Science.gov

Sample records for ncfm bifidobacterium bifidum

  1. Bifidobacterium bifidum actively changes the gene expression profile induced by Lactobacillus acidophilus in murine dendritic cells.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Nielsen Fink, Lisbeth; Jarmer, Hanne; Nøhr Nielsen, Birgit; Frøkiaer, Hanne

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-beta, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-beta abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-beta. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-beta plays a central role in this regulatory mechanism. PMID:20548777

  2. Genome Sequence of the Immunomodulatory Strain Bifidobacterium bifidum LMG 13195

    PubMed Central

    Gueimonde, Miguel; Ventura, Marco; Margolles, Abelardo

    2012-01-01

    In this work, we report the genome sequences of Bifidobacterium bifidum strain LMG13195. Results from our research group show that this strain is able to interact with human immune cells, generating functional regulatory T cells. PMID:23209243

  3. Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response

    PubMed Central

    Turroni, Francesca; Taverniti, Valentina; Ruas-Madiedo, Patricia; Duranti, Sabrina; Guglielmetti, Simone; Lugli, Gabriele Andrea; Gioiosa, Laura; Palanza, Paola; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Here, we describe data obtained from transcriptome profiling of human cell lines and intestinal cells of a murine model upon exposure and colonization, respectively, with Bifidobacterium bifidum PRL2010. Significant changes were detected in the transcription of genes that are known to be involved in innate immunity. Furthermore, results from enzyme-linked immunosorbent assays (ELISAs) showed that exposure to B. bifidum PRL2010 causes enhanced production of interleukin 6 (IL-6) and IL-8 cytokines, presumably through NF-κB activation. The obtained global transcription profiles strongly suggest that Bifidobacterium bifidum PRL2010 modulates the innate immune response of the host. PMID:24242237

  4. Mupirocin-mucin agar for selective enumeration of Bifidobacterium bifidum.

    PubMed

    Pechar, Radko; Rada, Vojtech; Parafati, Lucia; Musilova, Sarka; Bunesova, Vera; Vlkova, Eva; Killer, Jiri; Mrazek, Jakub; Kmet, Vladimir; Svejstil, Roman

    2014-11-17

    Bifidobacterium bifidum is a bacterial species exclusively found in the human intestinal tract. This species is becoming increasingly popular as a probiotic organism added to lyophilized products. In this study, porcine mucin was used as the sole carbon source for the selective enumeration of B. bifidum in probiotic food additives. Thirty-six bifidobacterial strains were cultivated in broth with mucin. Only 13 strains of B. bifidum utilized the mucin to produce acids. B. bifidum was selectively enumerated in eight probiotic food supplements using agar (MM agar) containing mupirocin (100 mg/L) and mucin (20 g/L) as the sole carbon source. MM agar was fully selective if the B. bifidum species was presented together with Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, and Bifidobacterium longum subsp. longum species and with lactic acid bacteria (lactobacilli, streptococci). Isolated strains of B. bifidum were identified using biochemical, PCR, MALDI-TOF procedures and 16S rRNA gene sequencing. The novel selective medium was also suitable for the isolation of B. bifidum strains from human fecal samples. PMID:25217723

  5. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum

    PubMed Central

    Hsieh, Chen-Yu; Osaka, Toshifumi; Moriyama, Eri; Date, Yasuhiro; Kikuchi, Jun; Tsuneda, Satoshi

    2015-01-01

    Epithelial barrier dysfunction has been implicated as one of the major contributors to the pathogenesis of inflammatory bowel disease. The increase in intestinal permeability allows the translocation of luminal antigens across the intestinal epithelium, leading to the exacerbation of colitis. Thus, therapies targeted at specifically restoring tight junction barrier function are thought to have great potential as an alternative or supplement to immunology-based therapies. In this study, we screened Bifidobacterium, Enterococcus, and Lactobacillus species for beneficial microbes to strengthen the intestinal epithelial barrier, using the human intestinal epithelial cell line (Caco-2) in an in vitro assay. Some Bifidobacterium and Lactobacillus species prevented epithelial barrier disruption induced by TNF-α, as assessed by measuring the transepithelial electrical resistance (TER). Furthermore, live Bifidobacterium species promoted wound repair in Caco-2 cell monolayers treated with TNF-α for 48 h. Time course 1H-NMR-based metabonomics of the culture supernatant revealed markedly enhanced production of acetate after 12 hours of coincubation of B. bifidum and Caco-2. An increase in TER was observed by the administration of acetate to TNF-α-treated Caco-2 monolayers. Interestingly, acetate-induced TER-enhancing effect in the coculture of B. bifidum and Caco-2 cells depends on the differentiation stage of the intestinal epithelial cells. These results suggest that Bifidobacterium species enhance intestinal epithelial barrier function via metabolites such as acetate. PMID:25780093

  6. Exploring Amino Acid Auxotrophy in Bifidobacterium bifidum PRL2010

    PubMed Central

    Ferrario, Chiara; Duranti, Sabrina; Milani, Christian; Mancabelli, Leonardo; Lugli, Gabriele A.; Turroni, Francesca; Mangifesta, Marta; Viappiani, Alice; Ossiprandi, Maria C.; van Sinderen, Douwe; Ventura, Marco

    2015-01-01

    The acquisition and assimilation strategies followed by members of the infant gut microbiota to retrieve nitrogen from the gut lumen are still largely unknown. In particular, no information on these metabolic processes is available regarding bifidobacteria, which are among the first microbial colonizers of the human intestine. Here, evaluation of amino acid auxotrophy and prototrophy of Bifidobacterium bifidum, with particular emphasis on B. bifidum strain PRL2010 (LMG S-28692), revealed a putative auxotrophy for cysteine. In addition, we hypothesized that cysteine plays a role in the oxidative stress response in B. bifidum. The use of glutathione as an alternative reduced sulfur compound did not alleviate cysteine auxotrophy of this strain, though it was shown to stimulate expression of the genes involved in cysteine biosynthesis, reminiscent of oxidative stress response. When PRL2010 was grown on a medium containing complex substrates, such as whey proteins or casein hydrolysate, we noticed a distinct growth-promoting effect of these compounds. Transcriptional analysis involving B. bifidum PRL2010 cultivated on whey proteins or casein hydrolysate revealed that the biosynthetic pathways for cysteine and methionine are modulated by the presence of casein hydrolysate. Such findings support the notion that certain complex substrates may act as potential prebiotics for bifidobacteria in their ecological niche. PMID:26635786

  7. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. PMID:21204871

  8. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA

    PubMed Central

    2012-01-01

    Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC) lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant bifidobacteria with improved adhesive

  9. Role of Extracellular Transaldolase from Bifidobacterium bifidum in Mucin Adhesion and Aggregation

    PubMed Central

    González-Rodríguez, Irene; Sánchez, Borja; Ruiz, Lorena; Turroni, Francesca; Ventura, Marco; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2012-01-01

    The ability of bifidobacteria to establish in the intestine of mammals is among the main factors considered to be important for achieving probiotic effects. The role of surface molecules from Bifidobacterium bifidum taxon in mucin adhesion capability and the aggregation phenotype of this bacterial species was analyzed. Adhesion to the human intestinal cell line HT29 was determined for a collection of 12 B. bifidum strains. In four of them—B. bifidum LMG13195, DSM20456, DSM20239, and A8—the involvement of surface-exposed macromolecules in the aggregation phenomenon was determined. The aggregation of B. bifidum A8 and DSM20456 was abolished after treatment with proteinase K, this effect being more pronounced for the strain A8. Furthermore, a mucin binding assay of B. bifidum A8 surface proteins showed a high adhesive capability for its transaldolase (Tal). The localization of this enzyme on the surface of B. bifidum A8 was unequivocally demonstrated by immunogold electron microscopy experiments. The gene encoding Tal from B. bifidum A8 was expressed in Lactococcus lactis, and the protein was purified to homogeneity. The pure protein was able to restore the autoaggregation phenotype of proteinase K-treated B. bifidum A8 cells. A recombinant L. lactis strain, engineered to secrete Tal, displayed a mucin- binding level more than three times higher than the strain not producing the transaldolase. These findings suggest that Tal, when exposed on the cell surface of B. bifidum, could act as an important colonization factor favoring its establishment in the gut. PMID:22447584

  10. Living cells of probiotic Bifidobacterium bifidum YIT 10347 detected on gastric mucosa in humans.

    PubMed

    Shibahara-Sone, H; Gomi, A; Iino, T; Kano, M; Nonaka, C; Watanabe, O; Miyazaki, K; Ohkusa, T

    2016-06-01

    The probiotic strain Bifidobacterium bifidum YIT 10347 has been demonstrated to inhibit Helicobacter pylori activity, prevent injury to the gastric mucosa, and improve general gastric malaise symptoms in H. pylori positive patients. This study aimed to investigate the adhering activity and localisation of B. bifidum YIT 10347 to gastric cells and tissue in vitro, and in human in vivo to clarify the mechanism of its beneficial effects on the stomach. The in vitro study found the adhesion rate of B. bifidum YIT 10347 to human gastric epithelial cells was about 10 times higher than that of lactic acid bacteria and other bifidobacteria. In the human study, 5 H. pylori negative and 12 H. pylori positive subjects ingested milk fermented with B. bifidum YIT 10347. B. bifidum YIT 10347 cells were measured by RT-qPCR for in gastric biopsy samples. Living B. bifidum YIT 10347 cells were detected in the biopsy samples in H. pylori negative subjects (105 cells/g and 104 cells/g at 1 h and 2 h after ingestion, respectively) and H. pylori positive subjects (104 cells/g at 1 h after the ingestion). Moreover, immunostaining analysis of tissue sections found that B. bifidum YIT 10347 cells were located at the interstitial mucin layer of the stomach. These results suggest that cells of probiotic B. bifidum YIT 10347 adhered to the human gastric mucosa in a live state, and that the higher adhering activity of B. bifidum YIT 10347 to the gastric mucosa may be involved in its beneficial effects on the human stomach. PMID:26925600

  11. Bifidobacterium bifidum as an example of a specialized human gut commensal

    PubMed Central

    Turroni, Francesca; Duranti, Sabrina; Bottacini, Francesca; Guglielmetti, Simone; Van Sinderen, Douwe; Ventura, Marco

    2014-01-01

    Bifidobacteria are considered dominant and for this reason key members of the human gut microbiota, particularly during the first one to two years following birth. A substantial proportion of the bifidobacterial population in the intestine of infants belong to the Bifidobacterium bifidum taxon, whose members have been shown to display remarkable physiological and genetic features involving adhesion to epithelia, as well as utilization of host-derived glycans. Here, we reviewed the current knowledge on the genetic features and associated adaptations of B. bifidum to the human gut. PMID:25191315

  12. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum.

    PubMed

    Duranti, Sabrina; Milani, Christian; Lugli, Gabriele Andrea; Turroni, Francesca; Mancabelli, Leonardo; Sanchez, Borja; Ferrario, Chiara; Viappiani, Alice; Mangifesta, Marta; Mancino, Walter; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2015-07-01

    Bifidobacteria are bacterial gut commensals of mammals, birds and social insects that are perceived to influence the metabolism/physiology of their host. In this context, members of the Bifidobacterium bifidum species are believed to significantly contribute to the overall microbiota of the human gut at infant stage. However, the molecular reasons for their adaptation to this environment are poorly understood. In this study, we analysed the pan-genome of B. bifidum species by decoding genomes of 15 B. bifidum strains, which highlighted the existence of a conserved gene uniquely present in this bifidobacterial taxon, underscoring a nutrient acquisition strategy that targets host-derived glycans, such as those present in mucin. Growth experiments and corresponding transcriptomic analyses confirmed the in silico data and supported these intriguing and unique host glycan-specific saccharolytic features. The ubiquity of the genetic features of B. bifidum for the breakdown of host glycans was confirmed by interrogating metagenomic datasets, thereby supporting the notion that metabolic access to host-derived glycans is a potent evolutionary force that has shaped B. bifidum genomes and consequently the ecology of the infant intestinal microbiota. PMID:25523018

  13. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions

    PubMed Central

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U.; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  14. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions.

    PubMed

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  15. Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation.

    PubMed

    Zanotti, Ilaria; Turroni, Francesca; Piemontese, Antonio; Mancabelli, Leonardo; Milani, Christian; Viappiani, Alice; Prevedini, Gilda; Sanchez, Borja; Margolles, Abelardo; Elviri, Lisa; Franco, Bernini; van Sinderen, Douwe; Ventura, Marco

    2015-08-01

    Bifidobacteria are members of the human gut microbiota, which are known to influence the metabolic abilities of their host. Here, we investigated the capabilities of bifidobacteria to reduce cholesterol levels in synthetic growth media, clearly demonstrating assimilation of this molecule by particular bifidobacterial strains, including Bifidobacterium bifidum PRL2010 (LMG S-28692). The transcriptomic analysis of PRL2010 cells cultivated in the presence of cholesterol revealed a significantly increased transcription level of genes encoding putative transporters and reductases, indicative of specific mechanisms for cholesterol assimilation as well as cholesterol conversion to coprostanol. Cholesterol lowering activity of B. bifidum PRL2010 cells was further evaluated by means of an in vivo murine model, showing that the fecal microbiota of mice is modified toward those bacteria involved in the metabolism of cholesterol. PMID:25863679

  16. Efficacy of oral Bifidobacterium bifidum ATCC 29521 on microflora and antioxidant in mice.

    PubMed

    Wang, Bao-Gui; Xu, Hai-Bo; Xu, Feng; Zeng, Zhe-Ling; Wei, Hua

    2016-03-01

    This study aimed to examine whether Bifidobacterium bifidum ATCC 29521, a species of colonic microflora in humans, is involved in the intestinal tract of mice. This study was also conducted to determine the antioxidant activity of this species by evaluating different microbial populations and reactive oxygen species isolated from feces and intestinal contents for 28 days of oral administration. Microbial diversities were assessed through bacterial culture techniques, PCR-DGGE, and real-time PCR. This study showed that the intake of B. bifidum ATCC 29521 significantly (p < 0.05) improved the ecosystem of the intestinal tract of BALB/c mice by increasing the amount of probiotics (Lactobacillus intestinalis and Lactobacillus crispatus) and by reducing unwanted bacterial populations (Enterobacter, Escherichia coli). Antioxidative activities of incubated cell-free extracts were evaluated through various assays, including the scavenging ability of DPPH radical (64.5% and 67.54% (p < 0.05), respectively, at 21 days in nutrients and 28 days in MRS broth), superoxide anion, and hydroxyl radical (85% and 61.5% (p < 0.05), respectively, at intestinal contents in nutrients and 21 days in MRS broth). Total reducing power (231.5 μmol/L (p < 0.05), 14 days in MRS broth) and mRNA level of genes related to oxidative stress were also determined. Results indicated that B. bifidum ATCC 29521 elicits a beneficial effect on murine gut microbiota and antioxidant activities compared with the control samples. This species can be considered as a potential bioresource antioxidant to promote health. Bifidobacterium bifidum ATCC 29521 may also be used as a promising material in microbiological and food applications. PMID:26863255

  17. Immune Response to Bifidobacterium bifidum Strains Support Treg/Th17 Plasticity

    PubMed Central

    López, Patricia; González-Rodríguez, Irene; Gueimonde, Miguel; Margolles, Abelardo; Suárez, Ana

    2011-01-01

    In this work we analyzed the immune activation properties of different Bifidobacterium strains in order to establish their ability as inductors of specific effector (Th) or regulatory (Treg) responses. First, we determined the cytokine pattern induced by 21 Bifidobacterium strains in peripheral blood mononuclear cells (PBMCs). Results showed that four Bifidobacterium bifidum strains showed the highest production of IL-17 as well as a poor secretion of IFNγ and TNFα, suggesting a Th17 profile whereas other Bifidobacterium strains exhibited a Th1-suggestive profile. Given the key role of Th17 subsets in mucosal defence, strains suggestive of Th17 responses and the putative Th1 Bifidobacterium breve BM12/11 were selected to stimulate dendritic cells (DC) to further determine their capability to induce the differentiation of naïve CD4+ lymphocytes toward different Th or Treg cells. All selected strains were able to induce phenotypic DC maturation, but showed differences in cytokine stimulation, DC treated with the putative Th17 strains displaying high IL-1β/IL-12 and low IL-12/IL-10 index, whereas BM12/11-DC exhibited the highest IL-12/IL-10 ratio. Differentiation of naïve lymphocytes confirmed Th1 polarization by BM12/11. Unexpectedly, any B. bifidum strain showed significant capability for Th17 generation, and they were able to generate functional Treg, thus suggesting differences between in vivo and vitro responses. In fact, activation of memory lymphocytes present in PBMCS with these bacteria, point out the presence in vivo of specific Th17 cells, supporting the plasticity of Treg/Th17 populations and the key role of commensal bacteria in mucosal tolerance and T cell reprogramming when needed. PMID:21966367

  18. Health benefits of fermented milk containing Bifidobacterium bifidum YIT 10347 on gastric symptoms in adults.

    PubMed

    Gomi, A; Iino, T; Nonaka, C; Miyazaki, K; Ishikawa, F

    2015-04-01

    We conducted a preliminary open trial (trial 1) and a double-blind, placebo-controlled, crossover trial (trial 2) to examine how fermented milk containing the probiotic Bifidobacterium bifidum YIT 10347 affects gastric and lower abdominal symptoms in adults taking no medication. In trial 1, subjects with or without gastric and lower abdominal symptoms ingested fermented milk containing B. bifidum YIT 10347 daily for 2 wk. In trial 2, subjects with gastric symptoms ingested fermented milk containing B. bifidum YIT 10347 (active preparation) or placebo daily for 2 wk, followed by crossover for 3 wk after a washout period. Before (baseline) and 1 and 2 wk after ingestion, subjects completed a questionnaire. In trial 1 (305 subjects), the prevalence of gastric and lower abdominal symptoms was 46 and 58%, respectively, at baseline. Ingestion of B. bifidum YIT 10347 significantly decreased the prevalence of gastric and lower abdominal symptoms from 45 to 33% at 1 wk and to 28% at 2 wk, and from 57 to 40% at 2 wk, respectively. In subjects with gastric symptoms at baseline, the average gastric symptom score per subject significantly decreased by 0.9 at 1 wk and 1.2 at 2 wk. In trial 2 (27 subjects), ingestion of the active preparation significantly decreased the average gastric symptoms score per subject by 1.0 at 1 wk and 1.1 at 2 wk, but ingestion of placebo milk had no effect. No side effects were reported by any subjects in either trial. We conclude that fermented milk containing B. bifidum YIT 10347 has the potential to provide health benefits by alleviating gastric symptoms in subjects taking no medication. PMID:25648808

  19. Novel Probiotic Bifidobacterium bifidum CECT 7366 Strain Active against the Pathogenic Bacterium Helicobacter pylori▿

    PubMed Central

    Chenoll, E.; Casinos, B.; Bataller, E.; Astals, P.; Echevarría, J.; Iglesias, J. R.; Balbarie, P.; Ramón, D.; Genovés, S.

    2011-01-01

    Helicobacter pylori is considered one of the major risk factors underlying the development of gastritis and gastric and duodenal ulcers. Moreover, 50% of the population carries this bacterium, and consequently, when it is detected, eradication of H. pylori is strongly recommended. Regarding the use of probiotics as functional agents, several studies have shown that there is a direct relationship between the addition of certain probiotic bacteria and in vitro inhibition of H. pylori; however, in vivo studies showing bifidobacterial activity against H. pylori remain scarce. In this study, a Bifidobacterium bifidum strain which proved active in vitro against H. pylori has been isolated, with inhibition levels reaching 81.94% in the case of the supernatant and even 94.77% inhibition for supernatant purified by cationic exchange followed by an inverse phase. In vivo studies using a BALB/c mouse model have proved that this strain partially relieves damage to gastric tissues caused by the pathogen and also decreases the H. pylori pathogenicity ratio. This novel strain fulfills the main properties required of a probiotic (resistance to gastrointestinal juices, biliary salts, NaCl, and low pH; adhesion to intestinal mucus; and sensitivity to antibiotics). Furthermore, the absence of undesirable metabolites has been demonstrated, and its food safety status has been confirmed by acute ingestion studies in mice. In summary, the results presented here demonstrate that Bifidobacterium bifidum CECT 7366 can be considered a probiotic able to inhibit H. pylori both in vitro and in vivo. PMID:21169430

  20. Administration of Lactobacillus casei and Bifidobacterium bifidum Ameliorated Hyperglycemia, Dyslipidemia, and Oxidative Stress in Diabetic Rats

    PubMed Central

    Sharma, Poonam; Bhardwaj, Priyanka; Singh, Rambir

    2016-01-01

    Background: The present work was planned to evaluate the antihyperglycemic, lipid-lowering, and antioxidant effect of Lactobacillus casei and Bifidobacterium bifidum in streptozotocin (STZ)-induced diabetic rats. Methods: Single daily dose of 1 × 107 cfu/ml of L. casei and B. bifidum alone and in combination of both was given to Wistar rats orally by gavaging for 28 days. Glucose tolerance test, fasting blood glucose (FBG), lipid profile, and glycosylated hemoglobin (HbA1c) were measured from blood. Glycogen from thigh muscles and liver and oxidative stress parameters from pancreas were analyzed. Results: Administration of L. casei and B. bifidum alone and in combination of both to diabetic rats decreased serum FBG (60.47%, 55.89%, and 56.49%, respectively), HbA1c (28.11%, 28.61%, and 28.28%), total cholesterol (171.69%, 136.47%, and 173.58%), triglycerides (9.935%, 8.58%, and 7.91%), low-density lipoproteins (53.27%, 53.35%, and 52.91%) and very low-density lipoproteins (10%, 8.58%, and 11.15%, respectively) and increased high-density lipoproteins (13.73%, 15.47%, and 15.47%), and insulin (19.50%, 25.80%, and 29.47%, respectively). The treatment also resulted in increase in muscle (171.69%, 136.47%, and 173.58%) and liver (25.82%, 6.63%, and 4.02%) glycogen level. The antioxidant indexes in pancreas of diabetic rats returned to normal level with reduction in lipid peroxidation (30.89%, 46.46%, and 65.36%) and elevation in reduced glutathione (104.5%, 161.34%, and 179.04%), superoxide dismutase (38.65%, 44.32%, and 53.35%), catalase (13.08%, 27%, and 31.52%), glutathione peroxidase (55.56%, 72.23%, and 97.23%), glutathione reductase (49.27%, 88.40%, and 110.86%), and glutathione-S-transferase (140%, 220%, and 246.6%, respectively) on treatment with L. casei, B. bifidum, and combination treatment. Conclusions: Administration of L. casei and B. bifidum alone and in combination of both ameliorated hyperglycemia, dyslipidemia, and oxidative stress in STZ

  1. Characterization of the lactose transport system in the strain Bifidobacterium bifidum DSM 20082.

    PubMed

    Krzewinski, F; Brassart, C; Gavini, F; Bouquelet, S

    1996-06-01

    Lactose was fermented but not assimilated by the strain Bifidobacterium bifidum DSM 20082. The sugar uptake was measured with lactose 14C. Km and V(max) values were respectively 2.6 mM and 12.11 nmol/min/mg of cell protein. The lactose transport system and the beta-D-galactosidase were stimulated when the cells were grown with lactose, but isopropyl-beta-D-thiogalactopyranoside had no effect. Lactose uptake was inhibited by compounds which interfered with proton and metal ionophore. Na+, Li+, or K+ did not affect incorporation of lactose. Furthermore, the lactose uptake decreased when an inhibitor of ATP synthesis was used. From the results of this study, the stain contained an active lactose transport system, probably a proton symport as described for Escherichia coli but with a different regulation system. PMID:8640105

  2. "Amide resonance" in the catalysis of 1,2-α-L-fucosidase from Bifidobacterium bifidum.

    PubMed

    Liu, Jingli; Zheng, Min; Zhang, Chunchun; Xu, Dingguo

    2013-09-01

    Bifidobacterium is a genus of Gram-positive bacteria, which is important in the absorption of nourishment from the human milk oligosaccharides (HMO). We present here the detailed simulation of the enzymatic hydrolysis of 2'-fucosyllactose catalyzed by 1,2-α-L-fucosidase from Bifidobacterium bifidum using the combined quantum mechanical and molecular mechanical approach. Molecular dynamics simulations and free energy profiles support that the overall reaction is a stepwise mechanism. The first step is the proton transfer from N423 to D766, and the second step involves the hydrolysis reaction via the inversion mechanism catalyzed by the amide group of N423. Assisted by D766, N423 serves as the general base to activate the water molecule to attack the anomeric carbon center. E566 is the general acid to facilitate the cleavage of glycosidic bond between L-fucose and galactose units. The intrinsic resonance structure for the side chain amide group of the asparagine residue is shown to be the origin to the catalytic activity, which is also confirmed by the mutagenesis simulation of N423G. PMID:23952813

  3. Interaction of Bifidobacterium bifidum LMG13195 with HT29 Cells Influences Regulatory-T-Cell-Associated Chemokine Receptor Expression

    PubMed Central

    López, Patricia; González-Rodríguez, Irene; Sánchez, Borja; Ruas-Madiedo, Patricia; Suárez, Ana; Gueimonde, Miguel

    2012-01-01

    Probiotics play an important role in the maintenance of the gastrointestinal barrier. In addition to direct effects on mucosal integrity, the interaction with the intestinal mucosa may have an active immunoregulatory effect. In the present work, we exposed HT29 intestinal epithelial cells to two Bifidobacterium species to determine their effect on gene expression profile, enterocyte monolayer integrity, and T-cell response. Bifidobacterium breve IPLA 20004 triggered a more pronounced increase in the transepithelial resistance of the enterocyte monolayer than Bifidobacterium bifidum LMG13195. The transcriptome profile of HT29 cells cultured in the presence of B. bifidum LMG13195 showed an increased expression of immune mediators and, interestingly, chemotactic molecules (CXCL10, CCL20, CXCL11 and CCL22) able to recruit lymphocytes. Since regulatory T cells (Treg cells) may express receptors for specific chemokines, we cultured peripheral blood mononuclear cells with supernatants of HT29 cells previously treated with Bifidobacterium strains and analyzed FOXP3 and CD25 Treg markers and CCR6, CXCR3, CCR4, and CCR3 expression on CD4+ lymphocytes. The proportion of CD25high FOXP3+ cells was significantly increased after culture with B. bifidum LMG13195-conditioned HT29 supernatant. Moreover, this treatment led to the largest amount of CCR6+ CXCR3− CCR4+ CCR3+ CD4+ cells expressing high levels of CD25, corresponding to the Treg population. These results suggest that soluble factors secreted after B. bifidum LMG13195 contact with intestinal epithelial cells favored the generation of CD4+ CD25high lymphocytes expressing chemokine receptor Treg markers, thus making possible their recruitment to the intestinal mucosa. PMID:22344636

  4. Experimental determination and characterization of the gap promoter of Bifidobacterium bifidum S17

    PubMed Central

    Sun, Zhongke; Westermann, Christina; Yuan, Jing; Riedel, Christian U

    2014-01-01

    The DNA sequence upstream of the glyceraldehyde 3-phosphate dehydrogenase gene (gap) of various strains of bifidobacteria is used in a number of vector systems for homologous and heterologous expression in this group of bacteria. To date none of the bifidobacterial gap promoters (Pgap) have been verified experimentally. Here, we probe a range of putative bifidobacterial promoters hypothesized to show high constitutive transcriptional activity using a β-glucuronidase reporter system. In silico analysis revealed a predicted bacterial promoter upstream of the gap gene of Bifidobacterium bifidum S17. The corresponding DNA sequences was cloned into the promoter probe vector pMDY23 and yielded highest reporter activities among the promoter sequences tested confirming previous studies. Using rapid amplification of cDNA ends (5′-RACE), we identified the transcription start site (TSS) of Pgap of B. bifidum S17. The experimentally determined TSS and the associated -10 and -35 regions do not match with the promoter predicted in silico. Moreover, a potential ribosome-binding site (RBS) was identified upstream of the ATG start codon of the gap gene, which is complementary to the 3′-end of the 16S rRNA with only 1 mismatch suggesting efficient initiation of translation. Alignment of the Pgap sequences of a number of representative bifidobacteria showed a high level of conservation and the presence of -35 and -10 regions, which are similar but not identical to the consensus promoter sequences of house-keeping genes of Escherichia coli and Bacillus subtilis. Collectively, these results confirm the suitability of Pgap for high level, constitutive expression in bifidobacteria. PMID:25482086

  5. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions

    PubMed Central

    Turroni, Francesca; Serafini, Fausta; Foroni, Elena; Duranti, Sabrina; O’Connell Motherway, Mary; Taverniti, Valentina; Mangifesta, Marta; Milani, Christian; Viappiani, Alice; Roversi, Tommaso; Sánchez, Borja; Santoni, Andrea; Gioiosa, Laura; Ferrarini, Alberto; Delledonne, Massimo; Margolles, Abelardo; Piazza, Laura; Palanza, Paola; Bolchi, Angelo; Guglielmetti, Simone; van Sinderen, Douwe; Ventura, Marco

    2013-01-01

    Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity. PMID:23776216

  6. Crystal Structures of a Glycoside Hydrolase Family 20 Lacto-N-biosidase from Bifidobacterium bifidum *

    PubMed Central

    Ito, Tasuku; Katayama, Takane; Hattie, Mitchell; Sakurama, Haruko; Wada, Jun; Suzuki, Ryuichiro; Ashida, Hisashi; Wakagi, Takayoshi; Yamamoto, Kenji; Stubbs, Keith A.; Fushinobu, Shinya

    2013-01-01

    Human milk oligosaccharides contain a large variety of oligosaccharides, of which lacto-N-biose I (Gal-β1,3-GlcNAc; LNB) predominates as a major core structure. A unique metabolic pathway specific for LNB has recently been identified in the human commensal bifidobacteria. Several strains of infant gut-associated bifidobacteria possess lacto-N-biosidase, a membrane-anchored extracellular enzyme, that liberates LNB from the nonreducing end of human milk oligosaccharides and plays a key role in the metabolic pathway of these compounds. Lacto-N-biosidase belongs to the glycoside hydrolase family 20, and its reaction proceeds via a substrate-assisted catalytic mechanism. Several crystal structures of GH20 β-N-acetylhexosaminidases, which release monosaccharide GlcNAc from its substrate, have been determined, but to date, a structure of lacto-N-biosidase is unknown. Here, we have determined the first three-dimensional structures of lacto-N-biosidase from Bifidobacterium bifidum JCM1254 in complex with LNB and LNB-thiazoline (Gal-β1,3-GlcNAc-thiazoline) at 1.8-Å resolution. Lacto-N-biosidase consists of three domains, and the C-terminal domain has a unique β-trefoil-like fold. Compared with other β-N-acetylhexosaminidases, lacto-N-biosidase has a wide substrate-binding pocket with a −2 subsite specific for β-1,3-linked Gal, and the residues responsible for Gal recognition were identified. The bound ligands are recognized by extensive hydrogen bonds at all of their hydroxyls consistent with the enzyme's strict substrate specificity for the LNB moiety. The GlcNAc sugar ring of LNB is in a distorted conformation near 4E, whereas that of LNB-thiazoline is in a 4C1 conformation. A possible conformational pathway for the lacto-N-biosidase reaction is discussed. PMID:23479733

  7. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression.

    PubMed

    Serafini, Fausta; Turroni, Francesca; Ruas-Madiedo, Patricia; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Zamboni, Nicole; Bottacini, Francesca; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2014-05-16

    Bifidobacteria constitute one of the dominant groups of microorganisms colonizing the human gut of infants. Their ability to utilize various host-derived glycans as well as dietary carbohydrates has received considerable scientific attention. However, very little is known about the role of fermented foods, such as kefir, or their constituent glycans, such as kefiran, as substrates for bifidobacterial growth and for the modulation of the expression of bifidobacterial host-effector molecules. Here, we show that Bifidobacterium bifidum PRL2010 exhibits high growth performance among the bifidobacterial strains tested when cultivated on kefir and/or kefiran polymer. Furthermore, a 16S rRNA metagenomic approach revealed that the microbiota of kefir is modified upon the addition of PRL2010 cells to the kefir matrix. Finally, our results show that kefir and kefiran are able to influence the transcriptome of B. bifidum PRL2010 causing increased transcription of genes involved in the metabolism of dietary glycans as well as genes that act as host-microbe effector molecules such as pili. Altogether, these data support the use of kefir as a valuable means for the delivery of effective microbial cells in probiotic therapy. PMID:24667318

  8. Colonization of C57BL/6 Mice by a Potential Probiotic Bifidobacterium bifidum Strain under Germ-Free and Specific Pathogen-Free Conditions and during Experimental Colitis

    PubMed Central

    Grimm, Verena; Radulovic, Katarina; Riedel, Christian U.

    2015-01-01

    The effects of at least some probiotics are restricted to live, metabolically active bacteria at their site of action. Colonization of and persistence in the gastrointestinal tract is thus contributing to the beneficial effects of these strains. In the present study, colonization of an anti-inflammatory Bifidobacterium bifidum strain was studied in C57BL/6J mice under germ-free (GF) and specific pathogen-free (SPF) conditions as well as during dextran sulfate sodium (DSS)-induced colitis. B. bifidum S17/pMGC was unable to stably colonize C57BL/6J mice under SPF conditions. Mono-association of GF mice by three doses on consecutive days led to long-term, stable detection of up to 109 colony forming units (CFU) of B. bifidum S17/pMGC per g feces. This stable population was rapidly outcompeted upon transfer of mono-associated animals to SPF conditions. A B. animalis strain was isolated from the microbiota of these re-conventionalized mice. This B. animalis strain displayed significantly higher adhesion to murine CMT–93 intestinal epithelial cells (IECs) than to human Caco–2 IECs (p = 0.018). Conversely, B. bifidum S17/pMGC, i.e., a strain of human origin, adhered at significantly higher levels to human compared to murine IECs (p < 0.001). Disturbance of the gut ecology and induction of colitis by DSS-treatment did not promote colonization of the murine gastrointestinal tract (GIT) by B. bifidum S17/pMGC. Despite its poor colonization of the mouse GIT, B. bifidum S17/pMGC displayed a protective effect on DSS-induced colitis when administered as viable bacteria but not as UV-inactivated preparation. Collectively, these results suggest a selective disadvantage of B. bifidum S17/pMGC in the competition with the normal murine microbiota and an anti-inflammatory effect that requires live, metabolically active bacteria. PMID:26439388

  9. Bifidobacterium bifidum R0071 decreases stress-associated diarrhoea-related symptoms and self-reported stress: a secondary analysis of a randomised trial.

