Science.gov

Sample records for ndfe1-xrhx aso superconductor

  1. PREFACE: Atomic Spectra and Oscillator Strengths (ASOS9) Atomic Spectra and Oscillator Strengths (ASOS9)

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2009-05-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are

  2. The Lyman-alpha Solar Telescope for the ASO-S

    NASA Astrophysics Data System (ADS)

    Li, Hui

    2015-08-01

    The Lyman-alpha Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 Rsun, a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 Rsun, and a full-disk White-light Solar Telescope (WST) with an FOV of 1.2 Rsun, which also serves as the guiding telescope. The SCI is designed to work at the Lyman-alpha waveband and white-light, while the SDI will work at the Lyman-alpha waveband only. The WST works both in visible (for guide) and ultraviolet (for science) white-light. The LST will observe the Sun from disk-center up to 2.5 solar radii for both solar flares and coronal mass ejections. In this presentation, I will give an introduction to LST, including scientific objectives, science requirement, instrument design and current status.

  3. Implications of ASOS winds on regulatory dispersion modeling applications

    SciTech Connect

    Jones, W.B.; Brower, R.P.

    1998-12-31

    With the advent of the Automated Surface Observing System (ASOS) throughout the United States during the 1990`s, an unprecedented level of meteorological data is now available. For the first time, observations of standard meteorological variables are available on a minute-by-minute basis. As a result, ASOS has tremendously increased the real-time data available for both weather forecasting and aviation purposes. However, the affect of the ASOS method of data collection on the dispersion modeling community is less clear. Because the hourly data now being reported at most stations across the country are being gathered in a fundamentally different way than previously, it is prudent to examine the differences between hourly meteorological observations gathered before and after ASOS. This paper scrutinizes wind speed and direction data gathered at Baltimore-Washington International Airport and Washington Dulles International Airport and quantifies the differences. Wind data are critical in determining the transport and dispersion of pollutant plumes. Relationships between manually gathered wind data and ASOS wind data are examined. Finally, potential ramifications on dispersion modeling applications are discussed.

  4. The evaluation of ASOS for the Kennedy Space Center's Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    Yersavich, Ann; Wheeler, Mark; Taylor, Gregory; Schumann, Robin; Manobianco, John

    1994-01-01

    This report documents the Applied Meteorology Unit's (AMU) evaluation of the effectiveness and utility of the Automated Surface Observing System (ASOS) in terms of spaceflight operations and user requirements. In particular, the evaluation determines which of the Shuttle Landing Facility (SLF) observation requirements can be satisfied by ASOS. This report also includes a summary of ASOS' background, current configuration and specifications, system performance, and the possible concepts of operations for use of ASOS at the SLF. This evaluation stems from a desire by the Air Force to determine if ASOS units could be used to reduce the cost of SLF meteorological observations.

  5. The synthesis and characterization of 1 1 1 1 type diluted ferromagnetic semiconductor (La1-x Ca x )(Zn1-x Mn x )AsO

    NASA Astrophysics Data System (ADS)

    Ding, Cui; Guo, Shengli; Zhao, Yao; Man, Huiyuan; Fu, Licheng; Gu, Yilun; Wang, Zhouyang; Liu, L.; Frandsen, B. A.; Cheung, S.; Uemura, Y. J.; Goko, T.; Luetkens, H.; Morenzoni, E.; Zhao, Yang; Ning, F. L.

    2016-01-01

    We report the synthesis and characterization of a bulk form diluted magnetic semiconductor, (La1-x Ca x )(Zn1-y Mn y )AsO, with a layered crystal structure isostructural to that of the 1 1 1 1 type Fe-based high-temperature superconductor LaFeAsO and the antiferromagnetic LaMnAsO. With Ca and Mn codoping into LaZnAsO, the ferromagnetic ordering occurs below the Curie temperature {{T}\\text{C}}   ˜30 K. Taking advantage of the decoupled charge and spin doping, we investigate the influence of carrier concentration on the ferromagnetic ordering state. For a fixed Mn concentration of 10%, {{T}\\text{C}} increases from 24 K to 30 K when the Ca concentration increases from 5% to 10%. Further increase of Ca concentration reduces both the coercive field and saturation moment. Muon spin relaxation measurements confirm the ferromagnetically ordered state, and clearly demonstrate that (La1-x Ca x )(Zn1-y Mn y )AsO shares a common mechanism for the ferromagnetic exchange interaction with (Ga,Mn)As. Neutron scattering measurements show no structural transition in (La0.90Ca0.10)(Zn0.90Mn0.10)AsO below 300 K.

  6. Further investigations of automated surface observing system (ASOS) winds used in air quality modeling applications

    SciTech Connect

    Brower, R.P.; Jones, W.B.; Sherwell, J.

    1999-07-01

    Since 1992, a significant shift in the way standard surface meteorological data are observed and collected has occurred across the country. The National Weather Service, the Federal Aviation Administration, and the Department of Defense have been deploying the Automated Surface Observing System (ASOS) at nearly one thousand sites. Prior to ASOS, manual observation and recordation were the norm. With the advent of ASOS, an unprecedented level of meteorological data is now available; observations of standard meteorological variables are available almost real-time at more sites. However, with ASOS, meteorological data are being gathered in a fundamentally different way. New automated instruments sample, analyze, and record meteorological observations without human intervention. Many of these meteorological observations are key inputs to predictive air quality models. Reliable estimates of plume transport and dispersion require reliable and available meteorological data. The effect of the ASOS method of data collection on the dispersion modeling community is not clear. Because the hourly data now being reported at most stations across the country are being gathered in a fundamentally different way than previously, it is prudent to examine the differences between hourly meteorological observations gathered before and after ASOS. A preliminary analysis1 of pre-ASOS and ASOS data suggested that the differences in the observations could impact the data's application to air quality models. This expanded study examines more thoroughly the differences between wind data gathered before and after ASOS implementation in order to identify potential ramifications for air quality modeling. Pre-ASOS and ASOS data, from five stations in and around Maryland that represent the diversity of urbanization and topography of the region and that have a reasonably long record of ASOS observations, are examined.

  7. Rapid microwave synthesis of the iron arsenides NdFeAsO and NdFe{sub 0.9}Co{sub 0.1}AsO

    SciTech Connect

    Muir, Sean W.; Rachdi, Omar D.; Subramanian, M.A.

    2012-03-15

    Graphical abstract: For the first time, a rapid method for synthesizing NdFeAsO and NdFe{sub 0.9}Co{sub 0.1}AsO is reported. This method uses 2.45 GHz microwave radiation and an additional microwave susceptor to drive the reaction. The superconducting properties NdFe{sub 0.9}Co{sub 0.1}AsO of microwave synthesized materials match well with those reported previously. Highlights: Black-Right-Pointing-Pointer Microwave assisted solid state synthesis of NdFeAsO and NdFe{sub 0.9}Co{sub 0.1}AsO is reported. Black-Right-Pointing-Pointer Synthesis of high quality samples is achieved after 50 min microwave exposure. Black-Right-Pointing-Pointer Physical properties of microwave samples match those prepared conventionally. -- Abstract: The future of iron pnictide superconductors in technology is still undecided. While these materials are now known to possess relatively high critical temperatures and critical magnetic fields, processing methods for these superconductors are still in the development stage. Recently we have been investigating possible ways to speed up the synthetic process for obtaining polycrystalline iron arsenide superconductors and other transition metal pnictides. Here we report the synthesis of NdFeAsO and NdFe{sub 0.9}Co{sub 0.1}AsO in less than 1 h total exposure to microwave radiation using an additional microwave susceptor to surround the reaction ampoule. Structure and property measurements reveal the samples to be of high quality and superconducting when Co doped.

  8. Organic Superconductors

    SciTech Connect

    Charles Mielke

    2009-02-27

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  9. Analysis of Fumarole Acoustics at Aso Volcano, Japan

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Yokoo, A.; Fee, D.; Huang, Y. C.; Yoshikawa, S.; Utsugi, M.; Minami, T.; Ohkura, T.

    2015-12-01

    The lowermost portion of large eruption columns is the momentum-driven, fluid flow portion known as a volcanic jet. The perturbation of the atmosphere from this region produces a sound known as jetting or jet noise. Recent work has shown that this volcanic jet noise produced by a volcano has similar characteristics as the sound from jet and rocket engines. The study of volcanic jet noise has gained much from laboratory jet engine studies; however, jet engines have been engineered to reduce noise thereby limiting their use as a comparison tool to the complex, ever-changing volcanic jet. Previous studies have noted that fumaroles produce jet noise without further detailed investigation. The goal of this work is to enhance our understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We aim to characterize the acoustic signature of fumaroles and evaluate if fumarolic jets scale to that of large volcanic jets. To investigate this, we deployed a 6-element acoustic array at two different locations along the edge of the crater wall at Aso Volcano, Japan from early July through mid-August 2015. Approximately two months before this deployment, the pyroclastic cone within Aso's crater partially collapsed into the vent. The cone was constructed during both ash venting and strombolian-style explosive activity in the last year. After the deployment, on July 13 a new small vent opened on the southwest flank of the pyroclastic cone. The vent is several meters in diameter and has consistent gas jetting which produces audible jet noise. To better capture the acoustic signature of the gas jetting we moved the array to the southwestern edge of the crater. The array is 230 meters from the vent and is positioned 54 degrees from the vertical jet axis, a recording angle usually not feasible in volcanic environments. Preliminary investigations suggest directionality at the source and the influence of topography along the propagation path as

  10. AgNa2Mo3O9AsO4

    PubMed Central

    Hamza, Hamadi; Zid, Mohamed Faouzi; Driss, Ahmed

    2011-01-01

    The title compound, silver disodium trimolybdenum(VI) nonaoxide arsenate, AgNa2Mo3O9AsO4, was prepared by a solid-state reaction at 808 K. The structure consists of an infinite (Mo3AsO13)n ribbon, parallel to the c axis, composed of AsO4 tetra­hedra and MoO6 octa­hedra sharing edges and corners. The Na and Ag ions partially occupy several independent close positions, with various occupancies, in the inter-ribbon space delimited by the one-dimensional framework. The composition was refined to Ag1.06(1)Na1.94(1)Mo3O9AsO4. PMID:22219728

  11. Superconductor Composite

    DOEpatents

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  12. Superconductor consolidation

    NASA Astrophysics Data System (ADS)

    Staudhammer, K. P.

    A program to develop explosively shock consolidated monoliths of YBa2Cu3O(sub 7-x) ceramic superconductors has been ongoing at Los Alamos National Laboratory since last year. Shock consolidation can produce a near 100 percent theoretical density, bulk superconductor that does not require a post anneal in oxygen. Shock compaction is also an excellent means of creating a good electrical contact weld between the ceramic superconductor and a metal such as copper. Elimination of the post anneal and low temperature shock welding of the cladding metal are unique advantages stemming from the shock compaction processing. Successful shock compaction processing will enable production of a wide variety of complex ceramic superconductor forms tailored for specific defense application requirements. Shock compaction can be developed into industrial manufacturing processes. Shock compacted superconductor billets can be used in applications where a solid superconductor form is required (e.g., magnetic bearings, bus bar for a niobium-tin FEL SMES, motor rotors, etc.) or they can be post processed by extrusion and other swaging processes to produce textured wires and tapes for electrical current carrying applications.

  13. Superconductor consolidation

    SciTech Connect

    Staudhammer, K.P.

    1988-01-01

    A program to develop explosively shock consolidated monoliths of YBa/sub 2/Cu/sub 3/O/sub 7/minus/x/ ceramic superconductors has been ongoing at Los Alamos National Laboratory since last year. Shock consolidation can produce a near 100% theoretical density, bulk superconductor that does not require a post anneal in oxygen. Shock compaction is also an excellent means of creating a good electrical contact weld between the ceramic superconductor and a metal such as copper. Elimination of the post anneal and low temperature shock welding of the cladding metal are unique advantages stemming from the shock compaction processing. Successful shock compaction processing will enable production of a wide variety of complex ceramic-superconductor forms tailored for specific defense application requirements. Shock compaction can be developed into industrial manufacturing processes. DuPont now makes diamond powder this way. Shock compacted superconductor billets can be used in applications where a solid superconductor form is required (e.g., magnetic bearings, bus bar for a niobium-tin FEL SMES, motor rotors, etc.), or they can be post processed by extrusion and other swaging processes to produce textured wires and tapes for electrical current carrying applications. 11 refs., 1 fig.

  14. Development of antisense oligonucleotide (ASO) technology against Tgf-β signaling to prevent scarring during flexor tendon repair.

    PubMed

    Loiselle, Alayna E; Yukata, Kiminori; Geary, Michael B; Kondabolu, Sirish; Shi, Shanshan; Jonason, Jennifer H; Awad, Hani A; O'Keefe, Regis J

    2015-06-01

    Flexor tendons (FT) in the hand provide near frictionless gliding to facilitate hand function. Upon injury and surgical repair, satisfactory healing is hampered by fibrous adhesions between the tendon and synovial sheath. In the present study we used antisense oligonucleotides (ASOs), specifically targeted to components of Tgf-β signaling, including Tgf-β1, Smad3 and Ctgf, to test the hypothesis that local delivery of ASOs and suppression of Tgf-β1 signaling would enhance murine FT healing by suppressing adhesion formation while maintaining strength. ASOs were injected in to the FT repair site at 2, 6 and 12 days post-surgery. ASO treatment suppressed target gene expression through 21 days. Treatment with Tgf-β1, Smad3 or Ctgf ASOs resulted in significant improvement in tendon gliding function at 14 and 21 days, relative to control. Consistent with a decrease in adhesions, Col3a1 expression was significantly decreased in Tgf-β1, Smad3 and Ctgf ASO treated tendons relative to control. Smad3 ASO treatment enhanced the maximum load at failure of healing tendons at 14 days, relative to control. Taken together, these data support the use of ASO treatment to improve FT repair, and suggest that modulation of the Tgf-β1 signaling pathway can reduce adhesions while maintaining the strength of the repair. PMID:25761254

  15. Development of Antisense Oligonucleotide (ASO) Technology Against Tgf-β Signaling to Prevent Scarring During Flexor Tendon Repair

    PubMed Central

    Loiselle, Alayna E.; Yukata, Kiminori; Geary, Michael B.; Kondabolu, Sirish; Shi, Shanshan; Jonason, Jennifer H.; Awad, Hani A.; O’Keefe, Regis J.

    2015-01-01

    Flexor tendons (FT) in the hand provide near frictionless gliding to facilitate hand function. Upon injury and surgical repair, satisfactory healing is hampered by fibrous adhesions between the tendon and synovial sheath. In the present study we used antisense oligonucleotides (ASOs), specifically targeted to components of Tgf-β signaling, including Tgf-β1, Smad3 and Ctgf, to test the hypothesis that local delivery of ASOs and suppression of Tgf-β1 signaling would enhance murine FT healing by suppressing adhesion formation while maintaining strength. ASOs were injected in to the FT repair site at 2, 6 and 12 days post-surgery. ASO treatment suppressed target gene expression through 21 days. Treatment with Tgf-β1, Smad3 or Ctgf ASOs resulted in significant improvement in tendon gliding function at 14 and 21 days, relative to control. Consistent with a decrease in adhesions, Col3a1 expression was significantly decreased in Tgf-β1, Smad3 and Ctgf ASO treated tendons relative to control. Smad3 ASO treatment enhanced the max load at failure of healing tendons at 14 days, relative to control. Taken together, these data support the use of ASO treatment to improve FT repair, and suggest that modulation of the Tgf-β1 signaling pathway can reduce adhesions while maintaining the strength of the repair. PMID:25761254

  16. 78 FR 18314 - Foreign-Trade Zone 169-Manatee County, Florida; Application for Production Authority; ASO, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... Foreign-Trade Zones Board Foreign-Trade Zone 169--Manatee County, Florida; Application for Production Authority; ASO, LLC; Subzone 169A (Textile Fabric Adhesive Bandage Coating and Production); Sarasota... facility is used for the production of plastic and textile fabric adhesive bandages. ASO is also...

  17. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  18. Magma plumbing system at the beginning of repeated caldera eruption: A case study on Aso-1 erupted about 270 ky ago from Aso caldera, SW Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, I.; Hoshizumi, H.; Miyabuchi, Y.

    2015-12-01

    In order to understand the commencement of magma plumbing system of a polygenetic caldera, we started petrological study on the earliest eruptive product of Aso caldera, SW Japan. Aso caldera is one of the active volcano in Japan which have produced four stages (Aso-1, -2, -3, -4) of large-scale pyroclastic flow deposits 270 to 90 ky. ago. A suite of samples were collected from the bottom of Aso-1 pyroclastic flow deposit and from the underlying tephra layer (Ono et al., 1979). The tephra comprises more than 10 pumice fall units inter-layered by dark gray volcanic ash. For whole rock chemistry, coarser pumice fragments were separated. For mineral and glass chemistry, phenocrysts and glass particles were handpicked from the sieved 500-1000 um fractions under a binocular microscope. This fraction consist of plagioclase, orthopyroxene, variably vesiculated volcanic glass fragments, and clinopyroxene phenocrysts. They were analyzed using an electron micro-probe. The suite of samples are similar and major temporal change is the chemical composition of orthopyroxenes; those from upper horizon are relatively Mg rich. Anorthite content of plagioclase phenocryst is bimodal 49-53 mol. % (major) and 57-70 mol. % (minor). Silica content of matrix glass fall in a narrow range 68-70 wt. %. Temperature and oxygen fugacity were estimated to be 865-905 deg-C and FMQ+2 log unit, respectively, using ILMAT (Lepage, 2003). Pressure and water content of the magma are estimated to be 5-7 kbar and 0.5-1 wt. % H2O, respectively, using rhyolite-MELTS (Gualda et al., 2012) on the most undifferentiated tholeiitic basalt of Aso 4KC-03 (Hunter, 1998) to reproduce the observed composition of matrix glass (68-70 wt. % SiO2) and plagioclase (An 49-53 mol. %). The calcic plagioclase (An 57-70 mol. %), however, suggest that the basalt was initially hydrous and require magma degassing before the differentiation. If we assume degassing by magma convection in a conduit (Kazahaya et al., 1994), the

  19. K(MoO2)4O3(AsO4)

    PubMed Central

    Jouini, Raja; Zid, Mohamed Faouzi; Driss, Ahmed

    2013-01-01

    A new compound with a non-centrosymmetric structure, potassium tetra­kis­[dioxomolybdenum(IV)] arsenate trioxide, K(MoO2)4O3(AsO4), has been synthesized by a solid-state reaction. The [(MoO2)4O3(AsO4)]+ three-dimensional framework consists of single arsenate AsO4 tetra­hedra, MoO6 octa­hedra, MoO5 bipyramids and bi­octa­hedral units of edge-sharing Mo2O10 octa­hedra. The [Mo2O8]∞ octa­hedral chains running along the a-axis direction are connected through their corners to the AsO4 tetra­hedra, MoO6 octa­hedra and MoO5 bipyramids, so as to form large tunnels propagating along the a axis in which the K+ cations are located. This structure is compared with compounds containing M 2O10 (M = Mo, V, Fe) dimers and with those containing M 2O8 (M = V) chains. PMID:23794968

  20. Superconductor cable

    DOEpatents

    Smith, Jr., Darrell F.; Lake, Bill L.; Ballinger, Ronald G.

    1988-01-01

    A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.

