Science.gov

Sample records for near-face bed zone

  1. Fluidized-Bed Reactor With Zone Heating

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K.

    1989-01-01

    Deposition of silicon on wall suppressed. In new fluidized bed, silicon seed particles heated in uppermost zone of reactor. Hot particles gradually mix with lower particles and descend through fluidized bed. Lower wall of vessel kept relatively cool. Because silane enters at bottom and circulates through reactor pyrolized to silicon at high temperatures, silicon deposited on particles in preference wall. Design of fluidized bed for production of silicon greatly reduces tendency of silicon to deposit on wall of reaction vessel.

  2. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  3. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  4. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  5. The role of bedding in the evolution of meso- and microstructural fabrics in fault zones

    NASA Astrophysics Data System (ADS)

    Ishii, Eiichi

    2016-08-01

    To investigate the role of bedding in the evolution of meso- and microstructural fabrics in fault zones, detailed microscopic, mineralogical, and geochemical analyses were conducted on bedding-oblique and bedding-parallel faults that cut a folded Neogene siliceous mudstone that contains opal-CT, smectite, and illite. An analysis of asymmetric structures in the fault gouges indicates that the secondary fractures associated with each fault exhibit contrasting characteristics: those of the bedding-oblique fault are R1 shears, whereas those of the bedding-parallel fault are reactivated S foliation. The bedding-oblique fault shows the pervasive development of S foliation, lacks opal-CT, and has low SiO2/TiO2 ratios only in gouge, whereas the bedding-parallel fault exhibits these characteristics in both gouge and wall rocks. The development of S foliation and the lack of silica can result from local ductile deformation involving the sliding of phyllosilicates, coupled with pressure solution of opal-CT. Although such deformation can occur in gouge, the above results indicate that it may occur preferentially along bedding planes, preceding the formation of a gouge/slip surface. Thus, in sedimentary rocks that contain phyllosilicates and soluble minerals, bedding can influence the rheological evolution of meso- and microstructural fabrics in fault zones.

  6. Stable hydrogen production by methane steam reforming in a two zone fluidized bed reactor: Experimental assessment

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, L.; Soler, J.; Herguido, J.; Menéndez, M.

    2013-12-01

    The Two Zone Fluidized Bed Reactor concept is proposed for hydrogen production via the steam reforming of methane (SRM) including integrated catalyst regeneration. In order to study the effect of the contact mode, the oxidative SRM has been carried out over a Ni/Al2O3 catalyst using a fixed bed reactor (fBR), a conventional fluidized-bed reactor (FBR) and the proposed two-zone fluidized bed reactor (TZFBR). The technical feasibility of these reactors has been studied experimentally, investigating their performance (CH4 conversion, CO and H2 selectivity, and H2 global yield) and stability under different operating conditions. Coke generation in the process has been verified by several techniques. A stable performance was obtained in the TZFBR, where coke formation was counteracted with continuous catalyst regeneration. The viability of the TZFBR for carrying out this process with a valuable global yield to hydrogen is demonstrated.

  7. Coal resources of selected coal beds and zones in the northern and central Appalachian Basin

    SciTech Connect

    Leslie Ruppert; Susan Tewalt; Linda Bragg

    2002-02-01

    The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment of five coal-producing regions of the United States, including the Appalachian Basin. The USGS, in cooperation with the State geological surveys of Kentucky, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia, has completed a digital coal resource assessment of five of the top-producing coal beds and coal zones in the northern and central Appalachian Basin coal regions -- the Pittsburgh coal bed, the Upper Freeport coal bed, the Fire Clay and Pond Creek coal zones, and the Pocahontas No. 3 coal bed. Of the 93 billion short tons of original coal in these units, about 66 billion short tons remain. 2 refs., 5 figs., 2 tabs.

  8. A preliminary report on a zone containing thick lignite beds, Denver Basin, Colorado

    USGS Publications Warehouse

    Soister, Paul E.

    1973-01-01

    A zone of lignite beds of Paleocene age in the Denver Formation (Upper Cretaceous and Paleocene) lies about 800-1,500 feet above the well-known and extensively mined coal beds of the Laramie Formation (Upper Cretaceous). The zone is a few hundred to as much as 500 feet thick. Where lignite beds lie within 1,000 feet of the surface, this zone underlies an area about 30 miles wide by about 75 miles long, stretching from just northeast of Denver to several miles south of Calhan. Fifteen mines were operated at various periods between 1874 and 1940 and probably produced a total of less than 100,000 tons of lignite, mostly for local use. From 1874 to 1974, several geologists have reported on this lignite zone or the enclosing beds, but no detailed reports have been written except for one by this writer. Drill holes are the main source of geologic data, owing to poor exposure. There are generally about 3 to 6 lignite beds, and they are mostly about 15 or 20 to a few tens of feet apart. Most or all beds typically contain numerous non-coal partings from a fraction of an inch to several inches thick, so that thickness of lignite beds should be stated as gross thickness and as net lignite thickness; net lignite thickness is generally from 70 to 90 percent of gross thickness. Many partings are composed of kaolin, but others are composed of other clay minerals, siltstone, and sandstone. The lignite beds range generally from 1 or 2 to several feet thick, and some are as much as 10-25 feet thick; the thickest known bed has a maximum thickness of 54.5 feet, with a net lignite thickness of 40 feet. Most lignite beds seem to have fair lateral continuity, and at least some beds are several miles in extent. The thickest known lignite bed was traced for at least 18 miles, from northwest to southeast of Watkins. The lignite is brownish-black to black, weathers, checks, and disintegrates rapidly, and even in drill cores from a few hundred feet in depth the lignite is easily broken by

  9. The negligible effect of bed form migration on denitrification in hyporheic zones of permeable sediments

    NASA Astrophysics Data System (ADS)

    Kessler, Adam J.; Cardenas, M. Bayani; Cook, Perran L. M.

    2015-03-01

    Bed form celerity, the migration rate of ripples along a sediment bed, has previously been shown to have dramatic effects on oxygen distribution and transport within the hyporheic zone of permeable sediments. This has the potential to influence denitrification rates—in particular by increasing the coupling of nitrification and denitrification. To further understand this, we numerically modeled nitrogen cycling under migrating ripples. While the simulated oxygen profiles match with expected behavior, almost no effect on denitrification or coupled nitrification-denitrification was observed with increasing celerity. Instead, denitrification rates were dominantly controlled by the flow velocity of water overlying the sediment.

  10. Coal resources of selected coal beds and zones in the Northern and Central Appalachian Basin

    USGS Publications Warehouse

    Ruppert, Leslie; Tewalt, Susan; Bragg, Linda

    2002-01-01

    The Appalachian Basin is one of the most important coal-producing regions in the world. Bituminous coal has been mined in the basin for the last three centuries, and the cumulative production is estimated at 34.5 billion short tons. Annual production in 1998 was about 452 million short tons; the basin's production is mostly in the northern (32 percent) and central (63 percent) coal regions. The coal is used primarily within the Eastern United States for electric power generation, but some of it is suitable for metallurgical uses. The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment of five coal-producing regions of the United States, including the Appalachian Basin. The USGS, in cooperation with the State geological surveys of Kentucky, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia, has completed a digital coal resource assessment of five of the top-producing coal beds and coal zones in the northern and central Appalachian Basin coal regions -- the Pittsburgh coal bed, the Upper Freeport coal bed, the Fire Clay and Pond Creek coal zones, and the Pocahontas No. 3 coal bed. Of the 93 billion short tons of original coal in these units, about 66 billion short tons remain.

  11. Investigation of the logarithmic model applied to bed shear stresses in the swash zone

    NASA Astrophysics Data System (ADS)

    Allis, M.; Blenkinsopp, C. E.; Turner, I. L.; Baldock, T. E.; Puleo, J. A.

