y.; Zhou, H.; Wang, Z.; Xie, X. M.; Xu, Y. X.; Fang, W.; Tong, L. M.

    2016-06-01

    The performance of superconducting nanowire single-photon detectors (SNSPDs) relies on substrate materials. Magnesium fluoride (MgF2) exhibits outstanding optical properties, such as large optical transmission range and low refractive index (n = 1.38), making it an attractive substrate. We present the fabrication and the performance of SNSPDs made of a 4.5 nm thick NbN thin film deposited on MgF2 substrate for the wavelength of 1550 nm. The front-side illuminated SNSPDs without an optical cavity showed a maximal detection efficiency of 12.8% at a system dark count rate (DCR) of 100 Hz, while the backside illuminated SNSPDs with a SiO2/Au optical cavity atop displayed a maximal detection efficiency of 33% at a DCR of 100 Hz.

  13. Characterization of NbN films for superconducting nanowire single photon detectors

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Weisse - Bernstein, Nina R; Williamson, Todd L; Hoffbauer, M. A.; Graf, M. J.; Rabin, M. W.

    2011-01-14

    Nanoscopic superconducting meander patterns offer great promise as a new class of cryogenic radiation sensors capable of single photon detection. To realize this potential, control of the superconducting properties on the nanoscale is imperative. To this end, Superconducting Nanowire Single Photon Detectors (SNSPDs) are under development by means Energetic Neutral Atom Beam Lithography and Epitaxy, or ENABLE. ENABLE can growth highly-crystalline, epitaxial thin-film materials, like NbN, at low temperatures; such wide-ranging control of fabrication parameters is enabling the optimization of film properties for single photon detection. T{sub c}, H{sub c2}, {zeta}{sub GL} and J{sub c} of multiple thin films and devices have been studied as a function of growth conditions. The optimization of which has already produced devices with properties rivaling all reports in the existing literature.

  14. High-Temperature Characteristics of an InAsSb/AlAsSb n+Bn Detector

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Höglund, Linda; Hill, Cory J.; Keo, Sam A.; Fisher, Anita; Gunapala, Sarath D.

    2016-09-01

    The high-temperature characteristics of a mid-wavelength infrared (MWIR) detector based on the Maimon-Wicks InAsSb/AlAsSb nBn architecture was analyzed. The dark current characteristics are examined in reference to recent minority carrier lifetime results. The difference between the responsivity and absorption quantum efficiency (QE) at shorter wavelengths is clarified in terms of preferential absorption of higher-energy photons in the top contact layer, which cannot provide reverse-bias photo-response due to the AlAsSb electron blocking layer and strong recombination. Although the QE does not degrade when the operating temperature increases to 325 K, the turn-on bias becomes larger at higher temperatures. This behavior was originally attributed to the change in the valence band alignment between the absorber and top contact layers caused by the shift in Fermi level with temperature. In this work, we demonstrated the inadequacy of the original description, and offer a more likely explanation based on temperature-dependent band-bending effects.

  15. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  16. Study of the effect of NbN on microwave Niobium cavities for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Liccardo, V.; França, E. K.; Aguiar, O. D.; Oliveira, R. M.; Ribeiro, K. L.; Silva, M. M. N. F.

    2016-07-01

    Superconducting reentrant cavities may be used in parametric transducers for resonant-mass gravitational wave detectors. When coupled to a spherical resonant antenna, transducers will monitor its mechanical quadrupolar modes, working as a mass-spring system. In this paper we will investigate the effect of the Niobium Nitride (NbN), produced through plasma immersion ion implantation (PIII), on the quality factor of reentrant Niobium (Nb) cavities. With the PIII surface treatment unloaded electrical Q-factors (Q0) of the order of 105 were obtained in cryogenic conditions. These results indicated a significant increase in the effect of superconductivity after the cavity surfaces have been heavily attacked by a concentrated acid mixture and after suffering successive PIII processes. Q0's ~ 3.0 × 105 at 4.2 K are expected to be obtained using Nb RRR399 with a suitable surface treatment. These cavities, with high Q0, are already installed and being tested in the Gravitational Wave Detector Mario Schenberg. The experimental tests have been carried out at the laboratories of the National Institute for Space Research (INPE).

  17. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  18. High efficiency and rapid response superconducting NbN nanowire single photon detector based on asymmetric split ring metamaterial

    SciTech Connect

    Li, Guanhai; Chen, Xiaoshuang; Wang, Shao-Wei Lu, Wei

    2014-06-09

    With asymmetric split ring metamaterial periodically placed on top of the niobium nitride (NbN) nanowire meander, we theoretically propose a kind of metal-insulator-metallic metamaterial nanocavity to enhance absorbing efficiency and shorten response time of the superconducting NbN nanowire single photon detector (SNSPD) operating at wavelength of 1550 nm. Up to 99.6% of the energy is absorbed and 96.5% dissipated in the nanowire. Meanwhile, taking advantage of this high efficiency absorbing cavity, we implement a more sparse arrangement of the NbN nanowire of the filling factor 0.2, which significantly lessens the nanowire and crucially boosts the response time to be only 40% of reset time in previous evenly spaced meander design. Together with trapped mode resonance, a standing wave oscillation mechanism is presented to explain the high efficiency and broad bandwidth properties. To further demonstrate the advantages of the nanocavity, a four-pixel SNSPD on 10 μm × 10 μm area is designed to further reduce 75% reset time while maintaining 70% absorbing efficiency. Utilizing the asymmetric split ring metamaterial, we show a higher efficiency and more rapid response SNSPD configuration to contribute to the development of single photon detectors.

  19. Compact infrared detector

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Hong, S.; Moacanin, J.

    1981-01-01

    Broadband IR detector integrated into compact package for pollution monitoring and weather prediction is small, highly responsive, and immune to high noise. Sensing material is transparent sheet metalized with reflecting coating and overcoated with black material on same side. Pulse produced by chopping of infrared source beam creates transient "thermal lens" that temporarily defocuses laser beam probe. Detector monitoring beam measures defocusing which parallels infrared intensity.

  20. Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

    DOE PAGESBeta

    Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Leonhardt, D.; Coon, W. T.; Fortune, T. R.; Cavaliere, M. A.; Tauke-Pedretti, A.; et al

    2015-11-03

    Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs 0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. Moreover, the measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. As a result, excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusionmore » currents in nBn photodetectors.« less

  1. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  2. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  3. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  4. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  5. Complementary Barrier Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2009-01-01

    The complementary barrier infrared detector (CBIRD) is designed to eliminate the major dark current sources in the superlattice infrared detector. The concept can also be applied to bulk semiconductor- based infrared detectors. CBIRD uses two different types of specially designed barriers: an electron barrier that blocks electrons but not holes, and a hole barrier that blocks holes but not electrons. The CBIRD structure consists of an n-contact, a hole barrier, an absorber, an electron barrier, and a p-contact. The barriers are placed at the contact-absorber junctions where, in a conventional p-i-n detector structure, there normally are depletion regions that produce generation-recombination (GR) dark currents due to Shockley-Read- Hall (SRH) processes. The wider-bandgap complementary barriers suppress G-R dark current. The barriers also block diffusion dark currents generated in the diffusion wings in the neutral regions. In addition, the wider gap barriers serve to reduce tunneling dark currents. In the case of a superlattice-based absorber, the superlattice itself can be designed to suppress dark currents due to Auger processes. At the same time, the barriers actually help to enhance the collection of photo-generated carriers by deflecting the photo-carriers that are diffusing in the wrong direction (i.e., away from collectors) and redirecting them toward the collecting contacts. The contact layers are made from materials with narrower bandgaps than the barriers. This allows good ohmic contacts to be made, resulting in lower contact resistances. Previously, THALES Research and Technology (France) demonstrated detectors with bulk InAsSb (specifically InAs0.91Sb0.09) absorber lattice-matched to GaSb substrates. The absorber is surrounded by two wider bandgap layers designed to minimize impedance to photocurrent flow. The wide bandgap materials also serve as contacts. The cutoff wavelength of the InAsSb absorber is fixed. CBIRD may be considered as a modified

  6. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings

    SciTech Connect

    Nolde, Jill A. Kim, Chul Soo; Jackson, Eric M.; Ellis, Chase T.; Abell, Joshua; Glembocki, Orest J.; Canedy, Chadwick L.; Tischler, Joseph G.; Vurgaftman, Igor; Meyer, Jerry R.; Aifer, Edward H.; Kim, Mijin

    2015-06-29

    We demonstrate up to 39% resonant enhancement of the quantum efficiency (QE) of a low dark current nBn midwave infrared photodetector with a 0.5 μm InAsSb absorber layer. The enhancement was achieved by using a 1D plasmonic grating to couple incident light into plasmon modes propagating in the plane of the device. The plasmonic grating is composed of stripes of deposited amorphous germanium overlaid with gold. Devices with and without gratings were processed side-by-side for comparison of their QEs and dark currents. The peak external QE for a grating device was 29% compared to 22% for a mirror device when the illumination was polarized perpendicularly to the grating lines. Additional experiments determined the grating coupling efficiency by measuring the reflectance of analogous gratings deposited on bare GaSb substrates.

  7. Active Pyroelectric Infrared Detector

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Zalameda, Joseph N. (Inventor); Mina, Joseph M. (Inventor)

    1995-01-01

    A noncontact pyroelectric infrared detector is described. A pyroelectric film that also has piezoelectric properties is held in place so that it is free to vibrate. It is electrically stimulated to vibrate at a resonance frequency. The vibrating film forms part of a balanced bridge circuit. As thermal radiation impinges on the film the pyroelectric effect causes the resonance frequency to change, thereby unbalancing the bridge circuit. A differential amplifier tracks the change in voltage across the bridge. The resulting voltage signal is further processed by a bandpass filter and a precision rectifier. The device allows for DC or static temperature measurements without the use of a mechanical chopping device.

  8. Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    NASA Astrophysics Data System (ADS)

    Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.

    2015-05-01

    Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.

  9. Fabrication and Characterization of Superconducting NbN Nanowire Single Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.

    2006-01-01

    This viewgraph presentation describes the fabrication of large area superconducting Niobium Nitride nanowire single photon detectors. The topics include: 1) Introduction and Motivation; 2) Operation of SNSPD Detectors; 3) NbTiN Deposition; 4) Fabrication Details; 5) Backside Coupled SNSPD; 6) Measurement Apparatus; 7) Electrical Response of a 15x15 micrometer SNSPD to 1064nm radiation; 8) Detector Efficiency vs Bias Current; 9) Interarrival Time Plot; 10) Detector Linearity; and 11) Conclusion.

  10. Use of new threshold detectors 93Nb(n, n') 93mNb and 199Hg(n, n') 199mHg for neutron spectrum unfolding

    NASA Astrophysics Data System (ADS)

    Sakurai, Kiyoshi

    1982-10-01

    The feasibility of using new threshold detectors 39Nb(n, n') 93mNb and 199Hg(n, n') 199mHg was examined. The neutron spectrum YAYOI glory-hole was unfolded with 13 reaction rates including the 93Nb(n, n') 93mNb or the 199Hg(n, n') 199mHg reaction rate characteristic neutron flux density values (total, above 1 and 0.1 MeV) were calculated from the best estimate for the input spectrum and from the unfolded neutron spectrum. The characteristic neutron flux density values calculated from the input spectrum were about 20% smaller than those calculated from the output neutron spectrum. The neutron flux density values calculated from the neutron spectrum unfolded with 13 reaction rates including the 93Nb(n, n') 93mNb reaction rate were about 5 to 10% higher than those rate, the characteristic neutron flux density values were about 1 to 3% smaller than those calculated from the neutron spectrum unfolded without the 199Hg(n, n') 199mHg reaction rate. These new threshold detectors were successfully used for neutron spectrum unfolding with the SAND II code.

  11. Analysis of InAsSb nBn spectrally filtering photon-trapping structures.

    PubMed

    Schuster, Jonathan; D'Souza, Arvind; Bellotti, Enrico

    2014-08-11

    We have numerically analyzed the electromagnetic and electrical characteristics of InAsSb nBn infrared detectors employing a photon-trapping (PT) structure realized with a periodic array of pyramids intended to provide broadband operation. The three-dimensional numerical simulation model was verified by comparing the simulated dark current and quantum efficiency to experimental data. Then, the power and flexibility of the nBn PT design was used to engineer spectrally filtering PT structures. That is, detectors that have a predetermined spectral response to be more sensitive in certain spectral ranges and less sensitive in others. PMID:25320985

  12. Complementary barrier infrared detector (CBIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  13. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  14. Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

    SciTech Connect

    Olson, B. V.; Kim, J. K.; Kadlec, E. A.; Klem, J. F.; Hawkins, S. D.; Leonhardt, D.; Coon, W. T.; Fortune, T. R.; Cavaliere, M. A.; Tauke-Pedretti, A.; Shaner, E. A.

    2015-11-03

    Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs 0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. Moreover, the measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. As a result, excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.

  15. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  16. Near infrared detectors for SNAP

    SciTech Connect

    Schubnell, M.; Barron, N.; Bebek, C.; Brown, M.G.; Borysow, M.; Cole, D.; Figer, D.; Lorenzon, W.; Mostek, N.; Mufson, S.; Seshadri, S.; Smith, R.; Tarle, G.

    2006-05-23

    Large format (1k x 1k and 2k x 2k) near infrared detectors manufactured by Rockwell Scientific Center and Raytheon Vision Systems are characterized as part of the near infrared R&D effort for SNAP (the Super-Nova/Acceleration Probe). These are hybridized HgCdTe focal plane arrays with a sharp high wavelength cut-off at 1.7 um. This cut-off provides a sufficiently deep reach in redshift while it allows at the same time low dark current operation of the passively cooled detectors at 140 K. Here the baseline SNAP near infrared system is briefly described and the science driven requirements for the near infrared detectors are summarized. A few results obtained during the testing of engineering grade near infrared devices procured for the SNAP project are highlighted. In particular some recent measurements that target correlated noise between adjacent detector pixels due to capacitive coupling and the response uniformity within individual detector pixels are discussed.

  17. Infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  18. Tunable quantum well infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A novel infrared detector (20, 20', 20), is provided, which is characterized by photon-assisted resonant tunneling between adjacent quantum wells (22a, 22b) separated by barrier layers (28) in an intrinsic semiconductor layer (24) formed on an n.sup.+ substrate (26), wherein the resonance is electrically tunable over a wide band of wavelengths in the near to long infrared region. An n.sup.+ contacting layer (34) is formed over the intrinsic layer and the substrate is n.sup.+ doped to provide contact to the quantum wells. The detector permits fabrication of arrays (30) (one-dimensional and two-dimensional) for use in imaging and spectroscopy applications.

  19. Subminiature infrared detector translation stage

    NASA Technical Reports Server (NTRS)

    Bell, Alan D.

    1989-01-01

    This paper describes a precision subminiature three-axis translation stage used in the GOES Sounder to provide positional adjustment of 12 cooled infrared detectors. Four separate translation stages and detectors are packaged into a detector mechanism which has an overall size of 0.850 x 1.230 x 0.600 inches. Each translation stage is capable of + or - 0.015 inch motion in the X and Y axes and +0.050/-0.025 inch motion in the Z axis with a sensitivity of 0.0002 inches. The function of the detector translation stage allows real time detector signal peaking during Sounder alignment. The translation stage operates in a cryogenic environment under a 10 to the -6th torr vacuum.

  20. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  1. Infrared detectors for Earth observation

    NASA Astrophysics Data System (ADS)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  2. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  3. Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications

    NASA Astrophysics Data System (ADS)

    Verevkin, A.; Pearlman, A.; Słysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'Tsman, G. N.; Sobolewski, Roman

    2004-09-01

    The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3-1.55 µm infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10-18 W/Hz1/2 at 1.3 µm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.

  4. Infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Cardimona, D. A.; Huang, D. H.; Cowan, V.; Morath, C.

    2011-05-01

    Two of the main requirements for space situational awareness are to locate and identify dim and/or distant objects. At the Air Force Research Laboratory's Space Vehicles Directorate, we are investigating how nanostructured metal surfaces can produce plasmon-enhanced fields to address the first function. We are also investigating quantum interference effects in semiconductor quantum dots inside photonic crystal cavities to address the amplification of weak signals. To address the second function of identification of space objects, we are investigating a wavelength-tunable detector scheme that involves a coupled double quantum well structure with a thin middle barrier between the two wells. The photocurrent from this structure will be swept out with a lateral bias. In order to eliminate the diffraction loss of incident photons by a surface grating structure for the z-polarization required in normal quantum well infrared photodetector structures, we will grow an array of self-organized quantum dots buried in one of the quantum wells of a symmetric double quantum well structure. In this paper, we will first describe the requirements for detectors in space, then we will describe our work in the above topics, and finally we will briefly mention our forays into other areas of quantum-structured detectors for use in space.

  5. Reflections From Plasma Would Enhance Infrared Detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1992-01-01

    Quantum efficiency of proposed photoemission semiconductor detector of long-wavelength infrared radiation enhanced by multiple passes of radiation. Device has features of back-to-back heterojunction internal-photoemission (HIP) detector, and Fabry-Perot interferometer. Arrays of devices of this type incorporated into integrated-circuit infrared imaging devices.

  6. Germanium blocked impurity band far infrared detectors

    SciTech Connect

    Rossington, C.S.

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the ''Star Wars'' nuclear defense scheme proposed by the Reagan administration.

  7. Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications

    NASA Astrophysics Data System (ADS)

    Verevkin, Aleksandr A.; Pearlman, Aaron; Slysz, Wojtek; Zhang, Jin; Sobolewski, Roman; Chulkova, Galina; Okunev, Oleg; Kouminov, Pavel; Drakinskij, Vladimir; Smirnov, Konstantin; Kaurova, Natalia; Voronov, Boris; Gol'tsman, Gregory; Currie, Marc

    2003-08-01

    We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 - 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed.

  8. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  9. New infrared detectors and solar cells

    NASA Technical Reports Server (NTRS)

    Sher, A.

    1979-01-01

    The inventions and published papers related to the project are listed. The research with thin films of LaF3 deposited on GaAs substrates is reported along with improvements in photocapacitative MIS infrared detectors.

  10. Anomalous Polarization May Improve Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Yang, Chan-Lon; Pan, Dee-Son

    1990-01-01

    New configurations proposed for quantum-well devices. Simplifies alignment, increases sensitivity, and opens up more possibilities in design of quantum-well detectors of infrared radiation. In detector made according to proposed concept, light incident broadside on front surface absorbed. No special waveguide structures required.

  11. A novel electron tunneling infrared detector

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1990-01-01

    The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly.

  12. Heterodyne detection at near-infrared wavelengths with a superconducting NbN hot-electron bolometer mixer.

    PubMed

    Lobanov, Yury; Shcherbatenko, Michael; Shurakov, Alexander; Rodin, Alexander V; Klimchuk, Artem; Nadezhdinsky, Alexander I; Maslennikov, Sergey; Larionov, Pavel; Finkel, Matvey; Semenov, Alexander; Verevkin, Aleksandr A; Voronov, Boris M; Ponurovsky, Yakov; Klapwijk, Teunis M; Gol'tsman, Gregory N

    2014-03-15

    We report on the development of a highly sensitive optical receiver for heterodyne IR spectroscopy at the communication wavelength of 1.5 μm (200 THz) by use of a superconducting hot-electron bolometer. The results are important for the resolution of narrow spectral molecular lines in the near-IR range for the study of astronomical objects, as well as for quantum optical tomography and fiber-optic sensing. Receiver configuration as well as fiber-to-detector light coupling designs are discussed. Light absorption of the superconducting detectors was enhanced by nano-optical antennas, which were coupled to optical fibers. An intermediate frequency (IF) bandwidth of about 3 GHz was found in agreement with measurements at 300 GHz, and a noise figure of about 25 dB was obtained that was only 10 dB above the quantum limit. PMID:24690805

  13. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    SciTech Connect

    Datskos, P.G. |; Rajic, S.; Datskou, I.; Egert, C.M.

    1997-10-01

    The authors have investigated a novel infrared microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the infrared photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors (surface acoustic waves, quartz crystal microbalances) require highly selective coatings to achieve chemical specificity. In contrast, infrared microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. They have obtained infrared photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region2.5 to 14.5 {micro}m. They found that in the wavelength region 2.5 to 14.5 {micro}m DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 {micro}m and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with infrared absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  14. Micromachined Electron-Tunneling Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Kaiser, William J.; Waltman, Stephen B.

    1993-01-01

    Pneumatic/thermal infrared detectors based partly on Golay-cell concept, but smaller and less fragile. Include containers filled with air or other gas trapped behind diaphragms. Infrared radiation heats sensors, causing gas to expand. Resulting deflections of diaphragms measured by displacement sensors based on principle of electron-tunneling transducers of scanning tunneling microscopes. Exceed sensitivity of all other miniature, uncooled infrared sensors presently available. Expected to include low consumption of power, broadband sensitivity, room-temperature operation, and invulnerability to ionizing radiation.

  15. Ferroelectric infrared detector and method

    DOEpatents

    Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence

    2010-03-30

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  16. Infrared diagnosis using liquid crystal detectors

    NASA Technical Reports Server (NTRS)

    Hugenschmidt, M.; Vollrath, K.

    1986-01-01

    The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.

  17. Ge photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.

    1979-01-01

    An undoped Ge photocapacitive detector is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.

  18. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  19. Infrared Detector System with Controlled Thermal Conductance

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor)

    2000-01-01

    A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.

  20. Linear cryogenic coolers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Riabzev, S.; Avishay, N.; Oster, D.; Tuitto, A.

    2012-06-01

    In spite of a wide spreading the uncooled night vision technologies, the cooled systems are still known to be superior in terms of working ranges, resolution and ability to recognize/track fast moving objects in dynamic infrared scenes. Recent technological advances allowed development and fielding of high temperature infrared detectors working up to 200K while showing performances typical for their 77K predecessors. The direct benefits of using such detectors are the lowering of the optical, cooling and packaging constraints resulting in smaller and cost effective optics, electronics and mechanical cryocooler. The authors are formulating requirements and general vision of prospective ultra-compact, long life, lightweight, power efficient, acoustically and dynamically quiet linear cryogenic cooler towards forthcoming infrared imagers. In particular, the authors are revealing the outcomes of the feasibility study and discuss downscaling options.

  1. Two-color infrared detector

    DOEpatents

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  2. Far-Infrared Detectors for CLARREO Interferometer

    NASA Astrophysics Data System (ADS)

    Hogue, H. H.; Mlynczak, M. G.; Muzilla, M. S.

    2008-12-01

    Arsenic-doped Blocked Impurity Band (BIB) detectors are a mature detector technology for the infrared spectral range of 5 to 28 micrometers for low-background astronomy [Spitzer, ISO, WISE, JWST, and other observatories] and for higher-background astronomy from terrestrial telescopes. These detectors operate below 10 K (typically using cryogenic cooling) and achieve detectivity, bandwidth, and linearity performance at least an order of magnitude over uncooled detectors such as pyroelectrics or bolometers. To address specific requirements for long-duration, full-spectrum Earth radiance studies, a joint development effort between DRS Technologies and NASA Langley Research Center has now extended BIB detector wavelength sensitivity to at least 50 micrometers and raised operating temperature above 10 K for long-duration orbital operation with existing space-capable cryocoolers. In parallel DRS has demonstrated a large-area BIB detector design with negligible internal losses and gains for use in a 99.9% QE, two-detector light trap for a Fourier Transform Spectrometer application. The application of BIB detectors with these improved features to CLARREO provides major benefits: 1) Light trapping combined with high internal QE detectors results in instrument spectral radiance results that are insensitive to operating environment variations or radiation induced drift in detector characteristics over orbital lifetime. 2) Order-of-magnitude improved detectivity allows order-of-magnitude reduction in the time to acquire an interferogram - significantly reducing scene smear associated with the time of flight over the Earth. These improvements in detector capability enable the most accurate and precise full Earth spectrum radiance measurements.

  3. Infrared detector performance in the Shuttle Infrared Telescope Facility /SIRTF/

    NASA Technical Reports Server (NTRS)

    Mccarthy, S. G.; Autio, G. W.

    1978-01-01

    The limitations imposed on infrared detectors for SIRTF are quite different from those imposed on ground-based, balloon-borne, or aircraft-borne systems. The paper examines the limitations and provides performance predictions corresponding to SIRTF conditions. Detector parameters typical of an infrared camera are used. The detector size is taken to be of the order of the diffraction-limited spot, frequency response is taken to correspond to a fraction of a second or less time constant, and spectral definition is provided by multilayer dielectric filters, inductive or capacitive grids, intrinsic absorption, or a combination of these. A nominal 10-micron bandwidth is assumed. The discussion covers atmospheric absorption and emission, zodiacal dust radiance, Shuttle contaminants, telescope self-emission, charged particle radiation, clear environment detector performance, and trapped radiation effects. It is concluded that the SIRTF design and operating conditions will allow current and near-term state-of-the-art detectors to reach their performance limits with SIRTF at a temperature of 10-12 K.

  4. Infrared detectors: Advances, challenges and new technologies

    NASA Astrophysics Data System (ADS)

    Karim, Amir; Andersson, Jan Y.

    2013-12-01

    Human knowledge of infrared (IR) radiation is about 200 years old. However it was in the late 20th century that we developed a wide range of smart technologies for detection and started to take advantage for our benefit. Today IR detector technology is in its 3rd generation and comes with challenging demands. Based on the propagation of IR radiation through free space it is divided into different transmission windows. The most interesting for thermal imaging are the mid-wave IR (MWIR) and the long-wave IR (LW IR). Infrared detectors for thermal imaging have a number of applications in industry, security, search & rescue, surveillance, medicine, research, meteorology, climatology and astronomy. Currently high-performance IR imaging technology is mainly based on epitaxially grown structures of the small-bandgap bulk alloy mercury-cadmium-telluride (MCT), indium antimonide (InSb) and GaAs based quantum-well infrared photodetectors (QWIPs), depending on the application and wavelength range. However, they operate at low temperatures requiring costly and bulky cryogenic systems. In addition there is always a need for better performance, which generates possibilities for developing new technologies. Some emerging technologies are quantum dot infrared photodetectors (QDIPs), type-II strained layer super-lattice, and QDIPs with type-II band alignment. In this report a brief review of the current and new technologies for high performance IR detectors, will be presented.

  5. The SNAP near infrared detectors

    SciTech Connect

    Tarle, G.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.D.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, Anne; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kim, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Lampton, M.; Levi, M.E.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Massey, R.; Miguel, R.; McKay, T.; McKee, S.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tomasch, A.; von der Lippe, H.; Vincent, R.; Walder, J.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.

  6. NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K

    NASA Technical Reports Server (NTRS)

    Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.

    1994-01-01

    We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.

  7. Astronomical imaging with infrared array detectors.

    PubMed

    Gatley, I; Depoy, D L; Fowler, A M

    1988-12-01

    History shows that progress in astronomy often stems directly from technological innovation and that each portion of the electromagnetic spectrum offers unique insights into the nature of the universe. Most recently, the widespread availability of infrared-sensitive two-dimensional array detectors has led to dramatic improvements in the capabilities of conventional ground-based observatories. The impact of this new technology on our understanding of a wide variety of phenomena is illustrated here by infrared pictures of star-forming regions, of nebulae produced by the late stages of stellar evolution, of the nucleus of our own galaxy(the Milky Way), and of activity in other galaxies. PMID:17817072

  8. Advances in Detector Technology for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    McCreight, Craig; Cheng, P. L. (Technical Monitor)

    1995-01-01

    Progress in semiconductor materials and processing technology has allowed the development of infrared detector arrays with unprecedented sensitivity, for imaging and spectroscopic applications in astronomy. The earlier discrete-detector approach has been replaced by large-element (up to 1024 x 1024 pixel), multiplexed devices. Progress has been made against a number of key limiting factors, such as quantum efficiency, noise, spectral response, linearity, and dark current. Future developments will focus on the need for even larger arrays, which operate at higher temperatures.

  9. Analysis of III-V Superlattice nBn Device Characteristics

    NASA Astrophysics Data System (ADS)

    Rhiger, David R.; Smith, Edward P.; Kolasa, Borys P.; Kim, Jin K.; Klem, John F.; Hawkins, Samuel D.

    2016-04-01

    Mid-wavelength infrared nBn detectors built with III-V superlattice materials have been tested by means of both capacitance and direct-current methods. By combining the results, it is possible to achieve clear separation of the two components of dark current, namely the generation-recombination (GR) current due to the Shockley-Read-Hall mechanism in the depletion region, and the diffusion current from the neutral region. The GR current component is unambiguously identified by two characteristics: (a) it is a linear function of the depletion width, and (b) its activation energy is approximately one-half the bandgap. The remaining current is shown to be due to diffusion because of its activation energy equaling the full bandgap. In addition, the activation energy of the total measured dark current in each local region of the temperature-bias parameter space is evaluated. We show the benefits of capacitance analysis applied to the nBn device and review some of the requirements for correct measurements. The carrier concentration of the unintentionally doped absorber region is found to be 1.2 × 1014 cm-3 n-type. It is shown that the depletion region resides almost entirely within the absorber. Also, the doping in the nBn barrier is found to be 4 × 1015 cm-3 p-type. Minority-carrier lifetimes estimated from the dark current components are on the order of 10 μs.

  10. Theoretical Aspects of Minority Carrier Extraction in Unipolar Barrier Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.-Y.; Soibel, Alexander; Höglund, Linda; Gunapala, Sarath D.

    2015-09-01

    We have examined, theoretically, minority carrier collection in unipolar barrier infrared photodetectors. In barrier infrared detectors, for example the nBn, the unipolar barrier should block only majority carriers and allow unimpeded flow of minority carriers. However, an imperfect barrier would also block minority carriers, resulting in higher than expected turn-on bias. Minority carrier blocking can be caused by barrier doping or unintended band offset between the barrier and the absorber. The distinct manner in which these two mechanisms affect device performance were investigated. We found that introduction of an appropriate amount of barrier doping can reduce depletion dark current without increasing turn-on bias. We examined the effects of band structure on conductivity effective masses when the n-type absorber was a type-II superlattice (T2SL). We showed that for a long-wavelength infrared InAs/GaSb T2SL the vertical conductivity hole effective mass can be much smaller than that predicted by the simple band-edge effect mass picture, implying that the vertical hole mobility estimated from the band-edge effective mass can be unduly pessimistic.

  11. Heterojunction-Internal-Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    New type of photodetector adds options for design of imaging devices. Heterojunction-internal-photoemission (HIP) infrared photodetectors proposed for incorporation into planar arrays in imaging devices required to function well at wavelengths from 8 to 17 micrometers and at temperatures above 65 K. Photoexcited electrons cross energy barrier at heterojunction and swept toward collection layer. Array of such detectors made by etching mesa structures. HIP layers stacked to increase quantum efficiency. Also built into integrated circuits including silicon multiplexer/readout circuits.

  12. [Study on photographing experiment of infrared detector].

    PubMed

    Wang, De-Jiang; Zhang, Tao

    2011-01-01

    Infrared detectors are widely used in multi spectral remote sensing systems, and in order to verify photographing principles of infrared time delay integration (TDI) detector, and make preparations for future research, a verification system for infrared TDI camera is proposed in the present paper. Experimental methods are explained thoroughly and two major factors which affect image quality are analyzed. First, the causes of image motion and their effects on the quality of image are studied, and a novel architecture using high precision DC-speed machine is presented, then the relationship between velocity of precision turntable and detectors line transfer frequency is determined by Kalman algorithm. Second, four focusing means are analyzed and compared, and video signal amplitude method is selected according to practical application. Finally, a genuine demo system is established in national supervision and test center for optics mechanics quality. 5.3, 6.4 and 9.2 mm drones are chosen for testing. Experimental results indicate that the obtained drone is vivid, and camera's resolution achieves 11.3 lines per mm, which satisfies preliminary aims. PMID:21428103

  13. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  14. Multilayered (Hg,Cd)Te infrared detector

    NASA Technical Reports Server (NTRS)

    Rae, W. G.

    1977-01-01

    Multilayered mercury-cadmium telluride photoconductive detectors were developed which are capable of providing individual coverage of three separate spectral wavelength bands without the use of beam splitters. The multilayered "three-color" detector on a single dewar takes the place of three separate detector/filter/dewar units and enables simpler and more reliable mechanical and optical designs for multispectral scanners and radiometers. Wavelength channel design goals (in micrometers) were: 10.1 to 11.0, 11.0 to 12.0, and 13.0. Detectivity for all channels was 1 x 10 to the 10th power cm-Hz 1/2/Watt. A problem occurred in finding an epoxy layer which had good infrared transmission properties and which also was chemically and mechanically compatible with HgCdTe processing techniques. Data on 6 candidate bonding materials are surveyed and discussed.

  15. Radiation effects in IRAS extrinsic infrared detectors

    NASA Technical Reports Server (NTRS)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  16. Infrared SWAP detectors: pushing the limits

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Taalat, R.; Brunner, A.; Rubaldo, L.; Augey, T.; Kerlain, A.; Péré-Laperne, N.; Manissadjian, A.; Gravrand, O.; Castelein, P.; Destéfanis, G.

    2015-06-01

    The growing demand for compact and low consumption infrared cooled detectors is driven by different products segments. Hand Held Thermal Imagers, UAV, small gimbals are some of them. End users are requiring devices easy to use with fast cool down time, excellent portability, low acoustic noise with no trade-offs in reliability and performance. These requirements are pushing the technology developments toward constant innovations on detectors, coolers, read out circuits and proximity electronic boards. In this paper we are discussing the different figures of merit and highlighting the challenges for the different components. An update on the developments of HOT technology for most advanced pixel pitch will be presented. Very compact products are driving the developments for innovative coolers and cryogenic solutions. A low power compact architecture is a must for electronic boards to optimize the overall system power consumption. Finally a look to the future requirements for further shrink will be addressed.

  17. Far-infrared kinetic-inductance detectors

    SciTech Connect

    Grossman, E.N.; McDonald, D.G.; Sauvageau, J.E. )

    1991-03-01

    This paper reports on extremely sensitive far-infrared detectors suitable for both direct detection and heterodyn applications based upon {mu}m-sized thin films with thickness less than a superconducting penetration depth. The penetration depth of such a film, and therefore its inductance, varies with temperature and with quasiparticle population (described by an effective temperature T*), resulting in both bolometric and non-equilibrium Photoinductive responses. Incident radiation is coupled into the small-area kinetic inductor by a lithographic antenna, and the resulting inductance changes are amplified and converted to a voltage signal by an integrated microstrip DC SQUID.

  18. Gerard Kuiper and the Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sears, Derek

    2013-10-01

    The life and contributions of Gerard Kuiper have been documented by Dale Cruikshank in his National Academy of Sciences biography. I will argue that particularly important in this eventful life was Kuiper's war time experiences. Kuiper's wartime role evolved as the war unfolded, but towards the end he was charged by the US military with reporting German progress with war-related technologies and the activities of scientists under Nazi control. He interviewed a great many scientists, including his own PhD mentor (Ejnar Hertzsprung), and when Kuiper was the only person available, he interviewed concentration-camp victims. He carried briefing sheets that identified the technologies being sought by the allies and the major fraction of these involved infrared equipment. He sent back to the USA boxes of documents, and large amounts of equipment, and he stressed to the military his interest in these for his own research. It seems very likely that in this way an effective PbS infrared detector, so critical to Kuiper's career and the future of planetary science, came to the USA and to Robert Cashman's laboratory at Northwestern University. As the war was winding down, Cashman and Kuiper worked together to develop a practical infrared spectrometer for astronomical use. Within months, Kuiper discovered the C02 atmospheres on Mars and Venus.

  19. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  20. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  1. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  2. SAPHIRA detector for infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.

    2014-08-01

    fringe tracker of the VLT instrument GRAVITY. Initial results will be presented. An outlook will be given on the potential of APD technology to be employed in large format near infrared science detectors. Several of the results presented here have also been shown to a different audience at the Scientific Detector Workshop in October 2013 in Florence but this paper has been updated with new results [1].

  3. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.

    1990-01-01

    The focus of the workshop was on innovative long wavelength (lambda less than 17 microns) infrared (LWIR) detectors with the potential of meeting future NASA and DoD long-duration space application needs. Requirements are for focal plane arrays which operate near 65K using active refrigeration with mission lifetimes of five to ten years. The workshop addressed innovative concepts, new material systems, novel device physics, and current progress in relation to benchmark technology. It also provided a forum for discussion of performance characterization, producibility, reliability, and fundamental limitations of device physics. It covered the status of the incumbent HgCdTe technology, which shows encouraging progress towards LWIR arrays, and provided a snapshot of research and development in several new contender technologies.

  4. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  5. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  6. Novel infrared detector based on a tunneling displacement transducer

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Waltman, S. B.; Reynolds, J. K.

    1991-01-01

    The paper describes the design, fabrication, and characteristics of a novel infrared detector based on the principle of Golay's (1947) pneumatic infrared detector, which uses the expansion of a gas to detect infrared radiation. The present detector is constructed entirely from micromachined silicon and uses an electron tunneling displacement transducer for the detection of gas expansion. The sensitivity of the new detector is competitive with the best commercial pyroelectric sensors and can be readily improved by an order of magnitude through the use of an optimized transducer.

  7. Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.

    1999-01-01

    Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

  8. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  9. Novel far-infrared detectors for space applications

    NASA Astrophysics Data System (ADS)

    Perera, A. G. Unil; Shen, W. Z.; Liu, Hui C.; Buchanan, Margaret; Schaff, William J.

    1999-04-01

    The recent development of p-GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared (> 40 micrometers ) detectors for space application is reported. The emphasis is placed on the detector performance, which includes responsivity, quantum efficiency, bias effects, cutoff wavelength, uniformity, crosstalk, and noise. The results are promising and show that p-GaAs HIWIP detectors have high potential to become a strong competitor in far- infrared space applications.

  10. Infrared Detectors Overview in the Short Wave Infrared to Far Infrared for CLARREO Mission

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Mlynczak, Martin G.; Refaat, Tamer F.

    2010-01-01

    There exists a considerable interest in the broadband detectors for CLARREO Mission, which can be used to detect CO2, O3, H2O, CH4, and other gases. Detection of these species is critical for understanding the Earth?s atmosphere, atmospheric chemistry, and systemic force driving climatic changes. Discussions are focused on current and the most recent detectors developed in SWIR-to-Far infrared range for CLARREO space-based instrument to measure the above-mentioned species. These detector components will make instruments designed for these critical detections more efficient while reducing complexity and associated electronics and weight. We will review the on-going detector technology efforts in the SWIR to Far-IR regions at different organizations in this study.

  11. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  12. Effect of space exposure on pyroelectric infrared detectors (A0135)

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Clark, I. O.; Crouch, R. K.

    1984-01-01

    The effects of long-duration space exposure and launch environment on the performance of pyroelectric detectors which is important for the prediction of performance degradation, setting exposure limits, or determining shielding requirements was investigated. Air pollution monitoring and thermal mapping of the Earth, which includes the remote sensing of aerosols and limb scanning infrared radiometer projects, requires photodetection in the 6- to 20 micro m region of the spectrum. Pyroelectric detectors can detect radiation in the 1- to 100 micro m region while operating at room temperature. This makes tahe pyroelectric detector a prime candidate to fill the thermal infrared detector requirements.

  13. Far-Infrared Blocked Impurity Band Detector Development

    NASA Technical Reports Server (NTRS)

    Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.

    2007-01-01

    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.

  14. LK39F1 S/N U-1 infrared detector. [performance tests, controllability, and equipment specifications of infrared detectors

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A multilayered (Hg,Cd)Te detector is described with three infrared bands. Nominal cut-off wavelengths for each band are as follows: (1) Channel 1 - 3 microns, (2) Channel 2 - 6 microns, and (3) Channel 3 - 11 microns. The multilayered detector is mounted in a Honeywell LK39 glass dewar. Accompanying the detector/dewar assembly is a three-channel preamplifier package capable of switching each detector to the single channel input of the HRB Singer Reconfax 4 Mark 4 Infrared Scanner.

  15. InAs/Ga(In)Sb type-II superlattices short/middle dual color infrared detectors

    NASA Astrophysics Data System (ADS)

    Shi, Yanli; Hu, Rui; Deng, Gongrong; He, Wenjing; Feng, Jiangmin; Fang, Mingguo; Li, Xue; Deng, Jun

    2015-06-01

    Short wavelength and middle wavelength dual color infrared detector were designed and prepared with InAs/Ga(In)Sb type-II superlattices materials. The Crosslight software was used to calculate the relation between wavelength and material parameter such as thickness of InAs, GaSb, then energy strucutre of 100 periods 8ML/8ML InAs/GaSb and the absorption wavelength was calculated. After fixing InAs/GaSb thickness parameter, devices with nBn and pin structure were designed and prepared to compare performance of these two structures. Comparison results showed both structure devices were available for high temperature operation which black detectivity under 200K were 7.9×108cmHz1/2/W for nBn and 1.9×109cmHz1/2/W for pin respectively. Considering the simultaneous readout requirement for further FPAs application the NIP/PIN InAs/GaSb dual-color structure was grown by MBE method. Both two mesas and one mesa devices structure were designed and prepared to appreciate the short/middle dual color devices. Cl2-based ICP etching combined with phosphoric acid based chemicals were utilized to form mesas, silicon dioxide was deposited via PECVD as passivation layer. Ti/Au was used as metallization. Once the devices were finished, the electro-optical performance was measured. Measurement results showed that optical spectrum response with peak wavelength of 2.7μm and 4.3μm under 77K temperature was gained, the test results agree well with calculated results. Peak detectivity was measured as 2.08×1011cmHz1/2/W and 6.2×1010cmHz1/2/W for short and middle wavelength infrared detector respectively. Study results disclosed that InAs/Ga(In)Sb type-II SLs is available for both short and middle wavelength infrared detecting with good performance by simply altering the thickness of InAs layer and GaSb layer.

  16. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  17. Field-Induced-Gap Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas

    1990-01-01

    Semimetals become semiconductors under applied magnetic fields. New detectors require less cooling equipment because they operate at temperatures higher than liquid-helium temperatures required by extrinsic-semiconductor detectors. Magnetic fields for detectors provided by electromagnets based on recently-discovered high-transition-temperature superconducting materials. Detector material has to be semiconductor, in which photon absorbed by exciting electron/hole pair across gap Eg of forbidden energies between valence and conduction energy bands. Magnetic- and compositional-tuning effects combined to obtain two-absorber detector having narrow passband. By variation of applied magnetic field, passband swept through spectrum of interest.

  18. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  19. Detector Arrays for the James Webb Near Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.

    2009-01-01

    NASA Goddard Space Flight Center is delivering the detector subsystem for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). Of all JWST instruments, NIRSpec has the most stringent detector requirements. In this poster, we describe recent performance testing results and relate them to NIRSpec's science requirements.

  20. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  1. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  2. Infra-red signature neutron detector

    DOEpatents

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  3. Local detection efficiency of a NbN superconducting single photon detector explored by a scattering scanning near-field optical microscope.

    PubMed

    Wang, Qiang; Renema, Jelmer J; Engel, Andreas; van Exter, Martin P; de Dood, Michiel J A

    2015-09-21

    We propose an experiment to directly probe the local response of a superconducting single photon detector using a sharp metal tip in a scattering scanning near-field optical microscope. The optical absorption is obtained by simulating the tip-detector system, where the tip-detector is illuminated from the side, with the tip functioning as an optical antenna. The local detection efficiency is calculated by considering the recently introduced position-dependent threshold current in the detector. The calculated response for a 150 nm wide detector shows a peak close to the edge that can be spatially resolved with an estimated resolution of ∼ 20 nm, using a tip with parameters that are experimentally accessible. PMID:26406688

  4. Heterojunction and superlattice detectors for infrared to ultraviolet

    NASA Astrophysics Data System (ADS)

    Perera, A. G. U.

    2016-07-01

    The interest in Infrared and Ultraviolet detectors has increased immensely due to the emergence of important applications over a wide range of activities. Detectors based on free carrier absorption known as Hetero-junction Interfacial Workfunction Internal Photoemission (HEIWIP) detectors and variations of these heterojunction structures to be used as intervalence band detectors for a wide wavelength region are presented. Although this internal photoemission concept is valid for all semiconductor materials systems, using a well-studied III-V system of GaAs/AlxGa1-x As to cover a wide wavelength range from UV to far-infrared (THz) is an important development in detector technology. Using the intervalence band (heavy hole, light hole and split off) transitions for high operating temperature detection of mid Infrared radiation is also discussed. A promising new way to extend the detection wavelength threshold beyond the standard threshold connected with the energy gap in a GaAs/AlxGa1-x As system is also presented. Superlattice detector technology, which is another promising detector architecture, can be optimized using both Type I and Type II heterostructures. Here the focus will be on Type II Strained Layer (T2SL) Superlattice detectors. T2SL Superlattices based on InAs/(In,GA)Sb have made significant improvements demonstrating focal plane arrays operating around 80 K and with multiple band detection capability. A novel spectroscopic method to evaluate the band offsets of both heterojunction and superlattice detectors is also discussed.