  1. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed. PMID:27088452

  2. Chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  3. Magma plumbing system of the Aso-3 large pyroclastic eruption cycle at Aso volcano, Southwest Japan: Petrological constraint on the formation of a compositionally stratified magma chamber

    NASA Astrophysics Data System (ADS)

    Kaneko, Katsuya; Inoue, Kazuhisa; Koyaguchi, Takehiro; Yoshikawa, Masako; Shibata, Tomoyuki; Takahashi, Toshiro; Furukawa, Kuniyuki

    2015-09-01

    Aso volcano has the largest caldera (18 × 25 km in diameter) in the southwestern Japan Island Arc, and it formed as the result of four large (VEI = 6-7) pyroclastic-eruption cycles. We study the penultimate large eruption cycle, the Aso-3 cycle, which occurred 123 ka with an ejecta volume of more than 150 km3. The processes in the pre-eruptive magma chamber and the magma genesis of the Aso-3 cycle were inferred from geological data, phenocryst chemistry, and whole-rock chemical and Sr-, Nd-, and Pb isotopic analyses of juvenile clasts. The geological and petrological data indicate that the pre-eruptive magma chamber was stratified compositionally into three layers: from top to bottom, silicic, intermediate, and mafic magma layers. The three magma layers had a uniform isotope composition, suggesting that all the magmas were generated from a single source. The silicic and intermediate magmas were not generated from the mafic magma by fractional crystallization. The silicic magma has higher Ni content (compatible element) than the mafic magma. This suggests that these magmas were produced by partial melting of the same mafic crust but with differing amounts of partial melting: the silicic magma was produced by a low degree of partial melting of the source rock without fractional crystallization, and the mafic magma was produced by a large degree of partial melting followed by fractional crystallization. The intermediate magma compositions plot on the tie line between the silicic magma and the melt of the mafic magma in variation diagrams, and the intermediate magma has phenocrysts whose compositions are identical with those in the silicic magma. This observation indicates that, before the Aso-3 eruption cycle, a two-layer stratified magma chamber of the silicic and mafic magmas was formed as a result of melting of the mafic crust, which was followed by formation of the intermediate layer as a result of interfacial mixing between the silicic magma and the melt of

  4. Rupture process of the 2016 Kumamoto earthquake in relation to the thermal structure around Aso volcano

    NASA Astrophysics Data System (ADS)

    Yagi, Yuji; Okuwaki, Ryo; Enescu, Bogdan; Kasahara, Amato; Miyakawa, Ayumu; Otsubo, Makoto

    2016-07-01

    We constructed the rupture process model for the 2016 Kumamoto, Japan, earthquake from broadband teleseismic body waveforms (P-waves) by using a novel waveform inversion method that takes into account the uncertainty of Green's function. The estimated source parameters are: seismic moment = 5.1 × 1019 Nm (Mw = 7.1), fault length = 40 km, and fault width = 15 km. The mainshock rupture mainly propagated northeastward from the epicenter, for about 30 km, along an active strike-slip fault. The rupture propagation of the mainshock decelerated and terminated near the southwest side of the Aso volcano; the aftershock activity was low around the northeastern edge of the major slip area. Our results suggest that the rupture process of the mainshock and the distribution of aftershocks were influenced by the high-temperature area around the magma chamber of Mt. Aso.

  5. NaAg(2)Mo(3)O(9)AsO(4).

    PubMed

    Hamza, Hamadi; Zid, Mohamed Faouzi; Driss, Ahmed

    2010-01-01

    The title compound, sodium disilver arsenatotrimolybdate, Na(0.93 (1))Ag(2.07 (1))Mo(3)AsO(13), was prepared by a solid-state reaction. In the crystal structure, isolated AsO(4) tetra-hedra share corners with groups of three edge-sharing MoO(6) octa-hedra. This arrangement leads to the formation of anionic (1) (∞)[Mo(3)AsO(13)](n) ribbons extending parallel to [100]. The three metal sites show occupational disorder by Ag(I) and Na(I) cations, each with a different Ag:Na ratio. The metal cations are situated in the space between the ribbons and are surrounded by terminal O atoms of the ribbons in the form of distorted MO(7) polyhedra (M = Ag, Na) for distances < 3.0 Å. The title compound shows weak ionic conductivity. Structural relationships between different compounds in the quaternary systems M-Sb-P-O, M-Nb-P-O and M-Mo-As-O (M is Ag or an alkali metal) are also discussed. PMID:21587345

  6. Steady subsidence of a repeatedly erupting caldera through InSAR observations: Aso, Japan

    NASA Astrophysics Data System (ADS)

    Nobile, Adriano; Acocella, Valerio; Ruch, Joel; Aoki, Yosuke; Borgstrom, Sven; Siniscalchi, Valeria; Geshi, Nobuo

    2016-04-01

    The relation between unrest and eruption at calderas is still poorly understood. Aso caldera, Japan, shows minor episodic eruptions, mainly phreatic, associated with steady subsidence. We analyse the recent deformation of Aso using SAR images from 1993 to 2011 and compare this with the eruptive activity. Although the dataset suffers from limitations (e.g., atmospheric effects, coherence loss, low signal to noise ratio), we observe a steady subsidence signal from 1996 to 1998, that suggests an overall contraction of a magmatic source below the caldera centre, from 4.5 to 7 km depth. Because of the similar volumes of the contracting source and erupted material, we propose that the contraction may have been induced by the release of the magmatic fluids feeding the eruptions. If confirmed by further data, this hypothesis suggests that degassing processes play a crucial role in triggering minor eruptions within open conduit calderas, as at Aso. These features underline the importance of defining any eruptive potential also from deflating magmatic systems with open conduit.

  7. Wind Measurement and Archival under the Automated Surface Observing System (ASOS): User Concerns and Opportunity for Improvement.

    NASA Astrophysics Data System (ADS)

    Powell, Mark D.

    1993-04-01

    The National Weather Service, as a part of its modernization effort, is implementing the Automated Surface Observing System (ASOS). Much discussion has occurred about various aspects of ASOS versus the current system of manual and automated observations. Based upon a study of the ASOS specifications and an informal survey of potential ASOS winddata users, defects of the wind sampling and archival strategy chosen for ASOS are discussed in terms of their impact on various user groups. Limitations include: 1) hourly observation average periods that do not conform to international recommendations for wind reporting made by the World Meteorological Organization, 2) no regular archival of high-resolution data-potentially valuable research data are destroyed if not identified within a 12-h period, and 3) no emergency power for operation in severe weather conditions. An alternative sampling and archiving strategy is recommended that benefits a wider cross section of users, without detracting from aviation and forecast service requirements, at a cost of less than 1% of the original ASOS portion of the weather service modernization budget.

  8. Wind measurement and archival under the Automated Surface Observing System (ASOS): User concerns and opportunity for improvement

    SciTech Connect

    Powell, M.D. )

    1993-04-01

    The National Weather Service, as a part of its modernization effort, is implementing the Automated Surface Observing System (ASOS). Much discussion has occurred about various aspects of ASOS versus the current system of manual and automated observations. Based upon a study of the ASOS specifications and an informal survey of potential ASOS wind data users, defects of the wind sampling and archival strategy chosen for ASOS are discussed in terms of their impact on various user groups. Limitations include: (1) hourly observation average periods that do not conform to international recommendations for wind reporting made by the World Meteorological Organization, (2) no regular archival of high-resolution data-potentially valuable research data are destroyed if not identified within a 12-h period, and (3) no emergency power for operation in severe weather conditions. An alternative sampling and archiving strategy is recommended that benefits a wider cross section of users, without detracting from aviation and forecast service requirements, at a cost of less than 1 % of the original ASOS portion of the weather service modernization budget.

  9. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  10. Combined absolute and relative gravity measurement for microgravity monitoring in Aso volcanic field

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Yoshikawa, Shin; Fujimitsu, Yasuhiro; Kagiyama, Tsuneomi; Fukuda, Yoichi

    2014-05-01

    Absolute measurement with a portable A10-017 absolute gravimeter at some benchmarks in the Aso volcanic field are valuable for reducing uncertainties of regional gravity variations and will be useful for delineating the long term trends of gravity changes. A10 absolute gravimeter is a new generation of portable absolute instrument and has accuracy 10 microGal. To further the development of a high precision gravity data, we also conducted measurement using two relative gravimeter (Scintrex CG-5 [549] and LaCoste type G-1016) to be combined with an A10 absolute gravimeter. The using absolute gravimeter along with relative gravimeter can reduce drift correction factor and improve the result of gravity change data in microgravity monitoring. Microgravity monitoring is a valued tool for mapping the redistribution of subsurface mass and for assessing changes in the fluid as a dynamic process in volcanic field. Gravity changes enable the characterization of subsurface processes: i.e., the mass of the intrusion or hydrothermal flow. A key assumption behind gravity monitoring is that changes in earth's gravity reflect mass-transport processes at depth [1]. The absolute gravity network was installed at seven benchmarks using on May 2010, which re-occupied in October 2010, and June 2011. The relative gravity measurements were performed at 28 benchmarks in one month before the eruption on May 2011 and then followed by series of gravity monitoring after the eruption in every three to five months. Gravity measurements covered the area more than 60 km2 in the west side of Aso caldera. Some gravity benchmarks were measured using both absolute and relative gravimeter and is used as the reference benchmarks. In longer time period, the combined gravity method will improve the result of gravity change data for monitoring in the Aso volcanic field. As a result, the gravity changes detected the hydrothermal flow in the subsurface which has a correlation to water level fluctuation in the

  11. Field Management System (FMS) user's manual. Atlanta Support Office Phase I, Version ASO-2

    SciTech Connect

    Not Available

    1985-06-01

    This manual describes the Field Management System (FMS) designed for the Department of Energy Atlanta Support Office (ASO). This manual is written for both the FMS manager and the first-time computer user. The manual is written and FMS is designed so that these users can operate FMS without learning a lot about the computer operations. The chapters of this manual have been arranged so that selected chapters can be combined into separate manuals for the needs of each user. This arrangement is as follows: Data Inspection; Data Entry; FMS Maintenance; and FMS Manager.

  12. FOREWORD: The 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS 9)

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2008-07-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy of Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and the Physics Department of Lund University during from 8 to 10 August 2007 and was attended by nearly 100 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume contains the submitted contributions from the poster presentations of the conference, and represents approximately forty percent of the presented posters. A complementary volume of Physica Scripta provides the written transactions of the ASOS9 invited presentations. With these two volumes the character of ASOS9 is more fully evident, and they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy where both the providers and users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths, and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, the latter including fusion energy and lighting research. As a part of ASOS9 we were honored to celebrate the retirement of Professor Sveneric Johansson. At a special session on the spectroscopy of iron, which was conducted in his honor, he presented his insights into the Fe II term system and his most recent

  13. Vibrational spectroscopic study of the mineral pitticite Fe, AsO 4, SO 4, H 2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Tan, Keqin; Millar, Graeme J.; Palmer, Sara J.

    2012-01-01

    Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the determination of the structure of these minerals. Among this group of minerals is pitticite, simply described as (Fe, AsO 4, SO 4, H 2O). In this work, the analogue of the mineral pitticite has been synthesised. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO 43-, SO 42- and water stretching and bending vibrations. The Raman spectrum of the pitticite analogue shows intense peaks at 845 and 837 cm -1 assigned to the AsO 43- stretching vibrations. Raman bands at 1096 and 1182 cm -1 are attributed to the SO 42- antisymmetric stretching bands. Raman spectroscopy offers a useful method for the analysis of such colloidal minerals.

  14. A Rapid Turn-around, Scalable Big Data Processing Capability for the JPL Airborne Snow Observatory (ASO) Mission

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2014-12-01

    The JPL Airborne Snow Observatory (ASO) is an integrated LIDAR and Spectrometer measuring snow depth and rate of snow melt in the Sierra Nevadas, specifically, the Tuolumne River Basin, Sierra Nevada, California above the O'Shaughnessy Dam of the Hetch Hetchy reservoir, and the Uncompahgre Basin, Colorado, amongst other sites. The ASO data was delivered to water resource managers from the California Department of Water Resources in under 24 hours from the time that the Twin Otter aircraft landed in Mammoth Lakes, CA to the time disks were plugged in to the ASO Mobile Compute System (MCS) deployed at the Sierra Nevada Aquatic Research Laboratory (SNARL) near the airport. ASO performed weekly flights and each flight took between 500GB to 1 Terabyte of raw data, which was then processed from level 0 data products all the way to full level 4 maps of Snow Water Equivalent, albedo mosaics, and snow depth from LIDAR. These data were produced by Interactive Data analysis Language (IDL) algorithms which were then unobtrusively and automatically integrated into an Apache OODT and Apache Tika based Big Data processing system. Data movement was both electronic and physical including novel uses of LaCie 1 and 2 TeraByte (TB) data bricks and deployment in rugged terrain. The MCS was controlled remotely from the Jet Propulsion Laboratory, California Institute of Technology (JPL) in Pasadena, California on behalf of the National Aeronautics and Space Administration (NASA). Communication was aided through the use of novel Internet Relay Chat (IRC) command and control mechanisms and through the use of the Notifico open source communication tools. This talk will describe the high powered, and light-weight Big Data processing system that we developed for ASO and its implications more broadly for airborne missions at NASA and throughout the government. The lessons learned from ASO show the potential to have a large impact in the development of Big Data processing systems in the years

  15. Synthesis and crystal structure of Na4Ni7(AsO4)6

    PubMed Central

    David, Rénald

    2016-01-01

    The title compound, tetra­sodium hepta­nickel hexa­arsenate, was obtained by ceramic synthesis and crystallizes in the monoclinic space group C2/m. The asymmetric unit contains seven Ni atoms of which two have site symmetry 2/m and three site symmetry 2, four As atoms of which two have site symmetry m and two site symmetry 2, three Na atoms of which two have site symmetry 2, and fifteen O atoms of which four have site symmetry m. The structure of Na4Ni7(AsO4)6 is made of layers of Ni octa­hedra and As tetra­hedra assembled in sheets parallel to the bc plane. These layers are inter­connected by corner-sharing between NiO6 octa­hedra and AsO4 tetra­hedra. This linkage creates tunnels running along the c axis in which the Na atoms are located. This arrangement is similar to the one observed in Na4Ni7(PO4)6, but the layers of the two compounds are slightly different because of the disorder of one of the Ni sites in the structure of the title compound. PMID:27308006

  16. Fine uniform filament superconductors

    DOEpatents

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  17. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  18. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  19. Photothermal measurements of superconductors

    SciTech Connect

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M.

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  20. Grounded electrical-source airborne transient electromagnetics (GREATEM) survey of Aso Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ito, Hisatoshi; Kaieda, Hideshi; Mogi, Toru; Jomori, Akira; Yuuki, Youichi

    2014-05-01

    Grounded electrical-source airborne transient electromagnetics (GREATEM), a type of semi-airborne electromagnetics, was used to examine Aso Volcano in south-west Japan, to verify its applicability to surveying deep subsurface resistivity structures. Comparison of the GREATEM resistivity values with those of ground-based transient electromagnetics (TEM) data, repeated GREATEM survey results at the same and different flight heights, and lithologic descriptions indicated that GREATEM can successfully identify underground structures as deep as ~800 m in rugged mountainous areas. An active volcanic region (Naka-Dake crater) was mapped as a low-resistivity zone from the surface to a depth of 100 m. This low-resistivity zone extended to the west-north-west, implying future volcanic activity in this area. Therefore, the GREATEM method is useful for surveying deep structures in large, inaccessible areas, such as volcanic provinces, in a quick, cost-effective way.

  1. Mineral and chemical variations within an ash-flow sheet from Aso caldera, Southwestern Japan

    USGS Publications Warehouse

    Lipman, P.W.

    1967-01-01

    Although products of individual volcanic eruptions, especially voluminous ash-flow eruptions, have been considered among the best available samples of natural magmas, detailed petrographic and chemical study indicates that bulk compositions of unaltered Pleistocene ash-flow tuffs from Aso caldera, Japan, deviate significantly from original magmatic compositions. The last major ash-flow sheet from Aso caldera is as much as 150 meters thick and shows a general vertical compositional change from phenocryst-poor rhyodacite upward into phenocryst-rich trachyandesite; this change apparently reflects in inverse order a compositionally zoned magma chamber in which more silicic magma overlay more mafic magma. Details of these magmatic variations were obscured, however, by: (1) mixing of compositionally distinct batches of magma during upwelling in the vent, as indicated by layering and other heterogeneities within single pumice lumps; (2) mixing of particulate fragments-pumice lumps, ash, and phenocrysts-of varied compositions during emplacement, with the result that separate pumice lenses from a single small outcrop may have a compositional range nearly as great as the bulk-rook variation of the entire sheet; (3) density sorting of phenocrysts and ash during eruption and emplacement, resulting in systematic modal variations with distance from the caldera; (4) addition of xenocrysts, resulting in significant contamination and modification of proportions of crystals in the tuffs; and (5) ground-water leaching of glassy fractions during hydration after cooling. Similar complexities characterize ash-flow tuffs under study in southwestern Nevada and in the San Juan Mountains, Colorado, and probably are widespread in other ash-flow fields as well. Caution and careful planning are required in study of the magmatic chemistry and phenocryst mineralogy of these rocks. ?? 1967 Springer-Verlag.

  2. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver

    PubMed Central

    Miller, Colton M.; Donner, Aaron J.; Blank, Emma E.; Egger, Andrew W.; Kellar, Brianna M.; Østergaard, Michael E.; Seth, Punit P.; Harris, Edward N.

    2016-01-01

    Phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) have been extensively investigated over the past three decades as pharmacological and therapeutic agents. One second generation ASO, Kynamro™, was recently approved by the FDA for the treatment of homozygous familial hypercholesterolemia and over 35 second generation PS ASOs are at various stages of clinical development. In this report, we show that the Stabilin class of scavenger receptors, which were not previously thought to bind DNA, do bind and internalize PS ASOs. With the use of primary cells from mouse and rat livers and recombinant cell lines each expressing Stabilin-1 and each isoform of Stabilin-2 (315-HARE and 190-HARE), we have determined that PS ASOs bind with high affinity and these receptors are responsible for bulk, clathrin-mediated endocytosis within the cell. Binding is primarily dependent on salt-bridge formation and correct folding of the intact protein receptor. Increased internalization rates also enhanced ASO potency for reducing expression of the non-coding RNA Malat-1, in Stabilin-expressing cell lines. A more thorough understanding of mechanisms by which ASOs are internalized in cells and their intracellular trafficking pathways will aid in the design of next generation antisense agents with improved therapeutic properties. PMID:26908652

  3. Designing with superconductors

    SciTech Connect

    Hammond, R.B.; Hey-Shipton, G.L. ); Matthaei, G.L. )

    1993-04-01

    This article examines the basics of designing with superconducting microwave ICs. The topics of this article include high-temperature superconductors of copper-oxide compounds, the shortcomings of designing ICs with CAD, building small, high-Q bandpass or bandstop filters, combining high-temperature superconductors and conventional components, oscillator stability, tuning, digital interconnects, and cryogenic cooling options.

  4. Fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  5. Superconductor as movie star

    SciTech Connect

    Pool, R.

    1993-12-03

    Japanese researchers have succeeded in producing a movie of changes in the magnetic flux lattice of a high-Tc superconductor as it is warmed. They used a technique called electron holography, in which electrons are passed through a superconductor, and flux lines are visualized as interference patterns induced by the electrons as they undergo a phase change as they pass to one side or another of the flux lines. The technique will have application in designing superconductors so that they do not lose their superconductivity when exposed to magnetic fields.

  6. Combined use of RFLP and PCR-ASO typing for HLA-DR-Dw and DQw typing.

    PubMed

    Bignon, J D; Bidwell, J L

    1991-01-01

    Due to some limitations of restriction fragment length polymorphism (RFLP) analysis in HLA-DR-DQ typing, we present a combined use of RFLP and polymerase chain reaction (PCR)-allele-specific oligonucleotide (ASO) typing. This scheme consists in selectively amplifying the few RFLP ill-defined genes (DR1/DR'Br' and DR4-Dw subsets) using PCR with allele specific primers to avoid cross-hybridization. PMID:1676910

  7. Heavy atom nitroxyl radicals. II: Spectroscopic detection of H2As=O, the prototypical arsenyl free radical

    NASA Astrophysics Data System (ADS)

    He, Sheng-Gui; Sunahori, Fumie X.; Yang, Jie; Clouthier, Dennis J.