    2014-12-01

    Accurate understanding of beach face sediment transport in the swash zone is essential to improve existing models for predicting beach morphological changes. In the swash zone, bed shear stresses are the dominant driving mechanism of both bed-load and suspended-load sediment transport. A detailed comparison is presented of swash zone bed shear stresses obtained from direct measurements and velocimetry derived estimates, as measured in the large-scale GWK wave flume facility in Hannover, Germany. Bed shear stresses were measured directly by flush mounted shear plates and estimated using the logarithmic model for velocity profiles obtained from Acoustic Doppler Velocity Profilers (ADVP). The swashes measured were generated by large-scale (H > 0.9m, T > 8s) monochromatic and solitary waves on a planar fixed-bed beach with a rough surface (d50 = 4.6mm). The logarithmic model and its application to swash flows are investigated in detail for the ensemble and individual swash events. The results confirm the concerns of others about log-law suitability in the swash zone and extend the prior works to fully prototype scale. The logarithmic model proves reasonably valid in uprush but increasing invalid through backwash where there is clear evidence of a systematic departure from log-law theory. The cause of the disparity is investigated and considered to be the result of unsteady hydrodynamics, free-surface pressure gradients and complex boundary layer evolution. In the latter stages of backwash the boundary layer becomes emergent further disrupting the flow, re-aerating and tending towards more complex turbulent sheet-flow behaviour. Adjustment to the depth-averaged void fraction cannot account for the magnitude of the discrepancy, indicating that the formulation of the logarithmic model itself is decreasingly valid as the flow thins and decelerates throughout backwash. Though it is conceptually appealing and relatively simple to apply, the results further confirm the

  12. Automated spectral zones selection methodology for diffusion theory data preparation for pebble bed reactor analysis

    NASA Astrophysics Data System (ADS)

    Mphahlele, Ramatsemela

    A methodology is developed for the determination of the optimum spectral zones in Pebble Bed Reactors (PBR). In this work a spectral zone is defined as a zone made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. In other words the spectral zones are the regions over which the few-group diffusion parameters are generated. The identification of spectral boundaries is treated as an optimization problem. It is solved by systematically and simultaneously repositioning all zone boundaries to achieve the global minimum error between the reference transport solution (MCNP) and the diffusion code solution (NEM). The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates error in each zone. An iterative determination of group-dependent bucklings is incorporated into the methodology to properly account for spectral effects of neighboring zones. A preferred energy group structure has also been chosen. This optimization approach with the reference transport solution has proved to be accurate and consistent, however the computational effort required to complete the optimization process is significant. Thus a more practical methodology is also developed for the determination of the spectral zones in PBRs. The reactor physics characteristics of the spectral zones have been studied to understand the nature of the spectral zone boundaries. The practical tool involves the use of spectral indices based on few-group diffusion theory whole core calculations. With this methodology, there is no need to first have a reference transport solution. It is shown that the diffusion-theory coarse group fluxes and the effective multiplication factor computed using zones based on the practical index agrees within a narrow tolerance with those of the reference approach. Therefore the "practical" index

  13. Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones.

    PubMed

    Santos da Silva, Francisco Vitor; Seidel-Morgenstern, Andreas

    2016-07-22

    Different multi-column options to perform continuous chromatographic separations of ternary mixtures have been proposed in order to overcome limitations of batch chromatography. One attractive option is given by simulated moving bed chromatography (SMB) with 8 zones, a process that offers uninterrupted production, and, potentially, improved economy. As in other established ternary separation processes, the separation sequence is crucial for the performance of the process. This problem is addressed here by computing and comparing optimal performances of the two possibilities assuming linear adsorption isotherms. The conclusions are presented in a decision tree which can be used to guide the selection of system configuration and operation. PMID:27328885

  14. Delineating a shallow fault zone and dipping bed rock strata using multichannal analysis of surface waves with a land streamer

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Lacombe, P.; Johnson, C.D.; Lane, J.W., Jr.

    2006-01-01

    The multichannel analysis of surface waves (MASW) seismic method was used to delineate a fault zone and gently dipping sedimentary bedrock at a site overlain by several meters of regolith. Seismic data were collected rapidly and inexpensively using a towed 30-channel land streamer and a rubberband-accelerated weight-drop seismic source. Data processed using the MASW method imaged the subsurface to a depth of about 20 m and allowed detection of the overburden, gross bedding features, and fault zone. The fault zone was characterized by a lower shear-wave velocity (Vs) than the competent bedrock, consistent with a large-scale fault, secondary fractures, and in-situ weathering. The MASW 2D Vs section was further interpreted to identify dipping beds consistent with local geologic mapping. Mapping of shallow-fault zones and dipping sedimentary rock substantially extends the applications of the MASW method. ?? 2006 Society of Exploration Geophysicists.

  15. 2000 resource assessment of selected coal beds and zones in the Northern and Central Appalachian Basin coal regions

    USGS Publications Warehouse

    Northern and Central Appalachian Basin Coal Regions Assessment Team

    2001-01-01

    This report includes results of a digital assessment of six coal beds or zones in the Northern and Central Appalachian Basin coal regions that produce over 15 percent of the Nation's coal. Other chapters include an executive summary, a report on geology and mining, a report summarizing other selected coal zones that were not assessed, and a report on USGS coal availability and recoverablity studies in the Northern and Central Appalachian Basin coal regions.

  16. Tiny Is Mighty: Seagrass Beds Have a Large Role in the Export of Organic Material in the Tropical Coastal Zone

    PubMed Central

    Gillis, Lucy G.; Ziegler, Alan D.; van Oevelen, Dick; Cathalot, Cecile; Herman, Peter M. J.; Wolters, Jan W.; Bouma, Tjeerd J.

    2014-01-01

    Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and δ13C and δ15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be

  17. Tiny is mighty: seagrass beds have a large role in the export of organic material in the tropical coastal zone.

    PubMed

    Gillis, Lucy G; Ziegler, Alan D; van Oevelen, Dick; Cathalot, Cecile; Herman, Peter M J; Wolters, Jan W; Bouma, Tjeerd J

    2014-01-01

    Ecosystems in the tropical coastal zone exchange particulate organic matter (POM) with adjacent systems, but differences in this function among ecosystems remain poorly quantified. Seagrass beds are often a relatively small section of this coastal zone, but have a potentially much larger ecological influence than suggested by their surface area. Using stable isotopes as tracers of oceanic, terrestrial, mangrove and seagrass sources, we investigated the origin of particulate organic matter in nine mangrove bays around the island of Phuket (Thailand). We used a linear mixing model based on bulk organic carbon, total nitrogen and δ13C and δ15N and found that oceanic sources dominated suspended particulate organic matter samples along the mangrove-seagrass-ocean gradient. Sediment trap samples showed contributions from four sources oceanic, mangrove forest/terrestrial and seagrass beds where oceanic had the strongest contribution and seagrass beds the smallest. Based on ecosystem area, however, the contribution of suspended particulate organic matter derived from seagrass beds was disproportionally high, relative to the entire area occupied by mangrove forests, the catchment area (terrestrial) and seagrass beds. The contribution from mangrove forests was approximately equal to their surface area, whereas terrestrial contributions to suspended organic matter under contributed compared to their relative catchment area. Interestingly, mangrove forest contribution at 0 m on the transects showed a positive relationship with the exposed frontal width of the mangrove, indicating that mangrove forest exposure to hydrodynamic energy may be a controlling factor in mangrove outwelling. However we found no relationship between seagrass bed contribution and any physical factors, which we measured. Our results indicate that although seagrass beds occupy a relatively small area of the coastal zone, their role in the export of organic matter is disproportional and should be

  18. Effects of normobaric hypoxic bed rest on the thermal comfort zone.

    PubMed

    Ciuha, Ursa; Eiken, Ola; Mekjavic, Igor B

    2015-01-01

    Future Lunar and Mars habitats will maintain a hypobaric hypoxic environment to minimise the risk of decompression sickness during the preparation for extra-vehicular activity. This study was part of a larger study investigating the separate and combined effects of inactivity associated with reduced gravity and hypoxia, on the cardiovascular, musculoskeletal, neurohumoural, and thermoregulatory systems. Eleven healthy normothermic young male subjects participated in three trials conducted on separate occasions: (1) Normobaric hypoxic ambulatory confinement, (2) Normobaric hypoxic bedrest and (3) Normobaric normoxic bedrest. Normobaric hypoxia was achieved by reduction of the oxygen fraction in the air (FiO2 = 0.141 ± 0.004) within the facility, while the effects of reduced gravity were simulated by confining the subjects to a horizontal position in bed, with all daily routines performed in this position for 21 days. The present study investigated the effect of the interventions on behavioural temperature regulation. The characteristics of the thermal comfort zone (TCZ) were assessed by a water-perfused suit, with the subjects instructed to regulate the sinusoidally varying temperature of the suit within a range considered as thermally comfortable. Measurements were performed 5 days prior to the intervention (D-5), and on days 10 (D10) and 20 (D20) of the intervention. no statistically significant differences were found in any of the characteristics of the TCZ between the interventions (HAMB, HBR and NBR), or between different measurement days (D-5, D10, D20) within each intervention. rectal temperature remained stable, whereas skin temperature (Tsk) increased during all interventions throughout the one hour trial. no difference in Tsk between D-5, D10 and D20, and between HAMB, HBR and NBR were revealed. subjects perceived the regulated temperature as thermally comfortable, and neutral or warm. we conclude that regulation of thermal comfort is not compromised by

  19. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.

    2010-01-01

    This report contains a simplified provisional correlation chart that was compiled from both published and unpublished data in order to fill a need to visualize the currently accepted stratigraphic relations between Appalachian basin formations, coal beds and coal zones, and key stratigraphic units in the northern, central, and southern Appalachian basin coal regions of Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania. Appalachian basin coal beds and coal zones were deposited in a variety of geologic settings throughout the Lower, Middle, and Upper Pennsylvanian and Pennsylvanian formations were defined on the presence or absence of economic coal beds and coarse-grained sandstones that often are local or regionally discontinuous. The correlation chart illustrates how stratigraphic units (especially coal beds and coal zones) and their boundaries can differ between States and regions.

  20. Center-cut separation of intermediately adsorbing target component by 8-zone simulated moving bed chromatography with internal recycle.