  5. Development of double-cantilever infrared detectors

    NASA Astrophysics Data System (ADS)

    Huang, Shusen

    Detection and imaging of infrared (IR) radiation are of great importance to a variety of military and civilian applications. Recent advances in microelectromechanical systems (MEMS) have led to the development of uncooled cantilever IR focal plane arrays (FPAs), which function based on the bending of bimaterial cantilevers upon the absorption of IR energy. In this dissertation, capacitive-based double-cantilever IR FPAs, which have a potential of reaching a noise-equivalent temperature difference (NETD) approaching the theoretical limit, i.e., <10 mK, are developed. Each pixel in the proposed double-cantilever IR FPAs consists of two facing bimaterial cantilevers: one bends upward and the other downward upon IR radiation, resulting in an extremely high sensitivity of the device. It is predicted that the NETD of the double-cantilever IR FPAs is about 60% of the current single-cantilever IR FPAs, which is a significant improvement of device performance. A surface micromachining module with polyimide as a sacrificial material is developed for the fabrication of both simplified single- and double-cantilever FPAs. It is found the as-fabricated FPAs are curved because of the imbalanced residual stresses (strains) in thin films developed in the fabrication processes. In this dissertation, therefore, the general relationship between the residual strain and the resultant elastic bending deformation is modeled. A thorough investigation of residual stresses in cantilever IR materials and structures is then conducted using the theory developed in this dissertation. Furthermore, thermal-cycling experiments reveal that the residual stresses in IR materials, i.e., plasma-enhanced chemical vapor deposited (PECVD) SiNx and electron beam (Ebeam) AI, can be significantly modified by thermal annealing. Therefore, an engineering approach to flattening IR FPAs is developed by using rapid thermal annealing (RTA). Finally, this dissertation demonstrates the thermal detection of cantilever

  6. Multi-element double ring infrared detector based on InSb

    NASA Astrophysics Data System (ADS)

    Li, Mo; Lv, Hui; Guo, Li; Liu, Zhu

    2015-10-01

    A multi-element double ring infrared detector based on InSb p-n photodiodes is presented. The presented detector includes an outer ring detector and an inner ring detector. Each ring consist 10 detector elements, five mid-wave infrared detector elements and five short wave infrared detector elements. Two wavebands of 3.5-5 μm and 1.5-3 μm in mid-wave infrared and short wave infrared are adopted. The mid-wave infrared and short wave infrared detector elements are arranged alternately and close to each other to form detection pair. Between the adjacent detector elements, there is an interval to avoid cross talk. Dual band filter thin films are directly coated on the photodiode surface to form a dual band infrared detector. The double ring detector which can perform dual band IR counter-countermeasures can track target effectively under infrared countermeasure conditions.

  7. Infrared focal plane detector modules for space applications at AIM

    NASA Astrophysics Data System (ADS)

    Hübner, Dominique; Hanna, Stefan; Thöt, Richard; Gassmann, Kai-Uwe; Haiml, Markus; Weber, Andreas; Haas, Luis-Dieter; Ziegler, Johann; Nothaft, Hans-Peter; Fick, W.

    2012-09-01

    In the framework of this paper, AIM presents the actual status of some of its currently ongoing focal plane detector module developments for space applications covering the spectral range from the short-wavelength infrared (SWIR) to the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength infrared (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP will be elaborated. Additionally dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC will be addressed.

  8. Development of infrared detector with slot antenna-coupled microbolometer

    NASA Astrophysics Data System (ADS)

    Son, Kosol; Kislov, Nikolai; Wang, Jing

    2010-04-01

    The current state-of-the-art infrared detection technology requires either exotic materials or cryogenic conditions to perform its duty. Implementing infrared detection by coupling infrared tuned antenna with a micro-bolometer offers a promising technological platform for mass production of un-cooled infrared detectors and imaging arrays. The design, fabrication, and characterization of a planar slotted antenna have been demonstrated on a thin silicon dioxide (SiO2) membrane for infrared detection. The planar slotted antenna was chosen due to its ease of fabrication and greater fabrication tolerance, higher gain and greater bandwidth coveted for the infrared applications. The employment of the SiO2 membrane technology mitigates the losses due to surface waves generated as the radiation coupling into the substrates. In addition, by retaining the membrane thickness to be less than a wavelength, the amount of interference is greatly reduced. A strategically designed planar slotted dipole antenna is implemented along with an integrated direct current (DC) block enabled by co-fabricated on-chip capacitors between the two DC patches to separate DC and high frequency signals without the need for sub-micron DC separation line. As a result of this revision, standard UV photolithography instead of e-beam lithography can be used to fabricate the infrared detectors for mass production. This research is considered as an important step toward our main goal, which is developing ultrafast infrared detector by coupling a planar slotted antenna with a metal insulator metal (MIM) tunneling diode.

  9. Effect of space exposure of pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.

    1992-01-01

    Pyroelectric detectors are one of many different types of infrared radiation detectors. The pyroelectric detectors are of interest for long term space use because they do not require cooling during operation. Also, they can detect at very long wavelengths and they have a relatively flat spectral response. A disadvantage is that the radiation must be chopped in order to be detected by a pyroelectric detector. The objective was to determine the effects of launch and space exposure on the performance of commercially available pyroelectric detectors. The approach was to measure certain detector parameters before and after flight and try to determine the amount and cause of the degradation. The experiment was passive: no data was taken during flight. It is concluded that lithium-tantalate and strontium-barium-niobate are suitable materials for pyroelectric detectors for long term space applications.

  10. Plasmonic lens enhanced mid-infrared quantum cascade detector

    SciTech Connect

    Harrer, Andreas Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-10-27

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  11. Detector requirements for space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Wright, E. L.

    1986-01-01

    Requirements for background-limited (BLIP) detectors are discussed in terms of number of photons falling on each pixel, dark current, high detective quantum efficiencies, large numbers of pixels, and array size.

  12. Monolithic short wave infrared (SWIR) detector array

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.

  13. Infrared imaging using carbon nanotube-based detector

    NASA Astrophysics Data System (ADS)

    Chen, Hongzhi; Xi, Ning; Song, Bo; Chen, Liangliang; Lai, King W. C.; Lou, Jianyong

    2011-06-01

    Using carbon nanotubes (CNT), high performance infrared detectors have been developed. Since the CNTs have extraordinary optoelectronics properties due to its unique one dimensional geometry and structure, the CNT based infrared detectors have extremely low dark current, low noise equivalent temperature difference (NETD), short response time, and high dynamic range. Most importantly, it can detect 3-5 um middle-wave infrared (MWIR) at room temperature. This unique feature can significantly reduce the size and weight of a MWIR imaging system by eliminating a cryogenic cooling system. However, there are two major difficulties that impede the application of CNT based IR detectors for imaging systems. First, the small diameter of the CNTs results in low fill factor. Secondly, it is difficult to fabricate large scale of detector array for high resolution focal plane due to the limitations on the efficiency and cost of the manufacturing. In this paper, a new CNT based IR imaging system will be presented. Integrating the CNT detectors with photonic crystal resonant cavity, the fill factor of the CNT based IR sensor can reach as high as 0.91. Furthermore, using the compressive sensing technology, a high resolution imaging can be achieved by CNT based IR detectors. The experimental testing results show that the new imaging system can achieve the superb performance enabled by CNT based IR detectors, and, at the same time, overcame its difficulties to achieve high resolution and efficient imaging.

  14. Adjustable responsivity for thermal infrared detectors

    NASA Astrophysics Data System (ADS)

    Song, Woo-Bin; Talghader, Joseph J.

    2002-07-01

    With the recent interest in adaptive IR imaging, focal plane arrays are desired that can operate linearly over an enormous dynamic range. Unfortunately, large signals can cause thermal detectors to operate at temperatures significantly above their ambient resulting in intensity dependent performance or even device damage. In this letter, the responsivity of microbolometer devices is controlled using the detector and substrate as a simple electrostatic actuator. Microbolometers are demonstrated to switch between states that are over a factor of 50 apart in responsivity. The limits of the switching are theoretically separated by four to five orders of magnitude. In addition, intermediate values of responsivity can be obtained by designing devices in which the support beams snap down at lower voltage than the detector plate. Combining this idea with the pressure dependence of the thermal contact conductance, continuous thermal conductance tuning over a factor of 3 is demonstrated.

  15. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  16. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    NASA Technical Reports Server (NTRS)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  17. Effects of ionizing radiation on cryogenic infrared detectors

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  18. Effects of ionizing radiation on cryogenic infrared detectors

    NASA Astrophysics Data System (ADS)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  19. Effects Of Ionizing Radiation On Cryogenic Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Moseley, S. H.; Lakew, B.; Silverberg, R. F.

    1988-04-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. We report here on ionizing radiation tests carried out on all the DIRBE photodetectors. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  20. SDIO long wavelength infrared detector requirements

    NASA Technical Reports Server (NTRS)

    Duston, Dwight

    1990-01-01

    The Strategic Defense Initiative Organization (SDIO) has a significant requirement for infrared sensors for surveillance, tracking and discrimination of objects in space. Projected SDIO needs cover the range from short wavelengths out to 30 microns. Large arrays are required, and producibility and cost are major factors. The SDIO is pursuing several approaches including innovative concepts based on semiconductors and superconductors.

  1. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    NASA Astrophysics Data System (ADS)

    Datskos, Panos G.; Rajic, Slobodan; Datskou, Irene; Egert, Charles M.

    1997-10-01

    We have investigated a novel IR microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the IR photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors require highly selective coatings to achieve chemical specificity. In contrast, IR microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. We have obtained IR photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region 2.5 to 14.5 micrometers . We found that in the wavelength region 2.5 to 14.5 micrometers DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 micrometers and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with IR absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  2. Thermoelectric infrared detectors with improved mechanical stability for the composite infrared spectrometer (CIRS) far-infrared focal plane

    NASA Astrophysics Data System (ADS)

    Fettig, Rainer; Lakew, Brook; Brasunas, John C.; Crooke, Julie A.; Hakun, Claef F.; Orloff, Jon

    1998-09-01

    The Composite InfraRed Spectrometer (CIRS) instrument aboard the Cassini spacecraft en route to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared channels. The CIRS FIR focal plane, which covers the spectral range of 10 - 600 cm-1, consists of focusing optics and an output polarizer/analyzer that splits the output radiation according to polarization. The reflected and transmitted components are focused by concentrating cones onto thermoelectric detectors. These thermoelectric detectors consist of a gold black absorber on top of a gold foil that is welded to a thermoelement consisting of two semiconductor pyramids. After the detectors were integrated into the focal plane assembly and the CIRS instrument, the detectors proved to be extremely susceptible to two environmental survivability conditions: acoustics and airflow. Several changes were investigated to improve the integrity of the detectors including detector airflow geometry, structural changes to the detectors, and more intensive screening methods. The geometry of the air paths near the sensing elements was modified. Two structural modifications were implemented to improve the stability of the sensing elements. These were changes in the geometry of the thermoelectric pyramids by ion milling, and a change in the gold foil thickness. New screening methods, centrifuge and modulated force testing, were developed to select the most rugged detectors. Although several methods gave significant improvements to the detector's stability, the modification that allowed the detectors to meet the environmental survivability requirements was the change in the geometry of the air paths near the sensing elements.

  3. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  4. Practical design of infrared detector circuits.

    PubMed

    Berger, T; Brookner, E

    1967-07-01

    The practical design of the receiver circuitry for an ir surveillance system is considered. A design procedure for obtaining high signal detectability is presented and illustrated with an explicit example. Filtering circuitry is designed which takes into account the nonwhite noise of the detector cell and the first stage of amplification. The tradeoffs between signal detectability, accuracy, resolution, and background suppression are also discussed. PMID:20062160

  5. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  6. Si:Bi switched photoconducttor infrared detector array

    NASA Technical Reports Server (NTRS)

    Eakin, C. E.

    1983-01-01

    A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.

  7. Superlattice Barrier Infrared Detector Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Rafol, Sir B.; Nguyen, Jean; Hoglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.

    2011-01-01

    We report recent efforts in achieving state-of-the-art performance in type-II superlattice based infrared photodetectors using the barrier infrared detector architecture. We used photoluminescence measurements for evaluating detector material and studied the influence of the material quality on the intensity of the photoluminescence. We performed direct noise measurements of the superlattice detectors and demonstrated that while intrinsic 1/f noise is absent in superlattice heterodiode, side-wall leakage current can become a source of strong frequency-dependent noise. We developed an effective dry etching process for these complex antimonide-based superlattices that enabled us to fabricate single pixel devices as well as large format focal plane arrays. We describe the demonstration of a 1024x1024 pixel long-wavelength infrared focal plane array based the complementary barrier infrared detector (CBIRD) design. An 11.5 micron cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 ?m cutoff focal plane array are also presented.

  8. Challenges of small-pixel infrared detectors: a review

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  9. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated. PMID:27007242

  10. Development of Kinetic Inductance Detectors for Far-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Aguirre, James E.; Stevenson, Thomas

    2016-01-01

    An instrument with high sensitivity and spectral resolution at far-infrared wavelengths could contribute significantly to several currently unanswered questions in astrophysics. Here, we describe a detector system suitable for a spectroscopic experiment at far-infrared wavelengths using kinetic inductance detectors (KIDs). KIDs have the potential to achieve high sensitivity and low noise levels. Specifically, the approach we take uses lumped-element KIDs, which consist of separate capacitive and inductive elements combined to form a microresonator. The inductive element serves as a direct radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels, along with results from a prototype detector array.

  11. MBE growth of Sb-based nBn photodetectors on large diameter GaAs substrates

    NASA Astrophysics Data System (ADS)

    Lubyshev, Dmitri; Fastenau, Joel M.; Qiu, Yueming; Liu, Amy W. K.; Koerperick, Edwin J.; Olesberg, Jonathon T.; Norton, Dennis; Faleev, Nikolai N.; Honsberg, Christiana B.

    2013-06-01

    The GaSb-based family of materials and heterostructures provides rich bandgap engineering possibilities for a variety of infrared (IR) applications. Mid-wave and long-wave IR photodetectors are progressing toward commercial manufacturing applications, but to succeed they must move from research laboratory settings to general semiconductor production and they require larger diameter substrates than the current standard 2-inch and 3-inch GaSb. Substrate vendors are beginning production of 4-inch GaSb, but another alternative is growth on 6-inch GaAs substrates with appropriate metamorphic buffer layers. We have grown generic MWIR nBn photodetectors on large diameter, 6-inch GaAs substrates by molecular beam epitaxy. Multiple metamorphic buffer architectures, including bulk GaSb nucleation, AlAsSb superlattices, and graded GaAsSb and InAlSb ternary alloys, were employed to bridge the 7.8% mismatch gap from the GaAs substrates to the GaSb-based epilayers at 6.1 Å lattice-constant and beyond. Reaching ~6.2 Å extends the nBn cutoff wavelength from 4.2 to <5 µm, thus broadening the application space. The metamorphic nBn epiwafers demonstrated unique surface morphologies and crystal properties, as revealed by AFM, high-resolution XRD, and cross-section TEM. GaSb nucleation resulted in island-like surface morphology while graded ternary buffers resulted in cross-hatched surface morphology, with low root-mean-square roughness values of ~10 Å obtained. XRD determined dislocation densities as low as 2 × 107 cm-2. Device mesas were fabricated and dark currents of 1 × 10-6 A/cm2 at 150K were measured. This work demonstrates a promising path to satisfy the increasing demand for even larger area focal plane array detectors in a commercial production environment.

  12. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  13. JWST Near-Infrared Detectors: Latest Test Results

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.; Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Chiao, Meng; Clemons, Brian L.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Greenhouse, Matthew A.; Henegar, Greg; Hill, Robert J.; Johnson, Thomas; Lavaque, Dodolfo J.; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Cheryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Schnurr, Richard; Smith, Miles; Waczynski, Augustyn

    2009-01-01

    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection.

  14. Computer-aided design of optimal infrared detector preamplifiers

    NASA Astrophysics Data System (ADS)

    Frodsham, D. G.; Baker, D. J.

    1980-01-01

    The paper presents a mathematical model for a frequency-compensated detector-preamplifier suitable for cryogenically cooled IR sensors operating under low background conditions. By the use of a digital computer, this model can rapidly select the optimal combination of design values. These parameters include load resistance, compensation resistance, compensation capacitance, chopping frequency, and detector area to meet desired specifications of noise equivalent power, frequency response, dynamic range, and level of output noise. This computer-assisted optimal design approach is demonstrated using a contemporary spaceborne infrared sensor application, i.e., a cryogenically cooled dual-channel radiometer.

  15. Superconducting infrared detector arrays with integrated processing circuitry

    SciTech Connect

    Osterman, D.P.; Marr, P.; Dang, H.; Yao, C.T.; Radparvar, M. )

    1991-03-01

    This paper reports on thin film Josephson junctions used as infrared detectors' which function by a thermal sensing mechanism. In addition to the potential for high sensitivity to a broad range of optical wavelengths, they are ideally suited for integration with superconducting electronics on a single wafer. A project at HYPRES to develop these arrays is directed along two avenues: maximizing the sensitivity of individual Josephson junction detector/SQUID amplifier units and development of superconducting on-chip processing circuitry - multiplexers and A to D converters.

  16. Construction of prototypes of a new class of infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.

    1976-01-01

    A class of infrared detectors is proposed and experimental results are presented for a prototype device. The material used is LaF3, an ionic conductor with a capacitance that varies exponentially with temperature. The detectivity of a prototype detector is estimated from measured signal voltages and incident power, and a Johnson noise voltage calculated from the measured resistance. For the parameters characterizing this device the estimated detectivity is consistent with a theoretical prediction. The theory further predicts an optimum detectivity for much thinner devices than the prototypes.

  17. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  18. Kinetic inductance detectors for far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, A.; Aguirre, J.; Stevenson, T.

    2016-07-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels.

  19. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

    SciTech Connect

    Zuo, Daniel; Liu, Runyu; Wasserman, Daniel; Mabon, James; He, Zhao -Yu; Liu, Shi; Zhang, Yong -Hang; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

    2015-02-18

    We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 202 ns, with a vertical diffusivity of 2.78 x 10–2 cm2/s. We also report on the device's optical response characteristics at 78 K.

  20. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

    DOE PAGESBeta

    Zuo, Daniel; Liu, Runyu; Wasserman, Daniel; Mabon, James; He, Zhao -Yu; Liu, Shi; Zhang, Yong -Hang; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

    2015-02-18

    We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 202 ns, with a vertical diffusivity of 2.78 x 10–2 cm2/s. Wemore » also report on the device's optical response characteristics at 78 K.« less

  1. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

    SciTech Connect

    Zuo, Daniel Liu, Runyu; Wasserman, Daniel; Mabon, James; He, Zhao-Yu; Liu, Shi; Zhang, Yong-Hang; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

    2015-02-16

    We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures, we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 200 ns, with a vertical diffusivity of 3 × 10{sup −2} cm{sup 2}/s. We also report on the device's optical response characteristics at 78 K.

  2. Space applications of superconductivity - Microwave and infrared detectors

    NASA Technical Reports Server (NTRS)

    Hamilton, C. A.

    1980-01-01

    This is the fifth of a seven part series on the potential applications of superconductivity in space. The potential of superconducting microwave and infrared detectors for space applications is reviewed. The devices considered include bolometers, super-Schottky diodes and Josephson junctions operating as oscillators, mixers, and parametric amplifiers. In each case the description includes the physical mechanism, theoretical limits and the current state of the art for the superconducting device as well as its nonsuperconducting competitors.

  3. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  4. n-B-pi-p Superlattice Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2011-01-01

    A specially designed barrier (B) is inserted at the n-pi junction [where most GR (generation-recombination) processes take place] in the standard n-pi-p structure to substantially reduce generation-recombination dark currents. The resulting n-Bpi- p structure also has reduced tunneling dark currents, thereby solving some of the limitations to which current type II strained layer superlattice infrared detectors are prone. This innovation is compatible with common read-out integrated circuits (ROICs).

  5. Research of thermal cycles of long wavelength MCT infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, Li-gang; Liu, Da-fu; Zhu, San-gen; Gong, Hai-mei

    2009-07-01

    The conflict of longevity of satellite's service and limited life of Sterling cooler decides that coolers should work on the intermittent mode in space. As a result, The HgCdTe (MCT) infrared (IR) detectors in satellite are commonly subjected to thousands of repeated thermal cycles from below -173°C to room temperature (20°C), which brings some new reliability problems. Especially the mismatch of coefficient of thermal expansion (CTE) of different materials may lead to some unfamiliar failure modes with such low temperature and nearly 200°C span of thermal cycles. In order to study the characteristics of MCT detectors under the stress of thermal cycles, this paper introduced a special automatic system. The system is mainly composed of a sub-container of liquid nitrogen, a heater controlled by the PID hardware, and an object stage on which the MCT detectors to be tested are mounted. Furthermore, the sub-container, the heater and the stage are positioned in a large vacuum tank. In the course of thermal cycles, the object stage moved up and down with MCT detectors is driven by a step motor. When it rises to the bottom of liquid nitrogen sub-container, the stage is to be cooled with detectors, and when declines to the heater, the stage to be heated with detectors, too. At last, two long wavelength MCT detector samples are tested with this equipment, and the resistance, the signal and the noise are measured. It shows that all the pixels' resistance didn't change beyond 5% after 5000 cycles. However, the tested signal of the last pixel of both detectors increased sharply after 1000 cycles, and fell to normal level after 5000 cycles, with its noise altering a little from beginning to end. A deduction is given in this paper for this phenomenon. In accordance, the thermal cycle equipment and the experimental data, would supply some references to the design and fabrication of MCT IR detectors.

  6. Cooled and uncooled infrared detectors for missile seekers

    NASA Astrophysics Data System (ADS)

    Fraenkel, Rami; Haski, Jacob; Mizrahi, Udi; Shkedy, Lior; Shtrichman, Itay; Pinsky, Ephi

    2014-06-01

    Electro-optical missile seekers pose exceptional requirements for infrared (IR) detectors. These requirements include: very short mission readiness (time-to-image), one-time and relatively short mission duration, extreme ambient conditions, high sensitivity, fast frame rate, and in some cases small size and cost. SCD is engaged in the development and production of IR detectors for missile seeker applications for many years. 0D, 1D and 2D InSb focal plane arrays (FPAs) are packaged in specially designed fast cool-down Dewars and integrated with Joule-Thomson (JT) coolers. These cooled MWIR detectors were integrated in numerous seekers of various missile types, for short and long range applications, and are combat proven. New technologies for the MWIR, such as epi-InSb and XBn-InAsSb, enable faster cool-down time and higher sensitivity for the next generation seekers. The uncooled micro-bolometer technology for IR detectors has advanced significantly over the last decade, and high resolution - high sensitivity FPAs are now available for different applications. Their much smaller size and cost with regard to the cooled detectors makes these uncooled LWIR detectors natural candidates for short and mid-range missile seekers. In this work we will present SCD's cooled and uncooled solutions for advanced electro-optical missile seekers.

  7. Si and GaAs photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.

    1980-01-01

    Improvement of the previously reported photocapacitive MIS infrared detectors has led to the development of exceptional room-temperature devices. Unoptimized peak detectivities on the order of 10 to the 13th cm sq rt Hz/W, a value which exceeds the best obtainable from existing solid-state detectors, have now been consistently obtained in Si and GaAs devices using high-capacitance LaF3 or composite LaF3/native-oxide insulating layers. The measured spectral response of representative samples is presented and discussed in detail together with a simple theory which accounts for the observed behavior. The response of an ideal MIS photocapacitor is also contrasted with that of both a conventional photoconductor and a p-i-n photodiode, and reasons for the superior performance of the MIS detectors are given. Finally, fundamental studies on the electrical, optical, and noise characteristics of the MIS structures are analyzed and discussed in the context of infrared-detector applications.

  8. Photoacoustic-based detector for infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, L.; Palzer, S.

    2016-07-01

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number density and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v3 band at 6046.95 cm-1 using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.

  9. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  10. Optical Studies on Antimonide Superlattice Infrared Detector Material

    NASA Technical Reports Server (NTRS)

    Hoglund, Linda; Soibel, Alexander; Hill, Cory J.; Ting, David Z.; Khoshakhlagh, Arezou; Liao, Anna; Keo, Sam; Lee, Michael C.; Nguyen, Jean; Mumolo, Jason M.; Gunapala, Sarath D.

    2010-01-01

    In this study the material quality and optical properties of type II InAs/GaSb superlattices are investigated using transmission and photoluminescence (PL) spectroscopy. The influence of the material quality on the intensity of the luminescence and on the electrical properties of the detectors is studied and a good correlation between the photodetector current-voltage (IV) characteristics and the PL intensity is observed. Studies of the temperature dependence of the PL reveal that Shockley-Read-Hall processes are limiting the minority carrier lifetime in both the mid-IR wavelength and the long-IR wavelength detector material studied. These results demonstrate that PL spectroscopy is a valuable tool for optimization of infrared detectors.

  11. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  12. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  13. Bi-material resonant infrared thermal detector and array

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Dacheng

    2014-10-01

    A resonant infrared thermal sensor with high sensitivity, whose sensing element is a bi-material structure with thermal expansion mismatch effect, is presented in this paper. The sensor detects infrared radiation by means of tracking the change in resonance frequency of the bi-material structure with temperature change attributed to the infrared radiation from targets. The bi-material structure can amplify the change in resonance frequency compared to a single material sensing structure. In accordance with the theory of vibration mechanics and design principle of infrared thermal detector, the bi-material resonant sensor by means of which an array can be achieved is designed. The simulation results, by ANSYS software analysis based on multi-layer shell finite element, demonstrate that the dependence of resonance frequency on temperature of the designed sensing structure achieves 1Hz/0.01°C. A microarray with 6×6 resonant infrared sensors is fabricated based on microelectronics processes being compatible with integrated circuit fabrication technology. The frequency variation corresponding to the temperature shift can be obtained by electrical measurement.

  14. Cooling and shielding systems for infrared detectors - requirements and limits.

    PubMed

    Wiecek, B

    2005-01-01

    This paper presents three main cooling systems used for infrared detectors. At first thermoelectric devices are discussed. They allow cooling down the detector with low efficiency and not to the very low temperature. They do not generate any vibrations and therefore are suitable for thermal detectors, where the microphone effect can decrease their performance. Photon detectors need to be cooled down even to 77K or better. The only way to have such deep cooling is to use the cooler based on thermodynamic cycle such as Stirling one. With the high efficiency one can easily obtain cryogenic temperature for a detector. The electromagnetic noise and vibration generation are the main disadvantages of using such devices. Joule-Thomson effect during gas expansion is 3rdcooling system discussed in the paper. It is highly effective process, used for gas liquefaction too. The working gas is being removed during cooling into the atmosphere, so the need of continuous supplying with compressed one, what makes this system very difficult for remote applications. In the paper, simple calculations are presented to illustrate the advantages and disadvantages of the different cooling systems. PMID:17282258

  15. The development of infrared detectors and mechanisms for use in future infrared space missions

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1995-01-01

    The environment above earth's atmosphere offers significant advantages in sensitivity and wavelength coverage in infrared astronomy over ground-based observatories. In support of future infrared space missions, technology development efforts were undertaken to develop detectors sensitive to radiation between 2.5 micron and 200 micron. Additionally, work was undertaken to develop mechanisms supporting the imaging and spectroscopy requirements of infrared space missions. Arsenic-doped-Silicon and Antimony-doped-Silicon Blocked Impurity Band detectors, responsive to radiation between 4 micron and 45 micron, were produced in 128x128 picture element arrays with the low noise, high sensitivity performance needed for space environments. Technology development continued on Gallium-doped-Germanium detectors (for use between 80 micron and 200 micron), but were hampered by contamination during manufacture. Antimony-doped-Indium detectors (for use between 2.5 micron and 5 micron) were developed in a 256x256 pixel format with high responsive quantum efficiency and low dark current. Work began on adapting an existing cryogenic mechanism design for space-based missions; then was redirected towards an all-fixed optical design to improve reliability and lower projected mission costs.

  16. Surface Leakage Mechanisms in III-V Infrared Barrier Detectors

    NASA Astrophysics Data System (ADS)

    Sidor, D. E.; Savich, G. R.; Wicks, G. W.

    2016-09-01

    Infrared detector epitaxial structures employing unipolar barriers exhibit greatly reduced dark currents compared to simple pn-based structures. When correctly positioned within the structure, unipolar barriers are highly effective at blocking bulk dark current mechanisms. Unipolar barriers are also effective at suppressing surface leakage current in infrared detector structures employing absorbing layers that possess the same conductivity type in their bulk and at their surface. When an absorbing layer possesses opposite conductivity types in its bulk and at its surface, unipolar barriers are not solutions to surface leakage. This work reviews empirically determined surface band alignments of III-V semiconductor compounds and modeled surface band alignments of both gallium-free and gallium-containing type-II strained layer superlattice material systems. Surface band alignments are used to predict surface conductivity types in several detector structures, and the relationship between surface and bulk conductivity types in the absorbing layers of these structures is used as the basis for explaining observed surface leakage characteristics.

  17. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  18. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882.1935 Section 882.1935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma...

  19. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882.1935 Section 882.1935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma...

  20. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882.1935 Section 882.1935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma...

  1. Reflow flip-chip bonding technology for infrared detectors

    NASA Astrophysics Data System (ADS)

    Huang, Yue; Lin, Chun; Ye, Zhen-Hua; Ding, Rui-Jun

    2015-08-01

    Based on the self-alignment principle, a new reflow flip-chip bonding technology for infrared detectors is proposed. By optimizing the dimensions between the under bump metallization (UBM) and the indium bump, 10 µm tall spherical indium balls are achieved firstly. Then the technical parameters of heating temperature and surface pre-treatment are discussed. Thereafter, a new reflow flip-chip bonding technology is applied to the infrared focal plane array (IRFPA) and it results in a 6.7% of the total bad pixel percentage which is dramatically decreased compared with the thermo-compression one of 41.9%. The deduced fatigue life of the IRFPA bonded by the new reflow flip-chip bonding technology is four times longer than that of the thermo-compression one.

  2. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  3. InAs/GaSb superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Masur, Michael; Schmitz, Johannes; Daumer, Volker; Niemasz, Jasmin; Vandervelde, Thomas; DeMeo, Dante; Luppold, Wolfgang; Wauro, Matthias; Wörl, Andreas; Rutz, Frank; Scheibner, Ralf; Ziegler, Johann; Walther, Martin

    2013-07-01

    Future heterojunction InAs/GaSb superlattice (SL) detector devices in the long-wavelength infrared regime (LWIR, 8-12 μm) require an accurate bandstructure model and a successful surface passivation. In this study, we have validated the superlattice empirical pseudopotential method developed by Dente and Tilton over a wide range of bandgap energies. Furthermore, dark current data for a novel dielectric surface passivation for LWIR devices is presented. Next, we present a technique for high-resolution, full-wafer mapping of etch pit densities on commercial (1 0 0) GaSb substrates, which allows to study the local correlation between threading dislocations in the substrate and the electro-optical pixel performance. Finally, recent performance data for 384 × 288 dual-color InAs/GaSb superlattice imagers for the mid-wavelength infrared (MWR, 3-5 μm) is given.

  4. InGaAs Detectors for Miniature Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Krabach, T. N.; Staller, C.; Dejewski, S.; Cunningham, T.; Herring, M.; Fossum, E. R.

    1993-01-01

    In the past year, there has been substantial impetus for NASA to consider missions that are of relatively low cost as a trade off for a higher new mission launch rate. To maintain low mission cost, these missions will be of short duration and will use smaller launch vehicles (e.g. Pegasus). Consequently, very low volume, very low mass instrument (a.k.a. miniature instrument) payloads will be required. Furthermore, it is anticipated that the number of instruments flown on a particular mission will also be highly constrained; consequently increased instrument capability will also be desired. In the case of infrared instruments, focal planes typically require cooling to ensure high performance of the detectors, especially in the case of spectrometers where high D* is necessary. In this paper, we discuss the InGaAs detector technology and its potential.

  5. Infrared reflectometry with a cavity-shaped pyroelectric detector.

    PubMed

    Blevin, W R; Geist, J

    1974-10-01

    A new type of reflectometer has been developed for measuring directional-hemispherical spectral reflectances in the infrared region. The instrument is based upon a cavity-shaped pyroelectric detector that itself collects the radiation reflected by the test sample, thereby obviating the need for an intermediate collector such as an integrating sphere or concave mirror. This detector is made from an electrically polarized plastic film of polyvinyl fluoride, coated with gold-black on its inner surface and backed with brass him on its outer surface in order to provide mechanical strength. The reflectometer has been used with Fourier spectrometer to measure spectral reflectances over the wavelength range 5-30 microm. PMID:20134663

  6. Megapixel digital InSb detector for midwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Shkedy, Lior; Markovitz, Tuvy; Calahorra, Zipi; Hirsh, Itay; Shtrichman, Itay

    2011-06-01

    Since the late 1990s Semiconductor devices (SCDs) has developed and manufactured a variety of InSb two-dimensional (2D) focal plane arrays (FPAs) that were implemented in many infrared (IR) systems and applications. SCD routinely manufactures both analog and digital InSb FPAs with array formats of 320×256, 480×384, and 640×512 elements, and pitch size in the range 15 to 30 μm. These FPAs are available in many packaging configurations, including fully integrated detector-Dewar-cooler-assembly, with either closed-cycle Stirling or open-loop Joule-Thomson coolers. In response to a need for very high resolution midwave IR (MWIR) detectors and systems, SCD has developed a large format 2D InSb detector with 1280×1024 elements and pixel size of 15 μm. A digital readout integrated circuit (ROIC) is coupled by flip-chip bonding to the megapixel InSb array. The ROIC is fabricated in CMOS 0.18-μm technology, that enables the small pixel circuitry and relatively low power generation at the focal plane. The digital ROIC has an analog to digital (A/D) converter per-channel and allows for full frame readout at a rate of 100 Hz. Such on-chip A/D conversion eliminates the need for several A/D converters with fairly high power consumption at the system level. The digital readout, together with the InSb detector technology, lead to a wide linear dynamic range and low residual nonuniformity, which is stable over a long period of time following a nonuniformity correction procedure. A special Dewar was designed to withstand harsh environmental conditions while minimizing the contribution to the heat load of the detector. The Dewar together with the low power ROIC, enable a megapixel detector with overall low size, weight, and power with respect to comparable large format detectors. A variety of applications with this detector make use of different cold shields with different f-number and spectral filters. In this paper we present actual performance characteristics of the

  7. Crosstalk study of near infrared InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Li, Tao; Fan, Cui; Shao, Xiumei; Li, Jianwei; Wei, Jun; Gong, Haimei

    2016-05-01

    Crosstalk characteristics of high density FPA detectors attract widespread attention in the application of electro-optical systems. Crosstalk characteristics of near-infrared (NIR) InGaAs photodiodes and focal plane arrays (FPAs) were studied in this paper. The mesa type detector was investigated by using laser beam induced current technique (LBIC) to measure the absorption outside the designed photosensitive area, and the results show that the excess absorption enlarges the crosstalk of the adjacent pixels. The structure optimization using the effective absorption layer between the pixels can effectively reduce the crosstalk to 2.5%. The major crosstalk components of the optimization photodiode come from the electronic signal caused by carrier lateral diffusion. For the planar type detectors, test structures were used to compare the crosstalk of different structures, and the guard ring structure shows good suppression of the crosstalk. Then the back-illuminated 32x32 InGaAs photodiodes with 30μm pitch were designed, and LBIC was used to measure its lateral diffusion of the effective carriers and fill factor of photosensitive area. The results indicate that the fill factor of detectors can reach up to 98% when the diffusion region is optimized, and the minimum response exists between two neighborhood pixels. Based on these crosstalk measurement results and optimizing structure designs, the linear InGaAs photodiodes were designed and thus the InGaAs FPA assembly was fabricated. The assembly shows higher electro-optical performance and good improvement on crosstalk. The assembly was applied in infrared imaging system and modulation transfer function (MTF) of FPA assembly was calculated to be above 0.50. The clear image based on FPA assembly was obtained.

  8. Fabrication of superconducting NbN meander nanowires by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Li-Hua, Liu; Lu-Hui, Ning; Yi-Rong, Jin; Hui, Deng; Jie, Li; Yang, Li; Dong-Ning, Zheng

    2016-01-01

    Superconducting nanowire single photon detector (SNSPD), as a new type of superconducting single photon detector (SPD), has a broad application prospect in quantum communication and other fields. In order to prepare SNSPD with high performance, it is necessary to fabricate a large area of uniform meander nanowires, which is the core of the SNSPD. In this paper, we demonstrate a process of patterning ultra-thin NbN films into meander-type nanowires by using the nano-imprint technology. In this process, a combination of hot embossing nano-imprint lithography (HE-NIL) and ultraviolet nano-imprint lithography (UV-NIL) is used to transfer the meander nanowire structure from the NIL Si hard mold to the NbN film. We have successfully obtained a NbN nanowire device with uniform line width. The critical temperature (Tc) of the superconducting NbN meander nanowires is about 5 K and the critical current (Ic) is about 3.5 μA at 2.5 K. Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00106 and 2009CB929102) and the National Natural Science Foundation of China (Grant Nos. 11104333 and 10974243).

  9. Type-II superlattice infrared detector technology at Fraunhofer IAF

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Daumer, Volker; Hugger, Tsvetelina; Kohn, Norbert; Luppold, Wolfgang; Müller, Raphael; Niemasz, Jasmin; Schmidt, Johannes; Rutz, Frank; Stadelmann, Tim; Wauro, Matthias; Wörl, Andreas

    2016-05-01

    For more than two decades, Antimony-based type-II superlattice photodetectors for the infrared spectral range between 3-15 μm are under development at the Fraunhofer Institute for Applied Solid State Physics (IAF). Today, Fraunhofer IAF is Germany's only national foundry for InAs/GaSb type-II superlattice detectors and we cover a wide range of aspects from basic materials research to small series production in this field. We develop single-element photodetectors for sensing systems as well as two-dimensional detector arrays for high-performance imaging and threat warning systems in the mid-wavelength and long-wavelength region of the thermal infrared. We continuously enhance our production capabilities by extending our in-line process control facilities. As a recent example, we present a semiautomatic wafer probe station that has developed into an important tool for electrooptical characterization. A large amount of the basic materials research focuses on the reduction of the dark current by the development of bandgap engineered device designs on the basis of heterojunction concepts. Recently, we have successfully demonstrated Europe's first LWIR InAs/GaSb type-II superlattice imager with 640x512 pixels with 15 μm pitch. The demonstrator camera already delivers a good image quality and achieves a thermal resolution better than 30 mK.

  10. Compact dewar and electronics for large-format infrared detectors

    NASA Astrophysics Data System (ADS)

    Manissadjian, A.; Magli, S.; Mallet, E.; Cassaigne, P.

    2011-06-01

    Infrared systems cameras trend is to require higher performance (thanks to higher resolution) and in parallel higher compactness for easier integration in systems. The latest developments at SOFRADIR / France on HgCdTe (Mercury Cadmium Telluride / MCT) cooled IR staring detectors do show constant improvements regarding detector performances and compactness, by reducing the pixel pitch and optimizing their encapsulation. Among the latest introduced detectors, the 15μm pixel pitch JUPITER HD-TV format (1280×1024) has to deal with challenging specifications regarding dewar compactness, low power consumption and reliability. Initially introduced four years ago in a large dewar with a more than 2kg split Stirling cooler compressor, it is now available in a new versatile compact dewar that is vacuum-maintenance-free over typical 18 years mission profiles, and that can be integrated with the different available Stirling coolers: K548 microcooler for light solution (less than 0.7 kg), K549 or LSF9548 for split cooler and/or higher reliability solution. The IDDCAs are also required with simplified electrical interface enabling to shorten the system development time and to standardize the electronic boards definition with smaller volumes. Sofradir is therefore introducing MEGALINK, the new compact Command & Control Electronics compatible with most of the Sofradir IDDCAs. MEGALINK provides all necessary input biases and clocks to the FPAs, and digitizes and multiplexes the video outputs to provide a 14 bit output signal through a cameralink interface, in a surface smaller than a business card.

  11. Infrared dual-band detectors for next generation

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Chabuel, Fabien; Vaz, Cedric; Billon-Lanfrey, David; Baylet, Jacques; Gravrand, Olivier; Ballet, Philippe; Destefanis, Gérard

    2011-06-01

    The development of DB (Dual-Band) infrared detectors has been the core of research and technological improvements for the last ten years at CEA-LETI and Sofradir: the semi planar structure uses a proven standard process with robust reproducibility, leading to low-risk and a facilitated ramp-up to production. This makes it the natural choice for the third generation detectors proposed by Sofradir. The fabrication of DB MCT detectors is reaching maturity: ALTAIR with 24μm-pixel pitch arrays in TV format are available, showing median NETD around 18mK with operability over 99.5%. A second structure, based on two back to back diodes, with a single contact per pixel translates the DB pixel into smaller cell therefore being more efficient in terms of pitch reduction. These new technologies widen perspectives and open new horizons of applications such as large DB FPA, dual mode capability providing both SAL (Semi Active Laser) and IR operations for more robust target engagement or compact dual color detection with wide-angle integrated optics for missile warning system.

  12. Detector Arrays for an Airborne Infrared Echelle Spectrometer

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Haas, M. R.; Baltz, J. A.; McKelvey, M. E.; Colgan, S. W. J.; Lynch, D. H.; Wolf, J.; Witteborn, Fred (Technical Monitor)

    1996-01-01

    The design of a long-slit echelle spectrograph covering the 16 - 210 micron range for use on the Stratospheric Observatory for Infrared Astronomy (SOFIA) is under study at NASA-Ames. This wavelength range is selected for its content of important astrophysical spectral lines accessible from an airborne platform, and availability of suitable detectors. Two dimensional arrays will be used to simultaneously provide spectral coverage in the dispersion direction and imaging in the cross-dispersion direction. Major goals are: (1) to reach sensitivities limited primarily by the background from the residual atmosphere and the telescope; (2) to provide imaging not far from the diffraction limit of the 2.5 meter (effective) aperture of the telescope; and (3) to obtain diffraction-limited spectral resolution from the large echelle grating, which means that the resolving power increases with decreasing wavelength. To meet these requirements, three detector types are forseen: a commercially available monolithic Si:Sb IBC array to cover the wavelength range from 16 to 40 microns, a Ge:Sb photoconductor array to cover the range from 40 to 125 microns, and a stressed Ge:Ga photoconductor array covering the range from 125 to 210 microns. The paper discusses details of the studies and plans for the field optics, detectors, and readouts.

  13. Optimization of (100)-Si TMAH etching for uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Shuai, Y.; Wu, C. G.; Zhang, W. L.; Li, Y. R.; Liu, X. Z.; Zhu, J.

    2009-07-01

    The influences of concentration of the Tetra-methyl ammonium hydroxide (TMAH) solution together with oxidizer additions were studied in order to optimize the anisotropic silicon etching in the development of a fabrication process for Ba0.65Sr0.35TiO3 (BST) pyroelectric thin film infrared detectors. The detector active element was consisted of capacitance NiCr/BST/Pt and the thin silicon suspending membrane. The later one was formed by bulk anisotropically etching of the (100)-Si wafer. Both solution concentration and oxidizing agent were tuned in order to obtain an optimum etching process. Some improvements such as higher etch rate and lower surface roughness have been obtained by the addition of ammonium peroxide sulfate ((NH4)S2O8) as oxidizing agent under different conditions. The examination of etching speed and surface topography were performed by step surface profiler and scanned electronic microscopy. Furthermore, a simple approach was developed to fabric BST pyroelectric thin film detector based on the optimized TMAH etching parameters. A BST thin film capacitance was formed on a thin silicon membrane, where high sensitivity D* of 9.4×107cm•Hz1/2/W was measured.