    2009-09-01

    The previously unknown arsenyl (H2AsO) free radical has been identified in the gas phase through a combination of laser-induced fluorescence and single vibronic level emission spectroscopy in a supersonic expansion. Three isotopologues, H2AsO, HDAsO, and D2AsO have been detected as products of an electric discharge in mixtures of arsine or deuterated arsines, CO2, and argon. The observed spectra are assigned as due to the B˜ A2'-X˜ A2' electronic transition in which an electron in the ground state π orbital is promoted to the π∗ orbital. Rotational analysis of high-resolution spectra proves that the radical is nonplanar in both electronic states with the following r0 structures: r″(As-H)=1.513(4) Å, r″(As-O)=1.672(1) Å, θ″(HAsH)=101.8(4)°, ground state out-of-plane angle=63.1°; r'(As-H)=1.525(10) Å, r'(As-O)=1.806(3) Å, θ'(HAsH)=93.4(10)°, and excited state out-of-plane angle=70.7°. Small hyperfine splittings in the spectra have enabled the determination of the arsenic Fermi contact parameter in both states. The results of our ab initio studies of the ground and excited state of this radical (see immediately preceding paper) are in good agreement with the spectroscopic analysis.

  8. Analysis of Snow Albedo, Grain Size and Radiative Forcing based on the Airborne Snow Observatory (ASO) Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T. H.

    2013-12-01

    Climate is expected to be most vulnerable in mountainous and arctic regions where the atmosphere and the hydrosphere are directly linked to the cryosphere. A combination of modeling and large-scale observational efforts is required to investigate related scientific questions. NASA's Airborne Snow Observatory (ASO) at the Jet Propulsion Laboratory addresses some of these needs by establishing new quantitative observational capabilities in regional mapping of mountain snow properties. In addition, ASO's key products showed that we are able to achieve societal benefits by improving water resources management. We will show the first analysis of snow optical products (albedo, grain size, and radiative forcing) from the spring 2013 ASO campaign in the Sierra Nevada, CA, USA. In addition, we will present the retrieval methods used to derive these products based on airborne imaging spectroscopy, LiDAR, as well as radiative transfer models. The preliminary findings provide new important insights into the temporal and spatial aspects of Western US mountain snow and its melt.

  9. Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a) in Mice.

    PubMed

    Yu, Rosie Z; Graham, Mark J; Post, Noah; Riney, Stan; Zanardi, Thomas; Hall, Shannon; Burkey, Jennifer; Shemesh, Colby S; Prakash, Thazha P; Seth, Punit P; Swayze, Eric E; Geary, Richard S; Wang, Yanfeng; Henry, Scott

    2016-01-01

    Triantennary N-acetyl galactosamine (GalNAc3)-conjugated antisense oligonucleotides (ASOs) have greatly improved potency via receptor-mediated uptake. In the present study, the in vivo pharmacology of a 2'-O-(2-methoxyethyl)-modified ASO conjugated with GalNAc3 (ISIS 681257) together with its unmodified congener (ISIS 494372) targeting human apolipoprotein (a) (apo(a)), were studied in human LPA transgenic mice. Further, the disposition kinetics of ISIS 681257 was studied in CD-1 mice. ISIS 681257 demonstrated over 20-fold improvement in potency over ISIS 494372 as measured by liver apo(a) mRNA and plasma apo(a) protein levels. Following subcutaneous (SC) dosing, ISIS 681257 cleared rapidly from plasma and distributed to tissues. Intact ISIS 681257 was the major full-length oligonucleotide species in plasma. In tissues, however, GalNAc sugar moiety was rapidly metabolized and unconjugated ISIS 681257 accounted > 97% of the total exposure, which was then cleared slowly from tissues with a half-life of 7-8 days, similar to the half-life in plasma. ISIS 681257 is highly bound to plasma proteins (> 94% bound), which limited its urinary excretion. This study confirmed dose-dependent exposure to the parent drug ISIS 681257 in plasma and rapid conversion to unconjugated ASO in tissues. Safety data and the extended half-life support its further development and weekly dosing in phase 1 clinical studies. PMID:27138177

  10. A European research infrastructure for the aerosol study on a continental scale: EARLINET-ASOS

    NASA Astrophysics Data System (ADS)

    Amodeo, Aldo; Pappalardo, Gelsomina; Bösenberg, Jens; Ansmann, Albert; Apituley, Arnoud; Alados-Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoly; Comeron, Adolfo; Freudenthaler, Volker; Gustaffson, Ove; Hansen, Georg; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Simeonov, Valentin; Spinelli, Nicola; Stoyanov, Dimitar; Trickl, Thomas; Wiegner, Matthias

    2007-10-01

    The present knowledge of the aerosol distribution is not sufficient to estimate the aerosol influence on global and regional environmental conditions and climate. This observational gap can be closed by using advanced laser remote sensing. EARLINET (European Aerosol Research Lidar Network) is the first aerosol lidar network, established in 2000, with the main goal to provide a comprehensive, quantitative, and statistically significant database for the aerosol distribution on a continental scale. EARLINET is a coordinated network of European stations (25 at present) using advanced lidar methods for the vertical profiling of aerosols. The network activity is based on simultaneous scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. Further observations are performed to monitor special events. EARLINET-ASOS (Advanced Sustainable Observation System) is a five year EC Project started in 2006, based on the EARLINET infrastructure. The main objectives are: to make EARLINET a world-leading instrument for the observation of the 4-D aerosol distribution on continental scale; to foster aerosol-related process studies, validation of satellite sensors, model development and validation, assimilation of aerosol data into operational models; and to build a comprehensive climatology of the aerosol distribution.

  11. Remote Monitoring of Aerosol Layers over Sofia in the Frame of EARLINET-ASOS Project

    NASA Astrophysics Data System (ADS)

    Grigorov, Ivan; Kolarov, Georgi; Stoyanov, Dimitar

    2010-01-01

    In this work we present some results of lidar remote sensing of aerosol layers in the atmosphere in Sofia region. The investigations were made using a lidar system equipped with a CuBr-vapor laser with high pulse repetition of 13 kHz and receiver in photon counting mode. These measurements were performed in frame of the project European Aerosol Research Lidar Network—Advanced Sustainable Observation System (EARLINET—ASOS). For some of presented results a conclusion about atmospheric aerosol's origins was made upon analyses of the information about the weather condition during the lidar measurements. Such information was obtained by the weather-forecast maps provided by the Atmospheric Modeling and Weather Forecasting Group of NTUA and the Forecast system of Barcelona Supercomputing Centre and accessible via Internet. Additional information is provided by calculations of the backward air mass trajectories, using online software of NOAA about HYSPLIT model (HYbrid Single-Particle Lagrangian Integrated Trajectory). A common database that automatically collects the data products provided by the individual lidar stations is build and makes data of measurements available to the scientific community.

  12. Bubble Coalescences Found in a Scoria from 2014-2015 Aso Eruption

    NASA Astrophysics Data System (ADS)

    Namiki, A.

    2015-12-01

    November 2014, Aso Volcano resumed the eruption after approximately 20 years quiescence. The main activity was ash eruption with silent large plumes, but Strombolian eruption of spouting scoriae without ash also was observed. Most of scoriae are highly vesiculated, and have low density (Yokoo and Miyabuchi, 2015). In order to understand the evolution of bubble texture, I observed the scoriae in three methods, the microscope, CT scan, and SEM those can observe different scales of 10 mm, 1 mm, 10μm, respectively. The microscope images show that larger bubbles (10mm) are surrounded by small bubbles (< 1mm), which shows elongated structure and suggesting that deformed by the large bubbles. CT images also show that larger bubbles (1mm) are surrounded by small bubbles (100μm). SEM images show that the bubble film thickness is approximately 1μm or less. According to the observation of pumices in other volcanoes, the typical bubble film thickness is estimated to be about 0.1-1μm (Nguyen, et al, 2013). In general, the volume fraction of bubbles and number density determine the thickness of the bubble films. For a smaller number density of bubbles, bubble size becomes larger in a same bubble volume fraction, so that the bubble film becomes thicker. In other words, the bubble films in the bubbly magma with a large number density reach the minimum thickness at a lower degree of bubble fraction. As a result, the bubble films rupture, or by coagulation, the larger bubble assimilates small bubbles. By the increase of the bubble size, thickness of the bubble film increases to be larger than the minimum thickness of 1μm. If such coalescences occur, the bubble size must have variety. From the varying bubble size and 1 1μm film thickness of scoriae, I infer that bubble coalescence occurred in the ascending bubbly magma in the conduit.

  13. Granular Superconductors and Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  14. Lightning in superconductors

    PubMed Central

    Vestgården, J. I.; Shantsev, D. V.; Galperin, Y. M.; Johansen, T. H.

    2012-01-01

    Crucially important for application of type-II superconductor films is the stability of the vortex matter – magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films. PMID:23185691

  15. Tunneling spectroscopy of anisotropic superconductors

    SciTech Connect

    Kashiwaya, Satoshi; Koyanagi, Masao; Kajimura, Koji; Tanaka, Yukio

    1996-12-31

    Tunneling spectroscopy of normal-insulator-superconductor junction is investigated theoretically. In anisotropic superconductors, differently from the case of isotropic superconductor, the effective pair potentials felt by quasiparticles depend on the direction of their motion. By taking this effect into account, it is shown that the conductance spectra strongly depend on the crystal orientation. Using Green`s function method, local density of states (LDOS) in superconductor is also calculated. The close relation between conductance spectra and LDOS is presented. The calculation is compared with experimental spectra of high-{Tc} superconductors.

  16. Superconductor materials engineering

    NASA Astrophysics Data System (ADS)

    Shumay, William C., Jr.

    1988-11-01

    The development status of the most promising high-temperature superconducting oxides is discussed with a view to the diversity of the compounds being investigated and the difficulties yet to be surmounted in their fabrication into commercially applicable products such as cables and thin films. Attention is given to R&D expenditures, laser processing methods for novel material phases, optimization methods for bulk superconductors, wire and filament production methods for large systems, explosive processing for matrix compatibility, the use of binders in tape casting and wire-forming, screen-printing of superconductor patterns, and thallium oxide-containing compositions promising higher transition temperatures.

  17. Quantum phenomena in superconductors

    SciTech Connect

    Clarke, J.

    1987-08-01

    This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)

  18. Method for preparing superconductors

    DOEpatents

    Dahlgren, Shelley D.

    1976-01-01

    A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

  19. Heavy atom nitroxyl radicals. I: An ab initio study of the ground and lower electronic excited states of the H2As=O free radical

    NASA Astrophysics Data System (ADS)

    Tarroni, Riccardo; Clouthier, Dennis J.

    2009-09-01

    A series of ab initio calculations have been undertaken to predict the spectroscopic properties of the ground and first two excited states of the recently discovered arsenyl (H2AsO) free radical. This 13 valence electron species can be viewed as similar to the formaldehyde radical anion with a ground state electron configuration of ⋯(π)2(n)2(π∗)1. The arsenyl radical is nonplanar (pyramidal) in the ground state with a 59° out-of-plane angle and a 1.67 Å AsO bond length. It has a low-lying n-π ∗(Ã A2″) excited state (Te˜5000 cm-1) which has a much larger out-of-plane angle (86°) and longer AsO bond length (1.81 Å). The π-π ∗(B˜ A2') excited state at ˜20 500 cm-1 is less pyramidal (out-of-plane angle=70°) and has a somewhat shorter AsO bond (1.77 Å). Similar trends are found for the H2PO and H2NO free radicals, although the latter has a planar ground state, due to sp2 hybridization of the N atom, and a very long B˜ state AsO bond length. The geometric variations of the ground and excited states of the H2EO (E=N, P, As) radicals, as well as the ground states of the corresponding anions and cations, can be readily rationalized from the Walsh diagram of the anion. The variations in the E-O bond length are a result of changes in both the orbital occupancy and pyramidalization of the molecule. The results of the present work have been employed in the analysis of the B˜ A2'-X˜ A2' electronic band system of the H2AsO free radical as reported in the companion paper.

  20. Redetermination of eveite, Mn2AsO4(OH), based on single-crystal X-ray diffraction data

    PubMed Central

    Yang, Yongbo W.; Stevenson, Ryan A.; Siegel, Alesha M.; Downs, Gordon W.

    2011-01-01

    The crystal structure of eveite, ideally Mn2(AsO4)(OH) [dimanganese(II) arsenate(V) hydroxide], was refined from a single crystal selected from a co-type sample from Långban, Filipstad, Varmland, Sweden. Eveite, dimorphic with sarkinite, is structurally analogous with the important rock-forming mineral andalusite, Al2OSiO4, and belongs to the libethenite group. Its structure consists of chains of edge-sharing distorted [MnO4(OH)2] octa­hedra (..2 symmetry) extending parallel to [001]. These chains are cross-linked by isolated AsO4 tetra­hedra (..m symmetry) through corner-sharing, forming channels in which dimers of edge-sharing [MnO4(OH)] trigonal bipyramids (..m symmetry) are located. In contrast to the previous refinement from Weissenberg photographic data [Moore & Smyth (1968 ▶). Am. Mineral. 53, 1841–1845], all non-H atoms were refined with anisotropic displacement param­eters and the H atom was located. The distance of the donor and acceptor O atoms involved in hydrogen bonding is in agreement with Raman spectroscopic data. Examination of the Raman spectra for arsenate minerals in the libethenite group reveals that the position of the peak originating from the O—H stretching vibration shifts to lower wavenumbers from eveite, to adamite, zincolivenite, and olivenite. PMID:22199466

  1. Gaia16aso, Gaia16asq, Gaia16asu and Gaia16atb candidate supernovae near galaxies confirmed by Mercator/Maia imaging

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Roelens, M.; Semaan, T.; Palaversa, L.; Mowlavi, N.; Eyer, L.

    2016-07-01

    We report confirmation of Gaia Science Alerts transients Gaia16aso, Gaia16asq, Gaia16asu and Gaia16atb. Images were obtained in G and R bands of the Maia instrument mounted to the Flemish 1.2m Mercator telescope at Roque de los Muchachos observatory, La Palma, Canary Islands, Spain, on 2016 July 04 - 05. These new sources are supernovae candidates near galaxies and they are not visible in archival 2MASS and DSS images: Gaia16aso, Gaia16asq, Gaia16asu and Gaia16atb.

  2. Platform for engineering topological superconductors: Superlattices on Rashba superconductors

    NASA Astrophysics Data System (ADS)

    Lu, Yao; He, Wen-Yu; Xu, Dong-Hui; Lin, Nian; Law, K. T.

    2016-07-01

    The search for topological superconductors which support Majorana fermion excitations has been an important topic in condensed matter physics. In this work, we propose an experimental scheme for engineering topological superconductors. In this scheme, by manipulating the superlattice structure of organic molecules placed on top of a superconductor with Rashba spin-orbit coupling, topological superconducting phases can be achieved without or with little fine tuning of the chemical potential. Moreover, superconductors with different Chern numbers can be obtained by changing the superlattice structure of the organic molecules.

  3. "Fluctuoscopy" of Superconductors

    NASA Astrophysics Data System (ADS)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  4. Superconductor stability 90: A review

    SciTech Connect

    Dresner, L.

    1990-01-01

    This paper reviews some recent developments in the field of stability of superconductors. The main topics dealt with are hydrodynamic phenomena in cable-in-conduit superconductors, namely, multiple stability, quench pressure, thermal expulsion, and thermal hydraulic quenchback, traveling normal zones in large, composite conductors, such as those intended for SMES, and the stability of vapor-cooled leads made of high-temperature superconductors. 31 refs., 5 figs.

  5. Ambient-pressure organic superconductor

    DOEpatents

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  6. Exploration and monitoring geothermal activity using Landsat ETM + images. A case study at Aso volcanic area in Japan

    NASA Astrophysics Data System (ADS)

    Mia, Md. Bodruddoza; Nishijima, Jun; Fujimitsu, Yasuhiro

    2014-04-01

    Thermal activity monitoring in and around active volcanic areas using remote sensing is an essential part of volcanology nowadays. Three identical approaches were used for thermal activity exploration at Aso volcanic area in Japan using Landsat ETM + images. First, the conventional methods for hydrothermal alteration mapping were applied to find the most active thermal region after exploring geothermal indicator minerals. Second, we found some thermally highly anomalous regions around Nakadake crater using land surface temperature estimation. Then, the Stefan-Boltzmann equation was used for estimating and also monitoring radiative heat flux (RHF) from the most active region of about 8 km2 in and around Nakadake crater in the central part of the Aso volcano. To fulfill the required parameter in the Stefan-Boltzmann equation for radiative heat flux, the NDVI (Normalized differential vegetation index) method was used for spectral emissivity, and the mono-window algorithm was used for land surface temperature of this study area. The NDVI value was used to divide land-cover in the study area into four types: water, bare ground, mixed and vegetated land. The bare land was found within the most active region. Vegetation coverage area showed an inverse relationship with total RHF in this study as health of thermally stressed vegetation supports this relationship. The spatial distribution of spectral emissivity ranged from 0.94 to 0.99 in our study. Land surface temperature was estimated using a mono-window algorithm and was highest LST in 2008 and lowest in 2011. The results of RHF showed that the highest pixel RHF was found to be about 296 W/m2 in 2008. Total RHF was obtained of about 607 MW in 2002 and the lowest was about 354 MW in 2008. The RHF anomaly area was found the highest in 2002 and was lowest in 2011. The highest total heat discharge rate (HDR) obtained about 3918 MW in 2002 and lowest total HDR about 2289 MW in 2008 from this study area. But in the case of

  7. Overview of organic superconductors

    SciTech Connect

    Mori, Hatsumi . Nagoya Division)

    1994-01-10

    Organic materials which are usually used for insulators, were shown to be an electrical conductor by H. Akamatsu, H. Inokuchi, and Y. Matsunaga in 1954. Moreover, J.P. Ferraris et al. showed that TTF [center dot] TCNQ was stably metallic down to around 60 K in 1973. Because of a low dimensionality of organic compound, however, a stabilization of an electronic state and a destabilization of a periodic lattice constructed a charge density wave which led a metal-insulator transition (a Peierls transition). After overcoming this low dimensionality, D. Jerome et al. discovered the first organic superconductor, (TMTSF)[sub 2] PF[sub 6] ([Tc] = 0.9 K (12kbar)) in 1980. Then with the resisting up of [Tc] constantly, the superconductor [kappa]-(BEDT-TTF)[sub 2](NCS)[sub 2] ([Tc] = 10.4 K) was found in 1987 and the [Tc] of [kappa]-(BEDT-TTF)[sub 2]Cu[N(CN)[sub 2

  8. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  9. Analytic holographic superconductor

    NASA Astrophysics Data System (ADS)

    Herzog, Christopher P.

    2010-06-01

    We investigate a holographic superconductor that admits an analytic treatment near the phase transition. In the dual 3+1-dimensional field theory, the phase transition occurs when a scalar operator of scaling dimension two gets a vacuum expectation value. We calculate current-current correlation functions along with the speed of second sound near the critical temperature. We also make some remarks about critical exponents. An analytic treatment is possible because an underlying Heun equation describing the zero mode of the phase transition has a polynomial solution. Amusingly, the treatment here may generalize for an order parameter with any integer spin, and we propose a Lagrangian for a spin-two holographic superconductor.

  10. Probing Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Schmeltzer, David

    2015-03-01

    The presence of attractive interaction on the surface of a 3D topological insulator which is characterized by spinors carrying a Berry phase of π gives rise to superconductivity that support space time half vortices (Majorana zero modes). We construct the effective dual action for the superconductor with the vortices, and show that the 2 n Majorana fermions are localized and can be replaced with n spinless fermions. The effect of the Majorana zero modes can be observed trough the the Andreev cross reflection when metallic leads are attached to the superconductor. The presence of the Majorana fermions can be detected with transverse sound waves. We have computed the effect of elastic strain fields and obtain an anomalous response indicating the presence of the Majorana fermions.