    PubMed

    Kiwala, Dawid; Mendrella, Jadwiga; Antos, Dorota; Seidel-Morgenstern, Andreas

    2016-07-01

    An 8-zone simulated moving bed chromatography with internal recycle (8ZSMB-IR) has been designed for center-cut separation, that is, for isolating an intermediately adsorbed component out of a multicomponent mixture. The system consists of two integrated subunits and operates in a fully continuous manner. In the first subunit the feed mixture is split into two fractions containing either a single component or a binary mixture. The binary mixture is recycled through the internal raffinate or extract port into the second subunit, where the target product is isolated. Additionally, the solvent is also recycled internally. For a case study, the separation of a ternary mixture of cycloketones as a model system under weakly non-linear isotherm conditions has been investigated. A few novel configurations of the 8ZSMB-IR unit including the arrangement of the internal recycle of extract, raffinate and solvent streams between two subunits have been examined with respect to various performance indicators for the process realization. The unit performed best with the developed configuration when the internal raffinate stream was recycled and the solvent recycling loop was closed between the last and the first zone of the first subunit. That configuration has further been analyzed experimentally and numerically. On the basis of the results a strategy for determining reliable operating conditions for the 8ZSMB-IR process has been developed. The procedure exploited a model of the process dynamics, which was implemented to refine the isotherm coefficients and to quantify the mixing effect of the liquid stream inside the recycling loops. The upgraded model with the adjusted parameters has been validated based on experimental data and successfully applied for optimizing the operating conditions of the separation. PMID:27260199

  1. 75 FR 28554 - Foreign-Trade Zone 50 Long Beach, California, Application for Subzone, Louisville Bedding Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... application to the Board for subzone status for its Louisville, Kentucky, facilities (Docket 28- 2010, 75 FR..., Louisville Bedding Company (Household Bedding Products), Ontario, California An application has been... to manufacture household bedding products, including mattress pads and pillows (up to 10...

  2. Impact of artificial freshet releases on channel hydraulics and the hyporheic zone of a gravel bed river.

    NASA Astrophysics Data System (ADS)

    Gibbins, C.; Soulsby, C.; Malcolm, I.

    2009-04-01

    streamwater conductivity, alkalinity and temperature during the release. Stream and hyporheic water quality tracked each other during the release indicating surface water dominance of the hyporheic zone. Hydraulic head data taken from piezometer nests showed no clear changes in pressure differential between depths, indicating that local groundwater - surface water interactions were relatively unaffected by the release. Overall, the freshet had a limited effect on surface and hyporheic water quality and hyporheic exchange processes. The only clear effects were on channel hydraulics although these appear to have been insufficient to drive notable changes in hyporheic exchange. However, flow regulation can also have long-term geomorphic impacts on river systems and at one of the sites, physical degradation of the bed appeared to restrict the potential for hyporheic exchange. Larger freshet releases, or releases made at different times of the year, may have different impacts, depending on antecedent hydrological conditions.

  3. Effects of Fluctuating River flow on Groundwater/Surface Water Mixing in the Hyporheic Zone of a Regulated, Large Cobble Bed River

    SciTech Connect

    Arntzen, Evan V.; Geist, David R.; Dresel, P. Evan

    2006-10-31

    Physicochemical relationships in the boundary zone between groundwater and surface water (i.e., the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble-bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with recording river stage, continuous readings were made of water temperature, specific conductance, dissolved oxygen, and water level of the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to co-variance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change, and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 x 10-4 cms-1), and the least at the most permeable location (K=8.0 x 10-3 cms-1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment to study hydrogeologic processes over relatively short time scales (i.e., days to weeks) that would require much longer periods of time to evaluate (i.e., months to years) in un-regulated systems.

  4. Low Angle Normal Fault (LANF)-zone architecture and permeability features in bedded carbonate from inner Northern Apennines (Rapolano Terme, Central Italy)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea; Novellino, Rocco

    2015-01-01

    Fault zones have the capacity to be hydraulic conduits within upper crustal levels, allowing migration of large volume of fluids through shallow and deeper geological environments. Low-angle normal faults (LANFs) crosscutting carbonate rocks produce damaged volumes that may have a relevant role in channelling or hosting geothermal fluids, therefore deserving of investigation to better predict mining targets. Deformation along LANFs zones, dissecting carbonate successions, produces permeable volumes presently exploited in the Larderello and Monte Amiata geothermal areas (Italy). In this paper, the architectural and permeability features of an exhumed LANF-zone exposed in the Northern Apennines, (Rapolano Terme, central Italy), affecting Cretaceous bedded limestone, are presented. Such a fault was not affected by circulation of geothermal fluids, but its features could reveal much on the potential impact on fluids migration in the active geothermal areas, therefore resulting an intriguing analogue. The study LANF-zone consists of faults, which enucleated at depth > 4 km. During its earlier stage of evolution, dissolution seams, often arranged in s-c fabric, characterised the whole damage zone. Dissolution seams developed under very low-grade metamorphism (T = 100-150 °C) as indicated by illite crystallinty analyses. Fault zone architecture and permeability features changed during the fault growth and exhumation. Permeability heterogeneity and anisotropy characterised the LANF zone during its development. If geofluids circulated within the fault zone, it could be an effective barrier during its earlier evolution, being accompanied by dissolution seams. On the contrary, it could play as combined barriers-conduits during its later evolution (progressively at shallower levels) being characterised by intersecting fault planes, which define pipe-like conduits parallel to the direction of the tectonic transport. Such a configuration could have the capacity to impact on

  5. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst.

    PubMed

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500-575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol-1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  6. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR) for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    PubMed Central

    Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel

    2013-01-01

    Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620

  7. Stromatolites, ooid dunes, hardgrounds, and crusted mud beds, all products of marine cementation and microbial mats in subtidal oceanic mixing zone on eastern margin of Great Bahama Bank

    SciTech Connect

    Dill, R.F.; Kendall, C.S.C.G.; Steinen, R.P.

    1989-03-01

    The interisland channels along the eastern margin of the Great Bahamas Bank contain lithified structures that owe their origin to recent marine cementation. This cementation appears to be commonly associated with a complex microbial community of plants and microorganisms living within a bank-margin oceanographic mixing zone. In this region, reversing tidal and wind-driven currents flow up to 3 knots (150 cm/sec) three hours out of each six-hour tidal period. Here, marine-cement crusted, carbonate mud beds are found interbedded within migrating ooid sand bars and dunes and are associated with growing, lithified stromatolites up to 2 m in height. These laminated mud beds are found with thicknesses of up to 1 m in subtidal depths of 4 to 8 m (12 to 25 ft). The muds appear to be homogeneous, but closer examination by SEM and under a microscope reveals they are composed of pelletoid aggregates of needle-shaped aragonite crystals with diameters of up to 50 ..mu... The size of these soft pellets is similar to the smaller grains of ooid sands that are abundant in the area. This size similarity could explain why both the mud beds are found in similar high-energy hydraulic regimes as the ooid sands, but does not suggest how or why the aggregates of pure aragonite needles form. A high production of ooid sand within this bank margin environment permits the formation of natural levees along the margins of tidal channels. The back sides of these levees are being lithified by marine cements to form hardgrounds. Skeletal and ooid sand dunes stabilized by Thallasia in channel bottoms also are becoming lithified. Grapestones form at the distributaries of flood tidal deltas of ooid sand. All of these features have a common attribute: they are continually in contact with the turbulent mixing-zone waters.

  8. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.

    2014-01-01

    Because of the many names used to identify individual coal beds and coal zones in the historic Appalachian basin coal-mining districts, coal bed designations may differ even more than stratigraphic nomenclature. In eastern Kentucky, northwest of the Pine Mountain thrust fault on the Cumberland overthrust sheet, for example, coal beds or coal zones equivalent to the Lower Elkhorn coal zone (within the Pikeville Formation) are identified also as the Eagle coal zone, Pond Creek coal zone, and Blue Gem coal bed (fig. 1). Southeast of the Pine Mountain thrust fault, yet still in Kentucky, equivalent coals in this same interval are known as the Imboden and Rich Mountain. Moreover, this same interval of coal is identified as the Blue Gem coal in Tennessee, the Imboden coal bed or Campbell Creek or Pond Creek coal zones in Virginia, and the Eagle coal zone in West Virginia.

  9. Correlation of coal beds, coal zones, and key stratigraphic units in the Pennsylvanian rocks of eastern Kentucky

    USGS Publications Warehouse

    Rice, Charles L.; Smith, J. Hiram

    1980-01-01

    The Pennsylvanian rocks of the eastern Kentucky coal field unlderlie an area of about 27,000 square kilometers (see index map). Largely because of the size and stratigraphic complexity of the area, Huddle and others (1963, p. 31) divided it into six coal reserve districts (unofficial), utilizing state and county lines as well as geologic features, drainage areas, and cola producing areas. This division is followed herein because, in general, each of these districts has a characteristic stratigraphic nomenclature, particularly as related to coal bed names. The six districts shown on the index mat, are the Princess, Licking River, Big Sandy, Hazard, Southwestern, and Upper Cumberland River; the Upper Cumberland River district has been divided into the Harlan and Middlesboro subdistricts. 