  14. Visible/Infrared Imaging Spectroscopy and Energy-Resolving Detectors

    NASA Astrophysics Data System (ADS)

    Eisenhauer, Frank; Raab, Walfried

    2015-08-01

    Imaging spectroscopy has seen rapid progress over the past 25 years, leading to breakthroughs in many fields of astronomy that would not have been otherwise possible. This review overviews the visible/infrared imaging spectroscopy techniques as well as energy-resolving detectors. We introduce the working principle of scanning Fabry-Perot and Fourier transform spectrometers and explain the most common integral field concepts based on mirror slicers, lenslet arrays, and fibers. The main advantage of integral field spectrographs is the simultaneous measurement of spatial and spectral information. Although Fabry-Perot and Fourier transform spectrometers can provide a larger field of view, it is ultimately the higher sensitivity of integral field units that make them the technique of choice. This is arguably the case for image slicers, which make the most efficient use of the available detector pixels and have equal or higher transmission than lenslet arrays and fiber integral field units, respectively. We also address the more specific issues of large étendue operation, focal ratio degradation, anamorphic magnification, and diffraction-limited operation. This review also covers the emerging technology of energy-resolving detectors, which promise very simple and efficient instrument designs. These energy-resolving detectors are based on superconducting thin film technology and exploit either the very small superconducting energy to count the number of quasi-particles excited in the absorption of the photon or the extremely steep phase transition between the normal- and superconducting phase to measure a temperature increase. We have put special emphasis on an overview of the underlying physical phenomena as well as on the recent technological progress and astronomical path finder experiments.

  15. Application of fast infrared detectors to detonation science

    SciTech Connect

    Von Holle, W.G.; McWilliams, R.A.

    1982-07-28

    Infrared radiometers have been used to make time-resolved emission measurements of shocked explosives. Instruments of moderate time resolution were used to estimate temperatures in shocked but not detonated explosives. The heterogeneity of the shock-induced heating was discovered in pressed explosives by two-band techniques, and the time-resolved emittance or extent of hot spot coverage indicated a great dependence on shock pressures. Temperatures in moderately shocked organic liquids were also measured. Faster response radiometers with 5 ns rise times based on InSb and HgCdTe photovoltaic detectors were constructed and tested. Preliminary data on reactive shocks and detonations reveal a resolution of the heating in the shock wave and the following reaction.

  16. Advances in detector technologies for visible and infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. The LGSD is a scaling of the NGSD with 1760x1680 pixels and 3 e readout noise (goal 1e) at 700 Hz (goal 1000 Hz) frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. In addition, the CMOS technology is extremely robust in a telescope environment. Both detectors will be used on the European ELT but also interest potentially all giant telescopes under development. Additional developments also started for wavefront sensing in the infrared based on a new technological breakthrough using ultra low noise Avalanche Photodiode (APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter will offer a 320x240 8 outputs 30 microns IR array, sensitive from 0.4 to 3.2 microns, with 2 e readout noise at 1500 Hz frame rate. The high QE response is almost flat over this wavelength range. Advanced packaging with miniature cryostat using liquid nitrogen free pulse tube cryocoolers is currently developed for this programme in order to allow use on this detector in any type of environment. First results of this project are detailed here. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC). Funding is: Opticon FP6 and FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI and the French FUI (DGCIS).

  17. Design of catadioptric middle infrared continuous zoom lens for uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Jiang, Kai; Zhou, Si-zhong; Duan, Jing; Wang, Yan-bin; Zhang, Heng-jin

    2011-08-01

    For uncooled 320×240 infrared detector, a catadioptric middle infrared continuous zoom lens is presented. The optical system is divided into three segments. First of all, a reflective system is designed as the front system. Then the continuous zoom lens which matches with the reflective system as the back system is designed. The conversed back system is assembled at the first imaging of the optical system with the reflective system. A continuous variable magnification catadiootric telescope is obtained. Projection objective is designed based on the telescope lastly. To ensure the imaging quality of the system, the whole system is optimized with the CODE V software. The system can realize 200mm~800mm continuous zoom. The designed result shows the system has the advantages of simple structure, short zoom path and smooth zoom locus, high image quality and approached or reached to the diffraction limit.

  18. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  19. Detection mechanisms in microstrip dipole antenna-coupled infrared detectors

    NASA Astrophysics Data System (ADS)

    Codreanu, Iulian; Gonzalez, Francisco J.; Boreman, Glenn D.

    2003-06-01

    We compare the detection mechanisms employed in microstrip dipole antenna-coupled infrared detectors. The electrical currents induced along the antenna arms are detected by a rectangular niobium (Nb) microsensor placed at the center of the antenna. The ohmic nature of the Au-Nb contact determines the detection mechanism. Devices with linear contacts between the Au antenna arms and the Nb microsensor exhibit bolometric response. A nonlinear Au-insulator-Nb junction rectifies the induced antenna currents. Devices with nonlinear contacts also exhibit a bolometric response. The devices with nonlinear contacts are 1/ f noise limited while the devices with linear contacts are Johnson noise limited. The rectification mechanism is 5.3 times faster than the thermal detection. The current-voltage ( I- V) characteristic of the devices exhibiting bolometric response is linear, while that of the rectifying devices is cubic. For devices with nonlinear contacts excellent agreement is obtained between the measured detector response and the ratio between the second and the first derivative of the I- V characteristic.

  20. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  1. Characterization of an infrared detector for high frame rate thermography

    NASA Astrophysics Data System (ADS)

    Fruehmann, R. K.; Crump, D. A.; Dulieu-Barton, J. M.

    2013-10-01

    The use of a commercially available photodetector based infrared thermography system, operating in the 2-5 µm range, for high frame rate imaging of temperature evolutions in solid materials is investigated. Infrared photodetectors provide a very fast and precise means of obtaining temperature evolutions over a wide range of science and engineering applications. A typical indium antimonide detector will have a thermal resolution of around 4 mK for room temperature measurements, with a noise threshold around 15 to 20 mK. However the precision of the measurement is dependent on the integration time (akin to exposure time in conventional photography). For temperature evolutions that occur at a moderate rate the integration time can be relatively long, enabling a large signal to noise ratio. A matter of increasing importance in engineering is the behaviour of materials at high strain rates, such as those experienced in impact, shock and ballistic loading. The rapid strain evolution in the material is usually accompanied by a temperature change. The temperature change will affect the material constitutive properties and hence it is important to capture both the temperature and the strain evolutions to provide a proper constitutive law for the material behaviour. The present paper concentrates on the capture of the temperature evolutions, which occur at such rates that rule out the use of contact sensors such as thermocouples and electrical resistance thermometers, as their response times are too slow. Furthermore it is desirable to have an indication of the temperature distribution over a test specimen, hence the full-field approach of IRT is investigated. The paper explores the many hitherto unaddressed challenges of IRT when employed at high speed. Firstly the images must be captured at high speeds, which means reduced integration times and hence a reduction in the signal to noise ratio. Furthermore, to achieve the high image capture rates the detector array must be

  2. Spectral matching factors between low-light-level and infrared fusion optoelectronic detector and objects

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Fan, Yinghao; Chang, Benkang

    2009-09-01

    According to the response of photoelectric device to a light source, the formula of spectral matching factor of low-lightlevel and infrared fusion optoelectronic detector-object combination is deduced. The spectral matching factors of photo cathode and infrared detector for green vegetation are calculated and compared. Through the analysis of results it shows that spectral matching factor has influence on the performance of low light level and infrared fusion night vision system.

  3. On-orbit performance of the Compact Infrared Camera (CIRC) with uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Katayama, Haruyoshi; Sakai, Michito; Kato, Eri.; Nakajima, Yasuhoiro; Nakau, Koji.; Kimura, Toshiyoshi

    2015-06-01

    We have developed the Compact Infrared Camera (CIRC) with an uncooled infrared array detector (microbolometer) for space application. Microbolometers have an advantage of not requiring cooling system such as a mechanical cooler, and is suitable for resource-limited sensor system. Another characteristic of the CIRC is its use of athermal optics. The athermal optics system compensates for defocus owing to temperature changes. We also employ a shutter-less system which is a method to correct non-uniformity of the detector without a mechanical shutter. The CIRC achieves a small size (approximately 200 mm), light mass (approximately 3 kg), and low electrical power consumption (<20 W) by employing athermal optics and a shutterless system. The CIRC is launched in May 2014 as a technology-demonstration payload of Advanced Land Observation Satellite-2 (ALOS-2). Since the initial functional verification phase (July 4-14, 2014), the CIRC was demonstrated a function according to its intended design. We also confirmed the temperature accuracy of the CIRC observation data is within +/-4K in the calibration validation phase after the initial functional verification phase. The CIRC also detected wildfires in various areas and observed the volcano activities in the operational phase. In this paper, we present the on-orbit performance of the CIRC onboard ALOS-2.

  4. New and Better H2RG Detectors for the JWST Near Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.

    2014-01-01

    Remanufacturing of the near-infrared H2RG detectors for the James Webb Space Telescope (JWST) is nearing completion. The first of the Near Infrared Spectrograph (NIRSpec) flight candidates were delivered on-schedule this summer. We tested the detectors at Teledyne and characterized them in the Goddard Detector Characterization Laboratory (DCL), with excellent agreement between the two labs. Here we describe the DCL results which show the new detectors to be even better than the previous flight detectors. Highlights include improvements in the transimpedance gain that will reduce read noise and generally excellent QE over the full bandpass.

  5. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  6. Infra-red detector and method of making and using same

    DOEpatents

    Craig, Richard A.; Griffin, Jeffrey W.

    2007-02-20

    A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

  7. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    SciTech Connect

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z.; Dvoretskii, S.

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  8. The improved pyroelectric detectors for far-infrared laser interferometer measuring

    NASA Astrophysics Data System (ADS)

    Xiang, Gao

    1990-05-01

    In this paper, the application of the pyroelectric detectors for Far-Infrared laser diagnostics on TOKAMAK plasma is described. We discovered experimentally that the Fabry-Perot interference could affect the performance of the pyroelectric detectors (PED). The improved pyroelectric detector (IPD) was developed for FIR laser coheront measuring. Some designing considerations about the pyroelectric detectors used in high temperature plasma conditions are mentioned.

  9. Infrared Detectors Containing Stacked Si(1-x)Ge(x)/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, Jin S.; Lin, True-Lon; Jones, Eric; Del Castillo, Hector; Gunapala, Sarath

    1996-01-01

    Long-wavelength-infrared detectors containing multiple layers of high-quality crystalline p(+) Si(1-x)Ge(x) alternating with layers of Si undergoing development. Each detector comprises stack of Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) photodetectors. In comparison with older HIP detectors containing single Si(1-x)Ge(x)/Si heterojunctions, developmental detectors feature greater quantum efficiencies and stronger photoresponses.

  10. MEMS-based infrared detector for body thermometer

    NASA Astrophysics Data System (ADS)

    Yoo, Kum-Pyo; Kim, Yun-Ho; Min, Nam-Ki

    2005-12-01

    Infrared detectors have many application fields. One of those, MEMS based thermopile is attractive for many low-cost commercial and industrial applications, mainly because it does not require cooling for operation and the process technologies are relatively simple. The MEMS thermopile fabricated on a silicon nitride microbridge structure was proposed. Using microbridge rather conventional membrane makes it possible to fabricate much smaller micro thermopile and to reduce heat loss because of small contact area at silicon rim. The bridge material is only composed of Si3N4. The thermocouple was used a poly-Si and an aluminum. The characteristic of electromotive force (EMF) generation was evaluated for various patterns at hot junction. Aluminum thermocouple shape on bridge structure was designed two patterns. One was a square shape and the other shape was a hollow square. The output voltage of hollow square-type electrode was increased in compared with square-type electrode from 3.03uV/°C to 4.609uV/°C at body temperature (37°C). With the same membrane dimensions and the same overall thickness of the chip a thermopile on microbridge is almost 53% smaller a conventional thermopile chip.

  11. Defects and noise in Type-II superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Wörl, Andreas; Daumer, Volker; Rehm, Robert; Kirste, Lutz; Rutz, Frank; Schmitz, Johannes

    2013-06-01

    To examine defects in InAs/GaSb type-II superlattices we investigated GaSb substrates and epitaxial InAs/GaSb layers by synchrotron white beam X-ray topography to characterize the distribution of threading dislocations. Those measurements are compared with wet chemical etch pit density measurements on GaSb substrates and InAs/GaSb type-II superlattices epitaxial layer structures. The technique uses a wet chemical etch process to decorate threading dislocations and an automated optical analyzing system for mapping the defect distribution. Dark current and noise measurements on processed InAs/GaSb type-II superlattice single element photo diodes reveal a generation-recombination limited dark current behavior without contributions by surface leakage currents for midwavelength infrared detectors. In the white noise part of the noise spectrum, the extracted diode noise closely matches the theoretically expected shot noise behavior. For diodes with an increased dark current in comparison to the dark current of generation-recombination limited material, the standard shot-noise model fails to describe the noise experimentally observed in the white part of the spectrum. Instead, we find that McIntyre's noise model for avalanche multiplication processes fits the data quite well. We suggest that within high electric field domains localized around crystallographic defects, electrons initiate avalanche multiplication processes leading to increased dark current and excess noise.

  12. InAs/GaSb superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Lemke, Florian; Masur, Michael; Schmitz, Johannes; Stadelmann, Tim; Wauro, Matthias; Wörl, Andreas; Walther, Martin

    2015-05-01

    We report on the development of high-performance InAs/GaSb superlattice (SL) infrared (IR) detectors for the mid-wavelength (MWIR, 3-5 μm) and long-wavelength (LWIR, 8-12 μm) transmission window of the atmosphere. With a refined process technology, we are now able to fabricate dual-color focal plane arrays for the MWIR that excel at a very low number of noisy pixels. In an effort to correlate dark current and noise data of a larger number of devices, we found that for the description of the behavior in the white noise part of the spectrum, both, in InAs/GaSb SL photodiodes for the MWIR and the LWIR McIntyre's well-known model for excess noise of avalanche photodiodes is, in general, much more suited than the commonly used shot noise model. The analysis of dark current contributions is a convenient method to identify limiting mechanisms and extract material parameters such as the minority carrier lifetime. We show that even in large area devices the contribution of the sidewall leakage path should not be ignored for this kind of investigation. Finally, we present our Al-free heterojunction device concept for reduced dark current.

  13. Low-cost uncooled infrared detector arrays in standard CMOS

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Tanrikulu, M. Y.; Akin, Tayfun

    2003-09-01

    This paper reports the development of a low-cost 128 x 128 uncooled infrared focal plane array (FPA) based on suspended and thermally isolated CMOS p+-active/n-well diodes. The FPA is fabricated using a standard 0.35 μm CMOS process followed by simple post-CMOS bulk micromachining that does not require any critical lithography or complicated deposition steps; and therefore, the cost of the uncooled FPA is almost equal to the cost of the CMOS chip. The post-CMOS fabrication steps include an RIE etching to reach the bulk silicon and an anisotropic silicon etching to obtain thermally isolated pixels. During the RIE etching, CMOS metal layers are used as masking layers, and therefore, narrow openings such as 2 μm can be defined between the support arms. This approach allows achieving small pixel size of 40 μm x 40 μm with a fill factor of 44%. The FPA is scanned at 30 fps by monolithically integrated multi-channel parallel readout circuitry which is composed of low-noise differential transconductance amplifiers, switched capacitor (SC) integrators, sample-and-hold circuits, and various other circuit blocks for reducing the effects of variations in detector voltage and operating temperature. The fabricated detector has a temperature coefficient of -2 mV/K, a thermal conductance value of 1.8 x 10-7 W/K, and a thermal time constant value of 36 msec, providing a measured DC responsivity (R) of 4970 V/W under continuous bias. Measured detector noise is 0.69 μV in 8 kHz bandwidth at 30 fps scanning rate, resulting a measured detectivity (D*) of 9.7 x 108 cm√HzW. Contribution of the 1/f noise component is found to be negligible due to the single crystal nature of the silicon n-well and its low value at low bias levels. The noise of the readout circuit is measured as 0.76 μV, resulting in an expected NETD value of 1 K when scanned at 30 fps using f=1 optics. This NETD value can be decreased below 350 mK by decreasing the electrical bandwidth with the help of increased

  14. Generation and performance of automated jarosite mineral detectors for visible/near-infrared spectrometers at Mars

    NASA Astrophysics Data System (ADS)

    Gilmore, Martha S.; Bornstein, Benjamin; Merrill, Matthew D.; Castaño, Rebecca; Greenwood, James P.

    2008-05-01

    We have developed two automated detectors that can recognize the sulfate mineral jarosite in unknown visible to near-infrared spectra (350-2500 nm). The two detectors are optimized for use within the terrestrial and martian atmospheres. The detectors are built from Support Vector Machines trained using a generative model to create linear mixtures of library mineral spectra. Both detectors performed with an average ˜90% accuracy on laboratory spectra of single minerals and the laboratory and field spectra of rocks collected in a hydrothermal environment. This type of algorithm will contribute to the efficiency of onboard data analysis of landed and orbital visible/near-infrared spectrometers at Mars.

  15. Flexible infrared detectors based on p-n junctions of multi-walled carbon nanotubes.

    PubMed

    Huang, Zhenlong; Gao, Min; Yan, Zhuocheng; Pan, Taisong; Liao, Feiyi; Lin, Yuan

    2016-05-14

    Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm(-2) even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors. PMID:27101973

  16. Absolute linearity measurements on a PV HgCdTe detector in the infrared

    NASA Astrophysics Data System (ADS)

    Theocharous, Evangelos

    2012-04-01

    The linearity-of-response characteristics of a photovoltaic (PV) HgCdTe detector were investigated at a number of wavelengths in the infrared, using the NPL linearity of detector response characterization facility. The measurements were performed with the test detector operating under conditions identical to those in which the detectors will be used in typical infrared radiometric applications. The deviation from linearity in the generated photocurrent was shown to be strongly dependent on the area of the detector being illuminated. Plots of the linearity factor versus generated photocurrent for different illuminated wavelengths were shown to overlap. The linearity factor was shown to be a function of the photon irradiance of the illuminating beam. This behaviour was similar to that exhibited by photoconductive (PC) HgCdTe detectors, indicating that Auger recombination was the dominant source of the deviation from linearity observed in the test detector.

  17. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors

    NASA Astrophysics Data System (ADS)

    Lei, Wen; Antoszewski, Jarek; Faraone, Lorenzo

    2015-12-01

    This article presents a review on the current status, challenges, and potential future development opportunities for HgCdTe infrared materials and detector technology. A brief history of HgCdTe infrared technology is firstly summarized and discussed, leading to the conclusion that HgCdTe-based infrared detectors will continue to be a core infrared technology with expanded capabilities in the future due to a unique combination of its favourable properties. Recent progress and the current status of HgCdTe infrared technology are reviewed, including material growth, device architecture, device processing, surface passivation, and focal plane array applications. The further development of infrared applications requires that future infrared detectors have the features of lower cost, smaller pixel size, larger array format size, higher operating temperature, and multi-band detection, which presents a number of serious challenges to current HgCdTe-based infrared technology. The primary challenges include well controlled p-type doping, lower cost, larger array format size, higher operating temperature, multi-band detection, and advanced plasma dry etching. Various new concepts and technologies are proposed and discussed that have the potential to overcome the existing primary challenges that are inhibiting the development of next generation HgCdTe infrared detector technology.

  18. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOEpatents

    Maserjian, Joseph

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  19. Doping-Spike PtSi Schottky Infrared Detectors with Extended Cutoff Wavelengths

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1994-01-01

    A technique incorporating a p+ doping spike at the silicide/Si interface to reduce the effective Schottky barrier of the silicide infrared detectors and thus extend the cutoff wavelength has been developed.

  20. Quantum structure based infrared detector research and development within Acreo’s centre of excellence IMAGIC

    NASA Astrophysics Data System (ADS)

    Andersson, J. Y.; Höglund, L.; Noharet, B.; Wang, Q.; Ericsson, P.; Wissmar, S.; Asplund, C.; Malm, H.; Martijn, H.; Hammar, M.; Gustafsson, O.; Hellström, S.; Radamson, H.; Holtz, P. O.

    2010-07-01

    Acreo has a long tradition of working with quantum structure based infrared (IR) detectors and arrays. This includes QWIP (quantum well infrared photodetector), QDIP (quantum dot infrared photodetector), and InAs/GaInSb based photon detectors of different structure and composition. It also covers R&D on uncooled microbolometers. The integrated thermistor material of such detectors is advantageously based on quantum structures that are optimised for high temperature coefficient and low noise. Especially the SiGe material system is preferred due to the compatibility with silicon technology. The R&D work on IR detectors is a prominent part of Acreo's centre of excellence "IMAGIC" on imaging detectors and systems for non-visible wavelengths. IMAGIC is a collaboration between Acreo, several industry partners and universities like the Royal Institute of Technology (KTH) and Linköping University.

  1. 77 FR 16925 - Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 882 Medical Devices; Neurological Devices; Classification of the Near Infrared Brain Hematoma Detector AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is classifying the Near Infrared (NIR)...

  2. Flexible infrared detectors based on p-n junctions of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Huang, Zhenlong; Gao, Min; Yan, Zhuocheng; Pan, Taisong; Liao, Feiyi; Lin, Yuan

    2016-05-01

    Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors.Different types of multi-walled carbon nanotubes (CNTs), synthesized by chemical vapor deposition, are used to fabricate infrared (IR) detectors on flexible substrates based on CNT p-n junctions. It is found that this kind of detector is sensitive to infrared signals with a power density as low as 90 μW mm-2 even at room temperature. Besides, unlike other devices, the detector with this unique structure can be bent for 100 cycles without any damage and its functionality does not degenerate once it recovers to the initial state. The results give a good reference for developing efficient, low-cost, and flexible IR detectors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08791k

  3. Laboratory characterization of direct readout Si:Sb and Si:Ga infrared detector arrays

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Moss, Nicolas N.; Mcmurray, R. E., Jr.; Estrada, John A.; Goebel, John H.; Mccreight, Craig R.; Savage, Maureen L.; Junga, Frank; Whittemore, Thomas

    1989-01-01

    Highlights of recent results obtained at Ames Research Center in performance evaluations of infrared detector arrays are presented. Antimony- and gallium-doped silicon direct readout 58x62 element hybrid devices from Ames' ongoing detector technology development program are described. The observed characteristics meet most of the performance goals specified by the Space Infrared Telescope Facility (SIRTF) instrument teams and compare favorably with the best performance reported for discrete non-integrating extrinsic silicon detectors. Initial results of radiation environment testing are reported, and non-ideal behavior demonstrated by these test devices is discussed.

  4. Overview of DRS uncooled VOx infrared detector development

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Han, C. J.; Skidmore, George

    2011-06-01

    Significant progress has been made over the past decade on uncooled focal plane array technologies and production capabilities. The detector pixel dimensions have continually decreased with an increase in pixel performance making large format, high-density array products affordable. In turn, this has resulted in the proliferation of uncooled IR detectors in commercial and military markets. Presently, uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. Within the military arena, uncooled detectors are ubiquitous in Army soldier systems such as weapon sights, driver's viewers, and helmet-mounted sights. Uncooled detectors are also employed in airborne and ground surveillance sensors including unmanned aerial vehicles and robot vehicles.

  5. Absolute Linearity Measurements on HgCdTe Detectors in the Infrared Region

    NASA Astrophysics Data System (ADS)

    Theocharous, Evangelos; Ishii, Juntaro; Fox, Nigel P.

    2004-07-01

    The nonlinearity characteristics of photoconductive and photovoltaic HgCdTe detectors were experimentally investigated in the infrared wavelength region by use of the National Physical Laboratory detector linearity measurement facility. The nonlinearity of photoconductive HgCdTe detectors was shown to be a function of irradiance rather than the total radiant power incident on the detector. Photoconductive HgCdTe detectors supplied by different vendors were shown to have similar linearity characteristics for wavelengths around 10 µm. However, the nonlinearity of response of a photovoltaic HgCdTe detector was shown to be significantly lower than the corresponding value for photoconductive HgCdTe detectors at the same wavelength.

  6. An automatic measuring system for the lifetime testing of infrared detectors

    NASA Astrophysics Data System (ADS)

    Cao, Lan; Zhang, Haiyan; Zhu, Xianliang; Gong, Haimei

    2012-10-01

    In this paper, an automatic measuring system based on LABVIEW and PLC is introduced; it uses the mutual controls of Single-Chip computer (MCU) and LABVIEW to accomplish the electrical parameter measurements of infrared detectors. This system can realize the multiple parameter measurements of no less than 160 IR detectors, it can realize the collection and storage of results by the LABVIEW; and it can avoid the damage of the IR detector during the measurement. After thousands times of test, the results show that the system runs stably and it can meet the accurate parameter measurement of detector.

  7. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  8. Measurement of thermal radiation using regular glass optics and short-wave infrared detectors.

    PubMed

    Yoon, H W; Eppeldauer, G P

    2008-01-21

    The measurement of thermal radiation from ambient-temperature objects using short-wave infrared detectors and regular glass optics is described. The detectors are chosen to operate in the 2.0 microm to 2.5 microm atmospheric window. Selection of detectors with high shunt resistance along with the 4-stage thermo-electric cooling of the detectors to -85 degrees C results in detectivity, D*, of 4 x 10(13) cm Hz(1/2)/W which is near the background limited performance at 295 K. Furthermore, the use of regular-glass commercial optics to collect the thermal radiation results in diffraction-limited imaging. The use of a radiation thermometer constructed with these elements for the measurement of a blackbody from 20 degrees C to 50 degrees C results in noise-equivalent temperature difference (NETD) of < 3 mK at 50 degrees C. The operation at shorter wavelengths than traditional thermal sensors also leads to lower sensitivity to the emissivity of the object in determining the temperature of the object. These elements are used to construct a calibrator for an infrared collimator, and such a system demonstrates noise-equivalent irradiances of < 5 fW/cm(2). These results indicate that radiometers using short-wave infrared sensors could be constructed utilizing commercial glass optics with possible better performance and lower NETD than existing radiometers using cryogenically-cooled mid-infrared or thermal infrared detectors. PMID:18542168

  9. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  10. Infrared detector circuits using monolithic CMOS Op-Amps with InSb detectors in a transimpedance configuration

    NASA Astrophysics Data System (ADS)

    Smith, David S.

    1992-09-01

    As the emphasis in infrared detector research shifts toward larger and more complicated arrays the amount of time spent on simple single-element and small arrays is decreasing. One set of applications where discrete detectors and arrays are still finding use is in satellites. In addition, scanned imaging arrays based on single element detectors and small arrays are still being manufactured. Discussion here is for small arrays and single element detectors. One of the aspects of detector operation that always needs to be addressed is amplification. Often detectors are attached to amplifiers through rather long leads. Such systems are subject to unwanted microphonic response as a result of the motion of the leads relative to each other or to the ground plane. This sort of microphonic response can many times be eliminated through careful wiring and routing techniques, however, in some severe environments it is not possible to eliminate all microphonic response. A commonly used solution to this problem is to hybridize the detector with a JFET front end to reduce the effective output resistance of the detector circuit relative to the amplifier input. The TIA in such configurations is completed off the focal plane at room temperature. This means that half the circuit is operating at cryogenic temperatures while the other part is operating at room temperature some distance away. Ideally it would be more convenient, if not better, to include the amplifier on the focal plane with the detector. (Of course this hybridization is necessary for large two-dimensional arrays.) Data have been acquired to show some of the limitations and opportunities for such an approach. Typical bipolar operational amplifiers (OP-27, OP-37, LM108) will not operate well at cryogenic temperatures. CMOS operational amplifiers generally will operate at cryogenic temperatures but suffer from high front-end voltage noise. The TLC2201 from Texas Instruments is a CMOS op-amp manufactured for low voltage

  11. De-polarization of a CdZnTe radiation detector by pulsed infrared light

    SciTech Connect

    Dědič, V. Franc, J.; Rejhon, M.; Grill, R.; Zázvorka, J.; Sellin, P. J.

    2015-07-20

    This work is focused on a detailed study of pulsed mode infrared light induced depolarization of CdZnTe detectors operating at high photon fluxes. This depolarizing effect is a result of the decrease of positive space charge that is caused by the trapping of photogenerated holes at a deep level. The reduction in positive space charge is due to the optical transition of electrons from a valence band to the deep level due to additional infrared illumination. In this paper, we present the results of pulse mode infrared depolarization, by which it is possible to keep the detector in the depolarized state during its operation. The demonstrated mechanism represents a promising way to increase the charge collection efficiency of CdZnTe X-ray detectors operating at high photon fluxes.

  12. Extension of long wavelength response by modulation doping in extrinsic germanium infrared detectors

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Farhoomand, J.; Beichman, C. A.; Watson, D. M.; Jack, M. D.

    1985-01-01

    A new concept for infrared detectors based on multilayer epitaxy and modulation doping has been investigated. This permits a high doping concentration and lower excitation energy in the photodetecting layer as is necessary for longer wavelength response, without incurring the detrimental effects of increased dark current and noise as would be the case with conventional detector designs. Germanium photodetectors using conventional materials and designs have a long wavelength cutoff in the infrared at 138 microns, which can only be extended through the inconvenient application of mechanical stress or magnetic fields. As a result of this approach which was arrived at from theoretical considerations and subsequently demonstrated experimentally, the long wavelength cutoff for germanium extrinsic detectors was extended beyond 200 microns, as determined by direct infrared optical measurements.

  13. Stress induced long wavelength photoconductivity in doped silicon infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1982-01-01

    The long wavelength cutoff of a Si:P detector was extended to 34 microns by the application of a uniaxial stress. An unstressed Si:P photoconductive detector responds to photons of up to 28 microns wavelength. By applying a uniaxial stress to a detector along the /100/ crystal axis, the response was extended to approximately 34 microns. The /100/ axis was chosen as the stress direction because theoretical calculations predicted that such a stress extends the wavelength response more than one along the /110/ axis. These theoretical calculations were based upon fits to experimental data obtained at stresses of up to approximately kbar, and indicated that the extension in wavelength response continues to increase at much larger stresses.

  14. DRS uncooled VOx infrared detector development and production status

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Han, C. J.; Skidmore, George D.; Hess, Cory

    2010-04-01

    Significant progress has been made over the past decade on uncooled focal plane array (UFPA) technology development and production capacity at DRS as well as other domestic and overseas suppliers. This resulted in the proliferation of uncooled IR detectors in commercial and military markets. The uncooled detectors are widely used in firefighting, surveillance, industrial process monitoring, machine vision, and medical applications. In the military arena, uncooled detectors are fielded among diverse systems such as weapon sights, driver enhancement viewers, helmet-mounted sights, airborne and ground surveillance sensors including UAVs and robot vehicles. Pixel dimensions have continually decreased with an increase in pixel performance. This paper presents an overview of the DRS 25- and 17-micron pixel pitch uncooled VOx detector technology development and production status. The DRS uncooled FPA products include 320x240 and 640x480 arrays while the larger 1024x768 17-micron pitch array is at engineering prototype quantities. Current production of the 25-micron pitch 320x240 and 640x480 arrays exceeds 5,000 units per month, supporting U.S. military systems such as Army thermal weapon sights (TWS) and driver vision enhancers (DVE). Next generation systems are moving towards the 17-micron pixel pitch detectors. Advancement in small pixel technology has enabled the 17-micron pitch detectors performance to surpass their 25-micron pitch counterparts. To meet future production demand of the 17-micron pitch UFPAs, DRS has made significant investment in production infrastructure to upgrade its tools. These investments include a new DUV stepper, coater, and plasma etcher plus improvements in its manufacturing techniques to enhance yield. These advanced tools reduce the minimum line width in production below 0.35μm and are now being used to manufacture the 17-micron 320x240 and 640x480 arrays. To further technology development, DRS continues to engage in R&D activities

  15. Calibration method for spectral responsivity of infrared detector based on blackbody at multiple temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F.; Shao, Z. F.; Wu, Y. Q.

    2015-08-01

    The spectral responsivity is one of the most important technical indicators of infrared detector which has an important significance for radiation thermometry and emissivity measurement. Using a blackbody radiation at multiple temperatures, the calibration for spectral responsivity of the infrared detector is proposed. With the Planck's law, the spectral radiance of blackbody at the different temperature is calculated. The detector captures the radiation and generates output values each of those is the function of spectral responsivity, spectral radiance and environmental radiation. Calibration equation is established by means of the calculated radiance and output values. By solving the equations based on principle of least squares, the calibration of spectral responsivity is implemented. From the comparison experiment of measuring the radiance of blackbody at 850K, radiance value measured by the MCT detector has a good consistency with the theoretical data.

  16. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  17. Detectors for the James Webb Space Telescope near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica

    2004-10-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  18. The suppression of charged-particle-induced noise in infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Briotta, D. A., Jr.

    1982-01-01

    A d.c.-coupled transimpedance amplifier/pulse suppression circuit designed to remove charged-particle-induced noise from infrared detectors is described. Noise spikes produced by single particle events are large and have short rise times, and can degrade the performance of an infrared detector in moderate radiation environments. The use of the suppression circuit improves the signal-to-noise ratio by a factor of 1.6:1, which corresponds to a reduction in required observing time by a factor of about 2.6.

  19. Magnetotransport in very long wave infrared quantum cascade detectors: Analyzing the current with and without illumination

    SciTech Connect

    Jasnot, François-Régis; Maëro, Simon; Vaulchier, Louis-Anne de; Guldner, Yves; Carosella, Francesca; Ferreira, Robson; Delga, Alexandre; Doyennette, Laetitia; Berger, Vincent; Carras, Mathieu

    2013-12-04

    Current measurements of current have been performed on a very long wave infrared quantum cascade detector under magnetic field under both dark and light conditions. The analysis of dark current as a function of temperature highlights three regimes of transport. Under illumination, the model developed is in agreement with the oscillatory component of the experimental magnetophotocurrent. It allows to identify the key points controlling the electronic transport: crucial role of extraction, location of ionized impurities and scattering mechanisms involved in the structure. This work is valuable for the future conception of high-performance quantum cascade detectors in the infrared range.

  20. Development of One-Dimensional Pyroelectric Infrared Array Detector with High Sensitivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Kazuhiko; Tsuruta, Tomohiro; Nishimura, Koji; Morinaka, Katsuya; Yoshiike, Nobuyuki

    1999-10-01

    A one-dimensional pyroelectric array detector for use as a multielement infrared sensor has been developed by using PbTiO3 bulk ceramics fabricated by a sheet-forming method. This one-dimensional infrared sensor consists of 16 elements. A pyroelectric detector responsivity of 3×104 V/W can be obtained at a 10 Hz chopping frequency, and a specific detectivity D* of 1.2×108 cm·Hz1/2/W has been achieved. The time constant of this pyroelectric detector is about 5.2 ms, so the detector has a shorter response time compared with a commercially available conventional pyroelectric detector. The crosstalk, which influences the output for the adjacent elements, is less than 10%. The output voltage for the detector gradually decreased as the atmospheric temperature increased. Pyroelectric detector responsivity increases with decreasing electrode size. By using this high-performance pyroelectric array detector, the thermal sources at lower temperatures than that of the environment can be detected with high sensitivity, as much as in the case of the thermal sources at higher temperatures.

  1. Design and analysis of the flexible support structure of a space infrared detector

    NASA Astrophysics Data System (ADS)

    Sun, Dewei; Zhang, Guangyu; Guo, Ning

    2009-07-01

    A flexible support structure of space infrared detector is presented so as to reduce the impacts of mechanical vibration, electromagnetic interference and temperature shift from outside environment. According to technical requirements of the infrared detector, the flexible support structure is designed, which mainly consists of two components: one component is planted in the outside of the infrared detector to shield electromagnetic wave called shield cover; the other component is a soft rubber ring, which can connect the shield cover to bracket forming a flexible support. In order to demonstrate its effectiveness on reducing vibration, parameter identification and dynamic analysis of this structure are carried out to calculate the acceleration of detector under sine vibration with different frequency. Then a new type composite material is used to produce the shield cover, which has some advantages such as lighter weight, higher stiffness and function of electromagnetic shielding. Besides, the soft rubber ring is made of a special rubber called XM-31. Not only can this rubber isolate the vibration, but insulate the heat, which will further improve the performance of detector. The flexible support structure has an important application value in the field of infrared detection and imaging.

  2. Assessment study of infrared detector arrays for low-background astronomical research

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1978-01-01

    The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.

  3. Self-guarding Schottky barrier infrared detector array

    NASA Astrophysics Data System (ADS)

    Shepherd, F. D., Jr.; Pellegrini, P. W.; Ludington, C. E.; Weeks, M. M.

    1985-07-01

    A two dimensional focal plane array of Schottky photodiodes on a silicon substrate for infrared imaging is presented. The array is designed for mating with multiplexing circuitry and has a self-guarding feature wherein adjacent Schottky electrodes act as guard electrodes. This feature allows a substantial increase of the focal plane area coverage ratio.

  4. Miniature Uncooled Infrared Sensitive Detectors for in Vivo Biomedical Imaging Applications

    SciTech Connect

    Datskos, P. G.; Demos, S. G.; Rajic, S.

    1998-06-01

    Broadband infrared (OR) radiation detectors have been developed using miniature, inexpensive, mass produced microcantilevers capable of detecting temperature differences as small as lea(-6) K. Microcantilevers made out of semiconductor materials can be used either as uncurled photon or thermal detectors. Mounted on a probe mm in diameter a number of microcantilevers can be accommodated in the working channel of existing endoscopes for in vivo proximity focus measurements inside the human body.

  5. Characterization of superconducting pulse discriminators based on parallel NbN nanostriplines

    NASA Astrophysics Data System (ADS)

    Ejrnaes, M.; Casaburi, A.; Cristiano, R.; Martucciello, N.; Mattioli, F.; Gaggero, A.; Leoni, R.; Villégier, J.-C.; Pagano, S.

    2011-03-01

    A superconducting pulse discriminator based on a cascade switch to the normal state of parallel ultrathin NbN nanostrips has been fabricated and carefully investigated. Correct operation was achieved using 1 ns input pulses with amplitudes down to 15 µA. The discriminator had a peak current gain of 12 and an FWHM timing jitter of 80 ps, limited by our measurement instrument resolution. These characteristics, together with simple on-chip integration, small area and low dissipation, make this device suitable for applications such as readout of fast cryogenic detectors and the output stage of superconducting digital circuits.

  6. Low dark current photovoltaic multiquantum well long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Wen, Cheng P.; Sato, R. N.; Hu, M.

    1990-01-01

    The authors have, for the first time, demonstrated photovoltaic detection for an multiple quantum well (MQW) detector. With a blocking layer, the MQW detector exhibits Schottky I-V characteristics with extremely low dark current and excellent ideality factor. The dark current is 5 times 10(exp -14) A for an 100x100 square micron 10 micron detector at 40 K, 8 to 9 orders of magnitude lower than that of a similar 10 micron MQW detector without blocking layer. The ideality factor is about 1.01 to 1.05 at T = 40 to 80 K. The measured barrier height is consistent with the energy difference between first excited states and ground states, or the peak of spectral response. The authors also, for the first time, report the measured effective Richardson constant (A asterisk asterisk) for the GaAs/AlGaAs heterojunction using this blocking layer structure. The A asterisk asterisk is low approx. 2.3 A/sq cm/K(exp 2).

  7. Passive THz Imaging with Superconducting NbN microbolometer Arrays

    NASA Astrophysics Data System (ADS)

    Helistö, Panu

    2007-03-01

    Passive THz imaging applications indoors require temperature difference resolution well below 1 K and integration times down to 0.1 ms. Recently we have shown that such resolution, approaching the photon noise limit, can be achieved using an antenna-coupled superconducting microwire bolometer with about 10 K transition temperature. The bolometer signal is read out with a low-noise room-temperature amplifier, thus eliminating the need for SQUID amplifiers. The readout method utilizes electro-thermal feedback at the I-V curve minimum of a voltage-biased bolometer. At this working point, the very high power gain of the bolometer makes noise matching of the readout to the detector straightforward. The readout amplifier can be used with transition bolometers and calorimeters operating even at mK temperatures. We are presently developing a video-rate THz imager for concealed weapon detection, utilizing conical scanning and a 128-pixel NbN bolometer array, cooled down to 4 K with a pulse-tube cryocooler. We will characterize the bolometer arrays and the readout electrically and compare the results with the theory. We will also present the design of the system and results of preliminary imaging experiments. The work is done in collaboration between VTT, Millilab and NIST.

  8. Infrared speckle interferometer with a linear array detector

    NASA Astrophysics Data System (ADS)

    Kataza, Hirokazu; Maihara, Toshinori

    1993-04-01

    We have developed a 1D near-IR speckle interferometer with a linear-array detector which can produce speckle images by means of a cylindrical lens. The detector with a Reticon multiplexer is operated at the kTC noise limit (approximately 2500 e-, rms). Using this instrument, we have obtained systematic data of the exposure time dependence of the modulation transfer function along with astronomical observations. The result indicates that the best exposure time of the speckle interferometry is longer than the exposure time chosen so that the fluctuations in the atmosphere are approximately frozen within an exposure. In the actual observations at the University of Hawaii 2.2-m telescope at Mauna Kea, the optimum exposure time is proved to be about 0.3 s.

  9. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; Lindler, Don J.; Manthripragada, Sridhar S.; Marshall, Ceryl; Mott, Brent; Parr, Thomas M.; Roher, Wayne D.; Shakoorzadeh, Kamdin B.; Smith, Miles; Waczynski, Augustyn; Wen, Yiting; Wilson, Donna; Xia-Serafino, Wei

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  10. Multiplexed dispersive spectrometers using reduced background infrared detectors.

    PubMed

    Wyatt, C L; Esplin, R W

    1974-11-01

    The application of multiplex spectrometry to cryogenically cooled LWIR extrinsic photodetectors is limited by system noise. This noise limitation results in a detector NEP that is directly proportional to bandwidth. Therefore, multiplex schemes that require increased bandwidth are not productive of real advantage. However, doubly encoded systems that are based on 2n - 1 or n + N - 1 measurements have the potential to provide a real throughput gain proportional to the number of elements used on the throughput matrix. PMID:20134749

  11. Far-infrared detector development for space-based Earth observation

    NASA Astrophysics Data System (ADS)

    Hogue, H. H.; Mlynczak, M. G.; Abedin, M. N.; Masterjohn, S. A.; Huffman, J. E.

    2008-08-01

    DRS Sensors & Targeting Systems with silicon materials partner Lawrence Semiconductor Research Laboratory and development partner NASA Langley Research Center Earth Science Directorate are developing improved far-infrared detectors for Earth energy balance observations from orbit. Our team has succeeded in demonstrating the feasibility of extending the wavelength range of conventional arsenic-doped-silicon Blocked Impurity Band (BIB) detectors (cut-off ~28 μm) into the far infrared. The new far-IR member of the BIB detector family operates at temperatures accessible to existing space-qualified cryocoolers, while retaining the very high values of sensitivity, stability, linearity, and bandwidth typical of the broader class of silicon BIB detectors. The new detector should merit serious consideration for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission defined by the recent National Research Council's Decadal Survey for Earth Science. Proposed further development of this detector technology includes wavelength extension to a goal of at least 100 μm, improvements in detector design, and implementation of light-trapping packaging. These are developments that will enable increased radiometric accuracy, reduced spatial smearing, and simpler calibration approaches for CLARREO.

  12. JWST Near-Infrared Detector Degradation: Finding the Problem, Fixing the Problem, and Moving Forward

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Stahle, Carl; Hill, Bob; Greenhouse, Matt; Beletic, James; Babu, Sachidananda; Blake, Peter; Cleveland, Keith; Cofie, Emmanuel; Eegholm, Bente; Engelbracht, Chad; Hall, Don; Hoffman, Alan; Jeffers, Basil; Jhabvala, Christine; Kimble, Randy; Kopp, Robert; Lee, Don; Leidecker, Henning; Lindler, Don; McMurray, Bob; Mott, D. Brent; Ohl, Ray; Polis, Don; Pontius, Jim

    2012-01-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 micron cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article we present the two public DD-FRB "Executiye Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  13. Infrared receivers for low background astronomy: Incoherent detectors and coherent devices from one micrometer to one millimeter

    NASA Technical Reports Server (NTRS)

    Boggess, N. W.; Greenberg, L. T.; Hauser, M. G.; Houck, J. R.; Low, F. J.; Mccreight, C. R.; Rank, D. M.; Richards, P. L.; Weiss, R.

    1979-01-01

    The status of incoherent detectors and coherent receivers over the infrared wavelength range from one micrometer to one millimeter is described. General principles of infrared receivers are included, and photon detectors, bolometers, coherent receivers, and important supporting technologies are discussed, with emphasis on their suitability for low background astronomical applications. Broad recommendations are presented and specific opportunities are identified for development of improved devices.