  11. Holographic Superconductor Vortices

    SciTech Connect

    Montull, Marc; Pomarol, Alex; Silva, Pedro J.

    2009-08-28

    A gravity dual of a superconductor at finite temperature has been recently proposed. We present the vortex configuration of this model and study its properties. In particular, we calculate the free energy as a function of an external magnetic field, the magnetization, and the superconducting density. We also find the two critical magnetic fields that define the region in which the vortex configurations are energetically favorable.

  12. Coordination of Advanced Solar Observatory (ASO) Science Working Group (SWG) for the study of instrument accommodation and operational requirements on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1989-01-01

    The objectives are to coordinate the activities of the Science Working Group (SWG) of the Advanced Solar Observatory (ASO) for the study of instruments accommodation and operation requirements on board space station. In order to facilitate the progress of the objective, two conferences were organized, together with two small group discussions.

  13. Electronic properties of highly-active Ag3AsO4 photocatalyst and its band gap modulation: an insight from hybrid-density functional calculations.

    PubMed

    Reunchan, Pakpoom; Boonchun, Adisak; Umezawa, Naoto

    2016-08-17

    The electronic structures of highly active Ag-based oxide photocatalysts Ag3AsO4 and Ag3PO4 are studied by hybrid-density functional calculations. It is revealed that Ag3AsO4 and Ag3PO4 are indirect band gap semiconductors. The Hartree-Fock mixing parameters are fitted for experimental band gaps of Ag3AsO4 (1.88 eV) and Ag3PO4 (2.43 eV). The smaller electron effective mass and the lower valence band edge of Ag3AsO4 are likely to be responsible for the superior photocatalytic oxidation reaction to Ag3PO4. The comparable lattice constant and analogous crystal structure between the two materials allow the opportunities of fine-tuning the band gap of Ag3AsxP1-xO4 using a solid-solution approach. The development of Ag3AsxP1-xO4 should be promising for the discovery of novel visible-light sensitized photocatalysts. PMID:27502998

  14. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    NASA Technical Reports Server (NTRS)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  15. The oscillation model of hydrothermal dynamics beneath Aso volcano, southwest Japan after small eruption on May 2011: A new understanding model using repeated absolute and relative gravity measurement

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Fujimitsu, Yasuhiro; Yoshikawa, Shin; Kagiyama, Tsuneomi; Ohkura, Takahiro

    2016-01-01

    At the end of 2010, the seismic activity in Aso volcano intensely increased and water level in the Nakadake crater decreased until early in 2011, then was followed by a small eruption in May 2011. After the eruption and heavy rain, the volcanic activity subsided to calm period, crater bottom was refilled with water, and water level increased in the Nakadake crater. The next tremor reappeared in 2014 and tracked to eruption in November 2014. This eruptive pattern and water level variation in the crater repeatedly appeared on the surface, and it should be related to the hydrothermal dynamics beneath Aso volcano. We initiated the gravity measurements in relation to hydrothermal dynamics in the subsurface of Aso volcano using Scintrex CG-5 (549) and LaCoste Romberg type G-1016 relative gravimeter at 28 benchmarks in April 2011, one month before the eruption. The repeated gravity measurements continue to monitor Aso volcano with a series of the measurement after the eruption in every three months to a half year. We analyze the gravity variation from 2011 to 2014 between the time of the phreatic and strombolian eruption. The measurements covered the area more than 60 km2 in the west side of Aso caldera. A new gravity network was also installed in May 2010 at seven benchmarks using A10-017 absolute gravimeter, which re-occupied in October 2010, June 2011 and two benchmarks in June 2014. As a result, the gravity changes distinguish hydrothermal dynamic in the subsurface, which has a direct correlation to water level fluctuation in the crater, after the first eruption and before the second discharge. The monitoring data notice large gravity changes between the surveys at benchmarks around Nakadake crater and Kusasenri area. The simple 3D inversion models of the 4-D gravity data deduce the density contrast distribution beneath Aso volcano. The inversion and mass change result generate the oscillation typical as a new understanding model. The variation of the mass shows a

  16. Li3Al(MoO2)2O2(AsO4)2

    PubMed Central

    Hajji, Mounir; Zid, Mohamed Faouzi; Driss, Ahmed

    2009-01-01

    Single crystals of trilithium(I) aluminium(III) bis­[dioxidomolybdenum(VI)] dioxide bis­[arsenate(V)], Li3AlMo2As2O14, have been prepared by solid-state reaction at 788 K. The structure consists of AsO4 tetra­hedra, AlO6 octa­hedra and Mo2O10 groups sharing corners to form a three-dimensional framework containing channels running respectively along the [100] and [010] directions, where the Li+ ions are located. This structure is compared with compounds having (MX 2O12)n chains (M = Mo, Al and X = P, As) and others containing M 2O10 (M = Mo, Fe) dimers. PMID:21582037

  17. Sudden changes in the amplitude-frequency distribution of long-period tremors at Aso volcano, southwest Japan

    NASA Astrophysics Data System (ADS)

    Sandanbata, Osamu; Obara, Kazushige; Maeda, Takuto; Takagi, Ryota; Satake, Kenji

    2015-12-01

    We observed the activity of long-period tremors (LPTs) with a period of ~15 s at Aso volcano, Japan, during a 3 year period including the 2014 eruptions. The number of LPTs detected systematically increased 3 months before the Strombolian eruptions. LPT activity can be divided into five stages based on rapid changes in the maximum LPT amplitude. The amplitude-frequency relation follows an exponential distribution during each stage before the Strombolian eruptions, with different characteristic amplitudes for each stage, indicating that the scale of the source property changed in stages. However, during a stage that persisted for 6 days after the onset of Strombolian activity, the amplitude-frequency relation temporarily followed a power law distribution, indicating that the LPT source process no longer had a characteristic scale. In the last stage, the amplitude-frequency relation returned to an exponential distribution. We therefore conclude that the physical source of volcanic LPTs changed during the eruption period.

  18. The mixed anion mineral parnauite Cu 9[(OH) 10|SO 4|(AsO 4) 2]·7H 2O—A Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Keeffe, Eloise C.

    2011-10-01

    The mixed anion mineral parnauite Cu 9[(OH) 10|SO 4|(AsO 4) 2]·7H 2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm -1 assigned to the ν1 (SO 4) 2- symmetric stretching mode and Raman bands at 1077 and 1097 cm -1 may be attributed to the ν3 (SO 4) 2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm -1 are assigned to carbonate CO 32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm -1 is assigned to the ν1 (SO 4) 2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm -1 is attributed to the ν3 (SO 4) 2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm -1 are assigned to the ν1 (AsO 4) 3- symmetric stretching and ν3 (AsO 4) 3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm -1 are attributed to the ν3 (AsO 4) 3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm -1 and is assigned to the ν1 (AsO 4) 3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.

  19. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor

    PubMed Central

    Charnukha, A.; Thirupathaiah, S.; Zabolotnyy, V. B.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Yaresko, A. N.; Borisenko, S. V.

    2015-01-01

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors. PMID:25997611

  20. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor.

    PubMed

    Charnukha, A; Thirupathaiah, S; Zabolotnyy, V B; Büchner, B; Zhigadlo, N D; Batlogg, B; Yaresko, A N; Borisenko, S V

    2015-01-01

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe(0.92)Co(0.08)AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors. PMID:25997611

  1. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Thirupathaiah, S.; Zabolotnyy, V. B.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Yaresko, A. N.; Borisenko, S. V.

    2015-05-01

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.

  2. Conventional magnetic superconductors

    DOE PAGESBeta

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  3. Conventional magnetic superconductors

    SciTech Connect

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led to the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.

  4. Hybrid superconductor magnet bearings

    SciTech Connect

    Chu, W.

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB`s) utilize high temperature superconductors (HTS`s) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS`s, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, the authors present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  5. Hybrid superconductor magnet bearings

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Kan

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  6. Plasmons in strong superconductors

    SciTech Connect

    Baldo, M.; Ducoin, C.

    2011-10-15

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T{sub c} superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  7. Enhanced superconductors. Final report

    SciTech Connect

    Olsen, R.B.

    1992-05-01

    One of the major challenges facing high temperature superconductors is the making of non-brittle materials. Based on the successful discovery of high temperature perovskite superconductors, a new class of superconducting materials is hypothesized. The proposed class will be mechanically tough and may have high critical temperatures. The proposed material will be inexpensive to manufacture and easily formed into wires and bands. The project's research goal was to detect a superconducting transition in a specific material within this proposed new class. Substantial progress was made toward this objective. In Phase I a major milestone, the bulk conversion of a precursor material, was successfully accomplished. The second model precursor polymer, Polychlorofluoroethylene (PCFE), was synthesized for this study. This allowed the possibility of making low defect polyfluoroacetylene. This synthesis route yielded poly(fluoroacetylene) with a significantly lower defect density when compared to HF-eliminated fluoropolymer films. The final phase of this work was directed to synthesis of poly(2,3,5,6-tetrafluoro-para-phenylene vinylene) (PTFPPV). While making significant progress in synthesizing conducting polymers with polar or polarizable groups, this study did not reach its ultimate goal of producing a model compound with all of the necessary chemical properties to test the exciton model of superconductivity.

  8. Hybrid superconductor magnet bearings

    NASA Technical Reports Server (NTRS)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  9. Spin manipulation in nanoscale superconductors

    NASA Astrophysics Data System (ADS)

    Beckmann, D.

    2016-04-01

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  10. Materials design for new superconductors

    NASA Astrophysics Data System (ADS)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  11. Spin manipulation in nanoscale superconductors.

    PubMed

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined. PMID:27001949

  12. Magnetic levitation for hard superconductors

    SciTech Connect

    Kordyuk, A.A.

    1998-01-01

    An approach for calculating the interaction between a hard superconductor and a permanent magnet in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide practical range of melt-textured high-temperature superconductors{close_quote} systems with magnetic levitation. In this case, the energy losses can be calculated from the alternating magnetic field distribution on the superconducting sample surface. {copyright} {ital 1998 American Institute of Physics.}

  13. Attempt of volcanomagnetic change detection by repeated aeromagnetic survey aeromagnetic survey on Aso and Kuju volcano, central Kyushu Japan -

    NASA Astrophysics Data System (ADS)

    Utsugi, M.; Tanaka, Y.; Kagiyama, T.; Okubo, A.

    2006-12-01

    Recently, geomagnetic field observation is successfully applied to many active volcanos to detect the volcano- magnetic changes. These observations are usually based on the continuous or repeated observation stations setting on the ground near the active area. From these observations, we can obtain high accurate information about the temporal geomagnetic field changes. But we can obtain only limited information about the special distribution of field changes. To interpret the geomagnetic field changes to underground heat transfer, we have to know the special distribution of the geomagnetic changes. To obtain the detailed information about the spatial distribution, aeromagnetic survey is usually used. In our study, we tried to use this method to detect the volcanomagnetic change. The main problem of aeromagnetic repeated observation is the difficulty of the observation point control. In the two flights, it is impossible that quite the same place flies. So that, it is very difficult to separate a change according to the volcanic activity and a spatial change. But, if we know detailed 3-D distribution of geomagnetic field and we can estimate the field intensity on the arbitrary point, we can correct the spatial variation of the repeated aeromagnetic survey data caused by the difference of flight position, and it may be possible to detect the field changes associated with the volcanic activities. For this purpose, we made very high density and low altitude helicopter-borne aeromagnetic survey on Aso and Kuju volcano in July 2002 and Dec. 2004. Each observation was done by a different approach. On Aso volcano, an extremely high density aeromagnetic observation was carried out. The survey area was selected as NS1200 x EW1200 x 300m region above the Nakadake crater which is the most active area on Aso volcano. The flight was made in 8 heights. The total numbers of measurements were about 8200. Based on the equivalent anomaly method, which is usually used to calculate the

  14. The molecular structure of the multianion mineral hidalgoite PbAl 3(AsO 4)(SO 4)(OH) 6 - Implications for arsenic removal from soils

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2011-11-01

    The objective of this research is to determine the molecular structure of the mineral hidalgoite PbAl 3(AsO 4)(SO 4)(OH) 6 using vibrational spectroscopy. The mineral is found in old mine sites. Observed bands are assigned to the stretching and bending vibrations of (SO 4) 2- and (AsO 4) 3- units, stretching and bending vibrations of hydrogen bonded (OH) - ions and Al 3+-(O,OH) units. The approximate range of O-H⋯O hydrogen bond lengths is inferred from the Raman and infrared spectra. Values of 2.6989 Å, 2.7682 Å, 2.8659 Å were obtained. The formation of hidalgoite may offer a mechanism for the removal of arsenic from the environment.

  15. Computational search of novel superconductors

    NASA Astrophysics Data System (ADS)

    Yin, Zhiping

    The recently discovered 200 K high temperature superconductivity in the hydrogen sulfur material under high pressure was first successfully predicted by first-principles computation in a quantitative fashion, demonstrating the power of computation in the search of new superconductors. With the rapid advancement of theory, algorithm, and computer power, computation will play an increasingly important role. In this talk, I will first summarize the key features of different families of high temperature superconductors, including the iron pnictide and chalcogenide superconductors, the transition metal chloronitrides, and Bi-based superconductors. Then I will show how to use the key features as guidance to design novel candidate materials of high temperature superconductivity by utilizing a combination of different computational methods and tools, including evolutionary structural search method, density functional theory and dynamical mean field theory. A few candidate materials will be given towards the end of the talk for interested experimentalists and theorists to test and explore

  16. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  17. Manufacturing a Superconductor in School.

    ERIC Educational Resources Information Center

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  18. A new method for As(V) removal from waters by precipitation of mimetite Pb5(AsO4)3Cl on Pb-activated zeolite

    NASA Astrophysics Data System (ADS)

    Manecki, Maciej; Buszkiewicz, Urszula

    2016-04-01

    A new method for removal of arsenate AsO43‑ ions from aqueous solutions is proposed. The principle of the method stems from precipitation of very insoluble crystalline lead arsenate apatite (mimetite Pb5(AsO4)3Cl) induced by bringing in contact Pb-activated zeolite and As-contaminated water in the presence of Cl‑. Zeolite is activated by sorption of Pb2+ followed by washing with water to remove the excess of Pb and to desorbe weakly adsorbed ions. Lead adsorbed on zeolite is bound strong enough to prevent desorption by water but weak enough to undergo desorption induced by heterogeneous precipitation of mimetite nanocrystals on the surface of zeolite. The experiment consisted of two steps. In the first step, aliquots of 0.5 g of natural clinoptilolite zeolite (from Zeocem a.s., Bystré, Slovak Republic) were reacted with 40 mL of solutions containing 20, 100, 500, and 2000 mg Pb/L (pH =4.5; reaction for 30 minutes followed by centrifugation). The amount of Pb sorbed was calculated from the drop of Pb concentration in solution. Centrifuged zeolite was washed three times by mixing with 10 mL of DDI water, followed by centrifugation. No Pb was detected in the water after second washing. Wet pulp resulting from this stage was exposed to solutions containing 70 mg/L Cl‑ and various concentrations of AsO43‑ (2 and 100 mg As/L; pH=4). Complete removal of As was observed for 2 mg As/L solutions mixed with zeolite-20 and zeolite-100. The precipitation of mimetite Pb5(AsO4)3Cl in the form of hexagonal crystals ca. 0.25 μm in size was observed using SEM/EDS. This work is partially funded by AGH research grant no 11.11.140.319.

  19. Be(3)(AsO4)2. 2H2O, a new berylloarsenate phase containing bridged tetrahedral 3-rings. Technical report, 1 June 1992-31 May 1993

    SciTech Connect

    Harrison, W.T.; Nenoff, T.M.; Gier, T.E.; Stucky, G.D.

    1993-02-15

    The high-temperature/high-pressure hydrothermal synthesis and X-ray single crystal structure of Be3(AsO4)2(dot)2H2O is described: the title compound contains a three-dimensional network of BeO4 and AsO4 tetrahedra. The structural motif includes infinite layers of bridged tetrahedral 3- and 4-rings. 9Be MAS NMR data are consistent with the Be-atom environments in the crystal structure.

  20. Aperiodic Weak Topological Superconductors.

    PubMed

    Fulga, I C; Pikulin, D I; Loring, T A

    2016-06-24

    Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand. PMID:27391744

  1. Aperiodic Weak Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Fulga, I. C.; Pikulin, D. I.; Loring, T. A.

    2016-06-01

    Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand.

  2. Organic conductors and superconductors

    NASA Astrophysics Data System (ADS)

    Jérome, D.; Schulz, H. J.

    2002-01-01

    This review attempts to present the most salient developments of research on organic conductors and superconductors during the past 10 years. A theoretical introduction treats instabilities of quasi-one-dimensional electron systems and associated precursor effects which are relevant to the experimental results on organic conductors. We then describe the characterization of quasi-one-dimensional organic conductors by their transport, optical and magnetic properties. Finally, two sections are devoted to the experimental investigation of the low temperature instabilities: lattice instability in TTF-TCNQ and related compounds, superconducting or antiferromagnetic instabilities in the (TMTSF)2X series. The importance of one-dimensional fluctuations is emphasized in both lattice and superconducting instabilities.

  3. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  4. Synthesis and Characterization of Bismuth Magnesium Phosphate and Arsenate: BiMg 2PO 6 and BiMg 2AsO 6

    NASA Astrophysics Data System (ADS)

    Huang, Jinfan; Gu, Qiuyi; Sleight, Arthur W.

    1993-08-01

    Two new compounds, BiMg 2PO 6 and BiMg 2AsO 6, have been synthesized and structurally characterized by single crystal and powder X-ray diffraction. Both compounds crystallize in the orthorhombic space group Cmcm (No. 63) with four formula units per unit cell. They are isostructural with bismuth magnesium vanadate, BiMg 2VO 6. The cell parameters for BiMg 2PO 6 are a = 7.801(2), b = 11.888(3), c = 5.273(2) Å, V = 489.0(2) Å 3 and for BiMg 2AsO 6 are a = 7.9142(5), b = 12.1637(8), c = 5.3898(4) Å, V = 518.9(2) Å 3. The formula for this series of compounds may be written as (BiO 2)Mg AO 4 to emphasize the (BiO 2) 1- chains and the (AO 4) 3- tetrahedral groups isolated from one another. Between these chains and tetrahedral groups sit Mg 2+ cations in an unusual fivefold coordination to oxygen. No emission bands were observed from BiMg 2PO 6 and BiMg 2AsO 6 under excitation with UV or visible radiation. The IR spectra of these compounds are compared to that of BiMg 2VO 6.

  5. Raman spectroscopy of the multi-anion mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2012-02-01

    The mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6, a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm -1, assigned to the symmetric stretching mode of the AsO 43- anion. Raman bands at 809 and 819 cm -1 are assigned to the antisymmetric stretching mode of AsO 43-. The sulphate anion is characterised by bands at 1000 cm -1 ( ν1), and at 1031, 1082 and 1139 cm -1 ( ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm -1 with bands observed at 2850, 2868, 2918 cm -1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm -1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

  6. Origin and mode of emplacement of lithic-rich breccias at Aso Volcano, Japan: Geological, paleomagnetic, and petrological reconstruction

    NASA Astrophysics Data System (ADS)

    Furukawa, Kuniyuki; Uno, Koji; Shinmura, Taro; Miyoshi, Masaya; Kanamaru, Tatsuo; Inokuchi, Hiroo

    2014-04-01

    Takajosan breccia rocks are distributed around the southwestern caldera rim of the Aso Volcano in Japan. They are characterized by coarse lithic breccias with a pumiceous matrix. The proximal coarse lithic breccias are divided into the lower massive unit and the upper stratified unit. The lower massive lithic breccias tend to transform laterally into tuff breccias and pumiceous lapilli tuffs. Paleomagnetic results showed that all of the deposits were deposited at high temperatures of 175-560 °C. This was also supported by geological characteristics such as spatter clasts, clasts with a bread-crust texture, and weakly welded parts. These features clearly show that the deposits originated from pyroclastic density currents (PDCs). The dense lithic-rich lithofacies, low vesicularity of pumice, lack of plinian fall deposits, and radial distribution indicate that the deposits were derived from boil-over PDCs rather than plinian column-collapse PDCs. The SiO2 contents of the matrix glasses of the proximal lower massive breccia showed a progressive decrease from the bottom toward the upper part. We interpret that this chemical variation corresponds to chemical zonation of the magma chamber. This indicates that the massive deposits aggraded progressively from the base upwards (progressive aggradation), rather than through en masse freezing. The vertical lithofacies changes of the proximal breccias from the lower massive to the upper stratified units indicate that a sustained current in a quasi-steady state switched to an unsteady current with the progression of the volcanic activity.