  10. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones

    DOE PAGESBeta

    Khairallah, Saad A.; Anderson, Andrew T.; Rubenchik, Alexander; King, Wayne E.

    2016-02-23

    Our study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone.more » Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Finally, we discuss remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity.« less

  11. Partial port-closing strategy for obtaining high throughput or high purities in a four-zone simulated moving bed chromatography for binary separation.

    PubMed

    Mun, Sungyong

    2010-10-15

    The "partial port-closing" operation strategy for a four-zone simulated moving bed (SMB) chromatographic process for binary separation was developed to improve the SMB performance. This strategy included the partial extract-closing (PEC) and the partial raffinate-closing (PRC) operations. In case of the PEC operation, the extract port is made to be closed during the first-half stage of a switching period. During the latter-half stage, the extract port is made to be open. In case of the PRC operation, the raffinate port is made to be open during the first-half stage of a switching period. During the latter-half stage, the raffinate port is made to be closed. If the operating conditions are chosen properly in each operation using a highly efficient optimization tool, the product stream can be collected during only the period that the product is almost separated from impurity. During the other period that the product is contaminated with impurity, the collection of the product stream can be stopped by closing the product port. The uncollected product stream is then allowed to keep migrating through the adjacent zone within the SMB process. Such a partial port-closing operation including PEC and PRC was found to surpass a conventional SMB operation remarkably in throughput and product purity. PMID:20837353

  12. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones

    NASA Astrophysics Data System (ADS)

    Zheng, Lizhi; Cardenas, M. Bayani; Wang, Lichun

    2016-04-01

    Hyporheic flow in aquatic sediment controls solute and heat transport thereby mediating the fate of nutrients and contaminants, dissolved oxygen, and temperature in the hyporheic zone (HZ). We conducted a series of numerical simulations of hyporheic processes within a dune with different uniform temperatures, coupling turbulent open channel fluid flow, porous fluid flow, and reactive solute transport to study the temperature dependence of nitrogen source/sink functionality and its efficiency. Two cases were considered: a polluted stream and a pristine stream. Sensitivity analysis was performed to investigate the influence of stream water [NO3-]/[NH4+]. The simulations showed that in both cases warmer temperatures resulted in shallower denitrification zones and oxic-anoxic zone boundaries, but the trend of net denitrification rate and nitrate removal or production efficiency of the HZ for these two cases differed. For both cases, at high [NO3-]/[NH4+], the HZ functioned as a NO3- sink with the nitrate removal efficiency increasing with temperature. But at low [NO3-]/[NH4+] for the polluted stream, the HZ is a NO3- sink at low temperature but then switches to a NO3- source at warmer temperatures. For the pristine stream case, the HZ was always a NO3- source, with the NO3- production efficiency increasing monotonically with temperature. In addition, although the interfacial fluid flux expectedly increased with increasing temperature due to decreasing fluid viscosity, the total nitrate flux into the HZ did not follow this trend. This is because when HZ nitrification is high, uniformly elevated [NO3-] lowers dispersive fluxes into the HZ. We found that there are numerous confounding and interacting factors that combined to lead to the final temperature dependence of N transformation reaction rates. Although the temperature effect on the rate constant can be considered as the dominant factor, simply using the Arrhenius equation to predict the reaction rate would lead to

  13. The 1994 Sefidabeh earthquakes in eastern Iran: blind thrusting and bedding-plane slip on a growing anticline, and active tectonics of the Sistan suture zone

    NASA Astrophysics Data System (ADS)

    Berberian, M.; Jackson, J. A.; Qorashi, M.; Talebian, M.; Khatib, M.; Priestley, K.

    2000-08-01

    In 1994 a sequence of five earthquakes with Mw 5.5-6.2 occurred in the Sistan belt of eastern Iran, all of them involving motion on blind thrusts with centroid depths of 5-10km. Coseismic ruptures at the surface involved bedding-plane slip on a growing hanging-wall anticline displaying geomorphological evidence of uplift and lateral propagation. The 1994 earthquakes were associated with a NW-trending thrust system that splays off the northern termination of a major N-S right-lateral strike-slip fault. Elevation changes along the anticline ridge suggest that displacement on the underlying thrust dies out to the NW, away from its intersection with the strike-slip fault. This is a common fault configuration in eastern Iran and accommodates oblique NE-SW shortening across the N-S deforming zone, probably by anticlockwise rotations about a vertical axis. This style of fault kinematics may be transitional to a more evolved state that involves partitioning of the strike-slip and convergent motion onto separate subparallel faults.

  14. Bed bugs.

    PubMed

    Foulke, Galen T; Anderson, Bryan E

    2014-09-01

    The term bed bug is applied to 2 species of genus Cimex: lectularius describes the common or temperate bed bug, and hemipterus its tropical cousin. Cimex lectularius is aptly named; its genus and species derive from the Latin words for bug and bed, respectively. Though the tiny pest is receiving increased public attention and scrutiny, the bed bug is hardly a new problem. PMID:25577850

  15. Fluidized bed heating process and apparatus

    NASA Technical Reports Server (NTRS)

    McHale, Edward J. (Inventor)

    1981-01-01

    Capacitive electrical heating of a fluidized bed enables the individual solid particles within the bed to constitute the hottest portion thereof. This effect is achieved by applying an A. C. voltage potential between dielectric coated electrodes, one of which is advantageously the wall of the fluidized bed rejection zone, sufficient to create electrical currents in said particles so as to dissipate heat therein. In the decomposition of silane or halosilanes in a fluidized bed reaction zone, such heating enhances the desired deposition of silicon product on the surface of the seed particles within the fluidized bed and minimizes undesired coating of silicon on the wall of the reaction zone and the homogeneous formation of fine silicon powder within said zone.

  16. Spatial Variation in Bed-material Load as Captured by Dune-form Analysis and its Connection to Geomorphology of the Backwater Zone on the Trinity River, East TX, USA

    NASA Astrophysics Data System (ADS)

    Mason, J.; Smith, V. B.; Mohrig, D. C.

    2014-12-01

    Recent observations made in the Trinity River of East Texas reveal that systematic spatial changes in bedform geometry, coverage, and inferred activity correlate with documented shifts in the larger-scale geomorphology of the river. Acoustic imaging data was collected through the transition into the backwater zone, or the reach of river where flow is affected by hydraulic readjustment between quasi-uniform flow further upstream and gradually varying flow towards the river mouth. Measurements collected immediately following a minor flood record spatial changes in bedforms with dune height systematically decreasing from roughly 0.4 m to 0.2 m and dune length decreasing from 13.4 m to 7.3 m, maintaining a constant value of 29 for the ripple index over a 6 km reach that covers 7 river bends. It appears that bedform height is depth-limited within the quasi-uniform flow, and gradually shifts to occupy a smaller fraction of the increasing flow depth within the backwater zone. Over the same reach after a period of extended low river discharge, dune height decreases from 0.3 m to 0, while dune length decreases from 9.0 m to 4.4 m before dunes are completely absent. Ripple index stays relatively constant until the last two bends, a streamwise distance of 2 km, where it rapidly increases from a value of 30 to 44 in the 6th bend and then to infinity in the 7th most downstream bend. Accompanying the disappearance of the dune forms is a systematic reduction in the slopes of their lee faces until the bed is completely flat. The location of these shifts in bed-material load coincides nicely with and likely accounts for documented geomorphic changes to the river, including a reduction in point bar surface area and volume and a decrease in channel-bend migration rates (Smith, 2012). Results have obvious implications for understanding coastal fluvial geomorphology and can help elucidate relationships between bedforms, bed-material load, point bars, and river bend kinematics.

  17. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  18. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  19. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  20. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  1. Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: Application to gravel bed rivers with alternate-bar morphology

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2012-09-01

    Hyporheic flows, which stem from the interaction between stream flow and bedform, transport solute-laden surface waters into the streambed sediments, where reactive solutes undergo biogeochemical transformations. Despite the importance of hyporheic exchange on riverine ecosystem and biogeochemical cycles, research is limited on the effects of hyporheic fluxes on the fate of reactive solutes within the hyporheic zone. Consequently, we investigate the controls of hyporheic flowpaths, which we link to stream morphology and streamflow, on prevailing hyporheic redox conditions and on biogeochemical transformations occurring within streambeds. We focus on the dissolved inorganic reactive forms of nitrogen, ammonium and nitrate, because nitrogen is one of the most common reactive solutes and an essential nutrient found in stream waters. Our objectives are to explore the influence of stream morphology, hyporheic water temperature and relative abundance of ammonium and nitrate, on transformation of ammonium, removal of nitrates and production of nitrous oxide, a potent greenhouse gas. We address our objectives with analytical solutions of the Multispecies Reactive Advection-Dispersion Equation coupled with linearized Monod's kinetics and analytical solutions of the hyporheic flow for alternate-bar morphology. We introduce a new Damköhler number,Da, defined as the ratio between the median hyporheic residence time and the time scale of oxygen consumption, which we prove to be a good indicator of where aerobic or anaerobic conditions prevail. In addition, Dais a key index to quantify hyporheic nitrification and denitrification efficiencies and defines a new theoretical framework for scaling results at both the morphological-unit and stream-reach scales.