  14. The Case for Moderately-Cooled, Far-Infrared Thermal Detectors

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.; Lakew, Brook

    2004-01-01

    There are moderately-cooled (around 77K) infrared detectors, for instance InSb (around 5 microns wavelength) and HgCdTe (around 15 to 20 microns wavelength). However for longer wavelengths there are either uncooled thermal-type detectors or highly cooled (about 4K and lower) quantum and thermal detectors, with the notable exception of high Tc superconductor detectors. We will describe certain long-wavelength applications in space where only moderate cooling is feasible, and where better sensitivity is required than possible with uncooled detectors. These requirements could be met with high Tc bolometers, but it may also be prudent to develop other technologies. Additionally, over the past 16 years a marketplace has not developed for the commercial production of high Tc bolometers, indicating their production may be a natural endeavor for government laboratories.

  15. Multi-element double ring detector for dual band infrared counter-countermeasure.

    PubMed

    Li, Mo; Sun, Weiguo; Zhang, Liang; Zhu, Xubo

    2014-06-10

    A multi-element double ring detector which can track a target effectively under infrared (IR) countermeasure conditions is presented. Dual band IR counter-countermeasures can be performed by the detector to distinguish the target from target-flare mixed signals. Middle and short IR wavelengths are used for target and IR countermeasure detection, respectively. With a special design, unique dual band signals will be outputted by the detector when a target spot is located on the center of the detector. By comparison, the typical single element ring detector has a "dead spot" in this case, which is undesirable for target identification. Relatively high tracking accuracy and low cost indicate that the presented method has a potential application. PMID:24921141

  16. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    SciTech Connect

    Allman, M. S. Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.; Marsili, F.; Beyer, A.; Shaw, M. D.; Kumor, D.

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  17. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan

    2007-01-01

    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  18. Long-Wavelength Stacked Si(sub 1-x)/Si Heterojunction Internal Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; George, T.; Gunapala, S. D.

    1993-01-01

    Utilizing the low temperature silicon molecular beam epitaxy (MBE) growth of degenerately doped SiGe layers on Si, long wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Se layers have been fabricated and demonstrated.

  19. Influence of infrared illumination on the characteristics of CdZnTe detectors

    SciTech Connect

    Ivanov, V.; Dorogov, P.; Loutchanski, A.

    2011-07-01

    Infrared (IR) radiation of proper wavelength deep penetrating inside the CdZnTe detector may interact with trapping centers and has a significant influence on the trapping-detrapping processes of charge carriers from traps, thereby influencing charge collection efficiency in the detector. We studied the effect of infrared (IR) illumination on the characteristics of planar and quasi-hemispherical CdZnTe detectors. These results show that the near bandgap IR illumination significantly affects the detectors characteristics. By selecting a wavelength and intensity of illumination, detectors spectrometric characteristics can be significantly improved. Improvement of spectrometric characteristics is due to better uniformity of charge collection on the detector volume, as evidenced by the improvement in the total absorption peak symmetry and shape of the output pulses. The degree of improvement is different for various detectors depending on the characteristics of source material used for detector fabrication and theirs dimensions. For example, a detector of sizes 10 x 10 x 5 mm{sup 3} with an initial energy resolution (FWHM) of 20.6 keV at 662 keV under IR illumination was improved up to 9.1 keV, but a detector of sizes 5 x 5 x 2.5 mm{sup 3} with an initial energy resolution (FWHM) of 7.1 keV can be improved up to 4.8 keV. The IR illumination with a properly chosen intensity improves spectrometric characteristic in a wide range of energies without any losses of registration effectiveness. IR Illumination was practically performed using conventional GaAlAs IR LEDs with different peak wavelengths of emitted radiation. (authors)

  20. Infrared and visible detector electronics for the Infrared Astronomical Satellite (IRAS)

    NASA Astrophysics Data System (ADS)

    Langford, D. L.; Simmonds, J. J.; Ozawa, T.; Long, E. C.; Paris, R.

    1984-01-01

    The paper describes the detectors, preamplifiers, and processing electronics; the system characterization test methods and results; and the performance of the detectors and electronics during the first month of on-orbit operation of the IRAS telescope. The Focal Plane Array (FPA) consists of 62 IR channels and 8 visible channels operating at 2.5 K. The IR detectors are grouped in eight 7 or 8 channel staggered linear subarrays with shared bias voltage; the visible detectors are grouped in two 4 channel skewed arrays, also with shared bias. Each channel detector is dc coupled to a TIA preamplifier through a very low power thermally isolated JFET source follower operating at about 65 K within the FPA housing. The visible channel detectors are ac coupled to TIA preamplifiers and signal chain electronics using MOSFET source followers operating at about 2.5 K within the FPA housing. The detectors, preamplifiers, analog electronics, and grounding are discussed as they evolved and were implemented during FPA retrofit, telescope integration, and preparation for launch.

  1. Photoluminescence Study of Long Wavelength Superlattice Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Hoglund, Linda; Khoshakhlagh, Arezou; Soibel, Alexander; Ting, David Z.; Hill, Cory J.; Keo, Sam; Gunapala, Sarath D.

    2011-01-01

    In this paper, the relation between the photoluminescence (PL) intensity and the PL peak wavelength was studied. A linear decrease of the PL intensity with increasing cut-off wavelength of long wavelength infrared CBIRDs was observed at 77 K and the trend remained unchanged in the temperature range 10 - 77 K. This relation between the PL intensity and the peak wavelength can be favorably used for comparison of the optical quality of samples with different PL peak wavelengths. A strong increase of the width of the PL spectrum in the studied temperature interval was observed, which was attributed to thermal broadening.

  2. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  3. Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Bellotti, Enrico

    2013-06-01

    Numerical simulations play an important role in the development of large-format infrared detector array tech- nologies, especially when considering devices whose sizes are comparable to the wavelength of the radiation they are detecting. Computational models can be used to predict the optical and electrical response of such devices and evaluate designs prior to fabrication. We have developed a simulation framework which solves Maxwell's equations to determine the electromagnetic properties of a detector and subsequently uses a drift-diffusion ap- proach to asses the electrical response. We apply these techniques to gauge the effects of cathode placement on the inter- and intra-pixel attributes of compositionally graded and constant Hg1-xCdxTe mid-wavelength infrared detectors. In particular, the quantum efficiency, nearest-neighbor crosstalk, and modulation transfer function are evaluated for several device architectures.

  4. Advanced sensor technologies for high performance infrared detectors

    NASA Astrophysics Data System (ADS)

    Ziegler, J.; Bruder, M.; Finck, M.; Krüger, R.; Menger, P.; Simon, Th.; Wollrab, R.

    2002-06-01

    For high performance IR imaging and seeker systems AIM has established a high yield and reproducible HgCdTe detector technology. For continuous improvement of detector performance, yield and reliability, key processes have been optimized and new approaches have been developed. By a superior CdZnTe Bridgman growth process, dislocation densities < 1×10 5 cm-2 in substrate and epitaxial layer are achieved for all substrates, ensuring high performance focal-plane-arrays, particularly for λ CO=11.5 μm arrays. A new guard ring approach for planar diodes, created by a n +-region in pixel spacing area reduces pixel crosstalk and improves modulation transfer function. For long linear arrays, a multichip-module-technique has been developed, which meets the demands for high temperature-cycle-reliability. In addition, a cycle-to-failure model has been established by cooldown tests on AIM-FPA's to predict cycle-to-failure at existing FPA approach or maximum allowable strain at demanded cycles-to-failure specification.

  5. Design and implementation of a high-performance readout circuit for uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Yuan, Honghui; Chen, Shijun; Zhai, Houming; Chen, Yongping

    2015-10-01

    At present, most uncooled infrared detectors circuits consist of the corresponding blind pixel detector, which increases the complexity of uncooled infrared detector, and the performance of the readout circuits is not ideal in practical applications. In order to achieve high performance of the readout circuit for uncooled infrared detectors, a kind of readout circuit based on current mirror has been designed in this paper. The readout circuit is composed of current mirror input part, capacitor feedback transimpedance amplifier (CTIA) and correlated double sampling (CDS) output circuit. Transconductance amplifier CTIA with capacitance negative feedback is used in the circuit and it consists of three integral capacitors, thus the circuit can realize different magnifications. The CDS N SF (source follow) and P SF are adopted as the circuit's output, the output swing can easily be greater than 2V. In average, the CDS N SF and P SF's power consumption is very low. So the total power consumption of 160 line circuit is about 100 mW. The non-uniformity of circuit has been obviously improved by reasonable parameter settings. In the test, the non-uniformity of the readout circuit has reached 1%. The other test results of total power consumption and the output amplitude also agree with simulation results. When the readout circuit and uncooled infrared detector are connected, the infrared signal can be well read out. the device has good noise characteristics and the NETD(noise equivalent temperature difference) is near 80mK. When the integration time is 20μs, the whole device's response is about 15mV/K.

  6. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    NASA Astrophysics Data System (ADS)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  7. Design of MWIR Type-II Superlattices for Infrared Photon Detectors

    NASA Astrophysics Data System (ADS)

    Grein, Christoph

    The Type II InAs/GaInSb and InAs/InAsSb superlattices are material systems for implementation as photodetector absorbers in infrared imaging applications. In addition to cutoff wavelengths spanning the infrared spectrum, they offer degrees of freedom in their materials design (e.g. layer thicknesses, alloy compositions, number of layers in one superlattice period) that permit the optimization of an infrared photon detector's figures of merit such as detectivity through the tuning of material properties like generation/recombination lifetimes and optical absorption. We describe efforts to obtain accurate electronic band structures of superlattice semiconductors with infrared energy gaps, and employing them to evaluate nonradiative minority carrier lifetimes. Simple device models are utilized to suggest potential performance enhancements that arise from employing superlattices as infrared absorber. We also discuss current efforts to simulate the molecular beam epitaxial growth of InAs/InAsSb superlattices to predict dominant native point defects and other growth nonidealities. Design of MWIR Type-II Superlattices for Infrared Photon Detectors.

  8. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  9. Adaptive non-uniformity correction method based on temperature for infrared detector array

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijie; Yue, Song; Hong, Pu; Jia, Guowei; Lei, Bo

    2013-09-01

    The existence of non-uniformities in the responsitivity of the element array is a severe problem typical to common infrared detector. These non-uniformities result in a "curtain'' like fixed pattern noises (FPN) that appear in the image. Some random noise can be restrained by the method kind of equalization method. But the fixed pattern noise can only be removed by .non uniformity correction method. The produce of non uniformities of detector array is the combined action of infrared detector array, readout circuit, semiconductor device performance, the amplifier circuit and optical system. Conventional linear correction techniques require costly recalibration due to the drift of the detector or changes in temperature. Therefore, an adaptive non-uniformity method is needed to solve this problem. A lot factors including detectors and environment conditions variety are considered to analyze and conduct the cause of detector drift. Several experiments are designed to verify the guess. Based on the experiments, an adaptive non-uniformity correction method is put forward in this paper. The strength of this method lies in its simplicity and low computational complexity. Extensive experimental results demonstrate the disadvantage of traditional non-uniformity correct method is conquered by the proposed scheme.

  10. Modulation transfer function of antenna-coupled infrared detector arrays.

    PubMed

    Boreman, G D; Dogariu, A; Christodoulou, C; Kotter, D

    1996-11-01

    Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 μm. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's. PMID:21127627

  11. Modulation transfer function of antenna-coupled infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.; Dogariu, Aristide; Christodoulou, Christos; Kotter, Dale

    1996-11-01

    Individual antenna-coupled IR bolometers have recently been demonstrated at wavelengths near 10 mu m. If focal-plane arrays (FPA's) of antenna-coupled detectors can be fabricated, enhancement of IR-imager performance is possible. A first step in the design process is to analyze the image-quality potential of antenna-coupled, FPA-based imagers in terms of the modulation transfer function (MTF). The key step in our analysis is development of a cross-talk MTF that accounts for the electromagnetic coupling between adjacent antennas in the FPA. We find that electromagnetic cross talk will not be a significant image-quality factor in antenna-coupled IR FPA's.

  12. Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Maserjian, Joseph; Ksendzov, A.; Huberman, Mark L.; Terhune, R.; Krabach, T. N.

    1990-01-01

    There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity.

  13. 256×1 element linear InGaAs short wavelength near-infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Fan, Guangyu; Liu, Dafu; Shao, Xiumei; Zhang, Yonggang; Zhang, Haiyan; Chen, Xinyu; Zhu, Sangen; Gong, Haimei; Fang, Jiaxiong

    2008-03-01

    256×1 element linear InGaAs detector arrays assembly have been fabricated for the short wave infrared band(0.9~1.7μm), including the detector, CMOS readout circuits, thermoelectric cooler in a sealed package. The InGaAs detectors were achieved by mesa structure on the p-InP/i-InGaAs/n-InP double hetero-structure epitaxial material. 256×1 element linear InGaAs detectors were wire-bonded to 128×1 element odd and even ROIC, which were packaged in a dual-in-line package by parallel sealing. The characteristics of detectors and detector arrays module were investigated at the room temperature. The detector shows response peak at 1.62μm with 50% cutoff wavelength of 1.73μm and average R0A with 5.02KΩ•cm2. Response non-uniformity and average peak detectivity of 256×1 element linear InGaAs detector arrays are 3.10% and 1.38×10 12cmHz 1/2/W, respectively.

  14. Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane

    NASA Astrophysics Data System (ADS)

    Mattsson, C. G.; Bertilsson, K.; Thungström, G.; Nilsson, H.-E.; Martin, H.

    2009-05-01

    Simulation and optimization tools are commonly used in the design phase of advanced electronics devices. In this work, we present a thermal simulation and design optimization tool for infrared thermopile detectors based on a closed membrane structure. The tool can be used to simulate and optimize thermopile detectors with an arbitrary number of design parameters. The optimization utilizes the Nelder-Mead and the adaptive simulated annealing optimization algorithms to maximize the system performance. A thermopile detector with an SU-8-based closed membrane and metal-metal thermocouples has been simulated and optimized. Based on the results generated by the tool, an optimized detector has been fabricated and characterized. The results from the measurements presented are in good agreement with the simulation results.

  15. Low-Cost InGaAs Detectors for Near-Infrared Imaging and Photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter; Croll, B.; Simcoe, R. A.

    2014-01-01

    Near-infrared detectors made from InGaAs should provide an alternative to HgCdTe that is particularly cost-effective for arrays of small telescopes or for covering large focal planes. Originally designed for night-vision equipment, these detectors can be suitable for astronomy if they support long, up-the-ramp exposures and are cooled sufficiently. We developed custom electronics to operate the FLIR APS640C detector in a camera with thermoelectric and chilled-water cooling. We achieved differential photometric precision of 500 ppm (0.5 mmag) hr^-1/2 observing J=7.7 stars with an effective telescope aperture of 0.25 m. Laboratory results from the latest generation of InGaAs detectors will be presented, and we discuss the limits to achieving background-limited performance in the Y, J, and H bands on 1 m - class telescopes.

  16. Long-wave infrared (LWIR) detectors based on III-V materials

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Future NASA missions for earth observation and planetary science require large photovoltaic detector arrays with high performance in the long wavelength region to 18 microns and at operating temperatures above 65 K where single-cycle long-life cryocoolers are being developed. Since these detector array requirements exceed the state of current HgCdTe technology, alternative detector materials are being investigated as a possible option for future missions. Advanced growth techniques (e.g., MBE and MOCVD) of column III-V semiconductors have opened opportunities for engineering new detector materials and device structures. The technical approaches under investigation at JPL (with university and industry participation) include: quantum well infrared photodetectors, heterojunction internal photoemission (HIP) photodetectors, type-II strained layer superlattices, and nipi doping superlattices. Each of these options are briefly described with some of their pros and cons. A more detailed description is given for the HIP approach being pioneered at JPL.

  17. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector

    NASA Astrophysics Data System (ADS)

    Qiu, W. C.; Jiang, T.; Cheng, X. A.

    2015-09-01

    In this paper, the HgCdTe PBπn (π represents p-type absorption layer) long-wavelength infrared detector based on bandgap-engineering is designed and validated by the preliminary experiments. Numerical simulation was applied to calculate the current-voltage (I-V) characteristic and zero-bias resistance-area product (R0A) for PBπn detectors and traditional pn photodiodes. The results show that the performance of PBπn detector was significantly improved compared with that of conventional pn photodiodes. The design of PBπn barrier structure can essentially reduce the dark current, while significantly improving the responsivity. In addition, when reverse biased, optimized PBπn device can also suppress Auger processes in the absorption layer under the high temperature up to 215 K. The proposed HgCdTe long wavelength infrared detectors based on vertical PBπn structure pave the way for development of high performance and high operation temperature infrared sensor applications.

  18. High-resolution infrared detector and its electronic unit for space application

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Montmessin, F.; Korablev, O.; Trokhimovsky, A.; Poiet, G.; Bel, J.-B.

    2015-05-01

    High-resolution infrared detector is used extensively for military and civilian purposes. Military applications include target acquisition, surveillance, night vision, and tracking. Civilian applications include, among others, scientific observations. For our space systems, we want to use the products developed by SOFRADIR Company. Thus, we have developed a space electronic unit that is used to control the high-resolution SCORPIO-MW infrared detector, which has a format of 640×512 pixels with 15μm×15μm pixel pitch. The detector within microelectronics based on infrared mid-wave (MW) complementary metal oxide semiconductors (CMOS) uses a micro-cooler in order to keep its temperature around 100 K. The standard wavelength range (3 to 5μm) is adapted to the 2.2 to 4.3μm wavelength range thanks to adaptation of the optical interface of the detector and with an antireflection coating. With our electronic system, we can acquire 3 images per second. To increase the signal to noise ratio, we have the opportunity to make a summation of 15 frames per image. Through this article, we will describe the space electronic system that we have developed in order to achieve space observations (e.g. Atmospheric Chemistry Suite package for ExoMars Trace Gas Orbiter).

  19. Research on infrared-image denoising algorithm based on the noise analysis of the detector

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Zhou, Xiaodong; Shen, Tongsheng; Han, Yanli

    2005-01-01

    Since the conventional denoising algorithms have not considered the influence of certain concrete detector, they are not very effective to remove various noises contained in the low signal-to-noise ration infrared image. In this paper, a new thinking for infrared image denoising is proposed, which is based on the noise analyses of detector with an example of L model infrared multi-element detector. According to the noise analyses of this detector, the emphasis is placed on how to filter white noise and fractal noise in the preprocessing phase. Wavelet analysis is a good tool for analyzing 1/f process. 1/f process can be viewed as white noise approximately since its wavelet coefficients are stationary and uncorrelated. So if wavelet transform is adopted, the problem of removing white noise and fraction noise is simplified as the only one problem, i.e., removing white noise. To address this problem, a new wavelet domain adaptive wiener filtering algorithm is presented. From the viewpoint of quantitative and qualitative analyses, the filtering effect of our method is compared with those of traditional median filter, mean filter and wavelet thresholding algorithm in detail. The results show that our method can reduce various noises effectively and raise the ratio of signal-to-noise evidently.

  20. Synthesis arrangement and parity correction of linear array infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Hong, Pu; Wang, Bo; Wang, Chensheng

    2010-11-01

    According to the configuration and technical specification of the detector, which has multiple channels, channels mixing, high speed outputs and separate columns between odd and even, a real time digital processing unit based on the CPLD, FPGA and DSP has been developed to achieve the data synthesis and arrangement function and the parity correction algorithm. A special interface circuit with 4 CPLDs is designed to complete the first synthesis step where the 16 channels of data are combined into 4 channels. The second step is finished in FPGA and ROM address encoder where the 4 channels of data are combined into 1 channel. For output data synchronization, FIFO is adopted to achieve the delay of even channels in the parity correction. Data of odd channels enters the columns synthesis unit without any processing and even channels shall be processed in the columns synthesis unit after entering the FIFO unit first and experiencing the delay process. Thereby the pre-processing before image processing of the linear array thermal imager is accomplished.

  1. Photoelectron imaging spectroscopy of niobium mononitride anion NbN-

    NASA Astrophysics Data System (ADS)

    Berkdemir, Cuneyt; Gunaratne, K. Don Dasitha; Cheng, Shi-Bo; Castleman, A. W.

    2016-07-01

    In this gas-phase photoelectron spectroscopy study, we present the electron binding energy spectrum and photoelectron angular distributions of NbN- by the velocity-map imaging technique. The electron binding energy of NbN- is measured to be 1.42 ± 0.02 eV from the X band maximum which defines the 0-0 transition between ground states of anion and neutral. Theoretical binding energies which are the vertical and adiabatic detachment energies are computed by density functional theory to compare them with experiment. The ground state of NbN- is assigned to the 2Δ3/2 state and then the electronic transitions originating from this state into X3ΔΩ (Ω = 1-3), a1Δ2, A3Σ1-, and b1Σ0+ states of NbN are reported to interpret the spectral features. As a prospective study for catalytic materials, spectral features of NbN- are compared with those of isovalent ZrO- and Pd-.

  2. Photoelectron imaging spectroscopy of niobium mononitride anion NbN(.).

    PubMed

    Berkdemir, Cuneyt; Gunaratne, K Don Dasitha; Cheng, Shi-Bo; Castleman, A W

    2016-07-21

    In this gas-phase photoelectron spectroscopy study, we present the electron binding energy spectrum and photoelectron angular distributions of NbN(-) by the velocity-map imaging technique. The electron binding energy of NbN(-) is measured to be 1.42 ± 0.02 eV from the X band maximum which defines the 0-0 transition between ground states of anion and neutral. Theoretical binding energies which are the vertical and adiabatic detachment energies are computed by density functional theory to compare them with experiment. The ground state of NbN(-) is assigned to the (2)Δ3/2 state and then the electronic transitions originating from this state into X(3)ΔΩ (Ω = 1-3), a(1)Δ2, A(3)Σ1 (-), and b(1)Σ0 (+) states of NbN are reported to interpret the spectral features. As a prospective study for catalytic materials, spectral features of NbN(-) are compared with those of isovalent ZrO(-) and Pd(-). PMID:27448881

  3. A Hot-Electron Far-Infrared Direct Detector

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.

  4. A new generation of small pixel pitch/SWaP cooled infrared detectors

    NASA Astrophysics Data System (ADS)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  5. The characteristic analysis and optimization design for HgCdTe TDI infrared detector array

    NASA Astrophysics Data System (ADS)

    Dong, Mei-feng; Chen, Xing; Qiu, Guang-yin; Xie, Xiao-hui

    2011-08-01

    Time Delay Integration (TDI) is an effective approach for high sensitive infrared detectors. According to the principle of the TDI, the central distance of pixel along the time delay integral direction is closely linked with the specific application requirements. So the optimization design, such as the area of pixels and their distance, plays an important role to improve the performance of TDI detectors. The crosstalk between pixels is a crucial factor that results in the decline of detector Modulation Transfer Function (MTF), and then affects the imaging quality. In this paper the optimization design rule for the arrangement of pixel has been investigated. The results show that the main method to appreciate it is reducing the crosstalk between pixels and enhancing detectivity. Chips of which pixel areas and edge intervals are different but with same distance were designed for the experiments. The optical and electrical measurements were carried out for these chips and the optimized structure was obtained. In addition, relationships between the crosstalk and parameters of material, pixel structure were analyzed based on the experiment data. According to the comprehensive analysis of the measurement data, we obtained the optimum design for specific HgCdTe TDI infrared detector. Meanwhile it is also a well reference for other HgCdTe TDI detector structure design.

  6. The mechanism of laser disturbing infrared detector and its intelligent protection

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Feng, Yun-song; Ling, Yong-shun; Qiao, Ya

    2013-09-01

    Interference mechanism of laser disturbing infrared detector is analyzed. The disturbing grade was separated into four levels according to interference effect. The levels are saturation, melting, vaporization and plasma. The responsivity of a detector will drop and it can't work effectively when it was saturated. Its performance wills recovery when the interference disappeared. Melting, Vaporization and plasma will lead to permanent damage. The main damage to detector is thermal damage for induced laser. The reason is that the detector will melt or evaporate when it absorbed the energy of induced laser. For HgCdTe detector, the damage appeared as Hg precipitation. It appeared as In exfoliated from welding outlet line of HgCdTe crystal or HgCdTe melting when the temperature of detector is higher. Since Vanadium Oxide has reversible transformation characteristic between semi-conductor, metal and insulator, it can be used to protect detector from laser damage. Vanadium Oxide can be made as thin film coatings on optical system to protect the detector. the phase transformation point temperature of VO2 is 68°C,a few doping method can decrease the transformation temperature. These mean that less energy can make VO2 film's temperature increase to transformation point. VO2 film protecting HgCdTe detector was used as an example to estimate the protection effect. For an HgCdTe detector, its responsivity will drop two orders of magnitude when its temperature raises 70K. This case be regard as that the detector was disturbed. When a CO2 pulsed laser beam with 0.1μ s˜10μs pulse width was incidence an HgCdTe detector, its heat conduction depth is 0.32˜3.2μm and its thermal diffusion can be ignored. The damage energy density threshold value is Ein=1.55J/cm2. When CO2 pulsed laser beam incidence the detector through certain thickness VO2 film, the VO2 film will has transformed from semiconductor state to metallic state before the laser beam damage the detector. The energy of

  7. Stability of the spectral responsivity of cryogenically cooled InSb infrared detectors

    SciTech Connect

    Theocharous, Evangelos

    2005-10-10

    The spectral responsivity of two cryogenically cooled InSb detectors was observed to drift slowly with time. The origin of these drifts was investigated and was shown to occur due to a water-ice thin film that was deposited onto the active areas of the cold detectors. The presence of the ice film (which is itself a dielectric film) modifies the transmission characteristics of the antireflection coatings deposited on the active areas of the detectors, thus giving rise to the observed drifts. The magnitude of the drifts was drastically reduced by evacuating the detector dewars while baking them at 50 deg. C for approximately 48 h. All InSb detectors have antireflection coatings to reduce the Fresnel reflections and therefore enhance their spectral responsivity. This work demonstrates that InSb infrared detectors should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to InSb detectors mounted in dewars that use rubber O rings since the ingress of moisture was found to be particularly serious in this type of dewar.

  8. Optimization of a cold preamplifier for infrared detectors of the highest sensitivity

    NASA Astrophysics Data System (ADS)

    Frick, D.

    1985-07-01

    The cold preamplifier needed for the infrared camera in the German Infrared Laboratory (GIRL) is theoretically examined. An expression for the theoretically attainable lower noise level and for the SNR is derived which demonstrates the dependence of the SNR on the shunt capacity. A transimpedance amplifier (TIA) with GaAs FET prestep whose operation has some advantages over that of a TIA with operational amplifier is studied. This TIA is suitable for signal processing in IR detectors of highest sensitivity. First test results for a charge-dependent amplifier are also reported.

  9. INAS hole-immobilized doping superlattice long-wave-infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1992-01-01

    An approach to long-wave-infrared (LWIR) technology is discussed. The approach is based on molecular beam epitaxy (MBE) growth of hole immobilized doping superlattices in narrow band gap 3-5 semiconductors, specifically, InAs and InSb. Such superlattices are incorporated into detector structures suitable for focal plane arrays. An LWIR detector that has high detectivity performance to wavelengths of about 16 microns at operating temperatures of 65K, where long-duration space refrigeration is plausible, is presented.

  10. Quantum Efficiency for Electron-Hole Pair Generation by Infrared Irradiation in Germanium Cryogenic Detectors

    NASA Astrophysics Data System (ADS)

    Domange, J.; Broniatowski, A.; Olivieri, E.; Chapellier, M.; Dumoulin, L.

    2009-12-01

    A study is made of the quantum efficiency of a coplanar grid ionization/heat Ge detector operated at cryogenic temperatures for dark matter search. Carrier generation is performed with infra-red LEDs of different wavelengths (1.30, 1.45, and 1.65 μm) near the optical bandgap of germanium. The corresponding quantum efficiency is obtained from an analysis of the Joule (Luke-Neganov) effect. This investigation is part of a program to optimize the reset procedure of the detectors in the Edelweiss-II dark matter search experiment at the Modane Underground Laboratory.

  11. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films.

    PubMed

    Xiao, Lin; Zhang, Yuying; Wang, Yang; Liu, Kai; Wang, Zheng; Li, Tianyi; Jiang, Zhe; Shi, Junpeng; Liu, Liang; Li, QunQing; Zhao, Yonggang; Feng, Zhenghe; Fan, Shoushan; Jiang, Kaili

    2011-01-14

    Carbon nanotube (CNT) films, easily drawn from super-aligned CNT arrays with a large area and a good compatibility with semiconductor technology, have been used as light sensitive materials for infrared (IR) detection. A bolometric CNT detector made from one layer of super-aligned CNT film shows a 15.4% resistance change under 10 mW mm(-2) of IR illumination and a fast characteristic response time of 4.4 ms due to its ultra-small heat capacity per unit area in vacuum at room temperature. Besides the power intensity detection, the anisotropic property of the super-aligned CNT films makes them ideal materials to detect the polarization of IR light simultaneously, which provides great potential in infrared imaging polarimetry. Theoretical analyses have been carried out to investigate the influences of CNT film properties on the responsivity and response time of the detector. PMID:21135478

  12. Specification and Design of the SBRC-190: A Cryogenic Multiplexer for Far Infrared Photoconductor Detectors

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Young, E. T.; Wolf, J.; Asbrock, J. F.; Lum, N.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Arrays of far-infrared photoconductor detectors operate at a few degrees Kelvin and require electronic amplifiers in close proximity. For the electronics, a cryogenic multiplexer is ideal to avoid the large number of wires associated with individual amplifiers for each pixel, and to avoid adverse effects of thermal and radiative heat loads from the circuitry. For low background applications, the 32 channel CRC 696 CMOS device was previously developed for SIRTF, the cryogenic Space Infrared Telescope Facility. For higher background applications, we have developed a similar circuit, featuring several modifications: (a) an AC coupled, capacitive feedback transimpedence unit cell, to minimize input offset effects, thereby enabling low detector biases, (b) selectable feedback capacitors to enable operation over a wide range of backgrounds, and (c) clamp and sample & hold output circuits to improve sampling efficiency, which is a concern at the high readout rates required. We describe the requirements for and design of the new device.

  13. Development of Cryogenic Readout Electronics for Sensitive Far-Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Watabe, Toyoki; Shibai, Hiroshi; Hirao, Takanori; Nagata, Hirohisa; Hibi, Yasunori; Kawada, Mitsunobu; Nakagawa, Takao; Noda, Manabu

    We have successfully developed low-noise, low-power cryogenic readout electronics (CRE) for sensitive far-infrared detectors operated at low temperatures. The CRE must be mounted besides of the detector, and thus, it must be operated at cryogenic temperatures. The reasons of that are to avoid electrical interferences to the high-impedance portion between the detector itself and the CRE, and to minimize the stray capacitance that may decrease the read-out gain. The goals of the CRE performance are the operation temperature can be down to 2K, the noise level is 2µV/√Hz at 1Hz, the power consumption is 10µW/channel, and the open-loop gain of differential amplifier is over 1000. We have so far manufactured the CRE four times, and evaluated the performances at 4.2K. The present performance achieved is nearly acceptable for the far-infrared sensor of the next Japanese infrared astronomical satellite, ASTRO-F.

  14. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-06-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  15. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-09-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  16. A single-photon detector in the far-infrared range

    PubMed

    Komiyama; Astafiev; Antonov; Kutsuwa; Hirai

    2000-01-27

    The far-infrared region (wavelengths in the range 10 microm-1 mm) is one of the richest areas of spectroscopic research, encompassing the rotational spectra of molecules and vibrational spectra of solids, liquids and gases. But studies in this spectral region are hampered by the absence of sensitive detectors--despite recent efforts to improve superconducting bolometers, attainable sensitivities are currently far below the level of single-photon detection. This is in marked contrast to the visible and near-infrared regions (wavelengths shorter than about 1.5 microm), in which single-photon counting is possible using photomultiplier tubes. Here we report the detection of single far-infrared photons in the wavelength range 175-210 microm (6.0-7.1 meV), using a single-electron transistor consisting of a semiconductor quantum dot in high magnetic field. We detect, with a time resolution of a millisecond, an incident flux of 0.1 photons per second on an effective detector area of 0.1 mm2--a sensitivity that exceeds previously reported values by a factor of more than 10(4). The sensitivity is a consequence of the unconventional detection mechanism, in which one absorbed photon leads to a current of 10(6)-10(12) electrons through the quantum dot. By contrast, mechanisms of conventional detectors or photon assisted tunnelling in single-electron transistors produce only a few electrons per incident photon. PMID:10667787

  17. Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors

    NASA Astrophysics Data System (ADS)

    Movassaghi, Yashar; Fathipour, Vala; Fathipour, Morteza; Mohseni, Hooman

    2016-03-01

    This paper describes comprehensive analytical and simulation models for the design and optimization of the electron-injection based detectors. The electron-injection detectors evaluated here operate in the short-wave infrared range and utilize a type-II band alignment in InP/GaAsSb/InGaAs material system. The unique geometry of detectors along with an inherent negative-feedback mechanism in the device allows for achieving high internal avalanche-free amplifications without any excess noise. Physics-based closed-form analytical models are derived for the detector rise time and dark current. Our optical gain model takes into account the drop in the optical gain at high optical power levels. Furthermore, numerical simulation studies of the electrical characteristics of the device show good agreement with our analytical models as well experimental data. Performance comparison between devices with different injector sizes shows that enhancement in the gain and speed is anticipated by reducing the injector size. Sensitivity analysis for the key detector parameters shows the relative importance of each parameter. The results of this study may provide useful information and guidelines for development of future electron-injection based detectors as well as other heterojunction photodetectors.

  18. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  19. Characterization of the optical properties of an infrared blocked impurity band detector.

    PubMed

    Woods, S I; Kaplan, S G; Jung, T M; Carter, A C

    2011-08-20

    Si:As blocked impurity band detectors have been partially deprocessed and measured by Fourier transform spectroscopy to determine their transmittance and reflectance at cryogenic temperatures over the wavelength range 2 μm to 40 μm. A method is presented by which the propagation constants can be extracted from an inversion of the transmittance and reflectance data. The effective propagation constants for the active layer from 2 μm to 20 μm were calculated as well as the absorption cross section of arsenic in silicon, which agrees well with previous results from the literature. The infrared absorptance of the full detector was determined, and the analytical method also provides an estimate of absorption in the active layer alone. Infrared absorptance of the active layer is compared to the quantum yield measured by photoelectric means on similar detectors. The optical methods outlined here, in conjunction with standard electronic measurements, could be used to predict the performance of such detectors from measurements of the blanket films from which they are to be fabricated. PMID:21857706

  20. Characterization of the optical properties of an infrared blocked impurity band detector

    NASA Astrophysics Data System (ADS)

    Woods, S. I.; Kaplan, S. G.; Jung, T. M.; Carter, A. C.

    2011-08-01

    Si:As blocked impurity band detectors have been partially deprocessed and measured by Fourier transform spectroscopy to determine their transmittance and reflectance at cryogenic temperatures over the wavelength range 2 μm to 40 μm. A method is presented by which the propagation constants can be extracted from an inversion of the transmittance and reflectance data. The effective propagation constants for the active layer from 2 μm to 20 μm were calculated as well as the absorption cross section of arsenic in silicon, which agrees well with previous results from the literature. The infrared absorptance of the full detector was determined, and the analytical method also provides an estimate of absorption in the active layer alone. Infrared absorptance of the active layer is compared to the quantum yield measured by photoelectric means on similar detectors. The optical methods outlined here, in conjunction with standard electronic measurements, could be used to predict the performance of such detectors from measurements of the blanket films from which they are to be fabricated.

  1. Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Fyhrie, A.; Glenn, J.; Wheeler, J.; Day, P.; Eom, B. H.; Leduc, H.; Skrutskie, M.

    2016-02-01

    Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 \\upmu m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3× 10^{-19} W/√{Hz} . We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 % yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 \\upmu m optically loaded by cold blackbody radiation.

  2. Cooled and uncooled infrared detectors based on yttrium barium copper oxide

    NASA Astrophysics Data System (ADS)

    Sobolewski, Roman; Butler, Donald P.; Celik-Butler, Zeynep

    2001-03-01

    We review performance and physical characteristics of yttrium barium copper oxide (YBCO) compound as an infrared (IR) photodetector. YBCO has been used as the IR detector material in both superconducting (oxygen-rich) and semiconducting (oxygen-depleted) phases. YBCO in its crystalline, Yba2Cu3O6+x phase with x>0.95 is a high-temperature superconducting material with the superconducting transition Tcapproximately equals 90K. The superconducting YBCOIR detectors operate as either nonequilibrium (quantum) or bolometric (thermal) devices. The nonequilibrium devices are characterized by very short, single-picosecond photoresponse times and are expected to find applications in optoelectronics and imaging, as well as ultrafast optical-to-electrical transducers for digital input applications. The bolometric mechanism results in relatively slow but very sensitive detectors with possible applications in astronomy. In addition to superconducting IR sensors, interest in uncooled YBCO devices is growing very rapidly. Despite somewhat lower sensitivity and significantly reduced speed of response, as compared to the superconducting counterpartners, the uncooled IR detectors are characterized by much lower operating cost and weight due to lack of cooling cryogens and are compatible with existing silicon-based processing and fabrication. The last point is of paramount importance if the IR-sensitive pixels are to be integrated with CMOS read-out circuitry for monolithic focal plane arrays and infrared cameras. Amorphous uncooled YBCO photodetectors operate as either photoconductive bolometers of unbiased pyroelectric devices.

  3. Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Fyhrie, A.; Glenn, J.; Wheeler, J.; Day, P.; Eom, B. H.; Leduc, H.; Skrutskie, M.

    2016-08-01

    Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 \\upmu m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3× 10^{-19} W/√{Hz}. We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 % yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 \\upmu m optically loaded by cold blackbody radiation.

  4. HOTEYE: a novel thermal camera using higher operating temperature infrared detectors

    NASA Astrophysics Data System (ADS)

    Bowen, Gavin J.; Blenkinsop, Ian D.; Catchpole, Rose; Gordon, Neil T.; Harper, Mark A. C.; Haynes, Paul C.; Hipwood, Les; Hollier, Colin J.; Jones, Chris; Lees, David J.; Maxey, Chris D.; Milner, Daniel; Ordish, Mike; Philips, Tim S.; Price, Richard W.; Shaw, Chris; Southern, Paul

    2005-05-01

    Conventional high performance infrared (IR) sensors need to be cooled to around 80K in order to achieve a high level of thermal sensitivity. Cooling to this temperature requires the use of Joule-Thomson coolers (with bottled gas supply) or Stirling cycle cooling engines, both of which are bulky, expensive and can have low reliability. In contrast to this, higher operating temperature (HOT) detectors are designed to give high thermal performance at an operating temperature in the range 200K to 240K. These detectors are fabricated from multi-layer mercury cadmium telluride (MCT) structures that have been designed for this application. At higher temperatures, lower cost, smaller, lighter and more reliable thermoelectric (or Peltier) devices can be used to cool the detectors. The HOTEYE thermal imaging camera, which is based on a 320x256 pixel HOT focal plane array, is described in this paper and performance measurements reported.

  5. Thermal imager fixed pattern noise prediction using a characterization of the infrared detector

    NASA Astrophysics Data System (ADS)

    Mariani, Paolo; Zatti, Stefano; Giunti, Claudio; Sozzi, Barbara; Guadagnoli, Emanuele; Porta, Antonio

    2014-12-01

    Cooled infrared detectors are typically characterized by well-known electro-optical parameters: responsivity, noise equivalent temperature difference, shot noise, 1/f noise, and so on. Particularly important for staring arrays is also the residual fixed pattern noise (FPN) that can be obtained after the application of the nonuniformity correction (NUC) algorithm. A direct measure of this parameter is usually hard to define because the residual FPN strongly depends, other than on the detector, on the choice of the NUC algorithm and the operative scenario. We introduce three measurable parameters: instability, nonlinearity, and a residual after a polynomial fitting of the detector response curve, and we demonstrate how they are related to the residual FPN after the application of an NUC (the relationship with three common correction algorithms is discussed). A comparison with experimental data is also presented and discussed.

  6. Development and application of InAsP/InP quantum well infrared detector

    NASA Astrophysics Data System (ADS)

    Geetanjali, Porwal, S.; Kumar, R.; Dixit, V. K.; Sharma, T. K.; Oak, S. M.

    2016-05-01

    InAsxP1-x/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for infrared detector applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR detectors in the wide wavelength range, i.e. 0.9-1.46 µm by inter-band transitions and 7-18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAsxP1-x/InPQW detector is verified by measuring the photoluminescence of suitable semiconductor quantum well structure.

  7. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating. PMID:19044527

  8. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation

    NASA Astrophysics Data System (ADS)

    Bertschinger, G.; Endres, C. P.; Lewen, F.; Oosterbeek, J. W.

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  9. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation

    SciTech Connect

    Bertschinger, G.; Oosterbeek, J. W.; Endres, C. P.; Lewen, F.

    2008-10-15

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  10. Towards a life-time-limited 8-octave-infrared photoconductive germanium detector

    NASA Astrophysics Data System (ADS)

    Pavlov, S. G.; Deßmann, N.; Pohl, A.; Abrosimov, N. V.; Mittendorff, M.; Winnerl, S.; Zhukavin, R. Kh; Tsyplenkov, V. V.; Shengurov, D. V.; Shastin, V. N.; Hübers, H.-W.

    2015-10-01

    Ultrafast, ultra-broad-band photoconductive detector based on heavily doped and highly compensated germanium has been demonstrated. Such a material demonstrates optical sensitivity in the more than 8 octaves, in the infrared, from about 2 mm to about 8 μm. The spectral sensitivity peaks up between 2 THz and 2.5 THz and is slowly reduced towards lower and higher frequencies. The life times of free electrons/holes measured by a pump-probe technique approach a few tenths of picoseconds and remain almost independent on the optical input intensity and on the temperature of a detector in the operation range. During operation, a detector is cooled down to liquid helium temperature but has been approved to detect, with a reduced sensitivity, up to liquid nitrogen temperature. The response time is shorter than 200 ps that is significantly faster than previously reported times.

  11. Inhomogeneous critical current in nanowire superconducting single-photon detectors

    SciTech Connect

    Gaudio, R. Hoog, K. P. M. op 't; Zhou, Z.; Sahin, D.; Fiore, A.

    2014-12-01

    A superconducting thin film with uniform properties is the key to realize nanowire superconducting single-photon detectors (SSPDs) with high performance and high yield. To investigate the uniformity of NbN films, we introduce and characterize simple detectors consisting of short nanowires with length ranging from 100 nm to 15 μm. Our nanowires, contrary to meander SSPDs, allow probing the homogeneity of NbN at the nanoscale. Experimental results, endorsed by a microscopic model, show the strongly inhomogeneous nature of NbN films on the sub-100 nm scale.

  12. 320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.

  13. 320 x 256 complementary barrier infrared detector focal plane array for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean; Rafol, B., , Sir; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-06-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 μm observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 μm. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE▵T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 μm test diodes and small 28 μm FPA pixels are given.

  14. Early detection of combustible gas leaks using open path infrared (IR) gas detectors

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward; Baliga, Shankar

    2012-06-01

    Open path IR gas detectors are a mainstay in the oil and gas industry. They are used in a variety of instances to identify gas accumulations or monitor gas cloud migrations. In offshore installations, open path optical gas detectors are used to monitor drilling and production operations, crude oil separation, compression, and exhaust and ventilation systems. Because they can monitor a perimeter or fence line, they are ideally suited for detecting gas in open facilities, where point gas detectors would be difficult or expensive to deploy. Despite their widespread use, open path optical gas detectors are rarely employed to detect low level concentrations of combustible gases. Standard models are typically set to alarm at 50% LEL-m (50% LEL extended over one meter), providing sufficiently early warning when gas accumulations occur. Nevertheless, in cases in which a combustible gas is diluted quickly, such as ventilation exhaust ducting, it may be necessary to set the detector to alarm at the lowest predictable level. Further, interest in low level infrared gas detection has been growing as gases such as CH4 and CO2 are greenhouse gases. The present paper describes a mid-wave infrared (MWIR) open path system designed to detect combustible and carbon dioxide gas leaks in the parts-per-million-meter (ppm-m or mg/cm2). The detector has been installed in offshore platforms and large onshore facilities to detect a variety of flammable gases and vapors. Advantages and limitations of the system are presented. False alarm immunity and resilience to atmospheric interferences are also discussed.