    PubMed

    Culpepper, T; Christman, M C; Nieves, C; Specht, G J; Rowe, C C; Spaiser, S J; Ford, A L; Dahl, W J; Girard, S A; Langkamp-Henken, B

    2016-06-01

    Psychological stress is associated with gastrointestinal (GI) distress. This secondary analysis from a randomised, double-blind, placebo-controlled study examined whether three different probiotics could normalise self-reported stress-associated GI discomfort and reduce overall self-reported stress. Undergraduate students (n=581) received Lactobacillus helveticus R0052, Bifidobacterium longum ssp. infantis R0033, Bifidobacterium bifidum R0071, or placebo. Participants self-reported 2 outcomes for a 6-week period, which included final academic exams: daily level of stress (0=no stress to 10=extremely stressed) and weekly three diarrhoea-related symptoms (DS, 1=no discomfort to 7=severe discomfort) using the GI Symptom Rating Scale. Self-reported stress was positively related to DS (P=0.0068). Mean DS scores were lower with B. bifidum versus placebo at week 2 at the average level of stress and the average body mass index (BMI). DS scores were lower with B. bifidum at week 5 versus week 0 and 1 and with B. infantis R0033 at week 6 versus week 0. DS scores were higher when antibiotics were used in the prior week with placebo (P=0.0092). DS were not different with or without antibiotic use with the probiotics. Only B. bifidum had an effect on self-reported stress scores (P=0.0086). The self-reported stress score was also dependent on hours of sleep per day where it decreased by 0.13 for each additional hour of sleep. During a stressful period, B. bifidum R0071 decreases DS and self-reported stress scores. This trial was registered at clinicaltrials.gov as NCT01709825. PMID:26839075

  10. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454.

    PubMed

    Yildirim, Z; Winters, D K; Johnson, M G

    1999-01-01

    Bifidocin B produced by Bifidobacterium bifidum NCFB 1454 was purified to homogeneity by a rapid and simple three step purification procedure which included freeze drying, Micro-Cel adsorption/desorption and cation exchange chromatography. The purification resulted in 18% recovery and an approximately 1900-fold increase in the specific activity and purity of bifidocin B. Treatment with bifidocin B caused sensitive cells to lose high amounts of intracellular K+ ions and u.v.-absorbing materials, and to become more permeable to ONPG. Bifidocin B adsorbed to the Gram-positive bacteria but not the Gram-negative bacteria tested. Its adsorption was pH-dependent but not time-dependent. For sensitive cells, the adsorption and lethal action of bifidocin B was very rapid. In 5 min, 95% of bifidocin B adsorbed onto sensitive cells. Several salts inhibited the binding of bifidocin B, which could be overcome by increasing the amount of bifidocin B added. Pre-treatment of sensitive cells and cell walls with detergents, organic solvents or enzymes did not cause a reduction in subsequent cellular binding of bifidocin B, but cell wall preparations treated with methanol:chloroform and hot 20% (w/v) TCA lost the ability to adsorb bifidocin B. Also, the addition of purified heterologous lipoteichoic acid to sensitive cells completely blocked the adsorption of bifidocin B. The amino acid sequence indicated that the bacteriocin contained 36 residues. N-terminal amino acid sequence analysis yielded a sequence of KYYGNGVTCGLHDCRVDRGKATCGIINNGGMWGDIG. Curing experiments with 20 micrograms ml-1 acriflavine yielded cell derivatives that no longer produced bifidocin B but retained immunity to bifidocin B. Production of bifidocin B, but not immunity to bifidocin B, was associated with a plasmid of about 8 kb in this strain. PMID:10030011

  11. Structural Basis on the Catalytic Reaction Mechanism of Novel 1,2-Alpha L-Fucosidase (AFCA) From Bifidobacterium Bifidum

    SciTech Connect

    Nagae, M.; Tsuchiya, A.; Katayama, T.; Yamamoto, K.; Wakatsuki, S.; Kato, R.

    2009-06-03

    1,2-alpha-L-fucosidase (AfcA), which hydrolyzes the glycosidic linkage of Fucalpha1-2Gal via an inverting mechanism, was recently isolated from Bifidobacterium bifidum and classified as the first member of the novel glycoside hydrolase family 95. To better understand the molecular mechanism of this enzyme, we determined the x-ray crystal structures of the AfcA catalytic (Fuc) domain in unliganded and complexed forms with deoxyfuconojirimycin (inhibitor), 2'-fucosyllactose (substrate), and L-fucose and lactose (products) at 1.12-2.10 A resolution. The AfcA Fuc domain is composed of four regions, an N-terminal beta region, a helical linker, an (alpha/alpha)6 helical barrel domain, and a C-terminal beta region, and this arrangement is similar to bacterial phosphorylases. In the complex structures, the ligands were buried in the central cavity of the helical barrel domain. Structural analyses in combination with mutational experiments revealed that the highly conserved Glu566 probably acts as a general acid catalyst. However, no carboxylic acid residue is found at the appropriate position for a general base catalyst. Instead, a water molecule stabilized by Asn423 in the substrate-bound complex is suitably located to perform a nucleophilic attack on the C1 atom of L-fucose moiety in 2'-fucosyllactose, and its location is nearly identical near the O1 atom of beta-L-fucose in the products-bound complex. Based on these data, we propose and discuss a novel catalytic reaction mechanism of AfcA.

  12. TgaA, a VirB1-Like Component Belonging to a Putative Type IV Secretion System of Bifidobacterium bifidum MIMBb75

    PubMed Central

    Balzaretti, Silvia; Taverniti, Valentina; Miriani, Matteo; Milani, Christian; Scarafoni, Alessio; Corona, Silvia; Ciranna, Alessandro; Arioli, Stefania; Santala, Ville; Iametti, Stefania; Bonomi, Francesco; Ventura, Marco; Mora, Diego; Karp, Matti

    2014-01-01

    Bifidobacterium bifidum MIMBb75 is a human intestinal isolate demonstrated to be interactive with the host and efficacious as a probiotic. However, the molecular biology of this microorganism is yet largely unknown. For this reason, we undertook whole-genome sequencing of B. bifidum MIMBb75 to identify potential genetic factors that would explain the metabolic and probiotic attributes of this bacterium. Comparative genomic analysis revealed a 45-kb chromosomal region that comprises 19 putative genes coding for a potential type IV secretion system (T4SS). Thus, we undertook the initial characterization of this genetic region by studying the putative virB1-like gene, named tgaA. Gene tgaA encodes a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT, cd00254.3) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP, pfam05257.4). By means of several in vitro assays, we experimentally confirmed that protein TgaA, consistent with its computationally assigned role, has peptidoglycan lytic activity, which is principally associated to the LT domain. Furthermore, immunofluorescence and immunogold labeling showed that the protein TgaA is abundantly expressed on the cell surface of B. bifidum MIMBb75. According to the literature, the T4SSs, which have not been characterized before in bifidobacteria, can have important implications for bacterial cell-to-cell communication as well as cross talk with host cells, justifying the interest for further studies aimed at the investigation of this genetic region. PMID:24951779

  13. Continuous consumption of fermented milk containing Bifidobacterium bifidum YIT 10347 improves gastrointestinal and psychological symptoms in patients with functional gastrointestinal disorders.

    PubMed

    Urita, Yoshihisa; Goto, Mayu; Watanabe, Toshiyasu; Matsuzaki, Makoto; Gomi, Atsushi; Kano, Mitsuyoshi; Miyazaki, Kouji; Kaneko, Hironori

    2015-01-01

    The aim of this study was to investigate whether consumption of probiotic fermented milk containing Bifidobacterium bifidum YIT 10347 improves symptoms in patients with functional gastrointestinal disorders (FGID). Thirty-seven FGID patients (18 male, 19 female) aged 12-80 years (mean ± SD, 52.6 ± 17.5 years) whose condition had not improved despite being seen at several medical institutions consumed 100 mL/day of B. bifidum YIT 10347 fermented milk for 4 weeks. Symptoms were evaluated after the enrollment period (BL: baseline), sample consumption period (CP) and 4 weeks after the CP (FP: follow-up period). Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptom Rating Scale (GSRS) and the Frequency Scale for the Symptoms of Gastroesophageal Reflux Disease (FSSG); psychological symptoms were evaluated using the Profile of Mood States (POMS) short form. Concentrations of salivary stress markers and the oxidative stress marker urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) were measured. GSRS subscale scores for abdominal pain, diarrhea, and constipation significantly improved relative to BL after consumption of the fermented milk, as did FSSG subscale scores for symptoms of acid-related dyspepsia. Some subjective psychological symptoms improved. POMS scores significantly improved, and "Anger-Hostility" subscale scores significantly decreased after the consumption period, while "Vigor" subscale scores marginally increased during the consumption period. The concentrations of urinary 8-OHdG and the stress marker salivary cortisol were significantly lower at CP but returned to baseline levels at FP. Continuous consumption of B. bifidum YIT 10347 fermented milk is expected to improve gastrointestinal symptoms and reduce psychological stress in FGID patients. PMID:25918671

  14. Murein lytic enzyme TgaA of Bifidobacterium bifidum MIMBb75 modulates dendritic cell maturation through its cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) amidase domain.

    PubMed

    Guglielmetti, Simone; Zanoni, Ivan; Balzaretti, Silvia; Miriani, Matteo; Taverniti, Valentina; De Noni, Ivano; Presti, Ilaria; Stuknyte, Milda; Scarafoni, Alessio; Arioli, Stefania; Iametti, Stefania; Bonomi, Francesco; Mora, Diego; Karp, Matti; Granucci, Francesca

    2014-09-01

    Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host's immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75's cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host's immune system. PMID:24814791

  15. Identification of the beta-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4.

    PubMed

    Youn, So Youn; Park, Myeong Soo; Ji, Geun Eog

    2012-12-01

    beta-Glucosidase is necessary for the bioconversion of glycosidic phytochemicals in food. Two Bifidobacterium strains (Bifidobacterium animalis subsp. lactis SH5 and B. animalis subsp. lactis RD68) with relatively high beta- glucosidase activities were selected among 46 lactic acid bacteria. A beta-glucosidase gene (bbg572) from B. lactis was shotgun cloned, fully sequenced, and analyzed for its transcription start site, structural gene, and deduced transcriptional terminator. The structural gene of bbg572 was 1,383 bp. Based on amino sequence similarities, bbg572 was assigned to family 1 of the glycosyl hydrolases. To overexpress bbg572 in Bifidobacterium, several bifidobacteria expression vectors were constructed by combining several promoters and a terminator sequence from different bifidobacteria. The maximum activity of recombinant Bbg572 was achieved when it was expressed under its own promoter and terminator. Its enzyme activity increased 31-fold compared with those of its parental strains. The optimal pH for Bbg572 was pH 6.0. Bbg572 was stable at 37-40 degrees C. It hydrolyzed isoflavones, quercetins, and disaccharides with various beta-glucoside linkages. Bbg572 also converted the ginsenosides Rb1 and Rb2. These results suggest that this new beta-glucosidase-positive Bifidobacterium transformant can be utilized for the production of specific aglycone products. PMID:23221535

  16. Beta-1,3-galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation.

    PubMed

    Derensy-Dron, D; Krzewinski, F; Brassart, C; Bouquelet, S

    1999-02-01

    A new enzyme has been characterized in a cell-free extract of Bifidobacterium bifidum that catalysed the reversible phosphorolytic cleavage of beta-1,3-galacto-oligosaccharides. In the presence of Pi, the phosphorolysis reaction was favoured and was accompanied by a Walden reaction. Cleavage of the beta-glycosidic linkage gave an alpha-galactoside derivative (alpha-D-galactose 1-phosphate). The enzyme possesses a high specificity for beta-D-galactosido-(1, 3)-N-acetylglucosamine and beta-D-galactosido-(1, 3)-N-acetylgalactosamine. This purified intracellular enzyme had an estimated molecular mass of 140 kDa. The galactophosphorolytic activity on disaccharides was optimal at pH 6-6.5 and the reverse reaction was optimal at pH 5.5-6. The temperature optimum for phosphorolysis and the reverse reaction was approx. 50-55 degrees C. This enzyme is of particular interest in degrading some beta-D-Gal(1, 3) linkages and should be classified as EC 2.4.1.-. PMID:9889079

  17. Integration of genomic and proteomic data to identify candidate genes in HT-29 cells after incubation with Bifidobacterium bifidum ATCC 29521.

    PubMed

    Wang, Bao-Gui; Wu, Yaoping; Qiu, Liang; Shah, Nagendra P; Xu, Feng; Wei, Hua

    2016-09-01

    As the predominant group inhabiting the human gastrointestinal tract, bifidobacteria play a vital role in human nutrition, therapeutics, and health by shaping and maintaining the gut ecosystem, reducing blood cholesterol, and promoting the supply of nutrients. The interaction between bacterial cells and human intestinal epithelial cell lines has been studied for decades in an attempt to understand the mechanisms of action. These studies, however, have been limited by lack of genomic and proteomic database to aid in achieving comprehensive understanding of these mechanisms at molecular levels. Microarray data (GSE: 74119) coupled with isobaric tags for relative and absolute quantitation (iTRAQ) were performed to detect differentially expressed genes and proteins in HT-29 cells after incubation with Bifidobacterium bifidum. Real-time quantitative PCR, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted for mRNA validation, functional annotation, and pathway identification, respectively. According to the results of microarray, 1,717 differentially expressed genes, including 1,693 upregulated and 24 downregulated genes, were selected and classified by the gene ontology database. The iTRAQ analysis identified 43 differentially expressed proteins, where 29 proteins were upregulated and 14 proteins were downregulated. Eighty-two candidate genes showing consistent differences with microarray and iTRAQ were further validated in HT-29 and Caco-2 cells by real-time quantitative PCR. Nine of the top genes showing interesting results with high confidence were further investigated in vivo in mice intestine samples. Integration of genomic and proteomic data provides an approach to identify candidate genes that are more likely to function in ubiquitin-mediated proteolysis, positive regulation of apoptosis, membrane proteins, and transferase catalysis. These findings might contribute to our understanding of molecular mechanisms regulating the

  18. Longitudinal study of effects of oral dosage of Bifidobacterium bifidum G9-1 on Japanese cedar pollen-induced allergic nasal symptoms in guinea pigs.

    PubMed

    Tsunemine, Satoru; Isa, Yasuhiro; Ohno, Hiroshi; Hagino, Satoko; Yamamura, Hideki; Mizutani, Nobuaki; Nabe, Takeshi

    2015-11-01

    Previous studies using experimental animal models have reported the beneficial effects of probiotics on allergic responses; however, their long-term effects on allergic nasal symptoms in clinical settings have not yet been elucidated in detail. In the present study, a guinea pig allergic rhinitis model involving repeated inhalation challenges with a natural allergen, Japanese cedar pollen, was used to examine the longitudinal effects of Bifidobacterium bifidum G9-1 (BBG9-1) on allergic nasal symptoms. BBG9-1 was administered orally once a day. Amelioration of nasal blockage was consistently observed throughout the experimental period in the BBG9-1-treated group. Although challenge-induced sneezing was not significantly inhibited in the BBG9-1-treated group, prolonged treatment with BBG9-1 slightly reduced the frequency of sneezing. Antigen-specific IgE antibody production was also not inhibited in the BBG9-1-treated group. Increases in the numbers of eosinophils and neutrophils in nasal cavity lavage fluid collected after pollen challenge were almost completely suppressed by BBG9-1 treatment, whereas those in mast cell mediators, histamine and cysteinyl leukotrienes were not. In contrast, increases in the levels of nitric oxide metabolites were potently suppressed. Furthermore, prolonged BBG9-1 treatment markedly suppressed exogenous leukotriene D4 -induced nasal blockage. Thus, prolonged oral administration of BBG9-1 suppresses Japanese cedar pollen-induced allergic nasal symptoms. The inhibitory mechanisms responsible may involve reductions in the responsiveness of target organs, such as endothelial cells in nasal mucosal blood vessels, to chemical mediators. PMID:26400839

  19. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates the formation of aberrant crypt foci, mucin-depleted foci, and cell proliferation on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in Wistar rats.

    PubMed

    Mohania, Dheeraj; Kansal, Vinod K; Kruzliak, Peter; Kumari, Archana

    2014-08-01

    Aberrant crypt foci (ACF) and mucin-depleted foci (MDF) are pre-neoplastic lesions identified in the colon of carcinogen-treated rodents and in humans at high risk for colon cancer. The present study was carried out to divulge the protective potential of the probiotic Dahi containing Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 alone or in combination with piroxicam (PXC) on the development of early biomarkers of colorectal carcinogenesis in male Wistar rats administered 1,2-dimethylhydrazine (DMH). DMH was injected subcutaneously at the rate of 40 mg/kg body weight per animal twice a week for 2 weeks. A total of 120 male Wistar rats were randomly allocated to five groups, each group having 24 animals. The rats were fed with buffalo milk or probiotic supplement (20 grams) alone or as an adjunct with PXC in addition to a basal diet ad libitum for 32 weeks. Group I was offered buffalo milk (BM) and served as the control group. Group II was administered DMH along with BM and served as the DMH-control group; group III was administered BM-DMH-PXC, in which besides administering BM-DMH, PXC was also offered. Group IV was offered probiotic LaBb Dahi and DMH, and group V was offered both probiotic LaBb Dahi and PXC along with DMH. The rats were euthanized at the 8(th), 16(th), and 32(nd) week of the experiment and examined for development of ACF, aberrant crypts per ACF (AC/ACF), mucin-depleted foci (MDF), large MDF, and proliferating cell nuclear antigen (PCNA) labeling index. Administration of DMH in rats induced pre-neoplastic lesions (ACF and MDF) and increased the PCNA index in colorectal tissue. A significant (p<0.05) reduction in the number of ACF, AC/ACF, MDF, large MDF, and PCNA labeling index were observed in the probiotic LaBb Dahi group compared with the DMH control group. Feeding rats with LaBb Dahi or treatment with PXC diminished the initiation and progression of DMH-induced pre-neoplastic lesions and the PCNA index, and treatment with

  20. Occipital Cranium Bifidum

    PubMed Central

    Guthkelch, A. N.

    1970-01-01

    This paper describes a follow-up of 74 consecutive cases of occipital cranium bifidum born and treated between 1948 and 1965, and the surgical technique used in their repair. When no hydrocephalus developed, 86% of the cases of cranial meningocele, but only 40% of those of encephalocele, showed normal mental development. Even when hydrocephalus complicating cranium bifidum was controlled surgically, many of the children were mentally and some also physically handicapped. Hydrocephalus was more frequent when the sac had contained brain tissue than in cases of meningocele. There were certain cases of massive posterior protrusion of brain tissue combined with an abnormally small cranial cavity in which reduction of the cerebral hernia was impossible: they showed no sign of intelligence for so long as they survived. In such circumstances operation is contraindicated. Associated development anomalies were frequently encountered, the majority of these involving the neuraxis. PMID:5440176

  1. Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    The effects of NaCl reduction (10.0, 7.5, 5.0, 2.5, and 0% NaCl) and its substitution with KCl (50% substitution at each given concentration) on morphology of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum was investigated using transmission electron microscopy. Changes in membrane composition, including fatty acids and phospholipids, were investigated using gas chromatography and thin layer chromatography. Adhesion ability of these bacteria to human intestinal epithelial-like Caco-2 cells, as affected by NaCl and its substitution with KCl, was also evaluated. Bacteria appeared elongated and the intracellular content appeared contracted when subjected to salt stress, as observed by transmission electron microscopy. Fatty acid content was altered with an increase in the ratio of unsaturated to saturated fatty acid content on increasing the NaCl-induced stress. Among the phospholipids, phosphatidylglycerol was reduced, whereas phosphatidylinositol and cardioplipin were increased when the bacteria were subjected to salt stress. There was a significant reduction in adhesion ability of the bacteria to Caco-2 cells when cultured in media supplemented with NaCl; however, the adhesion ability was improved on substitution with KCl at a given total salt concentration. The findings provide insights into bacterial membrane damage caused by NaCl. PMID:26874411

  2. Glucose and galactose transport in Bifidobacterium bifidum DSM 20082.

    PubMed

    Krzewinski, F; Brassart, C; Gavini, F; Bouquelet, S

    1997-09-01

    Sugar uptake was measured with 3H-galactose and 14C-glucose. Galactose transport system was not modified by inhibitors of known translocases and did not present a saturation kinetic with high concentration of galactose. Glucose incorporation was inhibited by lasalocid (cation symport inhibitor) and increased by KCl. The kinetic parameters KM and Vmax were respectively 9.16 mM and 26.56 nmol/min/mg cell protein. On the basis of this study, galactose crossed through the membrane by diffusion, and glucose was incorporated by a cation symport which is regulated by K+ ions. PMID:9236301

  3. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota.

    PubMed

    Ruas-Madiedo, Patricia; Gueimonde, Miguel; Fernández-García, María; de los Reyes-Gavilán, Clara G; Margolles, Abelardo

    2008-03-01

    The presence of the genes engBF (endo-alpha-N-acetylgalactosaminidase) and afcA (1,2-alpha-L-fucosidase) was detected in several intestinal Bifidobacterium isolates. Two strains of Bifidobacterium bifidum contained both genes, and they were able to degrade high-molecular weight porcine mucin in vitro. The expression of both genes was highly induced in the presence of mucin. PMID:18223105

  4. The impact of polyphenols on Bifidobacterium growth.

    PubMed

    Gwiazdowska, Daniela; Juś, Krzysztof; Jasnowska-Małecka, Joanna; Kluczyńska, Katarzyna

    2015-01-01

    Polyphenols are a common group of plant based bioactive compounds, that can affect human health because of their antioxidant and antimicrobial properties as well as free-radical scavenging activity. An increasing interest is observed in the interaction between polyphenols and microbiota occurring in food and the human gut. The aim of the work presented here, was to evaluate the effect of some polyphenolic compounds on the growth of two strains of Bifidobacterium: B. adolescentis and B. bifidum. The influence of some flavonoids: naringinin, hesperidin, rutin, quercetin as well as phenolic acids: gallic, caffeic, p-coumaric, ferulic, chlorogenic, vanillic and sinapic was determined by a 96-well microtiter plate assay. In the experiments the effect of three different concentrations of polyphenols: 2, 20 and 100 µg/ml on the growth of Bifidobacterium strains was investigated. All tested compounds influenced the growth of the examined bacteria. Both stimulatory and inhibitory effects were observed in comparison to the positive control. The strongest impact on the growth of bifidobacteria was observed during the first hours of incubation. The constant inhibitory effect was observed for hesperidin and quercetin addition and was dose-dependent. B. bifidum showed a stronger dependence on phenolic acids content in the medium than B. adolescentis during the first hours of incubation. PMID:26619254

  5. Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters.

    PubMed

    Ouwehand, Arthur C; Tiihonen, Kirsti; Saarinen, Markku; Putaala, Heli; Rautonen, Nina

    2009-02-01

    With increasing age, a number of physiological changes take place which are reflected in immune and bowel function. These changes may relate to the commonly assumed age-related changes in intestinal microbiota; most noticeably a reduction in bifidobacteria. The current study aimed at modifying the intestinal microbiota with a potential synbiotic on selected immune and microbiota markers. Healthy elderly subjects were randomised to consume during 2 weeks either a placebo (sucrose) or a combination of lactitol and Lactobacillus acidophilus NCFM twice daily in a double-blind parallel trial. After the intervention, stool frequency was higher in the synbiotic group than in the placebo group and a significant increase in faecal L. acidophilus NCFM levels was observed in the synbiotic group, after baseline correction. In contrast to the generally held opinion, the study subjects had faecal Bifidobacterium levels that were similar to those reported in healthy young adults. These levels were, nevertheless, significantly increased by the intervention. Levels of SCFA were not changed significantly. Of the measured immune markers, PGE2 levels were different between treatments and IgA levels changed over time. These changes were modest which may relate to the fact that the volunteers were healthy. Spermidine levels changed over time which may suggest an improved mucosal integrity and intestinal motility. The results suggest that consumption of lactitol combined with L. acidophilus NCFM twice daily may improve some markers of the intestinal microbiota composition and mucosal functions. PMID:18634707

  6. Quantitative Real-Time PCR Assays To Identify and Quantify Fecal Bifidobacterium Species in Infants Receiving a Prebiotic Infant Formula

    PubMed Central

    Haarman, Monique; Knol, Jan

    2005-01-01

    A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5′ nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5′ nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% ± 9.8% to 73.4% ± 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% ± 1.92% and 8.11% ± 4.12%, respectively, versus 0.15% ± 0.11% and 1.38% ± 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species. PMID:15870317

  7. Genomics and ecological overview of the genus Bifidobacterium.

    PubMed

    Turroni, Francesca; van Sinderen, Douwe; Ventura, Marco

    2011-09-01

    Members of the genus Bifidobacterium are high G+C Gram positive bacteria belonging to the phylum Actinobacteria, and represent common inhabitants of the gastro-intestinal tract (GIT) of mammals, birds and certain cold-blooded animals. The overall microbial population that resides in the GIT, referred to as the "gut microbiota", is an extremely complex community of microorganisms whose functions are believed to have a significant impact on human physiology. Different ecological relationships between bifidobacteria and their host can be developed, ranging from opportunistic pathogenic interactions (e.g. in the case of Bifidobacterium dentium) to a commensal or even health-promoting relationship (e.g. in the case of Bifidobacterium bifidum and Bifidobacterium breve species). Among the known health-promoting or probiotic microorganisms, bifidobacteria represent one of the most dominant group and some bifidobacterial species are frequently used as the probiotic ingredient in many functional foods. However, despite the generally accepted importance of bifidobacteria as constituents of the human microbiota, there is only limited information available on their phylogeny, physiology and genetics. Moreover, host-microbiota interactions and cross-talk between different members of the gut microbiota are far from completely understood although they represent a crucial factor in the development and maintenance of human physiology and immune system. The aim of this review is to highlight the genetic and functional features of bifidobacteria residing in the human GIT using genomic and ecology-based information. PMID:21276626

  8. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis

    PubMed Central

    Duranti, Sabrina; Milani, Christian; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Ferrario, Chiara; Mangifesta, Marta; Viappiani, Alice; Sánchez, Borja; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2016-01-01

    Bifidobacteria are members of the human gut microbiota, being numerically dominant in the colon of infants, while also being prevalent in the large intestine of adults. In this study, we determined and analyzed the pan-genome of Bifidobacterium adolescentis, which is one of many bacteria found in the human adult gut microbiota. In silico analysis of the genome sequences of eighteen B. adolescentis strains isolated from various environments, such as human milk, human feces and bovine rumen, revealed a high level of genetic variability, resulting in an open pan-genome. Compared to other bifidobacterial taxa such as Bifidobacterium bifidum and Bifidobacterium breve, the more extensive B. adolescentis pan-genome supports the hypothesis that the genetic arsenal of this taxon expanded so as to become more adaptable to the variable and changing ecological niche of the gut. These increased genetic capabilities are particularly evident for genes required for dietary glycan-breakdown. PMID:27035119

  9. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis.

    PubMed

    Duranti, Sabrina; Milani, Christian; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Ferrario, Chiara; Mangifesta, Marta; Viappiani, Alice; Sánchez, Borja; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2016-01-01

    Bifidobacteria are members of the human gut microbiota, being numerically dominant in the colon of infants, while also being prevalent in the large intestine of adults. In this study, we determined and analyzed the pan-genome of Bifidobacterium adolescentis, which is one of many bacteria found in the human adult gut microbiota. In silico analysis of the genome sequences of eighteen B. adolescentis strains isolated from various environments, such as human milk, human feces and bovine rumen, revealed a high level of genetic variability, resulting in an open pan-genome. Compared to other bifidobacterial taxa such as Bifidobacterium bifidum and Bifidobacterium breve, the more extensive B. adolescentis pan-genome supports the hypothesis that the genetic arsenal of this taxon expanded so as to become more adaptable to the variable and changing ecological niche of the gut. These increased genetic capabilities are particularly evident for genes required for dietary glycan-breakdown. PMID:27035119

  10. Glucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study.

    PubMed

    Rios-Covián, D; Sánchez, B; Cuesta, I; Cueto-Díaz, S; Hernández-Barranco, A M; Gueimonde, M; De Los Reyes-Gavilán, C G

    2016-03-11

    Microorganisms of the genus Bifidobacterium are inhabitants of diverse niches including the digestive tract of humans and animals. The species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum have qualified presumption of safety status granted by EFSA and several strains are considered probiotic, and are being included in functional dairy fermented products. In the present work we carried out a preliminary exploration of general metabolic characteristics and organic acid production profiles of a reduced number of strains selected from these and other species of the genus Bifidobacterium. The use of resting cells allowed obtaining metabolic fingerprints without interference of metabolites accumulated during growth in culture media. Acetic acid was the most abundant organic acid formed per mol of glucose consumed (from 1.07±0.03 to 1.71±0.22 mol) followed by lactic acid (from 0.34±0.06 to 0.90±0.12 mol), with moderate differences in production among strains; pyruvic, succinic and formic acids were also produced at considerably lower proportions, with variability among strains. The acetic to lactic acid ratio showed lower values in stationary phase as regard to the exponential phase for most, but not all, the microorganisms; this was due to a decrease in acetic acid molar proportions together with increases of lactic acid proportions in stationary phase. A linear discriminant analysis allowed to cluster strains into species with 51-100% probability, evidencing different metabolic profiles, according to the relative production of organic acids from glucose by resting cells, of microorganisms collected at the exponential phase of growth. Looking for a single metabolic marker that could adequately discriminate metabolic groups, we found that groups established by the acetic to lactic acid ratio fit well with differences previously evidenced by the discriminant analysis. The proper

  11. Performances of new isolates of Bifidobacterium on fermentation of soymilk.

    PubMed

    Havas, Petra; Kun, Szilárd; Perger-Mészáros, Izabell; Rezessy-Szabó, Judit M; Nguyen, Quang D

    2015-12-01

    Growth and metabolic activity of several new, human origin isolates of Bifidobacterium strains were investigated. All tested bifidobacteria strains were grown well on the native soymilk medium without any additional nutrients. The fermentation processes cultured with initial cell concentrations in 10⁵ -10⁷ cfu/ml resulted in 10⁸ cfu/ml after 8-12 h of incubation in soymilk, and were kept viable up to the end of fermentation (48 h). Volumetric productivities of B. bifidum B3.2, B. bifidum B7.1 and B. breve B9.14 were 1.6 × 10¹⁰ cfu/L.h, 4.5 × 10¹⁰ cfu/L.h and 7.6 × 10⁹ cfu/L.h, respectively, whereas these values of B. lactis Bb-12 and B. longum Bb-46 probiotic strains were 2.7 × 10⁹ cfu/L.h and 1.0 x 10¹⁰ cfu/L.h. The α-galactosidase activities were also detected in the intracellular fraction of the disrupted cells. Productions of lactic and acetic acids were in the range of 23-60 mmol/L and 2.4-5.6 mmol/L, respectively. Molar ratios of acetate to lactate in all tested strains varied from 0.05-0.1 that are very promising for further technological development of probiotic fermented soy-based food products. PMID:26689881

  12. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains.

    PubMed

    Goderska, Kamila; Czarnecki, Zbigniew

    2008-01-01

    Improved production methods of starter cultures, which constitute the most important element of probiotic preparations, were investigated. The aim of the presented research was to analyse changes in the viability of Lactobacillus. acidophilus and Bifidobacterium bifidum after stabilization (spray drying, liophilization, fluidization drying) and storage in refrigerated conditions for 4 months. The highest numbers of live cells, up to the fourth month of storage in refrigerated conditions, of the order of 10(7) cfu/g preparation were recorded for the B. bifidum DSM 20239 bacteria in which the N-Tack starch for spray drying was applied. Fluidization drying of encapsulated bacteria allowed obtaining a preparation of the comparable number of live bacterial cells up to the fourth month of storage with those encapsulated bacteria, which were subjected to freeze-drying but the former process was much shorter. The highest survivability of the encapsulated L. acidophilus DSM 20079 and B. bifidum DSM 20239 cells subjected to freeze-drying was obtained using skimmed milk as the cryoprotective substance. Stabilization of bacteria by microencapsulation can give a product easy to store and apply to produce dried food composition. PMID:18646401

  13. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    PubMed

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  14. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  15. Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium.

    PubMed

    Foley, Sophie; Stolarczyk, Emilie; Mouni, Fadoua; Brassart, Colette; Vidal, Olivier; Aïssi, Eliane; Bouquelet, Stéphane; Krzewinski, Frédéric

    2008-02-01

    Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial D: -fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the D: -fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism. PMID:17943273

  16. Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates

    PubMed Central

    Valdés-Varela, L.; Hernández-Barranco, Ana M.; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2016-01-01

    The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. PMID:27242753

  17. Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates.

    PubMed

    Valdés-Varela, L; Hernández-Barranco, Ana M; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2016-01-01

    The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. PMID:27242753

  18. ESR spin trapping for characterization of radical formation in Lactobacillus acidophilus NCFM and Listeria innocua.

    PubMed

    Hougaard, Anni B; Arneborg, Nils; Andersen, Mogens L; Skibsted, Leif H

    2013-09-01

    In this study, radicals in pure cultures of Lactobacillus acidophilus NCFM and Listeria innocua were detected in a quantitative way by electron spin resonance spectroscopy using spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or N-tert-butyl-α-phenylnitrone (PBN). No adverse effect of spin trap addition on viability was observed for any of the bacterial strains. L. acidophilus NCFM had a higher production of radicals than L. innocua when incubated in a growth medium. Furthermore, by using DMPO in a buffer system, the radicals produced by L. acidophilus NCFM could be identified as hydroxyl radicals. The presence of polyethylene glycol, impermeable for bacterial cells, decreased the signal intensity of the ESR spectrum of the DMPO-OH adduct in cultures of L. acidophilus NCFM and indicated quenching of hydroxyl radicals outside the bacteria. This suggests that radical production is an extracellular event for L. acidophilus NCFM. PMID:23811362

  19. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice.