  2. Bed Bugs FAQs

    MedlinePlus

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Bed Bugs FAQs Recommend on Facebook Tweet Share Compartir On ... are bed bugs treated and prevented? What are bed bugs? Bed bugs ( Cimex lectularius ) are small, flat, parasitic ...

  3. Spouted bed electrowinning of zinc: Part II. Investigations of the dynamics of particles in large thin spouted beds

    NASA Astrophysics Data System (ADS)

    Verma, A.; Evans, J. W.; Salas-Morales, Juan Carlos

    1997-02-01

    The behavior of particles in thin spouted beds, mostly equipped with draft tubes, has been investigated. Three apparatuses have been used: a laboratory-scale cylindrical bed, a 2-m-tall “flat” (rectangular cross section) bed and a 2-m-wide flat bed, the last equipped with multiple draft tubes. Most of the results were obtained on the tall bed. Minimum spouting flow rate, pressure distribution, particle velocities, and solid circulation rates were determined as a function of bed geometry (including draft tube dimensions and position). Observations were made of the direction of liquid flow in the bed outside the draft tube and of the occurrence of zones in the bed where the particles appeared stationary. The wide bed was used to determine that there is a maximum separation between draft tubes beyond which particles cannot be kept in motion across the whole width of the bed.

  4. Effect of adsorbent particle size on the relative merits of a non-triangular and a triangular separation region in the optimal design of a three-zone simulated moving bed chromatography for binary separation with linear isotherms.

    PubMed

    Mun, Sungyong

    2016-06-24

    The design approaches for a three-zone simulated moving bed (SMB) chromatography with linear isotherms can be classified into two categories, depending on whether the SMB design is based on a classical region (i.e., triangular region of the triangle theory) in the first quadrant (m2, m3) plane or on a non-triangular separation region in the third quadrant (m2, m3) plane. The SMBs based on the classical and the non-triangular design approaches, which are named here as (m(+))_SMB and (m(-))_SMB respectively, are compared in this study using the Pareto solutions from the simultaneous optimization of throughput and desorbent usage under the constraints on product purities and pressure drop. The results showed that the (m(-))_SMB approach led to significantly lower desorbent usage than the (m(+))_SMB approach, which was due to the fact that the flow-rate-ratios from the (m(-))_SMB approach are extremely lower than those from the (m(+))_SMB approach. This factor also enables the (m(-))_SMB to have a significantly lower pressure drop, thereby making its throughput less restricted by a pressure-drop constraint. Due to such advantage of the (m(-))_SMB, it can make a further substantial improvement in throughput by modulating its adsorbent particle size properly. This issue was investigated using a model separation system containing succinic acid and acetic acid. It was confirmed that if the adsorbent particle size corresponding to the boundary between a mass-transfer limiting region and a pressure-drop limiting region is adopted, the (m(-))_SMB can lead to 82% higher throughput and 73% lower desorbent usage than the (m(+))_SMB. PMID:27208988

  5. Packed Bed Reactor Experiment

    NASA Video Gallery

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  6. Fluid-bed air-supply system

    DOEpatents

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  7. Theory of describing processes with phase transformations in spouted bed apparatus

    NASA Astrophysics Data System (ADS)

    Kafarov, V. V.; Dorokhov, I. N.; Kol'Tsova, É. M.; Men'shutina, N. V.

    1983-08-01

    The article presents the averaged equations of mass, momentum, and energy transfer for the zones of the ring and the core of spouted beds. An analytical relation for determining the diameter of the bed diameter is given.

  8. Solids feed nozzle for fluidized bed

    DOEpatents

    Zielinski, Edward A.

    1982-01-01

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  9. Pyrolysis reactor and fluidized bed combustion chamber

    DOEpatents

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  10. Method for in situ gasification of a subterranean coal bed

    DOEpatents

    Shuck, Lowell Z.

    1977-05-31

    The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

  11. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J. ); Kothari, M.; Hariri, H.; Arastoopour, H. )

    1992-01-01

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  12. Agglomeration in a fluidized bed using multiple jet streams

    SciTech Connect

    Rehmat, A.; Abbasian, J.; Kothari, M.; Hariri, H.; Arastoopour, H.

    1992-12-31

    Tests were conducted to determine the overall temperature distribution, temperature in the vicinity of the jets, and the rate of agglomeration in a fluidized bed containing multiple jet streams. Agglomeration of ash during coal gasification increases carbon utilization efficiency considerably. The agglomeration requires a fluidized-bed reactor with a specially designed distributor equipped with a jet to yield a hot zone confined within the bed. The rate of agglomeration depends upon the size and the intensity of the zone. This rate, and hence the unit capacity, could be increased by adding multiple jets to the distributor. The purpose of this study was to verify this phenomenon. The temperature distribution inside the agglomerating fluidized-bed reactor with a single jet was studied by Hariri et al. Various parameters were involved in agglomeration phenomena -- bed material, fluidization velocity, bed temperature, jet velocity, jet temperature, bed geometry, and distributor geometry. Controlled agglomerates were produced in the fluidized bed when a sloped gas distributor consisting of a central jet and a porous plate was used. Gas at temperatures above the melting temperature of a bed material was introduced into the jet and gas at temperatures below the softening temperature was introduced into the distributor. The rate of agglomerate formation was significantly influenced by an increase in either jet air or auxiliary (grid) air temperature. The extent of agglomeration also depended strongly upon the volume of the hot zone confined within the isotherms with temperatures higher than the melting point of the bed material.

  13. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  14. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  15. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  16. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  17. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  18. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  19. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  20. Effect of bed permeability and hyporheic flow on turbulent flow over bed forms

    NASA Astrophysics Data System (ADS)

    Blois, Gianluca; Best, James L.; Sambrook Smith, Gregory H.; Hardy, Richard J.

    2014-09-01

    This paper uses particle imaging velocimetry to provide the first measurements detailing the flow field over a porous bed in the presence of bed forms. The results demonstrate that flow downstream of coarse-grained bed forms on permeable beds is fundamentally different to that over impermeable beds. Most significantly, the leeside flow separation cell is greatly modified by jets of fluid emerging from the subsurface, such that reattachment of the separated flow does not occur and the Reynolds stresses bounding the separation zone are substantially lessened. These results shed new light on the underlying flow physics and advance our understanding of both ecological and geomorphological processes associated with permeable bed forms. Water fluxes at the bed interface are critically important for biogeochemical cycling in all rivers, yet mass and momentum exchanges across the bed interface are not routinely incorporated into flow models. Our observations suggest that ignoring such exchange processes in coarse-grained rivers may overlook important implications. These new results also provide insight to explain the distinctive morphology of coarse-grained bed forms, the production of openwork textures in gravels, and the absence of ripples in coarse sands, all of which have implications for modeling and prediction of sediment entrainment and flow resistance.

  1. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  2. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  3. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  4. Practice Hospital Bed Safety

    MedlinePlus

    ... Bed? Todd says that there is no standard definition for hospital beds, a fact that consumers shopping ... in retail stores that don’t meet the definition of medical devices under the law, but which ...

  5. Enuresis (Bed-Wetting)

    MedlinePlus

    ... their development. Bed-wetting is more common among boys than girls. What causes bed-wetting? A number of things ... valves in boys or in the ureter in girls or boys Abnormalities in the spinal cord A small bladder ...

  6. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1992-04-07

    This patent describes a method of incinerating a fuel containing difficult to remove tramp comprising wire. It comprises placing of a fluid bed within a downwardly and inwardly tapered centrally hollow air distributor disposed within a lower portion of a vessel; introducing fuel comprising combustible material and tramp comprising wire into the fluid bed; incinerating the combustible material in the fluid bed accommodating downward migration within the fluid bed of the wire without a central obstruction to such migration; in the course of performing the incinerating step, fluidizing the bed solely by introducing inwardly at several tiered locations directed air into the bed only around the tapered periphery along the lower portion of the vessel from a plurality of inwardly and downwardly parallel sites as causing the bed material and tramp to migrate downwardly and inwardly without central bed obstruction toward a discharge site.

  7. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  8. Time for Bed Game

    MedlinePlus

    ... a Friend Who Cuts? Babysitting: Time for Bed Game KidsHealth > For Teens > Babysitting: Time for Bed Game Print A A A Text Size What Kids ... kids to bed can be tough sometimes! This game introduces children to the concept of getting enough ...

  9. Fluidized bed quenching technology

    SciTech Connect

    Reynoldson, R.

    1996-12-31

    The use of fluidized beds for quenching ferrous materials is outlined and compared with the more traditional techniques commonly used in the heat treatment industry. The use of fluidized bed quenching to control distortion of metal parts is also discussed. A case study is provided to illustrate a practical application of fluidized bed quenching.

  10. Fluidized bed coal combustion reactor

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  11. Fluidized bed coal combustion reactor

    SciTech Connect

    Moynihan, P.I.; Young, D.L.