  15. LDEF (Prelaunch), AO135 : Effect of Space Exposure on Pyroelectric Infrared Detectors, Tray E05

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO135 : Effect of Space Exposure on Pyroelectric Infrared Detectors, Tray E05 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Space Exposure on Pyroelectric Infrared Detectors Experiment (AO135) consist of twenty detectors of three different types of materials, lithium-tantalate, strontium-barium-niobate and triglycine-sulfide. The Pyroelectric infrered detector experiment is an integral part of the Active Optical System Component Experiment (S0050) that contains 136 test specimen and is located in a six (6) inch deep LDEF peripheral experiment tray. The experiment tray is divided into six sections, each consisting of a 1/4 inch thick chromic anodized aluminum base plate and a 1/16th inch thick aluminum hat shaped structure for mounting the test specimen. The test specimen are typi- cally placed in fiberglass-epoxy retainer strip assemblies prior to installation on the hat shaped mounting structure. Five of the six sections are covered by a 1/8 inch thick anodized aluminum sun screen with openings that allowed 56 percent transmission over the central region. Two subexperiments, The Optical Materials and UV Detectors Experiment (S0050-01) consist of 15 optical windows, filters and detectors and occupies one of the trays six sub-sections and The Optical Substrates and Coatings Experiment (S0050-02 ) that includes 12 substrates and coatings and a secondary experiment, The Holographic Data Storage Crystal Experiment (AO044) with four crystals, are also mounted in the integrated tray. The experiment structure was assembled with non-magnetic stainless steel fasteners.

  16. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  17. A Failure Mode in Dense Infrared Detector Arrays Resulting in Increased Dark Current

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Bellotti, Enrico

    2016-04-01

    In this paper, we investigate a failure mode that arises in dense infrared focal plane detector arrays as a consequence of the interactions of neighboring pixels through the minority carrier profiles in the common absorber layer. We consider the situation in which one pixel in a hexagonal array becomes de-biased relative to its neighbors and show that the dark current in the six neighboring pixels increases exponentially as a function of the difference between the nominal and anomalous biases. Moreover, we show that the current increase in the six nearest-neighbor pixels is in total larger than that by which the current in the affected pixel decreases, causing a net increase in the dark current. The physical origins of this effect are explained as being due to increased lateral diffusion currents that arise as a consequence of breaking the symmetry of the minority carrier profiles. We then perform a parametric study to quantify the magnitude of this effect for a number of detector geometric parameters, operating temperatures, and spectral bands. Particularly, numerical simulations are carried out for short-, mid-, and long-wavelength HgCdTe infrared detectors operating between 77 K and 210 K. We show that this effect is most prevalent in architectures for which the lateral diffusion current is the largest component of the total dark current—high operating temperature devices with narrow epitaxial absorber thicknesses and pitches small compared to the diffusion length of minority carriers. These results could prove significant particularly for short- and mid-wave infrared detectors, which are typically designed to fit these conditions.

  18. A Failure Mode in Dense Infrared Detector Arrays Resulting in Increased Dark Current

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin; Bellotti, Enrico

    2016-09-01

    In this paper, we investigate a failure mode that arises in dense infrared focal plane detector arrays as a consequence of the interactions of neighboring pixels through the minority carrier profiles in the common absorber layer. We consider the situation in which one pixel in a hexagonal array becomes de-biased relative to its neighbors and show that the dark current in the six neighboring pixels increases exponentially as a function of the difference between the nominal and anomalous biases. Moreover, we show that the current increase in the six nearest-neighbor pixels is in total larger than that by which the current in the affected pixel decreases, causing a net increase in the dark current. The physical origins of this effect are explained as being due to increased lateral diffusion currents that arise as a consequence of breaking the symmetry of the minority carrier profiles. We then perform a parametric study to quantify the magnitude of this effect for a number of detector geometric parameters, operating temperatures, and spectral bands. Particularly, numerical simulations are carried out for short-, mid-, and long-wavelength HgCdTe infrared detectors operating between 77 K and 210 K. We show that this effect is most prevalent in architectures for which the lateral diffusion current is the largest component of the total dark current—high operating temperature devices with narrow epitaxial absorber thicknesses and pitches small compared to the diffusion length of minority carriers. These results could prove significant particularly for short- and mid-wave infrared detectors, which are typically designed to fit these conditions.

  19. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  20. Ge:Ga and Ge:Be photoconductive detectors for far infrared astronomy from a space platform

    NASA Technical Reports Server (NTRS)

    Bratt, P. R.; Lewis, N. N.; Nielsen, R. L.

    1978-01-01

    The paper describes some of the development work on gallium-doped germanium (Ge:Ga) and beryllium-doped germanium (Ge:Be) photoconductive detectors for use in far-infrared astronomical observations from a space platform such as IRAS. The paper is concerned primarily with detector performance and is divided into two major parts. The first presents the operating principles of this type of detector, while the second presents measured performance data under low-background flux conditions. It is shown that high sensitivity can be obtained from Ge:Ga and Ge:Be detectors under low-background and low-temperature conditions of operation. These detectors are useful for astronomical observations in the far-infrared over the wavelength range 30-120 microns. Major conclusions of the research work done so far are mentioned, including that detectors cut from the same crystal show reasonably good reproducibility of operating characteristics.

  1. Characterization of Dual-Band Infrared Detectors for Application to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara

    2005-01-01

    NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic infrared (IR) detectors suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength detectors operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb detector detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band detector consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band detector from RPI and characterized the detector at its Detector Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.

  2. Parylene supported 20um*20um uncooled thermoelectric infrared detector with high fill factor

    NASA Astrophysics Data System (ADS)

    Modarres-Zadeh, Mohammad J.; Carpenter, Zachary S.; Rockley, Mark G.; Abdolvand, Reza

    2012-06-01

    Presented is a novel design for an uncooled surface-micromachined thermoelectric (TE) infrared (IR) detector. The detector features a P-doped polysilicon/Nichrome (Cr20-Ni80) thermocouple, which is embedded into a thin layer of Parylene-N to provide structural support. The low thermal conductivity (~0.1W/m.K), chemical resistance, and ease of deposition/patterning of Parylene-N make it an excellent choice of material for use in MEMS thermal detectors. This detector also features an umbrella-like IR absorber composed of a three layer stack of NiCr/SiN/NiCr to optimize IR absorption. The total device area is 20 um * 20 um per pixel with an absorber area of ~19 um * 19 um resulting in a fill factor of 90%. At room temperature, a DC responsivity of ~170V/W with a rise time of less than 8 ms is measured from the fabricated devices in vacuum when viewing a 500K blackbody without any concentrating optics. The dominant source of noise in thermoelectric IR detectors is typically Johnson noise when the detectors are operating in an open circuit condition. The fabricated detectors have resistances about 85KOhm which results in Johnson noise of about 38nV/Hz^0.5. The D* is calculated to be 9 * 106 cm*Hz0.5/ W. Preliminary finite element analysis indicates that the thermal conduction from the hot junction to the substrate through the TE wires is dominant ( GTE >> Gparylene) considering the fabricated dimensions of the parylene film and the TE wires. Thus, by further reducing the size of the TE wires, GTE can be decreased and hence, responsivity can be improved while the parylene film sustains the structural integrity of the cell.

  3. New and Better Near-Infrared Detectors for JWST Near Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Mott, D. Brent; Wen, Yiting; Linder, Don; Greenhouse, Matthew A.; Hill, Robert J.

    2014-01-01

    ESA and NASA recently selected two 5 m cutoff Teledyne H2RG sensor chip assemblies (SCA) for flight on the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These HgCdTe SCAs incorporate Teledynes improved barrier layer design that eliminates the degradation that affected earlier JWST H2RGs(Rauscher et al. 2012a). The better indium barrier, together with other design changes, has improved the performance and reliability of JWSTs SCAs. In this article, we describe the measured performance characteristics that most directly affect scientific observations including read noise, total noise, dark current, quantum efficiency (QE), and image persistence. As part of measuring QE, we measured the quantum yield as a function of photon energy,, and found that it exceeds unity for photon energies E (2.65.2) Eg, where Eg is the HgCdTe bandgap energy. This corresponds to. 2 m for NIRSpecs 5 m cutoff HgCdTe. Our measurements agree well with a previous measurement by McCullough et al. (2008) for. 1.3. For 1.3, we find a slower increase in with photon energy than McCullough et al. did. However, and as McCullough et al. note, their two state model of the yield process is not valid for large 1.

  4. Study of PZT thick-film infrared detectors prepared by MEMS technology

    NASA Astrophysics Data System (ADS)

    Qiang, Xiang-Peng; Chuan, Gui-Wu; Wen, Bo-Luo; Wan, Li-Zhang; Jia, Qiang-Cao

    2011-08-01

    In this paper, a single element integrated infrared detector using screen printed lead zirconate titanate (PZT) thick films on Pt/Ti/Al2O3/SiO2 coated silicon cup has been developed. The thermal insulating micro-bridge of the detector was prepared by Micro-electro-mechanical System (MEMS) technology. To increase the density of PZT ceramic thick films, cool isostatic pressing experiments had been conducted under 300MPa and 30s dwell time. The XRD pattern shows that PZT thick films possess good perovskite structure. The SEM cross section image demonstrate that the PZT film was dense and the thickness is about 25μm. The dielectric constant, loss and pyroelectric coefficient of PZT thick films prepared at optimized conditions is 1100, 1% and 1×10-8C/Kcm 2, respectively. The results indicated that the PZT thermal sensitive layer fabricated by screen printing on the Pt/Ti coated silicon cup with micro-bridge thermal insulation structure, and Al2O3/SiO2 barrier layer show potential application in infrared detectors.

  5. Limiting dark current mechanisms in antimony-based superlattice infrared detectors for the long-wavelength infrared regime

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Lemke, Florian; Schmitz, Johannes; Wauro, Matthias; Walther, Martin

    2015-06-01

    A detailed understanding of limiting dark current mechanisms in InAs/GaSb type-II superlattice (T2SL) infrared detectors is key to improve the electrooptical performance of these devices. We present a six-component dark current analysis which, for the first time, takes account of sidewall-related dark current contributions in mesa-etched T2SL photodiodes. In a wide temperature range from 30K to 130K, the paper compares limiting mechanisms in two homojunction T2SL photodiode wafers for the long-wavelength infrared regime. While the two epi wafers were fabricated with nominally the same frontside process they were grown on different molecular beam epitaxy systems. In the available literature a limitation by Shockley-Read-Hall processes in the space charge region giving rise to generation-recombination (GR) dark current is the prevailing verdict on the bulk dark current mechanism in T2SL homojunction photodiodes around 77K. In contrast, we find that investigated photodiode wafers are instead limited by the diffusion mechanism and the ohmic shunt component, respectively. Furthermore, our in-depth analysis of the various dark current components has led to an interesting observation on the temperature dependence of the shunt resistance in T2SL homojunction photodiodes. Our results indicate that the GR and the shunt mechanism share the same dependence on bandgap and temperature, i.e., a proportionality to exp(-Eg/2kT).

  6. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  7. Long-wavelength PTSI infrared detectors and method of fabrication thereof

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon (Inventor); Park, Jin S. (Inventor); Gunapala, Sarath D. (Inventor); Jones, Eric W. (Inventor); Del Castillo, Hector M. (Inventor)

    1997-01-01

    Extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime have been demonstrated for the first time. This result was achieved by incorporating a 1-nm-thick p+ doping spike at the PtSi/Si interface. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p+ doping spike and the Schottky image force. The p+ doping spikes were grown by molecular beam epitaxy at 450 degrees Celsius using elemental boron as the dopant source, with doping concentrations ranging from 1.times.10.sup.19 to 1.times.10.sup.21 cm.sup.-3. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p+ spikes.

  8. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    NASA Astrophysics Data System (ADS)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  9. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    PubMed

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays. PMID:26836674

  10. Superconducting squid amplifiers for IR detectors and other applications: Phase 2. Final report. [IR (Infrared)

    SciTech Connect

    Osterman, D.

    1993-05-01

    The subject of this report is a completed Phase II SBIR project to develop a superconducting analog multiplexer circuit. The intended application of the multiplexer is as a component of processing circuitry for a superconducting infrared focal plane array (IR FPA). Development of the IR FPA is in progress under a separate contract. Among the accomplishments that are described below is the fabrication and testing of a functioning, superconducting, 20-input multiplexer, appropriate for use with an IR FPA. The motivation for developing a superconducting multiplexer circuit derives primarily from the significant potential advantages of an all-superconducting IR FPA system, i.e. a system in which the detectors, as well as the associated processing circuitry, are superconducting. Section III of this report reviews the subject of superconducting IR FPAs. Chief among the advantages of such systems is the potential for larger arrays with greater numbers of detectors than is now possible.

  11. Photoresponse Model for Si_(1-x)Ge_x/Si Heterojunction Internal Photoemission Infrared Detector

    NASA Technical Reports Server (NTRS)

    Lin, T.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1993-01-01

    A photoresponse model has been developed for the Si_(1-x)Ge_x/Si heterojunction internalphotoemission (HIP) infrared detector at wavelengths corresponding to photon energies less than theFermi energy. A Si_(0.7)Ge_(0.3)/Si HIP detector with a cutoff wavelength of 23 micrometers andan emission coefficient of 0.4 eV^(-1) has been demonstrated. The model agrees with the measureddetector response at lambda greater than 8 micrometers. The potential barrier determined by themodel is in close agreement (difference similar to 4 meV) with the potential barrier determined by theRichardson plot, compared to the discrepancies of 20-50 meV usually observed for PtSi Schottkydetectors.

  12. Infrared response measurements on radiation-damaged Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Sher, A. H.; Liu, Y. M.; Keery, W. J.

    1972-01-01

    The improved infrared response (IRR) technique has been used to qualitatively compare radiation effects on Si(Li) detectors with energy levels reported for silicon in the literature. Measurements have been made on five commercial silicon detectors and one fabricated in-house, both before and after irradiation with fast neutrons, 1.9-MeV protons, and 1.6-MeV electrons. Effects dependent upon the extent of radiation damage have been observed. It seems likely that the photo-EMF, or photo-voltage, effect is the basic mechanism for the observation of IRR in p-i-n diodes with a wide i-region. Experimental characteristics of the IRR measurement are in agreement with those of the photovoltage effect.

  13. Multiscale modeling of photon detectors from the infrared to the ultraviolet

    NASA Astrophysics Data System (ADS)

    Bellotti, Enrico; Schuster, Jonathan; Pinkie, Benjamin; Bertazzi, Francesco

    2013-09-01

    Due to the ever increasing complexity of novel semiconductor systems, it is essential to possess design tools and simulation strategies that include in the macroscopic device models the details of the microscopic physics and their dependence on the macroscopic (continuum) variables. Towards this end, we have developed robust multi-scale modeling capabilities that begin with modeling the intrinsic semiconductor properties. The models are fully capable of incorporating effects of substrate driven stress/strain and the material quality (dislocations and defects) on microscopic quantities such as the local transport coefficients and non-radiative recombination rate. Using this modeling approach we have extensively studied UV APD detectors and infrared focal plane arrays. Particular emphasis was placed on HgCdTe and InAsSb arrays incorporating photon trapping structures as well as two-color HgCdTe detectors arrays.

  14. Uncooled resonant infrared detector based on aluminum nitride piezoelectric film through charge generations and lattice absorptions

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Kropelnicki, P.; Zhu, Y.; Randles, A. B.; Gu, Y. A.; Leong, K. C.; Tan, C. S.

    2014-05-01

    This Letter demonstrates an aluminum nitride (AlN) based uncooled resonant infrared (IR) detector utilizing the photo-sensitive and piezoelectric properties of polycrystalline AlN. The AlN Lamb wave mode resonator is found responsive to IR illuminations by showing a decrease in the S21 magnitude instead of a resonant frequency shift. A -0.08 dB shift of S21 magnitude was observed for an IR incident power of 647 nW, which translates to a responsivity of 124 kdB/W. Photoresponse is proposed for the IR sensing mechanism through additional charge carriers generation rather than thermal effects.

  15. Growth and study of triglycine sulfate (TGS) crystals in low-G for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Batra, A. K.; Aggarwal, M. D.; Wilcox, W. R.; Trolinger, J. D.

    1991-01-01

    Experiments on growth of TGS crystals using (010) and (001) oriented disc shape seeds in the low gravity environment aboard Spacelab-3 are presented. The holographic interferograms reconstructed on the ground demonstrated diffusion limited growth. The morphology of the crystals grown was similar to that of crystals grown on earth, except the faces were not fully developed and planar. The device quality of these crytals is considered to be comparable with the best crystals grown on earth. Better infrared detector characteristics were obtained by doping TGS with Cs and L-alanine simultaneously on the ground. Crystals grown on (010) poled seeds show improved morphology and pyroelectric properties.

  16. Near-infrared InGaAs detectors for background-limited imaging and photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter W.; Croll, Bryce; Simcoe, Robert A.

    2014-07-01

    Originally designed for night-vision equipment, InGaAs detectors are beginning to achieve background-limited performance in broadband imaging from the ground. The lower cost of these detectors can enable multi-band instruments, arrays of small telescopes, and large focal planes that would be uneconomical with high-performance HgCdTe detectors. We developed a camera to operate the FLIR AP1121 sensor using deep thermoelectric cooling and up-the-ramp sampling to minimize noise. We measured a dark current of 163 e- s-1 pix-1, a read noise of 87 e- up-the-ramp, and a well depth of 80k e-. Laboratory photometric testing achieved a stability of 230 ppm hr-1/2, which would be required for detecting exoplanet transits. InGaAs detectors are also applicable to other branches of near-infrared time-domain astronomy, ranging from brown dwarf weather to gravitational wave follow-up.

  17. Fundamental Limits on the Imaging and Polarisation Properties of Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher N.; Withington, Stafford; Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey

    2009-01-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  18. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    SciTech Connect

    Cardozo, Benjamin Lewin

    2004-12-21

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 10{sup 13} cm{sup -3}, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  19. History of HgCdTe infrared detectors at BAE Systems

    NASA Astrophysics Data System (ADS)

    Reine, Marion B.

    2009-05-01

    This paper describes the history and current status of HgCdTe infrared detector technology at BAE Systems in Lexington, Massachusetts, whose corporate legacy includes Honeywell (1962-1991), Loral (1991-1996), and Lockheed Martin (1996-2000). The Honeywell Radiation Center was founded in 1962 in Boston, Massachusetts. Shortly thereafter, primitive HgCdTe samples began to arrive from the Honeywell Corporate Research Center in Hopkins, Minnesota for evaluation as possible IR detectors. In 1967, procedures for the growth of HgCdTe inhomogeneous large-grain-polycrystalline ingots by a modified Bridgman method were transferred from the Research Center to the Radiation Center. In 1968 the Radiation Center moved to new facilities in Lexington, Massachusetts. HgCdTe activities have expanded and evolved in the ensuing years, remaining in the Lexington, Massachusetts facilities up to the present. This paper reviews the role that the Honeywell/Loral/Lockheed Martin/BAE Systems facility in Lexington, Massachusetts has played in the success of HgCdTe as today's preeminent, highest performance, most versatile, and most widely applicable infrared detector material for the 1-30 μm spectral range. We examine the evolution of both photoconductive and photovoltaic HgCdTe detectors from early unpassivated ill-understood single-element devices through production of linear arrays and to today's large-format two-dimensional IR Focal Plane Arrays for the most demanding spaceborne applications. We examine the progress made in HgCdTe materials science and technology, including improved highly-homogeneous bulk crystal growth, liquid phase epitaxy and metalorganic vapor phase epitaxy. Various devices are used to illustrate the evolution of HgCdTe technology, including the n-type photoconductor, the trapping-mode photoconductor, and the two-layer LPE P-on-n heterojunction.

  20. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature

  1. Temperature Dependence of Novel Single-Photon Detectors in the Long-Wavelength Infrared Range

    NASA Astrophysics Data System (ADS)

    Ueda, Takeji; An, Zhenghua; Komiyama, Susumu

    2011-05-01

    Novel single-photon detectors, called Charge-sensitive Infrared Phototransistor (CSIP), have been developed in the long wavelength infrared (LWIR) range. The devices are fabricated in GaAs/AlGaAs double-quantum-well (DQW) structure, and do not require ultralow temperatures ( T < 1 K) for operation. Figures of merit are determined in a T-range of 4.2 K˜30 K by using a homemade all-cryogenic spectrometer. We found that the photo-signal persists up to around 30 K. Excellent specific detectivity D * = 9.6 × 1014 cm Hz1/2/W and noise equivalent power NEP = 8.3 × 10-19 W/Hz1/2 are derived up to T = 23 K. The dynamic range of detection exceeds 106, roughly ranging from attowatt to picowatt levels. These values are by a few orders of magnitude higher than that of the state-of-the-art values of other detectors. Simple planar structure of CSIPs is feasible for array fabrication and will make it possible to monolithically integrate with reading circuit. CSIPs are, therefore, not only extremely sensitive but also suitable for practical use in wide ranging applications.

  2. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Soibel, Alexander; Gunapala, Sarath D.

    2016-05-01

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.

  3. Thermal properties of a pyroelectric-ceramic infrared detector with metallic intermediate layer

    NASA Astrophysics Data System (ADS)

    Lee, Moon H.; Bae, Seong H.; Bhalla, Amar S.

    1998-06-01

    Infrared thermal detectors were prepared with pyroelectric PSN-PT-PZ (1/47/52) ceramics, where a signal electrode had a structure Au/metallic buffer/Pb(Zr,Ti)O3 ceramic. The effect of a metallic buffer layer on the voltage responsivity was investigated with a response to a step signal, made by a dynamic pyroelectric measurement. A pyroelectric ceramic wafer was prepared by a mixed-oxide technique. The Au layer (thickness 50 nm) and the metallic buffers (thickness 0 to 20 nm) of Cr, NiCr (80:20), and Ti were prepared by dc magnetron sputtering. In order to improve the light absorptivity, Au black was coated on the Au signal electrode by thermal evaporation. A detector without a buffer layer showed a noisy and fluctuating output signal. Among the three kinds of buffer materials, NiCr (80:20) and Ti adhered well with ceramics and showed good electrical and thermal contact, whereas Cr resulted in bad contacts. Considering the output voltage and thermal properties, the optimum thickness of the buffer layer was about 15 to 20 nm, and sensors with a Ti buffer 15 to 20 nm in thickness showed good detectivity. Thus, the stability and reliability of the infrared thermal sensors could be improved by using an appropriate buffer layer.

  4. Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter W.; Croll, Bryce; Simcoe, Robert A.

    2013-09-01

    We have designed, constructed, and tested an InGaAs near-infrared camera to explore whether low-cost detectors can make small (<= 1 m) telescopes capable of precise (< 1 mmag) infrared photometry of relatively bright targets. The camera is constructed around the 640 × 512 pixel APS640C sensor built by FLIR Electro-Optical Components. We designed custom analog-to-digital electronics for maximum stability and minimum noise. The InGaAs dark current halves with every 7°C of cooling, and we reduce it to 840 e- s-1 pixel-1 (with a pixel-to-pixel variation of ± 200 e- s-1 pixel-1) by cooling the array to -20°C. Beyond this point, glow from the readout dominates. The single-sample read noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory testing with a star field generated by a lenslet array shows that two-star differential photometry is possible to a precision of 631 ± 205 ppm (0.68 mmag) hr-1/2 at a flux of 2.4 × 104 e- s-1. Employing three comparison stars and decorrelating reference signals further improves the precision to 483 ± 161 ppm (0.52 mmag) hr-1/2. Photometric observations of HD80606 and HD80607 (J = 7.7 and 7.8) in the Y band shows that differential photometry to a precision of 415 ppm (0.45 mmag) hr-1/2 is achieved with an effective telescope aperture of 0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited photometry of brighter dwarfs with particular advantage for late-M and L types. In addition, one might acquire near-infrared photometry simultaneously with optical photometry or radial velocity measurements to maximize the return of exoplanet searches with small telescopes.

  5. Development of a new readout system for the near-infrared detector of HONIR

    NASA Astrophysics Data System (ADS)

    Ui, Takahiro; Sako, Shigeyuki; Yamashita, Takuya; Akitaya, Hiroshi; Kawabata, Koji S.; Nakaya, Hidehiko; Moritani, Yuki; Itoh, Ryosuke; Takaki, Katsutoshi; Urano, Takeshi; Ueno, Issei; Ohsugi, Takashi; Yoshida, Michitoshi; Nakao, Hikaru; Hashiba, Yasuhito

    2014-08-01

    We developed a new readout system for the near-infrared detector VIRGO-2K (2kx2k HgCdTe array) installed in the optical-infrared simultaneous camera, HONIR, for the 1.5 m Kanata telescope at Higashi-Hiroshima observatory. The main goal of this development is to read out one frame within ~ 1 second through 16 output readout mode of the detector, in order to reduce the overhead time per exposure. The system is based on a CCD controller, Kiso Array Controller (KAC). We redesigned the analog part of KAC to fit VIRGO-2K. We employed a fully differential input circuit and a third order Bessel low-pass filter for noise reduction and a constant current system to improve the linearity of the detector. We set the cutoff frequency of the Bessel low-pass filter at the readout clock rate (120 kHz). We also set the constant current at 200 μA according to the data sheet of VIRGO-2K. We tested the new readout system at room temperature and confirmed that the low-pass filter works well as designed. The fluctuation of the current level of the constant current system is less than 2% for the typical output voltage range of VIRGO-2K (3.2-4.4 V). We measured the readout noise caused by the new readout system (connected to cooled multiplexer) and found that it is 30-40 μV rms, being comparable to or slightly higher than the typical readout noise of VIRGO-2K, ˜ 37 μV rms.

  6. Infrared pushbroom camera breadboard using off-the-shelf 2D array of detector

    NASA Astrophysics Data System (ADS)

    Bernier, Joel; Plainchamp, Patrick; Bardon, Dominique

    1994-09-01

    Performances for nowadays optronic systems require focal plane arrays (FPA) with an increasing number of detectors. The `push- broom' technic is well adapted to earth observation in the visible range with the availability of long linear CCD'S offering thousands of pixels. In the infrared, line scan systems are preferred at the present time because technological difficulties have to be overcome in order to get long linear arrays. Among the most important, are: (1) Difficulties to have a large cold focal plane with a temperature uniformity of a few degrees. (2) Difficulties to get good detection material over large surface. Mechanical or optical butting technology can be used there but with dead pixels and/or side effects. (3) Very low cold shield efficiency due to the geometry of the long linear array. (4) Very high development costs. MATRA DEFENSE UAO has made the design of a new infrared FPA concept which has the advantage to overcome all drawbacks listed previously (patented design). The idea consists to transform the pixel arrangement geometry of a 2D array which is available off the shelf into a long linear FPA using a coherent infrared fiber optic reformatter. In order to demonstrate the feasibility of this new FPA concept, a camera breadboard has been built. This task has been supported by the French MOD (STTE). This paper describes this breadboard and gives main technical performances.

  7. Mercury-cadmium-telluride thin layers as subterahertz and infrared detectors

    NASA Astrophysics Data System (ADS)

    Sizov, Fedir; Tsybrii, Zinoviia; Zabudsky, Vyacheslav; Golenkov, Oleksandr; Petryiakov, Volodymyr; Dvoretsky, Sergey; Michailov, Nikolai; Shevchik-Shekera, Anna; Lysiuk, Ihor; Dieguez, Ernesto

    2015-12-01

    Issues associated with the development and exploitation of infrared (IR) and terahertz (THz) radiation detectors based on a narrow-gap "HgCdTe" semiconductor have been discussed. This mercury-cadmium-telluride (MCT) semiconductor can be applied for two-color detector operation in IR and sub-THz spectral ranges. Two-color uncooled and cooled down to 78 K narrow-gap MCT semiconductor thin layers grown using the liquid phase epitaxy or molecular beam epitaxy methods on high-resistive "CdZnTe" or "GaAs" substrates, with bow-type antennas, have been considered both as sub-THz direct detection bolometers and 3 to 10 μm IR photoconductors. Their room temperature noise equivalent power at the frequency ν≈140 GHz and signal-to-noise ratio at the spectral sensitivity maximum under monochromatic (spectral resolution ˜0.1 μm) globar illumination reached the following values; ˜4.5×10-10 W/Hz1/2 and ˜50, respectively. Aspheric lenses used for obtaining the images in the sub-THz spectral region were designed and manufactured. With these detectors, about 140 and 270 GHz imaging data have been demonstrated.

  8. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  9. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    PubMed

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency. PMID:26906988

  10. Midwave infrared type-II InAs/GaSb superlattice detectors with mixed interfaces

    SciTech Connect

    Plis, E.; Annamalai, S.; Posani, K. T.; Krishna, S.; Rupani, R. A.; Ghosh, S.

    2006-07-01

    We report the growth and fabrication of midwave infrared InAs/GaSb strain layer superlattice (SLS) detectors. Growth of alternate interfaces leads to a reduced strain between the GaSb buffer and SLS ({delta}a{sub parallel}/a=-5x10{sup -4}), enabling the growth of active regions up to 3 {mu}m (625 periods). The structural, optical, and electrical properties of the active region were characterized using x-ray crystallography and photoluminescence, respectively. p-i-n detectors were grown using 625 periods of 8 ML (monolayer) InAs/8 ML GaSb as the active region. The {lambda}{sub cutoff} for the detectors was 4.6 {mu}m with a conversion efficiency of 32% at V{sub b}=-0.2 V. Detectivity was obtained using noise power spectral density measurements under 300 K 2{pi} field of view illumination and was equal to 5.2x10{sup 10} and 3x10{sup 10} cm Hz{sup 1/2}/W (V{sub b}=-0.02 V, T=80 K) in the white noise and 1/f noise limit (at 50 Hz)

  11. An infrared motion detector system for lossless real-time monitoring of animal preference tests.

    PubMed

    Pogány, A; Heszberger, J; Szurovecz, Zita; Vincze, E; Székely, T

    2014-12-01

    Automated behavioural observations are routinely used in many fields of biology, including ethology, behavioural ecology and physiology. When preferences for certain resources are investigated, the focus is often on simple response variables, such as duration and frequency of visits to choice chambers. Here we present an automated motion detector system that use passive infrared sensors to eliminate many drawbacks of currently existing methods. Signals from the sensors are processed by a custom-built interface, and after unnecessary data is filtered by a computer software, the total time and frequency of the subject's visits to each of the choice chambers are calculated. We validate the detector system by monitoring (using the system) and in the same time video recording mating preferences of zebra finches in a four-way choice apparatus. Manual scoring of the video recordings showed very high consistency with data from the detector system both for time and for frequency of visits. Furthermore, the validation revealed that if we used micro-switches or light barriers, the most commonly applied automatic detection techniques, this would have resulted in approximately 22% less information compared to our lossless system. The system provides a low-cost alternative for monitoring animal movements, and we discuss its further applicability. PMID:25475978

  12. Phase diagram, mechanical properties, and electronic structure of Nb-N compounds under pressure.

    PubMed

    Zhao, Zhonglong; Bao, Kuo; Tian, Fubo; Duan, Defang; Liu, Bingbing; Cui, Tian

    2015-09-21

    Niobium-nitrogen compounds, which are potential candidates for superhard multifunctional materials, may possess multiple stoichiometries and structures under pressure. Based on ab initio evolutionary structural searches, we predict three ground states (oP6-Nb2N, CW-NbN, and hP22-Nb5N6) and six stable high pressure phases (ε-NbN, AsNi-NbN, U2S3-Nb2N3, oC24-NbN2, mP8-NbN3, and mP20-NbN4) for Nb-N compounds at pressures up to 100 GPa. Among them, the oP6-Nb2N, oC24-NbN2, mP8-NbN3, and mP20-NbN4 have never been reported, and N-rich oC24-NbN2, mP8-NbN3, and mP20-NbN4 high pressure phases are recoverable to ambient pressure. We find that the structure of N-rich Nb-N compounds consists of NbNx polyhedral stacking configurations and connected with Nn (n = 2, 3, 4, and n) polymerizations, which can remarkably improve the elastic modulus. It is found that CW-NbN and mP20-NbN4 are two potential ultra-incompressible and hard materials with the hardness calculated to be 24.56 and 19.86 GPa, respectively, while other N-rich phases such as U2S3-Nb2N3, oC24-NbN2, and mP8-NbN3 are soft materials. Detailed electronic structure and chemical bonding analysis proved that the high hardness of CW-NbN and mP20-NbN4 stems from the strong covalent bonding and the fullfilled Nb-N bonding and antibonding states. PMID:26263846

  13. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  14. Physics-based simulation of the modulation transfer function in HgCdTe infrared detector arrays.

    PubMed

    Pinkie, Benjamin; Schuster, Jonathan; Bellotti, Enrico

    2013-07-15

    We have developed a numerical technique for performing physics-based simulations of the modulation transfer function (MTF) of infrared detector focal plane arrays. The finite-difference time-domain and finite element methods are employed to determine the electromagnetic and electrical response, respectively. We show how the total MTF can be decomposed to analyze the effect of lateral diffusion of charge carriers and present several methods for mitigation of such effects. We employ our numerical technique to analyze the MTF of a HgCdTe two-color bias-selectable infrared detector array. PMID:23939107

  15. CdS/PbSe heterojunction for high temperature mid-infrared photovoltaic detector applications

    SciTech Connect

    Weng, Binbin E-mail: shi@ou.edu; Qiu, Jijun; Zhao, Lihua; Chang, Caleb; Shi, Zhisheng E-mail: shi@ou.edu

    2014-03-24

    n-CdS/p-PbSe heterojunction is investigated. A thin CdS film is deposited by chemical bath deposition on top of epitaxial PbSe film by molecular beam epitaxy on Silicon. Current-voltage measurements demonstrate very good junction characteristics with rectifying ratio of ∼178 and ideality factor of 1.79 at 300 K. Detectors made with such structure exhibit mid-infrared spectral photoresponse at room temperature. The peak responsivity R{sub λ} and specific detectivity D{sup *} are 0.055 A/W and 5.482 × 10{sup 8} cm·Hz{sup 1/2}/W at λ = 4.7 μm under zero-bias photovoltaic mode. Temperature-dependent photoresponse measurements show abnormal intensity variation below ∼200 K. Possible reasons for this phenomenon are also discussed.

  16. Symmetric Absorber-Coupled Far-Infrared Microwave Kinetic Inductance Detector

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)

    2016-01-01

    The present invention relates to a symmetric absorber-coupled far-infrared microwave kinetic inductance detector including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.

  17. Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.

  18. Slot Antenna Coupled Thin-Film Warm Carrier Far-Infrared Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Yasuoka, Yoshizumi; Suzuki, Kenji

    Slot antenna coupled thin-film warm carrier devices were fabricated, and the detection properties were investigated at 94 and 700 GHz. Two-dimensional 8 × 3 slot antenna arrays fed by a coplanar waveguide were used as the antennas. The thin-film antennas were fabricated with a photolithographic method, and the warm carrier detectors, which have the contact area of 8 × 10-10 cm2, were fabricated with an electron beam lithographic method. The experimental results indicate that the fabricated devices receive the far-infrared radiation with antenna and rectified it with non-linear I-V characteristic. By changing the antenna from the single slot antenna to the two-dimensional 8 × 3 slot antenna array, the detected sensitivity improved by 11 dB.

  19. Design of monocrystalline Si/SiGe multi-quantum well microbolometer detector for infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Shafique, Atia; Durmaz, Emre C.; Cetindogan, Barbaros; Yazici, Melik; Kaynak, Mehmet; Kaynak, Canan B.; Gurbuz, Yasar

    2016-05-01

    This paper presents the design, modelling and simulation results of silicon/silicon-germanium (Si/SiGe) multi-quantum well based bolometer detector for uncooled infrared imaging system. The microbolometer is designed to detect light in the long wave length infrared (LWIR) range from 8 to 14 μm with pixel size of 25 x 25 μm. The design optimization strategy leads to achieve the temperature coefficient of resistance (TCR) 4.5%/K with maximum germanium (Ge) concentration of 50%. The design of microbolometer entirely relies on standard CMOS and MEMS processes which makes it suitable candidate for commercial infrared imaging systems.

  20. Near-Infrared Single-Photon-Counting Detectors for Laser Instrument Applications at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Xiaoli, Sun; Abshire, James B.

    2005-01-01

    We discuss single-photon-counting detectors requirements for NASA remote sensing and communications systems. We present experimental measurements on several different near-infrared single-photon-counting detectors including InGaAs/InP and InGaAs/InAlAs avalanche photodiodes (APD), an InGaAsP photocathode hybrid photomultiplier (PMT) and an InGaAs photomultiplier. We present the experimental performance of prototype instruments for laser ranging, communication, and trace-gas detection that use these detectors.

  1. Superlattice infrared photodetector research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Rafol, S. B.; Soibel, A.; Khoshakhlagh, A.; Hill, C. J.; Höglund, L.; Keo, S. A.; Liu, J. K.; Mumolo, J. M.; Luong, E. M.; Fisher, A.

    2015-08-01

    III-V semiconductors offer a highly effective platform for the development of sophisticated heterostructure-based MWIR and LWIR detectors, as exemplified by the high-performance double heterstructure (DH) nBn, XBn, and type- II superlattice infrared detectors. A key enabling design element is the unipolar barrier, which is used to implement the complementary barrier infra-red detector (CBIRD) design for increasing the collection efficiency of photogenerated carriers, and reducing dark current generation without impeding photocurrent flow. Heterostructure superlattice detectors that make effective use of unipolar barriers have demonstrated strong reduction of generationrecombination (G-R) dark current due to Shockley-Read-Hall (SRH) processes. In the last several years we solely focused on the development of antimonide based IR detectors. Recently, we demonstrated RoA values over 14,000 Ohm cm2 for a 9.9 μm cutoff device by incorporating electron-blocking and hole-blocking unipolar barriers. This device has shown 300K BLIP operation with f/2 optics at 87 K with blackbody * of 1.1x1011 cm Hz1/2/W.

  2. A carbon nanotubes photoconductive detector for middle and far infrared regions based on porous silicon and a polyamide nylon polymer

    NASA Astrophysics Data System (ADS)

    Saleh, Wasan R.

    2015-06-01

    Sensitive and good response photoconductive detectors working in the middle and far infrared regions were fabricated. These detectors were fabricated based on multi and double walled carbon nanotube films and works at room temperature. The films were deposited on a porous silicon (PSi) nanosurface. The surfaces were functionalized by a thin layer of polyamide nylon polymer to improve the photoresponsivity of the fabricated detectors. The response time of the fabricated MWCNTs-PSi detectors were 30 and 0.22 ms for the middle and far IR region respectively. The functionalisation of the MWCNTs-PSi film surface by the polyamide nylon polymer improved the photoconductive gain, photoresponsivity, and specific conductivity in both MWCNTs-PSi and DWCNTs-PSi detectors. The designed carbon nanotube (CNT) based photodetector has low cost, high sensitivity and reasonable speed for the middle and far IR spectral range without cooling.

  3. Detector-level spectral characterization of the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite long-wave infrared bands M15 and M16.

    PubMed

    Padula, Francis; Cao, Changyong

    2015-06-01

    The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data record (SDR) product achieved validated maturity status in March 2014 after roughly two years of on-orbit characterization (S-NPP spacecraft launched on 28 October 2011). During post-launch analysis the VIIRS Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the daytime SST data. Daytime SST retrievals use the two VIIRS long-wave infrared bands: M15 (10.7 μm) and M16 (11.8 μm). To assess possible root causes due to detector-level spectral response function (SRF) effects, a study was conducted to compare the radiometric response of the detector-level and operational-band averaged SRFs of VIIRS bands M15 and M16. The study used simulated hyperspectral blackbody radiance data and clear-sky ocean hyperspectral radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs and that if users require optimal radiometric performance, detector-level processing is recommended for both SDR and EDR products. Future work should investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs. PMID:26192672

  4. Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector

    SciTech Connect

    Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou; Nguyen, Jean; Hoglund, Linda; Fisher, Anita M.; Keo, Sam. A.; Ting, David Z.-Y.; Gunapala, Sarath D.

    2015-12-28

    In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation. This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.

  5. Modeling the optical response of grating-profiled PtSi/Si infrared detectors

    NASA Astrophysics Data System (ADS)

    Rea, Chris J. T.; Cairns, Gerald F.; Dawson, Paul

    1997-10-01

    Modeling the optical response of grating profiled PtSi/Si structures is examined to demonstrate the potential of microstructuring in optimizing the absorption of infrared detectors. Coupling to angularly broad surface plasmon polariton resonances near normal incidence is, in fact, achieved at both Si/PtSi and SiO2/PtSi interfaces for the same grating parameters in the wavelength ranges 3.0 - 4.4 micrometer and 1.3 - 1.9 micrometer respectively. These ranges correspond to two infrared, atmospheric transmission windows, and demonstrate the potential for a single device geometry to operate optimally in two different spectral bands. It is also shown that, throughout these spectral bands, it is possible to attain reflectance significantly lower than that of the planar structure counterparts in the angle range 0 degrees to plus or minus 20 degrees (corresponding to the use of F1.4 optics), along with containment of low reflectance to that angle range. Absorption mediated by the PtSi/Si surface plasmon polariton mode may be of particular interest in these Schottky barrier structures, since there would be considerable enhancement in the generation of hot carriers in the near barrier region where they have a better chance of direct or indirect (via elastic scattering) promotion over the barrier to give rise to a detectable charge.

  6. A long-range, wide field-of-view infrared eyeblink detector.

    PubMed

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise. PMID:16257057

  7. Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector

    NASA Astrophysics Data System (ADS)

    Soibel, Alexander; Rafol, B., Sir; Khoshakhlagh, Arezou; Nguyen, Jean; Hoglund, Linda; Fisher, Anita M.; Keo, Sam. A.; Ting, David Z.-Y.; Gunapala, Sarath D.

    2015-12-01

    In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λc = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from jd = 5 × 10-5 A/cm2 to jd = 6 × 10-3 A/cm2, at Vb = 0.1 V, T = 80 K and fluence 19.2 × 1011 H+/cm2. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation. This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.

  8. Ruggedizing infrared integrated Dewar-detector assemblies for harsh environmental conditions

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Ashush, Nataniel; Shlomovich, Baruch; Oppenhaim, Yaakov; Gridish, Yaakov; Kahanov, Ezra; Koifman, Alina; Tuito, Avi

    2014-06-01

    Cryogenically cooled infrared electro-optical payloads have to operate and survive frequent exposure to harsh vibrational and shock conditions typical of the modern battlefield. This necessitates the development of special approaches to ruggedizing their sensitive components. The ruggedization requirement holds true specifically for Integrated Dewar-Detector Assemblies (IDDA), where the infrared Focal Plane Array (FPA) is usually supported by a thin-walled cold finger enveloped by an evacuated tubular Dewar. Without sufficient ruggedization, harsh environmental vibration may give rise to structural resonance responses resulting in spoiled image quality and even mechanical fractures due to material fatigue. The authors present their approach for the ruggedization of the IDDA by attaching the FPA to a semi-rigid support extending from the dynamically damped Dewar envelope. A mathematical model relies on an experimentally evaluated set of frequency response functions for a reference system and a lumped model of a wideband dynamic absorber. By adding only 2% to the weight of the IDDA, the authors have managed to attenuate the relative deflection and absolute acceleration of the FPA by a factor of 3. The analytical predictions are in full agreement with experiment.

  9. Study of a Vuilleumier cycle cryogenic refrigerator for detector cooling on the limb scanning infrared radiometer

    NASA Technical Reports Server (NTRS)

    Russo, S. C.

    1976-01-01

    A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.

  10. Room temperature deposited vanadium oxide thin films for uncooled infrared detectors

    SciTech Connect

    Kumar, R.T. Rajendra; Karunagaran, B.; Mangalaraj, D.; Narayandass, Sa.K.; Manoravi, P.; Joseph, M.; Gopal, Vishnu; Madaria, R.K.; Singh, J.P

    2003-06-19

    We demonstrate the room temperature deposition of vanadium oxide thin films by pulsed laser deposition (PLD) technique for application as the thermal sensing layer in uncooled infrared (IR) detectors. The films exhibit temperature coefficient of resistance (TCR) of 2.8%/K implies promising application in uncooled IR detectors. A 2-D array of 10-element test microbolometer is fabricated without thermal isolation structure. The IR response of the microbolometer is measured in the spectral range 8-13 {mu}m. The detectivity and the responsivity are determined as {approx}6x10{sup 5} cm Hz{sup 1/2}/W and 36 V/W, respectively, at 10 Hz of the chopper frequency with 50 {mu}A bias current for a thermal conductance G{approx}10-3 W/K between the thermal sensing layer and the substrate. By extrapolating with the data of a typical thermally isolated microbolometer (G{approx}10{sup -7} W/K), the projected responsivity is found to be around 10{sup 4} V/W, which well compares with the reported values.