    PubMed

    Tejada-Simon, M V; Lee, J H; Ustunol, Z; Pestka, J J

    1999-04-01

    Lactic acid bacteria have been reported to have benefits for the prevention and treatment of some forms of diarrhea and related conditions. To determine whether these effects might involve direct stimulation of the gastrointestinal immune response, we administered yogurt to try to enhance mucosal and systemic antibodies against an orally presented immunogen, cholera toxin. Yogurts were manufactured with starter cultures containing different species and strains of lactic acid bacteria. Mice were fed these yogurts for 3 wk, during which they were also orally immunized twice with 10 micrograms of cholera toxin. Blood was collected on d 0 and 21, and fecal pellets were collected weekly. Mice that were immunized orally with cholera toxin responded by producing specific intestinal and serum immunoglobulin (Ig)A anti-cholera toxin. Antibody responses of the IgA isotype were significantly increased in mice fed yogurts made with starters containing the conventional yogurt bacteria Lactobacillus bulgaricus and Streptococcus thermophilus supplemented with Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium infantis. Yogurt that was manufactured with starters containing only conventional yogurt bacteria produced less IgA anti-cholera toxin than did the control group fed nonfat dry milk. Although strong responses were also observed for IgG anti-cholera toxin in serum, the responses did not differ among groups. Thus, administration of yogurt supplemented with L. acidophilus and Bifidobacterium spp. enhanced mucosal and systemic IgA responses to the cholera toxin immunogen. PMID:10212452

  20. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Majumder, Avishek; Cai, Liyang; Ejby, Morten; Schmidt, Bjarne G; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2012-04-01

    Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range. PMID:22522807

  1. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.

    PubMed

    Konstantinov, Sergey R; Smidt, Hauke; de Vos, Willem M; Bruijns, Sven C M; Singh, Satwinder Kaur; Valence, Florence; Molle, Daniel; Lortal, Sylvie; Altermann, Eric; Klaenhammer, Todd R; van Kooyk, Yvette

    2008-12-01

    Dendritic cells (DCs) are antigen-presenting cells that play an essential role in mucosal tolerance. They regularly encounter beneficial intestinal bacteria, but the nature of these cellular contacts and the immune responses elicited by the bacteria are not entirely elucidated. Here, we examined the interactions of Lactobacillus acidophilus NCFM and its cell surface compounds with DCs. L. acidophilus NCFM attached to DCs and induced a concentration-dependent production of IL-10, and low IL-12p70. We further demonstrated that the bacterium binds to DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a DC- specific receptor. To identify the DC-SIGN ligand present on the bacterium, we took advantage of a generated array of L. acidophilus NCFM mutants. A knockout mutant of L. acidophilus NCFM lacking the surface (S) layer A protein (SlpA) was significantly reduced in binding to DC-SIGN. This mutant incurred a chromosomal inversion leading to dominant expression of a second S layer protein, SlpB. In the SlpB-dominant strain, the nature of the interaction of this bacterium with DCs changed dramatically. Higher concentrations of proinflammatory cytokines such as IL-12p70, TNFalpha, and IL-1beta were produced by DCs interacting with the SlpB-dominant strain compared with the parent NCFM strain. Unlike the SlpA-knockout mutant, T cells primed with L. acidophilus NCFM stimulated DCs produced more IL-4. The SlpA-DC-SIGN interaction was further confirmed as purified SlpA protein ligated directly to the DC-SIGN. In conclusion, the major S layer protein, SlpA, of L. acidophilus NCFM is the first probiotic bacterial DC-SIGN ligand identified that is functionally involved in the modulation of DCs and T cells functions. PMID:19047644

  2. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects.

    PubMed

    Andreasen, Anne Sofie; Larsen, Nadja; Pedersen-Skovsgaard, Theis; Berg, Ronan M G; Møller, Kirsten; Svendsen, Kira Dynnes; Jakobsen, Mogens; Pedersen, Bente Klarlund

    2010-12-01

    According to animal studies, intake of probiotic bacteria may improve glucose homeostasis. We hypothesised that probiotic bacteria improve insulin sensitivity by attenuating systemic inflammation. Therefore, the effects of oral supplementation with the probiotic bacterium Lactobacillus acidophilus NCFM on insulin sensitivity and the inflammatory response were investigated in subjects with normal or impaired insulin sensitivity. In a double-blinded, randomised fashion, forty-five males with type 2 diabetes, impaired or normal glucose tolerance were enrolled and allocated to a 4-week treatment course with either L. acidophilus NCFM or placebo. L. acidophilus was detected in stool samples by denaturating gradient gel electrophoresis and real-time PCR. Separated by the 4-week intervention period, two hyperinsulinaemic-euglycaemic clamps were performed to estimate insulin sensitivity. Furthermore, the systemic inflammatory response was evaluated by subjecting the participants to Escherichia coli lipopolysaccharide injection (0·3 ng/kg) before and after the treatment course. L. acidophilus NCFM was detected in 75 % of the faecal samples after treatment with the probiotic bacterium. Insulin sensitivity was preserved among volunteers in the L. acidophilus NCFM group, whereas it decreased in the placebo group. Both baseline inflammatory markers and the systemic inflammatory response were, however, unaffected by the intervention. In conclusion, intake of L. acidophilus NCFM for 4 weeks preserved insulin sensitivity compared with placebo, but did not affect the systemic inflammatory response. PMID:20815975

  3. Natural History of Spina Bifida Cystica and Cranium Bifidum Cysticum

    PubMed Central

    Laurence, K. M.; Tew, B. J.

    1971-01-01

    The 425 cases of spina bifida cystica and cranium bifidum cysticum born in a population of 850,000 between 1956 and 1962 (with an incidence of 4·12 per 1000 births) were followed. Most did not receive the modern treatment for the condition. Follow-up in 1968 showed that 25% were stillborn, 13% died during the first week of perinatal causes, a further 47% died mostly of the complications of the condition, and 15% are still alive. Life table survival figures suggest for the liveborns a 12·8% life expectancy to the 11th birthday. The series included 18 cases of meningocele (4·2% of the total), diagnosed largely by exclusion; all are surviving and are largely free from physical and mental handicap. 26 cases of encephalocele include 8 survivors who are all retarded but not much crippled. Of the 381 myeloceles, 37 survive who though not much affected mentally are severely handicapped physically with limb paralysis and incontinence, the pattern of which was largely determined by the level of the lesion. There is a close relation between degree of hydrocephalus and severity of mental retardation. Boys surviving show better performance than girls. The incontinent, whether treated or untreated, show no more emotional disturbance than the continent. This series provides a `baseline' allowing modern and surgical treatment to be evaluated. 60% of the total (or 85% of those liveborn) should be regarded as potentially salvageable. Nearly all cases should probably have the `open' lesion closed as a surgical emergency, but thereafter no further procedure should be undertaken on those with severe hydrocephalus, established renal damage, persistent intracranial infection, or severe kyphosis, or if other severe malformations are present. PMID:4930541

  4. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil.

    PubMed

    Allegretti, L; Revolledo, L; Astolfi-Ferreira, C S; Chacón, J L; Martins, L M; Seixas, G H F; Ferreira, A J P

    2014-12-01

    In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera. PMID:25062609

  5. Bifidobacterium, Bacteroides, and Clostridium spp. in fecal samples from breast-fed and bottle-fed infants with and without iron supplement.

    PubMed Central

    Mevissen-Verhage, E A; Marcelis, J H; de Vos, M N; Harmsen-van Amerongen, W C; Verhoef, J

    1987-01-01

    Bifidobacterium, Bacteroides, and Clostridium spp. isolated from the feces of 23 neonates during the first 3 months of life were identified. Of the 23 neonates, 10 were breast fed, 6 received an infant formula with iron supplement (5 mg/liter), and 7 received the formula without iron supplement (iron concentration, less than 0.5 mg/liter). The Bifidobacterium spp. most frequently isolated from the three groups of infants were B. longum, B. breve, B. adolescentis, and B. bifidum. The bacteroides spp. most frequently isolated were B. fragilis and B. vulgatus. The most common Clostridium sp. in the three groups of infants was C. perfringens. The type of milk did not select for species of Bifidobacterium, Bacteroides, or Clostridium, except for Clostridium butyricum, which was isolated significantly more often from bottle-fed infants with iron supplement than from the other groups, and Clostridium tertium, which was more often isolated from breast-fed infants. The species of the three anaerobic genera did not persist for a long period of time in the three groups of infants. PMID:3818925

  6. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material.

    PubMed

    Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo

    2016-09-01

    Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism. PMID:27309796

  7. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM.

    PubMed

    Buck, B Logan; Altermann, Eric; Svingerud, Tina; Klaenhammer, Todd R

    2005-12-01

    Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro. PMID:16332821

  8. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model.

    PubMed

    Rodes, Laetitia; Khan, Afshan; Paul, Arghya; Coussa-Charley, Michael; Marinescu, Daniel; Tomaro-Duchesneau, Catherine; Shao, Wei; Kahouli, Imen; Prakash, Satya

    2013-04-01

    Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-alpha, IL-1beta, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum (-46.45 +/- 5.65%), L. rhamnosus (-30.40 +/- 5.08%), B. longum (-42.50 +/- 1.28%), and B. longum subsp. infantis (-68.85 +/- 5.32%) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-alpha concentrations (-69.41 +/- 2.78%; p < 0.05) and to increase IL-4 concentrations (+16.50 +/- 0.59%; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-alpha and IL-1beta concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic

  9. Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol.

    PubMed

    Majumder, Avishek; Sultan, Abida; Jersie-Christensen, Rosa R; Ejby, Morten; Schmidt, Bjarne Gregers; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2011-09-01

    Lactobacillus acidophilus NCFM is a probiotic bacterium adapted to survive in the gastrointestinal tract and with potential health benefits to the host. Lactitol is a synthetic sugar alcohol used as a sugar replacement in low calorie foods and selectively stimulating growth of L. acidophilus NCFM. In the present study the whole-cell extract proteome of L. acidophilus NCFM grown on glucose until late exponential phase was resolved by 2-DE (pH 3-7). A total of 275 unique proteins assigned to various physiological processes were identified from 650 spots. Differential 2-DE (DIGE) (pH 4-7) of L. acidophilus NCFM grown on glucose and lactitol, revealed 68 spots with modified relative intensity. Thirty-two unique proteins were identified in 41 of these spots changing 1.6-12.7-fold in relative abundance by adaptation of L. acidophilus NCFM to growth on lactitol. These proteins included β-galactosidase small subunit, galactokinase, galactose-1-phosphate uridylyltransferase and UDP-glucose-4-epimerase, which all are potentially involved in lactitol metabolism. This first comprehensive proteome analysis of L. acidophilus NCFM provides insights into protein abundance changes elicited by the prebiotic lactitol. PMID:21751373

  10. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses.

    PubMed

    Kim, Younghoon; Mylonakis, Eleftherios

    2012-07-01

    Although the immune response of Caenorhabditis elegans to microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conserved C. elegans host responses. We found that the probiotic Gram-positive bacterium Lactobacillus acidophilus NCFM is not harmful to C. elegans and that L. acidophilus NCFM is unable to colonize the C. elegans intestine. Conditioning with L. acidophilus NCFM significantly decreased the burden of a subsequent Enterococcus faecalis infection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains of E. faecalis and Staphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes to Bacillus subtilis did not provide any beneficial effects. Importantly, L. acidophilus NCFM activates key immune signaling pathways involved in C. elegans defenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the β-catenin signaling pathway (via BAR-1). Interestingly, conditioning with L. acidophilus NCFM had a minimal effect on Gram-negative infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning with L. acidophilus NCFM modulates specific C. elegans immunity traits. PMID:22585961

  11. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas).

    PubMed

    Endo, Akihito; Futagawa-Endo, Yuka; Schumann, Peter; Pukall, Rüdiger; Dicks, Leon M T

    2012-03-01

    Five strains of bifidobacteria were isolated from faeces of a common marmoset (Callithrix jacchus) and a red-handed tamarin (Saguinus midas). The five isolates clustered inside the phylogenetic group of the genus Bifidobacterium but did not show high sequence similarities between the isolates and to known species in the genus by phylogenetic analysis based on 16S rRNA gene sequences. Sequence analyses of dnaJ1 and hsp60 also indicated their independent phylogenetic positions to each other in the Bifidobacterium cluster. DNA G+C contents of the species ranged from 57.3 to 66.3 mol%, which is within the values recorded for Bifidobacterium species. All isolates showed fructose-6-phosphate phosphoketolase activity. Based on the data provided, the five isolates represent five novel species, for which the names Bifidobacterium reuteri sp. nov. (type strain: AFB22-1(T) = JCM 17295(T) = DSM 23975(T)), Bifidobacterium callitrichos sp. nov. (type strain: AFB22-5(T) = JCM 17296(T) = DSM 23973(T)), Bifidobacterium saguini sp. nov. (type strain: AFB23-1(T) = JCM 17297(T) = DSM 23967(T)), Bifidobacterium stellenboschense sp. nov. (type strain: AFB23-3(T) = JCM 17298(T) = DSM 23968(T)) and Bifidobacterium biavatii sp. nov. (type strain: AFB23-4(T) = JCM 17299(T) = DSM 23969(T)) are proposed. PMID:22225994

  12. The Genome Sequence of Bifidobacterium moukalabense DSM 27321 Highlights the Close Phylogenetic Relatedness with the Bifidobacterium dentium Taxon.

    PubMed

    Lugli, Gabriele Andrea; Duranti, Sabrina; Milani, Christian; Turroni, Francesca; Viappiani, Alice; Mangifesta, Marta; van Sinderen, Douwe; Ventura, Marco

    2014-01-01

    Bifidobacterium moukalabense DSM 27321 is the reference strain for a recently described new bifidobacterial species that has been isolated from a wild west lowland gorilla. Here, we report the whole-genome sequence of DSM 27321, which supports very close phylogenetic relatedness with members of the Bifidobacterium adolescentis phylogenetic group and, in particular, the Bifidobacterium dentium taxon. PMID:24558236

  13. Immunoregulatory effects on Caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM.

    PubMed

    Li, Li; Jiang, Yu-Jun; Yang, Xiang-Yi; Liu, Ying; Wang, Jin-Yu; Man, Chao-Xin

    2014-12-01

    On the basis of our previous results on potential immunoregulation of Lactobacillus acidophilus NCFM, the immunoregulatory effects of exopolysaccharides (EPS) isolated from L. acidophilus NCFM and their regulating mechanisms are further investigated in the current research. Stimulated by EPS preparations, four immune-related genes in the human colorectal adenocarcinoma cell line Caco-2 cells, namely, interleukin-1α (IL-1α), chemokine C-C motif 2 (CCL2), tumor necrosis factor α (TNF-α), and pentraxin 3 (PTX3), first showed an increase at 2-4 h, peaked at 4 h, and then decreased at 4-12 h. Similar trends were observed in vivo: four genes showed transient expression (highest on the 4th day) in the cecum and colon of mice. Meanwhile, the organ coefficient, clearance index and phagocytic index all significantly increased with time extension and dose increase of EPS stimulation. EPS triggered NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways in Caco-2 cells, and the activated pathways initiated the genes expression. EPS compounds from L. acidophilus NCFM may play an important role in host immunoregulation and might be applied as a new type of immunoregulatory agent in functional foods. PMID:25340590

  14. Novel Phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697

    PubMed Central

    Tamayo-Ramos, Juan Antonio; Sanz-Penella, Juan Mario; Yebra, María J.

    2012-01-01

    Two novel phytases have been characterized from Bifidobacterium pseudocatenulatum and Bifidobacterium longum subsp. infantis. The enzymes belong to a new subclass within the histidine acid phytases, are highly specific for the hydrolysis of phytate, and render myo-inositol triphosphate as the final hydrolysis product. They represent the first phytases characterized from this group of probiotic microorganisms, opening the possibilities for their use in the processing of high-phytate-content foods. PMID:22582052

  15. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

    PubMed

    Celebioglu, Hasan Ufuk; Ejby, Morten; Majumder, Avishek; Købler, Carsten; Goh, Yong Jun; Thorsen, Kristian; Schmidt, Bjarne; O'Flaherty, Sarah; Abou Hachem, Maher; Lahtinen, Sampo J; Jacobsen, Susanne; Klaenhammer, Todd R; Brix, Susanne; Mølhave, Kristian; Svensson, Birte

    2016-05-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host. PMID:26959526

  16. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    PubMed

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected. PMID:25098489

  17. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract.

    PubMed

    Killer, J; Kopečný, J; Mrázek, J; Koppová, I; Havlík, J; Benada, O; Kott, T

    2011-06-01

    Our previous study, based primarily on PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing, focused on the isolation of four bifidobacterial groups from the digestive tract of three bumblebee species. In that study, we proposed that these isolated groups potentially represented novel species of the family Bifidobacteriaceae. One of the four, Bifidobacterium bombi, has been described recently. Strains representing two of the other groups have been classified as members of the genus Bifidobacterium on the basis of positive results for fructose-6-phosphate phosphoketolase activity and analysis of partial 16S rRNA and heat-shock protein 60 (hsp60) gene sequences. Analysis of 16S rRNA gene sequence similarities revealed that the isolates of the first group were affiliated to Bifidobacterium asteroides YIT 11866(T), B. indicum JCM 1302(T) and B. coryneforme ATCC 25911(T) (96.2, 96.0 and 95.9 % sequence similarity, respectively), together with other bifidobacteria showing lower sequence similarity. Additional representatives of the second group were found to be affiliated to Bifidobacterium minimum YIT 4097(T) and B. coryneforme ATCC 25911(T) (96.0 and 96.3 % sequence similarity) and also to other bifidobacteria with lower sequence similarity. These results indicate that the isolates of the two groups belong to novel species within the genus Bifidobacterium. This observation was further substantiated by the results of partial sequencing of hsp60. On the basis of phylogenetic and phenotypic analyses and analysis of 16S rRNA and partial hsp60 gene sequences, we propose two novel species, Bifidobacterium actinocoloniiforme sp. nov. (type strain LISLUCIII-P2(T)  = DSM 22766(T)  = CCM 7728(T)) and Bifidobacterium bohemicum sp. nov. (type strain JEMLUCVIII-4(T)  = DSM 22767(T)  = CCM 7729(T)). PMID:20656822

  18. Short- and long-term dynamics in the intestinal microbiota following ingestion of Bifidobacterium animalis subsp. lactis GCL2505.

    PubMed

    Tanaka, Yoshiyuki; Takami, Kazuyo; Nishijima, Tomohiko; Aoki, Ryo; Mawatari, Takashi; Ikeda, Takayuki

    2015-01-01

    Bifidobacterium animalis subsp. lactis GCL2505 (B. lactis GCL2505) is able to survive passage through the intestines and proliferate. The daily dynamics of the intestinal bifidobacteria following ingestion of probiotics are not yet clear. Moreover, the effects of long-term ingestion of probiotics on the intestinal microbiota have not been well studied. Two experiments were performed in the present study. In Experiment 1, 53 healthy female volunteers received B. lactis GCL2505; B. bifidum GCL2080, which can survive but not proliferate in the intestine; or yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for 2 weeks, and the daily dynamics of intestinal bifidobacteria were investigated. The number of fecal bifidobacteria significantly increased on day 1, and this was maintained until day 14 in the B. lactis GCL2505 ingestion group. However, no significant change in the number of fecal bifidobacteria was observed in the other groups throughout the ingestion period. In Experiment 2, 38 constipated volunteers received either B. lactis GCL2505 or a placebo for 8 weeks. Both the number of fecal bifidobacteria and the frequency of defecation significantly increased throughout the ingestion period in the B. lactis GCL2505 ingestion group. These results suggested that the proliferation of ingested bifidobacteria within the intestine contributed to a rapid increase in the amount of intestinal bifidobacteria and subsequent maintenance of these levels. Moreover, B. lactis GCL2505 improved the intestinal microbiota more effectively than non-proliferating bifidobacteria and lactic acid bacteria. PMID:26594607

  19. Short- and long-term dynamics in the intestinal microbiota following ingestion of Bifidobacterium animalis subsp. lactis GCL2505

    PubMed Central

    TANAKA, Yoshiyuki; TAKAMI, Kazuyo; NISHIJIMA, Tomohiko; AOKI, Ryo; MAWATARI, Takashi; IKEDA, Takayuki

    2015-01-01

    Bifidobacterium animalis subsp. lactis GCL2505 (B. lactis GCL2505) is able to survive passage through the intestines and proliferate. The daily dynamics of the intestinal bifidobacteria following ingestion of probiotics are not yet clear. Moreover, the effects of long-term ingestion of probiotics on the intestinal microbiota have not been well studied. Two experiments were performed in the present study. In Experiment 1, 53 healthy female volunteers received B. lactis GCL2505; B. bifidum GCL2080, which can survive but not proliferate in the intestine; or yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for 2 weeks, and the daily dynamics of intestinal bifidobacteria were investigated. The number of fecal bifidobacteria significantly increased on day 1, and this was maintained until day 14 in the B. lactis GCL2505 ingestion group. However, no significant change in the number of fecal bifidobacteria was observed in the other groups throughout the ingestion period. In Experiment 2, 38 constipated volunteers received either B. lactis GCL2505 or a placebo for 8 weeks. Both the number of fecal bifidobacteria and the frequency of defecation significantly increased throughout the ingestion period in the B. lactis GCL2505 ingestion group. These results suggested that the proliferation of ingested bifidobacteria within the intestine contributed to a rapid increase in the amount of intestinal bifidobacteria and subsequent maintenance of these levels. Moreover, B. lactis GCL2505 improved the intestinal microbiota more effectively than non-proliferating bifidobacteria and lactic acid bacteria. PMID:26594607

  20. Case of Sepsis Caused by Bifidobacterium longum

    PubMed Central

    Ha, Gyoung Yim; Yang, Chang Heon; Kim, Heesoo; Chong, Yunsop

    1999-01-01

    We report a case of sepsis caused by Bifidobacterium longum in a 19-year-old male who had developed high fever, jaundice, and hepatomegaly after acupuncture therapy with small gold needles. Anaerobic, non-spore-forming, gram-positive bacilli were isolated from his blood and finally identified as B. longum. He recovered completely after treatment with ticarcillin and metronidazole. To our knowledge, this is the first report of incidental sepsis caused by B. longum. PMID:10074561

  1. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  2. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.

    PubMed

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  3. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified inLactobacillus acidophilusNCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on thein silicodetection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) inL. acidophilusNCFM, anfbpB-deficient strain was constructed. TheL. acidophilusmutant with a deletion offbpBlost the ability to adhere to mucin and fibronectinin vitro Homologues offbpBwere identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilushomology group. PMID:26921419

  4. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446.

    PubMed

    Simeoni, Umberto; Berger, Bernard; Junick, Jana; Blaut, Michael; Pecquet, Sophie; Rezzonico, Enea; Grathwohl, Dominik; Sprenger, Norbert; Brüssow, Harald; Szajewska, Hania; Bartoli, J-M; Brevaut-Malaty, V; Borszewska-Kornacka, M; Feleszko, W; François, P; Gire, C; Leclaire, M; Maurin, J-M; Schmidt, S; Skórka, A; Squizzaro, C; Verdot, J-J

    2016-07-01

    Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blinded clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3'- and 6'-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum). PMID:26626365

  5. Selective medium for isolation and enumeration of Bifidobacterium spp.

    PubMed Central

    Muñoa, F J; Pares, R

    1988-01-01

    A new method was developed for the isolation and enumeration of Bifidobacterium spp. from natural aquatic environments. The method was based on the utilization of a new medium, Bifidobacterium iodoacetate medium 25, and resuscitation techniques were used to isolate injured bifidobacteria. The new medium was tested with a nonselective reference medium on sewage and sewage-polluted surface waters. Relatively little colonial growth of any other bacterial genera occurred; when such colonies did grow, Bifidobacterium could be easily differentiated by its colonial morphology or, after Gram staining, by its typical bifidobacterial morphology. PMID:3415235

  6. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  7. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM.

    PubMed

    Johnson, Brant; Selle, Kurt; O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd

    2013-11-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  8. Anti-inflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells

    PubMed Central

    Imaoka, Akemi; Shima, Tatsuichiro; Kato, Kimitoshi; Mizuno, Shigeaki; Uehara, Toshiki; Matsumoto, Satoshi; Setoyama, Hiromi; Hara, Taeko; Umesaki, Yoshinori

    2008-01-01

    AIM: To determine the anti-inflammatory activity of probiotic Bifidobacteria in Bifidobacteria-fermented milk (BFM) which is effective against active ulcerative colitis (UC) and exacerbations of UC, and to explore the immunoregulatory mechanisms. METHODS: Peripheral blood mononuclear cells (PBMNC) from UC patients or HT-29 cells were co-cultured with heat-killed probiotic bacteria or culture supernatant of Bifidobacterium breve strain Yakult (BbrY) or Bifidobacterium bifidum strain Yakult (BbiY) to estimate the amount of IL-10 or IL-8 secreted. RESULTS: Both strains of probiotic Bifidobacteria contained in the BFM induced IL-10 production in PBMNC from UC patients, though BbrY was more effective than BbiY. Conditioned medium (CM) and DNA of both strains inhibited IL-8 secretion in HT-29 cells stimulated with TNF-α, whereas no such effect was observed with heat-killed bacteria. The inhibitory effect of CM derived from BbiY was greater than that of CM derived from BbrY. DNAs of the two strains had a comparable inhibitory activity against the secretion of IL-8. CM of BbiY induced a repression of IL-8 gene expression with a higher expression of IκB-ζ mRNA 4 h after culture of HT-29 cells compared to that in the absence of CM. CONCLUSION: Probiotic Bifidobacterium strains in BFM enhance IL-10 production in PBMNC and inhibit IL-8 secretion in intestinal epithelial cells, suggesting that BFM has anti-inflammatory effects against ulcerative colitis. PMID:18442197

  9. Bile resistance mechanisms in Lactobacillus and Bifidobacterium.

    PubMed

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  10. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    PubMed Central

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  11. Occurrence of Bifidobacterium in the intestine of newborns by fluorescence in situ hybridization.

    PubMed

    Bezirtzoglou, E; Maipa, V; Chotoura, N; Apazidou, E; Tsiotsias, A; Voidarou, C; Kostakis, D; Alexopoulos, A

    2006-11-01

    Colonization by Bifidobacterium occurs generally within 4 days of life. The new method FISH has been applied for molecular detection of Bifidobacteria. The study was carried out on 26 healthy newborns delivered by vaginal delivery. Breast-fed infants harbor a gastrointestinal flora characterized by an increased concentration of Bifidobacterium cells (by a factor of 1.75). In artificial alimentation, some infants either did not harbor any Bifidobacterium or showed lower numbers of Bifidobacterium. Moreover, male newborns show higher numbers of Bifidobacterium, but in both sexes the predominance of Bifidobacterium is evident after maternal alimentation. PMID:17034855

  12. Resistance to acidic environments of caries-associated bacteria: Bifidobacterium dentium and Bifidobacterium longum.

    PubMed

    Nakajo, K; Takahashi, N; Beighton, D

    2010-01-01

    Oral Bifidobacteriaceae, Bifidobacterium dentium and Bifidobacterium longum, are known to be isolated together with mutans streptococci and lactobacilli from caries lesions, suggesting that these Bifidobacteriaceae are caries associated and acid resistant. This study aimed to investigate effects of acidification on B. dentium and B. longum, and to compare them with those on Streptococcus mutans, Streptococcus sanguinis and Lactobacillus paracasei. Effects of acidification, growth ability in a complex medium at a pH of 4.0-8.0, cell viability in 2-morpholinoethanesulfonic acid monohydrate (MES)-KOH buffer at pH 4.0, as well as stability of intracellular pH (pH(in)) at an extracellular pH of 3.5-8.0 estimated using a fluorescent dye, 5(6)-carboxyfluorescein diacetate N-succinimidyl ester in MES-KOH, 3-(N-morpholino)propanesulfonic acid-KOH or N,N-bis(2-hydroxyethyl)glycine-KOH buffer, were investigated. B. longum grew as well as Streptococcus strains over a wide pH range, whereas B. dentium grew best in the narrow pH range around neutral. The cell viability of B. dentium decreased significantly after 2 h of acidification at a pH of 4.0, but this was significantly less than that of the Streptococcus and Lactobacillus species, whereas B. longum maintained almost 100% viability. The pH(in) was close to the extracellular pH at pH of 5.5-7.5 in the Bifidobacterium and Streptococcus strains, while at a pH of <5.0, the pH(in) was higher than the extracellular pH in all the strains, but the pH(in) maintenance ability of Bifidobacterium strains was higher than that of the Streptococcus strains. The high survival rate and pH(in) maintenance ability of bifidobacteria comparable to that of S. mutans in the acidic environment may account for why bifidobacteria exist as stable species in acidic caries lesions together with mutans streptococci. PMID:20814202

  13. Cellodextrin utilization by bifidobacterium breve UCC2003.

    PubMed

    Pokusaeva, Karina; O'Connell-Motherway, Mary; Zomer, Aldert; Macsharry, John; Fitzgerald, Gerald F; van Sinderen, Douwe

    2011-03-01

    Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldR(His) (produced by the incorporation of a His(12)-encoding sequence into the 3' end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldR(His), which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins. PMID:21216899

  14. Anaerobic green fluorescent protein as a marker of Bifidobacterium strains.

    PubMed

    Landete, José M; Peirotén, Ángela; Rodríguez, Eva; Margolles, Abelardo; Medina, Margarita; Arqués, Juan L

    2014-04-01

    Some strains of Bifidobacterium are considered as probiotics and are being added as adjunct culture in food products due to their potential in maintaining a healthy intestinal microbial balance. However, despite these benefits, bifidobacteria still remain poorly understood at the genetic level compared with other microorganisms of industrial interest. In this work, we have developed a non-invasive green fluorescent based reporter system for real-time tracking of Bifidobacterium species in vivo. The reporter vector pNZ:Tu-GFPana is based on the pNZ8048 plasmid harboring a bifidobacterial promoter (elongation factor Tu from Bifidobacterium longum CECT 4551) and a fluorescent protein containing a flavin-mono-nucleotide-based cofactor (evoglow-Pp1) which is fluorescent under both aerobic and anaerobic conditions. pNZ:Tu-GFPana was constructed and found to stably replicate in B. longum CECT 4551 and in the intestinal strain Bifidobacterium breve INIA P734. The subsequent analysis of these strains allowed us to assess the functionality of this plasmid. Our results demonstrate the potential of pNZ:Tu-GFPana as a real-time reporter system for Bifidobacterium in order to track the behavior of this probiotic species in complex environments like food or intestinal microbiota, and to estimate their competition and colonization potential. PMID:24495586

  15. Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM.

    PubMed

    Duong, Tri; Barrangou, Rodolphe; Russell, W Michael; Klaenhammer, Todd R

    2006-02-01

    Freezing and lyophilization are common methods used for preservation and storage of microorganisms during the production of concentrated starter cultures destined for industrial fermentations or product formulations. The compatible solute trehalose has been widely reported to protect bacterial, yeast and animal cells against a variety of environmental stresses, particularly freezing and dehydration. Analysis of the Lactobacillus acidophilus NCFM genome revealed a putative trehalose utilization locus consisting of a transcriptional regulator, treR; a trehalose phosphoenolpyruvate transferase system (PTS) transporter, treB; and a trehalose-6-phosphate hydrolase, treC. The objective of this study was to characterize the tre locus in L. acidophilus and determine whether or not intracellular uptake of trehalose contributes to cryoprotection. Cells subjected to repeated freezing and thawing cycles were monitored for survival in the presence of various concentrations of trehalose. At 20% trehalose a 2-log increase in survival was observed. The trehalose PTS transporter and trehalose hydrolase were disrupted by targeted plasmid insertions. The resulting mutants were unable to grow on trehalose, indicating that both trehalose transport into the cell via a PTS and hydrolysis via a trehalose-6-phosphate hydrolase were necessary for trehalose fermentation. Trehalose uptake was found to be significantly reduced in the transporter mutant but unaffected in the hydrolase mutant. Additionally, the cryoprotective effect of trehalose was reduced in these mutants, suggesting that intracellular transport and hydrolysis contribute significantly to cryoprotection. PMID:16461669

  16. Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM.

    PubMed

    Goh, Yong Jun; Klaenhammer, Todd R

    2010-08-01

    Aggregation-promoting factors (Apf) are secreted proteins that have been associated with a diverse number of functional roles in lactobacilli, including self-aggregation, the bridging of conjugal pairs, coaggregation with other commensal or pathogenic bacteria, and maintenance of cell shape. In silico genome analysis of Lactobacillus acidophilus NCFM identified LBA0493 as a 696-bp apf gene that encodes a putative 21-kDa Apf protein. Transcriptional studies of NCFM during growth in milk showed apf to be one of the most highly upregulated genes in the genome. In the present study, reverse transcriptase-quantitative PCR (RT-QPCR) analysis revealed that the apf gene was highly induced during the stationary phase compared to that during the logarithmic phase. To investigate the functional role of Apf in NCFM, an Delta apf deletion mutant was constructed. The resulting Delta apf mutant, NCK2033, did not show a significant difference in cell morphology or growth compared to that of the NCFMDelta upp reference strain, NCK1909. The autoaggregation phenotype of NCK2033 in planktonic culture was unaffected. Additional phenotypic assays revealed that NCK2033 was more susceptible to treatments with oxgall bile and sodium dodecyl sulfate (SDS). Survival rates of NCK2033 decreased when stationary-phase cells were exposed to simulated small-intestinal and gastric juices. Furthermore, NCK2033 in the stationary phase showed a reduction of in vitro adherence to Caco-2 intestinal epithelial cells, mucin glycoproteins, and fibronectin. The data suggest that the Apf-like proteins may contribute to the survival of L. acidophilus during transit through the digestive tract and, potentially, participate in the interactions with the host intestinal mucosa. PMID:20562289

  17. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: Three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.).