    1981-09-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor. Official Gazette of the U.S. Patent and Trademark Office

  12. Getting Rid of Bed Bugs

    MedlinePlus

    ... Bed Bugs — Do-it-yourself Bed Bug Control — Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ... Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems ...

  13. Ash bed level control system for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  14. Phosphorus accummulation in reed bed treatment filter

    NASA Astrophysics Data System (ADS)

    Karczmarczyk, A.; Baryła, A.

    2009-04-01

    Introduction Constructed wetlands are well known method for alternative wastewater treatment in rural areas in Poland. There are mainly used as a biological treatment step of domestic wastewater. The most popular are subsurface flow constructed wetlands (reed bed systems) with bed filled with site soil (mainly clayey sand or sandy clay). Over 30 such plants with daily flow above 5 m3 per day is operated in Poland. Object and goal of research Many researches have been made on estimation constructed wetlands treatment efficiency, however there are mostly concentrated on inlet outlet concentration compartments. In this study preliminary results of phosphorus accumulation in the bed of horizontal subsurface flow constructed wetland are presented. Monitored plant treats wastewater from 150 inhabitants in the volume of 14 m3 d-1 at average and is under operation from December 1998. The goal of research was to asses the distribution of phosphorus in the wetland bed after 8 years of treatment of domestic wastewater. Obtained results are shown on the background of organic matter (TOC) distribution. The methods applied The bed of the constructed wetland (30 m width and 33 m length) was divided by net of 20 points. In every point two soil samples, one from the depth of 0-10 cm and one from the depth of 20-30 cm, were collected. The samples were analyzed for organic matter and total phosphorus content. Investigation findings The results showed variation of measured indexes on the length and depth of treatment bed. In generally, the highest accumulation occurred near the inlet zone of wetland. The relation is rather clear in case of organic matter, but in case of phosphorus high contents were also observed at the outlet zone of wetland. Higher organic matter concentrations were observed in deeper layer (20-30 cm) than in upper layer (0-10 cm) of the bed.

  15. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  16. Fluidized bed combustion

    SciTech Connect

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  17. Northern and Central Appalachian region assessment: The Pittsburgh coal bed

    SciTech Connect

    Ruppert, L.; Tewalt, S.; Bragg, L.

    1996-12-31

    Approximately 40% of the Nation`s coal is produced in the six states (Ohio, Pennsylvania, West Virginia, Maryland, Virginia, and Kentucky) that occupy parts of the Northern and Central Appalachian region. Coal is, and will continue to be, the primary energy commodity in this region where more than 50 coal beds and coal zones are currently being mined. About one-half of the productions is from just eight coal beds or zones. Three of these, the Pittsburgh and Upper Freeport coal beds and the Kittanning coal zone, are located in the northern part of the region. The remaining beds or zones, the Pond Creek, Fire Clay, Alma, Upper Elkhorn No. 3, and the Pocahontas No. 3, are located primarily in the central part of the region. This study is designed to utilize the data and expertise existing within the USGS and the State Geological Surveys to produce bed-specific, digital, coal resource assessments for most of the top-producing coal beds and coal zones. Unlike past USGS assessments, this study will emphasize not only the quantity of coal but also the quality of the coal. Particular attention will be paid to the geochemical parameters that are thought to adversely effect combustion characteristics and possibly have adverse effects on the environment, including ash yield, sulfur, calorific value, and, the elements listed in the 1990 Clean Air Act Amendments. Geochemical databases produced for the assessed beds will be augmented by new, representative, coal analyses of major, minor, and trace elements. Products will include stratigraphic and geochemical data bases, original and remaining source calculations, and comprehensive digital maps at a scale of 1:250,000 or 1:500,000 of crop-line, coal thickness, coal structure, overburden thickness, mined-out areas, and geochemistry for each assessed coal beds.

  18. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  19. Volunteer Shelter Bed Programs.

    ERIC Educational Resources Information Center

    Little (Arthur D.), Inc., Washington, DC.

    The volunteer shelter bed program development guidelines in this booklet are offered as a community-based alternative to the institutionalization of status offenders. The volunteer shelter bed program is described as a nonsecure residential alternative for status offenders, which can be implemented without the creation of new facilities or the…

  20. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  1. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  2. Deleterious Thermal Effects Due To Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.

  3. Bed rest during pregnancy

    MedlinePlus

    ... provider before you start any activity: Squeezing stress balls Pressing your hands and feet against the bed ... limit yourself from doing any of these: Cooking Light chores Walking Bathing or showering Driving Having sex ...

  4. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  5. Particle fuel bed tests

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H/sub 2/ for 12 hours with no visible reaction or weight loss.

  6. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  7. The influence of vegetation on turbulence and bed load transport

    NASA Astrophysics Data System (ADS)

    Yager, E. M.; Schmeeckle, M. W.

    2013-09-01

    is ubiquitous in river channels and floodplains and alters mean flow conditions and turbulence. However, the effects of vegetation patches on near-bed turbulence, bed load transport rates, and sedimentation are not well understood. To elucidate the influence of emergent vegetation on local and patch-averaged bed load transport, we conducted a set of experiments in which we varied the mean flow velocity (U), total boundary shear stress (τ), or vegetation density between runs. We measured 2D velocity fields using Particle Imaging Velocimetry and bed load fluxes using high-speed video. Simulated rigid vegetation caused bed load fluxes to vary spatially by an order of magnitude, causing distinct scour zones adjacent to, and depositional bed forms between stems. These local patterns of sedimentation could impact recruitment and survival of other plants. Large bed load fluxes were collocated with high near-bed turbulence intensities that were three to four times larger than spatially averaged values. Higher vegetation densities increased the importance of inward and outward interactions, particularly downstream of vegetation. At the patch scale, greater stem densities caused either an increase or decrease in run-averaged bed load fluxes, depending on whether U or τ was held constant between runs. This implies that sedimentation in vegetation patches is not only a function of bed grain size, sediment supply, and vegetation density and species, but whether vegetation significantly impacts mean and local flow properties, which could depend on vegetation location. Commonly used bed load transport equations did not accurately predict average sediment fluxes in our experiments unless they accounted for the spatial variability in the near-bed Reynolds stress.

  8. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  9. Pebble Bed Reactor Dust Production Model

    SciTech Connect

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  10. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  11. Temporal Hyporheic Zone Response to Water Table Fluctuations.

    PubMed

    Malzone, Jonathan M; Anseeuw, Sierra K; Lowry, Christopher S; Allen-King, Richelle

    2016-03-01

    Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater-dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third-order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater-dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm-related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation. PMID:26096382

  12. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  13. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOEpatents

    Gall, Robert L.

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  14. Bed clusters in humid perennial and Mediterranean ephemeral gravel-bed streams: The effect of clast size and bed material sorting

    NASA Astrophysics Data System (ADS)

    Wittenberg, L.; Laronne, J. B.; Newson, M. D.

    2007-02-01

    SummaryA short review of the literature on particle clusters on gravel river beds reveals investigations of both process and form dominated by the intensive study approach, using a restricted geographical sample or evidence from flumes. An alternative, presented here, is extensive sampling - from three climatic zones, several channels in each and at multiple transects at each site. It uses insights provided by a more intensively studied 'base station' [Wittenberg, L., Newson, M.D., 2005. Particle clusters in gravel-bed rivers - an experimental morphological approach to bed material transport and stability concepts. Earth Surface Processes and Landforms 30(11), 1351-1368]. Transect surveys were completed in each selected reach to establish flow_depth, bed material size and bed structure. A total of more than 5000 sample points reveals the vital presence of bed material of ≈100 mm D50 for all sub-types of clusters to occur; thereafter, cluster frequency relates directly to the D90, with an improving correlation at D90 > 256 mm. A better integration of data from the diverse hydrological/hydraulic regimes can be achieved by correlating cluster frequency with a sorting index for bed material. Further analysis of hydrological and hydraulic data for all sites is required to develop a dynamic explanation.

  15. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  16. Rancho flotation bed.

    PubMed

    Reswick, J B; Nickel, V L; Simoes, N

    1977-04-01

    The Rancho Flotation Bed provides hydrostatic support with maximum pressures over bony prominences of 15 to 25 mm Hg (measured with a pneumatic pressure transducer). This is generally below the levels normally quoted as conducive to the development of ischaemia. Clinical experience has shown the bed to be a successful aid to nursing by eliminating the need to turn the patients for pressure reasons, allowing patients with pressure sores to remain in a position which is more comfortable and more suitable for other nursing care. It also makes it easier for nurses to handle patients in order to care for the pressure sores. PMID:615987

  17. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  18. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  19. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  20. Palynological studies of Middle Pennsylvanian coal beds of the proposed Pennsylvania System stratotype in West Virginia

    SciTech Connect

    Kosanke, R.M.

    1988-01-01

    One hundred and ninety-one segment samples from 27 coal beds and adjacent strata occurring in the Kanawha Formation and Charleston Sandstone have been collected and examined in detail. More than 25,000 palynomorphs have been counted in order to establish a standard for the stratotype. Palynomorph abundance, assemblages, range zones, and correlations are documented. Paleoecology, as evidenced by succession of salynomorphs within coal beds and extinctions between coal beds, is reported.