  11. Dark current measurement of Type-II superlattice infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Katayama, Haruyoshi; Murooka, Junpei; Kimata, Masafumi; Iguchi, Yasuhiro

    2014-06-01

    We report the result of a dark current measurement of a Type-II superlattice (T2SL) infrared focal plane array (FPA), which consists of a 6 μm cutoff T2SL detector array and the readout integration circuit (ROIC) ISC0903 of FLIR Systems. In order to measure the dark current of the FPA, we obtained images with different exposure times in a fully closed cold shield of 77 K. Using the temporal change rate of the output and considering the charge conversion efficiency of the ROIC, we obtained a dark current density with an average value of 4 × 10-5 A/cm2 at a bias of -100 mV. We also compare the result of the FPA dark current measurement with that of a test element group (TEG), which was a single pixel detector, fabricated by the same process as the FPA. The dark current density of the TEG was 3 × 10-6 A/cm2 at a bias of -100 mV, lower than that of the FPA. We discuss the discrepancy between the dark current densities of the FPA and the TEG.

  12. SiGe/Si heterojunction internal photoemission long-wavelength infrared detectors fabricated by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon; Ksendzov, A.; Dejewski, Suzan M.; Jones, Eric W.; Fathauer, Robert W.; Krabach, Timothy N.; Maserjian, Joseph

    1991-01-01

    A new SiGe/Si heterojunction internal photoemission (HIP) long-wavelength infrared (LWIR) detector has been fabricated by molecular beam epitaxy (MBE). The detection mechanism of the SiGe/Si HIP detector is infrared absorption in the degenerately doped p+-SiGe layer followed by internal photoemission of photoexcited holes over a heterojunction barrier. By adjusting the Ge concentration in the SiGe layer, and, consequently, the valence band offset between SiGe and Si, the cutoff wavelength of SiGe HIP detectors can be extended into the LWIR (8-17-micron) regime. Detectors were fabricated by growing p+-SiGe layers using MBE on patterned p-type Si substrates. The SiGe layers were boron-doped, with concentrations ranging from 10 to the 19th/cu cm to 4 x 10 to the 20th/cu cm. Infrared absorption of 5-25 percent in a 30-nm-thick p+-SiGe layer was measured in the 3-20-micron range using a Fourier transform infrared spectrometer. Quantum efficiencies of 3-5 percent have been obtained from test devices in the 8-12-micron range.

  13. Visible and Infrared Wavefront Sensing detectors review in Europe - part I

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-luc

    2013-12-01

    The purpose of this review is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. A major breakthrough has been achieved with the development by e2v technologies of the CCD220 between 2004 and 2012. Another major breakthrough is currently achieved with the very successful development of fast low noise infrared arrays called RAPID. The astonishing results of this device will be showed for the first time in an international conference at AO4ELT3.The CCD220, a 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication), offers less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. The OCAM2 camera is the commercial product that drives this advanced device. This system, commercialized by First Light Imaging, is quickly described in this paper. An upgrade of OCAM2 is currently developed to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. This upgrade and the results obtained are described extensively elsewhere in this conference (Gach et al).Since this major success, new detector developments started in Europe. The NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. This innovative device will be used on the European ELT but also interests potentially all giant telescopes.Additional developments also started in 2009 for wavefront sensing in the infrared based on a new technological breakthrough

  14. Near-Infrared Image Reconstruction of Newborns' Brains: Robustness to Perturbations of the Source/Detector Location.

    PubMed

    Ahnen, L; Wolf, M; Hagmann, C; Sanchez, S

    2016-01-01

    The brain of preterm infants is the most vulnerable organ and can be severely injured by cerebral ischemia. We are working on a near-infrared imager to early detect cerebral ischemia. During imaging of the brain, movements of the newborn infants are inevitable and the near-infrared sensor has to be able to function on irregular geometries. Our aim is to determine the robustness of the near-infrared image reconstruction to small variations of the source and detector locations. In analytical and numerical simulations, the error estimations for a homogeneous medium agree well. The worst case estimates of errors in reduced scattering and absorption coefficient for distances of r=40 mm are acceptable for a single source-detector pair. The optical properties of an inhomogeneity representing an ischemia are reconstructed correctly within a homogeneous medium, if the error in placement is random. PMID:26782235

  15. Nearly lattice-matched short-wave infrared InGaAsBi detectors on InP

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Zhang, Y. G.; Chen, X. Y.; Ma, Y. J.; Xi, S. P.; Du, B.; Li, Hsby.

    2016-01-01

    This work reports on the demonstration of a short-wave infrared detector nearly lattice matched to InP substrate using quaternary InGaAsBi as the absorption layer. The bismuth content of about 3.2% has red-shifted the 50% cut-off wavelength from about 1.6 μm to 2.1 μm at room temperature, indicating a bandgap reduction of about 180 meV due to bismuth incorporation. The detector shows an encouraging dark current density of 2.4 × 10-4 A/cm2 at bias voltage of -10 mV at 300 K. This work shows the promising potential of InP-based lattice-matched InGaAsBi detectors for short-wave infrared detection.

  16. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    cooled device without liquid nitrogen in very demanding environmental conditions. A successful test of this device was performed on sky on the PIONIER 4 telescopes beam combiner on the VLTi at ESOParanal in June 2014. First Light Imaging, which will commercialize a camera system using also APD infrared arrays in its proprietary wavefront sensor camera platform. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC, First Light Imaging). Funding is: Opticon FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI the French FUI (DGCIS), the FOCUS Labex and OSEO.

  17. Room-Temperature Deposition of NbN Superconducting Films

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Lamb, J. L.; Thakoor, A. P.; Khanna, S. K.

    1986-01-01

    Films with high superconducting transition temperatures deposited by reactive magnetron sputtering. Since deposition process does not involve significantly high substrate temperatures, employed to deposit counter electrode in superconductor/insulator/superconductor junction without causing any thermal or mechanical degradation of underlying delicate tunneling barrier. Substrates for room-temperature deposition of NbN polymeric or coated with photoresist, making films accessible to conventional lithographic patterning techniques. Further refinements in deposition technique yield films with smaller transition widths, Tc of which might approach predicted value of 18 K.

  18. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  19. Design and modeling of InAs/GaSb type II superlattice based dual-band infrared detectors

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Gamini; Grupen, Matt; Duran, Joshua M.; Scheihing, John E.; Nelson, Thomas R.; Eismann, Michael T.

    2012-04-01

    The objective of this paper is to provide a credible analysis for predicting the spectral responsivity of InAs/GaSb/AlSb type-II superlattice (T2SL) based dual-band infrared photodetectors. An overview of the T2SL based design criteria is given and new dual-band detector architecture with a model dual-band detector structure designed to detect light in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) ranges is presented. The absorption coefficient is modeled empirically and the quantum efficiency spectra are calculated using a numerical model and Hovel's analytical expressions. The spectral cross-talk due to the response of the LWIR channel to residual MWIR light is also investigated. It is shown that the significance of this cross-talk primarily depends on the temperature of the target (scene) being detected. For MWIR/MWIR (two bands in the MWIR range) dual-band detectors, the spectral cross-talk becomes significant irrespective of the target temperature. Eliminating the spectral cross-talk in T2SL dual-band detectors presently remains a challenge.

  20. Liquid phase epitaxial growth and characterization of germanium far infrared blocked impurity band detectors

    SciTech Connect

    Bandaru, Jordana

    2001-05-12

    Germanium Blocked Impurity Band (BIB) detectors require a high purity blocking layer (< 10{sup 13} cm{sup -3}) approximately 1 mm thick grown on a heavily doped active layer ({approx} 10{sup 16} cm{sup -3}) approximately 20 mm thick. Epilayers were grown using liquid phase epitaxy (LPE) of germanium out of lead solution. The effects of the crystallographic orientation of the germanium substrate on LPE growth modes were explored. Growth was studied on substrates oriented by Laue x-ray diffraction between 0.02{sup o} and 10{sup o} from the {l_brace}111{r_brace} toward the {l_brace}100{r_brace}. Terrace growth was observed, with increasing terrace height for larger misorientation angles. It was found that the purity of the blocking layer was limited by the presence of phosphorus in the lead solvent. Unintentionally doped Ge layers contained {approx}10{sup 15} cm{sup -3} phosphorus as determined by Hall effect measurements and Photothermal Ionization Spectroscopy (PTIS). Lead purification by vacuum distillation and dilution reduced the phosphorus concentration in the layers to {approx} 10{sup 14} cm{sup -3} but further reduction was not observed with successive distillation runs. The graphite distillation and growth components as an additional phosphorus source cannot be ruled out. Antimony ({approx}10{sup 16} cm{sup -3}) was used as a dopant for the active BIB layer. A reduction in the donor binding energy due to impurity banding was observed by variable temperature Hall effect measurements. A BIB detector fabricated from an Sb-doped Ge layer grown on a pure substrate showed a low energy photoconductive onset ({approx}6 meV). Spreading resistance measurements on doped layers revealed a nonuniform dopant distribution with Sb pile-up at the layer surface, which must be removed by chemomechanical polishing. Sb diffusion into the pure substrate was observed by Secondary Ion Mass Spectroscopy (SIMS) for epilayers grown at 650 C. The Sb concentration at the interface

  1. Uncooled infrared detector with 12μm pixel pitch video graphics array

    NASA Astrophysics Data System (ADS)

    Endoh, Tsutomu; Tohyama, Shigeru; Yamazaki, Takao; Tanaka, Yutaka; Okuyama, Kuniyuki; Kurashina, Seiji; Miyoshi, Masaru; Katoh, Kouji; Yamamoto, Takashi; Okuda, Yuuhi; Sasaki, Tokuhito; Ishizaki, Haruo; Nakajima, Tomohiko; Shinoda, Kentaro; Tsuchiya, Tetsuo

    2013-06-01

    Uncooled infrared detectors with 12μm pixel pitch video graphics array (VGA) have been developed. To improve the signal to noise ratio (SNR) for 12μm pixel pitch, a highly sensitive bolometer material, an advanced pixel structure for thermal isolation and a newly designed read-out IC (ROIC) have been also developed. The bolometer material has been improved by using vanadium niobate. Over a wide range of temperature, temperature coefficient of resistance (TCR) is achieved higher level than -3.6%/K, which is 2 times higher than that for the conventional bolometer material. For thermal isolation, thermal conductance (Gth) value for the new pixel structure, fabricated by using triple level sacrificial layer process, is estimated to be 5nW/K, which is 1/5 times lower than that for the conventional pixel structure. On the other hand, since the imaging area is reduced by the pixel pitch, the uniformity of pixel can be improved. This enables to remove the non-uniformity correction (NUC) circuit in the ROIC. Removal of this circuit is effective for low power and low noise. This 12μm pixel pitch VGA detector is packaged in a compact (24 × 24 × 6.5 mm) and lightweight (11g) ceramic package. In addition, it has been incorporated in a newly developed prototype miniature imager. The miniature imager has dimension of 25(H) ×25(W) ×28(L) mm and weight of 30g. This imager is compact and small enough to fit in your hand. Hereafter, this imager is greatly expected to be applied to mobile systems.

  2. Development of automatic target recognition for infrared sensor-based close-range land mine detector

    NASA Astrophysics Data System (ADS)

    Ngan, Peter; Garcia, Sigberto A.; Cloud, Eugene L.; Duvoisin, Herbert A., III; Long, Daniel T.; Hackett, Jay K.

    1995-06-01

    Infrared imagery scenes change continuously with environmental conditions. Strategic targets embedded in them are often difficult to be identified with the naked eye. An IR sensor-based mine detector must include Automatic Target Recognition (ATR) to detect and extract land mines from IR scenes. In the course of the ATR development process, mine signature data were collected using a commercial 8-12 (mu) spectral range FLIR, model Inframetrics 445L, and a commercial 3-5 (mu) starting focal planar array FLIR, model Infracam. These sensors were customized to the required field-of-view for short range operation. These baseline data were then input into a specialized parallel processor on which the mine detection algorithm is developed and trained. The ATR is feature-based and consists of several subprocesses to progress from raw input IR imagery to a neural network classifier for final nomination of the targets. Initially, image enhancement is used to remove noise and sensor artifact. Three preprocessing techniques, namely model-based segmentation, multi-element prescreener, and geon detector are then applied to extract specific features of the targets and to reject all objects that do not resemble mines. Finally, to further reduce the false alarm rate, the extracted features are presented to the neural network classifier. Depending on the operational circumstances, one of three neural network techniques will be adopted; back propagation, supervised real-time learning, or unsupervised real-time learning. The Close Range IR Mine Detection System is an Army program currently being experimentally developed to be demonstrated in the Army's Advanced Technology Demonstration in FY95. The ATR resulting from this program will be integrated in the 21st Century Land Warrior program in which the mine avoidance capability is its primary interest.

  3. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  4. Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector

    NASA Astrophysics Data System (ADS)

    Reine, M. B.; Norton, P. W.; Starr, R.; Weiler, M. H.; Kestigian, M.; Musicant, B. L.; Mitra, P.; Schimert, T.; Case, F. C.; Bhat, Lb.; Ehsani, H.; Rao, V.

    1995-05-01

    We report the first data for a new two-color HgCdTe infrared detector for use in large dual-band infrared focal plane arrays (IRFPAs). Referred to as the independently accessed back-to-back photodiode structure, this novel dual-band HgCdTe detector provides independent electrical access to each of two spatially collocated back-to-back HgCdTe photodiodes so that true simultaneous and independent detection of medium wavelength (MW, 3-5 μm) and long wavelength (LW, 8-12 μm) infrared radiation can be accomplished. This new dual-band detector is directly compatible with standard backside-illuminated bump-interconnected hybrid HgCdTe IRFPA technology. It is capable of high fill factor, and allows high quantum efficiency and BLIP sensitivity to be realized in both the MW and LW photodiodes. We report data that demonstrate experimentally the key features of this new dual-band detector. These arrays have a unit cell size of 100 x 100 μm2, and were fabricated from a four-layer p-n-N-P HgCdTe film grown in situ by metalorganic chemical vapor deposition on a CdZnTe substrate. At 80K, the MW detector cutoff wavelength is 4.5 μm and the LW detector cutoff wavelength is 8.0 μm. Spectral crosstalk is less than 3%. Data confirm that the MW and LW photodiodes are electrically and radiometrically independent.

  5. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    SciTech Connect

    Oh Kim, Jun; Ku, Zahyun; Urbas, Augustine E-mail: Augustine.Urbas@wpafb.af.mil; Krishna, Sanjay; Kang, Sang-Woo; Jun Lee, Sang; Chul Jun, Young E-mail: Augustine.Urbas@wpafb.af.mil

    2014-04-28

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry–Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  6. Characterization of flight detector arrays for the wide-field infrared survey explorer

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy; Larsen, Mark; Stapelbroek, Maryn G.; Hogue, Henry; Garnett, James; Zandian, Majid; Mattson, Reed; Masterjohn, Stacy; Livingston, John; Lingner, Nicole; Alster, Natali; Ressler, Michael; Masci, Frank

    2008-07-01

    The Wide-field Infrared Survey Explorer is a NASA Midex mission launching in late 2009 that will survey the entire sky at 3.3, 4.7, 12, and 23 microns (PI: Ned Wright, UCLA). Its primary scientific goals are to find the nearest stars (actually most likely to be brown dwarfs) and the most luminous galaxies in the universe. WISE uses three dichroic beamsplitters to take simultaneous images in all four bands using four 1024×1024 detector arrays. The 3.3 and 4.7 micron channels use HgCdTe arrays, and the 12 and 23 micron bands employ Si:As arrays. In order to make a 1024×1024 Si:As array, a new multiplexer had to be designed and produced. The HgCdTe arrays were developed by Teledyne Imaging Systems, and the Si:As array were made by DRS. All four flight arrays have been delivered to the WISE payload contractor, Space Dynamics Laboratory. We present initial ground-based characterization results for the WISE arrays, including measurements of read noise, dark current, flat field and latent image performance, etc. These characterization data will be useful in producing the final WISE data product, an all-sky image atlas and source catalog.

  7. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Technical Reports Server (NTRS)

    Watts, Louis A.

    1993-01-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  8. Simultaneous real-time visible and infrared video with single-pixel detectors.

    PubMed

    Edgar, Matthew P; Gibson, Graham M; Bowman, Richard W; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J; Welsh, Stephen S; Padgett, Miles J

    2015-01-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a 'single-pixel camera' to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics. PMID:26001092

  9. 640 x 480 pixel uncooled infrared FPA with SOI diode detectors

    NASA Astrophysics Data System (ADS)

    Ueno, Masashi; Kosasayama, Yasuhiro; Sugino, Takaki; Nakaki, Yoshiyuki; Fujii, Yoshio; Inoue, Hiromoto; Kama, Keisuke; Seto, Toshiki; Takeda, Munehisa; Kimata, Masafumi

    2005-05-01

    This paper describes the structure and performance of a 25-micron pitch 640 x 480 pixel uncooled infrared focal plane array (IR FPA) with silicon-on-insulator (SOI) diode detectors. The uncooled IR FPA is a thermal type FPA that has a temperature sensor of single crystal PN junction diodes formed in an SOI layer. In the conventional pixel structure, the temperature sensor and two support legs for thermal isolation are made in the lower level of the pixel, and an IR absorbing structure is made in the upper pixel level to cover almost the entire pixel area. The IR absorption utilizes IR reflections from the lower level. Since the reflection from the support leg portions is not perfect due to the slits in the metal reflector, the reflection becomes smaller as the support leg section increases in reduced pixel pitches. In order to achieve high thermal isolation and high IR absorption simultaneously, we have developed a new pixel structure that has an independent IR reflector between the lower and upper levels. The structure assures perfect IR reflection and thus improves IR absorption. The FPA shows a noise equivalent temperature difference (NETD) of 40 mK (f/1.0) and a responsivity non-uniformity of less than 0.9%. The good uniformity is due to the high uniformity of the electrical characteristics of SOI diodes made of single crystal silicon (Si). We have confirmed that the SOI diodes architecture is suitable for large format uncooled IR FPAs.

  10. Simultaneous real-time visible and infrared video with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew. P.; Gibson, Graham M.; Bowman, Richard W.; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J.; Welsh, Stephen S.; Padgett, Miles J.

    2015-05-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics.

  11. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Gamini; Reyner, Charles J.; Steenbergen, Elizabeth H.; Duran, Joshua M.; Reding, Joshua D.; Scheihing, John E.; Bourassa, Henry R.; Liang, Baolai L.; Huffaker, Diana L.

    2016-01-01

    Investigation of growth and properties of InGaAs/InAsSb strained layer superlattices, identified as ternary strained layer superlattices (ternary SLSs), is reported. The material space for the antimony-based SLS detector development is expanded beyond InAs/InAsSb and InAs/(In)GaSb by incorporating Ga into InAs. It was found that this not only provides support for strain compensation but also enhances the infrared (IR) absorption properties. A unique InGaAs/InAsSb SLS exists when the conduction band of InGaAs aligns with that of InAsSb. The bandgap of this specific InGaAs/InAsSb SLS can then be tuned by adjusting the thickness of both constituents. Due to the enhanced electron-hole wavefunction overlap, a significant increase in the absorption coefficient was theoretically predicted for ternary SLS as compared to current state-of-the-art InAs/InAsSb SLS structures, and an approximately 30%-35% increase in the absorption coefficient was experimentally observed. All the samples examined in this work were designed to have the same bandgap of approximately 0.240 eV (5.6 μm) at 150 K.

  12. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Katoh, Kouji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2011-06-01

    Since authors have successfully demonstrated uncooled infrared (IR) focal plane array (FPA) with 23.5 um pixel pitch, it has been widely utilized for commercial applications such as thermography, security camera and so on. One of the key issues for uncooled IR detector technology is to shrink the pixel size. The smaller the pixel pitch, the more the IR camera products become compact and the less cost. This paper proposes a new pixel structure with a diaphragm and beams which are placed in different level, to realize an uncooled IRFPA with smaller pixel pitch )<=17 μm). The upper level consists of diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to place on the adjacent pixels. The test devices of this pixel design with 12 um, 15 um and 17 um pitch have been fabricated on the Si ROIC of QVGA (320 × 240) with 23.5 um pitch. Their performances reveal nearly equal to the IRFPA with 23.5 um pitch. For example, noise equivalent temperature difference (NETD) of 12 μm pixel is 63.1 mK with thermal time constant of 14.5 msec. In addition, this new structure is expected to be more effective for the existing IRFPA with 23.5 um pitch in order to improve the IR responsivity.

  13. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  14. Simultaneous real-time visible and infrared video with single-pixel detectors

    PubMed Central

    Edgar, Matthew. P.; Gibson, Graham M.; Bowman, Richard W.; Sun, Baoqing; Radwell, Neal; Mitchell, Kevin J.; Welsh, Stephen S.; Padgett, Miles J.

    2015-01-01

    Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative approach replaces the sensor with a pixelated transmission mask encoded with a series of binary patterns. Combining knowledge of the series of patterns and the associated filtered intensities, measured by single-pixel detectors, allows an image to be deduced through data inversion. In this work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz , simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-binning of the masks. We anticipate real-time single-pixel video cameras to have considerable importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems in applications such as night-vision, gas sensing and medical diagnostics. PMID:26001092

  15. A portable cross-shape near-infrared spectroscopic detector for bone marrow lesions diagnosis

    NASA Astrophysics Data System (ADS)

    Su, Yu; Li, Ting

    2016-02-01

    Bone marrow lesions (BMLs) is an incidence-increasing disease which seriously hazard to human health and possibly contribute to paralysis. Delayed treatment often occurred to BMLs patients due to its characteristics such as complex and diverse clinical manifestations, non-specific, easy to misdiagnosis and etc. The conventional diagnosis methods of BMLs mainly rely on bone marrow biopsy/aspiration, which are invasive, painful, high health risk, and discontinuous which disabled monitoring and during-surgery guidance. Thus we proposed to develop a noninvasive, real-time, continuous measurement, easy-operated device aimed at detecting bone marrow diseases. This device is based on near-infrared spectroscopy and the probe is designed with a cross-shape to tightly and comfortably attach human spine. Space-resolved source-detector placement and measurement algorithm are employed. Four selected wavelength were utilized here to extract BMLs-related component contents of oxy-, deoxy-hemoglobin, fat, scattering index corresponding to fibrosis. We carried out an ink experiment and one clinical measurement to verify the feasibility of our device. The potential of NIRS in BMLs clinics is revealed.

  16. InAs/GaSb superlattice detectors for the long-wavelength infrared regime

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Masur, Michael; Schmitz, Johannes; Walther, Martin

    2014-06-01

    To enable higher operating temperatures in InAs/GaSb superlattice detectors for the long-wavelength infrared atmospheric window at 8-12 μm, a reduction of the bulk dark current density is indispensable. To reduce the dark current of conventional homojunction pin-diode device designs, bandstructure-engineering of the active region is considered most promising. So far, several successful device concepts have been demonstrated, yet they all rely on the inclusion of Aluminum within the active layers. Driven by manufacturing aspects we propose an Al-free heterojunction device concept that is based on a p+-doped InAs/GaSb superlattice absorber layer combined with an adjacent N--doped high gap region, which again is realized with an InAs/GaSb superlattice. To calculate the superlattice band gap and the position of the conduction band edge at the heterojunction we employ the Superlattice Empirical Pseudopotential Method. With a series of three heterojunction p+N- InAs/GaSb superlattice devices with an absorber band gap of 124 meV (10.0 μm) we give a first proof of the advocated device concept.

  17. Optimizing indium antimonide (InSb) detectors for low background operation. [infrared astronomy

    NASA Technical Reports Server (NTRS)

    Treffers, R. R.

    1978-01-01

    The various noise sources that affect InSb detectors (and similar voltaic devices) are discussed and calculated. Methods are given for measuring detector resistance, photon loading, detector and amplifier capacitance, amplifier frequency response, amplifier noise, and quantum efficiency. A photovoltaic InSb detector with increased sensitivity in the 1 to 5.6 mu region is dicussed.

  18. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  19. Detector Control and Data Acquisition for the Wide-Field Infrared Survey Telescope (WFIRST) with a Custom ASIC

    NASA Technical Reports Server (NTRS)

    Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; Luppino, Gerard; Culver, Harry; Wollack, Edward; Content, David

    2016-01-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  20. MTF comparisons between mesa and planar focal plane detector structures

    NASA Astrophysics Data System (ADS)

    Perley, Mitchell; Wehner, Justin; Buell, Dave; Micali, Jason; McCorkle, Joe; Rehfield, Mark; Williams, Dave; Dixon, Andrew; Malone, Neil

    2013-09-01

    Raytheon Vision Systems (RVS) has developed scanning, high-speed (<3klps), all digital, with on-chip Analog-to-Digital Conversion (ADC), mid-wave infrared (MWIR 3-5mm) focal plane arrays (FPA) with excellent modulation transfer function (MTF) performance. Using secondary ion mass spectrometry (SIMS) data and detailed models of the mesa geometry, RVS modeled the predicted detector MTF performance of detectors. These detectors have a mesa structure and geometry for improved MTF performance compared to planar HgCdTe and InSb detector structures and other similar detector structures such as nBn. The modeled data is compared to measured MTF data obtained from edge spread measurements and shows good agreement, Figure 1. The measured data was obtained using a custom advanced test set with 1µm precision alignment and automatic data acquisition for report generation in less than five minutes per FPA. The measured MTF values of 83 unique parts, Figure 2, had a standard deviation of 0.0094 and a mean absolute deviation of 0.0066 at half Nyquist frequency, showing excellent process repeatability and a design that supports high MTF with good repeatability.

  1. Demonstration of 10 K Superconducting Electronics in an Infrared Imaging System

    NASA Astrophysics Data System (ADS)

    Ressler, Michael E.

    1997-04-01

    We report the successful operation of a superconducting niobium nitride (NbN) Josephson Junction-based analog-to-digital converter (ADC) in an infrared imaging system. This system is a flexible testbed which will allow the evaluation of a large variety of cryogenic components (e.g. detector arrays, ADC's, etc.), while still following the general architecture of a scientific instrument, permitting us to determine how well the component will perform in the ``real world''. The testbed is currently composed of a Rockwell International HF-16 128x128 pixel Si:As BIB array, a JPL-developed GaAs 16-to-1 analog multiplexer, and a TRW 12-bit, 10 mega-samples per second, NbN ADC. All three components are located inside a pour/fill liquid helium dewar and operated at 10 K. Simple cold optics along with an 8.5 micron filter image objects onto the focal plane. The images are read out at rates up to 600 frames per second; data can either be stored to hard disk at this rate or every 20th frame can be displayed on a monitor providing ``real-time'' video. We describe the layout and operation of the testbed, with particular emphasis on the lessons learned about operating superconducting electronics as merely another component in a system. We also discuss images and other data comparing the performance of the NbN ADC with a commercially available, equal speed and resolution, silicon ADC. Finally, we explore the future of superconducting electronics; potential products as well as their impact on instrument and spacecraft design.

  2. Analysis of crosstalk in front-illuminated InGaAs PIN hetero-junction photovoltaic infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Tang, Hengjing; Zhang, Kefeng; Li, Tao; Ning, Jinhua; Li, Xue; Gong, Haimei

    2009-07-01

    Here presented an experimental study on crosstalk in front illuminated planar and mesa-type InP/ InGaAs/ InP PIN hetero-junction photovoltaic infrared detector arrays. A scanning laser beam with an optical wavelength of 1310 nm coupled in a single-mode optical fiber placed within a few microns of the detector array surface was used to measure the crosstalk between the detector pixels. The crosstalk in the detector array varying with the distance between the incident laser spot and the measured pixel was shown. It is suggested that for the deep mesa-type arrays the dominating source of crosstalk is the light reflected from the detector substrate. And the dominating source of crosstalk that occurs in the planar type and shallow mesa type photovoltaic arrays is associated with photo-induced carries generated in the InGaAs absorption layer that diffuse laterally between neighbor pixels. These results gave out the possibility to optimize the detectors structures in order to reduce crosstalk.

  3. Investigation of the spectral improvement of a capacitive Frisch-grid CdZnTe detector by using infrared stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Guoqiang; Xiao, Shali; Ma, Yuedong; Zhang, Liuqiang

    2014-08-01

    A capacitive Frisch-grid CdZnTe detector with different lengths of the Frisch rings has been fabricated, and the influence of infrared (IR) stimulation on the spectral performance of the detector has been investigated. IR stimulation at a wavelength (940 nm), close to the absorption edge of the CdZnTe, was found to improve the detector's spectral performance significantly. IR radiation was noted to influence the detector's sensitivity, changing the equilibrium between free and trapped carriers and improving the charge collection. The degree of improvement was different for detectors with different lengths of the Frisch rings and depended on the weighting potential distribution and the IR illumination intensity. For example, improvement was obtained in the energy resolution (FWHM) at 662 keV from 3.3% without illumination to 2.3% with a low intensity (120 μW) of IR illumination for the capacitive Frisch-grid CdZnTe detector with an 8-mm-long Frisch ring. Good energy resolution could be obtained even at low operating voltages.

  4. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x

  5. Small band gap superlattices as intrinsic long wavelength infrared detector materials

    NASA Technical Reports Server (NTRS)

    Smith, Darryl L.; Mailhiot, C.

    1990-01-01

    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.

  6. Mercury cadmium telluride infrared detector development in India: status and issues

    NASA Astrophysics Data System (ADS)

    Singh, R. N.

    2009-05-01

    In the present paper, we describe the development of Long Wave Infrared (8-12 μm) linear and 2-D IR FPA detectors using HgCdTe for use in thermal imagers and IIR seekers. In this direction, Solid State Physics Laboratory(SSPL) (DRDO) tried to concentrate initially in the bulk growth and characterization of HgCdTe during the early eighties. Some efforts were then made to develop a LWIR photoconductive type MCT array in linear configuration with the IRFPA processed on bulk MCT crystals grown in the laboratory. Non availability of quality epilayers with the required specification followed by the denial of supply of CdTe, CdZnTe and even high purity Te by advanced countries, forced us to shift our efforts during early nineties towards development of 60 element PC IR detectors. High performance linear PC arrays were developed. A novel horizontal casting procedure was evolved for growing high quality bulk material using solid state recrystallization technique. Efforts for ultra purification of Te to 7N purity with the help of a sister concern has made it possible to have this material indigenously. Having succeded in the technology for growing single crystalline CdZnTe with (111) orientation and LPE growth of HgCdTe epilayers on CdZnTe substrates an attempt was made to establish the fabrication of 2D short PV arrays showing significant IR response. Thus a detailed technological knowhow for passivation, metallization, ion implanted junction formation, etc. was generated. Parallel work on the development of a matching CCD Mux readout in silicon by Semiconductor Complex Limited was also completed which was tested first in stand-alone mode followed by integration with IRFPAs through indigenously-developed indium bumps. These devices were integrated into an indigenously fabricated glass dewar cooled by a self-developed JT minicooler. In recent years, the LPE (Liquid Phase Epitaxy) growth from Terich route has been standardized for producing epitaxial layers with high

  7. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-06-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor/acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  8. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  9. Long-Wavelength Stacked SiGe/Si Heterojunction Internal Photoemission Infrared Detectors Using Multiple SiGe/Si Layers

    NASA Technical Reports Server (NTRS)

    Park, J. S.; Lin, T. L.; Jones, E. W.; Castillo, H. M. Del; Gunapala, S. D.

    1994-01-01

    Utilizing low temperature silicon molecular beam epitaxy (MBE) growth, long-wavelength stacked SiGe/Si heterojunction internal photoemission (HIP) infrared detectors with multiple SiGe/Si layers have been fabricated and demonstrated. Using an elemental boron source, high doping concentrations (approximately equal to 4 x 10(sup 20) cm(sup -3)) has been achieved and high crystalline quality multiple Si(sub 0.7)Ge(sub 0.3)/Si layers have been obtained. The detector structure consists of several periods of degenerately boron doped (approximately equal to 4 x 10(sup 20) cm(sup -3)) thin (less than or equal to 50 u Si(sub 0.7)Ge(sub 0.3) layers and undoped thick (approximately equal to 300u Si layers. The multiple p(sup +) - Si(sub 0.7)Ge(sub 0.3)/undoped-Si layers show strong infrared absorption in the long-wavelength regime mainly through free carrier absorption. The stacked Si(sub 0.7)Ge(sub 0.3)/Si HIP detectors with p = 4 x 10(sup 20) cm(sup -3) exhibit strong photoresponse at wavelengths ranging from 2 to 20 (micro)m with quantum efficiencies of about 4% and 1.5% at 10 and 15 (micro)m wavelengths, respectively. The detectors show near ideal thermionic-emission limited dark current characteristics.

  10. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Yuan, Zijian; Larson, Preston R.; Strout, Gregory W.; Shi, Zhisheng

    2014-01-01

    The CaF2 nano-structures grown by thermal vapor deposition are presented. Significant responsivity improvement (>200%) of mid-infrared PbSe detectors incorporating a 200 nm nano-structured CaF2 coating was observed. The detector provides a detectivity of 4.2 × 1010 cm . Hz1/2/W at 3.8 μm, which outperforms all the reported un-cooled PbSe detectors. Structural investigations show that the coating is constructed by tapered-shape nanostructures, which creates a gradient refractive-index profile. Analogy to moth-eye antireflective mechanism, the gradient refractive-index nanostructures play the major roles for this antireflection effect. Some other possible mechanisms that help enhance the device performance are also discussed in the work.

  11. GaAs cryogenic readout electronics for high impedance detector arrays for far-infrared and submillimeter wavelength region

    NASA Astrophysics Data System (ADS)

    Nagata, H.; Matsuo, H.; Hibi, Y.; Kobayashi, J.; Nakahashi, M.; Ikeda, H.; Fujiwara, M.

    2009-11-01

    We have been developing cryogenic readout integrate circuits (ROICs) for high impedance submillimeter and far-infrared detectors: Our ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. We designed ROICs consisting of analog readouts and digital circuits for 32-element SIS photon detectors fabricated in RIKEN. The analog readout is ac-coupled capacitive transimpedance amplifier (CTIA), which is composed of the two-stage amplifier. Some initial test results of the ac-coupled CTIA gave us the following performance; open loop gain of >740, power consumption ≈1.4 μW. The input referred noise is ≈4 μV/ √{Hz} at 1 Hz. These results suggest that low power and high sensitive cryogenic readout electronics are successfully developed for high impedance detectors.

  12. Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber

    NASA Astrophysics Data System (ADS)

    Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V.

    2015-01-01

    This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3 μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7 μm2. The improved SSPD demonstrates a record timing jitter (<25 ps), an ultrashort recovery time (<2 ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements.

  13. Development of an ASIC for the readout and control of near-infrared large array detectors

    NASA Astrophysics Data System (ADS)

    Meier, Dirk; Berge, Hans Kristian Otnes; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Azman, Suleyman; Talebi, Jahanzad; Olsen, Alf; Øya, Petter; Paahlsson, Philip; Gheorghe, Codin; Maehlum, Gunnar

    2014-07-01

    The article describes the near infrared readout and controller ASIC (NIRCA) developed by Integrated Detector Electronics AS (IDEAS). The project aims at future astronomical science and Earth observation missions, where the ASIC will be used with image sensors based on mercury cadmium telluride (HgCdTe, or MCT). NIRCA is designed to operate from cryogenic temperatures (77 K) to higher than room temperature (328 K) and in a high radiation environment (LET > 60 MeVcm2/mg). The ASIC connects to the readout integrated circuit (ROIC) and delivers fully digitized data via serial digital output. The ASIC contains an analogue front-end (AFE) with 4 analogue-to-digital converters (ADCs) and programmable gain amplifiers with offset adjustment. The ADCs have a differential input swing of +/-2 V, 12-bit resolution, and a maximum sample rate of 3 MSps. The ASIC contains a programmable sequencer (microcontroller) to generate up to 40 digital signals for the ROIC and to control the analogue front-end and DACs on the chip. The ASIC has two power supply voltage regulators that provide the ROIC with 1.8 V and 3.3 V, and programmable 10-bit DACs to generate 16 independent reference and bias voltages from 0.3 V to 3 V. In addition NIRCA allows one to read 8 external digital signals, and monitor external and internal analogue signals including onchip temperature. NIRCA can be programmed and controlled via SPI interface for all internal functions and allows data forwarding from and to the ROIC SPI interface.

  14. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  15. Comparison of S/N Ratios for Magnesium diboride (MgB2) Superconducting detectors vs Bi-Te thermopiles when used in an infrared radiometer.

    NASA Astrophysics Data System (ADS)

    lakew, b.; Aslam, S.

    2014-04-01

    Mapping the surface temperature of cold Jovian moons like Europa or Ganymede requires an accurate measurement of their infrared spectral radiance. One measurement technique employs a radiometer with thermopile linear arrays. Each array is in turn integrated with infrared filters of the appropriate wavelength pass bands. The performance of such a radiometer when using an array of thermopile detectors vs an array of superconducting magnesium-diboride (MgB2) detectors.

  16. Defect density reduction in InAs/GaSb type II superlattice focal plane array infrared detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Niemasz, Jasmin; Rutz, Frank; Wörl, Andreas; Kirste, Lutz; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2011-01-01

    InAs/GaSb short-period superlattices (SL) have proven their large potential for high performance focal plane array infrared detectors. Lots of interest is focused on the development of short-period InAs/GaSb SLs for mono- and bispectral infrared detectors between 3 - 30 μm. InAs/GaSb short-period superlattices can be fabricated with up to 1000 periods in the intrinsic region without revealing diffusion limited behavior. This enables the fabrication of InAs/GaSb SL camera systems with very high responsivity, comparable to state of the art CdHgTe and InSb detectors. The material system is also well suited for the fabrication of dual-color mid-wavelength infrared InAs/GaSb SL camera systems. These systems exhibit high quantum efficiency and offer simultaneous and spatially coincident detection in both spectral channels. An essential point for the performance of two-dimensional focal plane infrared detectors in camera systems is the number of defective pixel on the matrix detector. Sources for pixel outages are manifold and might be caused by the dislocation in the substrate, the epitaxial growth process or by imperfections during the focal plane array fabrication process. The goal is to grow defect-free epitaxial layers on a dislocation free large area GaSb substrate. Permanent improvement of the substrate quality and the development of techniques to monitor the substrate quality are of particular importance. To examine the crystalline quality of 3" and 4" GaSb substrates, synchrotron white beam X-ray topography (SWBXRT) was employed. In a comparative defect study of different 3" GaSb and 4" GaSb substrates, a significant reduction of the dislocation density caused by improvements in bulk crystal growth has been obtained. Optical characterization techniques for defect characterization after MBE growth are employed to correlate epitaxially grown defects with the detector performance after hybridization with the read-out integrated circuit.

  17. NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer.

    PubMed

    Berlin, Alejandro; Lalonde, Emilie; Sykes, Jenna; Zafarana, Gaetano; Chu, Kenneth C; Ramnarine, Varune R; Ishkanian, Adrian; Sendorek, Dorota H S; Pasic, Ivan; Lam, Wan L; Jurisica, Igor; van der Kwast, Theo; Milosevic, Michael; Boutros, Paul C; Bristow, Robert G

    2014-11-30

    Despite the use of clinical prognostic factors (PSA, T-category and Gleason score), 20-60% of localized prostate cancers (PCa) fail primary local treatment. Herein, we determined the prognostic importance of main sensors of the DNA damage response (DDR): MRE11A, RAD50, NBN, ATM, ATR and PRKDC. We studied copy number alterations in DDR genes in localized PCa treated with image-guided radiotherapy (IGRT; n=139) versus radical prostatectomy (RadP; n=154). In both cohorts, NBN gains were the most frequent genomic alteration (14.4 and 11% of cases, respectively), and were associated with overall tumour genomic instability (p<0.0001). NBN gains were the only significant predictor of 5yrs biochemical relapse-free rate (bRFR) following IGRT (46% versus 77%; p=0.00067). On multivariate analysis, NBN gain remained a significant independent predictor of bRFR after adjusting for known clinical prognostic variables (HR=3.28, 95% CI 1.56-6.89, Wald p-value=0.0017). No DDR-sensing gene was prognostic in the RadP cohort. In vitro studies correlated NBN gene overexpression with PCa cells radioresistance. In conclusion, NBN gain predicts for decreased bRFR in IGRT, but not in RadP patients. If validated independently, Nibrin gains may be the first PCa predictive biomarker to facilitate local treatment decisions using precision medicine approaches with surgery or radiotherapy. PMID:25415046

  18. Novel processing and properties of high efficiency superconducting infrared bolometric detectors

    NASA Astrophysics Data System (ADS)

    Moxey, Donovan E.

    1998-12-01

    The work in this dissertation involves the design, fabrication, and analysis of superconducting infrared bolometric detectors. These bolometers have been made from superconducting YBasb2Cusb3Osb{7-delta} (YBCO) deposited on silicon (100) substrates utilizing a buffer layer of yttria stabilized zirconia (YSZ). Thin films of undoped and silver(Ag) doped YBCO, as well as stacked layers of undoped/Ag-doped YBCO have been deposited by pulsed laser deposition (PLD). The microstructure and materials properties of these films have been studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and secondary ion mass spectroscopy (SIMS). The electrical and transport properties of these films have been investigated using four-point resistance versus temperature measurements. The results of the investigations of the materials and electrical properties of these films show that they are of high quality, and exhibit superconducting characteristics that are conducive for bolometer device applications. For the first time superconducting bolometric detectors have been fabricated using a novel photolithographic and anti-reflective coating (ARC) process. This fabrication process can be used to fabricate any type of device structure that utilizes superconducting YBCO. The use of an anti-reflective coating simplifies the overall device fabrication process and allows this process to be easily integrated with conventional silicon device processing steps. The anti-reflective coating serves as a barrier to moisture and other contaminants that react with YBCO, as well as act as an absorption medium that improves the optical collection efficiency of the device. Optical analysis of these three bolometer device structures has been carried out using a helium neon (HeNe; lambda = 632.8nm) laser. At a bias of 1mA, and chopping frequency of 100Hz; we have measured photoresponse as a function of device temperature, calculated responsivity, and

  19. Effects of High-Energy Ionizing Particles on the Si:As Mid-Infrared Detector Array on Board the AKARI Satellite

    NASA Astrophysics Data System (ADS)

    Mouri, A.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Yamagishi, M.; Mori, T.; Onaka, T.; Wada, T.; Kataza, H.

    2011-05-01

    We evaluate the effects of high-energy ionizing particles on the Si:As impurity band conduction (IBC) mid-infrared detector on board AKARI, the Japanese infrared astronomical satellite. IBC-type detectors are known to be little influenced by ionizing radiation. However, we find that the detector is significantly affected by in-orbit ionizing radiation even after spikes induced by ionizing particles are removed. The effects are described as changes mostly in the offset of detector output, but not in the gain. We conclude that the changes in the offset are caused mainly by increase in dark current. We establish a method to correct these ionizing radiation effects. The method is essential to improve the quality and to increase the sky coverage of the AKARI mid-infrared all-sky-survey map.

  20. Long-wavelength PtSi infrared detectors fabricated by incorporating a p(+) doping spike grown by molecular beam epitaxy

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Park, J. S.; George, T.; Jones, E. W.; Fathauer, R. W.; Maserjian, J.

    1993-01-01

    By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.

  1. Characterization of direct readout Si:Sb and Si:Ga infrared detector arrays for space-based astronomy

    NASA Technical Reports Server (NTRS)

    Mckelvey, Mark E.; Mccreight, Craig R.; Goebel, John H.; Moss, Nicolas N.; Savage, Maureen L.

    1988-01-01

    Preliminary test results from the evaluation of Si:Sb and Si:Ga 58 x 62-element infrared detector arrays are presented. These devices are being characterized under background conditions and readout rates representative of operation in orbiting, crogenically-cooled infrared observatories. The arrays are hybridized to silicon direct-readout multiplexers which allow random-access and nondestructive readout. Array performance optimization is being conducted with a flexible microcomputer-based drive and readoaut electronics system. Preliminary Si:Sb measurements indicate a sense node capacitance of 0.06 pF, peak (28-micron) responsivity above 3 A/W at 2V bias, read noise of 130 rms e(-), dark current approximately 10 e(-)/s, and a well capacity greater than 10 to the 5th e(-). The limited test data available on the performance of the Si:Ga array are also discussed.