  7. Raman spectroscopic study of the mineral arsenogorceixite BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Pogson, Ross E.

    2012-06-01

    Arsenogorceixite BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6 belongs to the crandallite mineral subgroup of the alunite supergroup. Arsenogorceixite forms a continuous series of solid solutions with related minerals including gorceixite, goyazite, arsenogoyazite, plumbogummite and philipsbornite. Two minerals from (a) Germany and (b) from Ashburton Downs, Australia were analysed by Raman spectroscopy. The spectra show some commonality but the intensities of the peaks vary. Sharp intense Raman bands for the German sample, are observed at 972 and 814 cm-1 attributed to the ν1 PO43- and AsO43- symmetric stretching modes. Raman bands at 1014, 1057, 1148 and 1160 cm-1 are attributed to the ν1 PO2 symmetric stretching mode and ν3 PO43- antisymmetric stretching vibrations. Raman bands at 764 and 776 cm-1 and 758 and 756 cm-1 are assigned to the ν3 AsO43- antisymmetric stretching vibrations. For the Australian mineral, the ν1 PO43- band is found at 973 cm-1. The intensity of the arsenate bands observed at 814, 838 and 870 cm-1 is greatly enhanced. Two low intensity Raman bands at 1307 and 1332 cm-1 are assigned to hydroxyl deformation modes. The intense Raman band at 441 cm-1 with a shoulder at 462 cm-1 is assigned to the ν2 PO43- bending mode. Raman bands at 318 and 340 cm-1 are attributed to the (AsO4)3-ν2 bending. The broad band centred at 3301 cm-1 is assigned to water stretching vibrations and the sharper peak at 3473 cm-1 is assigned to the OH stretching vibrations. The observation of strong water stretching vibrations brings into question the actual formula of arsenogorceixite. It is proposed the formula is better written as BaAl3AsO3(OH)(AsO4,PO4)(OH,F)6·xH2O. The observation of both phosphate and arsenate bands provides a clear example of solid solution formation.

  8. Modelling of bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  9. Process for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  10. Ferromagnet / superconductor oxide superlattices

    NASA Astrophysics Data System (ADS)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  11. Topological semimetals and nodal superconductors

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yao

    Besides topological band insulators, which have a full bulk gap, there are also gapless phases of matter that belong to the broad class of topological materials, such as topological semimetals and nodal superconductors. We systematically study these gapless topological phases described by the Bloch and Bogoliubov-de Gennes Hamiltonians. We discuss a generalized bulk-boundary correspondence, which relates the topological properties in the bulk of gapless topological phases and the protected zero-energy states at the boundary. We study examples of gapless topological phases, focusing in particular on nodal superconductors, such as nodal noncentrosymmetric superconductors (NCSs). We compute the surface density of states of nodal NCSs and interpret experimental measurements of surface states. In addition, we investigate Majorana vortex-bound states in both nodal and fully gapped NCSs using numerical and analytical methods. We show that different topological properties of the bulk Bogoliubov-quasiparticle wave functions reflect themselves in different types of zero-energy vortex-bound states. In particular, in the case of NCSs with tetragonal point-group symmetry, we find that the stability of these Majorana zero modes is guaranteed by a combination of reflection, time-reversal, and particle-hole symmetries. Finally, by using K-theory arguments and a dimensional reduction procedure from higher-dimensional topological insulators and superconductors, we derive a classification of topologically stable Fermi surfaces in semimetals and nodal lines in superconductors.

  12. Transpiration characteristics of forests and shrubland under land cover change within the large caldera of Mt. Aso, Japan

    NASA Astrophysics Data System (ADS)

    Miyazawa, Y.; Inoue, A.; Maruyama, A.

    2013-12-01

    Grassland within a caldera of Mt. Aso has been maintained for fertilizer production from grasses and cattle feeding. Due to the changes in the agricultural and social structure since 1950's, a large part of the grassland was converted to plantations or abandoned to shrublands. Because vegetations of different plant functional types differ in evapotranspiration; ET, a research project was launched to examine the effects of the ongoing land use change on the ET within the caldera, and consequently affect the surface and groundwater discharge of the region. As the part of the project, transpiration rate; E of the major 3 forest types were investigated using sap flow measurements. Based on the measured data, stomatal conductance; Gs was inversely calculated and its response to the environmental factors was modeled using Jarvis-type equation in order to estimate ET of a given part of the caldera based on the plant functional type and the weather data. The selected forests were conifer plantation, deciduous broadleaved plantation and shrubland, which were installed with sap flow sensors to calculate stand-level transpiration rate. Sap flux; Js did not show clear differences among sites despite the large differences in sapwood area. In early summer solar radiation was limited to low levels due to frequent rainfall events and therefore, Js was the function of solar radiation rather than other environmental factors, such as vapor pressure deficit and soil water content. Gs was well regressed with the vapor pressure deficit and solar radiation. The estimated E based on Gs model and the weather data was 0.3-1.2 mm day-1 for each site and was comparable to the E of grassland in other study sites. Results suggested that transpiration rate in growing was not different between vegetations but its annual value are thought to differ due to the different phenology.

  13. Chern-Simons superconductor

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Dutta, Suvankar; Roychowdhury, Dibakar

    2014-12-01

    We study the effect of a bulk Chern-Simons (CS) term on a (3+1) dimensional type II superconductor in the context of the AdS/CFT correspondence. We holographically compute the supercurrent and find that it is nonlocal in nature. It receives nontrivial corrections due to the presence of the CS term. Considering a large limit of a parameter λ (we call this limit the long wavelength limit), which is effectively the high temperature limit of the theory, we find that this nonlocal supercurrent boils down to a local quantity. The leading term (without the CS term) of this current matches the result of the Ginzburg-Landau (GL) theory. We compute the effect of the CS term on the GL current and find that the effect is greatly suppressed at high temperature (\\frac{1}{{{T}4}}). Finally, the free energy of the vortex configuration has been calculated. The free energy also receives nontrivial correction on the order of 1/{{λ }2} in the long wavelength approximation.

  14. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  15. Materials design for new superconductors.

    PubMed

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. PMID:27214291

  16. Heat transport in nonuniform superconductors

    NASA Astrophysics Data System (ADS)

    Richard, Caroline; Vorontsov, Anton B.

    2016-08-01

    We calculate electronic energy transport in inhomogeneous superconductors using a fully self-consistent nonequilibrium quasiclassical Keldysh approach. We develop a general theory and apply it to a superconductor with an order parameter that forms domain walls of the type encountered in the Fulde-Ferrell-Larkin-Ovchinnikov state. The heat transport in the presence of a domain wall is inherently anisotropic and nonlocal. The bound states in the nonuniform region play a crucial role and control heat transport in several ways: (i) they modify the spectrum of quasiparticle states and result in Andreev reflection processes and (ii) they hybridize with the impurity band and produce a local transport environment with properties very different from those in a uniform superconductor. As a result of this interplay, heat transport becomes highly sensitive to temperature, magnetic field, and disorder. For strongly scattering impurities, we find that the transport across domain walls at low temperatures is considerably more efficient than in the uniform superconducting state.

  17. Thin film superconductor magnetic bearings

    SciTech Connect

    Weinberger, B.R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft that is subject to a load (L) and rotatable around an axis of rotation, a magnet mounted to the shaft, and a stator in proximity to the shaft. The stator has a superconductor thin film assembly positioned to interact with the magnet to produce a levitation force on the shaft that supports the load (L). The thin film assembly includes at least two superconductor thin films and at least one substrate. Each thin film is positioned on a substrate and all the thin films are positioned such that an applied magnetic field from the magnet passes through all the thin films. A similar bearing in which the thin film assembly is mounted on the shaft and the magnet is part of the stator also can be constructed. 8 figs.

  18. Resolving thermoelectric "paradox" in superconductors.

    PubMed

    Shelly, Connor D; Matrozova, Ekaterina A; Petrashov, Victor T

    2016-02-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing "paradox," and open prospects for exploration of novel thermoelectric phenomena predicted recently. PMID:26933688

  19. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  20. Torque magnetometry in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Li, Lu

    This thesis describes torque magnetometry studies on unconventional superconductors. Torque magnetometry measures the anisotropic magnetization of samples by recording their torque signals in a tilted magnetic field. Applied to superconductors, this method provides a reliable way to measure the field dependence of magnetization with high resolution under extreme conditions: DC magnetic fields from zero to 45.2 T, and temperature from 300 mK to 300K. The results can be used to determine many important parameters, such as the upper critical field H c2, the superconducting condensation energy, the onset temperature of diamagnetic signals, and so on. We carried out the torque magnetometry measurements on unconventional superconductors---high Tc superconductors and the p-wave superconductor Sr2RuO4---and uncovered new features that do not exist in conventional BCS superconductors. In high Tc superconductors, our torque magnetometry studies focus on the properties of the vortex liquid state. First, by comparing the observed magnetization curves with the Nernst effect results in Bi 2Sr2CaCu2O8+delta, we confirm that the unusually large Nernst effect signals originate from the surviving vortex liquid state above Tc. Second, the M-H curves near the critical temperature Tc suggest that the nature of the transition is the Kosterlitz-Thouless transition. Near Tc, the magnetization response at low field is strongly nonlinear, and the T dependence of the magnetic susceptibility in the low-field limit approaches the predicted curve from the Kosterlitz-Thouless transition. Third, the measurements in intense magnetic field up to 45 T reveal the unusual, weak T-dependence of Hc2. These observations strongly support the existence of the vortex liquid state above Tc. The superconducting state is destroyed by the phase fluctuation of the pair condensate, while the pair condensate keeps its amplitude above T c. Further studies in single-layered high Tc superconductors reveal more

  1. Apparatus for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  2. Apparatus for fabricating continuous lengths of superconductor

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2001-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  3. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  4. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  5. Multifilamentary niobium tin superconductor tape

    NASA Technical Reports Server (NTRS)

    Brisbin, P. H.; Coles, W. D.

    1975-01-01

    In the method proposed for fabricating multifilamentary Nb3Sn tape, filamentary superconducting paths are produced in standard commercial superconductor tape by chemical milling of separator slots through the Nb3Sn layer. The multifilament configuration features a matrix of ten 1.2 mm wide parallel helical superconducting paths along the length of the tape. The paths are spaced 0.4 mm apart. Tapes tested as small pancake coils demonstrated the integrity and continuity of the matrix, and showed that critical current was sustained in direct proportion to retained superconductor.

  6. Raman scattering in cuprate superconductors

    SciTech Connect

    Devereaux, T.P.; Kampf, A.P.

    1997-07-20

    A theory for electronic Raman scattering in the cuprate superconductors is presented with a specific emphasis on the polarization dependence of the spectra which can infer the symmetry of the energy gap. Signatures of the effects of disorder on the low frequency and low temperature behavior of the Raman spectra for different symmetry channels provide detailed information about the magnitude and the phase of the energy gap. Properties of the theory for finite T will be discussed and compared to recent data concerning the doping dependence of the Raman spectra in cuprate superconductors, and remaining questions will be addressed.

  7. Dynamics of vortices in superconductors

    SciTech Connect

    Weinan, E.

    1992-12-31

    We study the dynamics of vortices in type-II superconductors from the point of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence, uniqueness and regularity of strong solutions for these equations. We then derive reduced systems of ODEs governing the motion of the vortices in the asymptotic limit of large Ginzburg-Landau parameter.

  8. Internally cooled cabled superconductors. I

    NASA Astrophysics Data System (ADS)

    Hoenig, M. O.

    1980-07-01

    A state of the art review and survey of work performed at the Massachusetts Institute of Technology in the area of internally cooled cabled superconductors (ICCS) is presented. Topics examined include original concepts, hollow concept, and heat transfer using supercritical helium. Attention is given to the ICCS conductor and coil design as well as experiments with niobium-titanium.

  9. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  10. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  11. ASO: Antistreptolysin O titer

    MedlinePlus

    Advertisement Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization and does not endorse non-AACC products and services. Advertising & Sponsorship: Policy | Opportunities PLEASE NOTE: Your web browser ...

  12. Crystal chemistry of anhydrous Li uranyl phosphates and arsenates. II. Tubular fragments and cation-cation interactions in the 3D framework structures of Li 6[(UO 2) 12(PO 4) 8(P 4O 13)], Li 5[(UO 2) 13(AsO 4) 9(As 2O 7)], Li[(UO 2) 4(AsO 4) 3] and Li 3[(UO 2) 7(AsO 4) 5O)

    NASA Astrophysics Data System (ADS)

    Alekseev, Evgeny V.; Krivovichev, Sergey V.; Depmeier, Wulf

    2009-11-01

    Single crystals of the new compounds Li 6[(UO 2) 12(PO 4) 8(P 4O 13)] ( 1), Li 5[(UO 2) 13(AsO 4) 9(As 2O 7)] ( 2), Li[(UO 2) 4(AsO 4) 3] ( 3) and Li 3[(UO 2) 7(AsO 4) 5O)] ( 4) have been prepared using high-temperature solid state reactions. The crystal structures have been solved by direct methods: 1—monoclinic, C2/ m, a=26.963(3) Å, b=7.063(1) Å, c=19.639(1) Å, β=126.890(4)°, V=2991.2(6) Å 3, Z=2, R1=0.0357 for 3248 unique reflections with | F0|≥4 σ F; 2—triclinic, P1¯, a=7.1410(8) Å, b=13.959(1) Å, c=31.925(1) Å, α=82.850(2)°, β=88.691(2)°, γ=79.774(3)°, V=3107.4(4) Å 3, Z=2, R1=0.0722 for 9161 unique reflections with | F0|≥4 σ F; 3—tetragonal, I4 1/ amd, a=7.160(3) Å, c=33.775(9) Å, V=1732(1) Å 3, Z=4, R1=0.0356 for 318 unique reflections with | F0|≥4 σ F; 4—tetragonal, P4¯, a=7.2160(5) Å, c=14.6540(7) Å, V=763.04(8) Å 3, Z=1, R1=0.0423 for 1600 unique reflections with | F0|≥4 σ F. Structures of all the phases under consideration are based on complex 3D frameworks consisting of different types of uranium polyhedra (UO 6 and UO 7) and different types of tetrahedral TO 4 anions ( T=P or As): PO 4 and P 4O 13 in 1, AsO 4 and As 2O 7 in 2, and single AsO 4 tetrahedra in 3 and 4. In the structures of 1 and 2, UO 7 pentagonal bipyramids share edges to form (UO 5) ∞ chains extended along the b axis in 1 and along the a axis in 2. The chains are linked via single TO 4 tetrahedra into tubular units with external diameters of 11 Å in 1 and 11.5 Å in 2, and internal diameters of 4.1 Å in 1 and 4.5 Å in 2. The channels accommodate Li + cations. The tubular units are linked into 3D frameworks by intertubular complexes. Structures of 3 and 4 are based on 3D frameworks composed on layers united by (UO 5) ∞ infinite chains. Cation-cation interactions are observed in 2, 3, and 4. In 2, the structure contains a trimeric unit with composition [OU(1)O]-U(13)-[OU(2)O]. In the structures of 3 and 4, T-shaped dimers are

  13. A Raman spectroscopic study of the arsenate mineral chenevixite Cu2Fe23+(AsO4)2(OH)4ṡH2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lana, Cristiano; Xi, Yunfei

    2015-01-01

    We have studied the mineral chenevixite from Manto Cuba Mine, San Pedro de Cachiyuyo District, Inca de Oro, Chañaral Province, Atacama Region, Chile, using a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDX) and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous composition, with predominance of As, Fe, Al, Cu, Fe and Cu. Minor amounts of Si were also observed. Raman spectroscopy complimented with infrared spectroscopy has been used to assess the molecular structure of the arsenate minerals chenevixite. Characteristic Raman and infrared bands of the (AsO4)3- stretching and bending vibrations are identified and described. The observation of multiple bands in the (AsO4)3- bending region offers support for the loss of symmetry of the arsenate anion in the structure of chenevixite. Raman bands attributable to the OH stretching vibrations of water and hydroxyl units were analysed. Estimates of the hydrogen bond distances were made based upon the OH stretching wavenumbers.

  14. A Raman spectroscopic study of the arsenate mineral chenevixite Cu2Fe2(3+)(AsO4)2(OH)4⋅H2O.

    PubMed

    Frost, Ray L; López, Andrés; Scholz, Ricardo; Lana, Cristiano; Xi, Yunfei

    2015-01-25

    We have studied the mineral chenevixite from Manto Cuba Mine, San Pedro de Cachiyuyo District, Inca de Oro, Chañaral Province, Atacama Region, Chile, using a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDX) and vibrational spectroscopy. Qualitative chemical analysis shows a homogeneous composition, with predominance of As, Fe, Al, Cu, Fe and Cu. Minor amounts of Si were also observed. Raman spectroscopy complimented with infrared spectroscopy has been used to assess the molecular structure of the arsenate minerals chenevixite. Characteristic Raman and infrared bands of the (AsO4)(3-) stretching and bending vibrations are identified and described. The observation of multiple bands in the (AsO4)(3-) bending region offers support for the loss of symmetry of the arsenate anion in the structure of chenevixite. Raman bands attributable to the OH stretching vibrations of water and hydroxyl units were analysed. Estimates of the hydrogen bond distances were made based upon the OH stretching wavenumbers. PMID:25064502

  15. Influence of UV rays on Feulgen-type staining with azure A-SO2 prepared with normal hydrochloric acid and sodium thiosulphate.

    PubMed

    Dutt, M K

    1981-07-01

    This communication presents a new method for the preparation of azure A-SO2 for use in Feulgen procedure. The salient feature of this method lies in the fact that azure A-SO2 can be decolourised with normal hydrochloric acid and sodium thiosulphate. The pH of this dye reagent is 2.3 and it is of water colour after filtration. The pH of this dye-reagent is raised to 4.0 with an aqueous solution of sodium hydroxide. Nuclear colouration with this newly developed dye-reagent on acid-hydrolysed DNA of tissue sections becomes fairly satisfactory under the usual laboratory conditions. Staining with this dye-reagent under exposure to UV ray is, however, vastly improved within 5 minutes as compared with the control. Stained sections do withstand treatment in SO2 water without exhibiting any leaching of the dye from the nuclei. Possible mode of action of UV rays in increasing the intensity of staining as well as the speed of reaction has been suggested. PMID:6167839

  16. Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na4Co7(AsO4)6

    NASA Astrophysics Data System (ADS)

    Ben Smida, Youssef; Marzouki, Riadh; Georges, Samuel; Kutteh, Ramzi; Avdeev, Maxim; Guesmi, Abderrahmen; Zid, Mohamed Faouzi

    2016-07-01

    A new sodium cobalt (II) arsenate Na4Co7(AsO4)6 has been synthesized by a solid-state reaction and its crystal structure determined from single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group C2/m, with a=10.7098(9) Å, b=14.7837(9) Å, c=6.6845(7) Å, and β=105.545(9)°. The structure is described as a three-dimensional framework built up of corner-edge sharing CoO6, CoO4 and AsO4 polyhedra, with interconnecting channels along [100] in which the Na+ cations are located. The densest ceramics with relative density of 94% was obtained by ball milling and optimization of sintering temperature, and its microstructure characterized by scanning electron microscopy. The electrical properties of the ceramics were studied over a temperature interval from 280 °C to 560 °C using the complex impedance spectroscopy over the range of 13 MHz-5 Hz. The ionic bulk conductivity value of the sample at 360 °C is 2.51 10-5 S cm-1 and the measured activation energy is Ea=1 eV. The sodium migration pathways in the crystal structure were investigated computationally using the bond valence site energy (BVSE) model and classical molecular dynamics (MD) simulations.