  1. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  2. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  3. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  4. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  5. EXPANDED BED BIOLOGICAL TREATMENT

    EPA Science Inventory

    A three-year pilot-scale research investigation at the EPA Lebanon Pilot Plant was conducted to evaluate the feasibility of a unique biological secondary treatment process, designated the Expanded Bed Biological Treatment Process (EBBT). The EBBT process is a three-phase (oxygen/...

  6. Technology test bed review

    NASA Astrophysics Data System (ADS)

    McConnaughey, H. V.

    1992-07-01

    The topics are presented in viewgraph form and include the following: (1) Space Shuttle Main Engine (SSME) technology test bed (TTB) history; (2) TTB objectives; (3) TTB major accomplishments; (4) TTB contributions to SSME; (5) major impacts of 3001 testing; (6) some challenges to computational fluid dynamics (CFD); (7) the high pressure fuel turbopump (HPFTP); and (8) 3001 lessons learned in design and operations.

  7. Bed rest during pregnancy

    MedlinePlus

    ... groups, bulletin boards, and chat rooms online for moms-to-be who are also on bed rest. Expect emotional ups and downs. Share your hopes and worries with your partner. Let each other vent if needed. If sex is not allowed, look for other ways to ...

  8. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOEpatents

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  9. Fluidized-bed combustion

    SciTech Connect

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  10. Combustion in fluidized beds

    SciTech Connect

    Dry, F.J.; La Nauze, R.D. )

    1990-07-01

    Circulating fluidized-bed (CFB) combustion systems have become popular since the late 1970s, and, given the current level of activity in the area,it is clear that this technology has a stable future in the boiler market. For standard coal combustion applications, competition is fierce with mature pulverized-fuel-based (PF) technology set to maintain a strong profile. CFB systems, however, can be more cost effective than PF systems when emission control is considered, and, as CFB technology matures, it is expected that an ever-increasing proportion of boiler installations will utilize the CFB concept. CFB systems have advantages in the combustion of low-grade fuels such as coal waste and biomass. In competition with conventional bubbling beds, the CFB boiler often demonstrates superior carbon burn-out efficiency. The key to this combustion technique is the hydrodynamic behavior of the fluidized bed. This article begins with a description of the fundamental fluid dynamic behavior of the CFB system. This is followed by an examination of the combustion process in such an environment and a discussion of the current status of the major CFB technologies.

  11. Response of bed surface patchiness to reductions in sediment supply

    NASA Astrophysics Data System (ADS)

    Nelson, Peter A.; Venditti, Jeremy G.; Dietrich, William E.; Kirchner, James W.; Ikeda, Hiroshi; Iseya, Fujiko; Sklar, Leonard S.

    2009-06-01

    River beds are often arranged into patches of similar grain size and sorting. Patches can be distinguished into "free patches," which are zones of sorted material that move freely, such as bed load sheets; "forced patches," which are areas of sorting forced by topographic controls; and "fixed patches" of bed material rendered immobile through localized coarsening that remain fairly persistent through time. Two sets of flume experiments (one using bimodal, sand-rich sediment and the other using unimodal, sand-free sediment) are used to explore how fixed and free patches respond to stepwise reductions in sediment supply. At high sediment supply, migrating bed load sheets formed even in unimodal, sand-free sediment, yet grain interactions visibly played a central role in their formation. In both sets of experiments, reductions in supply led to the development of fixed coarse patches, which expanded at the expense of finer, more mobile patches, narrowing the zone of active bed load transport and leading to the eventual disappearance of migrating bed load sheets. Reductions in sediment supply decreased the migration rate of bed load sheets and increased the spacing between successive sheets. One-dimensional morphodynamic models of river channel beds generally are not designed to capture the observed variability, but should be capable of capturing the time-averaged character of the channel. When applied to our experiments, a 1-D morphodynamic model (RTe-bookAgDegNormGravMixPW.xls) predicted the bed load flux well, but overpredicted slope changes and was unable to predict the substantial variability in bed load flux (and load grain size) because of the migration of mobile patches. Our results suggest that (1) the distribution of free and fixed patches is primarily a function of sediment supply, (2) the dynamics of bed load sheets are primarily scaled by sediment supply, (3) channels with reduced sediment supply may inherently be unable to transport sediment uniformly

  12. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT

    SciTech Connect

    Nick Soelberg; Joe Enneking

    2010-11-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (both radioactive and hazardous according tohe Resource Conservation and Recovery Act) wastes. Depending on regulatory requirements, the mercury in the off-gas must be controlled with sometimes very high efficiencies. Compliance to the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Several test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include: (a) The depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests, (b) MERSORB® carbon can sorb Hg up to 19 wt% of the carbon mass, and (c) the spent carbon retained almost all (98 – 99.99%) of the Hg; but when even a small fraction of the total Hg dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high Hg concentrations. Localized areas in a carbon bed that become heated through heat of adsorption, to temperatures where oxidation occurs, are referred to as “bed hot spots.” Carbon bed hot spots must be avoided in processes that treat radioactive and mixed waste. Key to carbon bed hot spot mitigation are (a) designing for sufficient gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) monitoring and control of inlet gas flowrate, temperature, and composition, (c) monitoring and control of in-bed and bed outlet gas temperatures, and (d) most important, monitoring of bed outlet CO concentrations. An increase of CO levels in the off-gas downstream of the carbon bed to levels about 50-100 ppm higher than the inlet CO concentration indicate CO formation in the bed, caused by carbon bed

  13. Bed drain cover assembly for a fluidized bed

    DOEpatents

    Comparato, Joseph R.; Jacobs, Martin

    1982-01-01

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  14. Evaluation of temperature profiles in packed beds by simulation

    SciTech Connect

    Serrano, M.T.C.; Hernandez Suarez, R.

    1996-12-31

    The packed bed reactors with cocurrent upflow or downflow of gas and liquid are widely used in chemical and petrochemical industries for solid-catalysed heterogeneous reactions. It`s well known that a preferential-flow exists, thus the estimation of heat transfer parameters such as thermal conductivity of the bed and wall transfer resistance are important in order to predict the temperature profiles inside the reactor. This paper let us simulate the influence of these preferential zones of flow on the heat transfer parameters on this type of reactor. 6 refs., 1 fig., 2 tabs.

  15. Bed Rest Muscular Atrophy

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    2000-01-01

    A major debilitating response from prolonged bed rest (BR) is muscle atrophy, defined as a "decrease in size of a part of tissue after full development has been attained: a wasting away of tissue as from disuse, old age, injury or disease". Part of the complicated mechanism for the dizziness, increased body instability, and exaggerated gait in patients who arise immediately after BR may be a result of not only foot pain, but also of muscular atrophy and associated reduction in lower limb strength. Also, there seems to be a close association between muscle atrophy and bone atrophy. A discussion of many facets of the total BR homeostatic syndrome has been published. The old adage that use determines form which promotes function of bone (Wolff's law) also applies to those people exposed to prolonged BR (without exercise training) in whom muscle atrophy is a consistent finding. An extreme case involved a 16-year-old boy who was ordered to bed by his mother in 1932: after 50 years in bed he had "a lily-white frame with limbs as thin as the legs of a ladder-back chair". These findings emphasize the close relationship between muscle atrophy and bone atrophy. In addition to loss of muscle mass during deconditioning, there is a significant loss of muscle strength and a decrease in protein synthesis. Because the decreases in force (strength) are proportionately greater than those in fiber size or muscle cross-sectional area, other contributory factors must be involved; muscle fiber dehydration may be important.

  16. Coal Bed Methane Primer

    SciTech Connect

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  17. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  18. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  19. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  20. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  1. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  2. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  3. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  4. Ash level meter for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  5. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  6. Bedding types in Holocene tidal channel sequences, Knik Arm, Upper Cook Inlet, Alaska.

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Schmoll, H.R.

    1984-01-01

    Uplifted convoluted and horizontal to subhorizontal beds of varying thickness in intertidal silt as old as 3280 +- 90 yr BP are exposed in the banks of tidal channels of unknown depth in the intertidal zone in Knik Arm of Upper Cook Inlet. Internal discordances may occur both within convoluted beds and between convoluted and horizontal to subhorizontal beds. At the base of many convoluted beds, there is a rapid gradation upward into laminae which are severely deformed; that is, in some places, the contortions appear to have originated along a single bedding plane. Where the convoluted sequences are truncated by nearly horizontal sequences, the distortion must have resulted from syndepositional or postdepositional events prior to their burial by the overlying beds. Various forms of gravitational and tidal processes caused the deformation of the Knik Arm deposits. -from Authors

  7. Capacitively-Heated Fluidized Bed

    NASA Technical Reports Server (NTRS)

    Mchale, E. J.

    1982-01-01

    Fluidized-bed chamber in which particles in bed are capacitively heated produces high yields of polycrystalline silicon for semiconductor devices. Deposition of unrecoverable silicon on chamber wall is reduced, and amount of recoverable silicon depositing on seed particles in bed is increased. Particles also have a size and density suitable for direct handling without consolidation, unlike silicon dust produced in heated-wall chambers.