    PubMed

    Michelini, Samanta; Modesto, Monica; Filippini, Gianfranco; Spiezio, Caterina; Sandri, Camillo; Biavati, Bruno; Pisi, Annamaria; Mattarelli, Paola

    2016-06-01

    Forty-five microorganisms were isolated on bifidobacteria selective medium from one faecal sample of an adult subject of the cotton-top tamarin (Saguinus oedipus L.). All isolates were Gram-positive, catalase-negative, anaerobic, fructose-6-phosphate phosphoketolase positive, and asporogenous rod-shaped bacteria. In this study, only eight out of the forty-five strains were characterized more deeply, whereas the others are still currently under investigation. They were grouped by BOX-PCR into three clusters: Cluster I (TRE 17(T), TRE 7, TRE 26, TRE 32, TRE 33, TRE I), Cluster II (TRE C(T)), and Cluster III (TRE M(T)). Comparative analysis of 16S rRNA gene sequences confirmed the results from the cluster analysis and revealed relatively low level similarities to each other (mean value 95%) and to members of the genus Bifidobacterium. All eight isolates showed the highest level of 16S rRNA gene sequence similarities with Bifidobacterium scardovii DSM 13734(T) (mean value 96.6%). Multilocus sequence analysis (MLSA) of five housekeeping genes (hsp60, rpoB, clpC, dnaJ and dnaG) supported their independent phylogenetic position to each other and to related species of Bifidobacterium. The G+C contents were 63.2%, 65.9% and 63.0% for Cluster I, Cluster II and Cluster III, respectively. Peptidoglycan types were A3α l-Lys-l-Thr-l-Ala, A4β l-Orn (Lys)-d-Ser-d-Glu and A3β l-Orn-l-Ser-l-Ala in Clusters I, II and III, respectively. Based on the data provided, each cluster represented a novel taxon for which the names Bifidobacterium aerophilum sp. nov. (TRE 17(T)=DSM 100689=JCM 30941; TRE 26=DSM 100690=JCM 30942), Bifidobacterium avesanii sp. nov. (TRE C(T)=DSM 100685=JCM 30943) and Bifidobacterium ramosum sp. nov. (TRE M=DSM 100688=JCM 30944) are proposed. PMID:27236565

  18. Bifidobacterium myosotis sp. nov., Bifidobacterium tissieri sp. nov. and Bifidobacterium hapali sp. nov., isolated from faeces of baby common marmosets (Callithrix jacchus L.).

    PubMed

    Michelini, Samanta; Oki, Kaihei; Yanokura, Emiko; Shimakawa, Yasuhisa; Modesto, Monica; Mattarelli, Paola; Biavati, Bruno; Watanabe, Koichi

    2016-01-01

    In a previous study on bifidobacterial distribution in New World monkeys, six strains belonging to the Bifidobacteriaceae were isolated from faecal samples of baby common marmosets (Callithrix jacchus L.). All the isolates were Gram-positive-staining, anaerobic, asporogenous and fructose-6-phosphate phosphoketolase-positive. Comparative analysis of 16S rRNA gene sequences revealed relatively low levels of similarity (maximum identity 96 %) to members of the genus Bifidobacterium, and placed the isolates in three independent clusters: strains of cluster I (MRM_5.9T and MRM_5.10) and cluster III (MRM_5.18T and MRM_9.02) respectively showed 96.4 and 96.7 % 16S rRNA gene sequence similarity to Bifidobacterium callitrichos DSM 23973T, while strains of cluster II (MRM_8.14T and MRM_9.14) showed 95.4 % similarity to Bifidobacterium stellenboschense DSM 23968T. Phylogenetic analysis of partial hsp60 and clpC gene sequences supported an independent phylogenetic position of each cluster from each other and from the related type strains B. callitrichos DSM 23973T and B. stellenboschense DSM 23968T. Clusters I, II and III respectively showed DNA G+C contents of 64.9-65.1, 56.4-56.7 and 63.1-63.7 mol%. The major cellular fatty acids of MRM_5.9T were C14 : 0, C16 : 0 and C18 : 1ω9c dimethylacetal, while C16 : 0 was prominent in strains MRM_5.18T and MRM_8.14T, followed by C18 : 1ω9c and C14 : 0. Biochemical profiles and growth parameters were recorded for all the isolates. Based on the data provided, the clusters represent three novel species, for which the names Bifidobacterium myosotis sp. nov. (type strain MRM_5.9T = DSM 100196T = JCM 30796T), Bifidobacterium hapali sp. nov. (type strain MRM_8.14T = DSM 100202T = JCM 30799T) and Bifidobacterium tissieri sp. nov. (type strain MRM_5.18T = DSM 100201T = JCM 30798T) are proposed. PMID:26515885

  19. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β-Glycoside Hydrolases

    PubMed Central

    van Zanten, Gabriella C.; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J.; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4–7) and the alkaline (pH 6–11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5–13.9-fold or decreasing 1.5–7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism. PMID:25961012

  20. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β -Glycoside Hydrolases.

    PubMed

    van Zanten, Gabriella C; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4-7) and the alkaline (pH 6-11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5-13.9-fold or decreasing 1.5-7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism. PMID:25961012

  1. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase.

    PubMed

    Nakai, Hiroyuki; Petersen, Bent O; Westphal, Yvonne; Dilokpimol, Adiphol; Abou Hachem, Maher; Duus, Jens Ø; Schols, Henk A; Svensson, Birte

    2010-10-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMP) of the (alpha/alpha)(6)-barrel glycoside hydrolase family 65 (GH65) catalyses both phosphorolysis of maltose and formation of maltose by reverse phosphorolysis with beta-glucose 1-phosphate and glucose as donor and acceptor, respectively. LaMP has about 35 and 26% amino acid sequence identity with GH65 trehalose phosphorylase (TP) and kojibiose phosphorylase (KP) from Thermoanaerobacter brockii ATCC35047. The structure of L. brevis MP and multiple sequence alignment identified (alpha/alpha)(6)-barrel loop 3 that forms the rim of the active site pocket as a target for specificity engineering since it contains distinct sequences for different GH65 disaccharide phosphorylases. Substitution of LaMP His413-Glu421, His413-Ile418 and His413-Glu415 from loop 3, that include His413 and Glu415 presumably recognising the alpha-anomeric O-1 group of the glucose moiety at subsite +1, by corresponding segments from Ser426-Ala431 in TP and Thr419-Phe427 in KP, thus conferred LaMP with phosphorolytic activity towards trehalose and kojibiose, respectively. Two different loop 3 LaMP variants catalysed the formation of trehalose and kojibiose in yields superior of maltose by reverse phosphorolysis with (alpha1, alpha1)- and alpha-(1,2)-regioselectivity, respectively, as analysed by nuclear magnetic resonance. The loop 3 in GH65 disaccharide phosphorylase is thus a key determinant for specificity both in phosphorolysis and in regiospecific reverse phosphorolysis. PMID:20713411

  2. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products.

    PubMed

    Sohail, Asma; Turner, Mark S; Prabawati, Elisabeth Kartika; Coombes, Allan G A; Bhandari, Bhesh

    2012-07-01

    This study investigated the effect of microencapsulation on the survival of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM and their acidification in orange juice at 25°C for nine days and at 4°C over thirty five days of storage. Alginate micro beads (10-40 μm) containing the probiotics were produced by a novel dual aerosol method of alginate and CaCl(2) cross linking solution. Unencapsulated L. rhamnosus GG was found to have excellent survivability in orange juice at both temperatures. However unencapsulated L. acidophilus NCFM showed significant reduction in viability. Encapsulation of these two bacteria did not significantly enhance survivability but did reduce acidification at 25°C and 4°C. In agreement with this, encapsulation of L. rhamnosus GG also reduced acidification in pear and peach fruit-based foods at 25°C, however at 4°C difference in pH was insignificant between free and encapsulated cells. In conclusion, L. rhamnosus GG showed excellent survival in orange juice and microencapsulation has potential in reducing acidification and possible negative sensory effects of probiotics in orange juice and other fruit-based products. PMID:22633536

  3. Draft Genome Sequences of Bifidobacterium angulatum GT102 and Bifidobacterium adolescentis 150: Focusing on the Genes Potentially Involved in the Gut-Brain Axis

    PubMed Central

    Dyachkova, Marina S.; Klimina, Ksenia M.; Kovtun, Alexey S.; Zakharevich, Natalia V.; Nezametdinova, Venera Z.; Averina, Olga V.

    2015-01-01

    The draft genome sequences of Bifidobacterium angulatum GT102 and Bifidobacterium adolescentis 150 strains isolated from the human intestinal microbiota are reported. Both strains are able to produce gamma-aminobutyric acid (GABA). Detailed genomes analysis will help to understand the role of GABA in the functioning of gut-brain axis. PMID:26139716

  4. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.

    2016-01-01

    ABSTRACT Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus. Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro. These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. IMPORTANCE Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of

  5. Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium

    PubMed Central

    Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes. PMID:25085493

  6. Genomic encyclopedia of type strains of the genus Bifidobacterium.

    PubMed

    Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2014-10-01

    Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes. PMID:25085493

  7. Complete genome sequence of Bifidobacterium animalis subsp. lactis BLC1.

    PubMed

    Bottacini, Francesca; Dal Bello, Fabio; Turroni, Francesca; Milani, Christian; Duranti, Sabrina; Foroni, Elena; Viappiani, Alice; Strati, Francesco; Mora, Diego; van Sinderen, Douwe; Ventura, Marco

    2011-11-01

    Bifidobacterium animalis subsp. lactis BLC1 is a probiotic bacterium that is widely exploited by food industries as the active ingredient of various functional foods. Here we report the complete genome sequence of B. animalis subsp. lactis BLC1, which is expected to provide insights into the biology of this health-promoting microorganism and improve our understanding of its phylogenetic relatedness with other members of the B. animalis subsp. lactis taxon. PMID:22038957

  8. Bifidobacterium commune sp. nov. isolated from the bumble bee gut.

    PubMed

    Praet, Jessy; Meeus, Ivan; Cnockaert, Margo; Aerts, Maarten; Smagghe, Guy; Vandamme, Peter

    2015-05-01

    Bifidobacteria were isolated from the gut of Bombus lapidarius, Bombus terrestris and Bombus hypnorum bumble bees by direct isolation on modified trypticase phytone yeast extract agar. The MALDI-TOF MS profiles of four isolates (LMG 28292(T), R-53560, R-53124, LMG 28626) were found to be identical and did not cluster with the profiles of established Bifidobacterium species. Analysis of the 16S rRNA gene sequence of strain LMG 28292(T) revealed that LMG 28292(T) is most closely related to the Bifidobacterium bohemicum type strain (96.8%), which was also isolated from bumble bee gut specimens. The hsp60 gene of strain LMG 28292(T) shows 85.8% sequence similarity to that of the B. bohemicum type strain. The (GTG)5-PCR profiles and the hsp60 sequences of all four isolates were indistinguishable; however, three different phenotypes were observed among the four isolates by means of the API 50CHL microtest system. Based on the phylogenetic, genotypic and phenotypic data, we propose to classify the four isolates within the novel species Bifidobacterium commune sp. nov., with LMG 28292(T) (= DSM 28792(T)) as the type strain. PMID:25753540

  9. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.

    PubMed

    Fredslund, Folmer; Hachem, Maher Abou; Larsen, René Jonsgaard; Sørensen, Pernille Gerd; Coutinho, Pedro M; Lo Leggio, Leila; Svensson, Birte

    2011-09-23

    Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite -1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)(8)-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36. PMID:21827767

  10. Transcriptional analysis of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model.

    PubMed

    Weiss, G; Jespersen, L

    2010-01-01

    The aim of the present study was to investigate the transcription of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model. As acidified milk exerted a protective effect on the bacteria leading to increased survival, the gene expression studies were carried out with pre-inoculation of L. acidophilus NCFM in acidified milk. The induction of the genes encoding the stress-related proteins GroEL, DnaK and ClpP, and adhesion-related genes encoding mucin-binding proteins, fibronectin-binding protein and S-layer was analyzed by real-time PCR. The genes encoding GroEL, DnaK and ClpP were significantly up-regulated (9- to 16-fold) during gastric digestion and declined upon subsequent duodenal digestion. The genes encoding mucin-binding proteins and fibronectin-binding protein were not influenced by saliva and gastric juice, but they were significantly upregulated during incubation in duodenal juice and bile (6- to 7-fold). A significant induction of the gene encoding the S-layer protein was not detected. Our results give a better understanding of the functionality of L. acidophilus NCFM and other probiotics during passage through the gastrointestinal tract; hence, they provide an implementable basis for the selection of prospective probiotic candidates. PMID:20559014

  11. Isolation and identification of cultivable Bifidobacterium spp. from the faeces of 5 baby common marmosets (Callithrix jacchus L.).

    PubMed

    Michelini, Samanta; Modesto, Monica; Oki, Kaihei; Stenico, Verena; Stefanini, Ilaria; Biavati, Bruno; Watanabe, Koichi; Ferrara, Alessia; Mattarelli, Paola

    2015-06-01

    Ninety-two bifidobacterial strains were obtained from the faeces of 5 baby common marmosets, three known species Bifidobacterium aesculapii, Bifidobacterium callithricos and Bifidobacterium reuteri and 4 novel putative bifidobacterial species were retrieved. The occurrence of bifidobacteria in non-human primate babies is described for the first time. PMID:25746741

  12. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism

    PubMed Central

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiær, Hanne

    2010-01-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2−/− DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β. PMID:20545783

  13. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiaer, Hanne

    2010-10-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2(-/-) DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β. PMID:20545783

  14. Gut Bifidobacterium microbiota in one-month-old Brazilian newborns.

    PubMed

    Grześkowiak, Łukasz; Sales Teixeira, Tatiana Fiche; Bigonha, Solange Mara; Lobo, Guilherme; Salminen, Seppo; Ferreira, Celia Lucia de Luces Fortes

    2015-10-01

    Gut colonisation with bifidobacteria in early infancy is essential for the well-being of the infant. Gestational age and mode of delivery are among the factors influencing the colonisation process. The aim was to characterise the bifidobacterial composition in the gut of one-month-old full-term and pre-term Brazilian infants, both being delivered vaginally or by caesarean section. Fourty nine Brazilian (Viçosa, Minas Gerais state) one-month-old infants were divided in two groups: full-term (n = 24) and pre-term (n = 25), and compared to each other. Each group was then characterised according to its mode of delivery. Infant stool samples were available for bifidobacterial characterisation by quantitative polymerase chain reaction (qPCR) method. All study infants were colonised by bifidobacteria. Bifidobacterium longum colonised all full-term and pre-term newborns. Differences were observed in counts of Bifidobacterium genus and Bifidobacterium longum between full-term and pre-term infants (8.8 log cells/g, IQR 7.9-9.1 vs. 7.1 log cells/g, IQR 6.6-8.6, p = 0.02 and 8.3 log cells/g, IQR 6.7-9.1 vs. 6.4 log cells/g, IQR 6.1-6.7, p = 0.001, respectively). Furthermore, the prevalence of Bifidobacterium lactis differed between pre-term caesarean and pre-term vaginally born infants (50.0% vs. 93.8%, p = 0.023). Gut bifidobacterial composition of one-month-old full-term infants differs from that of pre-term newborns in Viçosa, Minas Gerais state, Brazil. Gestational age is a factor influencing bacterial numbers and species, while mode of delivery have an impact on the prevalence and quantity of bifidobacteria in studied infants. Bifidobacteria may have an impact on later health of the infants and the species B. longum and B. lactis might provide clues on the potential probiotic applications in pre-term newborns at the risk of developing postnatal complications. PMID:26204793

  15. Phylogenetic Analysis of the Bifidobacterium Genus Using Glycolysis Enzyme Sequences.

    PubMed

    Brandt, Katelyn; Barrangou, Rodolphe

    2016-01-01

    Bifidobacteria are important members of the human gastrointestinal tract that promote the establishment of a healthy microbial consortium in the gut of infants. Recent studies have established that the Bifidobacterium genus is a polymorphic phylogenetic clade, which encompasses a diversity of species and subspecies that encode a broad range of proteins implicated in complex and non-digestible carbohydrate uptake and catabolism, ranging from human breast milk oligosaccharides, to plant fibers. Recent genomic studies have created a need to properly place Bifidobacterium species in a phylogenetic tree. Current approaches, based on core-genome analyses come at the cost of intensive sequencing and demanding analytical processes. Here, we propose a typing method based on sequences of glycolysis genes and the proteins they encode, to provide insights into diversity, typing, and phylogeny in this complex and broad genus. We show that glycolysis genes occur broadly in these genomes, to encode the machinery necessary for the biochemical spine of the cell, and provide a robust phylogenetic marker. Furthermore, glycolytic sequences-based trees are congruent with both the classical 16S rRNA phylogeny, and core genome-based strain clustering. Furthermore, these glycolysis markers can also be used to provide insights into the adaptive evolution of this genus, especially with regards to trends toward a high GC content. This streamlined method may open new avenues for phylogenetic studies on a broad scale, given the widespread occurrence of the glycolysis pathway in bacteria, and the diversity of the sequences they encode. PMID:27242688

  16. Phylogenetic Analysis of the Bifidobacterium Genus Using Glycolysis Enzyme Sequences

    PubMed Central

    Brandt, Katelyn; Barrangou, Rodolphe

    2016-01-01

    Bifidobacteria are important members of the human gastrointestinal tract that promote the establishment of a healthy microbial consortium in the gut of infants. Recent studies have established that the Bifidobacterium genus is a polymorphic phylogenetic clade, which encompasses a diversity of species and subspecies that encode a broad range of proteins implicated in complex and non-digestible carbohydrate uptake and catabolism, ranging from human breast milk oligosaccharides, to plant fibers. Recent genomic studies have created a need to properly place Bifidobacterium species in a phylogenetic tree. Current approaches, based on core-genome analyses come at the cost of intensive sequencing and demanding analytical processes. Here, we propose a typing method based on sequences of glycolysis genes and the proteins they encode, to provide insights into diversity, typing, and phylogeny in this complex and broad genus. We show that glycolysis genes occur broadly in these genomes, to encode the machinery necessary for the biochemical spine of the cell, and provide a robust phylogenetic marker. Furthermore, glycolytic sequences-based trees are congruent with both the classical 16S rRNA phylogeny, and core genome-based strain clustering. Furthermore, these glycolysis markers can also be used to provide insights into the adaptive evolution of this genus, especially with regards to trends toward a high GC content. This streamlined method may open new avenues for phylogenetic studies on a broad scale, given the widespread occurrence of the glycolysis pathway in bacteria, and the diversity of the sequences they encode. PMID:27242688

  17. The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes.

    PubMed

    Moslehi-Jenabian, Saloomeh; Vogensen, Finn Kvist; Jespersen, Lene

    2011-10-01

    The luxS gene involved in quorum sensing has been shown to control different behaviour of probiotic lactobacilli. In this study we investigated if luxS in Lactobacillus acidophilus NCFM was up-regulated in response to Listeria monocytogenes EGD-e. The two bacterial strains were grown in mono- and co-culture and the growth of both bacteria and the transcriptional level of luxS in L. acidophilus cells were monitored. Contrary to L. acidophilus, the growth of L. monocytogenes was significantly affected by co-cultivation. Transcriptional analysis showed that the expression of luxS increased during exponential growth in L. acidophilus cells with the highest level in the late-exponential growth phase, decreasing in the stationary phase. Following co-cultivation with L. monocytogenes, the transcriptional level of luxS increased significantly in mid-exponential growing cells of L. acidophilus after incubation with viable L. monocytogenes cells and by addition of cell-free culture supernatant of L. monocytogenes, whereas incubation with heat killed cells of L. monocytogenes had no effect on the transcriptional level. This could indicate that the up-regulation of luxS is due to a response to a secreted compound produced by L. monocytogenes cells. PMID:21784546

  18. Enzymology and Structure of the GH13_31 Glucan 1,6-α-Glucosidase That Confers Isomaltooligosaccharide Utilization in the Probiotic Lactobacillus acidophilus NCFM

    PubMed Central

    Møller, Marie S.; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N.; Lo Leggio, Leila; Svensson, Birte

    2012-01-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents. PMID:22685275

  19. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM.

    PubMed

    Møller, Marie S; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N; Lo Leggio, Leila; Svensson, Birte; Abou Hachem, Maher

    2012-08-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents. PMID:22685275

  20. Draft genome sequences of two Bifidobacterium sp. from the honey bee (Apis mellifera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We provide genome sequences for two strains of honey bee associated Bifidobacterium. Reflecting an oxygen-rich niche, both strains possessed catalase, peroxidase, superoxide-dismutase and respiratory chain enzymes indicative of oxidative metabolism. The strains show markedly different carbohydrate ...

  1. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus

    PubMed Central

    Khoroshkin, Matvei S.; Leyn, Semen A.; Van Sinderen, Douwe; Rodionov, Dmitry A.

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics. PMID:26903998

  2. Effect of Bifidobacterium animalis B/12 administration in healthy dogs.

    PubMed

    Strompfová, Viola; Pogány Simonová, Monika; Gancarčíková, Soňa; Mudroňová, Dagmar; Farbáková, Jana; Mad'ari, Aladár; Lauková, Andrea

    2014-08-01

    Bifidobacterium species constitute the most frequently used health-enhancing bacteria in functional foods or probiotic products, and most of their health benefits have been demonstrated in human or mice studies. However, knowledge of the effects of these bacteria in the canine organism is very limited. In this study, the canine-derived strain Bifidobacterium animalis B/12 (10(9) CFU) was tested for its effects on faecal microbiota, faecal characteristics, faecal organic acid concentrations, blood biochemistry, haematological and immunological parameters in healthy dogs (C-control, BA-B. animalis B/12 group, 10 dogs in each). The experiment lasted for 49 days with a 14-day treatment period (sample collection at days 0, 7, 14, 21, 28, and 49). A significantly higher population of lactic acid bacteria was detected (day 7) while the counts of coliform bacteria were lower in faeces of the BA group (days 14, 21, 28, 49) compared to control group C. Faecal concentrations of acetic (day 7, 21, 28, 49), acetoacetic (7-49) and valeric acid (14) were higher in contrast to formic acid (day 7-21), which was decreased after the treatment. In blood serum, significantly lower concentrations of triglyceride (day 14) and albumin (day 14, 28, 49) and significantly higher levels of alanine aminotransferase (day 14) and alkaline phosphatase (day 14, 28) were observed in the BA dogs. The phagocytic activity of leukocytes (especially of neutrophils) was higher in dogs after 14-day consumption of B/12 strain (day 14). The results show that many of these effects could also still be recorded several weeks after the treatment period. PMID:24838022

  3. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis.

    PubMed

    Wei, Pijin; Yang, Yan; Liu, Zhaobing; Huang, Junli; Gong, Yahui; Sun, Hanxiao

    2016-07-01

    The oral delivery of peptides is a highly attractive treatment approach. However, the harsh environment of the gastrointestinal tract limits its application. Here, we utilize Bifidobacterium as a delivery system to orally deliver a potent anti-inflammatory but short duration peptide alpha-melanocyte-stimulating hormone (α-MSH) against experimental colitis. The aim of our study was to facilitate the efficient oral delivery of α-MSH. We designed a vector of pBDMSH and used it to construct a Bifidobacterium longum expressing α-MSH. We then determined the bioactivity of recombinant Bifidobacterium in lipopolysaccharide-induced inflammatory models of HT-29 cells. Finally, we used Bifidobacterium expressing α-MSH against dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Results based on the myeloperoxidase activity, the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10 and the histological injury of colon tissue reveal recombinant Bifidobacterium was efficient in attenuating DSS-induced ulcerative colitis, suggesting an alternative way to use Bifidobacterium as a delivery system to deliver α-MSH for DSS-induced ulcerative colitis therapy. PMID:26673899

  4. Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM.

    PubMed

    Douglas, Grace L; Klaenhammer, Todd R

    2011-10-01

    Lactobacillus acidophilus NCFM is a probiotic microbe that survives passage through the human gastrointestinal tract and interacts with the host epithelium and mucosal immune cells. The potential for L. acidophilus to express antigens at mucosal surfaces has been investigated with various antigens and plasmid expression vectors. Plasmid instability and antibiotic selection complicate the possibility of testing these constructs in human clinical trials. Integrating antigen encoding genes into the chromosome for expression is expected to eliminate selection requirements and provide genetic stability. In this work, a reporter gene encoding a β-glucuronidase (GusA3) was integrated into four intergenic chromosomal locations. The integrants were tested for genetic stability and GusA3 activity. Two locations were selected for insertion downstream of constitutively highly expressed genes, one downstream of slpA (LBA0169), encoding a highly expressed surface-layer protein, and one downstream of phosphopyruvate hydratase (LBA0889), a highly expressed gene with homologs in other lactic acid bacteria. An inducible location was selected downstream of lacZ (LBA1462), encoding a β-galactosidase. A fourth location was selected in a low-expression region. The expression of gusA3 was evaluated from each location by measuring GusA3 activity on 4-methyl-umbelliferyl-β-d-glucuronide (MUG). GusA3 activity from both highly expressed loci was more than three logs higher than the gusA3-negative parent, L. acidophilus NCK1909. GusA3 activity from the lacZ locus was one log higher in cells grown in lactose than in glucose. The differences in expression levels between integration locations highlights the importance of rational targeting with gene cassettes intended for chromosomal expression. PMID:21873486

  5. Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol.

    PubMed

    Björklund, Marika; Ouwehand, Arthur C; Forssten, Sofia D; Nikkilä, Janne; Tiihonen, Kirsti; Rautonen, Nina; Lahtinen, Sampo J

    2012-08-01

    Ageing changes gut microbiota composition and alters immune system function. Probiotics, prebiotics and synbiotics may improve the health status of elderly individuals by modifying the intestinal environment and the microbiota composition, and by stimulating the immune system. In this work, we studied the effects of synbiotic supplementation on the gut microbiota of healthy elderly volunteers. Fifty-one elders were randomly assigned to consume either a synbiotic dietary supplement or a placebo in addition to their usual diet for a 2-week period. The synbiotic product consisted of the probiotic Lactobacillus acidophilus NCFM and the prebiotic lactitol and was ingested twice a day, with a total daily dose of 10 g lactitol and 2 × 10(10) cells of probiotic bacteria. Before, during and after the intervention period fecal quantities of six phylogenetic bacterial groups were determined using quantitative PCR, and relative changes in total microbiota composition were assessed by percent guanine-plus-cytosine profiling. The microbiota profiles showed certain relative changes within the microbial community, and indicated an increase of bifidobacteria levels during synbiotic supplementation. Quantification by PCR confirmed the in changes in the microbiota composition; for example increases in total levels of endogenous bifidobacteria and lactobacilli were recorded. Throughout the 6-week study period there was a decrease unrelated to intervention in the Blautia coccoides-Eubacterium rectale bacterial group levels and Clostridium cluster XIVab levels, but this decrease appeared to be halted during the synbiotic intervention. In conclusion, putatively beneficial changes in microbiota were observed in the elderly subjects supplemented with the synbiotic product. PMID:21853265

  6. Characterization of the genus Bifidobacterium by automated ribotyping and 16S rRNA gene sequences.

    PubMed

    Sakata, Shinji; Ryu, Chun Sun; Kitahara, Maki; Sakamoto, Mitsuo; Hayashi, Hidenori; Fukuyama, Masafumi; Benno, Yoshimi

    2006-01-01

    In order to characterize the genus Bifidobacterium, ribopatterns and approximately 500 bp (Escherichia coli positions 27 to 520) of 16S rRNA gene sequences of 28 type strains and 64 reference strains of the genus Bifidobacterium were determined. Ribopatterns obtained from Bifidobacterium strains were divided into nine clusters (clusters I-IX) with a similarity of 60%. Cluster V, containing 17 species, was further subdivided into 22 subclusters with a similarity of 90%. In the genus Bifidobacterium, four groups were shown according to Miyake et al.: (i) the Bifidobacterium longum infantis-longum-suis type group, (ii) the B. catenulatum-pseudocatenulatum group, (iii) the B. gallinarum-saeculare-pullorum group, and (iv) the B. coryneforme-indicum group, which showed higher than 97% similarity of the 16S rRNA gene sequences in each group. Using ribotyping analysis, unique ribopatterns were obtained from these species, and they could be separated by cluster analysis. Ribopatterns of six B. adolescentis strains were separated into different clusters, and also showed diversity in 16S rRNA gene sequences. B. adolescentis consisted of heterogeneous strains. The nine strains of B. pseudolongum subsp. pseudolongum were divided into five subclusters. Each type strain of B. pseudolongum subsp. pseudolongum and B. pseudolongum subsp. globosum and two intermediate groups, which were suggested by Yaeshima et al., consisted of individual clusters. B. animalis subsp. animalis and B. animalis subsp. lactis could not be separated by ribotyping using Eco RI. We conclude that ribotyping is able to provide another characteristic of Bifidobacterium strains in addition to 16S rRNA gene sequence phylogenetic analysis, and this information suggests that ribotyping analysis is a useful tool for the characterization of Bifidobacterium species in combination with other techniques for taxonomic characterization. PMID:16428867

  7. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut

    PubMed Central

    Underwood, Mark A.; German, J. Bruce; Lebrilla, Carlito B.; Mills, David A.

    2015-01-01

    Oligosaccharides are abundant in human milk. Production of these highly diverse structures requires significant energy expenditure by the mother and yet these human milk oligosaccharides offer no direct nutritive value to her infant. A primary function of human milk oligosaccharides is to shape the infant’s intestinal microbiota with life-long consequences. Bifidobacterium longum subspecies infantis (B. infantis) is unique among gut bacteria in its prodigious capacity to digest and consume any human milk oligosaccharide structure, the result of a large repertoire of bacterial genes encoding an array of glycosidases and oligosaccharide transporters not found in other bacterial species. In vitro, B. infantis grows better than other bacterial strains in the presence of human milk oligosaccharides, displays anti-inflammatory activity in premature intestinal cells, and decreases intestinal permeability. In premature infants, B. infantis given in combination with human milk increases B. infantis and decreases Enterobacteriaceae in the feces. Probiotics containing B. infantis decrease the risk of necrotizing enterocolitis in premature infants. Colonization with B. infantis is also associated with increased vaccine responses. Probiotic organisms have historically been selected based on ease of production and stability. The advantages of B. infantis, selected through coevolution with human milk glycans, present an opportunity for focused manipulation of the infant intestinal microbiota. PMID:25303277

  8. Cellodextrin Utilization by Bifidobacterium breve UCC2003▿ †

    PubMed Central

    Pokusaeva, Karina; O'Connell-Motherway, Mary; Zomer, Aldert; MacSharry, John; Fitzgerald, Gerald F.; van Sinderen, Douwe

    2011-01-01

    Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldRHis (produced by the incorporation of a His12-encoding sequence into the 3′ end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldRHis, which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins. PMID:21216899

  9. Yacon flour and Bifidobacterium longum modulate bone health in rats.

    PubMed

    Rodrigues, Fabiana Carvalho; Castro, Adriano Simões Barbosa; Rodrigues, Vívian Carolina; Fernandes, Sérgio Antônio; Fontes, Edimar Aparecida Filomeno; de Oliveira, Tânia Toledo; Martino, Hércia Stampini Duarte; de Luces Fortes Ferreira, Célia Lúcia

    2012-07-01

    Yacon flour has been considered a food with prebiotic potential because of the high levels of fructooligosaccharides, which allows for its use in formulating synbiotic foods. The purpose of this study was to evaluate the effect of yacon flour and probiotic (Bifidobacterium longum) on the modulation of variables related to bone health. Thirty-two Wistar rats were divided into 4 groups: control, yacon flour, diet+B. longum, and yacon flour+B. longum. After euthanasia, the bones were removed for analysis of biomechanical properties (thickness, length, and strength of fracture) and mineral content (Ca, Mg, and P); the cecum was removed for analysis of the microbiota and short-chain fatty acids. Tibia Ca, P, and Mg content was significantly (P<.05) higher in groups fed diet+B. longum, yacon flour+B. longum than in the control group. An increase in fracture strength was observed in the yacon flour (8.1%), diet+B. longum (8.6%), and yacon flour+B. longum (14.6%) in comparison to the control group. Total anaerobe and weight of the cecum were higher (P<.05) in rats consuming the yacon flour diet compared with the other groups. Cecal concentration of propionate was higher in all experimental groups compared with the control (P<.05). Yacon flour in combination with B. longum helped increase the concentration of minerals in bones, an important factor in the prevention of diseases such as osteoporosis. PMID:22510044

  10. Anti-viral Effect of Bifidobacterium adolescentis against Noroviruses

    PubMed Central

    Li, Dan; Breiman, Adrien; le Pendu, Jacques; Uyttendaele, Mieke

    2016-01-01

    This study aims to investigate the effect of Bifidobacterium adolescentis against noroviruses (NoVs). Murine norovirus-1 (MNV-1) used as a surrogate was detected by plaque assay and RT-qPCR. Human NoV virus like particles (VLPs) were detected by cell-binding assay. It was shown that the presence of B. adolescentis could inhibit the multiplication of MNV-1 on RAW 264.7 cells within 48 h of co-incubation period at 37°C. This inhibition did not occur at the viral binding stage, as no difference was observed in MNV-1 genomic copies collected from washed RAW 264.7 cells without and with B. adolescentis after co-incubation for 1 h at room temperature. Meanwhile, the presence of B. adolescentis decreased the binding of human NoV GI.1 VLPs to both Caco-2 cells and HT-29 cells, while no reduction was induced for the binding of human NoV GII.4 VLPs to Caco-2 cells. PMID:27375585

  11. Identification, Detection, and Enumeration of Human Bifidobacterium Species by PCR Targeting the Transaldolase Gene

    PubMed Central

    Requena, Teresa; Burton, Jeremy; Matsuki, Takahiro; Munro, Karen; Simon, Mary Alice; Tanaka, Ryuichiro; Watanabe, Koichi; Tannock, Gerald W.

    2002-01-01

    Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations. PMID:11976117

  12. Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut

    PubMed Central

    Bottacini, Francesca; Milani, Christian; Turroni, Francesca; Sánchez, Borja; Foroni, Elena; Duranti, Sabrina; Serafini, Fausta; Viappiani, Alice; Strati, Francesco; Ferrarini, Alberto; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Fitzgerald, Gerald F.; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2012-01-01

    Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration. PMID:23028506

  13. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery

    PubMed Central

    Yeung, Timothy W.; Üçok, Elif F.; Tiani, Kendra A.; McClements, David J.; Sela, David A.