  17. [{Ni4 (OH)3 AsO4 }4 (B-α-PW9 O34 )4 ](28-) : A New Polyoxometalate Structural Family with Catalytic Hydrogen Evolution Activity.

    PubMed

    Lv, Hongjin; Chi, Yingnan; van Leusen, Jan; Kögerler, Paul; Chen, Zheyuan; Bacsa, John; Geletii, Yurii V; Guo, Weiwei; Lian, Tianquan; Hill, Craig L

    2015-11-23

    A new structural polyoxometalate motif, [{Ni4 (OH)3 AsO4 }4 (B-α-PW9 O34 )4 ](28-) , which contains the highest nuclearity structurally characterized multi-nickel-containing polyanion to date, has been synthesized and characterized by single-crystal X-ray diffraction, temperature-dependent magnetism and several other techniques. The unique central {Ni16 (OH)12 O4 (AsO4 )4 } core shows dominant ferromagnetic exchange interactions, with maximum χm T of 69.21 cm(3)  K mol(-1) at 3.4 K. Significantly, this structurally unprecedented complex is an efficient, water-compatible, noble-metal-free catalyst for H2 production upon visible light irradiation (photosensitizer=[Ir(ppy)2 (dtbbpy)][PF6 ]; sacrificial electron donor=triethylamine or triethanolamine). The highest turnover number of approximately 580, corresponding to a best quantum yield of approximately 4.07 %, is achieved when using triethylamine as electron donor in the presence of water. The mechanism of this photodriven process has been probed by time-solved luminescence and by static emission quenching. PMID:26448510

  18. Design for a Superconductor Discovery Engine (SCODEngine)

    NASA Astrophysics Data System (ADS)

    Isikaku-Ironkwe, O. Paul

    2010-03-01

    One of the grand challenges of superconductivity is achieving a paradigm shift from discovery by serendipity to discovery by design. Periodic Table-based Maps that involve electronegativity, valence electrons and atomic number that correlate with superconducting transition temperature can be used to design novel superconductors. Combining these maps with experimental databases on superconductors, databases of crystal structures and integrating material design software engine, we can re-design many known superconductor families and predict novel systems. By adding search engine technology with a ``knowledge discovery engine'', we produce a superconductor discovery engine (SCODEngine). The SCODEngine enables us to discover novel superconductors with the accelerated speed of a Google search. We have produced a primitive SCODEngine that may revolutionize novel superconductor search and discovery.

  19. Holographic complexity in gauge/string superconductors

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Mansoori, Seyed Ali Hosseini; Myrzakulov, Ratbay

    2016-05-01

    Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors) with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T >Tc) to the superconductor phase (T

  20. Electromagnetic dark energy and gravitoelectrodynamics of superconductors

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2008-02-01

    It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair’s mass excess reported by Cabrera and Tate. A new fundamental scale of nature (the Planck-Einstein scale) for gravitation in low temperature condensed matter is proposed to host the gravitoelectrodynamic properties of superconductors.

  1. Recent progress on carbon-based superconductors

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-01

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features.

  2. Recent progress on carbon-based superconductors.

    PubMed

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-24

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features. PMID:27351938

  3. Topological properties of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-01

    A variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to the phase where superconductivity and ferromagnetism coexist is a first-order transition.

  4. Topological properties of ferromagnetic superconductors

    DOE PAGESBeta

    Cheung, Alfred K. C.; Raghu, S.

    2016-04-27

    Here, a variety of heavy fermion superconductors, such as UCoGe, UGe2, and URhGe exhibit a striking coexistence of bulk ferromagnetism and superconductivity. In the first two materials, the magnetic moment decreases with pressure, and vanishes at a ferromagnetic quantum critical point (qcp). Remarkably, the superconductivity in UCoGe varies smoothly with pressure across the qcp and exists in both the ferromagnetic and paramagnetic regimes. We argue that in UCoGe, spin-orbit interactions stabilize a time-reversal invariant odd-parity superconductor in the high pressure paramagnetic regime. Based on a simple phenomenological model, we predict that the transition from the paramagnetic normal state to themore » phase where superconductivity and ferromagnetism coexist is a first-order transition.« less

  5. Oxygen diffusion in cuprate superconductors

    SciTech Connect

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  6. Fidelity approach in topological superconductors

    NASA Astrophysics Data System (ADS)

    Yao, Dao-Xin; Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi

    We study topological superconductivity in the spin-orbit coupling nanowire system by using the fidelity approach. The wire is modeled as a one layer lattice chain with Zeeman energy and spin-orbital coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. Our study shows that fidelity and fidelity susceptibility are very useful to investigate the topological quantum phase transition in superconductors. This work is supported by NSFC-11574404, 11275279, and NBRPC-2012CB821400.

  7. Quaternary borocarbides: Relatively high Tc intermetallic superconductors and magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Mazumdar, Chandan; Nagarajan, R.

    2015-07-01

    Discovery of superconductivity in Y-Ni-B-C (Tc ∼ 13 K) gave rise to the class of quaternary rare earth transition metal borocarbide superconductors. Before the discovery of Fe-based arsenide superconductors, this was the only class of materials containing a magnetic element, viz., Ni, yet exhibiting Tcs > 5 K. Many members of this class have high Tc (>10 K). Tc of ∼23 K in Y-Pd-B-C system equaled the record Tc known then, for intermetallics. Another feature that sets this class apart, is the occurrence of the exotic phenomenon of coexistence of superconductivity and magnetism at temperatures >5 K. Availability of large and electronically 'clean' single crystals and large Ginzburg-Landau (G-L) parameter, κ, have enabled detailed investigation of nonlocal effects of superconductivity. Intermediate value of upper critical field Hc2, has enabled detailed investigation of superconductivity in this class, over the complete H-T plane. This has revealed details of anisotropy of superconductivity (e.g., a fourfold symmetry in the square a-b plane is found) and raised questions on the symmetry of order parameter. After a brief outline of the discovery, this article gives a summary of the materials and highlights of superconducting properties of this class of materials. Interesting results from studies, using various techniques, on YNi2B2C (Tc ∼ 15 K) and LuNi2B2C (Tc ∼ 16 K) are presented, including observation of unusual square vortex lattice and its structural transformation with H and T. With conduction electrons involved in the magnetic order of this class of superconductors, the interplay of superconductivity and magnetism is intimate in these magnetic superconductors. With Tc (∼11 K) > TN (∼6 K) in ErNi2B2C, Tc (∼8 K) = TN (∼8 K) in HoNi2B2C and Tc (∼6 K) < TN (∼11 K) in DyNi2B2C, and with other parameters being favorable as mentioned earlier, this class of magnetic superconductors have become ideal materials to investigate the coexistence

  8. Development of standards for superconductors

    NASA Astrophysics Data System (ADS)

    Clark, A. F.; Goodrich, L. F.; Fickett, F. R.; Minervini, J. V.

    1982-07-01

    Standard measurement practices for use in large scale applications of superconductivity were developed. The goal is the adoption of voluntary standards for the critical parameters and other characterizations of practical superconductors. The major effort was the development of a standard test method for critical current, the necessary back-up research, and the coordination of the adoption of the test method and a standard terminology.

  9. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  10. Material properties of oxide superconductors

    SciTech Connect

    Phillips, J.C.

    1996-12-31

    The differences between the old (inter-) metallic superconductors and the new oxide superconductors are not limited to the much higher values of {Tc} attainable in the latter. There are many pervasive differences caused directly by oxide chemistry, quasi-perovskite local coordination configurations, and layered metal-semiconductor-metal{prime}-semiconductor-structures. When these differences are ignored, for instance in theoretical models which make effective medium approximations, many experiments appear to present anomalous results. These anomalies largely disappear when account is taken of the real materials properties of the cuprates and other new oxide superconductors, for instance in theoretical models which treat transport as a partially percolative process. This percolative process directly reflects the fact that the highest values of {Tc}, as well as the most anomalous normal-state transport properties, occur in materials vicinal to a metal-insulator transition. As the metallic and insulating regions alternate even in single-crystal samples, effective medium models, and most effective-medium parameters, lose their significance. Examples of attempts to measure microscopic properties illustrate the importance of filamentary effects on both normal-state and superconductive properties.

  11. Monoclinic structure of hydroxylpyromorphite Pb10(PO4)6(OH)2 - hydroxylmimetite Pb10(AsO4)6(OH)2 solid solution series

    NASA Astrophysics Data System (ADS)

    Giera, Alicja; Manecki, Maciej; Borkiewicz, Olaf; Zelek, Sylwia; Rakovan, John; Bajda, Tomasz; Marchlewski, Tomasz

    2016-04-01

    Seven samples of hydroxyl analogues of pyromorphite-mimetite solid solutions series were synthesized from aqueous solutions at 80° C in a computer-controlled chemistate: 200 mL aqueous solutions of 0.05M Pb(NO3)2 and 0.03M KH2AsO4 and/or KH2PO4 were dosed with a 0.25 mL/min rate to a glass beaker, which initially contained 100 mL of distilled water. Constant pH of 8 was maintained using 2M KOH. The syntheses yielded homogeneous fine-grained white precipitates composition of which was close to theoretical Pb10[(PO4)6‑x(AsO4)x](OH)2, where x = 0, 1, 2, 3, 4, 5, 6. High-resolution powder X-ray diffraction data were obtained in transmission geometry at the beamline 11-BM at the Advanced Photon Source (Argonne National Laboratory in Illinois, USA). The structure Rietveld refinements based on starting parameters of either hexagonal hydroxylpyromorphite or monoclinic mimetite-M were performed using GSAS+EXPGUI software. Apatite usually crystallizes in the hexagonal crystal system with the space group P63/m. For the first time, however, the lowering of the hexagonal to monoclinic crystal symmetry was observed in the hydroxyl variety of pyromorphite-mimetite solid solution series. This is indicated by better fitting of the modeled monoclinic structure to the experimental data. The same is not the case for analogous calcium hydroxylapatite series Ca5(PO4)3OH - Ca5(AsO4)3OH (Lee et al. 2009). Systematical linear increase of unit cell parameters is observed with As substitution from a=9.88, b=19.75, and c=7.43 for Pb10(PO4)6(OH)2 to a=10.23, b=20.32, and c=7.51 for Pb10(AsO4)6(OH)2. A strong pseudohexagonal character (γ ≈ 120° and b ≈ 2a) of the analyzed monoclinic phases was established. This work is partially funded by AGH research grant no 11.11.140.319 and partially by Polish NCN grant No 2011/01/M/ST10/06999. Lee Y.J., Stephens P.W., Tang Y., Li W., Philips B.L., Parise J.B., Reeder R.J., 2009. Arsenate substitution in hydroxylapatite: Structural characterization

  12. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  13. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  14. Neutron-scattering studies of magnetic superconductors

    SciTech Connect

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.A.; Pringle, O.A.

    1982-01-01

    Results obtained in the last few years obtained by neutron diffraction on the nature of the magnetic ordering in magnetic superconductors are reviewed. Emphasis is given to studies of the complex intermediate phase in ferromagnetic superconductors where both superconductivity and ferromagnetism appear to coexist.

  15. Method of fabricating a twisted composite superconductor

    NASA Technical Reports Server (NTRS)

    Brown, G. V.; Coles, W. D.; Laurence, J. C. (Inventor)

    1973-01-01

    A method of producing a twisted, stabilized wire or tube superconductor which can be used to wind electromagnets, armatures, rotors, field windings for motors and generators, and other magnetic devices which use a solenoid, toroidal, or other type winding is reported. At least one groove is formed along the length of a wire substrate which is then twisted into a helix and a layer of intermetallic superconducting material is formed in the groove. This layer can be formed by depositing the desired intermetallic compound into the groove or by diffusing one component of the superconductor into the groove formed in a substrate composed of the other component. The superconductor prepared by this method comprises a non-superconductor wire twisted into the shape of a helix, having at least one groove containing a layer of superconductor material along the length of the wire.

  16. Majorana Fermions and Topology in Superconductors

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-07-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.

  17. Magnetization of anisotropic Type II superconductors

    SciTech Connect

    Mints, R.G.

    1989-04-10

    Peculiarities of magnetization of anisotropic type II superconductors are of considerable interest in view of the discovery of high-T/sub c/ superconductors characterized by strongly asymmetric layered structure. Specifics of the penetration of magnetic flux into an anisotropic type II superconductor were discussed in the literature. This analysis gave the distribution of induction in an isolated vortex, its energy, and critical magnetic field H/sub c1/. However, the magnetization curve of anisotropic superconductors was not considered. This paper deals with the magnetic moment of uniaxial London superconductor in the interval H/sub c1/ /le/ H/sub 0/ << H/sub c2/, where H/sub 0/ is the external magnetic field strength.

  18. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  19. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  20. MM wavecomponents - SIS (Superconductor-Insulator-Superconductor) mixers

    NASA Astrophysics Data System (ADS)

    Whiteley, Stephen R.

    1989-04-01

    Superconductor-Insulator-Superconductor (SIS) tunnel junction mixers are known to provide ultra-high sensitivity receiver applications above 30 GHz. In this two year (Phase 2) program, HYPRES, in collaboration with the National Radio Astronomy Observatory, developed novel fully integrated SIS mixer circuits, and demonstrated a unique high efficiency cooling system. The integrated SIS mixer chip contains, aside from the actual mixer elements, passive tuning components, an IF filter, a coplanar transmission line, and a waveguide coupler, necessary components heretofore realized off-chip. Fabrication of the integrated mixer required development of a nine level process and optimization of the process dependent electrical parameters of the SIS devices. The device performs efficiently in the range of 75-115 GHz. A novel dewar-based cooler, which makes use of the extremely low thermal conductivity of the fused silica chip substrate to achieve an incremental thermal load of 25 mW, was fabricated and demonstrated. Such a cryostat allows relatively long term unattended operation of SIS, or other, cryogenic devices.

  1. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  2. Development of standards for superconductors

    NASA Astrophysics Data System (ADS)

    Goodrich, L. F.; Minervini, J. V.; Clakr, A. F.; Fickett, F. R.; Ekin, J. W.

    1985-01-01

    A cooperative program with the Department of Energy, the National Bureau of Standards, and private industry is in progress to develop standard measurement practices for use in large scale applications of superconductivity. The goal is the adoption of voluntary standards for the critical parameters and other characterizations of practical superconductors. Progress for the period January 82 through December 1983 is reported. The major effort was the procurement, selection, and certification of the first superconducting wire for critical current measurements as a Standard Reference Material (SRM 1457). Other work reported here includes: effect of geometry on current transfer; lap-joint resistance; and ac losses.

  3. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  4. Periodic microwave absorption in superconductors

    SciTech Connect

    Martinek, J.; Stankowski, J. )

    1994-08-01

    A model explaining the presence of a periodic train of microwave absorption lines in the magnetic modulated microwave absorption (MMMA) spectra of high- and low-temperature superconductors is proposed. The model assumes the occurrence of regular superconducting current loops, closed by Josephson junctions, in these materials. The system of such loops is considered within the basic model of the rf superconducting quantum interference device taking into account the effect of thermal fluctuations. The magnetic-field and temperature dependencies of the MMMA obtained on the basis of the proposed model are in qualitative agreement with experimental data.

  5. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  6. Two-band superconductor magnesium diboride

    NASA Astrophysics Data System (ADS)

    Xi, X. X.

    2008-11-01

    This review focuses on the most important features of the 40 K superconductor MgB2—the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher Tc superconductors.

  7. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  8. Plasma oscillations in layered superconductors

    SciTech Connect

    Pokrovsky, V.L.

    1996-12-31

    Very soon after publication of the famous BCS work explaining the puzzle of the superconductivity, N.N. Bogolyubov and coworkers have proposed their version of the theory. One of the new results they obtained was the discovery of a collective mode--an oscillation of the Cooper pair density with the energy smaller than 2{Delta}. P.W. Anderson has indicated that this collective mode can not be found experimentally since the Coulomb forces neglected in the above mentioned work shift its energy to the plasma frequency, i.e., to the high-ultraviolet range in which the superconductivity is unessential. The interest for plasmons in superconductors revived a little in the search for the mechanism of the High-{Tc} superconductivity. However, a real surge of interest to this problem occurred after experimental observations of the plasma edge in the reflectivity of High-{Tc} superconductors La{sub 2{minus}x}Sr{sub x}CuO{sub 4} and YBa{sub 2}Cu{sub 3}O{sub 8{minus}y}. It is worthwhile to mention that a theoretical prediction had preceded the experiment. For external reasons, the paper was published a long time after its completion. Here the author presents a brief review of the experiments and theoretical developments in the field. The theoretical works will be presented in more detail, given the author`s specialization.

  9. Electronic transport in unconventional superconductors

    SciTech Connect

    Graf, M.J.

    1998-12-31

    The author investigates the electron transport coefficients in unconventional superconductors at low temperatures, where charge and heat transport are dominated by electron scattering from random lattice defects. He discusses the features of the pairing symmetry, Fermi surface, and excitation spectrum which are reflected in the low temperature heat transport. For temperatures {kappa}{sub B}T {approx_lt} {gamma} {much_lt} {Delta}{sub 0}, where {gamma} is the bandwidth of impurity induced Andreev states, certain eigenvalues become universal, i.e., independent of the impurity concentration and phase shift. Deep in the superconducting phase ({kappa}{sub B}T {approx_lt} {gamma}) the Wiedemann-Franz law, with Sommerfeld`s value of the Lorenz number, is recovered. He compares the results for theoretical models of unconventional superconductivity in high-{Tc} and heavy fermion superconductors with experiment. The findings show that impurities are a sensitive probe of the low-energy excitation spectrum, and that the zero-temperature limit of the transport coefficients provides an important test of the order parameter symmetry.

  10. Superconductor bearings, flywheels and transportation

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  11. Modified entropic gravitation in superconductors

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  12. Complementary Variational Theorems for inhomogeneous superconductors

    NASA Astrophysics Data System (ADS)

    Choy, T. C.

    1997-03-01

    Complementary variational theorems are derived for an inhomogeneous London (local) superconductor in which both the magnetic permeability μ(r) and the London penetration length λ_L(r) vary randomly in space (T.C. Choy, Physical Review B (1997) (to appear)). An essential feature is the close coupling between magnetic and supercurrent polarisation effects, developed self-consistently in this work. Using these theorems and a suitable ansatz for the single particle polarisabilities, we obtained complementary bounds for a composite superconductor near Tc and T=0^circ K. Our results may be important for the empirical study of systems containing magnetic (normal) and superconducting mixtures, including the high Tc oxide superconductors.

  13. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1995-01-01

    An article and method of manufacture of (Bi, Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor.

  14. Synthesis of highly phase pure BSCCO superconductors

    DOEpatents

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  15. Application potential of Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Pallecchi, Ilaria; Eisterer, Michael; Malagoli, Andrea; Putti, Marina

    2015-11-01

    In this paper we report basic properties of iron-based superconductors and review the latest achievements in the fabrication of conductors based on these materials. We compare state-of-the-art results with performances obtained with low-T c and high-T c technical superconductors, evidencing in particular the most significant differences with respect to high-T c cuprate coated conductors. Although the optimization of preparation procedures is yet to be established, a potential range of applications for iron-based superconductors in the high field low temperature regime can be envisaged, where they may become competitors to RE-123 coated conductors.