  2. An infrared pyroelectric detector improved by cool isostatic pressing with cup-shaped PZT thick film on silicon substrate

    NASA Astrophysics Data System (ADS)

    Peng, Q. X.; Wu, C. G.; Luo, W. B.; Chen, C.; Cai, G. Q.; Sun, X. Y.; Qian, D. P.

    2013-11-01

    In this paper, we presented a new pyroelectric detector with back to back silicon cups and micro-bridge structure. The PZT thick film shaped in the front cup was directly deposited with designed pattern by electrophoresis deposition (EPD). Pt/Ti Metal film, which was fabricated by standard photolithography and lift-off technology, was sputtered to connect the top electrode and the bonding pad. The cold isostatic press (CIP) treatment could be applied to improve the pyroelectric properties of PZT thick film. The infrared (IR) properties the CIP-optimized detector were measured. The voltage responsivity (RV) was 4.5 × 102 V/W at 5.3 Hz, the specific detectivity (D*) was greater than 6.34 × 108 cm Hz1/2 W-1 (frequency > 110 Hz), and the thermal time constant was 51 ms, respectively.

  3. Development of a cryogenic GaAs AC-coupled CTIA readout for far-infrared and submillimeter detectors

    NASA Astrophysics Data System (ADS)

    Nagata, Hirohisa; Kobayashi, Jun; Matsuo, Hiroshi; Hibi, Yasunori; Nakahashi, Misato; Ikeda, Hirokazu; Fujiwara, Mikio

    2008-07-01

    We have been developing cryogenic readout integrated circuits (ROICs) for sensitive detectors at far-infrared and submillimeter wavelengths: The ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. In addition, it is suitable device for ultra low background applications because of the extremely low gate leakage current. In the spring of 2008, we have designed and fabricated 4-ch AC-coupled capacitive transimpedance amplifiers and several basic digital circuits giving multiplex function for 32-element SIS photon detector array. The expected performance of the amplifier is as follows; open loop gain of >2000, power consumption <1.5 μW, and input referred noise ~ 1 μV/√Hz@1Hz. A summary of this 2008's experimental production and initial test results are presented in this paper.

  4. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    SciTech Connect

    Craig, A. P.; Percy, B.; Marshall, A. R. J.; Jain, M.; Wicks, G.; Hossain, K.; Golding, T.; McEwan, K.; Howle, C.

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  5. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and far-infrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5 micrometer thick silicon membrane, and 380 micrometer thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  6. Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy

    NASA Technical Reports Server (NTRS)

    Domingo, George

    1997-01-01

    This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.

  7. Infrared detectors: State of art; Proceedings of the Meeting, San Diego, CA, July 23, 24, 1992

    NASA Astrophysics Data System (ADS)

    Makky, Wagih H.

    1992-12-01

    The present conference discusses innovative IR detection devices and technologies, HgCdTe-based IR detectors, and quantum-well (QW) devices. Attention is given to uncooled thermal imaging, intersubband transitions and IR hot-electron transistors, the consideration of a novel two-color IR detector on the basis of the 'two-peak' effect, recent developments in MOCVD of Hg(1-x)Cd(x)Te photodiode arrays, and the growth of HgCdTe by MBE on CdZnTe substrates. Also discussed are Si-based QW intersubband detectors, increased responsivity and detectivity in asymmetric QW IR detectors, IR internal emission detectors, an InSb monolithic focal-plane cell, and surface plasmons on PtSi for visible and Si Schottky-barrier-enhanced detection. (No individual items are abstracted in this volume)

  8. Anomalous spectral response in heterojunction PbTe/PbSnTe infrared detectors - A new effect: Two Peak Effect

    SciTech Connect

    Gong Shuxing; Chen Boliang; Yuan Shixin )

    1991-03-01

    In the measurements of the spectral responses of PbTe/PbSnTe p-n heterojunction infrared detectors, the authors have discovered that there is an anomalous phenomenon in a few detectors when reverse bias is applied: there is not only a response peak in the 8-14 {mu}m long-wavelength range, but also another response peak in the 3-6 {mu}m short-wavelength range. They have also discovered that when reverse bias is increased, the heights of both spectral peaks can be adjusted, and the height of short-wavelength peak may be quickly increased, even if its long-wavelength peak is exceeded. This is an unreported new phenomenon up to now. It is shortly called anomalous phenomenon,' or Two Peak Effect' (TPE). This paper describes the new effect TPE' firstly, and makes a theoretical explanation. On the basis of this effect, it would be possible to make a new type of IR detector, which is quite different from the available detectors.

  9. Time-resolved Fourier transform infrared spectroscopy of chemical reactions in solution using a focal plane array detector.

    PubMed

    Kaun, N; Vellekoop, M J; Lendl, B

    2006-11-01

    A Fourier transform infrared (FT-IR) microscope equipped with a single as well as a 64 x 64 element focal plane array MCT detector was used to measure chemical reaction taking place in a microstructured flow cell designed for time-resolved FT-IR spectroscopy. The flow cell allows transmission measurements through aqueous solutions and incorporates a microstructured mixing unit. This unit achieves lamination of the two input streams with a cross-section of 300 x 5 microm each, resulting in fast diffusion-controlled mixing of the two input streams. Microscopic measurement at defined positions along the outlet channel allows time-resolved information of the reaction taking place in the flow cell to be obtained. In this paper we show experimental results on the model reaction between formaldehyde and sulfite. Using the single-point MCT detector, high-quality FT-IR spectra could be obtained from a spot size of 80 x 200 microm whereas the FPA detector allowed recording light from an area of 260 x 260 microm focused on its 64 x 64 detector elements. Therefore, more closely spaced features could be discerned at the expense of a significantly lower signal-to-noise (S/N) ratio per spectrum. Multivariate curve resolution-alternating least squares was used to extract concentration profiles of the reacting species along the outlet channel axis. PMID:17132444

  10. Ultrafast superconducting single-photon detector with reduced-size active area coupled to a tapered lensed single-mode fiber

    NASA Astrophysics Data System (ADS)

    Sidorova, Maria V.; Divochiy, Alexander; Vachtomin, Yury B.; Smirnov, Konstantin V.

    2015-05-01

    We present an ultrafast NbN Superconducting single-photon detector (SSPD) with active area of 3x3 μm2, which reveals better timing performances than a previously developed SSPD with active area of 10x10 μm2. The improved SSPD demonstrates the record timing jitter <25 ps, ultra short recovery time <2 ns, extremely low dark counts level, and high detection efficiency (DE) in a wide spectral range from visible to near-infrared. The record parameters were obtained thanks to the development of a new technique of an effective optical coupling between a detector with reduced-size active area and a standard single-mode telecommunication fiber. The advantages of a new approach are experimentally confirmed by performed electro-optical measurements of the device performances.

  11. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    PubMed Central

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  12. Infrared detector Dewars - Increased LN2 hold time and vacuum jacket life spans

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Boyd, W. J.; Blass, W. E.

    1976-01-01

    IR detector Dewars commonly suffer from shorter than desired LN2 hold times and insulation jacket vacuum corruption over relatively short time periods. In an attempt to solve this problem for a 9144 detector Dewar, small 1 liter/s appendage ion pumps were selected for continuous pumping of the vacuum jackets. This procedure extended LN2 hold times from 20 to 60 h and virtually eliminated vacuum jacket corruption. Thus the detector systems are usable continuously over periods of 6 months or more.

  13. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    NASA Astrophysics Data System (ADS)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  14. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use.

    PubMed

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here. PMID:27370438

  15. Development of Short Wavelength Infrared Array Detectors for Space Astronomy Application

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1997-01-01

    The Smithsonian Astrophysical Observatory (SAO) and its team - the University of Arizona (UA), the University of Rochester (UR), Santa Barbara Research Center (SBRC), Ames Research Center (ARC), and Goddard Space Flight Center (GSFC) - are carrying out a research program with the goal of developing and optimizing infrared arrays in the 2-27 micron range for space infrared astronomy. This report summarizes research results for the entire grant period 1 January 1992 through 30 June 1996.

  16. Oriented Growth of Pb1- x Snx Te Nanowire Arrays for Integration of Flexible Infrared Detectors.

    PubMed

    Wang, Qisheng; Li, Jie; Lei, Yin; Wen, Yao; Wang, Zhenxing; Zhan, Xueying; Wang, Feng; Wang, Fengmei; Huang, Yun; Xu, Kai; He, Jun

    2016-05-01

    Assembling nanowires into highly ordered arrays is crucial for developing integration circuits. Oriented growth of mid-infrared Pb1- x Snx Te nanowire arrays on bendable mica, extending the function of existing nanowire arrays, is reported. The flexible photodetectors of these nanowire arrays show a high photoresponsivity of 276 A W(-1) (at 800 nm), which is higher than many previously reported infrared nanosensors. PMID:26990637

  17. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    SciTech Connect

    Olsen, C S

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 10{sup 13} cm{sup {minus}3} can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm{sup {minus}1} with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  18. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Olsen, C. S.

    1998-01-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 10(sup 13) cm(exp -3) can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm(exp -1) with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  19. Fourier Transform Emission Spectroscopy of the Low-Lying Electronic States of NbN

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Bernath, P. F.

    2000-06-01

    The high-resolution spectrum of NbN has been investigated in emission in the 3000-15 000 cm-1 region using a Fourier transform spectrometer. The bands were excited in a microwave discharge through a mixture of NbCl5 vapor, ∼5 mTorr of N2, and 3 Torr of He. Numerous bands observed in the near-infrared region have been classified into the following transitions: f1Φ-c1Γ, e1Π-a1Δ, C3Π0+-A3Σ-1, C3Π0--A3Σ-1, C3Π1-a1Δ, C3Π1-A3Σ-0, d1Σ+-A3Σ-0, and d1Σ+-b1Σ+. These observations are consistent with the energy level diagram provided by laser excitation and emission spectroscopy [Y. Azuma, G. Huang, M. P. J. Lyne, A. J. Merer, and V. I. Srdanov, J. Chem. Phys. 100, 4138-4155 (1993)]. The missing d1Σ+ state has been observed for the first time and its spectroscopic parameters are consistent with the theoretical predictions of S. R. Langhoff and W. Bauschlicher, Jr. [J. Mol. Spectrosc. 143, 169-179 (1990)]. Rotational analysis of a number of bands has been obtained and improved spectroscopic parameters have been extracted for the low-lying electronic states. The observation of several vibrational bands with v = 1 has enabled us to determine the vibrational intervals and equilibrium bond lengths for the A3Σ-0, a1Δ, b1Σ+, d1Σ+, and C3Π1 states.

  20. High-gain and low-excess noise near-infrared single-photon avalanche detector arrays

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2010-04-01

    We have designed and developed a new family of photodetectors and arrays with Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions. These devices surpass many limitations of the Single Photon Avalanche Photodetectors such as ultra low excess noise factor, very high gain, lower reset time (< 200 ns). These devices are very simple to operate in the non-gated mode under a constant dc bias voltage. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. This unique feature of self quenching and self-recovery makes it simple to less complex readout integrated circuit to realize large format detector arrays. In this paper, we present the discrete amplification design approach used for the development of self reset, high gain photodetector arrays in the near infrared wavelength region. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. These devices are ideal for researchers in the field of spectroscopy, industrial and scientific instrumentation, Ladar, quantum cryptography, night vision and other military, defense and aerospace applications.

  1. Type-II superlattice detector for long-wave infrared imaging

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Avnon, E.; Benny, Y.; Fraenkel, A.; Glozman, A.; Hojman, E.; Ilan, E.; Kahanov, E.; Klin, O.; Langof, L.; Livneh, Y.; Lukomsky, I.; Nitzani, M.; Shkedy, L.; Shtrichman, I.; Snapi, N.; Talmor, R.; Tuito, A.; Vaserman, S.; Weiss, E.

    2015-06-01

    When incorporated into the active layer of a "XBp" detector structure, Type II InAs/GaSb superlattices (T2SLs) offer a high quantum efficiency (QE) and a low diffusion limited dark current, close to MCT Rule 07. Using a simulation tool that was developed to predict the QE as a function of the T2SL period dimensions and active layer stack thickness, we have designed and fabricated a new focal plane array (FPA) T2SL XBp detector. The detector goes by the name of "Pelican-D LW", and has a format of 640 ×512 pixels with a pitch of 15 μm. The FPA has a QE of 50% (one pass), a cut-off of ~9.5 μm, and operates at 77K with a high operability, background limited performance and good stability. It uses a new digital read-out integrated circuit, and the integrated detector cooler assembly (IDCA) closely follows the configuration of SCD's Pelican-D MWIR detector.

  2. A high performance Josephson binary counter implemented in Nb and NbN technology

    SciTech Connect

    Kuo, F. ); Whitely, S.R.

    1991-03-01

    This paper reports on a Josephson binary counter with nondestructive readout implemented and tested in both niobium and niobium nitride technology. Successful operation of the Nb version has been observed. The design incorporates an additional tapered edge SiO{sub 2} level in the Nb processing sequence, which increases interferometer inductance, decreases capacitance, and ensures that geometric resonances are as high in frequency as possible. This new level has the added advantage of providing mask compatibility with the NbN process, as this level is skipped in the NbN flow, thereby compensating in part for the larger penetration depth of NbN. The counter cell is designed to be as compact as possible to minimize stray inductance and maximize top count rate and high count rate bias margins low read SQUID inductance, and requires no holes in the ground plane.

  3. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    SciTech Connect

    Baumann, H. B.

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector. Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.

  4. Photon bunching and the photon-noise-limited performance of infrared detectors

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.

    1982-01-01

    The photon-noise-limited performance of a radiation detector exposed to a thermal background of temperature T is analyzed by calculating the resulting specific detectivity. Both ideal photon detectors of arbitrary quantum efficiency eta and ideal thermal detectors of arbitrary emissivity eta are considered; and the effects of both shot noise and excess noise are taken into account. The relative contributions of these two sources depend on the quantum efficiency or emissivity of the system. For frequencies nu such that hnu/kT is much less than eta, excess noise can make an appreciable contribution to the total system noise. For the case of the detection of the narrow-band radiation, the specific detectivity is independent of eta in the limit hnu/kT is much less than eta.

  5. High field properties of NbN conductors on practical substrates

    SciTech Connect

    Kampwirth, R.T.; Capone, D.W. II; Gray, K.E.; Ho, H.; Chumbley, S.

    1987-01-01

    A new UHV, oil free, two gun magnetron sputtering system has been developed to allow continuous production of NbN conductors. A scaling rule relating film properties to preparation conditions was successfully used to predict the preparation conditions necessary to achieve the best NbN film properties in the two gun system. Comparison of high field J/sub c/ results between the new two gun system and a diffusion pumped one gun system show similar results for NbN on sapphire substrates, suggesting no effect from oil backstreaming. Short sections of double side coated Ti tapes 25 ..mu..m thick with approx. = ..mu..m of NbN have J/sub c/ = 1 x 10/sup 4/ A/cm/sup 2/ at 18T with H/sub c2/(4.2K) of 22.5 to 23 T. Ta wires made under the same conditions with approx. =2.7 ..mu..m of NbN had J/sub c/(18T) a factor of two lower. An 11 turn coil with a 2.5 cm bending radius has been made by coating one side of a moving tape 1.3 m long with approx. =3..mu..m of NbN. The best section had a J/sub c/approx. = 1 x 10/sup 4/ A/cm/sup 2/ at 18T and J/sub c/approx. =4 x 10/sup 3/ A/cm/sub 2/ at 20T.

  6. Investigation on hydrogenation performance of Mg{sub 2}Ni+10 wt.% NbN composite

    SciTech Connect

    Zhao, Xin; Han, Shumin; Zhu, Yi; Chen, Xiaocui; Ke, Dandan; Wang, Zhibin; Liu, Ting; Ma, Yufei

    2015-01-15

    The Mg{sub 2}Ni+10 wt.% NbN composite was prepared by mechanical milling and its hydrogen absorption/desorption properties and microstructure were systematically investigated. XRD results indicated that NbN was stable during ball milling process while partly decomposed into NbN{sub 0.95} and NbH during hydriding/dehydriding cycles irreversibly. The composite exhibited excellent hydrogenation/dehydrogenation kinetics performance with 2.71 wt.% hydrogen absorbed in 60 s at 423 K and 0.81 wt.% hydrogen released in 2 h at 523 K, respectively. The H diffusion constant of the composite reached 14.98×10{sup −5} s{sup −1} which was more than twice increased than that of pure Mg{sub 2}Ni powder. The superior hydrogen storage properties of the composite were ascribed to the refined grain size and abundant N-defect points provided by NbN and NbN{sub 0.95} in the composite. - Graphical abstract: The Mg{sub 2}Ni+10 wt.% NbN composite displays improvements on particle size distribution as well as hydrogen storage properties compared with that of pure Mg{sub 2}Ni. - Highlights: • NbN is introduced into Mg{sub 2}Ni hydride by Ar protected ball-milling. • Surfaces of the additive NbN particle are reduced by Mg{sub 2}NiH{sub 4}. • Hydrogenation kinetic property at 423 K is double improved. • Dehydrogenation capacity at 523 K of composites is beyond double improved.

  7. Effect of temperature on superconducting nanowire single-photon detector noise

    NASA Astrophysics Data System (ADS)

    Bahgat Shehata, A.; Ruggeri, A.; Stellari, F.; Weger, Alan J.; Song, P.; Sunter, K.; Najafi, F.; Berggren, Karl K.; Anant, Vikas

    2015-08-01

    Today Superconducting Nanowire Single-Photon Detectors (SNSPDs) are commonly used in different photon-starved applications, including testing and diagnostics of VLSI circuits. Detecting very faint signals in the near-infrared wavelength range requires not only good detection efficiency, but also very low Dark Count Rate (DCR) and jitter. For example, low noise is crucial to enable ultra-low voltage optical testing of integrated circuits. The effect of detector temperature and background thermal radiation on the noise of superconducting single-photon detectors made of NbN meanders is studied in this paper. It is shown that two different regimes can be identified in the DCR vs. bias current characteristics. At high bias, the dark count rate is dominated by the intrinsic noise of the detector, while at low bias current it is dominated by the detection of stray photons that get onto the SNSPD. Changing the detector temperature changes its switching current and only affects the high bias branch of the characteristics: a reduction of the DCR can be achieved by lowering the SNSPD base temperature. On the other hand, changing the temperature of the single-photon light source (e.g. the VLSI circuit under test) only affects the low bias regime: a lower target temperature leads to a smaller DCR.

  8. Infrared imaging of cotton fibers using a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy studies can be used to examine the quality and structure of cotton fibers. An emerging area of research relates to the imaging of cotton fibers. Herein, we report the use of a Fourier-transform infrared (FTIR) microscope to image developing cotton fibers. Studies were perfor...

  9. Large-format 17μm high-end VOx μ-bolometer infrared detector

    NASA Astrophysics Data System (ADS)

    Mizrahi, U.; Argaman, N.; Elkind, S.; Giladi, A.; Hirsh, Y.; Labilov, M.; Pivnik, I.; Shiloah, N.; Singer, M.; Tuito, A.; Ben-Ezra, M.; Shtrichman, I.

    2013-06-01

    Long range sights and targeting systems require a combination of high spatial resolution, low temporal NETD, and wide field of view. For practical electro-optical systems it is hard to support these constraints simultaneously. Moreover, achieving these needs with the relatively low-cost Uncooled μ-Bolometer technology is a major challenge in the design and implementation of both the bolometer pixel and the Readout Integrated Circuit (ROIC). In this work we present measured results from a new, large format (1024×768) detector array, with 17μm pitch. This detector meets the demands of a typical armored vehicle sight with its high resolution and large format, together with low NETD of better than 35mK (at F/1, 30Hz). We estimate a Recognition Range for a NATO target of better than 4 km at all relevant atmospheric conditions, which is better than standard 2nd generation scanning array cooled detector. A new design of the detector package enables improved stability of the Non-Uniformity Correction (NUC) to environmental temperature drifts.

  10. An indirect method of studying band alignments in nBn photodetectors using off-axis electron holography

    SciTech Connect

    Shen, Xiao-Meng; He, Zhao-Yu; Liu, Shi; Lin, Zhi-Yuan; Zhang, Yong-Hang; Smith, David J.; McCartney, Martha R.

    2015-09-21

    Mid-wave and long-wave infrared nBn photodetectors with absorbers consisting of InAs/InAsSb superlattices and barriers consisting of InAs/AlGaSb(As) superlattices were grown using molecular beam epitaxy. High-resolution X-ray diffraction showing significant differences in Ga composition in the barrier layer, and different dark current behavior at 77 K, suggested the possibility of different types of band alignments between the barrier layer and the absorber for the mid- and long-wave infrared samples. Examination of the barrier layers using off-axis electron holography showed the presence of positive charge with an estimated density of 1.8 × 10{sup 17}/cm{sup 3} in the mid-wave sample as a result of a type-II band alignment, whereas negligible charge was detected in the long-wave sample, consistent with a type-I band alignment.

  11. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Allen, Kenneth W.; Abolmaali, Farzaneh; Duran, Joshua M.; Ariyawansa, Gamini; Limberopoulos, Nicholaos I.; Urbas, Augustine M.; Astratov, Vasily N.

    2016-06-01

    We observed up to 100 times enhancement of sensitivity of mid-wave infrared photodetectors in the 2-5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90-300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the detector mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collection efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.

  12. InAs/GaInSb strained layer superlattice as an infrared detector material: an overview

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey L.

    2000-04-01

    The investigation of the InAs/Ga1-xInxSb strained layer superlattice (SLS) has been largely motivated by the promise of overcoming limitations of current mature high-performance IR detectors, such as those using HgCdTe and extrinsic silicon. It also offers fundamentally superior performance over other newly emerging III-V bandgap- engineered materials such as QWIPs. The inherent properties of the InAs/GaInSb SLS have identified it as an attractive alternative for niche VLWIR applications requiring high performance under low backgrounds at operating temperatures > 40K. If this material system proves to meet the stringent demands of VLWIR applications, it will most certainly play a significant role as an alternative materials for photovoltaic focal pane arrays operating in the LWIR and MWIR regimes as well. This paper is an overview of SLS technology development, and focuses on critical development needs as seen from the perspective of the IR detector industry.

  13. Use of Near-Infrared Detector to Sense RF Antenna Heating

    SciTech Connect

    Legg, R.A.; Lee, R.L.; Baity, W.F.

    1999-11-01

    The three antennas used for ion cyclotron heating (ICH) experiments on DIII-D have experienced localized heating of the Faraday shield rods during plasma operations which has resulted in some melting. This melting is of great concern not only because of the damage it does to the rf system's ability to deliver rf to the plasma, but because of its potential to contaminate the plasma during a shot and cast the experimental results from the shot into question. A real-time sensor to detect the temperature of the antennae during plasma operations is described. The sensor uses an avalanche photo diode (APD) with sensitivity from 0.4 to 1.0 {micro}m to monitor the temperature of the antennae. Calculations for the detector sensitivity based on Planck's law are compared with experimental results and detector data taken during plasma operations are presented.

  14. TEC-less operation of 384 × 288/25 μm uncooled infrared detector

    NASA Astrophysics Data System (ADS)

    Tissot, J. L.; Vilain, M.; Legras, O.; Minassian, C.; Fieque, V.; Chiappa, Jean-Marc

    2008-09-01

    The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from an amorphous silicon layer enables ULIS to develop 384 × 288 (1/4 VGA) IRFPA format with 25 μm pixel-pitch designed for low end application. This detector has kept all the innovations developed on the full TV format ROIC (detector configuration by serial link, low power consumption or wide electrical dynamic range...). The specific appeal of this unit lies in the miniaturization of the TEC-less (Thermo-Electric Cooler) package and its extremely light weight. The reduction of the pixel-pitch and the innovative package turn this array into a low cost product well adapted for mass production.

  15. InAs/GaSb superlattice focal plane array infrared detectors: manufacturing aspects

    NASA Astrophysics Data System (ADS)

    Rutz, Frank; Rehm, Robert; Schmitz, Johannes; Fleissner, Joachim; Walther, Martin; Scheibner, Ralf; Ziegler, Johann

    2009-05-01

    InAs/GaSb type-II short-period superlattice (SL) photodiodes have been shown to be very promising for 2nd and 3rd generation thermal imaging systems with excellent detector performance. A multi-wafer molecular beam epitaxy (MBE) growth process on 3"-GaSb substrates, which allows simultaneous growth on five substrates with excellent homogeneity has been developed. A reliable III/V-process technology for badge processing of single-color and dual-color FPAs has been set up to facilitate fabrication of mono- and bi-spectral InAs/GaSb SL detector arrays for the mid-IR spectral range. Mono- and bispectral SL camera systems with different pitch and number of pixels have been fabricated. Those imaging systems show excellent electro-optical performance data with a noise equivalent temperature difference (NETD) around 10 mK.

  16. InSb photovoltaic infrared detector array with quasi-plane structure

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Wang, L.; Chen, X.; Shen; Shouzhen

    1984-12-01

    A quasi-plane technology is developed, which is based on a mesa photosensitive unit with SiO2 medium as mask, using a metal film as expanding electrode and a supersonic technique for welding the electrode wire on the substrate. The detectors made with this technology have good electrical and photoelectrical performance, such as high junction impedance, high reverse breakdown voltage, good stability of performance and no crosstalk. The mechanism yielding high performance is briefly discussed.

  17. Near infrared single photon avalanche detector with negative feedback and self quenching

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-08-01

    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor < 1.05, Rise time < 350ps, Fall time < 500ps, Dark current < 2×106 cps at room temperature, and Operating Voltage < 60V. These devices are ideal for researchers in the field of Ladar/Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  18. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    NASA Astrophysics Data System (ADS)

    Lao, Y. F.; Perera, A. G. U.; Wang, H. L.; Zhao, J. H.; Jin, Y. J.; Zhang, D. H.

    2016-03-01

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3-5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ0, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μm in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ0 is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ0. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.

  19. The Mid-Infrared Instrument for the James Webb Space Telescope, VII: The MIRI Detectors

    NASA Astrophysics Data System (ADS)

    Rieke, G. H.; Ressler, M. E.; Morrison, Jane E.; Bergeron, L.; Bouchet, Patrice; García-Marín, Macarena; Greene, T. P.; Regan, M. W.; Sukhatme, K. G.; Walker, Helen

    2015-07-01

    The MIRI Si:As IBC detector arrays extend the heritage technology from the Spitzer IRAC arrays to a 1024 × 1024 pixel format. We provide a short discussion of the principles of operation, design, and performance of the individual MIRI detectors, in support of a description of their operation in arrays provided in an accompanying paper. We then describe modeling of their response. We find that electron diffusion is an important component of their performance, although it was omitted in previous models. Our new model will let us optimize the bias voltage while avoiding avalanche gain. It also predicts the fraction of the IR-active layer that is depleted (and thus contributes to the quantum efficiency) as signal is accumulated on the array amplifier. Another set of models accurately predicts the nonlinearity of the detector-amplifier unit and has guided determination of the corrections for nonlinearity. Finally, we discuss how diffraction at the interpixel gaps and total internal reflection can produce the extended cross-like artifacts around images with these arrays at short wavelengths, ~5 μm. The modeling of the behavior of these devices is helping optimize how we operate them and also providing inputs to the development of the data pipeline.

  20. [Research on the neas infrared focal plane array detector imaging technology used in the laser warning].

    PubMed

    Wang, Zhi-Bin; Huang, Yan-Fei; Wang, Yao-Li; Zhang, Rui; Wang, Yan-Chao

    2014-04-01

    In order to achieve the incoming laser's accurate position, it is necessary to improve the detected laser's direction resolution. The InGaAs focal plane array detector with the type of FPA-320 x 256-C was selected as the core component of the diffraction grating laser warning device. The detection theory of laser wavelength and direction based on diffraction grating was introduced. The drive circuit was designed through the analysis of the detector's performance and parameters. Under the FPGA' s timing control, the detector's analog output was sampled by the high-speed AD. The data was cached to FPGA's extended SRAM, and then transferred to a PC through USB. Labview on a PC collects the raw data for processing and displaying. The imaging experiments were completed with the above method. With the wavelength of 1550 nm and 980 nm laser from different directions the diffraction images were detected. Through analysis the location of the zero order and one order can be determined. According to the grating diffraction theory, the wavelength and the direction of the two-dimensional angle can be calculated. It indicates that the wavelength error is less than 10 nm, and the angle error is less than 1 degrees. PMID:25007645

  1. Room temperature detector array technology for the terahertz to far-infrared.

    SciTech Connect

    Camacho, Ryan; Shaw, Michael; Zhang, X.; Tao, Hu; Lentine, Anthony L.; Wright, Jeremy Benjamin; Shaner, Eric Arthur; Trotter, Douglas Chandler; Averitt, Richard D.; Kadlec, Emil G; Rakich, Peter T.

    2011-10-01

    Thermal detection has made extensive progress in the last 40 years, however, the speed and detectivity can still be improved. The advancement of silicon photonic microring resonators has made them intriguing for detection devices due to their small size and high quality factors. Implementing silicon photonic microring or microdisk resonators as a means of a thermal detector gives rise to higher speed and detectivity, as well as lower noise compared to conventional devices with electrical readouts. This LDRD effort explored the design and measurements of silicon photonic microdisk resonators used for thermal detection. The characteristic values, consisting of the thermal time constant ({tau} {approx} 2 ms) and noise equivalent power were measured and found to surpass the performance of the best microbolometers. Furthermore the detectivity was found to be D{sub {lambda}} = 2.47 x 10{sup 8} cm {center_dot} {radical}Hz/W at 10.6 {mu}m which is comparable to commercial detectors. Subsequent design modifications should increase the detectivity by another order of magnitude. Thermal detection in the terahertz (THz) remains underdeveloped, opening a door for new innovative technologies such as metamaterial enhanced detectors. This project also explored the use of metamaterials in conjunction with a cantilever design for detection in the THz region and demonstrated the use of metamaterials as custom thin film absorbers for thermal detection. While much work remains to integrate these technologies into a unified platform, the early stages of research show promising futures for use in thermal detection.

  2. Preliminary study of the Suomi NPP VIIRS detector-level spectral response function effects for the long-wave infrared bands M15 and M16

    NASA Astrophysics Data System (ADS)

    Padula, Francis; Cao, Changyong

    2014-09-01

    The Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the SST data. To assess possible causes due to the detector-level Spectral Response Functions (SRFs), a study was conducted to compare the radiometric response of the detector-level and operation band averaged SRFs of VIIRS bands M15 & M16 using simulated blackbody radiance data and clear-sky ocean radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs, and that if users require optimal system performance detector-level processing is recommended. Future work will investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  3. Anodic fluoride passivation of type II InAs/GaSb superlattice for short-wavelength infrared detector

    NASA Astrophysics Data System (ADS)

    Zhang, Li Xue; Sun, Wei Guo; Lv, Yan Qiu; Li, Mo; Ding, Jia Xin; Si, Jun Jie

    2015-02-01

    One of the major challenges of antimonide-based devices arises owing to the large number of surface states generated during fabrication processes. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of this material system. In this paper, we proposed a new passivation method (zinc sulfide coating after anodic fluoride) for InAs/GaSb superlattice infrared detectors. InAs/GaSb superlattice short-wavelength infrared materials were grown by molecular beam epitaxy on GaSb (100) substrates. A GaSb buffer layer, which can decrease the occurrence of defects with similar pyramidal structure, was grown for optimized superlattice growth condition. High resolution X-ray diffraction indicated that the period of the superlattice corresponding to fourth satellite peak was 39.77 Å. The atomic force microscopy images show the roughness was below 1.7 nm. The result of photoresponse spectra shows that the cutoff wavelength was 3.05 μm at 300 K.

  4. Anodic fluoride passivation of type II InAs/GaSb superlattice for short-wavelength infrared detector

    NASA Astrophysics Data System (ADS)

    Zhang, Li Xue; Sun, Wei Guo; Lv, Yan Qiu; Li, Mo; Ding, Jia Xin; Si, Jun Jie

    2014-09-01

    One of the major challenges of antimonide-based devices arises owing to the large number of surface states generated during fabrication processes. Surface passivation and subsequent capping of the surfaces are absolutely essential for any practical applicability of this material system. In this paper, we proposed a new passivation method (zinc sulfide coating after anodic fluoride) for InAs/GaSb superlattice infrared detectors. InAs/GaSb superlattice short-wavelength infrared materials were grown by molecular beam epitaxy on GaSb (100) substrates. A GaSb buffer layer, which can decrease the occurrence of defects with similar pyramidal structure, was grown for optimized superlattice growth condition. High resolution X-ray diffraction indicated that the period of the superlattice corresponding to fourth satellite peak was 39.77 Å. The atomic force microscopy images show the roughness was below 1.7 nm. The result of photoresponse spectra shows that the cutoff wavelength was 3.05 μm at 300 K.

  5. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  6. Spectral broadening and electron-photon coupling in III-V infrared detectors of low dimensional quantum confined system

    NASA Astrophysics Data System (ADS)

    Joy, Soumitra R.; Mohammedy, Farseem M.

    2016-05-01

    Present work explores the mid-IR photodetection mechanism in III-V quantum confined system in twofold ways. Firstly, it models the extent of spectral linewidth broadening of photo-detector. Secondly, it investigates whether a strong perturbation of light can modulate the electronic bandstructure. Photo-absorption mechanism in the detector correlated to reduced carrier lifetime in ground state leading to homogeneous spectral widening is calculated. Besides, contribution of non-uniform size and composition of quantum dots towards spectral broadening is modeled in order to get the envelop of inhomogeneously broadened photocurrent spectrum. Our model generates photocurrent spectrum with 1.4 μm broadening centered at 3.5 μm at 77 K for a DWELL-IP, which agrees with the experimental result. The calculated photocurrent spectral width of 1.3 μm for GaAs/AlGaAs Quantum Well (QW) centered at 8.31 μm at 77 K also supports experimental data. In addition, our calculation reveals the emergence of a broad resonant peak in the spectrum of QW-IP in far infrared region (20-50 μm) as the photon volume density increases up to 0.1% of carrier density inside the active region. We introduce a hybrid density-of-states for strongly coupled electron-photon system to explain both mid and far IR peak.

  7. Room temperature deposition of superconducting NbN for superconductor-insulator-superconductor junctions

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Leduc, H. G.; Thakoor, A. P.; Lambe, J.; Khanna, S. K.

    1986-01-01

    The deposition of stoichiometric B1-crystal-structure (111) NbN films on glass or sapphire substrates by reactive dc magnetron sputtering is reported. High-purity Ar-N2 mixtures are used in the apparatus described by Thakoor et al. (1985), and typical deposition parameters are given as background pressure about 10 ntorr, voltage -325 V, current 1 A, deposition rate 1.35 nm/s, film thickness 500 nm, P(Ar) 5-17 mtorr, initial P(N2) 2-6 mtorr, and room temperature. The N2 consumption-injection characteristics are studied and found to control NbN formation using well-conditioned Nb targets. Films with transition temperatures 15-16 K are obtained at P(Ar) = 12.9 + or - 0.2 mtorr and P(N2) = 3.7 + or - 0.1 mtorr. SIS junctions of area about 0.001 sq cm fabricated using the NbN films are shown to have I-V characteristics with nonlinearity parameter about 110 and NbN superconducting-gap parameter Delta = about 2.8 meV.

  8. FEA simulation, design, and fabrication of an uncooled MEMS capacitive thermal detector for infrared FPA imaging

    NASA Astrophysics Data System (ADS)

    Wang, Weidong; Upadhyay, Vandana; Munoz, Christel; Bumgarner, John; Edwards, Oliver

    2006-05-01

    This paper reports modeling, simulation, design and fabrication results for an uncooled MEMS capacitive thermal detector for IR focal plane array (FPA) imaging. Finite element analysis (FEA) was used to simulate the thermal and thermal-structural behaviors of the device. Sensitivity and thermal response time were simulated, as well as noise equivalent temperature difference (NETD). The detector structure consists of a suspended IR absorption/capacitive plate (100μm×100μm) made of Si 3N 4/Pt. The first section of each supporting arm has a bilayer structure, which consists of a SiO II layer and a thick Al layer. The arm and the plate exhibit an out of plane movement due to a bilayer effect caused by temperature rise under IR radiation. This results in a capacitive sensing signal. The second section of each arm has a SiO II layer and a very thin Al layer to serve as thermal isolation, as well as an electrical connection for capacitive sensing signal. A FEA parametric model was created and several key dimensions of the structure were simulated for better performance. Especially, the thicknesses of Al thermal isolation layer and bilayer were evaluated regarding sensitivity and thermal time constant. For a 0.8μm bilayer Al thickness and a 30nm isolation layer Al thickness, a simulated displacement sensitivity of 0.83nm/(pW.μm -2) was achieved. Subsequent NETD calculations predicted a temperature fluctuation NETD of 3.4mK, a background fluctuation NETD of 1.0mK, a thermal-mechanical NETD of 9.2mK, a capacitive readout NETD of 7.4mK, and a total NETD of 12.3mK, with a 18.6ms thermal time constant. Following the design for the photomasks, fabrication processes were developed and the detectors were fabricated successfully.

  9. Evaluation of high temperature superconductive thermal bridges for space-borne cryogenic infrared detectors

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1993-01-01

    The focus of this research is on the reduction of the refrigeration requirements for infrared sensors operating in space through the use of high temperature superconductive (HTS) materials as electronic leads between the cooled sensors and the relatively warmer data acquisition components. Specifically, this initial study was directed towards the design of an experiment to quantify the thermal performance of these materials in the space environment. First, an intensive review of relevant literature was undertaken, and then, design requirements were formulated. From this background information, a preliminary experimental design was developed. Additional studies will involve a thermal analysis of the experiment and further modifications of the experimental design.

  10. Characteristics of an Indium Asenide-based nBn photodetectors grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Pedrazzani, Janet Renee

    The nBn photodetector design specifies an n-type absorption layer, a Barrier layer to majority carrier electrons, and an n-type contact layer. The absence of a depletion layer in the lattice-matched nBn photodetector results in substantially reduced levels of Shockley-Read-Hall (SRH) generation current as compared with the competing p-n junction photodiode. The nBn photodetector also suppresses surface leakage current, which is prevalent in cooled, narrow bandgap semiconductor p-n junction photodiodes. Barrier layers consisting of AlAsxSb1-x are used in these InAs-based nBn photodetectors. A zero valance band energy offset exists between the InAs and AlAsxSb1-x layers for a composition in the range 0.14 < x < 0.17, while a composition of x = 0.16 lattice matches InAs. Conduction band energy offsets much greater than kT exist between InAs and all compositions of AlAsxSb1-x, and barrier layers thicker than 100 Angstroms are predicted to attenuate current arising from electron tunnelling to negligible levels. A lattice-matched InAs-based nBn photodetector achieves background limited photodetection (BLIP) operation at 200 K, while surface leakage current prevents two examples of InAs-based photodiodes from achieving BLIP operation. At a temperature of 140 K, this InAs-based nBn photodetector has a measured dark current lower by over 6 orders of magnitude than that of the commercial InAs-based photodiode and 4 orders of magnitude lower than that of an InAs-based photodiode fabricated by the author. Measurements indicate InAs-based nBn photodetectors grown with lattice-mismatched absorption layers have higher dislocation densities and that SRH current is the primary contributor to the dark current. The BLIP temperatures of two nBn photodetectors with InAs absorption layers grown on GaAs substrates are 150 and 160 K. The BLIP temperature of an nBn photodetector with an InAs0.95Sb0.05 absorption layer grown on an InAs substrate is 185 K. Accurate calculation of the thermal

  11. Impact of three-dimensional geometry on the performance of isolated electron-injection infrared detectors

    SciTech Connect

    Fathipour, Vala; Jang, Sung Jun; Nia, Iman Hassani; Mohseni, Hooman

    2015-01-12

    We present a quantitative study of the influence of three-dimensional geometry of the isolated electron–injection detectors on their characteristics. Significant improvements in the device performance are obtained as a result of scaling the injector diameter with respect to the trapping/absorbing layer diameters. Devices with about ten times smaller injector area with respect to the trapping/absorbing layer areas show more than an order of magnitude lower dark current, as well as an order of magnitude higher optical gain compared with devices of same size injector and trapping/absorbing layer areas. Devices with 10 μm injector diameter and 30 μm trapping/absorbing layer diameter show an optical gain of ∼2000 at bias voltage of −3 V with a cutoff wavelength of 1700 nm. Analytical expressions are derived for the electron-injection detector optical gain to qualitatively explain the significance of scaling the injector with respect to the absorber.

  12. Numerical analysis of CdS/PbSe room temperature mid-infrared heterojunction photovoltaic detectors

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Ge, Wanyin; Shi, Zhisheng

    2015-06-01

    Numerical analysis of a CdS/PbSe room-temperature heterojunction photovoltaic detector is discussed as to provide guidelines for practical improvement, based on the previous experimental exploration [1]. In our experiment work, the polycrystalline CdS film was prepared in hydro-chemical method on top of the single crystalline PbSe grown by molecular beam epitaxy method. The preliminary results demonstrated a 5.48×108 Jones peak detectivity at λ=4.7μm under zero-bias. However, the influence of some material and device parameters such as carrier concentration, interface recombination velocity remains uncertain. These parameters affect the built-in electric field and the carriers' transportation properties, and consequently could have detrimental effect on the device performance of the CdS/PbSe detector. In this work, therefore, the numerical analysis is performed based on these parameters. The simulation results suggest that the device performance can be improved at least 4 times by increasing CdS concentration for two orders of magnitudes, and the device performance will degrade severely if the interface recombination speed is over 104 cm/s.

  13. Infrared focal plane arrays based on dots in a well and strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2009-01-01

    In this paper, we will review some of the recent progress that we have made on developing single pixel detectors and focal plane arrays based on dots-in-a-well (DWELL) heterostructure and Type II strained layer superlattice (SLS). The DWELL detector consists of an active region composed of InAs quantum dots embedded in InGaAs/GaAs quantum wells. By varying the thickness of the InGaAs well, the DWELL heterostructure allows for the manipulation of the operating wavelength and the nature of the transitions (bound-to-bound, bound-to-quasibound and bound-to-continuum) of the detector. Based on these principles, DWELL samples were grown using molecular beam epitaxy and fabricated into 320 x 256 focal plane arrays (FPAs) with Indium bumps using standard lithography at the University of New Mexico. The FPA evaluated was hybridized to an Indigo 9705 readout integrated circuit (ROIC). From this evaluation, we have reported the first two-color, co-located quantum dot based imaging system that can be used to take multicolor images using a single FPA. We have also been investigating the use of miniband transitions in Type II SLS to develop infrared detectors using PIN and nBn based designs.

  14. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    NASA Astrophysics Data System (ADS)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  15. A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space

    NASA Technical Reports Server (NTRS)

    Devlin, M.; Lange, A. E.; Wilbanks, T.; Sato, S.

    1993-01-01

    We report the performance of an ac bridge readout system that has been developed for use on the Infrared Telescope in Space which is scheduled for launch in 1994. The ac bridge readout provides excellent dc stability enabling observing strategies well-suited to space-borne observations. The ability to modulate the optical signal slowly allows the use of new, highly sensitive, long time-constant bolometers. At 300 mK, the bolometers have an electrical noise equivalent power of 3 x 10 exp -17 W/sq rt Hz. The total noise of the differential signal, including amplifier noise, is less than 8 x 10 exp -17 W/sq rt Hz at frequencies as low as 35 mHz.

  16. Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection

    NASA Astrophysics Data System (ADS)

    Tang, Xin; Zhang, Hengkai; Tang, Xiaobing; Lai, King W. C.

    2016-07-01

    Graphene/silicon junction based photodetectors have attracted great interest due to their superior characteristics like large photosensitive area, fast photocarrier collection and low dark current. Currently, the weak optical absorption and short photocarrier lifetime of graphene remain major limitations for detection of infrared light with wavelengths above 1.2 μm. Here, we elucidate the mechanism of photocarrier transport in graphene/silicon junction based photodetector and propose a theoretical model to study the design and effect of finger-electrode structures on the photocurrent in graphene. We demonstrate that the top finger-like electrode in graphene/silicon photodetector can be designed to enhance the photocarrier collection efficiency in graphene by reducing the average transport distance of photocarriers. Therefore, the photoresponsivity of the graphene/silicon junction based photodetector can be increased. Our results have successfully demonstrated that by optimizing the design of finger electrodes, 4 times enhancement of photocurrents in graphene can be obtained at room temperature.