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions. PMID:27148184

  14. Intestinal Microbiota in Pediatric Surgical Cases Administered Bifidobacterium Breve: A Randomized Controlled Trial.

    PubMed

    Okazaki, Tadaharu; Asahara, Takashi; Yamataka, Atsuyuki; Ogasawara, Yuki; Lane, Geoffrey J; Nomoto, Koji; Nagata, Satoru; Yamashiro, Yuichiro

    2016-07-01

    The efficacy of perioperative probiotic administration has been reported in adults. We examined the effects of orally administered Bifidobacterium breve strain Yakult (BBG-01) on outcomes in pediatric surgical cases by assessing intestinal and blood microbiota. BBG-01 was well tolerated without adverse effects, and postoperative infectious complications were significantly decreased. Fecal analysis showed increased Bifidobacterium and decreased Enterobacteriaceae, Clostridium difficile, and Pseudomonas. Concentrations of fecal acetic acid were significantly increased, maintaining fecal pH at <7.0. The incidence of detecting bacteria in blood was significantly reduced. BBG-01 improved the intestinal environment, and may be implicated in suppressing bacterial translocation. PMID:26859092

  15. Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM.

    PubMed

    Goh, Yong Jun; Azcárate-Peril, M Andrea; O'Flaherty, Sarah; Durmaz, Evelyn; Valence, Florence; Jardin, Julien; Lortal, Sylvie; Klaenhammer, Todd R

    2009-05-01

    In silico genome analysis of Lactobacillus acidophilus NCFM coupled with gene expression studies have identified putative genes and regulatory networks that are potentially important to this organism's survival, persistence, and activities in the gastrointestinal tract. Correlation of key genotypes to phenotypes requires an efficient gene replacement system. In this study, use of the upp-encoded uracil phosphoribosyltransferase (UPRTase) of L. acidophilus NCFM was explored as a counterselection marker to positively select for recombinants that have resolved from chromosomal integration of pORI-based plasmids. An isogenic mutant carrying a upp gene deletion was constructed and was resistant to 5-fluorouracil (5-FU), a toxic uracil analog that is also a substrate for UPRTase. A 3.0-kb pORI-based counterselectable integration vector bearing a upp expression cassette, pTRK935, was constructed and introduced into the Deltaupp host harboring the pTRK669 helper plasmid. Extrachromosomal replication of pTRK935 complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. This host background provides a platform for a two-step plasmid integration and excision strategy that can select for plasmid-free recombinants with either the wild-type or mutated allele of the targeted gene in the presence of 5-FU. The efficacy of the system was demonstrated by in-frame deletion of the slpX gene (LBA0512) encoding a novel 51-kDa secreted protein associated with the S-layer complex of L. acidophilus. The resulting DeltaslpX mutant exhibited lower growth rates, increased sensitivity to sodium dodecyl sulfate, and greater resistance to bile. Overall, this improved gene replacement system represents a valuable tool for investigating the mechanisms underlying the probiotic functionality of L. acidophilus. PMID:19304841

  16. Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens.

    PubMed

    Delcaru, Cristina; Alexandru, Ionela; Podgoreanu, Paulina; Cristea, Violeta Corina; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Lazar, Veronica

    2016-06-01

    The gastrointestinal microbiota contributes to the consolidation of the anti-infectious barrier against enteric pathogens. The purpose of this study was to investigate the influence of Bifidobacterium sp. strains, recently isolated from infant gastrointestinal microbiota on the in vitro growth and virulence features expression of enteropathogenic bacterial strains. The antibacterial activity of twelve Bifidobacterium sp. strains isolated from human feces was examined in vitro against a wide range of Gram negative pathogenic strains isolated from 30 infant patients (3 days to 5 years old) with diarrhea. Both potential probiotic strains (Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium catenulatum, Bifidobacterium breve, Bifidobacterium ruminantium) and enteropathogenic strains (EPEC, EIEC, Klebsiella pneumoniae, Salmonella sp., Yersinia enterocolitica, Pseudomonas aeruginosa) were identified by MALDI-TOF and confirmed serologically when needed. The bactericidal activity, growth curve, adherence to the cellular HEp-2 substratum and production of soluble virulence factors have been assessed in the presence of different Bifidobacterium sp. cultures and fractions (whole culture and free-cell supernatants). Among the twelve Bifidobacterium sp. strains, the largest spectrum of antimicrobial activity against 9 of the 18 enteropathogenic strains was revealed for a B. breve strain recently isolated from infant intestinal feces. The whole culture and free-cell supernatant of B. breve culture decreased the multiplication rate, shortened the log phase and the total duration of the growth curve, with an earlier entrance in the decline phase and inhibited the adherence capacity to a cellular substratum and the swimming/swarming motility too. These results indicate the significant probiotic potential of the B. breve strain. PMID:26921694

  17. Specific Bifidobacterium strains isolated from elderly subjects inhibit growth of Staphylococcus aureus.

    PubMed

    Lahtinen, Sampo J; Jalonen, Lotta; Ouwehand, Arthur C; Salminen, Seppo J

    2007-06-10

    Cell-free, pH-controlled supernatants of thirty-eight Bifidobacterium strains isolated from healthy elderly subjects were subjected to antimicrobial activity assay. Bioluminescent indicator strains Staphylococcus aureus RN4220, Escherichia coli K-12, and Salmonella enterica serovar Typhimurium ATCC 14028 were used as targets of antimicrobial activity. The effect of nutrient depletion on the inhibition was eliminated with spent-culture controls. Three out of thirty-eight Bifidobacterium strains were capable of inhibiting the growth of S. aureus. The inhibition was equal to 23.2+/-19.1% to 50.4+/-26.7% of the inhibition caused by 50 IU/ml nisin. Reuterin-producing positive strain Lactobacillus reuteri SD2112 was capable of 86.0+/-24.6% inhibition, but Bifidobacterium lactis Bb-12, a known probiotic strain, showed no inhibition. None of the strains was capable of inhibiting the growth of E. coli or S. enterica. The observed inhibition by bifidobacteria was related to hydrogen peroxide formation and possible production of heat-stable proteinaceous compounds. The results suggest that production of antimicrobial substances other than organic acids is not common among Bifidobacterium strains typical of elderly subjects. However, specific strains were identified which showed considerable inhibitory activity against S. aureus. PMID:17462772

  18. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium

    PubMed Central

    Briner, Alexandra E.; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Turroni, Francesca; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco; Barrangou, Rodolphe

    2015-01-01

    CRISPR-Cas systems constitute adaptive immune systems for antiviral defense in bacteria. We investigated the occurrence and diversity of CRISPR-Cas systems in 48 Bifidobacterium genomes to gain insights into the diversity and co-evolution of CRISPR-Cas systems within the genus and investigate CRISPR spacer content. We identified the elements necessary for the successful targeting and inference of foreign DNA in select Type II CRISPR-Cas systems, including the tracrRNA and target PAM sequence. Bifidobacterium species have a very high frequency of CRISPR-Cas occurrence (77%, 37 of 48). We found that many Bifidobacterium species have unusually large and diverse CRISPR-Cas systems that contain spacer sequences showing homology to foreign genetic elements like prophages. A large number of CRISPR spacers in bifidobacteria show perfect homology to prophage sequences harbored in the chromosomes of other species of Bifidobacterium, including some spacers that self-target the chromosome. A correlation was observed between strains that lacked CRISPR-Cas systems and the number of times prophages in that chromosome were targeted by other CRISPR spacers. The presence of prophage-targeting CRISPR spacers and prophage content may shed light on evolutionary processes and strain divergence. Finally, elements of Type II CRISPR-Cas systems, including the tracrRNA and crRNAs, set the stage for the development of genome editing and genetic engineering tools. PMID:26230606

  19. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta).

    PubMed

    Modesto, Monica; Michelini, Samanta; Stefanini, Ilaria; Sandri, Camillo; Spiezio, Caterina; Pisi, Annamaria; Filippini, Gianfranco; Biavati, Bruno; Mattarelli, Paola

    2015-06-01

    Four Gram-positive-staining, microaerophilic, non-spore-forming, fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from a faecal sample of a 5-year-old ring-tailed lemur (Lemur catta). The strains showed a peculiar morphology, resembling a small coiled snake, a ring shape, or forming a little 'Y' shape. The isolated strains appeared identical, and LMC 13T was chosen as a representative strain and characterized further. Strain LMC 13T showed an A3β peptidoglycan type, similar to that found in Bifidobacterium longum. The DNA base composition was 57.2 mol% G+C. Almost-complete 16S rRNA, hsp60, rpoB, dnaJ, dnaG, purF, clpC and rpoC gene sequences were obtained, and phylogenetic relationships were determined. Comparative analysis of 16S rRNA gene sequences showed that strain LMC 13T showed the highest similarity to B. longum subsp. suis ATCC 27533T (96.65 %) and Bifidobacterium saguini DSM 23967T (96.64 %). Strain LMC 13T was located in an actinobacterial cluster and was more closely related to the genus Bifidobacteriumthan to other genera in the Bifidobacteriaceae. On the basis of these results, strain LMC 13T represents a novel species within the genus Bifidobacterium, for which the name Bifidobacterium lemurum sp. nov. is proposed; the type strain is LMC 13T ( = DSM 28807T = JCM 30168T). PMID:25736415

  20. Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Tsuchida, Sayaka; Takahashi, Shunsuke; Nguema, Pierre Philippe Mbehang; Fujita, Shiho; Kitahara, Maki; Yamagiwa, Juichi; Ngomanda, Alfred; Ohkuma, Moriya; Ushida, Kazunari

    2014-02-01

    Gram-staining-positive anaerobic rods were isolated from the faeces of a wild lowland gorilla (Gorilla gorilla gorilla) in Moukalaba-Doudou National Park, Gabon, and strain GG01(T) was taxonomically investigated. Based on phylogenetic analyses and specific phenotypic characteristics, the strain belonged to the genus Bifidobacterium. Phylogenetic analysis of its 16S rRNA gene sequence revealed that strain GG01(T) formed a single monophyletic cluster and had a distinct line of descent. Based on 16S rRNA gene sequence similarity, the type strains of Bifidobacterium catenulatum JCM 1194(T) (98.3%) and Bifidobacterium pseudocatenulatum (98.1%) JCM 1200(T) were the most closely related to this novel strain, although it was clear that they belonged to different species. hsp60 sequences also supported these relationships. The DNA G+C content of this novel strain was 60.1 mol%. Bifidobacterium moukalabense sp. nov. (type strain GG01(T) = JCM 18751(T) = DSM 27321(T)) is proposed. PMID:24158945

  1. Genomic and fluxomic analysis of carbohydrate metabolism in Bifidobacterium spp: human symbiotic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bifidobacteria are gram-positive microorganisms widely applied in fermented dairy products due to their health-promoting effects. Bifidobacterium ssp. may also represent up to 91% of microbial gut population in the infant colon, but considerably less in adults. Fructose-6 phosphate phosphoketolase...

  2. Use of Bifidobacterium dentium as an Indicator of the Origin of Fecal Water Pollution

    PubMed Central

    Nebra, Yolanda; Bonjoch, Xavier; Blanch, Anicet R.

    2003-01-01

    A new, simple, and specific protocol to discriminate between human and animal fecal pollution is described. The procedure is based on the detection of certain Bifidobacterium species in the samples. Two 16S rRNA gene-targeted probes are described. One of these probes (BDE) has as its target a region of the 16S rRNA gene of Bifidobacterium dentium, a Bifidobacterium species of exclusively human origin. The other probe (BAN) is based on the sequence of a region of 16S rRNA gene for several Bifidobacterium species related with animal origins. The specificity of both probes was evaluated by using 24 Bifidobacterium species, and their threshold detection limit was established by DNA-DNA hybridization. DNA-DNA hybridization with the BDE probe showed it to be specific for B. dentium, whereas that with the BAN probe showed it to be specific for B. animalis, B. asteroides, B. coryneforme, B. cuniculi, B. globosum, B. magnum, B. minimum, and B. subtile. A simple and specific protocol was also developed for the detection of their target species in environmental samples (sewage and feces). DNA-DNA hybridization with the BAN probe was only positive for samples from cattle and goats. Thus, this probe is not suitable for the identification of any animal fecal pollution. Whereas all samples with human fecal pollution showed a positive DNA-DNA hybridization result with the BDE probe, none of those with animal fecal pollution did. Therefore, this finding supports the potential use of this probe in detecting fecal pollution of human origin. PMID:12732533

  3. The genome sequence of bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum ssp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting ...

  4. Bifidobacterium longum lysate, a new ingredient for reactive skin.

    PubMed

    Guéniche, Audrey; Bastien, Philippe; Ovigne, Jean Marc; Kermici, Michel; Courchay, Guy; Chevalier, Veronique; Breton, Lionel; Castiel-Higounenc, Isabelle

    2010-08-01

    Reactive skin is characterized by marked sensitivity to physical (heat, cold, wind) or chemical (topically applied products) stimuli and by the impairment of the skin barrier's ability to repair itself. Several lines of evidence suggest that beyond their capacity to positively influence the composition of intestinal microbiota, some probiotic bacteria can modulate the immune system both at local and systemic levels, thereby improving immune defense mechanisms and/or down-regulating immune disorders such as allergies and intestinal inflammation. Several recent human clinical trials clearly suggest that probiotic supplementation might be beneficial to the skin. Using a probiotic lysate, Bifidobacterium longum sp. extract (BL), we demonstrated first in vitro, and then in a clinical trial, that this non-replicating bacteria form applied to the skin was able to improve sensitive skin. The effect of BL were evaluated first on two different models. Using ex vivo human skin explant model we found a statistically significant improvement versus placebo in various parameters associated with inflammation such as a decrease in vasodilation, oedema, mast cell degranulation and TNF-alpha release. Moreover, using nerve cell cultures in vitro, we showed that after 6 h of incubation in culture medium (0.3-1%), the probiotic lysate significantly inhibited capsaicin-induced CGRP release by neurones. Then, a topical cream containing the active extract was tested in a randomized, double-blind, placebo-controlled trial. Sixty-six female volunteers with reactive skin were randomly given either the cream with the bacterial extract at 10% (n = 33) or the control cream (n = 33). The volunteers applied the cream to the face, arms and legs twice a day for two months. Skin sensitivity was assessed by stinging test (lactic acid) and skin barrier recovery was evaluated by measuring trans-epidermal water loss following barrier disruption induced by repeated tape-stripping at D1, D29 and D57. The

  5. Increased growth of Bifidobacterium and Eubacterium by germinated barley foodstuff, accompanied by enhanced butyrate production in healthy volunteers.

    PubMed

    Kanauchi, O; Fujiyama, Y; Mitsuyama, K; Araki, Y; Ishii, T; Nakamura, T; Hitomi, Y; Agata, K; Saiki, T; Andoh, A; Toyonaga, A; Bamba, T

    1999-02-01

    Germinated barley foodstuff (GBF) derived from the aleurone and scutellum fractions of germinated barley mainly consists of low-lignified hemicellulose and glutamine-rich protein. GBF improves the proliferation of intestinal epithelial cells and defecation, through the bacterial production of short chain fatty acids (SCFA), especially butyrate. In this study we investigated the mechanism of production of butyrate by microflora in humans and in vitro. Daily administration of 9 g GBF for 14 successive days significantly increased fecal butyrate content. Fecal Bifidobacterium and Eubacterium were also significantly increased by GBF administration in healthy volunteers. Ten anaerobic micro-organisms selected from intestinal microflora were cultured in vitro in the medium containing GBF as a sole carbon source (GBF medium). After a 3-day incubation, 7 strains (Bifidobacterium breve, Bifidobacterium longum, Lactobacillus acidophilus, Lactobacillus casei subsp. casei, Bacteroides ovatus, Clostridium butyricum, and Eubacterium limosum) lowered the medium pH producing SCFA. Eubacterium grown together with Bifidobacterium in GBF medium efficiently produced butyrate. On the other hand, GBF changed the intestinal microflora and increased probiotics such as Bifidobacterium in the intestinal tract. As a result, butyrate was produced by the mutual action of Eubacterium and Bifidobacterium. This butyrate is considered to enhance the proliferation of colonic epithelial cells. PMID:9917526

  6. Metabolism of Four α-Glycosidic Linkage-Containing Oligosaccharides by Bifidobacterium breve UCC2003

    PubMed Central

    O'Connell, Kerry Joan; O'Connell Motherway, Mary; O'Callaghan, John; Fitzgerald, Gerald F.; Ross, R. Paul; Ventura, Marco; Stanton, Catherine

    2013-01-01

    Members of the genus Bifidobacterium are common inhabitants of the gastrointestinal tracts of humans and other mammals, where they ferment many diet-derived carbohydrates that cannot be digested by their hosts. To extend our understanding of bifidobacterial carbohydrate utilization, we investigated the molecular mechanisms by which 11 strains of Bifidobacterium breve metabolize four distinct α-glucose- and/or α-galactose-containing oligosaccharides, namely, raffinose, stachyose, melibiose, and melezitose. Here we demonstrate that all B. breve strains examined possess the ability to utilize raffinose, stachyose, and melibiose. However, the ability to metabolize melezitose was not common to all B. breve strains tested. Transcriptomic and functional genomic approaches identified a gene cluster dedicated to the metabolism of α-galactose-containing carbohydrates, while an adjacent gene cluster, dedicated to the metabolism of α-glucose-containing melezitose, was identified in strains that are able to use this carbohydrate. PMID:23913435

  7. Extracellular dextranase activity produced by human oral strains of the genus Bifidobacterium.

    PubMed Central

    Kaster, A G; Brown, L R

    1983-01-01

    Three strains of anaerobic, dextranase-producing, gram-positive, rod-shaped bacteria were isolated from human dental plaque associated with root carious lesions. The isolates produced a molar ratio of acetate to lactate from glucose fermentation ranging from 1.1 to 1.9. Each strain also produced fructose-6-phosphate phosphoketolase. The isolates were identified as belonging to the genus Bifidobacterium, but from their carbohydrate fermentation patterns they did not appear to be strains of Bifidobacterium dentium. These microorganisms fermented high-molecular-weight dextrans. A partial characterization of the dextranase activity was included in this study and revealed an extracellular dextranase with a pH optimum of 7.1. Analysis of the dextran degradation products demonstrated the liberation of saccharides larger than 1 glucose unit. It was concluded that this enzyme used an endohydrolytic mode of dextran cleavage. PMID:6642650

  8. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity.

    PubMed

    Ventura, Marco; Turroni, Francesca; Zomer, Aldert; Foroni, Elena; Giubellini, Vanessa; Bottacini, Francesca; Canchaya, Carlos; Claesson, Marcus J; He, Fei; Mantzourani, Maria; Mulas, Laura; Ferrarini, Alberto; Gao, Beile; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Oggioni, Marco; Gupta, Radhey S; Zhang, Ziding; Beighton, David; Fitzgerald, Gerald F; O'Toole, Paul W; van Sinderen, Douwe

    2009-12-01

    Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens. PMID

  9. Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health.

    PubMed

    Kwon, Soon-Kyeong; Kwak, Min-Jung; Seo, Jae-Gu; Chung, Myung Jun; Kim, Jihyun F

    2015-11-20

    Bifidobacteria constitute a major group of beneficial intestinal bacteria, and are therefore often used to formulate probiotic products in combination with lactic acid bacteria. The availability of bifidobacterial genome sequences has broadened our knowledge on health-promoting factors as well as their safety assessments. Here, we present the complete genome sequence of Bifidobacterium longum CBT BG7 that consists of a 2.45-Mb chromosome and a plasmid. PMID:26439427

  10. The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity

    PubMed Central

    Ventura, Marco; Turroni, Francesca; Zomer, Aldert; Foroni, Elena; Giubellini, Vanessa; Bottacini, Francesca; Canchaya, Carlos; Claesson, Marcus J.; He, Fei; Mantzourani, Maria; Mulas, Laura; Ferrarini, Alberto; Gao, Beile; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Oggioni, Marco; Gupta, Radhey S.; Zhang, Ziding; Beighton, David; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2009-01-01

    Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens. PMID

  11. Efficient one-pot enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase.

    PubMed

    Nakai, Hiroyuki; Dilokpimol, Adiphol; Abou Hachem, Maher; Svensson, Birte

    2010-05-27

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMalP) of glycoside hydrolase family 65 catalysed enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides from maltose and five monosaccharides in a coupled phosphorolysis/reverse phosphorolysis one-pot reaction. Thus phosphorolysis of maltose to beta-glucose 1-phosphate circumvented addition of costly beta-glucose 1-phosphate for reverse phosphorolysis with different monosaccharide acceptors, resulting in 91%, 89%, 88%, 86% and 84% yield of alpha-d-glucopyranosyl-(1-->4)-N-acetyl-D-glucosaminopyranose [N-acetyl-maltosamine], alpha-D-glucopyranosyl-(1-->4)-D-glucosaminopyranose [maltosamine], alpha-D-glucopyranosyl-(1-->4)-D-mannopyranose, alpha-D-glucopyranosyl-(1-->4)-L-fucopyranose and alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose, respectively, from 0.1M maltose, 0.5M N-acetyl glucosamine, 0.1M glucosamine, 0.1M mannose, 1M L-fucose and 0.5M xylose in 0.2M phosphate-citrate pH 6.2. These current yields of 0.27-0.34 g of disaccharide products from 10 mL reaction mixtures are easy to scale up and moreover the strategy can be applied to large-scale production of other oligosaccharides from low-cost disaccharides as catalysed by phosphorylases with different substrate specificities. PMID:20392438

  12. Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota.

    PubMed

    Shimizu, Hidenori; Benno, Yoshimi

    2015-11-01

    A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132(T) and B. longum JCM1217(T) ) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required. PMID:26486646

  13. Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population

    PubMed Central

    Lê, Kim-Anne; Li, Yan; Xu, Xiaojing; Yang, Wanting; Liu, Tingting; Zhao, Xiaoning; Tang, Yongming Gorge; Cai, Dehong; Go, Vay Liang W.; Pandol, Stephen; Hui, Hongxiang

    2013-01-01

    Background: The connection between gut microbiota and metabolism and its role in the pathogenesis of diabetes are increasingly recognized. The objective of this study was to quantitatively measure Bifidobacterium and Lactobacillus species, members of commensal bacteria found in human gut, in type 2 diabetic patients (T2D) patients from Southern China. Methods: Fifty patients with T2D and thirty control individuals of similar body mass index (BMI) were recruited from Southern China. T2D and control subjects were confirmed with both oral glucose tolerance test (OGTT) and HbA1c measurements. Bifidobacterium and Lactobacillus species in feces were measured by real-time quantitative PCR. Data were analyzed with STATA 11.0 statistical software. Results: In comparison to control subjects T2D patients had significantly more total Lactobacillus (+18%), L. bugaricus (+13%), L. rhamnosum (+37%) and L. acidophilus (+48%) (P < 0.05). In contrast, T2D patients had less amounts of total Bifidobacteria (−7%) and B. adolescentis (−12%) (P < 0.05). Cluster analysis showed that gut microbiota pattern of T2D patients is characterized by greater numbers of L. rhamnosus and L. acidophillus, together with lesser numbers of B. adolescentis (P < 0.05). Conclusion: The gut microflora in T2D patients is characterized by greater numbers of Lactobacillus and lesser numbers of Bifidobacterium species. PMID:23386831

  14. Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcus on enteroaggregative Escherichia coli.

    PubMed

    Miyazaki, Yoshibumi; Kamiya, Shigeru; Hanawa, Tomoko; Fukuda, Minoru; Kawakami, Hayato; Takahashi, Hidemi; Yokota, Hiroyuki

    2010-02-01

    The effects of nine probiotic strains of Lactobacillus, Bifidobacterium, and Enterococcus on the growth, adhesion activity, and biofilm formation of enteroaggregative Escherichia coli (EAggEC) were examined. The culture supernatant of the E. faecium strain, with or without pH adjustment to a neutral pH, had a strong bactericidal effect on EAggEC, including induction of membrane damage and cell lysis. Supernatants of the L. casei ss. casei and L. casei ss. rhamnosus strains also had a bactericidal effect on EAggEC, but this activity was abolished by pH adjustment to a neutral pH. No inhibitory effect of the culture supernatants of Bifidobacterium or E. faecalis strains was detected. Adhesion of EAggEC to intestinal epithelial cells was not inhibited by the bacterial strains tested. Two strains of L. casei enhanced EAggEC biofilm formation, which was characterized by increased bacterial proliferation. These results suggest that the three different bacterial species; Lactobacillus, Bifidobacterium, and Enterococcus, have different effects on EAggEC, and that further analysis is required for the practical use of these bacteria as probiotics against EAggEC infection. PMID:20054601

  15. A proteomic approach towards understanding the cross talk between Bacteroides fragilis and Bifidobacterium longum in coculture.

    PubMed

    Rios-Covián, David; Sánchez, Borja; Martínez, Noelia; Cuesta, Isabel; Hernández-Barranco, Ana M; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel

    2016-07-01

    A better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction. To this end, we applied proteomic (2D-DIGE) analyses, and by chromatographic techniques we quantified the bacterial metabolites produced during coincubation. Coculture stimulated the growth of B. longum, retarding that of B. fragilis, with concomitant changes in the production of some proteins and metabolites of both bacteria. The combined culture promoted upregulation of the bifidobacterial pyruvate kinase and downregulation of the Bacteroides phosphoenolpyruvate carboxykinase - 2 enzymes involved in the catabolism of carbohydrates. Moreover, B. fragilis FKBP-type peptidyl-prolyl cis-trans isomerase, a protein with chaperone-like activity, was found to be overproduced in coculture, suggesting the induction of a stress response in this microorganism. This study provides mechanistic data to deepen our understanding of the interaction between Bacteroides and Bifidobacterium intestinal populations. PMID:27156738

  16. Immune modulating capability of two exopolysaccharide-producing Bifidobacterium strains in a Wistar rat model.

    PubMed

    Salazar, Nuria; López, Patricia; Garrido, Pablo; Moran, Javier; Cabello, Estefanía; Gueimonde, Miguel; Suárez, Ana; González, Celestino; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia

    2014-01-01

    Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 10(9) cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF- β cytokine occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models. PMID:24971309

  17. Immune Modulating Capability of Two Exopolysaccharide-Producing Bifidobacterium Strains in a Wistar Rat Model

    PubMed Central

    López, Patricia; Moran, Javier; Cabello, Estefanía; Suárez, Ana; González, Celestino; de los Reyes-Gavilán, Clara G.

    2014-01-01

    Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 109 cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF-β cytokine occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models. PMID:24971309

  18. Oral delivery of Bifidobacterium longum expressing α-melanocyte-stimulating hormone to combat ulcerative colitis.

    PubMed

    Wei, Pijin; Yang, Yan; Ding, Qing; Li, Xiuying; Sun, Hanxiao; Liu, Zhaobing; Huang, Junli; Gong, Yahui

    2016-02-01

    α-Melanocyte-stimulating hormone (α-MSH) is a tridecapeptide derived from pro-opiomelanocortin that exhibits potent anti-inflammatory properties by regulating the production of inflammatory mediators. This peptide has been well established in several inflammatory models, including inflammatory bowel disease (IBD). However, its extremely short duration in vivo limits its clinical application. To address this limitation, Bifidobacterium was used here as a carrier to deliver α-MSH. We utilized α-MSH-engineered Bifidobacterium against IBD, which is closely linked to immune and intestinal microbiota dysfunction. First, we constructed a Bifidobacterium longum secreting α-MSH (B. longum-α-MSH). We then tested the recombinant α-MSH expression and determined its bioactivity in HT-29 cells. To assess its effectiveness, B. longum-α-MSH was used against an ulcerative colitis (UC) model in rats induced by dextran sulfate sodium. The data showed that α-MSH expression in B. longum-α-MSH was effective, and its biological activity was similar to the synthesized one. This UC model experiment indicated that B. longum-α-MSH successfully colonized the intestinal gut, expressed bioactive α-MSH and had a significant anti-inflammatory effect. The results demonstrate the feasibility of preventing IBD by using B. longum-α-MSH. PMID:26567174

  19. Monoculture parameters successfully predict coculture growth kinetics of Bacteroides thetaiotaomicron and two Bifidobacterium strains.

    PubMed

    Van Wey, A S; Cookson, A L; Roy, N C; McNabb, W C; Soboleva, T K; Shorten, P R

    2014-11-17

    Microorganisms rarely live in isolation but are most often found in a consortium. This provides the potential for cross-feeding and nutrient competition among the microbial species, which make it challenging to predict the growth kinetics in coculture. In this paper we developed a mathematical model to describe substrate consumption and subsequent microbial growth and metabolite production for bacteria grown in monoculture. The model characterized substrate utilization kinetics of 18 Bifidobacterium strains. Some bifidobacterial strains demonstrated preferential degradation of oligofructose in that sugars with low degree of polymerization (DP) (DP≤3 or 4) were metabolized before sugars of higher DP, or vice versa. Thus, we expanded the model to describe the preferential degradation of oligofructose. In addition, we adapted the model to describe the competition between human colonic bacteria Bacteroides thetaiotaomicron LMG 11262 and Bifidobacterium longum LMG 11047 or Bifidobacterium breve Yakult for inulin as well as cross-feeding of breakdown products from the extracellular hydrolysis of inulin by B. thetaiotaomicron LMG 11262. We found that the coculture growth kinetics could be predicted based on the respective monoculture growth kinetics. Using growth kinetics from monoculture experiments to predict coculture dynamics will reduce the number of in vitro experiments required to parameterize multi-culture models. PMID:25282609

  20. Effect of Pre-Stressing on the Acid-Stress Response in Bifidobacterium Revealed Using Proteomic and Physiological Approaches.

    PubMed

    Jin, Junhua; Qin, Qian; Guo, Huiyuan; Liu, Songling; Ge, Shaoyang; Zhang, Hongxing; Cui, Jianyun; Ren, Fazheng

    2015-01-01

    Weak acid resistance limits the application of Bifidobacteria as a probiotic in food. The acid tolerance response (ATR), caused by pre-stressing cells at a sublethal pH, could improve the acid resistance of Bifidobacteria to subsequent acid stress. In this study, we used Bifidobacterium longum sub. longum BBMN68 to investigate the effect of the ATR on the acid stress response (ASR), and compared the difference between the ATR and the ASR by analyzing the two-dimensional-PAGE protein profiles and performing physiological tests. The results revealed that a greater abundance of proteins involved in carbohydrate metabolism and protein protection was present after the ASR than after the ATR in Bifidobacterium. Pre-stressing cells increased the abundance of proteins involved in energy production, amino acid metabolism, and peptidoglycan synthesis during the ASR of Bifidobacterium. Moreover, after the ASR, the content of ATP, NH3, thiols, and peptidoglycan, the activity of H+-ATPase, and the maintenance of the intracellular pH in the pre-stressed Bifidobacterium cells was significantly higher than in the uninduced cells. These results provide the first explanation as to why the resistance of Bifidobacterium to acid stress improved after pre-stressing. PMID:25689631

  1. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria.

    PubMed

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M; Alvarez-Buylla, Jorge R; Ruas-Madiedo, Patricia; Gueimonde, Miguel; de los Reyes-Gavilan, Clara G

    2013-12-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics. PMID:24077708

  2. Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria

    PubMed Central

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M.; Alvarez-Buylla, Jorge R.; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2013-01-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics. PMID:24077708

  3. Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome.

    PubMed

    Soverini, Matteo; Rampelli, Simone; Turroni, Silvia; Schnorr, Stephanie L; Quercia, Sara; Castagnetti, Andrea; Biagi, Elena; Brigidi, Patrizia; Candela, Marco

    2016-01-01

    Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies. PMID:27462302

  4. Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome

    PubMed Central

    Soverini, Matteo; Rampelli, Simone; Turroni, Silvia; Schnorr, Stephanie L.; Quercia, Sara; Castagnetti, Andrea; Biagi, Elena; Brigidi, Patrizia; Candela, Marco

    2016-01-01

    Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe–host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies. PMID:27462302

  5. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue.

    PubMed

    Chen, Chien-Chang; Lin, Wei-Chuan; Kong, Man-Shan; Shi, Hai Ning; Walker, W Allan; Lin, Chun-Yen; Huang, Ching-Tai; Lin, Yung-Chang; Jung, Shih-Ming; Lin, Tzou-Yien

    2012-06-01

    Modulation of the cellular response by the administration of probiotic bacteria may be an effective strategy for preventing or inhibiting tumour growth. We orally pre-inoculated mice with probiotics Lactobacillus acidophilus NCFM (La) for 14 d. Subcutaneous dorsal-flank tumours and segmental orthotopic colon cancers were implanted into mice using CT-26 murine colon adenocarcinoma cells. On day 28 after tumour initiation, the lamina propria of the colon, mesenteric lymph nodes (MLN) and spleen were harvested and purified for flow cytometry and mRNA analyses. We demonstrated that La pre-inoculation reduced tumour volume growth by 50·3 %, compared with untreated mice at 28 d after tumour implants (2465·5 (SEM 1290·4) v. 4950·9 (SEM 1689·3) mm³, P<0·001). Inoculation with La reduced the severity of colonic carcinogenesis caused by CT-26 cells, such as level of colonic involvement and structural abnormality of epithelial/crypt damage. Moreover, La enhanced apoptosis of CT-26 cells both in dorsal-flank tumour and segmental orthotopic colon cancer, and the mean counts of apoptotic body were higher in mice pre-inoculated with La (P<0·05) compared with untreated mice. La pre-inoculation down-regulated the CXCR4 mRNA expressions in the colon, MLN and extra-intestinal tissue, compared with untreated mice (P<0·05). In addition, La pre-inoculation reduced the mean fluorescence index of MHC class I (H-2Dd, -Kd and -Ld) in flow cytometry analysis. Taken together, these findings suggest that probiotics La may play a role in attenuating tumour growth during CT-26 cell carcinogenesis. The down-regulated expression of CXCR4 mRNA and MHC class I, as well as increasing apoptosis in tumour tissue, indicated that La may be associated with modulating the cellular response triggered by colon carcinogenesis. PMID:21992995

  6. Evaluation of culture media for counts of Bifidobacterium animalis subsp. lactis Bb 12in yoghurt after refrigerated storage

    PubMed Central

    Fachin, Luciano; Moryia, Juliana; Neves Gândara, Ana Lourdes; Viotto, Walkiria Hanada

    2008-01-01

    The agar RCPB pH5 has been considered a good alternative for counts of Bifidobacterium in yoghurt. However, during the refrigerated storage of yoghurt it is extremely difficult to count this microorganism due to the size of the colonies, which are so small they require the aid of a stereoscope to count them. Another agar, MRS-LP, has been also recommended for counts of Bifidobacterium in the presence of yoghurt bacteria. This study evaluated the supplementation of RCPB pH5 agar with dehydrated liver extract and the salts KH2PO4, K2HPO4, FeSO47H2O, MnSO4H2O and MgSO47H2O, aiming at improving the differentiation of Bifidobacterium in yoghurt after refrigerated storage, and also evaluated the selective count of Bifidobacterium in yoghurt using the agar MRS-LP. The agar MRS-LP presented the same cell recovery as non-fortified RCPB pH5 agar, used as a standard medium, thus being considered a good option for counts of Bifidobacterium in yoghurt. The fortified RCPB pH5 also presented the same recovery as the standard RCPB pH5 medium, however, the addition of dehydrated liver extract to the RCPB pH5 agar considerably increased the size of the Bifidobacterium colonies after refrigerated storage, making differentiation of the colonies much easier and reliable when compared to the standard non-fortified RPCP pH5. The addition of the salts (KH2PO4, K2HPO4, FeSO47H2O, MnSO4H2O and MgSO47H2O) had no influence on the performance of the RCPB pH5 agar. PMID:24031230

  7. Evaluation of culture media for counts of Bifidobacterium animalis subsp. lactis Bb 12in yoghurt after refrigerated storage.