  16. A New Platform for Engineering Topological Superconductors: Superlattices on Rashba Superconductors

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Law, Kam Tuen

    The search for topological superconductors which support Majorana fermion excitations has been an important topic in condensed matter physics. In this work, we propose a new experimental scheme for engineering topological superconductors. In this scheme, by manipulating the superlattice structure of organic molecules placed on top of a superconductor with Rashba spin-orbit coupling, topological superconducting phases can be achieved without fine-tuning the chemical potential. Moreover, superconductors with different Chern numbers can be obtained by changing the superlattice structure of the organic molecules.

  17. Hilarionite, Fe{2/3+}(SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Rusakov, V. S.; Belakovsky, D. I.; Turchkova, A. G.; Voudouris, P.; Magganas, A.; Katerinopoulos, A.

    2014-12-01

    A new mineral, hilarionite, ideally Fe{2/3+} (SO4)(AsO4)(OH) · 6H2O, has been found in the Hilarion Mine, Agios Konstantinos, Kamariza, Lavrion district, Attiki Prefecture, Greece. It was formed in the oxidation zone of a sulfide-rich orebody in association with goethite, gypsum, bukovskyite, jarosite, melanterite, chalcanthite, allophane, and azurite. Hilarionite occurs as light green (typically with an olive or grayish tint) to light yellowish green spherulites (up to 1 mm in size) and bunches of prismatic to acicular "individuals" up to 0.5 mm long that are in fact near-parallel or divergent aggregates of very thin, curved fibers up to 0.3 mm long and usually lesser than 2 μm thick. The luster is silky to vitreous. The Mohs' hardness is ca. 2. Hilarionite is ductile, its "individuals" are flexible and inelastic; fracture is uneven or splintery. D(meas) = 2.40(5), D(calc) = 2.486 g/cm3. IR spectrum shows the presence of arsenate and sulfate groups and H2O molecules in significant amounts. The Mössbauer spectrum indicates the presence of Fe3+ at two six-fold coordinated sites and the absence of Fe2+. Hilarionite is optically biaxial (+), α = 1.575(2), γ = 1.64(2), 2 V is large. The chemical composition (electron microprobe, average of 7 point analyses; H2O determined by modified Penfield method) is as follows, wt %: 0.03 MnO, 0.18 CuO, 0.17 ZnO, 33.83 Fe2O3, 0.22 P2O5, 18.92 As2O5, 22.19 SO3, 26.3 H2O, total is 101.82%. The empirical formula calculated on the basis of 15 O is: (Fe{1.90/3+}Cu0.01Zn0.01)Σ1.92[(SO4)1.24(AsO4)0.74(PO4)0.01]Σ1.99(OH)1.01 · 6.03H2O. The X-ray powder diffraction data show close structural relationship of hilarionite and kaňkite, Fe{2/3+}(AsO4)2 · 7H2O. Hilarionite is monoclinic, space group C2/ m, Cm or C2, a = 18.53(4), b = 17.43(3), c = 7.56(1) Å, β = 94.06(15)°, V = 2436(3) Å3, Z = 8. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 12.66-100[110], , 5.00-10[22l], , 4

  18. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  19. A road to reality with topological superconductors

    NASA Astrophysics Data System (ADS)

    Beenakker, Carlo; Kouwenhoven, Leo

    2016-07-01

    Topological matter can host low-energy quasiparticles, which, in a superconductor, are Majorana fermions described by a real wavefunction. The absence of complex phases provides protection for quantum computations based on topological superconductivity.

  20. Frontiers of organic conductors and superconductors.

    PubMed

    Saito, Gunzi; Yoshida, Yukihiro

    2012-01-01

    We review the development of conductive organic molecular assemblies including organic metals, superconductors, single component conductors, conductive films, conductors with a switching function, and new spin state (quantum spin liquid state). We emphasize the importance of the ionicity phase diagram for a variety of charge transfer systems to provide a strategy for the development of functional organic solids (Mott insulator, semiconductor, superconductor, metal, complex isomer, neutral-ionic system, alignment of chemical potentials, etc.). For organic (super)conductors, the electronic dimensionality of the solids is a key parameter and can be designed based on the self-aggregation ability of a molecule. We present characteristic structural and physical properties of organic superconductors. PMID:21952839

  1. Majorana fermions in nanowires without gating superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hung; Hui, Hoi Yin; Sau, Jay; Das Sarma, Sankar

    2011-03-01

    Majorana fermions have been proposed to be realizable at the end of the semiconductor nanowire on top of an s-wave superconductor [1,2]. These proposals require gating the nanowire directly in contact with a superconductor which may be difficult in experiments. We analyze [1,2] in configurations where the wire is only gated away from the superconductor. We show that some signatures of the Majorana mode remain but the Majorana mode is not localized and hence not suitable for quantum computation. Therefore we propose an 1D periodic heterostructure which can support localized Majorana modes at the end of the wire without gating on the superconductor. This work is supported by DARPA-QuEST, JQI-NSF-PFC, and LPS-NSA.

  2. Resistance domain in type II superconductors

    SciTech Connect

    Gurevich, A.V.; Mints, R.G.

    1980-01-05

    We show that traveling domains with a finite resistance can exist in type II superconductors in the presence of a transport current. An experiment in which this effect generates an alternating electric field and current is proposed.

  3. Hexatic vortex glass in disordered superconductors

    SciTech Connect

    Chudnovsky, E.M. )

    1989-12-01

    It is shown that interaction of the flux-line lattice with randomly arranged pinning centers should destroy the long-range positional order in the lattice, but not the long-range orientational order. A new phase: hexatic vortex glass, is suggested for the mixed state of disordered, type-II superconductors. Relevance to amorphous and high-{ital T}{sub {ital c}} superconductors is discussed.

  4. Metallic stripes in high-temperature superconductors

    SciTech Connect

    Salkola, M.I.; Emery, V.J.; Kivelson, S.A.

    1995-11-23

    A phenomenological approach is applied to explore signatures of disordered charge stripes and antiphase spin domains in single-particle properties of the high-temperature superconductors. Stripe phases are shown to explain many experimentally observed unusual features measured in angle-resolved photoemission and optical spectroscopy. It is argued that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors, supported by the additional evidence from neutron scattering and NMR.

  5. Electrical resistivity of composite superconductors

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lee, J. A.

    1983-01-01

    In addition to its superconducting properties, a superconductor is usually characterized by poor thermal conductivity and relatively high electrical resistivity in the normal state. To remedy this situation a study of superconducting properties of Cu-rich CU-Nb wires prepared by directionally solidified and cold-rolled technique was conducted. Some of the specimens were prepared by melting, directional solidification and diffusing in Tin. A total of 12 wire specimens was tested. Each specimen was analyzed by plotting experimental data into the following curves: the graph of the residual resistivity as a function of the specimen current at 4.3 K; and the graph of the electrical resistivity as a function of the temperature at a constant current.

  6. Fluctuation phenomena in layered superconductors

    SciTech Connect

    Klemm, R.A.

    1996-10-01

    Gaussian fluctuations in layered superconductors have been the subject of study for many years. Although the FD was studied in detail long ago, the FC (fluctuation conductivity) was studied only recently, since the MT and DOS diagrams were previously neglected. Recent comparisons with experiment on YBCO have shown that the DOS diagrams are important and can lead to qualitatively different behaviors for the FC parallel and perpendicular to the layers. In both cases, Gaussian fluctuations fit the data above {Tc} very well, even for YBCO. To date, nearly all calculations of fluctuation quantities were for B{parallel}{cflx c}. Nevertheless, it should be possible to treat an arbitrary B, but the evaluation of the required matrix elements for the fluctuation quantities will be more complicated.

  7. Quantum rotor in nanostructured superconductors

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-04-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos.

  8. Quantum rotor in nanostructured superconductors.

    PubMed

    Lin, Shi-Hsin; Milošević, M V; Covaci, L; Jankó, B; Peeters, F M

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  9. Quantum rotor in nanostructured superconductors

    PubMed Central

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  10. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  11. Topological insulators and superconductors from string theory

    SciTech Connect

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-10-15

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  12. Topological insulators and superconductors from string theory

    NASA Astrophysics Data System (ADS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-10-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  13. Search for Majorana fermions in topological superconductors.

    SciTech Connect

    Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  14. Superconductor

    SciTech Connect

    Gleim, W.K.

    1982-07-27

    A superconductive article is described which comprises an electrically normal conductive metal cable having on the outer surface thereof a layer containing cobalt phthalocyanine and an alkali metal. The ratio of alkali metal atoms to cobalt phthalocyanine molecules in said layer is suitably about 8:1. The electrically normal conductive metal is preferably aluminum and the cable is preferably hollow.

  15. Superconductors

    DOEpatents

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  16. Josephson Current in a Gapped Graphene Superconductor/Barrier/Superconductor Junction: Case of Massive Electrons

    NASA Astrophysics Data System (ADS)

    Suwannasit, Tatnatchai; Tang, I.-Ming; Hoonsawat, Rassmidara; Soodchomshom, Bumned

    2011-10-01

    The Josephson effect in a gapped graphene-based superconductor/barrier/superconductor junction is studied. The superconductivity in gapped graphene may be achieved by depositing conventional superconductor on the top of the gapped graphene such as graphene grown on SiC substrate. In gapped graphene system, the carriers exhibit massive Dirac fermions. We focus on the effect of pseudo-Dirac-like mass on the supercurrent. In contrast to that in the gapless graphene superconductor/barrier/superconductor junction, we find that the supercurrent exhibits dependency of the Fermi energy. Also, the massive supercurrent anomalously oscillates as a function of the gate potential. This novel behavior is due to the effect of electrons acquiring mass in gapped graphene.

  17. Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenate hilarionite (Fe2((III))(SO4)(AsO4)(OH)·6H2O): Implications for arsenic mineralogy in supergene environment of mine area.

    PubMed

    Liu, Jing; He, LiLe; Dong, Faqin; Frost, Ray L

    2017-01-01

    Hilarionite (Fe2 (SO4)(AsO4)(OH)·6H2O) is a new Fe sulphoarsenates mineral, which recently is found in the famous Lavrion ore district, Atliki Prefecture, Greece. The spectroscopic study of hilarionite enriches the data of arsenic mineralogy in supergene environment of a mine area. The infrared and Raman means are used to characterize the molecular structure of this mineral. The IR bands at 875 and 905cm(-1) are assigned to the antisymmetric stretching vibrations of AsO4(3-). The IR bands at 1021, 1086 and 1136cm(-1) correspond to the possible antisymmetric and symmetric stretching vibrations of SO4(2-). The Raman bands at 807, 843 and 875cm(-1) clearly show that arsenate components in the mineral structure, which are assigned to the symmetric stretching vibrations (ν1) of AsO4(3-) (807 and 843cm(-1)) and the antisymmetric vibration (ν3) (875cm(-1)). IR bands provide more sulfate information than Raman, which can be used as the basis to distinguish hilarionite from kaňkite. The powder XRD data shows that hilarionite has obvious differences with the mineral structure of kaňkite. The thermoanalysis and SEM-EDX results show that hilarionite has more sulfate than arsenate. PMID:27391313

  18. The mineral tooeleite Fe6(AsO3)4SO4(OH)4ṡ4H2O - An infrared and Raman spectroscopic study-environmental implications for arsenic remediation

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Cheng, Hongfei; Frost, Ray L.; Dong, Faqing

    2013-02-01

    The mineral tooeleite Fe6(AsO3)4SO4(OH)4ṡ4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm-1 assigned to AsO33- symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm-1 assigned to the symmetric and antisymmetric stretching vibrations of AsO33- and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm-1, are assigned to the ν3, ν1 and ν4 modes of SO42-. The same bands are observed at 1287, 1085, 983 and 604 cm-1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.

  19. Flux Pinning Properties and Magnetic Relaxation of Superconducting SmFe0.9Co0.1AsO

    NASA Astrophysics Data System (ADS)

    Zhuang, J. C.; Sun, Y.; Ding, Y.; Yuan, F. F.; Liu, J. T.; Shi, Z. X.; Li, X. W.

    2012-12-01

    Magnetic Co ion doped SmFeAsO polycrystal was synthesized via solid-state reaction. Resistivity, SEM and magnetic hysteresis loops (MHLs) were measured to investigate magnetic properties of the sample. Critical current densities as well as the flux pinning forces densities were estimated from MHLs. This paper reports for the first time the research of superconducting MHLs as well as magnetic relaxation properties of SmFe0.9Co0.1AsO. Results suggest that: (i) A tail effect in the resistivity measurement together with the rapid decrease in critical current densities at low fields shows the evidence for granularity of the sample; (ii) The asymmetry of the MHLs may be caused by the Bean-Livingstone (BL) surface pinning or granular nature, and none of theoretical models are suitable to the scaling behaviors of flux pinning forces densities; (iii) The anomalous tendency of the temperature dependence of magnetic relaxation rate as well as the effective pinning energy were observed, which may be attributed to the competition between the bulk pinning and the BL surface pinning.

  20. Performance of ceramic superconductors in magnetic bearings

    NASA Astrophysics Data System (ADS)

    Kirtley, James L., Jr.; Downer, James R.

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  1. Performance of ceramic superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  2. Sealed glass coating of high temperature ceramic superconductors

    DOEpatents

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  3. Bernoulli effect and contact potential difference in superconductors

    SciTech Connect

    Omel'yanchuk, A.N.; Beloborod'ko, S.I.

    1983-10-01

    An expression is derived for the Bernoulli potential that arises in superconductors with an inhomogeneous current distribution. The expression is valid for arbitrary temperatures and superfluid velocities. In the superconductor--dielectric--superconductor system we consider the Bernoulli effect, which manifests itself in a contact potential difference between the superconductors. The potential difference is determined by the currents flowing through one plate of the contact and can be measured with a voltmeter in the quasi-stationary regime.

  4. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  5. The color of polarization in cuprate superconductors

    NASA Technical Reports Server (NTRS)

    Hoff, H. A.; Osofsky, M. S.; Lechter, W. L.; Pande, C. S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed.

  6. Conductance spectroscopy of topological superconductor wire junctions

    NASA Astrophysics Data System (ADS)

    Setiawan, F.; Brydon, Philip; Sau, Jay

    We study the zero-temperature transport properties of one-dimensional normal metal-superconductor (NS) junctions with topological superconductors across their topological transitions. Working within the Blonder-Tinkham-Klapwijk (BTK) formalism generalized for topological NS junctions, we analytically calculate the differential conductance for tunneling into two models of a topological superconductor: a spinless intrinsic p-wave superconductor and a spin-orbit-coupled s-wave superconductor in a Zeeman field. The zero-bias conductance takes nonuniversal values in the nontopological phase while it is robustly quantized at 2e2 / h in the topological regime. Despite this quantization at zero voltage, the zero-bias conductance only develops a peak (or a local maximum) as a function of voltage for sufficiently large interfacial barrier strength, or certain parameter regimes of spin-orbit coupling strength. Our calculated BTK conductance also shows that the conductance is finite inside the superconducting gap region because of the finite barrier transparency, providing a possible mechanism for the observed ``soft gap'' feature in the experimental studies. Work is done in collaboration with Sankar Das Sarma and supported by Microsoft Q, LPS-CMTC, and JQI-NSF-PFC.

  7. EDITORIAL: Focus on Superconductors with Exotic Symmetries FOCUS ON SUPERCONDUCTORS WITH EXOTIC SYMMETRIES

    NASA Astrophysics Data System (ADS)

    Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru

    2009-05-01

    Superconductors can usefully be divided into two classes, those that are well described by the classic Bardeen-Cooper-Schrieffer (BCS) theory and its extensions and those which require a different microscopic description. The BCS theory of superconductivity solved the long standing mystery of this spectacular phenomenon and described all superconductors that were known when it was formulated in the 1950s. The key ingredient is an attractive interaction generated by the exchange of phonons between electrons which overcomes a Coulomb repulsion weakened by screening, to give a net attractive force on the low energy scale. In this case the simplest s-wave pairing always maximises the energy gain. There were speculations a little later that other types of electron pairing could be possible, but it took a quarter of a century until the first signs of superconductors with different and exotic pairing appeared. In the intervening thirty years many superconductors with exotic pairing have been and continue to be discovered and the study of their superconductivity has grown into a major subfield of condensed matter physics today. The importance of these exotic superconductors with unconventional symmetry is that their pairing is of electronic origin. As a result they are freed from the restrictions of low transition temperatures that go along with the phonon driven conventional superconductors. However in two of the main classes of the exotic superconductors, namely heavy fermion and organic superconductors, the intrinsic energy scales are very small leading to low temperature scales. The third class contains the small number of superconducting transition metal compounds with exotic pairing symmetry. The most studied of these are the high-Tc cuprates, the newly discovered iron pnictides and strontium ruthenate which is closely related to superfluid 3He. Although the basic electronic structure of these materials is well understood, the origin of the pairing is more complex

  8. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  9. High-temperature ceramic superconductors

    NASA Astrophysics Data System (ADS)

    Mazdiyasni, K. S.

    1990-11-01

    The principal goals of this program are (1) to demonstrate fabrication of high-temperature ceramic superconductors via sol-gel method that can operate at or above 90 K with appropriate current density, J(sub c), in forms useful for application in resonant cavities, magnets, motors, sensors, computers, and other devices; and (2) to fabricate and demonstrate selected components made of these materials, including microwave cavities and magnetic shields. Chemical pathways for synthesis of 123 identified, process parameters window for sol-gel derived 123 fibers established, continuous flexible fibers 15 to 200 microns in diameter producted, fibers with T(sub c) is approximate or equal to 92.5 K, Delta T = 1.5 K, J(sub c) = 2000 A/sqcm at 77 K, 0 field; 4000 at 57K, 100 Oe was produced, formed adherent 123 oriented films on metals and ceramic substrates, achieved film T(sub c) is approximate or equal to 92 K, Delta T = 4 k, J(sub c) = 400 A/sq cm at 40 K, O field.

  10. Optical devices based on dye-coated superconductor junctions: An example of a composite molecule-superconductor device

    SciTech Connect

    Zhao, J.; Jurbergs, D.; Yamazi, B.; McDevitt, J.T.

    1992-03-25

    High-temperature superconductors provide new opportunities as materials used in the construction of hybrid molecule-superconductor components. Here, the authors describe fabrication methods for and operation of optical sensors based on molecular dye-coated superconductor junctions. Devices prepared from yttrium barium cuprates and using octaethylporphyrin, phthalocyanine, and rhodamine 6G as dyes have been prepared. 9 refs., 1 fig.

  11. Fluxons in superconductor/ferromagnet/superconductor Josephson junction with external current

    NASA Astrophysics Data System (ADS)

    Alatas, Husin

    2016-03-01

    We discuss the existence of fluxons in superconductor/ferromagnet/superconductor Josephson junction with external current described by an inhomogeneous double sine-Gordon equation. Based on an extended Feynman's argument, we derived the corresponding current-phase relation from the nonlinear interaction of the macroscopic wavefunctions between the two superconductors. The result shows that the only solution that survive under the presence of external current are the bright and dark fluxons, while a new type of dark fluxon with peculiar shape is found.

  12. Deviations from mean-field behavior in disordered nanoscale superconductor normal-metal superconductor arrays

    NASA Astrophysics Data System (ADS)

    Kouh, Taejoon; Valles, J. M.

    2003-04-01

    We have fabricated quasi-two-dimensional disordered arrays of nanoscale Pb grains coupled by an overlayer of Ag grains. Their temperature-dependent resistive transitions follow predictions for an array of mesoscopic superconductor normal-metal superconductor junctions. The decrease of their transition temperatures with Ag overlayer thickness systematically deviates from the Cooper limit theory of the proximity effect as the Pb grain size decreases. The deviations occur when the estimated number of Cooper pairs per grain is <1 and suggest the approach to a superconductor-to-metal transition.