  17. Performance evaluation of integrating detectors for near-infrared fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-05-01

    Although there has been a plethora of devices advanced for clinical translation, there has been no standards to compare and determine the optical device for fluorescence molecular imaging. In this work, we compare different CCD configurations using a solid phantom developed to mimic pM - fM concentrations of near-infrared fluorescent dyes in tissues. Our results show that intensified CCD systems (ICCDs) offer greater contrast at larger signal-tonoise ratios (SNRs) in comparison to their un-intensified CCD systems operated at clinically reasonable, sub-second acquisition times. Furthermore, we compared our investigational ICCD device to the commercial NOVADAQ SPY system, demonstrating different performance in both SNR and contrast.

  18. High gain and low excess noise near infrared single photon avalanche detector

    NASA Astrophysics Data System (ADS)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-05-01

    We present the discrete amplification approach used for development of a very high gain and low excess noise factor in the near infrared wavelength region. The devices have the following performance characteristics: gain > 2X105, excess noise factor < 1.05, rise time < 350ps, fall time < 500ps and operating voltage < 60V. In the photon counting mode, the devices can be operated in the non-gated mode under a constant DC bias and do not require any external quenching circuit. These devices are ideal for researchers in the fields of deep space optical communication, spectroscopy, industrial and scientific instrumentation, Ladar/Lidar, quantum cryptography, night vision and other military, defense and aerospace applications.

  19. Development of ultra pure germanium epi layers for blocked impurity band far infrared detectors

    SciTech Connect

    Lutz, M.P.

    1991-05-01

    The main goals of this paper are: (1) To develop a low-pressure CVD (LPCVD) process that allows epitaxial growth at lower temperatures. Lower temperatures will allow the achievement of a sharp dopant profile at the substrate/epi-layer interface. Less out-diffusion from the substrate would allow the use of thinner epitaxial layers, which would lead to a larger depletion width in the photoactive region. LPCVD also avoids, to a great extent, gas-phase nucleation, which would cause Ge particulates to fall onto the wafer surface during growth. (2) To reduce high levels of oxygen and copper present at the wafer interface, as observed by secondary ion mass spectroscopy (SIMS). In order to achieve high-quality epitaxial layers, it is imperative that the substrate surface be of excellent quality. (3) To make and test detectors, after satisfactory epitaxial layers have been made.

  20. Reducing the Read Noise of the James Webb Space Telescope Near Infrared Spectrograph Detector Subsystem

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard; Arendt, Richard G.; Fixsen, D. J.; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, D. V.

    2012-01-01

    We describe a Wiener optimal approach to using the reference output and reference pixels that are built into Teledyne's HAWAII-2RG detector arrays. In this way, we are reducing the total noise per approximately 1000 second 88 frame up-the-ramp dark integration from about 6.5 e- rms to roughly 5 e- rms. Using a principal components analysis formalism, we achieved these noise improvements without altering the hardware in any way. In addition to being lower, the noise is also cleaner with much less visible correlation. For example, the faint horizontal banding that is often seen in HAWAII-2RG images is almost completely removed. Preliminary testing suggests that the relative gains are even higher when using non flight grade components. We believe that these techniques are applicable to most HAWAII-2RG based instruments.

  1. Performance of multiplexed Ge:Ga detector arrays in the far infrared

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Mccreight, Craig

    1990-01-01

    The performance of two multi-element, multiplexed Ge:Ga linear arrays under low-background conditions was investigated. The on-focal switching is accomplished by MOSFET switches, and the integrated charge is made available through MOSFET source followers. The tests were conducted at 106 microns, and the radiation on the detectors was confined to a spectral window 1.25 microns wide using a stack of cold filters. At 4.2 K, the highest responsivity was 584 A/W, the noise equivalent power was 1.0 x 10(exp -16) W/square root of Hz, and the read noise was 6100 electrons/sample. A detailed description of the test setup and procedure is presented.

  2. Improved HgCdTe technology for high-performance infrared detectors

    NASA Astrophysics Data System (ADS)

    Ziegler, Johann; Bruder, Martin; Cabanski, Wolfgang A.; Figgemeier, Heinrich; Finck, Marcus; Menger, Peter; Simon, Thomas; Wollrab, Richard

    2002-08-01

    To meet the demands for high performance HgCdTe detectors at high yield and producibility, key processes have been optimized and new approaches have been developed. By a superior CdZnTe Bridgman growth process, dislocation densities <1x105cm-2 in substrate and epitaxial layer are achieved for all substrates, ensuring high performance Focal-Plane-Arrays, particularly for (lambda) CO=11,5 micrometers arrays. A new guard ring approach for planar diodes, created by a n+-region in pixel spacing area reduces pixel crosstalk and improves Modulation Transfer Function. For high thermal cycles of the FPA, the flip-chip- technique has been optimized, leading to >2000 cycles for 640x512-FPA's. Producibility and reliability of AIM's MCT FPA technology are demonstrated.

  3. InAsSb-based nBn photodetectors: lattice mismatched growth on GaAs and low-frequency noise performance

    NASA Astrophysics Data System (ADS)

    Craig, A. P.; Thompson, M. D.; Tian, Z.-B.; Krishna, S.; Krier, A.; Marshall, A. R. J.

    2015-10-01

    An InAsSb nBn detector structure was grown on both GaAs and native GaSb substrates. Temperature dependent dark current, spectral response, specific detectivity (D*) and noise spectral density measurements were then carried out. Shot-noise-limited D*figures of 1.2× {10}10 {{Jones}} and 3.0× {10}10 {{Jones}} were calculated (based upon the sum of dark current and background photocurrent) for the sample grown on GaAs and the sample grown on GaSb, respectively, at 200 K. Noise spectral density measurements revealed knee frequencies of between 124-337 Hz and ˜8 Hz, respectively. Significantly, these devices could support focal plane arrays capable of operating under thermoelectric cooling.

  4. Growth and activation of group IV semiconductors for application in infrared detectors and photovoltaics

    NASA Astrophysics Data System (ADS)

    Xie, Junqi

    Bandgaps in group IV semiconductors such as Ge1-ySn y and Ge1-x-ySixSny are tunable by varying the material composition. The tunable bandgaps make these materials with potential applications in photodetectors, modulators, waveguiders, lasers and photovolatics. This dissertation reports significant improvements of the low-temperature chemical vapor deposition (CVD) process leading to growth of device quality Ge0.98Sn0.02 films with thickness over 500 nm. Highly controlled and efficient doping protocols were also developed to obtain facile substitution and complete activation of dopant atoms at levels 1017 -- 1019 cm-3 via both conventional and custom built molecules. Ge0.98Sn0.02-based PIN structures were subsequently fabricated and characterized. Results show that the incorporation of only 2% of Sn extends the infrared performance of Ge0.98Sn 0.02 based optoelectronic devices to the entire range of transmission windows for telecom applications. Higher Sn content (5% Sn) Ge1-ySny films were also studied to extend the device performance range even further into the infrared. The successful depositions of intrinsic, p- and n-type materials with doping levels 1018-1020/cm3 indicate all components were in place for the fabrication of Ge0.95Sn 0.02-based PIN structures. Meanwhile, a new approach to high quality Ge1-x-ySix Sny ternaries grown directly on both Ge(100) and Si (100) substrates was established based on commercially available sources such as trisilane, digermane and stannane. The soft chemistry process was extended to fabricated p- and n-type layers on Si, and their optical and electrical properties were determined. Characterizations indicate that the properties of GeSiSn are independent of the platform on which they are grown including Si, Ge or GeSn/Si. First-principles calculations show that mixing entropy thermodynamically stabilizes SiGeSn in contrast to GeSn analogs with the same Sn content, in good agreement with experimentally observation. In addition

  5. Intersubband transitions in strained indium gallium arsenide quantum wells for multi-color infrared detector applications

    NASA Astrophysics Data System (ADS)

    Workman, Clayton Lee

    Intersubband transitions in InxGa1- xAs/AlGaAs multiple quantum wells (MQWs) grown by molecular beam epitaxy (MBE) were studied. The conduction band offset for this material system is larger than that of the well-known GaAs/AlGaAs system, thus making it possible to design, grow and fabricate quantum well infrared photodetectors operational in the 5--8 mum and 10--14 mum spectral regions with minimal dark current. InxGa 1-xAs/AlGaAs MQWs were grown by MBE with indium compositions ranging from x = 0.10 to 0.15 verified by in situ RHEED oscillations and high-resolution X-ray diffraction. Band-to-band transitions were verified by photoluminescence measurements, and intersubband transitions were measured using Fourier transform infrared (FTIR) spectroscopy in both the Brewster's angle and waveguide configuration. Due to the high strain and introduction of dislocations associated with the high indium content, wells with indium compositions above ˜12% did not result in intersubband transitions at silicon doping levels of 2 x 10 18 cm-3. New structures were grown, with a thick linear graded InxGa1- xAs buffer below the MQW structures to reduce the strain and resulting dislocations. Intersubband transitions were measured in In xGa1-xAs wells with indium compositions of x = .20 when grown on top of the linear graded buffer (LGB). Three-color device structures consisting of InxGa1-xAs triple-coupled MQWs were grown with and without the LGB. FTIR measurements revealed that without the LGB, intersubband transitions were not present in the three-color structure. However, with the LGB intersubband transitions were measured. Only one intersubband peak was observed in the three-color structures in the Brewster angle configuration---possibly due to nonuniformity in the sample growth. In the waveguide configuration, an additional higher energy peak was observed which other groups have attributed to multiple internal reflections off the many layers in the structure. One three

  6. HAWC+: A Detector, Polarimetry, and Narrow-Band Imaging Upgrade to SOFIA's Far-Infrared Facility Camera

    NASA Astrophysics Data System (ADS)

    Dowell, C. D.; Staguhn, J.; Harper, D. A.; Ames, T. J.; Benford, D. J.; Berthoud, M.; Chapman, N. L.; Chuss, D. T.; Dotson, J. L.; Irwin, K. D.; Jhabvala, C. A.; Kovacs, A.; Looney, L.; Novak, G.; Stacey, G. J.; Vaillancourt, J. E.; HAWC+ Science Collaboration

    2013-01-01

    HAWC, the High-resolution Airborne Widebandwidth Camera, is the facility far-infrared camera for SOFIA, providing continuum imaging from 50 to 250 microns wavelength. As a result of NASA selection as a SOFIA Second Generation Instruments upgrade investigation, HAWC will be upgraded with enhanced capability for addressing current problems in star formation and interstellar medium physics prior to commissioning in early 2015. We describe the capabilities of the upgraded HAWC+, as well as our initial science program. The mapping speed of HAWC is increased by a factor of 9, accomplished by using NASA/Goddard's Backshort-Under-Grid bolometer detectors in a 64x40 format. Two arrays are used in a dual-beam polarimeter format, and the full complement of 5120 transition-edge detectors is read using NIST SQUID multiplexers and U.B.C. Multi-Channel Electronics. A multi-band polarimeter is added to the HAWC opto-mechanical system, at the cryogenic pupil image, employing rotating quartz half-wave plates. Six new filters are added to HAWC+, bringing the full set to 53, 63, 89, 155, and 216 microns at R = 5 resolution and 52, 63, 88, 158, and 205 microns at R = 300 resolution. The latter filters are fixed-tuned to key fine-structure emission lines from [OIII], [OI], [CII], and [NII]. Polarimetry can be performed in any of the filter bands. The first-light science program with HAWC+ emphasizes polarimetry for the purpose of mapping magnetic fields in Galactic clouds. The strength and character of magnetic fields in molecular clouds before, during, and after the star formation phase are largely unknown, despite pioneering efforts on the KAO and ground-based telescopes. SOFIA and HAWC+ provide significant new capability: sensitivity to extended dust emission (to A_V ~ 1) which is unmatched, ~10 arcsec angular resolution combined with wide-field mapping which allows statistical estimates of magnetic field strength, and wavelength coverage spanning the peak of the far-infrared

  7. Novel image detail enhancement technology for high dynamic range infrared detector

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Zhu, Caigao

    2014-11-01

    In this paper, we propose a novel image detail enhancement technology which is well solved the problem of how to suppress the noise and enhance the detail at the same time of the infrared image. This technology is based on the layer separation idea. In nowadays, this idea is studied by many researchers, and many detail enhancement algorithms have been come up through this idea such as the bilateral filter for detail enhancement. According to our research, these algorithms although have the advantages of enhancing the detail without enhancing the noise, they also have the disadvantages of massive calculation, low speed and the worst is the gradient flipping effect which cause the enhanced image distorted. Our solution is based on the Guided Image Filter (GIF) to deal the separated detail layer of an image. The gradient flipping effect will be greatly suppressed with the priority that the GIF is a linear filter. Which means that the processed image will become much closer to the original image. We determine an adaptive weighting coefficient as the filter kernel. After that, we compress the base component into the display range by our modified histogram projection and enhance the detail component using the gain mask of the filter weighting coefficient. At last, we recombine the two parts and quantize the result to 8-bit domain. Experimental verification and detailed realization have been provided in this paper. We also have done significant comparison between our method and the proposed algorithm to show the superiority of our algorithm.

  8. Modelling of illuminated current–voltage characteristics to evaluate leakage currents in long wavelength infrared mercury cadmium telluride photovoltaic detectors

    SciTech Connect

    Gopal, Vishnu E-mail: wdhu@mail.sitp.ac.cn; Qiu, WeiCheng; Hu, Weida E-mail: wdhu@mail.sitp.ac.cn

    2014-11-14

    The current–voltage characteristics of long wavelength mercury cadmium telluride infrared detectors have been studied using a recently suggested method for modelling of illuminated photovoltaic detectors. Diodes fabricated on in-house grown arsenic and vacancy doped epitaxial layers were evaluated for their leakage currents. The thermal diffusion, generation–recombination (g-r), and ohmic currents were found as principal components of diode current besides a component of photocurrent due to illumination. In addition, both types of diodes exhibited an excess current component whose growth with the applied bias voltage did not match the expected growth of trap-assisted-tunnelling current. Instead, it was found to be the best described by an exponential function of the type, I{sub excess} = I{sub r0} + K{sub 1} exp (K{sub 2} V), where I{sub r0}, K{sub 1}, and K{sub 2} are fitting parameters and V is the applied bias voltage. A study of the temperature dependence of the diode current components and the excess current provided the useful clues about the source of origin of excess current. It was found that the excess current in diodes fabricated on arsenic doped epitaxial layers has its origin in the source of ohmic shunt currents. Whereas, the source of excess current in diodes fabricated on vacancy doped epitaxial layers appeared to be the avalanche multiplication of photocurrent. The difference in the behaviour of two types of diodes has been attributed to the difference in the quality of epitaxial layers.

  9. Results of radiation tests performed on the ISOCAM infrared detector array

    NASA Astrophysics Data System (ADS)

    Agnese, P.; Engelmann, J. J.; Mottier, P.

    1991-08-01

    Extensive radiation tests have been performed on the long-wavelength IR detector array for the ISOCAM camera, to be launched on the European ISO satellite. Transient and memory effects, induced by gamma-rays, protons, and heavy ions have been investigated. Each time a pixel is traversed by a particle, an ionization pulse is generated. The results of different deglitching techniques have been compared. Among them, the half Gauss method seems to be the best. In addition to the transient effect, a memory effect is induced by the radiation: an increase of the photoconductive gain is observed. For 2 rad, the raise in responsivity is about 60 percent. The relaxation time is the order of 1 h. The relativistic Fe ions present in cosmic rays have been simulated by Argon ions of 70 MeV/nucleon energy. These very heavily ionizing particles induce a large responsivity change, not only in the pixels directly hit by the particles, but also in their neighbors.

  10. High-performance near-infrared spectrally encoded microscopy by using a balanced detector

    NASA Astrophysics Data System (ADS)

    Liao, Jiuling; Gao, Wanrong

    2015-08-01

    Spectrally encoded microscopy (SEM) is a new microscopic imaging technique in which a grating is used to illuminate different positions along a line on the sample with different wavelengths, reducing the size of system and imaging time. In this paper, a SEM device is described which is based on a swept source and a balanced detection. A fixed gain balanced detector (BD) was employed in the system for detecting the low sample light without amplifier. Compared to conventional SEM detection method, our BD-SEM device has two significant advantages, one is its capability of suppressing common-mode noise and thermal noise, resulting in the lateral resolution better than direct detection, the other is that it can amplify the signal intensity which is particularly helpful for tissue reflectance imaging. The lateral resolution was measured by imaging a USAF resolution target. The images of onion cells were obtained. The data showed that both the lateral resolution and signal noise ratio are better than non-BD method. The method presented in this work is helpful for developing miniature endoscopic probe for in vivo tissue visualization with high acquisition speed and high imaging quality.

  11. HgCdTe on sapphire — A new approach to infrared detector arrays

    NASA Astrophysics Data System (ADS)

    Gertner, E. R.; Tennant, W. E.; Blackwell, J. D.; Rode, J. P.

    1985-08-01

    Some of the limitations imposed by bulk CdTe substrates on epitaxial HgCdTe, such as wafer size, fragility, and uniformity, have led to the development of an alternate substrate to CdTe for epitaxial HgCdTe growths. Described here are the synthesis and some of the properties of an alternate hybrid CdTe/sapphire substrate, and the material and device properties of liquid phase epitaxial (LPE) grown HgCdTe on CdTe/sapphire substrates. Devices made in LPE grown HgCdTe layers on CdTe/sapphire have shown excellent electrical and optical properties and superior uniformity in diode-to-diode D * in midwave infrared (MWIR) focal planes at low temperature when compared to devices fabricated in HgCdTe grown on CdTe substrates. Diodes have typical resistance area product values of ⩾ 10 Ω cm 2 at 195 K (cutoff wavelength λ c = 4.2 μm), ⩾ 3 x 10 4 Ω cm 2 at 120 K (λ c = 4.45 μm) and ⩾ 1 x 10 6 Ω cm 2 at 77 K (λ c = 4.6 μm). Typical quantum efficiencies are 60-80% without anti-reflection coating. Analysis of the detectivity of a 1024 element MWIR hybrid focal plane array shows that the number of defective elements, even under low-to-moderate photon backgrounds (high 10 12 photons cm -2 s -1), is less than 5%.

  12. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure

    NASA Astrophysics Data System (ADS)

    Tohyama, Shigeru; Sasaki, Tokuhito; Endoh, Tsutomu; Sano, Masahiko; Kato, Koji; Kurashina, Seiji; Miyoshi, Masaru; Yamazaki, Takao; Ueno, Munetaka; Katayama, Haruyoshi; Imai, Tadashi

    2013-12-01

    An uncooled infrared (IR) focal plane array (FPA) with 23.5 μm pixel pitch has been successfully demonstrated and has found wide commercial applications in the areas of thermography, security cameras, and other applications. One of the key issues for uncooled IRFPA technology is to shrink the pixel pitch because the size of the pixel pitch determines the overall size of the FPA, which, in turn, determines the cost of the IR camera products. This paper proposes an innovative pixel structure with a diaphragm and beams placed in different levels to realize an uncooled IRFPA with smaller pixel pitch (≦17 μm). The upper level consists of a diaphragm with VOx bolometer and IR absorber layers, while the lower level consists of the two beams, which are designed to be placed on the adjacent pixels. The test devices of this pixel design with 12, 15, and 17 μm pitch have been fabricated on the Si read-out integrated circuit (ROIC) of quarter video graphics array (QVGA) (320×240) with 23.5 μm pitch. Their performances are nearly equal to those of the IRFPA with 23.5 μm pitch. For example, a noise equivalent temperature difference of 12 μm pixel is 63.1 mK for F/1 optics with the thermal time constant of 14.5 ms. Then, the proposed structure is shown to be effective for the existing IRFPA with 23.5 μm pitch because of the improvements in IR sensitivity. Furthermore, the advanced pixel structure that has the beams composed of two levels are demonstrated to be realizable.

  13. InAs/Ga(1-x)In(x)Sb superlattices for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Miles, Richard H.; Schulman, Joel N.; Chow, D. H.; Mcgill, Tom C.

    1990-01-01

    The successful growth of InAs/Ga(1-x)In(x)Sb superlattices and their optical and structural characterization is discussed. Samples were grown by molecular beam epitaxy at fairly low substrate temperatures (less than 400 C). Structural quality was assessed by reflection high energy electron difrraction, transmission electron microscopy, and x ray diffraction. Excellent structures were achieved for growth on thick, strain relaxed GaSb buffer layers on GaAs substrates, despite a residual threading dislocation density of 10(exp 9)cm(exp -2) originating at the GaSb/GaAs interface. Despite a lattice mismatch of 1.7 percent, InAs/Ga(0.75)In(0.25)Sb superlattices are observed to be free of misfit dislocations at the thicknesses examined here, owing to the close lattice match between the superlattice and GaSb, which evenly distributes compressive and tensile stresses between the InAs and Ga(0.75)In(0.25)Sb layers. Photoluminescence and photoconductivity measurements indicate that the energy gaps of the strain-layer superlattices are smaller than those of InAs/GaSb superlattices with the same layer thicknesses, and are in agreement with the theoretical predictions of Smith and Mailhiot. Energy gaps of 80 to 250 meV (15 to 5 microns) have been measured for InAs/Ga(0.75)In(0.25)Sb superlattices with 45 to 25 A/25 A layer thickness. Results demonstrate that far-infrared cutoff wavelengths are compatible with the thin superlattice layers required for strong optical absorption in type-II superlattices.

  14. Electrical and optical characteristics of two color mid wave HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Mason, Whitney; Waterman, J. R.

    1999-03-01

    Two-color mid wave triple-layer heterojunction HgCdTe detectors were studied using temperature-dependent current-voltage (I-V) measurements, temperature-dependent spectral response measurements, and temperature-dependent noise measurements. The reverse biased dark current shows diffusion-limited behavior for T>125 K. The same data show evidence for generation-recombination-type behavior for the longer wavelength junction at temperatures between 100 and 125 K. For temperatures less than 100 K, the measurements are background limited by photon flux, even though these measurements are performed at nominal zero background. The upper junction shows soft reverse breakdown voltages on the order of about 250 mV, while the bottom junction shows no breakdown for V<500 mV. At 80 K, the R0A product is in excess of 1×106 Ω cm2. In forward bias, the current-voltage characteristics of the lower junction are diffusion limited for all temperatures, while at lower temperatures, the upper junction showed generation-recombination behavior. Optical measurements found a cutoff wavelength of about 4 μm for the lower junction and about 4.5 μm for the upper junction. The spectral crosstalk was less than 3%. At 80 K, the frequency-dependent noise of the shorter wavelength junction showed no dependence on bias, while for the longer wavelength junction, the noise at lower frequencies increased with bias. There is no difference in the noise characteristics when either the photon flux or the temperature is increased.

  15. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  16. A high quantum efficiency in situ doped mid-wavelength infrared p-on-n homojunction superlattice detector grown by photoassisted molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Harris, K. A.; Myers, T. H.; Yanka, R. W.; Mohnkern, L. M.; Otsuka, N.

    1991-10-01

    HgTe/CdTe superlattices in infrared (IR) detector structures have been theoretically shown to allow for better control over cutoff wavelength, minimize diffusion currents, and greatly reduce band-to-band tunneling currents as compared with the corresponding HgCdTe alloy. However, the few HgTe/CdTe superlattice detectors that have been fabricated exhibit little or no quantum efficiency. In this paper, we report the first high quantum efficiency mid-wavelength infrared (MWIR) detectors based on HgTe/CdTe superlattices. This result is significant because it represents the first experimental verification that IR detectors with useful characteristics can in fact be fabricated from HgTe/CdTe superlattices. The MWIR detectors were fabricated from an in situ doped p-on-n MWIR homojunction superlattice epilayer grown by photoassisted molecular-beam epitaxy (PAMBE). This growth technique produces low defect growth of superlattice material, as is described in this paper. Our development of an extrinsic doping technology using indium and arsenic as the n-type and p-type dopants, respectively, led to the successful doping of the superlattice and is also discussed.

  17. PdSi focal-plane array detectors for short-wave infrared Raman spectroscopy of biological tissue: a feasibility study

    NASA Astrophysics Data System (ADS)

    Brennan, James F., III; Beattie, Mark E.; Wang, Yang; Cantella, Michael J.; Tsaur, Bor-Yeu; Dasari, Ramachandra R.; Feld, Michael S.

    1996-10-01

    We have used a PdSi focal-plane array detector to measure short-wave infrared Raman spectra of pure compounds and human tissue. Raman bands of the pure compounds are clearly visible in the spectra, and a calcification feature at 960 cm -1 is readily identifiable in the spectra of diseased human aorta. The performance characteristics of our detection device were good; dark noise contributed approximately 60 (electrons/s)/pixel, and the read noise was approximately 50 rms electrons/pixel. The primary noise in the spectra was due to fixed-pattern noise, which is the variation in measured signal across a detector when it is uniformly illuminated.

  18. How noise affects quantum detector tomography

    SciTech Connect

    Wang, Q. Renema, J. J.; Exter, M. P.van; Dood, M. J. A. de; Gaggero, A.; Mattioli, F.; Leoni, R.

    2015-10-07

    We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.

  19. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  20. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-06-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage (C-V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage (R-V) characteristics of variable-area photodiodes. The minority carrier lifetime, C-V characteristics, and R-V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  1. How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy

    PubMed Central

    Brigadoi, Sabrina; Cooper, Robert J.

    2015-01-01

    Abstract. In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source–detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant. PMID:26158009

  2. NbN-Based Microwave Kinetic Inductance Detector with a Rewound Spiral Resonator for Broadband Terahertz Detection

    NASA Astrophysics Data System (ADS)

    Ariyoshi, Seiichiro; Nakajima, Kensuke; Saito, Atsushi; Taino, Tohru; Tanoue, Hiroyuki; Koga, Kensuke; Furukawa, Noboru; Yamada, Hironobu; Ohshima, Shigetoshi; Otani, Chiko; Bae, Jongsuck

    2013-06-01

    We propose a microwave kinetic inductance detector consisting of an NbN rewound spiral resonator (spiral-MKID) as a possible broadband terahertz detector operating with a conventional cryogen-free 4He refrigerator. The spiral-MKIDs fabricated with NbN films reveal high-Q microwave resonation with loaded Q factors on the order of 104 at 3 K, and the temperature dependence of the microwave resonance frequency is well fitted by the Mattis-Bardeen theory. The optical response was confirmed in the terahertz range below 2.4 THz. We also discuss the expected noise equivalent power of the NbN-based MKIDs.

  3. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    SciTech Connect

    Qiu, Weicheng; Hu, Weida Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei; Cheng, Xiang'ai Wang, Rui

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  4. CO2 isotope sensor using a broadband infrared source, a spectrally narrow 4.4 μm quantum cascade detector, and a Fourier spectrometer

    NASA Astrophysics Data System (ADS)

    Hofstetter, D.; Di Francesco, J.; Hvozdara, L.; Herzig, H.-P.; Beck, M.

    2011-06-01

    We report a prototype CO2 gas sensor based on a simple blackbody infrared source and a spectrally narrow quantum cascade detector (QCD). The detector absorption spectrum is centered at 2260 cm-1 (4.4 μm) and has a full width at half maximum of 200 cm-1 (25 meV). It covers strong absorption bands of two spectrally overlapping CO2 isotopomers, namely the P-branch of 12CO2 and the R-branch of 13CO2. Acquisition of the spectral information and data treatment were performed in a Fourier transform infrared (FTIR) spectrometer. By flushing its sample compartment either with nitrogen, dry fresh air, ambient air, or human breath, we were able to determine CO2 concentrations corresponding to the different gas mixtures. A detection limit of 500 ppb was obtained in these experiments.

  5. Current-phase relationship of granular NbN weak links, inferred from Josephson interferometer characteristics

    SciTech Connect

    Claassen, J.H.

    1982-05-01

    Small-area dc superconducting quantum interference devices (SQUID's) were made using ultra-short variable-thickness microbridges of NbN. The bridges had an effective length of approx.500 A and a width of approx.1.5 ..mu..m. Analysis of the response to magnetic flux permits interferences to be drawn about the current-phase relationship (CPR) of the bridges. Contrary to predictions of Ginzburg--Landau theory for microbridges of these dimensions, it is found that the CPR is single valued and probably close to ideal (sinusoidal) over a large temperature range (>2.5 K). The discrepancy with theory may be due to the granular nature of the NbN films.

  6. Full characterization of small volume NbN HEB mixers for Space Applications

    NASA Astrophysics Data System (ADS)

    Baselmans, J.; Kooi, J.; Baryshev, A.; Yang, Z. Q.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.

    2005-05-01

    NbN phonon cooled HEB's are one of the most promising bolometer mixer technologies for (near) future (space) applications. Their performance is usually quantified by measuring the receiver noise temperature at a given IF frequency, usually around 1 - 2 GHz. However, for any real applications it is vital that one fully knows all the relevant properties of the mixer, including LO power, stability, direct detection, gain bandwidth and noise bandwidth, not only the noise temperature at low IF frequencies. To this aim we have measured all these parameters at the optimal operating point of one single, small volume quasioptical NbN HEB mixer. We find a minimum noise temperature of 900 K at 1.46 THz. We observe a direct detection effect indicated by a change in bias current when changing from a 300 K hot load to a 77 K cold load. Due to this effect we overestimate the noise temperature by about 22% using a 300 K hot load and a 77 K cold load. The LO power needed to reach the optimal operating point is 80 nW at the receiver lens front, 59 nW inside the NbN bridge. However, using the isothermal technique we find a power absorbed in the NbN bridge of 25 nW, a difference of about a factor 2. We obtain a gain bandwidth of 2.3 GHz and a noise bandwidth of 4 GHz. The system Allan time is about 1 sec. in a 50 MHz spectral bandwidth and a deviation from white noise integration (governed by the radiometer equation) occurs at 0.2 sec., which implies a maximum integration time of a few seconds in a 1 MHz bandwidth spectrometer.

  7. Study of phase transitions in NbN ultrathin films under composite ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Prikhodko, K.; Gurovich, B.; Dement'eva, M.

    2016-04-01

    This work demonstrates implementation of Selective Displacement of Atoms (SDA) technique to change the crystal structure and atomic composition of thin superconductive film of NbN under low dose composite ion beam irradiation. All structure investigations were performed using High Resolution Transmission Electron Microscopy (HRTEM) technique by the analysis of Fourier transformation of bright field HRTEM images. It was found that composite ion beam irradiation induces the formation of niobium oxynitrides phases.

  8. Lower critical field measurements in NbN bulk and thin films.

    NASA Technical Reports Server (NTRS)

    Mathur, M. P.; Deis, D. W.; Gavaler, J. R.

    1972-01-01

    Low-field magnetization measurements were made at 4.2 K on thin-film and bulk NbN samples by using a vibrating-sample Foner magnetometer with a 50-kG superconducting solenoid. Values of the lower and upper critical fields are calculated, using magnetization curves as the basis. The significance of the Pauli spin paramagnetism and spin-orbit scattering in these materials is discussed.

  9. Identification of the Interactors of Human Nibrin (NBN) and of Its 26 kDa and 70 kDa Fragments Arising from the NBN 657del5 Founder Mutation

    PubMed Central

    Pennisi, Rosa; Pallotta, Valeria; D'Alessandro, Angelo; Antoccia, Antonio; Zolla, Lello; Ascenzi, Paolo; di Masi, Alessandra

    2014-01-01

    Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN complex, which is involved in early steps of DNA double strand breaks sensing and repair. Mutations within the NBN gene are responsible for the Nijmegen breakage syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express either the full-length NBN protein or the p26 or p70 fragments, followed by affinity chromatography enrichment of the eluates. The application of an unsupervised proteomics approach, based upon SDS-PAGE separation and shotgun digestion of protein bands followed by MS/MS protein identification, indicates the occurrence of previously unreported protein interacting partners of the full-length NBN protein and the p26 fragment containing the FHA/BRCT1 domains, especially after cell irradiation. In particular, results obtained shed light on new possible roles of NBN and of the p26 fragment in ROS scavenging, in the DNA damage response, and in protein folding and degradation. In particular, here we show that p26 interacts with PARP1 after irradiation, and this interaction exerts an inhibitory effect on PARP1 activity as measured by NAD+ levels. Furthermore, the p26-PARP1 interaction seems to be responsible for the persistence of ROS, and in turn of DSBs, at 24 h from IR. Since some of the newly identified interactors of the p26 and p70 fragments have not been found to interact with the full-length NBN, these interactions may somehow contribute to the key biological phenomena underpinning NBS. PMID:25485873

  10. The c.657del5 variant in the NBN gene predisposes to pancreatic cancer.

    PubMed

    Borecka, Marianna; Zemankova, Petra; Lhota, Filip; Soukupova, Jana; Kleiblova, Petra; Vocka, Michal; Soucek, Pavel; Ticha, Ivana; Kleibl, Zdenek; Janatova, Marketa

    2016-08-10

    Pancreatic ductal adenocarcinoma (PDAC) is the sixth most frequent cancer type in the Czech Republic with a poor prognosis that could be improved by an early detection and subsequent surgical treatment combined with chemotherapy. Genetic factors play an important role in PDAC risk. We previously identified one PDAC patient harboring the Slavic founder deleterious mutation c.657del5 in the NBN gene, using a panel next-generation sequencing (NGS). A subsequent analysis of 241 unselected PDAC patients revealed other mutation carriers. The overall frequency of c.657del5 in unselected PDAC patients (5/241; 2.07%) significantly differed from that in non-cancer controls (2/915; 0.2%; P=0.006). The result indicates that the NBN c.657del5 variant represents a novel PDAC-susceptibility allele increasing PDAC risk (OR=9.7; 95% CI: 1.9 to 50.2). The increased risk of PDAC in follow-up recommendations for NBN mutation carriers should be considered if other studies also confirm an increased frequency of c.657del5 carriers in PDAC patients from other populations. PMID:27150568

  11. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  12. Photocurrent spectrum study of a quantum dot single-photon detector based on resonant tunneling effect with near-infrared response

    SciTech Connect

    Weng, Q. C.; An, Z. H. E-mail: luwei@mail.sitp.ac.cn; Xiong, D. Y.; Zhu, Z. Q.; Zhang, B.; Chen, P. P.; Li, T. X.; Lu, W. E-mail: luwei@mail.sitp.ac.cn

    2014-07-21

    We present the photocurrent spectrum study of a quantum dot (QD) single-photon detector using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the detector in linear-response region, the detector's responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-infrared (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).

  13. Genetic Variation in the 3'-Untranslated Region of NBN Gene Is Associated with Gastric Cancer Risk in a Chinese Population

    PubMed Central

    Zhu, Xun; Ren, Chuanli; Xie, Lan; Dai, Ningbin; Gu, Yayun; Yan, Caiwang; Dai, Juncheng; Ma, Hongxia; Jiang, Yue; Chen, Jiaping; Hu, Zhibin; Shen, Hongbing; Wu, Haorong; Jin, Guangfu

    2015-01-01

    NBN plays a crucial role in carcinogenesis as a core component for both homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA double-strand breaks (DSBs) repair pathways. Genetic variants in the NBN gene have been associated with multiple cancers risk, suggesting pleiotropic effect on cancer. We hypothesized that genetic variants in the NBN gene may modify the risk of gastric cancer. To test this hypothesis, we evaluated the association between four potentially functional single nucleotide polymorphisms in NBN and gastric cancer risk in a case–control study of 1,140 gastric cancer cases and 1,547 controls in a Chinese population. We found that the A allele of rs10464867 (G>A) was significantly associated with a decreased risk of gastric cancer (odds ratio [OR] = 0.81, 95% confidence interval [95% CI] = 0.71–0.94; P = 4.71×10−3). Furthermore, the association between A allele of rs10464867 and decreased risk of gastric cancer was more significantly in elder individuals (per-allele OR = 0.72[0.59–0.88], P = 1.07×10−3), and male individuals (per-allele OR = 0.73[0.62–0.87], P = 3.68×10−4). We further conducted a haplotype analysis and identified that the NBN Ars10464867Grs14448Grs1063053 haplotype conferred stronger protective effect on gastric cancer (OR = 0.76[0.65–0.89], P = 6.39×10−4). In summary, these findings indicate that genetic variants at NBN gene may contribute to gastric cancer susceptibility and may further advance our understanding of NBN gene in cancer development. PMID:26402912

  14. Functional deficiency of NBN, the Nijmegen breakage syndrome protein, in a p.R215W mutant breast cancer cell line

    PubMed Central

    2014-01-01

    Background Mutations in NBN, the gene for Nijmegen Breakage Syndrome (NBS), are thought to predispose women to developing breast cancer, but a breast cancer cell line containing mutations in NBN has not yet been described. The p.R215W missense mutation occurs at sub-polymorphic frequencies in several populations. We aimed to investigate its functional impact in breast cancer cells from a carrier of this NBN mutation. Methods Breast cancer cell lines were screened by immunoblotting for NBN protein levels, and the NBN coding region was sequenced for mutation analysis. Radiosensitivity assays and functional studies were performed through immunocytochemistry and immunoblotting, and flow cytometry was employed to assess cell cycle progression. Impedance measurements were used to study the consequences of PARP1 inhibition. Statistical comparisons between cell lines were performed using t-tests. Results HCC1395 breast cancer cells exhibited reduced NBN protein levels. Direct sequencing identified the NBN p.R215W mutation in the hemizygous state, in addition to a truncation in BRCA1. Mutations in both genes were already present in the heterozygous state in the patient’s germline. HCC1395 cells were highly radiosensitive, susceptible to apoptosis and were deficient in the formation of NBN foci. There was also evidence for some impairment in the formation of γH2AX, MDC1, and 53BP1 foci after irradiation; these foci appeared smaller and irregular compared with repair foci in wild-type cells, although ATM signalling was largely unaffected. In line with their deficiency in NBN and BRCA1, HCC1395 cells were particularly sensitive to PARP1 inhibition. Conclusion Our results indicate that the p.R215W mutation in the HCC1395 breast cancer cell line impairs NBN function, making this cell line a potentially useful cellular model for studying defective NBN protein within a mutant BRCA1 background. PMID:24928521

  15. Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stem, Jeffrey A.; Farr, William H.; Leduc, Henry G.; Bumble, Bruce

    2008-01-01

    Superconducting-nanowire singlephoton detectors (SNSPDs) in which Nb(x)Ti(1-x)N (where x<1) films serve as the superconducting materials have shown promise as superior alternatives to previously developed SNSPDs in which NbN films serve as the superconducting materials. SNSPDs have potential utility in optical communications and quantum cryptography. Nb(x)Ti(1-x)N is a solid solution of NbN and TiN, and has many properties similar to those of NbN. It has been found to be generally easier to stabilize NbxTi1 xN in the high-superconducting-transitiontemperature phase than it is to so stabilize NbN. In addition, the resistivity and penetration depth of polycrystalline films of Nb(x)Ti(1-x)N have been found to be much smaller than those of films of NbN. These differences have been hypothesized to be attributable to better coupling at grain boundaries within Nb(x)Ti(1-x)N films.

  16. Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Stern, Jeffrey A.; Farr, William H.; Leduc, Henry G.; Bumble, Bruce

    2008-01-01

    Superconducting-nanowire single-photon detectors (SNSPDs) in which Nb(x)Ti(1-x)N (where x<1) films serve as the superconducting materials have shown promise as superior alternatives to previously developed SNSPDs in which NbN films serve as the superconducting materials. SNSPDs have potential utility in optical communications and quantum cryptography. Nb(x)Ti(1-x)N is a solid solution of NbN and TiN, and has many properties similar to those of NbN. It has been found to be generally easier to stabilize Nb(x)Ti(1-x)N in the high-superconducting-transition temperature phase than it is to so stabilize NbN. In addition, the resistivity and penetration depth of polycrystalline films of Nb(x)Ti(1-x)N have been found to be much smaller than those of films of NbN. These differences have been hypothesized to be attributable to better coupling at grain boundaries within Nb(x)Ti(1-x)N films.

  17. Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices.

    PubMed

    Huang, Edward Kwei-wei; Hoang, Minh-Anh; Chen, Guanxi; Ramezani-Darvish, Shaban; Haddadi, Abbas; Razeghi, Manijeh

    2012-11-15

    We report a two-color mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector's electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature's 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ~17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. PMID:23164899

  18. Clinical relevance of CHEK2 and NBN mutations in the macedonian population

    PubMed Central

    Kostovska, I Maleva; Jakimovska, M; Kubelka-Sabit, K; Karadjozov, M; Arsovski, A; Stojanovska, L; Plaseska-Karanfilska, D

    2015-01-01

    Clinical importance of the most common CHEK2 (IVS2+1 G>A, 1100delC, I157T and del5395) and NBN (R215W and 657del5) gene mutations for breast cancer development in Macedonian breast cancer patients is unknown. We performed a case-control study including 300 Macedonian breast cancer patients and 283 Macedonian healthy controls. Genotyping was done using a fast and highly accurate single-nucleotide primer extension method for the detection of five mutations in a single reaction. The detection of the del5395 was performed using an allele-specific duplex polymerase chain reaction (PCR) assay. We have found that mutations were more frequent in breast cancer patients (n = 13, 4.3%) than in controls (n = 5, 1.8%), although without statistical significance. Twelve patients were heterozygous for one of the analyzed mutations, while one patient had two mutations (NBN R215W and CHEK2 I157T). The most frequent variant was I157T, found in 10 patients and four controls (p = 0.176) and was found to be associated with familial breast cancer (p = 0.041). CHEK2 1100delC and NBN 657del5 were each found in one patient and not in the control group. CHEK2 IVS2+1G>A and del5395 were not found in our cohort. Frequencies of the studied mutations are low and they are not likely to represent alleles of clinical importance in the Macedonian population. PMID:26929905

  19. Clinical relevance of CHEK2 and NBN mutations in the macedonian population.

    PubMed

    Kostovska, I Maleva; Jakimovska, M; Kubelka-Sabit, K; Karadjozov, M; Arsovski, A; Stojanovska, L; Plaseska-Karanfilska, D

    2015-06-01

    Clinical importance of the most common CHEK2 (IVS2+1 G>A, 1100delC, I157T and del5395) and NBN (R215W and 657del5) gene mutations for breast cancer development in Macedonian breast cancer patients is unknown. We performed a case-control study including 300 Macedonian breast cancer patients and 283 Macedonian healthy controls. Genotyping was done using a fast and highly accurate single-nucleotide primer extension method for the detection of five mutations in a single reaction. The detection of the del5395 was performed using an allele-specific duplex polymerase chain reaction (PCR) assay. We have found that mutations were more frequent in breast cancer patients (n = 13, 4.3%) than in controls (n = 5, 1.8%), although without statistical significance. Twelve patients were heterozygous for one of the analyzed mutations, while one patient had two mutations (NBN R215W and CHEK2 I157T). The most frequent variant was I157T, found in 10 patients and four controls (p = 0.176) and was found to be associated with familial breast cancer (p = 0.041). CHEK2 1100delC and NBN 657del5 were each found in one patient and not in the control group. CHEK2 IVS2+1G>A and del5395 were not found in our cohort. Frequencies of the studied mutations are low and they are not likely to represent alleles of clinical importance in the Macedonian population. PMID:26929905

  20. Characterization of optoelectronic properties of mercury cadmium telluride and zinc oxide II-VI semiconductors for infrared and ultraviolet detector applications

    NASA Astrophysics Data System (ADS)

    Moazzami, Kaveh

    Infrared (IR) and Ultraviolet (UV) light detectors have numerous applications including thermal imaging and chemical and biological spectroscopy. In this work, key aspects of HgCdTe and ZnO semiconductor materials are studied in accordance to their importance to state of the art IR and UV detector technologies. The leading material technology for IR detectors today is the lattice matched HgCdTe alloy. The model for optical absorption in this material has not been reexamined after major improvements in HgCdTe material growth technology. Access to an accurate model for absorption coefficient of this material is important for understanding of detector behavior, where the degree of accuracy required continues to grow as detector structures continue to add complexity. In this work, the optical absorption coefficient of HgCdTe is studied in detail using theoretical bandstructure calculations, temperature dependent optical spectroscopy, and infrared spectroscopic ellipsometry. A new model for the optical absorption coefficient of this material as a function of composition and temperature is presented based on a proposed empirical relationship. A significant improvement in the prediction of photovoltaic detector spectral response is observed based on this proposed model. ZnO is emerging as an important material for short wavelength optoelectronic devices, and may have a major impact on high-performance UV detectors. In this work, the steady-state and time-resolved response of ZnO photoconductors are studied. A sharp turn on is observed in the UV for these photodetectors, corresponding to the bandgap energy of 3.4eV for the ZnO material. Photoconductive decay transients show a fast (nanoseconds) and slow (milliseconds) time constant that are attributed to minority carrier relaxation and trapping processes, respectively. Persistent photoconductivity was observed, with time constant on the order of minutes, in response to both visible and UV excitation and is attributed to