    PubMed

    Fachin, Luciano; Moryia, Juliana; Neves Gândara, Ana Lourdes; Viotto, Walkiria Hanada

    2008-04-01

    The agar RCPB pH5 has been considered a good alternative for counts of Bifidobacterium in yoghurt. However, during the refrigerated storage of yoghurt it is extremely difficult to count this microorganism due to the size of the colonies, which are so small they require the aid of a stereoscope to count them. Another agar, MRS-LP, has been also recommended for counts of Bifidobacterium in the presence of yoghurt bacteria. This study evaluated the supplementation of RCPB pH5 agar with dehydrated liver extract and the salts KH2PO4, K2HPO4, FeSO47H2O, MnSO4H2O and MgSO47H2O, aiming at improving the differentiation of Bifidobacterium in yoghurt after refrigerated storage, and also evaluated the selective count of Bifidobacterium in yoghurt using the agar MRS-LP. The agar MRS-LP presented the same cell recovery as non-fortified RCPB pH5 agar, used as a standard medium, thus being considered a good option for counts of Bifidobacterium in yoghurt. The fortified RCPB pH5 also presented the same recovery as the standard RCPB pH5 medium, however, the addition of dehydrated liver extract to the RCPB pH5 agar considerably increased the size of the Bifidobacterium colonies after refrigerated storage, making differentiation of the colonies much easier and reliable when compared to the standard non-fortified RPCP pH5. The addition of the salts (KH2PO4, K2HPO4, FeSO47H2O, MnSO4H2O and MgSO47H2O) had no influence on the performance of the RCPB pH5 agar. PMID:24031230

  8. High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome.

    PubMed

    Monteagudo-Mera, A; Arthur, J C; Jobin, C; Keku, T; Bruno-Barcena, J M; Azcarate-Peril, M A

    2016-03-11

    Prebiotics are selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon the host health. The aim of this study was to evaluate the influence of a β(1-4)galacto-oligosaccharides (GOS) formulation consisting of 90% pure GOS (GOS90), on the composition and activity of the mouse gut microbiota. Germ-free mice were colonised with microbiota from four pathogen-free wt 129 mice donors (SPF), and stools were collected during a feeding trial in which GOS90 was delivered orally for 14 days. Pyrosequencing of 16S rDNA amplicons showed that Bifidobacterium and specific Lactobacillus, Bacteroides and Clostridiales were more prevalent in GOS90-fed mice after 14 days, although the prebiotic impact on Bifidobacterium varied among individual mice. Prebiotic feeding also resulted in decreased abundance of Bacteroidales, Helicobacter and Clostridium. High-throughput quantitative PCR showed an increased abundance of Bifidobacterium adolescentis, Bifidobacterium pseudocatenulatum, Bifidobacterium lactis and Bifidobacterium gallicum in the prebiotic-fed mice. Control female mice showed a higher diversity (phylogenetic diversity (PD) = 15.1±3.4 in stools and PD = 13.0±0.6 in intestinal contents) than control males (PD = 7.8±1.6 in stool samples and PD = 9.5±1.0 in intestinal contents). GOS90 did not modify inflammatory biomarkers (interleukin (IL)-6, IL-12, IL-1β, interferon gamma and tumour necrosis factor alpha). Decreased butyrate, acetate and lactate concentrations in stools of prebiotic fed mice suggested an increase in colonic absorption and reduced excretion. Overall, our results demonstrate that GOS90 is capable of modulating the intestinal microbiome resulting in expansion of the probiome (autochtonous commensal intestinal bacteria considered to have a beneficial influence on health). PMID:26839072

  9. The genome of Bifidobacterium pseudocatenulatum IPLA 36007, a human intestinal strain with isoflavone-activation activity

    PubMed Central

    2014-01-01

    Background Bifidobacterium species, including Bifidobacterium pseudocatenulatum, are among the dominant microbial populations of the human gastrointestinal tract. They are also major components of many commercial probiotic products. Resident and transient bifidobacteria are thought to have several beneficial health effects. However, our knowledge of how these bacteria interact and communicate with host cells remains poor. This knowledge is essential for scientific support of their purported health benefits and their rational inclusion in functional foods. Results This work describes the draft genome sequence of Bifidobacterium pseudocatenulatum IPLA 36007, a strain isolated as dominant from the feces of a healthy human. Besides several properties of probiosis, IPLA 36007 exhibited the capability of releasing aglycones from soy isoflavone glycosides. The genome contains 1,851 predicted genes, including 54 genes for tRNAs and fie copies of unique 16S, 23S and 5S rRNA genes. As key attributes of the IPLA 36007 genome we can mention the presence of a lysogenic phage, a cluster encoding type IV fimbriae, and a locus encoding a clustered, regularly interspaced, short, palindromic repeat (CRISPR)-Cas system. Four open reading frames (orfs) encoding β-glucosidases belonging to the glycosyl hydrolase family 3, which may act on isoflavone glycosides, were encountered. Additionally, one gene was found to code for a glycosyl hydrolase of family 1 that might also have β-glucosidase activity. Conclusion The availability of the B. pseudocatenulatum IPLA 36007 genome should allow the enzyme system involved in the release of soy isoflavone aglycones from isoflavone glycosides, and the molecular mechanisms underlying the strain’s probiotic properties, to be more easily understood. PMID:25097668

  10. Bifidobacterium lactis in Treatment of Children with Acute Diarrhea. A Randomized Double Blind Controlled Trial

    PubMed Central

    El-Soud, Neveen Helmy Abou; Said, Reem Nabil; Mosallam, Dalia Sayed; Barakat, Nahla Abdel Moniem; Sabry, Mohamed Ahmed

    2015-01-01

    BACKGROUND: Probiotics are becoming increasingly popular treatment for children diarrhea. Although there are several probiotic strains potentially useful, researches were often limited to certain strains. AIM: To test Bifidobacterium lactis on morbidity of acute diarrhea in children less than 2 years. SUBJECTS AND METHODS: A randomized double-blind controlled clinical trial was conducted in 50 children (1 - 23 months) admitted with acute diarrhea to the Pediatric Hospital, Cairo University and were randomly assigned to receive in addition to usual treatment of diarrhea according to WHO guidelines; one of two treatments either milk formula non-supplemented (n = 25) or supplemented (n = 25) with Bifidobacterium lactis 14.5 × 106 CFU/100 ml daily for one week. Primary outcomes were frequency and duration of diarrhea and hospital stay. Secondary outcomes were duration of fever and vomiting episodes. Safety and tolerance were also recorded. RESULTS: On admission, patients’ characteristics of both groups (50 cases) were similar. For children who received the probiotics for one week; mean duration of diarrhoea was shorter than in controls (3.12 ± 0.92 vs. 4.10 ± 0.94 days) (P = 0.02), number of motions per day was less than in controls (3.96 ± 0.62 vs. 4.46 ± 0.85) (P = 0.04) and discharge from hospital <2 days was more frequent than in controls (72% vs. 44%) (P = 0.048). There was no effect on fever (P = 0.63) or vomiting (P = 0.54). CONCLUSION: Bifidobacterium lactis probiotics in supplemented milk formula decreased significantly frequency, duration of diarrhea, and hospital stay than usual treatment alone in children with acute diarrhea. Additional researches on other uncommon local probiotic species should be encouraged. PMID:27275258

  11. Aciduric microbial taxa including Scardovia wiggsiae and Bifidobacterium spp. in caries and caries free subjects.

    PubMed

    Henne, Karsten; Rheinberg, Anke; Melzer-Krick, Beate; Conrads, Georg

    2015-10-01

    Actinobacteria came into focus of being potential caries-associated pathogens and could, together with the established Streptococcus mutans and lactobacilli thus function as caries indicator species. Here we analyzed the role and diagnostic predictive value of the acidogenic-aciduric species Scardovia wiggsiae and Bifidobacterium dentium together with S. mutans, lactobacilli and bifidobacteria in biofilm of non-cavitated (n = 20) and cavitated (n = 6) caries lesions versus controls (n = 30). For the genus Bifidobacterium and for B. dentium new sets of primers were designed. Based on real-time quantitative PCR and confirmed by DNA sequencing we found a higher prevalence (61.5%) of S. wiggsiae in caries lesions than in controls (40%). However, among the controls we found three individuals with both the highest absolute and relative S. wiggsiae numbers. Testing for S. mutans revealed the same prevalence as S. wiggsiae in caries lesions (61.5%) but in controls its prevalence was only 10%. B. dentium was never found in healthy plaque but in 30.8% of clinical cases, with the highest numbers in cavitated lesions. The Bifidobacterium-genus specific PCR had less discriminative power as more control samples were positive. We calculated the relative abundances and applied receiver operating characteristic analyses. The top results of specificity (93% and 87%) and sensitivity (100% and 88%) were found when the constraint set was "Lactobacillus relative abundance ≥0.02%" and "two aciduric species with a relative abundance of each ≥0.007%". Combinatory measurement of several aciduric taxa may be useful to reveal caries activity or even to predict caries progression. PMID:25933689

  12. Prebiotic Effects of Agave salmiana Fructans in Lactobacillus acidophilus and Bifidobacterium lactis Cultures.

    PubMed

    Castro-Zavala, Adriana; Juárez-Flores, Bertha I; Pinos-Rodríguez, Juan M; Delgado-Portales, Rosa E; Aguirre-Rivera, Juan R; Alcocer-Gouyonnet, Francisco

    2015-11-01

    Agave salmiana is a fructan rich species that is widely distributed in Mexico. The aim of this investigation was to extract the fructans of A. salmiana and evaluate their prebiotic effect in 48 hours in vitro cultures of Bifidobacterium lactis and Lactobacillus acidophilus and to compare this effect with other available fructan sources. A significant difference in pH, optical density and biomass was found in the cultures depending on the source of fructans and the type of bacteria. It was possible to determine a dose-response effect of the A. salmiana fructans and the growth of the studied strains. PMID:26749843

  13. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.

    PubMed

    Rios-Covian, David; Gueimonde, Miguel; Duncan, Sylvia H; Flint, Harry J; de los Reyes-Gavilan, Clara G

    2015-11-01

    Cross-feeding is an important metabolic interaction mechanism of bacterial groups inhabiting the human colon and includes features such as the utilization of acetate by butyrate-producing bacteria as may occur between Bifidobacterium and Faecalibacterium genera. In this study, we assessed the utilization of different carbon sources (glucose, starch, inulin and fructooligosaccharides) by strains of both genera and selected the best suited combinations for evidencing this cross-feeding phenomenon. Co-cultures of Bifidobacterium adolescentis L2-32 with Faecalibacterium prausnitzii S3/L3 with fructooligosaccharides as carbon source, as well as with F. prausnitzii A2-165 in starch, were carried out and the production of short-chain fatty acids was determined. In both co-cultures, acetate levels decreased between 8 and 24 h of incubation and were lower than in the corresponding B. adolescentis monocultures. In contrast, butyrate concentrations were higher in co-cultures as compared to the respective F. prausnitzii monocultures, indicating enhanced formation of butyrate by F. prausnitzii in the presence of the bifidobacteria. Variations in the levels of acetate and butyrate were more pronounced in the co-culture with fructooligosaccharides than with starch. Our results provide a clear demonstration of cross-feeding between B. adolescentis and F. prausnitzii. PMID:26420851

  14. Novel Probiotic Bifidobacterium longum subsp. infantis CECT 7210 Strain Active against Rotavirus Infections▿

    PubMed Central

    Moreno Muñoz, José Antonio; Chenoll, Empar; Casinos, Beatriz; Bataller, Esther; Ramón, Daniel; Genovés, Salvador; Montava, Rebeca; Ribes, Juan Manuel; Buesa, Javier; Fàbrega, Joan; Rivero, Montserrat

    2011-01-01

    Rotavirus is the leading cause of severe acute gastroenteritis among children worldwide. It is well known that breast-feeding and vaccination afford infants protection. Since breast-feeding has drastically decreased in developed countries, efforts have been focused on the potential use of probiotics as preventive agents. In this study, a novel Bifidobacterium longum subsp. infantis strain was isolated from infant feces and selected, based on its capacity to inhibit in vitro rotavirus Wa replication (up to 36.05% infectious foci reduction) and also to protect cells from virus infection (up to 48.50% infectious foci reduction) in both MA-104 and HT-29 cell lines. Furthermore, studies using a BALB/c mouse model have proved that this strain provides preliminary in vivo protection against rotavirus infection. The strain has been deposited in the Spanish Type Culture Collection under the accession number CECT 7210. This novel strain has the main properties required of a probiotic, such as resistance to gastrointestinal juices, biliary salts, NaCl, and low pH, as well as adhesion to intestinal mucus and sensitivity to antibiotics. The food safety status has been confirmed by the absence of undesirable metabolite production and in acute ingestion studies of mice. Overall, these results demonstrate that Bifidobacterium longum subsp. infantis CECT 7210 can be considered a probiotic able to inhibit rotavirus infection. PMID:22003027

  15. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract

    PubMed Central

    Watson, Debbie; Sleator, Roy D; Hill, Colin; Gahan, Cormac GM

    2008-01-01

    Background The majority of commensal gastrointestinal bacteria used as probiotics are highly adapted to the specialised environment of the large bowel. However, unlike pathogenic bacteria; they are often inadequately equipped to endure the physicochemical stresses of gastrointestinal (GI) delivery in the host. Herein we outline a patho-biotechnology strategy to improve gastric delivery and host adaptation of a probiotic strain Bifidobacterium breve UCC2003 and the generally regarded as safe (GRAS) organism Lactococcus lactis NZ9000. Results In vitro bile tolerance of both strains was significantly enhanced (P < 0.001), following heterologous expression of the Listeria monocytogenes bile resistance mechanism BilE. Strains harbouring bilE were also recovered at significantly higher levels (P < 0.001), than control strains from the faeces and intestines of mice (n = 5), following oral inoculation. Furthermore, a B. breve strain expressing bilE demonstrated increased efficacy relative to the wild-type strain in reducing oral L. monocytogenes infection in mice. Conclusion Collectively the data indicates that bile tolerance can be enhanced in Bifidobacterium and Lactococcus species through rational genetic manipulation and that this can significantly improve delivery to and colonisation of the GI tract. PMID:18844989

  16. Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants.

    PubMed

    Khokhlova, Ekaterina V; Smeianov, Vladimir V; Efimov, Boris A; Kafarskaia, Lyudmila I; Pavlova, Svetlana I; Shkoporov, Andrei N

    2012-01-01

    Certain Bifidobacterium strains have been shown to inhibit inflammatory responses in intestinal epithelial cells. However, the precise mechanisms of these effects, including the chemical nature of the active compounds, remain to be elucidated. Here partial characterization of the anti-inflammatory properties of Bifidobacterium strains isolated from feces of healthy infants is reported. It was found that conditioned media (CM) of all strains studied are capable of attenuating tumor necrosis factor-α (TNF-α) and lipopolysaccharide- (LPS) induced inflammatory responses in the HT-29 cell line. In contrast, neither killed bifidobacterial cells, nor cell-free extracts showed such activities. Further investigations resulted in attribution of this activity to heat-stable, non-lipophilic compound(s) resistant to protease and nuclease treatments and of molecular weight less than 3 kDa. The anti-inflammatory effects were dose- and time-dependent and associated with inhibition of IκB phosphorylation and nuclear factor-κ light chain enhancer of activated B cells (NF-κB)-dependent promoter activation. The combined treatments of cells with CMs and either LPS or TNF-α, but not with CMs alone, resulted in upregulation of transforming growth factor-β1, IκBζ, and p21(CIP) mRNAs. Our data suggest certain species-specificities of the anti-inflammatory properties of bifidobacteria. This observation should prompt additional validation studies using larger set of strains and employing the tools of comparative genomics. PMID:22040047

  17. In vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4.

    PubMed

    Faridnia, F; Hussin, A S M; Saari, N; Mustafa, S; Yee, L Y; Manap, M Y A

    2010-06-01

    Consumption of probiotics has been associated with decreased risk of colon cancer and reported to have antimutagenic/ anti-carcinogenic properties. One possible mechanism for this effect involves physical binding of the mutagenic compounds, such as heterocyclic amines (HCAs), to the bacteria. Therefore, the objective of this study was to examine the binding capacity of bifidobacterial strains of human origin on mutagenic heterocyclic amines which are suspected to play a role in human cancers. In vitro binding of the mutagens Trp-p-2, IQ, MeIQx, 7,8DiMeIQx and PhIP by three bacterial strains in two media of different pH was analysed using high performance liquid chromatography. Bifidobacterium pseudocatenulatum G4 showed the highest decrease in the total HCAs content, followed by Bifidobacterium longum, and Escherichia coli. pH affects binding capacity; the highest binding was obtained at pH 6.8. Gram-positive tested strains were found to be consistently more effective than the gram-negative strain. There were significant decreases in the amount of HCAs in the presence of different cell concentrations of B. pseudocatenulatum G4; the highest decrease was detected at the concentration of 10(10) cfu/ml. The results showed that HCAs were able to bind with all bacterial strains tested in vitro, thus it may be possible to decrease their absorption by human intestine and increase their elimination via faeces. PMID:21831754

  18. Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950.

    PubMed

    Natividad, Jane M M; Hayes, Christina L; Motta, Jean-Paul; Jury, Jennifer; Galipeau, Heather J; Philip, Vivek; Garcia-Rodenas, Clara L; Kiyama, Hiroshi; Bercik, Premysl; Verdu, Elena F

    2013-12-01

    The intestinal microbiota is a key determinant of gut homeostasis, which is achieved, in part, through regulation of antimicrobial peptide secretion. The aim of this study was to determine the efficiency by which members of the intestinal microbiota induce the antimicrobial peptide REGIII and to elucidate the underlying pathways. We showed that germfree mice have low levels of REGIII-γ in their ileum and colon compared to mice with different intestinal microbiota backgrounds. Colonization with a microbiota of low diversity (altered Schaedler flora) did not induce the expression of REGIII-γ as effectively as a complex community (specific pathogen free). Monocolonization with the probiotic Bifidobacterium breve, but not with the nonprobiotic commensal Escherichia coli JM83, upregulated REGIII-γ expression. Induction of REGIII-γ by B. breve was abrogated in mice lacking MyD88 and Ticam1 signaling. Both live and heat-inactivated B. breve but not spent culture medium from B. breve induced the expression of REGIII-α, the human ortholog and homolog of REGIII-γ, in human colonic epithelial cells (Caco-2). Taken together, the results suggest that REGIII-γ expression in the intestine correlates with the richness of microbiota composition. Also, specific bacteria such as Bifidobacterium breve NCC2950 effectively induce REGIII production in the intestine via the MyD88-Ticam1 pathway. Treatment with this probiotic may enhance the mucosal barrier and protect the host from infection and inflammation. PMID:24096422

  19. Degenerate PCR primers for detecting putative priming glycosyltransferase genes in Bifidobacterium strains.

    PubMed

    Hidalgo-Cantabrana, C; Ordoñez, I; Ruas-Madiedo, P; Margolles, A

    2015-01-01

    A new PCR-based method to detect putative exopolysaccharide (EPS) producers from the genus Bifidobacterium was developed based on the detection of two priming glycosyltransferase genes: rfbP (undecaprenyl-phosphate sugar phospho-transferase) and cpsD (galactosyl-transferase). An in silico analysis of the genomes of 28 bifidobacterial strains, belonging to 8 different species, allowed us to detect rfbP, cpsD, or both, in the large majority of the genomes. Based on DNA sequence homology studies, 24 degenerated primers were synthesised in order to select the primer pairs with the broadest capacity to detect the presence of these genes. Four primer pairs targeting internal regions of rfbP and cpsD were selected, allowing the detection of at least one of the two genes in 63 out of 99 bifidobacterial strains analysed, whereas control strains from other genera yielded negative results, suggesting that these genes are widely spread in this genus. The use of these primers is recommended to screen for the potential of Bifidobacterium strains to produce EPS. PMID:25653152

  20. Interaction of Bifidobacterium animalis subspecies lactis (Bb12) and Salmonella typhimurium in continuous-flow chemostatic culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commercially available probiotic, Bifidobacterium animalis subspecies lactis (Bb12) was adapted to and maintained in a continuous-flow chemostat culture. We evaluated the growth characteristics and in interactive effects of Bb12 and a porcine-derived Salmonella typhimurium (St) when cultivated si...

  1. Interaction of Bifidobacterium animalis subspecies lactis (Bb 12) and Salmonella typhimurium in continuous-flow chemostatic culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A commercially available probiotic, Bifidobacterium animalis subspecies lactis (Bb12) was adapted to and maintained in a continuous-flow chemostat culture. We evaluated the growth characteristics and interactive effects of Bb12 and a porcine-derived Salmonella typhimurium (St) when cultivated singly...

  2. Complete genome sequence of the probiotic bacterium Bifidobacterium breve KCTC 12201BP isolated from a healthy infant.

    PubMed

    Kwak, Min-Jung; Yoon, Jae-Kyung; Kwon, Soon-Kyeong; Chung, Myung-Jun; Seo, Jae-Gu; Kim, Jihyun F

    2015-11-20

    We present the completely sequenced genome of Bifidobacterium breve CBT BR3, which was isolated from the feces of a healthy infant. The 2.43-Mb genome contains several kinds of genetic factors associated with health promotion of the human host such as oligosaccharide-degrading genes and vitamin-biosynthetic genes. PMID:26439429

  3. Bifidobacterium pseudolongum Strain PV8-2, Isolated from a Stool Sample of an Anemic Kenyan Infant

    PubMed Central

    Vazquez-Gutierrez, Pamela; Chassard, Christophe; Klumpp, Jochen; Stevens, Marc J. A.; Jans, Christoph

    2015-01-01

    The complete genome sequence of Bifidobacterium pseudolongum PV8-2, isolated from feces of an anemic Kenyan infant, was determined using single-molecule real-time (SMRT) technology. The genome consists of a 2-Mbp chromosome and a 4-kb plasmid. PMID:25614573

  4. Bifidobacterium pseudolongum Strain PV8-2, Isolated from a Stool Sample of an Anemic Kenyan Infant.

    PubMed

    Vazquez-Gutierrez, Pamela; Lacroix, Christophe; Chassard, Christophe; Klumpp, Jochen; Stevens, Marc J A; Jans, Christoph

    2015-01-01

    The complete genome sequence of Bifidobacterium pseudolongum PV8-2, isolated from feces of an anemic Kenyan infant, was determined using single-molecule real-time (SMRT) technology. The genome consists of a 2-Mbp chromosome and a 4-kb plasmid. PMID:25614573

  5. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution.

    PubMed

    Sun, Zhihong; Zhang, Wenyi; Guo, Chenyi; Yang, Xianwei; Liu, Wenjun; Wu, Yarong; Song, Yuqin; Kwok, Lai Yu; Cui, Yujun; Menghe, Bilige; Yang, Ruifu; Hu, Liangping; Zhang, Heping

    2015-01-01

    Bifidobacteria are well known for their human health-promoting effects and are therefore widely applied in the food industry. Members of the Bifidobacterium genus were first identified from the human gastrointestinal tract and were then found to be widely distributed across various ecological niches. Although the genetic diversity of Bifidobacterium has been determined based on several marker genes or a few genomes, the global diversity and evolution scenario for the entire genus remain unresolved. The present study comparatively analyzed the genomes of 45 type strains. We built a robust genealogy for Bifidobacterium based on 402 core genes and defined its root according to the phylogeny of the tree of bacteria. Our results support that all human isolates are of younger lineages, and although species isolated from bees dominate the more ancient lineages, the bee was not necessarily the original host for bifidobacteria. Moreover, the species isolated from different hosts are enriched with specific gene sets, suggesting host-specific adaptation. Notably, bee-specific genes are strongly associated with respiratory metabolism and are potential in helping those bacteria adapt to the oxygen-rich gut environment in bees. This study provides a snapshot of the genetic diversity and evolution of Bifidobacterium, paving the way for future studies on the taxonomy and functional genomics of the genus. PMID:25658111

  6. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase.

    PubMed

    Nakai, Hiroyuki; Baumann, Martin J; Petersen, Bent O; Westphal, Yvonne; Schols, Henk; Dilokpimol, Adiphol; Hachem, Maher A; Lahtinen, Sampo J; Duus, Jens Ø; Svensson, Birte

    2009-12-01

    A gene cluster involved in maltodextrin transport and metabolism was identified in the genome of Lactobacillus acidophilus NCFM, which encoded a maltodextrin-binding protein, three maltodextrin ATP-binding cassette transporters and five glycosidases, all under the control of a transcriptional regulator of the LacI-GalR family. Enzymatic properties are described for recombinant maltose phosphorylase (MalP) of glycoside hydrolase family 65 (GH65), which is encoded by malP (GenBank: AAV43670.1) of this gene cluster and produced in Escherichia coli. MalP catalyses phosphorolysis of maltose with inversion of the anomeric configuration releasing beta-glucose 1-phosphate (beta-Glc 1-P) and glucose. The broad specificity of the aglycone binding site was demonstrated by products formed in reverse phosphorolysis using various carbohydrate acceptor substrates and beta-Glc 1-P as the donor. MalP showed strong preference for monosaccharide acceptors with equatorial 3-OH and 4-OH, such as glucose and mannose, and also reacted with 2-deoxy glucosamine and 2-deoxy N-acetyl glucosamine. By contrast, none of the tested di- and trisaccharides served as acceptors. Disaccharide yields obtained from 50 mmbeta-Glc 1-P and 50 mm glucose, glucosamine, N-acetyl glucosamine, mannose, xylose or l-fucose were 99, 80, 53, 93, 81 and 13%, respectively. Product structures were determined by NMR and ESI-MS to be alpha-Glcp-(1-->4)-Glcp (maltose), alpha-Glcp-(1-->4)-GlcNp (maltosamine), alpha-Glcp-(1-->4)-GlcNAcp (N-acetyl maltosamine), alpha-Glcp-(1-->4)-Manp, alpha-Glcp-(1-->4)-Xylp and alpha-Glcp-(1-->4)- L-Fucp, the three latter being novel compounds. Modelling using L. brevis GH65 as the template and superimposition of acarbose from a complex with Thermoanaerobacterium thermosaccharolyticum GH15 glucoamylase suggested that loop 3 of MalP involved in substrate recognition blocked the binding of candidate acceptors larger than monosaccharides. PMID:19919544

  7. Screening of Cholesterol-lowering Bifidobacterium from Guizhou Xiang Pigs, and Evaluation of Its Tolerance to Oxygen, Acid, and Bile

    PubMed Central

    Zhang, Rujiao; He, Laping; Zhang, Ling; Li, Cuiqin; Zhu, Qiujin

    2016-01-01

    Cardiovascular and cerebrovascular diseases seriously harm human health, and Bifidobacterium is the most beneficial probiotic in the gastrointestinal tract of humans. This work aimed to screen cholesterol-lowering Bifidobacterium from Guizhou Xiang Pig and evaluate its tolerance to oxygen, acid, and bile. Twenty-seven aerotolerant strains with similar colony to Bifidobacterium were isolated through incubation at 37℃ in 20% (v/v) CO2-80% (v/v) atmospheric air by using Mupirocin lithium modified MRS agar medium, modified PTYG with added CaCO3, and modified PTYG supplemented with X-gal. Ten strains with cholesterol-lowering rates above 20% (w/w) were used for further screening. The selected strains’ tolerance to acid and bile was then determined. A combination of colony and cell morphology, physiological, and biochemical experiments, as well as 16S rRNA gene-sequence analysis, was performed. Results suggested that BZ25 with excellent characteristics of high cholesterol-removal rate of 36.32% (w/w), as well as tolerance to acid and bile, was identified as Bifidobacterium animalis subsp. lactis. To further evaluate Bifidobacterium BZ25’s growth characteristic and tolerance to oxygen, culture experiments were performed in liquid medium and an agar plate. Findings suggested that BZ25 grew well both in environmental 20% (v/v) CO2-80% (v/v) atmospheric air and in 100% atmospheric air because BZ25 reached an absorbance of 1.185 at 600 nm in 100% atmospheric air. Moreover, BZ25 was aerotolerant and can grow in an agar medium under the environmental condition of 100% atmospheric air. This study can lay a preliminary foundation for the potential industrial applications of BZ25. PMID:27499662

  8. Screening of Cholesterol-lowering Bifidobacterium from Guizhou Xiang Pigs, and Evaluation of Its Tolerance to Oxygen, Acid, and Bile.

    PubMed

    Zhang, Rujiao; He, Laping; Zhang, Ling; Li, Cuiqin; Zhu, Qiujin

    2016-01-01

    Cardiovascular and cerebrovascular diseases seriously harm human health, and Bifidobacterium is the most beneficial probiotic in the gastrointestinal tract of humans. This work aimed to screen cholesterol-lowering Bifidobacterium from Guizhou Xiang Pig and evaluate its tolerance to oxygen, acid, and bile. Twenty-seven aerotolerant strains with similar colony to Bifidobacterium were isolated through incubation at 37℃ in 20% (v/v) CO2-80% (v/v) atmospheric air by using Mupirocin lithium modified MRS agar medium, modified PTYG with added CaCO3, and modified PTYG supplemented with X-gal. Ten strains with cholesterol-lowering rates above 20% (w/w) were used for further screening. The selected strains' tolerance to acid and bile was then determined. A combination of colony and cell morphology, physiological, and biochemical experiments, as well as 16S rRNA gene-sequence analysis, was performed. Results suggested that BZ25 with excellent characteristics of high cholesterol-removal rate of 36.32% (w/w), as well as tolerance to acid and bile, was identified as Bifidobacterium animalis subsp. lactis. To further evaluate Bifidobacterium BZ25's growth characteristic and tolerance to oxygen, culture experiments were performed in liquid medium and an agar plate. Findings suggested that BZ25 grew well both in environmental 20% (v/v) CO2-80% (v/v) atmospheric air and in 100% atmospheric air because BZ25 reached an absorbance of 1.185 at 600 nm in 100% atmospheric air. Moreover, BZ25 was aerotolerant and can grow in an agar medium under the environmental condition of 100% atmospheric air. This study can lay a preliminary foundation for the potential industrial applications of BZ25. PMID:27499662

  9. Characterization and Application of BiLA, a Psychrophilic α-Amylase from Bifidobacterium longum.

    PubMed

    Lee, Hye-Won; Jeon, Hye-Yeon; Choi, Hye-Jeong; Kim, Na-Ri; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; You, SangGuan; Shim, Jae-Hoon

    2016-04-01

    In this study, a novel α-amylase was cloned from Bifidobacterium longum and named BiLA. The enzyme exhibited optimal activity at 20 °C and a pH value of 5.0. Kinetic analysis using various carbohydrate substrates revealed that BiLA had the highest k(cat/)K(m) value for amylose. Interestingly, analysis of the enzymatic reaction products demonstrated that BiLA specifically catalyzed the hydrolysis of oligosaccharides and starches up to G5 from the nonreducing ends. To determine whether BiLA can be used to generate slowly digestible starch (SDS), starch was treated with BiLA, and the kinetic parameters were analyzed using porcine pancreatic α-amylase (PPA) and amyloglucosidase (AMG). Compared to normal starch, BiLA-treated starch showed lower k(cat)/K(m) values with PPA and AMG, suggesting that BiLA is a potential candidate for the production of SDS. PMID:26979859

  10. Applications of Microencapsulated Bifidobacterium Longum with Eleutherine Americana in Fresh Milk Tofu and Pineapple Juice

    PubMed Central

    Phoem, Atchara N.; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P.

    2015-01-01

    Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice. PMID:25854832

  11. Epithelial Cell Proliferation Arrest Induced by Lactate and Acetate from Lactobacillus casei and Bifidobacterium breve

    PubMed Central

    Regnault, Béatrice; Mulet, Céline; Hara, Taeko; Sansonetti, Philippe J.

    2013-01-01

    In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut. PMID:23646174

  12. Characterization of ApuB, an extracellular type II amylopullulanase from Bifidobacterium breve UCC2003.

    PubMed

    O'Connell Motherway, Mary; Fitzgerald, Gerald F; Neirynck, Sabine; Ryan, Sinead; Steidler, Lothar; van Sinderen, Douwe

    2008-10-01

    The apuB gene of Bifidobacterium breve UCC2003 was shown to encode an extracellular amylopullulanase. ApuB is composed of a distinct N-terminally located alpha-amylase-containing domain which hydrolyzes alpha-1,4-glucosidic linkages in starch and related polysaccharides and a C-terminally located pullulanase-containing domain which hydrolyzes alpha-1,6 linkages in pullulan, allowing the classification of this enzyme as a bifunctional class II pullulanase. A knockout mutation of the apuB gene in B. breve UCC2003 rendered the resulting mutant incapable of growth in medium containing starch, amylopectin, glycogen, or pullulan as the sole carbon and energy source, confirming the crucial physiological role of this gene in starch metabolism. PMID:18689518

  13. Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota.