  13. Charge and spin transport in mesoscopic superconductors

    PubMed Central

    Wolf, M J; Hübler, F; Kolenda, S

    2014-01-01

    Summary Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin. Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models. Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures. PMID:24605283

  14. Giant paramagnetic Meissner effect in multiband superconductors.

    PubMed

    da Silva, R M; Milošević, M V; Shanenko, A A; Peeters, F M; Aguiar, J Albino

    2015-01-01

    Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate - even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces. PMID:26244936

  15. Giant paramagnetic Meissner effect in multiband superconductors

    PubMed Central

    da Silva, R. M.; Milošević, M. V.; Shanenko, A. A.; Peeters, F. M.; Aguiar, J. Albino

    2015-01-01

    Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate - even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces. PMID:26244936

  16. Giant paramagnetic Meissner effect in multiband superconductors

    NASA Astrophysics Data System (ADS)

    da Silva, R. M.; Milošević, M. V.; Shanenko, A. A.; Peeters, F. M.; Aguiar, J. Albino

    2015-08-01

    Superconductors, ideally diamagnetic when in the Meissner state, can also exhibit paramagnetic behavior due to trapped magnetic flux. In the absence of pinning such paramagnetic response is weak, and ceases with increasing sample thickness. Here we show that in multiband superconductors paramagnetic response can be observed even in slab geometries, and can be far larger than any previous estimate - even multiply larger than the diamagnetic Meissner response for the same applied magnetic field. We link the appearance of this giant paramagnetic response to the broad crossover between conventional Type-I and Type-II superconductors, where Abrikosov vortices interact non-monotonically and multibody effects become important, causing unique flux configurations and their locking in the presence of surfaces.

  17. Transverse acousto-electric effect in superconductors

    NASA Astrophysics Data System (ADS)

    Lipavský, P.; Koláček, J.; Lin, P.-J.

    2016-06-01

    We formulate a theory based on the time-dependent Ginzburg-Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman-Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.

  18. Shock compaction of high- Tc superconductors

    SciTech Connect

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. ); Seaman, C.L.; Early, E.A.; Maple, M.B. . Dept. of Physics); Kramer, M.J. ); Syono, Y.; Kikuchi, M. )

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  19. The superconducting state parameters of glassy superconductors

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2011-11-01

    We present theoretical investigations of the superconducting state parameters (SSPs), i.e. the electron-phonon coupling strength, λ, Coulomb pseudopotential, μ*, transition temperature, Tc, isotope effect exponent, α, and effective interaction strength, N0V, of glassy superconductors by employing Ashcroft's well know empty core model potential for the first time using five screening functions proposed by Hartree (H), Taylor, Ichimaru-Utsumi (IU), Farid et al and Sarkar et al. The Tc obtained from the H and IU screening functions is found to be in excellent agreement with available experimental data. Also, the present results confirm the superconducting phase in bulk metallic glass superconductors. A strong dependency of the SSPs of the glassy superconductors on the 'Z' valence is found.

  20. Radiation shielding effectiveness of newly developed superconductors

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  1. Lifshitz transition in d-wave superconductors

    SciTech Connect

    Botelho, S.S.; Sa de Melo, C.A.R.

    2005-04-01

    The BCS-to-BEC evolution has been recently the focus of studies in superconductors and cold atomic gases. For a d-wave system, we show that a Lifshitz transition occurs at a critical particle density which separates two topologically distinct phases according to their quasiparticle excitation energies: a BCS-like gapless superconductor in the higher-density limit and a BEC-like fully gapped superconductor in the lower-density limit. This transition is second-order according to Ehrenfest's classification, but it occurs without a change in the symmetry of the order parameter and thus cannot be classified under Landau's scheme. To illustrate the nature of the transition, we compute the compressibility and the superfluid density as functions of particle density.

  2. Fracture toughness for copper oxide superconductors

    DOEpatents

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  3. Fracture toughness for copper oxide superconductors

    DOEpatents

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  4. Anomalous Hall effect in Weyl superconductors

    NASA Astrophysics Data System (ADS)

    Bednik, G.; Zyuzin, A. A.; Burkov, A. A.

    2016-08-01

    We present a theory of the anomalous Hall effect in a topological Weyl superconductor with broken time reversal symmetry. Specifically, we consider a ferromagnetic Weyl metal with two Weyl nodes of opposite chirality near the Fermi energy. In the presence of inversion symmetry, such a metal experiences a weak-coupling Bardeen–Cooper–Schrieffer instability, with pairing of parity-related eigenstates. Due to the nonzero topological charge, carried by the Weyl nodes, such a superconductor is necessarily topologically nontrivial, with Majorana surface states coexisting with the Fermi arcs of the normal Weyl metal. We demonstrate that, surprisingly, the anomalous Hall conductivity of such a superconducting Weyl metal coincides with that of a nonsuperconducting one, under certain conditions, in spite of the nonconservation of charge in a superconductor. We relate this to the existence of an extra (nearly) conserved quantity in a Weyl metal, the chiral charge.

  5. Practical superconductor development for electrical power applications

    SciTech Connect

    Goretta, K.C.

    1991-10-01

    Development of useful high-critical-temperature (high-{Tc}) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes technical progress of research and development efforts aimed at producing superconducting components based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and Tl-Ba-Ca-Cu oxides systems. Topics discussed are synthesis and heat treatment of high-{Tc} superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, and fabrication and properties of thin films. Collaborations with industry and academia are also documented. 10 figs.

  6. Resolving thermoelectric “paradox” in superconductors

    PubMed Central

    Shelly, Connor D.; Matrozova, Ekaterina A.; Petrashov, Victor T.

    2016-01-01

    For almost a century, thermoelectricity in superconductors has been one of the most intriguing topics in physics. During its early stages in the 1920s, the mere existence of thermoelectric effects in superconductors was questioned. In 1944, it was demonstrated that the effects may occur in inhomogeneous superconductors. Theoretical breakthrough followed in the 1970s, when the generation of a measurable thermoelectric magnetic flux in superconducting loops was predicted; however, a major crisis developed when experiments showed puzzling discrepancies with the theory. Moreover, different experiments were inconsistent with each other. This led to a stalemate in bringing theory and experiment into agreement. With this work, we resolve this stalemate, thus solving this long-standing “paradox,” and open prospects for exploration of novel thermoelectric phenomena predicted recently. PMID:26933688

  7. Practical superconductor development for electrical power applications

    SciTech Connect

    Goretta, K.C.

    1992-10-01

    Development of useful high-critical-temperature (high-[Tc]) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-[Tc] superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  8. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  9. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  10. Topological state engineering by potential impurities on chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kaladzhyan, Vardan; Röntynen, Joel; Simon, Pascal; Ojanen, Teemu

    2016-08-01

    In this work we consider the influence of potential impurities deposited on top of two-dimensional chiral superconductors. As discovered recently, magnetic impurity lattices on an s -wave superconductor may give rise to a rich topological phase diagram. We show that a similar mechanism takes place in chiral superconductors decorated by nonmagnetic impurities, thus avoiding the delicate issue of magnetic ordering of adatoms. We illustrate the method by presenting the theory of potential impurity lattices embedded on chiral p -wave superconductors. While a prerequisite for the topological state engineering is a chiral superconductor, the proposed procedure results in vistas of nontrivial descendant phases with different Chern numbers.

  11. Surface texturing of superconductors by controlled oxygen pressure

    DOEpatents

    Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.

    1999-01-01

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.

  12. Aluminum-stabilized NB3SN superconductor

    DOEpatents

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  13. Holographic superconductors from the massive gravity

    NASA Astrophysics Data System (ADS)

    Zeng, Hua Bi; Wu, Jian-Pin

    2014-08-01

    A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite dc conductivity, the ac conductivity has Drude behavior at low frequency followed by a power-law fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.

  14. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  15. Building blocks for correlated superconductors and magnets

    SciTech Connect

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J. -X.; Thompson, J. D.

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  16. NbTi superconductors with aluminium matrix

    SciTech Connect

    Buryak, V.P.; Dugadko, A.B.; Mironova, O.N.; Petrusenko, A.I. ); Bliznyuk, V.A.; Dolbinov, J.D.; Lykhin, V.A. )

    1992-01-01

    This paper reports that the authors designed, produced and studied NbTi composite superconductors with Al, or Al-alloy, or combined Al and Cu matrix, which have reduced weight. Wires of different design with 0.5-2.0 mm diameter were manufactured using hydrostatic extrusion. The weight reduction in comparison with the same filling factor copper matrix superconductor achieves 20-40%. The overall critical current density at 5 T magnetic field is (1.6-2.8) {center dot} 10{sup 9} A/cm{sup 2}.

  17. Electrical connection structure for a superconductor element

    SciTech Connect

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  18. Recrystallization of high temperature superconductors

    SciTech Connect

    Kouzoudis, D.

    1996-05-09

    Currently one of the most widely used high {Tc} superconductors is the Bi-based compounds Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub z} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub z} (known as BSCCO 2212 and 2223 compounds) with {Tc} values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  19. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  20. Converting a topologically trivial superconductor into a chiral topological superconductor via diluted magnetic doping

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu

    We employ two complementary theoretical approaches to explore the feasibility of altering the topological properties of two-dimensional Rashba spin-orbit coupled superconductors by proper introduction of magnetic disorders. First, using the self-consistent Born approximation, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorders, which gradually narrow, close, and reopen the quasi-particle gap of the paired electrons in a nontrivial manner. Such a topological phase transition is further characterized by the change in the corresponding topological invariant. The central predictions made here are then confirmed using the complementary numerical approach by solving the Bogoliubov-de Gennes equations self-consistently within a tight-binding model. We also discuss the validity of the present model studies in connection with existing experimental findings. Collectively, the present study offers appealing new schemes for potential experimental realization of topological superconductors. Supported by NSF of China.

  1. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    SciTech Connect

    Shi, Xiaoyan Pan, W.; Hawkins, S. D.; Klem, J. F.; Yu, Wenlong; Jiang, Zhigang; Andrei Bernevig, B.

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.

  2. Crystal chemistry of anhydrous Li uranyl phosphates and arsenates. I. Polymorphism and structure topology: Synthesis and crystal structures of α-Li[(UO 2)(PO 4)], α-Li[(UO 2)(AsO 4)], β-Li[(UO 2)(AsO 4)] and Li 2[(UO 2) 3(P 2O 7) 2

    NASA Astrophysics Data System (ADS)

    Alekseev, Evgeny V.; Krivovichev, Sergey V.; Malcherek, Thomas; Depmeier, Wulf

    2008-11-01

    Four new Li uranyl phosphates and arsenates have been prepared by high-temperature solid-state reactions: α-Li[(UO 2)(PO 4)] ( 1), α-Li[(UO 2)(AsO 4)] ( 2), β-Li[(UO 2)(AsO 4)] ( 3) and Li 2[(UO 2) 3(P 2O 7) 2] ( 4). The structures of the compounds have been solved by direct methods: 1—triclinic, P1¯, a=5.0271(1) Å, b=9.8799(2) Å, c=10.8920(2) Å, α=108.282(9)°, β=102.993(8)°, γ=104.13(1)°, V=470.69(2) Å 3, Z=4, R1=0.0415 for 2786 unique reflections with | F0|⩾4 σ F; 2—triclinic, P1¯, a=5.129(2) Å, b=10.105(3) Å, c=11.080(3) Å, α=107.70(2)°, β=102.53(3)°, γ=104.74(3)°, V=501.4(3) Å 3, Z=4, R1=0.055 for 1431 unique reflections with | F0|⩾4 σF; 3—triclinic, P1¯, a=5.051(1) Å, b=5.303(1) Å, c=10.101(1) Å, α=90.31(1)°, β=97.49(1)°, γ=105.08(1)°, V=258.80(8) Å 3, Z=2, R1=0.0339 for 2055 unique reflections with | F0|⩾4 σF; 4—triclinic, P1¯, a=5.312(1) Å, b=6.696(1) Å, c=12.542(1) Å, α=94.532(9)°, β=99.059(8)°, γ=110.189(7)°, V=409.17(10) Å 3, Z=2, R1=0.0565 for 1355 unique reflections with | F0|⩾4 σF. The structures of all four compounds are based upon 3-D frameworks of U and T polyhedra ( T=P, As). Phases 1 and 2 are isostructural and consist of U 2O 12 dimers and UO 6 square bipyramids linked by single TO 4 tetrahedra. The structure of 3 consists of 3-D framework of corner-sharing UO 6 bipyramids and AsO 4 tetrahedra. In the structure of 4, the framework is composed of U 2O 12 dimers, UO 6 bipyramids and P 2O 7 dimers. In all the compounds, Li + cations reside in framework cavities. The topologies of the 3-D frameworks can be described as derivatives of the PtS (cooperite) network.

  3. Disorder-Driven Superconductor-Insulator Transition in d-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Song, Yun; He, Long

    2014-03-01

    We study the superconductor-insulator transition (SIT) in d-wave superconductors. By means of the kernel polynomial method, the Bogoliubov-de Gennes equations are solved self-consistently, making it possible to observe fully the nanoscale spatial fluctuations of the superconducting order parameters. It is shown that Anderson localization can not entirely inhibit the occurrence of the local superconductivity in strongly-disordered d-wave superconductors. Separated by an insulating ``sea'' completely, a few isolated superconducting ``islands'' with significant enhancement of the local superconducting order parameters can survive across the SIT. The disorder-driven SIT, therefore, is a transition from a d-wave superconductor to a boson insulator which consists of localized Cooper pairs. Unlike an s-wave superconductor which presents a robust single-particle gap across the SIT, the optical conductivity of a d-wave superconductor reveals a gapless insulating phase, where the SIT can be detected by observing the disappearance of the Drude weight with the increasing disorder. The National Basic Research Program of China (Grant Nos. 2011CBA00108).

  4. Enhancing critical current density of cuprate superconductors

    DOEpatents

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  5. Monopoles and fractional vortices in chiral superconductors

    PubMed Central

    Volovik, G. E.

    2000-01-01

    I discuss two exotic objects that must be experimentally identified in chiral superfluids and superconductors. These are (i) the vortex with a fractional quantum number (N = 1/2 in chiral superfluids, and N = 1/2 and N = 1/4 in chiral superconductors), which plays the part of the Alice string in relativistic theories and (ii) the hedgehog in the ^l field, which is the counterpart of the Dirac magnetic monopole. These objects of different dimensions are topologically connected. They form the combined object that is called a nexus in relativistic theories. In chiral superconductors, the nexus has magnetic charge emanating radially from the hedgehog, whereas the half-quantum vortices play the part of the Dirac string. Each half-quantum vortex supplies the fractional magnetic flux to the hedgehog, representing 1/4 of the “conventional” Dirac string. I discuss the topological interaction of the superconductor's nexus with the ‘t Hooft–Polyakov magnetic monopole, which can exist in Grand Unified Theories. The monopole and the hedgehog with the same magnetic charge are topologically confined by a piece of the Abrikosov vortex. Such confinement makes the nexus a natural trap for the magnetic monopole. Other properties of half-quantum vortices and monopoles are discussed as well, including fermion zero modes. PMID:10716980

  6. Ultrasonic attenuation studies in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Zhong Cheng; Jiang, Zuo

    2005-04-01

    In this paper a great number of mechanical relaxation spectrum experiment results in the mixed state of high Tc superconductors have been summarized. A new low frequency mechanical relaxation spectrum apparatus have been shown. We pointed out that the mechanical relaxation peaks are attributed to anelastic relaxation processes and the transition of rigidly pinned FLL into a depinned state.

  7. Development of standards for superconductors, FY 1980

    NASA Astrophysics Data System (ADS)

    Fickett, F. R.; Goodrich, L. F.; Clark, A. F.

    1980-12-01

    The critical current standard for superconductors was investigated through a survey of manufacturers. Experimental determinations of the effect of various parameters on the measurement were made by NBS and by the wire manufacturers. Significant progress was made in the preparation of the actual critical current measurement standard and the definition standard.

  8. Iron-based superconductors: Unity or diversity?

    SciTech Connect

    Kivelson, S. A.

    2010-02-24

    Superconductivity is among the most fascinating properties that a material can show. On the fundamental level, it represents a direct, macroscopic manifestation of coherent quantum mechanical behaviour, and its potential practical importance is almost unlimited, especially if new superconductors can be synthesized or discovered with still higher transition temperatures, Tc.

  9. Structural and vibrational study and superprotonic behavior of the new solid acid: K0.47(NH4)0.53H2(PO4)0.52(AsO4)0.48

    NASA Astrophysics Data System (ADS)

    Chouchene, Samia; Jaouadi, Khaled; Mhiri, Tahar; Zouari, Nabil

    2016-12-01

    The new compound K0.47(NH4)0.53H2(PO4)0.52(AsO4)0.48 crystallizes in the tetragonal system I 4 bar 2d with lattice parameters a = 7.606(5) Å and c = 7.401(5) Å. This material has a unit cell volume of 428.16 Å3 and four formula units per cell. The main feature of the structure is the coexistence of two groups with a motive (NH4/K)+-H2(P/As)O4-. In this structure, there are two types of hydrogen bonding (Osbnd H⋯O and Nsbnd H⋯O) which contributes to their stability. The infrared spectra of K0.47(NH4)0.53H2(PO4)0.52(AsO4)0.48 recorded at room temperature in the frequency range 4000-400 cm-1 confirm the presence of two different anions (AsO43- and PO43-) in the same crystal. A calorimetric study of the title compound shows two distinct endothermal peaks which are detected at 248 and 490 K. Samples were examined by impedance and modulus spectroscopy techniques. The first transition (248 K) is attributed to a antiferroelectric-paraelectric type. A high temperature phase transition (490 K) leading to a superionic-protonic phase was found, characterized by an unusual high conductivity. The conductivity relaxation parameters associated with the high-disorder protonic conduction have been determined from analysis of the M″/M″max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism.

  10. Fluorite-related one-dimensional units in natural bismuth oxysulfates: the crystal structures of Bi14O16(SO4)5 and Bi30O33(SO4)9(AsO4)2.

    PubMed

    Pinto, Daniela; Garavelli, Anna; Bindi, Luca

    2015-10-01

    The crystal structures of two new natural Bi oxysulfates with the formula Bi14O16(SO4)5 [labelled new phase I; monoclinic, space group C2, a = 21.658 (4), b = 5.6648 (9), c = 15.092 (3) Å, β = 119.433 (11)° and Z = 2] and Bi30O33(SO4)9(AsO4)2 [labelled new phase II; triclinic, space group P1, a = 5.670 (3), b = 13.9408 (9), c = 22.7908 (18) Å, α = 80.903 (5), β = 82.854 (14), γ = 78.27 (2)° and Z = 1] from the high-temperature fumarole deposit of the La Fossa crater at Vulcano (Aeolian Islands, Italy) are reported. The structures are built up by a combination of fluorite-related Bi-O units and isolated (SO4)(2-) tetrahedra (new phase I) or both (SO4)(2-) and (AsO4)(3-) tetrahedra (new phase II). Owing to the effect of stereoactive lone pairs of Bi(3+), Bi-O units in both the structures can be suitably described in terms of oxo-centered OBi4 tetrahedra. The structure of Bi14O16(SO4)5 is based upon one-dimensional [O16Bi14](10+) ribbons formed by six chains of edge-sharing OBi4 tetrahedra extending along [010]. In the structure of Bi30O33(SO4)9(AsO4)2 the same ribbon type coexists with another one-dimensional ribbon formed by seven chains of edge-sharing OBi4 tetrahedra and with the composition [O17Bi16](14+). Ribbons of the same type are joined by (SO4)(2-) and (AsO4)(3-) tetrahedra along [010] – if a reduced triclinic unit-cell setting is considered – so forming two different (001) slabs which alternate to each other along [001] and are joined by additional (SO4)(2-) tetrahedra. New phase I represents the natural analogues of synthetic Bi14O16(SO4)5, but with an ordered structure model. PMID:26428401