    PubMed

    Lugli, Gabriele Andrea; Milani, Christian; Turroni, Francesca; Tremblay, Denise; Ferrario, Chiara; Mancabelli, Leonardo; Duranti, Sabrina; Ward, Doyle V; Ossiprandi, Maria Cristina; Moineau, Sylvain; van Sinderen, Douwe; Ventura, Marco

    2016-07-01

    Phage predation is one of the key forces that shape genetic diversity in bacterial genomes. Phages are also believed to act as modulators of the microbiota composition and, consequently, as agents that drive bacterial speciation in complex bacterial communities. Very little is known about the occurrence and genetic variability of (pro)phages within the Bifidobacterium genus, a dominant bacterial group of the human infant microbiota. Here, we performed cataloguing of the predicted prophage sequences from the genomes of all currently recognized bifidobacterial type strains. We analysed their genetic diversity and deduced their evolutionary development, thereby highlighting an intriguing origin. Furthermore, we assessed infant gut microbiomes for the presence of (pro)phage sequences and found compelling evidence that these viral elements influence the composition of bifidobacterial communities in the infant gut microbiota. PMID:26627180

  14. Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

    PubMed

    Matsuki, Takahiro; Pédron, Thierry; Regnault, Béatrice; Mulet, Céline; Hara, Taeko; Sansonetti, Philippe J

    2013-01-01

    In an attempt to identify and characterize how symbiotic bacteria of the gut microbiota affect the molecular and cellular mechanisms of epithelial homeostasis, intestinal epithelial cells were co-cultured with either Lactobacillus or Bifidobacterium as bona fide symbionts to examine potential gene modulations. In addition to genes involved in the innate immune response, genes encoding check-point molecules controlling the cell cycle were among the most modulated in the course of these interactions. In the m-ICcl2 murine cell line, genes encoding cyclin E1 and cyclin D1 were strongly down regulated by L. casei and B. breve respectively. Cell proliferation arrest was accordingly confirmed. Short chain fatty acids (SCFA) were the effectors of this modulation, alone or in conjunction with the acidic pH they generated. These results demonstrate that the production of SCFAs, a characteristic of these symbiotic microorganisms, is potentially an essential regulatory effector of epithelial proliferation in the gut. PMID:23646174

  15. Applications of microencapsulated Bifidobacterium longum with Eleutherine americana in fresh milk tofu and pineapple juice.

    PubMed

    Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P

    2015-04-01

    Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice. PMID:25854832

  16. Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinal tract.

    PubMed

    Kim, Pyoung Il; Jung, Min Young; Chang, Young-Hyo; Kim, Saehun; Kim, Seong-Jae; Park, Yong-Ha

    2007-04-01

    One strain of Lactobacillus salivarius, two strains of Lactobacillus reuteri and Lactobacillus amylovorus, and two strains of Bifidobacterium thermacidophilum with antagonistic effect against Clostridium perfringens were isolated from porcine gastrointestinal tract. Isolates were assayed for their ability to survive in synthetic gastric juice at pH 2.5 and were examined for their ability to grow on agar plate containing porcine bile extract. There was a large variation in the survival of the isolates in gastric juice and growth in the medium containing 0.3% (w/v) bile. L. salivarius G11 and L. amylovorus S6 adhered to the HT-29 epithelial cell line. Cell-free supernatant of L. amylovorus S6 showed higher antagonistic activity as effective as the antibiotics such as neomycin, chlortetracycline, and oxytetracycline against bacterial pathogens including C. perfringens, Salmonella typhimurium, Staphylococcus aureus, Vibrio cholerae, Edwardsiella tarda, and Aeromonas salmonicida subsp. salmonicida. PMID:17136367

  17. Genomic Characterization and Transcriptional Studies of the Starch-Utilizing Strain Bifidobacterium adolescentis 22L

    PubMed Central

    Duranti, Sabrina; Turroni, Francesca; Lugli, Gabriele Andrea; Milani, Christian; Viappiani, Alice; Mangifesta, Marta; Gioiosa, Laura; Palanza, Paola; van Sinderen, Douwe

    2014-01-01

    Bifidobacteria are members of the gut microbiota, but the genetic basis for their adaptation to the human gut is poorly understood. The analysis of the 2,203,222-bp genome of Bifidobacterium adolescentis 22L revealed a nutrient acquisition strategy that targets diet/plant-derived glycans, in particular starch and starch-like carbohydrates. Starch-like carbohydrates were shown to support the growth of B. adolescentis 22L. Transcriptome profiling of 22L cultures grown under in vitro conditions or during colonization of the murine gut by RNA sequencing and quantitative real-time PCR assays revealed the expression of a set of chromosomal loci responsible for starch metabolism as well as for pilus production. Such extracellular structures include so-called sortase-dependent and type IVb pili, which may be involved in gut colonization of 22L through adhesion to extracellular matrix proteins. PMID:25063659

  18. Comparative genomics of Bifidobacterium animalis subsp. lactis reveals a strict monophyletic bifidobacterial taxon.

    PubMed

    Milani, Christian; Duranti, Sabrina; Lugli, Gabriele Andrea; Bottacini, Francesca; Strati, Francesco; Arioli, Stefania; Foroni, Elena; Turroni, Francesca; van Sinderen, Douwe; Ventura, Marco

    2013-07-01

    Strains of Bifidobacterium animalis subsp. lactis are extensively exploited by the food industry as health-promoting bacteria, although the genetic variability of members belonging to this taxon has so far not received much scientific attention. In this article, we describe the complete genetic makeup of the B. animalis subsp. lactis Bl12 genome and discuss the genetic relatedness of this strain with other sequenced strains belonging to this taxon. Moreover, a detailed comparative genomic analysis of B. animalis subsp. lactis genomes was performed, which revealed a closely related and isogenic nature of all currently available B. animalis subsp. lactis strains, thus strongly suggesting a closed pan-genome structure of this bacterial group. PMID:23645200

  19. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Bifidobacterium adolescentis xylose isomerase

    PubMed Central

    dos Reis, Caio Vinicius; Bernardes, Amanda; Polikarpov, Igor

    2013-01-01

    Xylose isomerase (EC 5.3.1.5) is a key enzyme in xylose metabolism which is industrially important for the transformation of glucose and xylose into fructose and xylulose, respectively. The Bifidobacterium adolescentis xylA gene (NC_008618.1) encoding xylose isomerase (XI) was cloned and the enzyme was overexpressed in Escherichia coli. Purified recombinant XI was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as the precipitating agent. A complete native data set was collected to 1.7 Å resolution using a synchrotron-radiation source. The crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 88.78, b = 123.98, c = 78.63 Å. PMID:23695585

  20. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model

    PubMed Central

    Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P < 0.01). Compared with the LPS group, bifidobacterium significantly decreased the production of IL-6 and TNF-α (P < 0.01) and suppressed zonulin release (P < 0.05). In addition, bifidobacterium pretreatment up-regulated occludin, claudin-3 and ZO-1 expression (P < 0.01) and also preserved these proteins localization at TJ compared with the LPS group. In the in vivo study, bifidobacterium decreased the incidence of NEC from 88 to 47% (P < 0.05) and reduced the severity in the NEC model. Increased levels of IL-6 and TNF-α in the ileum of NEC rats were normalized in bifidobacterium treated rats (P < 0.05). Moreover, administration of bifidobacterium attenuated the increase in intestinal permeability (P < 0.01), decreased the levels of serum zonulin (P < 0.05), normalized the expression and localization of TJ proteins in the ileum compared with animals with NEC. We concluded that bifidobacterium may protect against

  1. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect.

    PubMed

    Presti, I; D'Orazio, G; Labra, M; La Ferla, B; Mezzasalma, V; Bizzaro, G; Giardina, S; Michelotti, A; Tursi, F; Vassallo, M; Di Gennaro, P

    2015-07-01

    Probiotic ingestion is recommended as a preventive approach to maintain the balance of the intestinal microbiota and to enhance the human well-being. During the whole life of each individual, the gut microbiota composition could be altered by lifestyle, diet, antibiotic therapies and other stress conditions, which may lead to acute and chronic disorders. Hence, probiotics can be administered for the prevention or treatment of some disorders, including lactose malabsorption, acute diarrhoea, irritable bowel syndrome, necrotizing enterocolitis and mild forms of inflammatory bowel disease. The probiotic-mediated effect is an important issue that needs to be addressed in relation to strain-specific probiotic properties. In this work, the probiotic properties of new Lactobacillus and Bifidobacterium strains were screened, and their effects in vitro were evaluated. They were screened for probiotic properties by determining their tolerance to low pH and to bile salts, antibiotic sensitivity, antimicrobial activity and vitamin B8, B9 and B12 production, and by considering their ability to increase the antioxidant potential and to modulate the inflammatory status of systemic-miming cell lines in vitro. Three out of the examined strains presenting the most performant probiotic properties, as Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070 and Bifidobacterium animalis subsp. lactis PBSO75, were evaluated for their effects also on human intestinal HT-29 cell line. The obtained results support the possibility to move to another level of study, that is, the oral administration of these probiotical strains to patients with acute and chronic gut disorders, by in vivo experiments. PMID:25744647

  2. Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity

    PubMed Central

    Lievin, V; Peiffer, I; Hudault, S; Rochat, F; Brassart, D; Neeser, J; Servin, A

    2000-01-01

    BACKGROUND AND AIMS—The gastrointestinal microflora exerts a barrier effect against enteropathogens. The aim of this study was to examine if bifidobacteria, a major species of the human colonic microflora, participates in the barrier effect by developing antimicrobial activity against enterovirulent bacteria.
METHODS—Antibacterial activity was examined in vitro against a wide range of Gram negative and Gram positive pathogens. Inhibition of Salmonella typhimurium SL1334 cell association and cell invasion was investigated in vitro using Caco-2 cells. Colonisation of the gastrointestinal tract in vivo by bifidobacteria was examined in axenic C3/He/Oujco mice. Antimicrobial activity was examined in vivo in axenic C3/He/Oujco mice infected by the lethal S typhimurium C5 strain.
RESULTS—Fourteen human bifidobacterium strains isolated from infant stools were examined for antimicrobial activity. Two strains (CA1 and F9) expressed antagonistic activity against pathogens in vitro, inhibited cell entry, and killed intracellular S typhimurium SL1344 in Caco-2 cells. An antibacterial component(s) produced by CA1 and F9 was found to be a lipophilic molecule(s) with a molecular weight of less than 3500. In the axenic C3/He/Oujco mice, CA1 and F9 strains colonised the intestinal tract and protected mice against S typhimurium C5 lethal infection.
CONCLUSION—Several bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity, suggesting that they could participate in the "barrier effect" produced by the indigenous microflora.


Keywords: bifidobacteria; infant microflora; gastrointestinal infection; antimicrobial; microbial infection; intestinal cells PMID:11034580

  3. Intraspecies Genomic Diversity and Long-Term Persistence of Bifidobacterium longum

    PubMed Central

    Chaplin, Andrei V.; Efimov, Boris A.; Smeianov, Vladimir V.; Kafarskaia, Lyudmila I.; Pikina, Alla P.; Shkoporov, Andrei N.

    2015-01-01

    Members of genus Bifidobacterium are Gram-positive bacteria, representing a large part of the human infant microbiota and moderately common in adults. However, our knowledge about their diversity, intraspecific phylogeny and long-term persistence in humans is still limited. Bifidobacterium longum is generally considered to be the most common and prevalent species in the intestinal microbiota. In this work we studied whole genome sequences of 28 strains of B. longum, including 8 sequences described in this paper. Part of these strains were isolated from healthy children during a long observation period (up to 10 years between isolation from the same patient). The three known subspecies (longum, infantis and suis) could be clearly divided using sequence-based phylogenetic methods, gene content and the average nucleotide identity. The profiles of glycoside hydrolase genes reflected the different ecological specializations of these three subspecies. The high impact of horizontal gene transfer on genomic diversity was observed, which is possibly due to a large number of prophages and rapidly spreading plasmids. The pan-genome characteristics of the subspecies longum corresponded to the open pan-genome model. While the major part of the strain-specific genetic loci represented transposons and phage-derived regions, a large number of cell envelope synthesis genes were also observed within this category, representing high variability of cell surface molecules. We observed the cases of isolation of high genetically similar strains of B. longum from the same patients after long periods of time, however, we didn’t succeed in the isolation of genetically identical bacteria: a fact, reflecting the high plasticity of microbiota in children. PMID:26275230

  4. Bosom Buddies: The Symbiotic Relationship Between Infants and Bifidobacterium longum ssp. longum and ssp. infantis. Genetic and Probiotic Features.

    PubMed

    Arboleya, Silvia; Stanton, Catherine; Ryan, C Anthony; Dempsey, Eugene; Ross, Paul R

    2016-01-01

    The intestinal microbiota is a complex community that plays an important role in human health from the initial steps of its establishment. Its microbial composition has been suggested to result from selective pressures imposed by the host and is modulated by competition among its members. Bifidobacterium longum is one of the most abundant species of the Bifidobacterium genus in the gut microbiota of healthy breast-fed infants and adults. The recent advancements of 'omics techniques have facilitated the genetic and functional studies of different gut microbiota members. They have revealed the complex genetic pathways used to metabolize different compounds that likely contribute to the competitiveness and persistence of B. longum in the colon. The discovery of a genomic island in B. longum ssp. infantis that encodes specific enzymes for the metabolism of human milk oligosaccharides suggests a specific ecological adaptation. Moreover, B. longum is widely used as probiotic, and beneficial effects in infant health have been reported in several studies. PMID:26934170

  5. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii

    PubMed Central

    Million, M; Maraninchi, M; Henry, M; Armougom, F; Richet, H; Carrieri, P; Valero, R; Raccah, D; Vialettes, B; Raoult, D

    2012-01-01

    Background: Obesity is associated with increased health risk and has been associated with alterations in bacterial gut microbiota, with mainly a reduction in Bacteroidetes, but few data exist at the genus and species level. It has been reported that the Lactobacillus and Bifidobacterium genus representatives may have a critical role in weight regulation as an anti-obesity effect in experimental models and humans, or as a growth-promoter effect in agriculture depending on the strains. Objectives and methods: To confirm reported gut alterations and test whether Lactobacillus or Bifidobacterium species found in the human gut are associated with obesity or lean status, we analyzed the stools of 68 obese and 47 controls targeting Firmicutes, Bacteroidetes, Methanobrevibacter smithii, Lactococcus lactis, Bifidobacterium animalis and seven species of Lactobacillus by quantitative PCR (qPCR) and culture on a Lactobacillus-selective medium. Findings: In qPCR, B. animalis (odds ratio (OR)=0.63; 95% confidence interval (CI) 0.39–1.01; P=0.056) and M. smithii (OR=0.76; 95% CI 0.59–0.97; P=0.03) were associated with normal weight whereas Lactobacillus reuteri (OR=1.79; 95% CI 1.03–3.10; P=0.04) was associated with obesity. Conclusion: The gut microbiota associated with human obesity is depleted in M. smithii. Some Bifidobacterium or Lactobacillus species were associated with normal weight (B. animalis) while others (L. reuteri) were associated with obesity. Therefore, gut microbiota composition at the species level is related to body weight and obesity, which might be of relevance for further studies and the management of obesity. These results must be considered cautiously because it is the first study to date that links specific species of Lactobacillus with obesity in humans. PMID:21829158

  6. Comparative investigation of the various determinants that influence the codon and amino acid usage patterns in the genus Bifidobacterium.

    PubMed

    Roy, Ayan; Mukhopadhyay, Subhasish; Sarkar, Indrani; Sen, Arnab

    2015-06-01

    Various strains of the genus Bifidobacterium are crucial members of the human, animal and insect gut, associated with beneficial probiotic activities. An extensive analysis on codon and amino acid usage of the GC rich genus Bifidobacterium has been executed in the present study. Multivariate statistical analysis revealed a coupled effect of GC compositional constraint and natural selection for translational efficiency to be operative in producing the observed codon usage variations. Gene expression level was inferred to be the most crucial factor governing the codon usage patterns. Amino acid usage was found to be influenced significantly by hydrophobic and aromatic character of the encoded proteins. Gene expressivity and protein energetic cost also had considerable impact on the differential mode of amino acid usage. The genus was found to strictly obey the cost-minimization hypothesis as was reflected from the amino acid usage patterns of the potential highly expressed gene products. Evolutionary analysis revealed that the highly expressed genes were candidates to extreme evolutionary selection pressure and indicated a high degree of conservation at the proteomic level. Interestingly, the complimentary strands of replication appeared to evolve under similar evolutionary constraints which might be addressed as a consequence of absence of replicational selection and lack of strand-specific asymmetry among the members of the genus. Thus, the present endeavor confers considerable know-how pertaining to the codon and amino acid usage intricacies in Bifidobacterium and might prove handy for further scientific investigations associated with the concerned domain. PMID:25842224

  7. Benefits of Bifidobacterium breve M-16V Supplementation in Preterm Neonates - A Retrospective Cohort Study

    PubMed Central

    Patole, Sanjay K.; Rao, Shripada C.; Keil, Anthony D.; Nathan, Elizabeth A.; Doherty, Dorota A.; Simmer, Karen N.

    2016-01-01

    Background Systematic reviews of randomised controlled trials report that probiotics reduce the risk of necrotising enterocolitis (NEC) in preterm neonates. Aim To determine whether routine probiotic supplementation (RPS) to preterm neonates would reduce the incidence of NEC. Methods The incidence of NEC ≥ Stage II and all-cause mortality was compared for an equal period of 24 months ‘before’ (Epoch 1) and ‘after’ (Epoch 2) RPS with Bifidobacterium breve M-16V in neonates <34 weeks. Multivariate logistic regression analysis was conducted to adjust for relevant confounders. Results A total of 1755 neonates (Epoch I vs. II: 835 vs. 920) with comparable gestation and birth weights were admitted. There was a significant reduction in NEC ≥ Stage II: 3% vs. 1%, adjusted odds ratio (aOR) = 0.43 (95%CI: 0.21–0.87); ‘NEC ≥ Stage II or all-cause mortality’: 9% vs. 5%, aOR = 0.53 (95%CI: 0.32–0.88); but not all-cause mortality alone: 7% vs. 4%, aOR = 0.58 (95% CI: 0.31–1.06) in Epoch II. The benefits in neonates <28 weeks did not reach statistical significance: NEC ≥ Stage II: 6% vs. 3%, aOR 0.51 (95%CI: 0.20–1.27), ‘NEC ≥ Stage II or all-cause mortality’, 21% vs. 14%, aOR = 0.59 (95%CI: 0.29–1.18); all-cause mortality: 17% vs. 11%, aOR = 0.63 (95%CI: 0.28–1.41). There was no probiotic sepsis. Conclusion RPS with Bifidobacterium breve M-16V was associated with decreased NEC≥ Stage II and ‘NEC≥ Stage II or all-cause mortality’ in neonates <34 weeks. Large sample size is required to assess the potential benefits of RPS in neonates <28 weeks. PMID:26953798

  8. Elaboration of a probiotic oblea from whey fermented using Lactobacillus acidophilus or Bifidobacterium infantis.

    PubMed

    Trujillo-de Santiago, G; Sáenz-Collins, C P; Rojas-de Gante, C

    2012-12-01

    A novel probiotic product was developed, which was formulated as an oblea (wafer-type dehydrated traditional Mexican dessert) using goat sweet whey fermented with Bifidobacterium infantis or Lactobacillus acidophilus. To obtain the probiotic oblea, the fermented whey was formulated with prebiotic carbohydrates (inulin and resistant starch) and gelatin, and the preparation was poured onto a polytetrafluoroethylene-coated nonstick baking pan, dried in a convection oven, and finally dehydrated at a low relative humidity and room temperature (23±2°C). The amounts of prebiotic carbohydrates and gelatin to be used in the formulation were determined by a factorial experimental design. An untrained sensory panel evaluated 3 quality characteristics (film formation, homogeneity, and smoothness) in the final product. Three different drying temperatures were tested, namely, 40, 55, and 70°C. Bacterial survival at each temperature was determined by viable plate-counting. The best formulation, based on the quality characteristics tested, consisted of 58.33% (vol/vol) of fermented whey, 8.33% (vol/vol) of 6% (wt/vol) resistant starch dispersion, 16.66% (vol/vol) of 15% (wt/vol) inulin solution, and 16.66% (vol/vol) of a 10% (wt/vol) gelatin solution. Drying at 55±2°C for 2.66±0.22 h allowed for concentrations of probiotic bacteria above 9 log(10) cfu/g, which is above the minimum concentration required in a probiotic product. PMID:23040019

  9. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract.

    PubMed

    Kelly, William J; Cookson, Adrian L; Altermann, Eric; Lambie, Suzanne C; Perry, Rechelle; Teh, Koon Hoong; Otter, Don E; Shapiro, Nicole; Woyke, Tanja; Leahy, Sinead C

    2016-01-01

    Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present study provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat. PMID:27468806

  10. Genetic Characterization of the Bifidobacterium breve UCC 2003 hrcA Locus

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Bernini, Valentina; Del Casale, Antonio; Dellaglio, Franco; Neviani, Erasmo; Fitzgerald, Gerald F.; van Sinderen, Douwe

    2005-01-01

    The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and transcriptional regulators, including the DnaJ and the HrcA proteins. Genome analysis of Bifidobacterium breve UCC 2003 revealed a second copy of a dnaJ gene, named dnaJ2, which is flanked by the hrcA gene in a genetic constellation that appears to be unique to the actinobacteria. Phylogenetic analysis using 53 bacterial dnaJ sequences, including both dnaJ1 and dnaJ2 sequences, suggests that these genes have followed a different evolutionary development. Furthermore, the B. breve UCC 2003 dnaJ2 gene seems to be regulated in a manner that is different from that of the previously characterized dnaJ1 gene. The dnaJ2 gene, which was shown to be part of a 2.3-kb bicistronic operon with hrcA, was induced by osmotic shock but not significantly by heat stress. This induction pattern is unlike those of other characterized dnaJ genes and may be indicative of a unique stress adaptation strategy by this commensal microorganism. PMID:16332909

  11. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum

    PubMed Central

    Huang, Shi-Ping; Cheng, Hong-Mei; Wang, Peng; Zhu, Guo-Ping

    2016-01-01

    Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP+-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP+ over NAD+ in the presence of Mg2+ and Mn2+, respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn2+) and 65 °C (with Mg2+), and pH 7.5 (with Mn2+) and pH 8.0 (with Mg2+). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn2+ or Mg2+. Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP+ to NAD+ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP+ use by the IDH family. PMID:26927087

  12. Production of bacteriocin-like inhibitory substance by Bifidobacterium lactis in skim milk supplemented with additives.

    PubMed

    Martinez, Fabio Andres Castillo; Domínguez, José Manuel; Converti, Attilio; Oliveira, Ricardo Pinheiro de Souza

    2015-08-01

    Bacteriocins are natural compounds used as food biopreservatives instead of chemical preservatives. Bifidobacterium animalis subsp. lactis (Bifid. lactis) was shown to produce a bacteriocin-like inhibitory substance (BLIS) able to inhibit the growth of Listeria monocytogenes selected as an indicator microorganism. To enhance this production by the strain Bifid. lactis BL 04, skim milk (SM) was used as a fermentation medium either in the presence or in the absence of yeast extract, Tween 80 or inulin as stimulating additives, and the results in terms of bacterial growth and BLIS production were compared with those obtained in a traditional high cost complex medium such as Man, Rogosa and Sharpe (MRS). To this purpose, all the cultivations were carried out in flasks at 200 rpm under anaerobic conditions ensured by a nitrogen flowrate of 1.0 L/min for 48 h, and BLIS production was quantified by means of a modified agar diffusion assay at low values of both temperature and concentration of List. monocytogenes. Although all these ingredients were shown to exert positive influence on BLIS production in both media, yeast extract and SM were by far the best ingredient and the best medium, respectively, allowing for a BLIS production at the late exponential phase of 2000 AU/ml. PMID:25850555

  13. Preparation of Eleutherine americana-alginate complex microcapsules and application in Bifidobacterium longum.

    PubMed

    Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P

    2015-01-01

    Microencapsulation using extrusion and emulsion techniques was prepared for Bifidobacterium longum protection against sequential exposure to simulated gastric and intestinal juices, refrigeration storage and heat treatment. Eleutherine americana was used as the co-encapsulating agent. Hydrolysis of E. americana by gastric and intestinal juices was also determined. E. americana and its oligosaccharide extract demonstrated their resistance to low pH and partial tolerance to human α-amylase. Microencapsulated B. longum with E. americana and oligosaccharide extract prepared by the extrusion technique survived better than that by the emulsion technique under adverse conditions. Survival of microencapsulated cells after exposure to the juices and refrigeration storage was higher than free cells at Weeks 2 and 4. In addition, the viability of microencapsulated cells was better than free cells at 65 °C for 15 min. This work suggested that microencapsulated B. longum with E. americana offers the effective delivery of probiotics to colon and maintains their survival in food products. PMID:25629556

  14. Plasmacytoid Dendritic Cells Are Crucial in Bifidobacterium adolescentis-Mediated Inhibition of Yersinia enterocolitica Infection

    PubMed Central

    Wittmann, Alexandra; Autenrieth, Ingo B.; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection. PMID:23977019

  15. Transcriptome analysis of Bifidobacterium longum strains that show a differential response to hydrogen peroxide stress.

    PubMed

    Oberg, Taylor S; Ward, Robert E; Steele, James L; Broadbent, Jeff R

    2015-10-20

    Consumer and commercial interest in foods containing probiotic bifidobacteria is increasing. However, because bifidobacteria are anaerobic, oxidative stress can diminish cell viability during production and storage of bioactive foods. We previously found Bifidobacterium longum strain NCC2705 had significantly greater intrinsic and inducible resistance to hydrogen peroxide (H2O2) than strain D2957. Here, we explored the basis for these differences by examining the transcriptional responses of both strains to sub-lethal H2O2 exposure for 5- or 60-min. Strain NCC2705 had 288 genes that were differentially expressed after the 5-min treatment and 114 differentially expressed genes after the 60-min treatment. In contrast, strain D2957 had only 21 and 90 differentially expressed genes after the 5- and 60-min treatments, respectively. Both strains showed up-regulation of genes coding enzymes implicated in oxidative stress resistance, such as thioredoxin, thioredoxin reductase, peroxiredoxin, ferredoxin, glutaredoxin, and anaerobic ribonucleotide reductase, but induction levels were typically highest in NCC2705. Compared to D2957, NCC2705 also had more up-regulated genes involved in transcriptional regulation and more down-regulated genes involved in sugar transport and metabolism. These results provide a greater understanding of the molecular basis for oxidative stress resistance in B. longum and the factors that contribute to strain-to-strain variability in survival in bioactive food products. PMID:26299205

  16. Multi-functional glycoside hydrolase: Blon_0625 from Bifidobacterium longum subsp. infantis ATCC 15697.

    PubMed

    Matsumoto, Takuya; Shimada, Shota; Hata, Yuto; Tanaka, Tsutomu; Kondo, Akihiko

    2015-01-01

    We here describe a unique β-D-glucosidase (BGL; Blon_0625) derived from Bifidobacterium longum subsp. infantis ATCC 15697. The Blon_0625 gene was expressed by recombinant Escherichia coli. Purified recombinant Blon_0625 retains hydrolyzing activity against both p-nitrophenyl-β-D-glucopyranoside (pNPG; 17.3±0.24Umg(-1)) and p-nitrophenyl-β-D-xylopyranoside (pNPX; 16.7±0.32Umg(-1)) at pH 6.0, 30°C. To best of our knowledge, no previously described BGL retains the same level of both pNPGase and pNPXase activity. Furthermore, Blon_0625 also retains the activity against 4-nitrophenyl-α-l-arabinofranoside (pNPAf; 5.6±0.09Umg(-1)). In addition, the results of the degradation of phosphoric acid swollen cellulose (PASC) or xylan using endoglucanase from Thermobifida fusca YX (Tfu_0901) or xylanase from Kitasatospora setae KM-6054 (KSE_59480) show that Blon_0625 acts as a BGL and as a β-D-xylosidase (XYL) for hydrolyzing oligosaccharides. These results clearly indicate that Blon_0625 is a multi-functional glycoside hydrolase which retains the activity of BGL, XYL, and also α-l-arabinofuranosidase. Therefore, the utilization of multi-functional Blon_0625 may contribute to facilitating the efficient degradation of lignocellulosic materials and help enhance bioconversion processes. PMID:25435500

  17. Biodistribution of a Promising Probiotic, Bifidobacterium longum subsp. longum Strain BBMN68, in the Rat Gut.

    PubMed

    Lv, Yang; Qiao, Xuewei; Zhao, Liang; Ren, Fazheng

    2015-06-01

    Bifidobacterium longum subsp. longum BBMN68, isolated from centenarians in Guangxi, China, has been proved to be a promising probiotic strain for its health benefits. In this study, the biodistribution of this strain in the rat gut was first investigated using the quantitative realtime PCR assay and propidium monoazide. Strain-specific primers were originally designed based on the BBMN68 genome sequence. Healthy rats were orally inoculated with either a single dose of BBMN68 (10(10) colony-forming units/kg), or with one dose per day for 7 days and bacterial concentrations were analyzed in detail from the intestinal contents and feces of four different gut locations, including stomach, small intestine, colon, and rectum. Results indicated that strain BBMN68 could overcome the rigors of passage through the upper gastrointestinal tract and transiently accumulate in the colon, even though survival in the stomach and small intestine was not high. A good level of BBMN8 could stay in vivo for 72 h following a 7-day oral administration, and a daily administration is suggested for a considerable and continuous population of BBMN68 to be maintained in the host intestine. PMID:25639716

  18. Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains.

    PubMed

    Gagnon, Mérilie; Savard, Patricia; Rivière, Audrey; LaPointe, Gisèle; Roy, Denis

    2015-01-01

    Bifidobacterium longum subsp. longum is among the dominant species of the human gastrointestinal microbiota and could thus have potential as probiotics. New targets such as antioxidant properties have interest for beneficial effects on health. The objective of this study was to evaluate the bioaccessibility of antioxidants in milk fermented by selected B. longum subsp. longum strains during in vitro dynamic digestion. The antioxidant capacity of cell extracts from 38 strains, of which 32 belong to B. longum subsp. longum, was evaluated with the ORAC (oxygen radical absorbance capacity) method. On the basis of screening and gene sequence typing by multilocus locus sequence analysis (MLSA), five strains were chosen for fermenting reconstituted skim milk. Antioxidant capacity varied among the strains tested (P = 0.0009). Two strains of B. longum subsp. longum (CUETM 172 and 171) showed significantly higher ORAC values than the other bifidobacteria strains. However, there does not appear to be a relationship between gene sequence types and antioxidant capacity. The milk fermented by each of the five strains selected (CUETM 268, 172, 245, 247, or PRO 16-10) did not have higher initial ORAC values compared to the nonfermented milk samples. However, higher bioaccessibility of antioxidants in fermented milk (175-358%) was observed during digestion. PMID:25802836

  19. Identification of a Peptide Produced by Bifidobacterium longum CECT 7210 with Antirotaviral Activity

    PubMed Central

    Chenoll, Empar; Casinos, Beatriz; Bataller, Esther; Buesa, Javier; Ramón, Daniel; Genovés, Salvador; Fábrega, Joan; Rivero Urgell, Montserrat; Moreno Muñoz, José A.

    2016-01-01

    Rotavirus is one of the main causes of acute diarrhea and enteritis in infants. Currently, studies are underway to assess the use of probiotics to improve rotavirus vaccine protection. A previous work demonstrated that the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 is able to hinder rotavirus replication both in vitro and in vivo. The present study takes a systematic approach in order to identify the molecule directly involved in rotavirus inhibition. Supernatant protease digestions revealed both the proteinaceous nature of the active substance and the fact that the molecule responsible for inhibiting rotavirus replication is released to the supernatant. Following purification by cationic exchange chromatography, active fractions were obtained and the functional compound was identified as an 11-amino acid peptide (MHQPHQPLPPT, named 11-mer peptide) with a molecular mass of 1.282 KDa. The functionality of 11-mer was verified using the synthesized peptide in Wa, Ito, and VA70 rotavirus infections of both HT-29 and MA-104 cell lines. Finally, protease activity was detected in B. longum subsp. infantis CECT 7210 supernatant, which releases 11-mer peptide. A preliminary identification of the protease is also included in the study. PMID:27199974

  20. Crystallographic and mutational analyses of substrate recognition of endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum.

    PubMed

    Suzuki, Ryuichiro; Katayama, Takane; Kitaoka, Motomitsu; Kumagai, Hidehiko; Wakagi, Takayoshi; Shoun, Hirofumi; Ashida, Hisashi; Yamamoto, Kenji; Fushinobu, Shinya

    2009-09-01

    Endo-alpha-N-acetylgalactosaminidase (endo-alpha-GalNAc-ase), a member of the glycoside hydrolase (GH) family 101, hydrolyses the O-glycosidic bonds in mucin-type O-glycan between alpha-GalNAc and Ser/Thr. Endo-alpha-GalNAc-ase from Bifidobacterium longum JCM1217 (EngBF) is highly specific for the core 1-type O-glycan to release the disaccharide Galbeta1-3GalNAc (GNB), whereas endo-alpha-GalNAc-ase from Clostridium perfringens (EngCP) exhibits broader substrate specificity. We determined the crystal structure of EngBF at 2.0 A resolution and performed automated docking analysis to investigate possible binding modes of GNB. Mutational analysis revealed important residues for substrate binding, and two Trp residues (Trp748 and Trp750) appeared to form stacking interactions with the beta-faces of sugar rings of GNB by substrate-induced fit. The difference in substrate specificities between EngBF and EngCP is attributed to the variations in amino acid sequences in the regions forming the substrate-binding pocket. Our results provide a structural basis for substrate recognition by GH101 endo-alpha-GalNAc-ases and will help structure-based engineering of these enzymes to produce various kinds of neo-glycoconjugates. PMID:19502354

  1. Characterization of ATPase activity of the AAA ARC from Bifidobacterium longum subsp. infantis.

    PubMed

    Guzmán-Rodríguez, Mabel; de la Rosa, Ana Paulina Barba; Santos, Leticia

    2015-01-01

    Bifidobacteria are considered to be probiotics that exist in the large intestine and are helpful to maintain human health. Oral administration of bifidobacteria may be effective in improving the intestinal flora and environment, stimulating the immune response and possibly preventing cancer. However, for consistent and positive results, further well-controlled studies are urgently needed to describe the basic mechanisms of this microorganism. Analysis of the proteasome-lacking Bifidobacterium longum genome reveals that it possesses a gene, IPR003593 AAA ATPase core, which codes a 56 kDa protein containing one AAA ATPase domain. Phylogenetic classification made by CLANS, positioned this sequence into the ARC divergent branch of the AAA ATPase family of proteins. N-terminal analysis of the sequence indicates this protein is closely related to other ATPases such as the Rhodococcus erythropolis ARC, Archaeoglobus fulgidus PAN, Mycobacterium tuberculosis Mpa and the human proteasomal Rpt1 subunit. This gene was cloned, the full-length recombinant protein was overexpressed in Escherichia coli, purified as a high-molecular size complex and named Bl-ARC. Enzymatic characterization showed that Bl-ARC ATPase is active, Mg(+2)-dependent and sensitive to N-ethylmaleimide. Gene organization positions bl-arc in a region flanked by a cluster of genes that includes pup, dop and pafA genes. These findings point to a possible function as a chaperone in the degradation pathway via pupylation. PMID:26015994

  2. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  3. Evidence of immunomodulatory effects of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486.

    PubMed

    You, Jialu; Yaqoob, Parveen

    2012-12-01

    Bifidobacterium longum bv. infantis CCUG 52486 was originally isolated from healthy elderly subjects and demonstrated to have particular ecological fitness and anti-pathogenic effects. Bifidobacteria are commonly associated with immuno-modulatory properties, especially in older people, but this strain has not been investigated for effects on immune function. This study aimed to explore the immunomodulatory effects of this novel probiotic, compared with three commercial strains, B. longum SP 07/3, Lactobacillus rhamnosus GG (L.GG) and Lactobacillus casei Shirota (LcS). Human peripheral blood mononuclear cells (PBMCs) were isolated from fasting blood of young or older volunteers and exposed to probiotic strains or Con A. NK activity and activation, and cytokine release was enhanced by all probiotics with strain specificities. The effect of B. infantis on NK activity was influenced by ageing. Except for L.GG, probiotics increased IFN-γ production to a much greater degree in young subjects and increased IL-6 production to a much greater degree in older subjects. Based on IL-10/IL-12 ratios, B. infantis resulted in the most anti-inflammatory profile of all of the probiotics. These results suggest that B. infantis CCUG 52486 has strong immunomodulatory potential compared with well-known commercial strains and that the immune response to probiotics may be influenced by ageing. PMID:22882710

  4. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum.

    PubMed

    Shkoporov, A N; Khokhlova, E V; Savochkin, K A; Kafarskaia, L I; Efimov, B A

    2015-06-01

    Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease. PMID:25994292

  5. Bioaccessible Antioxidants in Milk Fermented by Bifidobacterium longum subsp. longum Strains

    PubMed Central

    Gagnon, Mérilie; Savard, Patricia; Rivière, Audrey; LaPointe, Gisèle

    2015-01-01

    Bifidobacterium longum subsp. longum is among the dominant species of the human gastrointestinal microbiota and could thus have potential as probiotics. New targets such as antioxidant properties have interest for beneficial effects on health. The objective of this study was to evaluate the bioaccessibility of antioxidants in milk fermented by selected B. longum subsp. longum strains during in vitro dynamic digestion. The antioxidant capacity of cell extracts from 38 strains, of which 32 belong to B. longum subsp. longum, was evaluated with the ORAC (oxygen radical absorbance capacity) method. On the basis of screening and gene sequence typing by multilocus locus sequence analysis (MLSA), five strains were chosen for fermenting reconstituted skim milk. Antioxidant capacity varied among the strains tested (P = 0.0009). Two strains of B. longum subsp. longum (CUETM 172 and 171) showed significantly higher ORAC values than the other bifidobacteria strains. However, there does not appear to be a relationship between gene sequence types and antioxidant capacity. The milk fermented by each of the five strains selected (CUETM 268, 172, 245, 247, or PRO 16-10) did not have higher initial ORAC values compared to the nonfermented milk samples. However, higher bioaccessibility of antioxidants in fermented milk (175–358%) was observed during digestion. PMID:25802836

  6. Purification and characterization of oxygen-inducible haem catalase from oxygen-tolerant Bifidobacterium asteroides.

    PubMed

    Hayashi, Kyohei; Maekawa, Itaru; Tanaka, Kunifusa; Ijyuin, Susumu; Shiwa, Yu; Suzuki, Ippei; Niimura, Youichi; Kawasaki, Shinji

    2013-01-01

    Bifidobacterium asteroides, originally isolated from honeybee intestine, was found to grow under 20% O(2) conditions in liquid shaking culture using MRS broth. Catalase activity was detected only in cells that were exposed to O(2) and grown in medium containing a haem source, and these cells showed higher viability on exposure to H(2)O(2). Passage through multiple column chromatography steps enabled purification of the active protein, which was identified as a homologue of haem catalase on the basis of its N-terminal sequence. The enzyme is a homodimer composed of a subunit with a molecular mass of 55 kDa, and the absorption spectrum shows the typical profile of bacterial haem catalase. A gene encoding haem catalase, which has an amino acid sequence coinciding with the N-terminal amino acid sequence of the purified protein, was found in the draft genome sequence data of B. asteroides. Expression of the katA gene was induced in response to O(2) exposure. The haem catalase from B. asteroides shows about 70-80% identity with those from lactobacilli and other lactic acid bacteria, and no homologues were found in other bifidobacterial genomes. PMID:23154971

  7. Sensory characteristics and volatile composition of a cereal beverage fermented with Bifidobacterium breve NCIMB 702257.

    PubMed

    Salmerón, Ivan; Rozada, Raquel; Thomas, Keith; Ortega-Rivas, Enrique; Pandiella, Severino S

    2014-04-01

    Most of the commercialized lactic acid fermented products are dairy-based. Hence, the development of non-dairy fermented products with probiotic properties draws significant attention within the functional foods industry. The microorganisms used in such products have complex enzyme systems through which they generate diverse metabolites (volatile and non-volatile) that provide significant flavour attributes of importance for fermented foods. The correlation of the volatile flavour compounds of a malt beverage fermented with a Bifidobacterium breve strain with its unique sensory characteristics was performed. The volatile composition analysis exposed the presence of 12 components. Eight of these flavour volatiles were produced through the metabolic activity of the bifidobacteria strain. Notably acetic acid, of reported sour flavour characteristics, exhibited the greatest intensity. Four components of considerable organoleptic characteristics were identified as Maillard-derived products, namely maltol, pyranone, 2 (5H)-furanmethanol and 3-furanmethanol. The sensory evaluation exhibited that the fermented cereal beverage had a sour flavour with mild sweet and malty notes. These results indicate that the volatile compounds identified can be appointed as significant flavour markers of the novel fermented cereal beverage. PMID:23744118

  8. The probiotic Bifidobacterium breve B632 inhibited the growth of Enterobacteriaceae within colicky infant microbiota cultures.

    PubMed

    Simone, Marta; Gozzoli, Caterina; Quartieri, Andrea; Mazzola, Giuseppe; Di Gioia, Diana; Amaretti, Alberto; Raimondi, Stefano; Rossi, Maddalena

    2014-01-01

    Infant colic is a common gastrointestinal disorder of newborns, mostly related to imbalances in the composition of gut microbiota and particularly to the presence of gas-producing coliforms and to lower levels of Bifidobacteria and Lactobacilli. Probiotics could help to contain this disturbance, with formulations consisting of Lactobacillus strains being the most utilized. In this work, the probiotic strain Bifidobacterium breve B632 that was specifically selected for its ability to inhibit gas-producing coliforms, was challenged against the Enterobacteriaceae within continuous cultures of microbiota from a 2-month-old colicky infant. As confirmed by RAPD-PCR fingerprinting, B. breve B632 persisted in probiotic-supplemented microbiota cultures, accounting for the 64% of Bifidobacteria at the steady state. The probiotic succeeded in inhibiting coliforms, since FISH and qPCR revealed that the amount of Enterobacteriaceae after 18 h of cultivation was 0.42 and 0.44 magnitude orders lower (P < 0.05) in probiotic-supplemented microbiota cultures than in the control ones. These results support the possibility to move to another level of study, that is, the administration of B. breve B632 to a cohort of colicky newborns, in order to observe the behavior of this strain in vivo and to validate its effect in colic treatment. PMID:25309908

  9. The effects of Bifidobacterium breve on immune mediators and proteome of HT29 cells monolayers.

    PubMed

    Sánchez, Borja; González-Rodríguez, Irene; Arboleya, Silvia; López, Patricia; Suárez, Ana; Ruas-Madiedo, Patricia; Margolles, Abelardo; Gueimonde, Miguel

    2015-01-01

    The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium. PMID:25793196

  10. Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis.

    PubMed

    Hevia, Arancha; Milani, Christian; López, Patricia; Donado, Carmen D; Cuervo, Adriana; González, Sonia; Suárez, Ana; Turroni, Francesca; Gueimonde, Miguel; Ventura, Marco; Sánchez, Borja; Margolles, Abelardo

    2016-01-01

    Accumulated evidence suggests a relationship between specific allergic processes, such as atopic eczema in children, and an aberrant fecal microbiota. However, little is known about the complete microbiota profile of adult individuals suffering from asthma. We determined the fecal microbiota in 21 adult patients suffering allergic asthma (age 39.43 ± 10.98 years old) and compare it with the fecal microbiota of 22 healthy controls (age 39.29 ± 9.21 years old) using culture independent techniques. An Ion-Torrent 16S rRNA gene-based amplification and sequencing protocol was used to determine the fecal microbiota profile of the individuals. Sequence microbiota analysis showed that the microbial alpha-diversity was not significantly different between healthy and allergic individuals and no clear clustering of the samples was obtained using an unsupervised principal component analysis. However, the analysis of specific bacterial groups allowed us to detect significantly lower levels of bifidobacteria in patients with long-term asthma. Also, in allergic individuals the Bifidobacterium adolescentis species prevailed within the bifidobacterial population. The reduction in the levels on bifidobacteria in patients with long-term asthma suggests a new target in allergy research and opens possibilities for the therapeutic modulation of the gut microbiota in this group of patients. PMID:26840903

  11. The Effects of Bifidobacterium breve on Immune Mediators and Proteome of HT29 Cells Monolayers

    PubMed Central

    Sánchez, Borja; González-Rodríguez, Irene; Arboleya, Silvia; López, Patricia; Suárez, Ana

    2015-01-01

    The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium. PMID:25793196

  12. Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells.

    PubMed

    Mokkala, Kati; Laitinen, Kirsi; Röytiö, Henna

    2016-03-01

    Increased intestinal permeability is a predisposing factor for low-grade inflammation-associated conditions, including obesity and type 2 diabetes. Dietary components may influence intestinal barrier integrity. We hypothesized that the dietary supplements Bifidobacterium lactis 420, Lactobacillus rhamnosus HN001, and fish oil have beneficial impacts on intestinal barrier integrity. In addition, we hypothesized that the coadministration of these components results in synergistic benefits to the integrity of the intestinal barrier. To study this, we investigated the impact of cell-free culture supernatant from dietary supplements B lactis 420 and L rhamnosus HN001, and fish oil, separately and in combination, on intestinal permeability in a CaCo-2 cell model. Administered separately, both B lactis 420 supernatant and fish oil significantly increased the integrity of the intestinal epithelial barrier, as determined by an increase in transepithelial electrical resistance (TEER), whereas L rhamnosus did not. The TEER increase with B lactis 420 was dose dependent. Interestingly, a combination of B lactis 420 supernatant and fish oil negated the increase in TEER of the single components. mRNA expression of tight junction proteins, measured by real-time quantitative polymerase chain reaction, was not altered, but the mRNA expression of myosin light chain kinase increased after fish oil treatment. To conclude, single dietary components, namely, B lactis 420 and fish oil, induced beneficial effects on intestinal barrier integrity in vitro, whereas a combination of 2 beneficial test compounds resulted in a null effect. PMID:26923511

  13. Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis

    PubMed Central

    Hevia, Arancha; Milani, Christian; López, Patricia; Donado, Carmen D.; Cuervo, Adriana; González, Sonia; Suárez, Ana; Turroni, Francesca; Gueimonde, Miguel; Ventura, Marco; Sánchez, Borja; Margolles, Abelardo

    2016-01-01

    Accumulated evidence suggests a relationship between specific allergic processes, such as atopic eczema in children, and an aberrant fecal microbiota. However, little is known about the complete microbiota profile of adult individuals suffering from asthma. We determined the fecal microbiota in 21 adult patients suffering allergic asthma (age 39.43 ± 10.98 years old) and compare it with the fecal microbiota of 22 healthy controls (age 39.29 ± 9.21 years old) using culture independent techniques. An Ion-Torrent 16S rRNA gene-based amplification and sequencing protocol was used to determine the fecal microbiota profile of the individuals. Sequence microbiota analysis showed that the microbial alpha-diversity was not significantly different between healthy and allergic individuals and no clear clustering of the samples was obtained using an unsupervised principal component analysis. However, the analysis of specific bacterial groups allowed us to detect significantly lower levels of bifidobacteria in patients with long-term asthma. Also, in allergic individuals the Bifidobacterium adolescentis species prevailed within the bifidobacterial population. The reduction in the levels on bifidobacteria in patients with long-term asthma suggests a new target in allergy research and opens possibilities for the therapeutic modulation of the gut microbiota in this group of patients. PMID:26840903

  14. Identification of a Peptide Produced by Bifidobacterium longum CECT 7210 with Antirotaviral Activity.

    PubMed

    Chenoll, Empar; Casinos, Beatriz; Bataller, Esther; Buesa, Javier; Ramón, Daniel; Genovés, Salvador; Fábrega, Joan; Rivero Urgell, Montserrat; Moreno Muñoz, José A

    2016-01-01

    Rotavirus is one of the main causes of acute diarrhea and enteritis in infants. Currently, studies are underway to assess the use of probiotics to improve rotavirus vaccine protection. A previous work demonstrated that the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 is able to hinder rotavirus replication both in vitro and in vivo. The present study takes a systematic approach in order to identify the molecule directly involved in rotavirus inhibition. Supernatant protease digestions revealed both the proteinaceous nature of the active substance and the fact that the molecule responsible for inhibiting rotavirus replication is released to the supernatant. Following purification by cationic exchange chromatography, active fractions were obtained and the functional compound was identified as an 11-amino acid peptide (MHQPHQPLPPT, named 11-mer peptide) with a molecular mass of 1.282 KDa. The functionality of 11-mer was verified using the synthesized peptide in Wa, Ito, and VA70 rotavirus infections of both HT-29 and MA-104 cell lines. Finally, protease activity was detected in B. longum subsp. infantis CECT 7210 supernatant, which releases 11-mer peptide. A preliminary identification of the protease is also included in the study. PMID:27199974

  15. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community

    PubMed Central

    Sugahara, Hirosuke; Odamaki, Toshitaka; Fukuda, Shinji; Kato, Tamotsu; Xiao, Jin-zhong; Abe, Fumiaki; Kikuchi, Jun; Ohno, Hiroshi

    2015-01-01

    Probiotics are well known as health-promoting agents that modulate intestinal microbiota. However, the molecular mechanisms underlying this effect remain unclear. Using gnotobiotic mice harboring 15 strains of predominant human gut-derived microbiota (HGM), we investigated the effects of Bifidobacterium longum BB536 (BB536-HGM) supplementation on the gut luminal metabolism. Nuclear magnetic resonance (NMR)-based metabolomics showed significantly increased fecal levels of pimelate, a precursor of biotin, and butyrate in the BB536-HGM group. In addition, the bioassay revealed significantly elevated fecal levels of biotin in the BB536-HGM group. Metatranscriptomic analysis of fecal microbiota followed by an in vitro bioassay indicated that the elevated biotin level was due to an alteration in metabolism related to biotin synthesis by Bacteroides caccae in this mouse model. Furthermore, the proportion of Eubacterium rectale, a butyrate producer, was significantly higher in the BB536-HGM group than in the group without B. longum BB536 supplementation. Our findings help to elucidate the molecular basis underlying the effect of B. longum BB536 on the gut luminal metabolism through its interactions with the microbial community. PMID:26315217

  16. Effect of composite yogurt enriched with acacia fiber and Bifidobacterium lactis

    PubMed Central

    Min, Yang Won; Park, Sang Un; Jang, Yeon Sil; Kim, Young-Ho; Rhee, Poong-Lyul; Ko, Seo Hyun; Joo, Nami; Kim, Sun Im; Kim, Cheol-Hyun; Chang, Dong Kyung

    2012-01-01

    AIM: To investigate whether composite yogurt with acacia dietary fiber and Bifidobacterium lactis (B. lactis) has additive effects in irritable bowel syndrome (IBS). METHODS: A total of 130 patients were randomly allocated to consume, twice daily for 8 wk, either the composite yogurt or the control product. The composite yogurt contained acacia dietary fiber and high-dose B. lactis together with two classic yogurt starter cultures. Patients were evaluated using the visual analog scale via a structured questionnaire administered at baseline and after treatment. RESULTS: Improvements in bowel habit satisfaction and overall IBS symptoms from baseline were significantly higher in the test group than in the control group (27.16 vs 15.51, P = 0.010, 64.2 ± 17.0 vs 50.4 ± 20.5, P < 0.001; respectively). In constipation-predominant IBS, improvement in overall IBS symptoms was significantly higher in the test group than in the control group (72.4 ± 18.4 vs 50.0 ± 21.8, P < 0.001). In patients with diarrhea-predominant IBS, improvement in bowel habit satisfaction from baseline was significantly higher in the test group than in the control group (32.90 vs 7.81, P = 0.006). CONCLUSION: Our data suggest that composite yogurt enriched with acacia fiber and B. lactis has greater therapeutic effects in patients with IBS than standard yogurt. PMID:22969230

  17. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum.

    PubMed

    Huang, Shi-Ping; Cheng, Hong-Mei; Wang, Peng; Zhu, Guo-Ping

    2016-01-01

    Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP⁺-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP⁺ over NAD⁺ in the presence of Mg(2+) and Mn(2+), respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn(2+)) and 65 °C (with Mg(2+)), and pH 7.5 (with Mn(2+)) and pH 8.0 (with Mg(2+)). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn(2+) or Mg(2+). Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP⁺ to NAD⁺ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP⁺ use by the IDH family. PMID:26927087

  18. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract

    PubMed Central

    Kelly, William J.; Cookson, Adrian L.; Altermann, Eric; Lambie, Suzanne C.; Perry, Rechelle; Teh, Koon Hoong; Otter, Don E.; Shapiro, Nicole; Woyke, Tanja; Leahy, Sinead C.

    2016-01-01

    Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present study provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat. PMID:27468806

  19. High purity galacto-oligosaccharides (GOS) enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome

    PubMed Central

    Monteagudo-Mera, A.; Arthur, J.C.; Jobin, C.; Keku, T.; Bruno-Barcena, J.M.; Azcarate-Peril, M.A

    2016-01-01

    Prebiotics are selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon the host health. The aim of this study was to evaluate the influence of a β (1–4) galacto-oligosaccharides formulation consisting of 90% pure GOS (GOS90), on the composition and activity of the mouse gut microbiota. Germ-free mice were colonized with microbiota from four pathogen-free wt 129 mice donors (SPF), and stools were collected during a feeding trial in which GOS90 was delivered orally for 14 days. Pyrosequencing of 16S rDNA amplicons showed that Bifidobacterium and specific Lactobacillus, Bacteroides and Clostridiales were more prevalent in GOS90-fed mice after 14 days, although the prebiotic impact on Bifidobacterium varied among individual mice. Prebiotic feeding also resulted in decreased abundance of Bacteroidales, Helicobacter and Clostridium. High-throughput quantitative PCR showed an increased abundance of Bifidobacterium adolescentis, B. pseudocatenulatum, B. lactis and B. gallicum in the prebiotic-fed mice. Control female mice showed a higher diversity (Phylogenetic Diversity PD = 15.1 ± 3.4 in stools and PD = 13.0 ± 0.6 in intestinal contents) than control males (PD = 7.8 ± 1.6 in stool samples and PD = 9.5 ± 1.0 in intestinal contents). GOS90 did not modify inflammatory biomarkers (IL-6, IL-12, IL-1β, IFN-γ and TNF-α). Decreased butyrate, acetate and lactate concentrations in stools of prebiotic fed mice suggested an increase in colonic absorption and reduced excretion. Overall, our results demonstrate that GOS90 is capable of modulating the intestinal microbiome resulting in expansion of the probiome (autochtonous commensal intestinal bacteria considered to have a beneficial influence on health). PMID:26839072

  20. Effect of repeated oral administration of Bifidobacterium longum BB536 on apomorphine-induced rearing behavior in mice.

    PubMed

    Orikasa, Shuzo; Nabeshima, Kazumi; Iwabuchi, Noriyuki; Xiao, Jin-Zhong

    2016-01-01

    Schizophrenia is a chronic psychiatric illness. Disruption of the dopaminergic system has been suggested to be the pathogenic cause of this disease. The effect of Bifidobacterium longum BB536 (BB536) on schizophrenic behavior was investigated in an animal model. Daily administration of BB536 (10(9) CFU/mouse, p.o. for 2 weeks) was found to reduce rearing behavior augmented by the dopamine receptor agonist apomorphine and to decrease the resting level of plasma corticosterone and the ratio of kynurenine to tryptophan. These results suggest the potential of BB536 for supplemental treatment of the symptoms of schizophrenia. PMID:27508116

  1. Bifidobacterium longum CECT 7347 Modulates Immune Responses in a Gliadin-Induced Enteropathy Animal Model

    PubMed Central

    Laparra, José Moisés; Olivares, Marta; Gallina, Onofrio; Sanz, Yolanda

    2012-01-01

    Coeliac disease (CD) is an autoimmune disorder triggered by gluten proteins (gliadin) that involves innate and adaptive immunity. In this study, we hypothesise that the administration of Bifidobacterium longum CECT 7347, previously selected for reducing gliadin immunotoxic effects in vitro, could exert protective effects in an animal model of gliadin-induced enteropathy. The effects of this bacterium were evaluated in newborn rats fed gliadin alone or sensitised with interferon (IFN)-γ and fed gliadin. Jejunal tissue sections were collected for histological, NFκB mRNA expression and cytokine production analyses. Leukocyte populations and T-cell subsets were analysed in peripheral blood samples. The possible translocation of the bacterium to different organs was determined by plate counting and the composition of the colonic microbiota was quantified by real-time PCR. Feeding gliadin alone reduced enterocyte height and peripheral CD4+ cells, but increased CD4+/Foxp3+ T and CD8+ cells, while the simultaneous administration of B. longum CECT 7347 exerted opposite effects. Animals sensitised with IFN-γ and fed gliadin showed high cellular infiltration, reduced villi width and enterocyte height. Sensitised animals also exhibited increased NFκB mRNA expression and TNF-α production in tissue sections. B. longum CECT 7347 administration increased NFκB expression and IL-10, but reduced TNF-α, production in the enteropathy model. In sensitised gliadin-fed animals, CD4+, CD4+/Foxp3+ and CD8+ T cells increased, whereas the administration of B. longum CECT 7347 reduced CD4+ and CD4+/Foxp3+ cell populations and increased CD8+ T cell populations. The bifidobacterial strain administered represented between 75–95% of the total bifidobacteria isolated from all treated groups, and translocation to organs was not detected. These findings indicate that B. longum attenuates the production of inflammatory cytokines and the CD4+ T-cell mediated immune response in an animal model

  2. Adhesion properties of a putative polymorphic fimbrial subunit protein from Bifidobacterium longum subsp. longum.

    PubMed

    Suzuki, Kenta; Nishiyama, Keita; Miyajima, Hiroki; Osawa, Ro; Yamamoto, Yuji; Mukai, Takao

    2016-01-01

    In our previous study, we found that the open reading frame bl0675 in the genome of Bifidobacterium longum subsp. longum isolated from human feces encoded a novel putative fimbrial protein, was highly polymorphic, and had five variants (A, B, C, D, and E types). The aim of this study was to evaluate the affinity of these variants to porcine colonic mucins (PCMs). Protein-binding properties were examined using the recombinant BL0675 protein containing a C-terminal 6 × His tag (His-BL0675). Surface plasmon resonance analysis demonstrated that the His-BL0675 A type had strong affinity to PCMs (KD = 9.82 × 10(-8) M), whereas the B, C, D, and E types exhibited little or no binding. In a competitive enzyme-linked immunosorbent assay, His-BL0675 A type binding was reduced by addition of mucin oligosaccharides, suggesting that the binding occurs via carbohydrate chains of PCMs. The localization of BL0675 to the B. longum subsp. longum cell surface was confirmed by western blot analysis using A type polyclonal antibodies. Bacterial adhesion of B. longum subsp. longum to PCMs was also blocked by A type-specific antibodies; however, its adhesion properties were strain specific. Our results suggest that the BL0675 variants significantly contribute to the adhesion of B. longum subsp. longum strains. The expression and the adhesive properties of this protein are affected by genetic polymorphisms and are specific for B. longum subsp. longum strains. However, further studies are required on the properties of binding of these putative fimbrial proteins to the human gastrointestinal tract. PMID:26858927

  3. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    PubMed Central

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  4. Adhesion properties of a putative polymorphic fimbrial subunit protein from Bifidobacterium longum subsp. longum

    PubMed Central

    SUZUKI, Kenta; NISHIYAMA, Keita; MIYAJIMA, Hiroki; OSAWA, Ro; YAMAMOTO, Yuji; MUKAI, Takao

    2015-01-01

    In our previous study, we found that the open reading frame bl0675 in the genome of Bifidobacterium longum subsp. longum isolated from human feces encoded a novel putative fimbrial protein, was highly polymorphic, and had five variants (A, B, C, D, and E types). The aim of this study was to evaluate the affinity of these variants to porcine colonic mucins (PCMs). Protein-binding properties were examined using the recombinant BL0675 protein containing a C-terminal 6 × His tag (His-BL0675). Surface plasmon resonance analysis demonstrated that the His-BL0675 A type had strong affinity to PCMs (KD = 9.82 × 10−8 M), whereas the B, C, D, and E types exhibited little or no binding. In a competitive enzyme-linked immunosorbent assay, His-BL0675 A type binding was reduced by addition of mucin oligosaccharides, suggesting that the binding occurs via carbohydrate chains of PCMs. The localization of BL0675 to the B. longum subsp. longum cell surface was confirmed by western blot analysis using A type polyclonal antibodies. Bacterial adhesion of B. longum subsp. longum to PCMs was also blocked by A type-specific antibodies; however, its adhesion properties were strain specific. Our results suggest that the BL0675 variants significantly contribute to the adhesion of B. longum subsp. longum strains. The expression and the adhesive properties of this protein are affected by genetic polymorphisms and are specific for B. longum subsp. longum strains. However, further studies are required on the properties of binding of these putative fimbrial proteins to the human gastrointestinal tract. PMID:26858927

  5. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp.

    PubMed

    Hidalgo-Cantabrana, Claudio; Sánchez, Borja; Milani, Christian; Ventura, Marco; Margolles, Abelardo; Ruas-Madiedo, Patricia

    2014-01-01

    For many years, bacterial exopolysaccharides (EPS) have received considerable scientific attention, mainly due to their contribution to biofilm formation and, above all, because EPS are potential virulence factors. In recent times, interest in EPS research has enjoyed a welcome boost thanks to the discovery of their ability to mediate communication processes with their surrounding environment and to their contribution to host health maintenance. In this review, we provide a fresh perspective on the genetics and activity of these polymers in members of the Bifidobacterium genus, a common gut inhabitant of humans and animals that has been associated with several health-promoting effects. Bifidobacteria can use EPS to protect themselves against the harsh conditions of the gastrointestinal tract, thus improving their persistence in the host. Indeed, the relevant function of EPS for bifidobacteria is underlined by the fact that most genomes sequenced until now contain genes related to EPS biosynthesis. A high interspecies variability in the number of genes and structural organization is denoted among species/subspecies; thus, eps clusters in this genus do not display a consensus genetic architecture. Their different G+C content compared to that of the whole genome suggests that eps genes have been acquired by horizontal transfer. From the host perspective, EPS-producing bifidobacteria are able to trigger both innate and adaptive immune responses, and they are able to modulate the composition and activity of the gut microbiota. Thus, these polymers seem to be critical in understanding the physiology of bifidobacteria and their interaction with the host. PMID:24123746

  6. Genomic Overview and Biological Functions of Exopolysaccharide Biosynthesis in Bifidobacterium spp.

    PubMed Central

    Hidalgo-Cantabrana, Claudio; Sánchez, Borja; Milani, Christian; Ventura, Marco; Margolles, Abelardo

    2014-01-01

    For many years, bacterial exopolysaccharides (EPS) have received considerable scientific attention, mainly due to their contribution to biofilm formation and, above all, because EPS are potential virulence factors. In recent times, interest in EPS research has enjoyed a welcome boost thanks to the discovery of their ability to mediate communication processes with their surrounding environment and to their contribution to host health maintenance. In this review, we provide a fresh perspective on the genetics and activity of these polymers in members of the Bifidobacterium genus, a common gut inhabitant of humans and animals that has been associated with several health-promoting effects. Bifidobacteria can use EPS to protect themselves against the harsh conditions of the gastrointestinal tract, thus improving their persistence in the host. Indeed, the relevant function of EPS for bifidobacteria is underlined by the fact that most genomes sequenced until now contain genes related to EPS biosynthesis. A high interspecies variability in the number of genes and structural organization is denoted among species/subspecies; thus, eps clusters in this genus do not display a consensus genetic architecture. Their different G+C content compared to that of the whole genome suggests that eps genes have been acquired by horizontal transfer. From the host perspective, EPS-producing bifidobacteria are able to trigger both innate and adaptive immune responses, and they are able to modulate the composition and activity of the gut microbiota. Thus, these polymers seem to be critical in understanding the physiology of bifidobacteria and their interaction with the host. PMID:24123746

  7. Transcriptome analysis and physiology of Bifidobacterium longum NCC2705 cells under continuous culture conditions.

    PubMed

    Mozzetti, V; Grattepanche, F; Moine, D; Berger, B; Rezzonico, E; Arigoni, F; Lacroix, C

    2012-12-01

    A central issue in the use of probiotics in food and food supplements is their sensitivity to many environmental stress factors. The resistance of probiotic cells to lethal stress can be improved by application of homologous or heterologous sub-lethal stress during culture. This screening procedure is generally performed using batch cultures. Continuous cultures could be a suitable and more efficient method to test different stress factors on one culture instead of repeating several batch cultures. However, before testing stresses using continuous cultures, the physiological stability of continuously produced cells over a considered time period must be first evaluated. A continuous culture of Bifidobacterium longum NCC2705 was maintained for 211 h at a dilution rate of 0.1 per h, mimicking a deceleration growth phase culture. Stable viable cell counts were measured over the culture period, decreasing only moderately from 8.8 to 8.6 log10 cfu/ml. A slight shift in metabolite production, characterized by increased lactate and decreased acetate, formate and ethanol concentrations was observed. Susceptibilities to antibiotics and stress conditions were stable (cefotaxim, ampicillin, ceftazidime) or moderately affected (simulated gastric juices, heat, bile salts, tetracycline, chloramphenicol, penicillin, vancomycin and neomycin) over culturing time. Comparison of gene transcription profiles between samples collected after 31 h of continuous culture and samples collected after 134 and 211 h revealed only limited changes in expression of 1.0 and 3.8% of total genes, respectively. Based on these results, we propose that continuous culture can be used to produce bacterial cells with stable physiological properties suitable for fast and efficient screening of sub-lethal stress conditions. PMID:23234728

  8. Transcription Analysis of a Lantibiotic Gene Cluster from Bifidobacterium longum DJO10A▿

    PubMed Central

    Lee, Ju-Hoon; Li, Xiulan; O'Sullivan, Daniel J.

    2011-01-01

    Bifidobacterium longum DJO10A was previously demonstrated to produce a lantibiotic, but only during growth on agar media. To evaluate the feasibility of production of this lantibiotic in broth media, a transcription analysis of the lanA gene was undertaken. Comparative microarray analysis of broth and agar cultures of B. longum DJO10A revealed that the lantibiotic production, modification, transport/peptidase, and immunity genes were significantly upregulated in agar cultures, while the two-component regulatory genes were expressed equally under both conditions. This suggested that the signal transduction regulatory system should function in broth cultures. Real-time PCR and Northern hybridization confirmed that lanA gene expression was significantly repressed in broth cultures. A crude lantibiotic preparation from an agar-grown culture was obtained, and its antimicrobial spectrum analysis revealed a broad inhibition range. Addition of this extract to broth cultures of B. longum DJO10A induced lanA gene expression in a dose-dependent fashion. Subinoculation using >10% of an induced broth culture maintained lanA expression. The expression of lanA was log-phase specific, being significantly downregulated in stationary phase. Transcription start analysis of lanA revealed a 284-bp 5′ untranslated region, which was proposed to be involved in repression of transcription, while an inverted repeat structure located at bp −75 relative to the transcription start was strategically located to likely function as a binding site for the two-component response regulator. Understanding the transcription regulation of this lanA gene is the first step toward enabling production of this novel and potentially interesting lantibiotic in broth cultures. PMID:21742926

  9. Probiotics Lactobacillus plantarum and bifidobacterium B94: cognitive function in demyelinated model

    PubMed Central

    Goudarzvand, Mahdi; Rasouli koohi, Samira; Khodaii, Zohreh; Soleymanzadeh Moghadam, Somayeh

    2016-01-01

    Background: Multiple Sclerosis (MS) is a disease of the immune system that creates damage of Learning and memory in that. Using probiotic supplements is recommended for preventing MS disease and improving memory. This study aimed to investigate the effect of Lactobacillus plantarum (LP) and bifidobacterium B94 (BB94), on acquisition phase of spatial memory in the local demyelination of rats` hippocampus. Methods: In this study, 32 male Wistar rats were divided into control, damage group and treatment groups. Treatment groups were including (LP) and (BB94). After the induction of demyelination by 3 μl of EB into the right dentate gyrus of the hippocampus in treatment groups, 1.5×108 probiotic bacteria were administered by gavage for 28 days. Data was analyzed using one-way ANOVA and Tukey post-hoc tests (p≤0.05). Results: Findings demonstrated that injection of EB caused a significant increase in traveled distance (p<0.01) and also escape latency (p<0.05) compared with control group. Also, effect administrations of (LP) and (BB94) on traveled distance and escape latency were reviewed, and it was determined that administration of them do not cause significant reduction in the traveled distance compared with the lesion group. Also mentioned probiotics has no significant effect on swimming speed compared with lesion and saline groups. Conclusion: According to some studies, probiotics have a positive impact on improving the performance of spatial memory and learning, although the results of the current study could not indicate finality of this assumption. It seems that more researches is needed on this subject. PMID:27579282

  10. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    PubMed Central

    Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S.

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (103 CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at −18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved. PMID:24516445