  8. Fluidized bed boiler feed system

    DOEpatents

    Jones, Brian C.

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  9. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  10. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  11. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  12. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  13. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  14. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  15. Late Wisconsin landform distribution and glacier-bed conditions in Wisconsin

    USGS Publications Warehouse

    Attig, J.W.; Mickelson, D.M.; Clayton, L.

    1989-01-01

    The late Wisconsin Laurentide Ice Sheet advanced across permafrost and reached its maximum extent in Wisconsin between about 18,000 and 15,000 years ago. Deep permafrost persisted in southern Wisconsin until about 14,000 years ago and in northern Wisconsin until about 13,000 years ago. We suggest that during maximum glaciation a zone about 5 km wide in the south and 20 km wide in the north along the margin of the late Wisconsin glacier was frozen to its bed. Meltwater from farther behind the margin, where the bed was at least locally thawed, cut a series of closely spaced tunnel channels through the frozen-bed zone. These channels most likely formed episodically, and they were the source for much of the meltwater-stream sediment deposited in broad outwash plains beyond the ice margin. Frozen-bed conditions near the margin also likely contributed to increased upward shearing of sediment and the accumulation of thicl supraglacial sediment in northern areas. Up ice from the frozen-bed zone the glacier bed was at least locally thawed in a zone about 75 km wide. Extensive drumlin fields formed in the area of the bed that was thawed. By about 13,000 years ago permafrost melted in northern Wisconsin and thawed-bed conditions probably extended to the ice margin throughout Wisconsin and adjacent areas. After about 13,000 years ago in northern Wisconsin the glacier was sliding on its bed and forming drumlins out to the ice margin, and thick supraglacial sediment no longer accumulated. ?? 1989.

  16. Oil source bed distribution in upper Tertiary of Gulf Coast

    SciTech Connect

    Dow, W.G.

    1985-02-01

    Effective oil source beds have not been reported in Miocene and younger Gulf Coast sediments and the organic matter present is invariably immature and oxidized. Crude oil composition, however, indicates origin from mature source beds containing reduced kerogen. Oil distribution suggests extensive vertical migration through fracture systems from localized sources in deeply buried, geopressured shales. A model is proposed in which oil source beds were deposited in intraslope basins that formed behind salt ridges. The combination of silled basin topography, rapid sedimentation, and enhanced oxygen-minimum zones during global warmups resulted in periodic anoxic environments and preservation of oil-generating organic matter. Anoxia was most widespread during the middle Miocene and Pliocene transgressions and rare during regressive cycles when anoxia occurred primarily in hypersaline conditions such as exist today in the Orca basin.

  17. Dynamic bed reactor

    SciTech Connect

    Stormo, K.E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix. 27 figs.

  18. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  19. Ability of bed bug-detecting canines to locate live bed bugs and viable bed bug eggs.

    PubMed

    Pfiester, Margie; Koehler, Philip G; Pereira, Roberto M

    2008-08-01

    The bed bug, Cimex lectularius L., like other bed bug species, is difficult to visually locate because it is cryptic. Detector dogs are useful for locating bed bugs because they use olfaction rather than vision. Dogs were trained to detect the bed bug (as few as one adult male or female) and viable bed bug eggs (five, collected 5-6 d after feeding) by using a modified food and verbal reward system. Their efficacy was tested with bed bugs and viable bed bug eggs placed in vented polyvinyl chloride containers. Dogs were able to discriminate bed bugs from Camponotus floridanus Buckley, Blattella germanica (L.), and Reticulitermes flavipes (Kollar), with a 97.5% positive indication rate (correct indication of bed bugs when present) and 0% false positives (incorrect indication of bed bugs when not present). Dogs also were able to discriminate live bed bugs and viable bed bug eggs from dead bed bugs, cast skins, and feces, with a 95% positive indication rate and a 3% false positive rate on bed bug feces. In a controlled experiment in hotel rooms, dogs were 98% accurate in locating live bed bugs. A pseudoscent prepared from pentane extraction of bed bugs was recognized by trained dogs as bed bug scent (100% indication). The pseudoscent could be used to facilitate detector dog training and quality assurance programs. If trained properly, dogs can be used effectively to locate live bed bugs and viable bed bug eggs. PMID:18767752

  20. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  1. LSP Composite Test Bed Design

    NASA Technical Reports Server (NTRS)

    Day, Arthur C.; Griess, Kenneth H.

    2013-01-01

    This document provides standalone information for the Lightning Strike Protection (LSP) Composite Substrate Test Bed Design. A six-sheet drawing set is reproduced for reference, as is some additional descriptive information on suitable sensors and use of the test bed.

  2. Occurrence and significance of Silurian K-bentonite beds at Arisaig, Nova Scotia, eastern Canada

    USGS Publications Warehouse

    Bergstrom, Stig M.; Huff, W.D.; Kolata, Dennis R.; Melchin, Michael J.

    1997-01-01

    The most extensive succession of K-bentonite beds known in the Silurian of North America occurs at Arisaig on the northern coast of Nova Scotia. At least 40 ash beds are present in the Llandoverian Ross Brook Formation and at least four in the early Ludlovian McAdam Brook Formation. Most of the beds are thin (<5 cm), but one bed (the Smith Brook K-bentonite bed) in the late Llandoverian crenulata Zone and another (the McAdam Brook K-bentonite bed) in the early Ludlovian nilssoni Zone each reach a thickness of 20 cm. New graptolite collections provide critical information on the biostratigraphic position of the K-bentonite beds in the Ross Brook Formation. Geochemical data show that the Arisaig ash beds represent calc-alkaline magmas from plate margin, subduction-related volcanic vents. Differences in K-bentonite stratigraphie distribution, combined with paleogeographic considerations, suggest that the volcanoes were located much farther to the south in the Iapetus than the source volcanoes of the British - Baltoscandian Llandoverian K-bentonites.

  3. Grate assembly for fixed-bed coal gasifier

    DOEpatents

    Notestein, John E.

    1993-01-01

    A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

  4. Grate assembly for fixed-bed coal gasifier

    SciTech Connect

    Notestein, J.E.

    1992-12-31

    A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

  5. Method for using fast fluidized bed dry bottom coal gasification

    DOEpatents

    Snell, George J.; Kydd, Paul H.

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  6. The Feasibility of an Infection Control "Safe Zone" in a Spinal Cord Injury Unit.

    PubMed

    Lones, Keshonna; Ramanathan, Swetha; Fitzpatrick, Margaret; Hill, Jennifer N; Guihan, Marylou; Richardson, Michael S A; Evans, Charlesnika T

    2016-06-01

    We report on healthcare worker use of a safe zone (outside a 3-foot perimeter around the patient's bed) and personal protective equipment in 2 inpatient spinal cord injury/disorder units. Workers remained within the safe zone during 22% of observations but were less compliant with personal protective equipment inside the zone. Infect Control Hosp Epidemiol 2016;37:714-716. PMID:26916410

  7. Novel Simulated moving bed technologies

    SciTech Connect

    Purdue University

    2003-12-30

    Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars (i.e. glucose and xylose). Once these sugars are separated from other impurities, they can serve as feedstock in fermentation to produce ethanol (as fuels), lactic acid, or other valuable chemicals. The need for producing fuels and chemicals from renewable biomass has become abundantly clear over the last decade. However, the cost of producing fermentable sugars from biomass hydrolyzate using existing technology is relatively high and has been a major obstacle. The objective of this project is to develop an efficient and economical simulated moving bed (SMB) process to recover fermentable sugars from biomass hydrolyzate. Sulfuric acid can hydrolyze the cellulose and hemicellulose in biomass to sugars, but this process can generate byproducts such as acetic acid, and can lead to further degradation of the xylose to furfural and glucose to hydroxymethyl furfural (HMF). Also, lignin and other compounds in the biomass will degrade to various phenolic compounds. If the concentrations of these compounds exceed certain threshold levels, they will be toxic to the downstream fermentation, and will severely limit the usefulness of the derived sugars. Standard post-hydrolysis processing involves neutralization of sulfuric acid, usually with lime (calcium hydroxide). A study by Wooley et al.showed that the limed hydrolyzate gave a low ethanol yield in fermentation test (20% of theoretical yield compared to 77% of theoretical yield from fermentation of pure sugars). They showed that instead of adding lime, an ion exclusion chromatography process could be used to remove acids, as well as to isolate the sugars from the biomass hydrolyzate. In this project, we investigated the feasibility of developing an economical SMB process based on (1) a polymeric adsorbent, Dowex99, which was used by Wooley et al., (2) a second polymeric adsorbent, poly-4-vinyl pyridine (or PVP in short, Reilly

  8. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  9. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.

  10. Concentration and Velocity Gradients in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    McClymer, James P.

    2003-01-01

    In this work we focus on the height dependence of particle concentration, average velocity components, fluctuations in these velocities and, with the flow turned off, the sedimentation velocity. The latter quantities are measured using Particle Imaging Velocimetry (PIV). The PIV technique uses a 1-megapixel camera to capture two time-displaced images of particles in the bed. The depth of field of the imaging system is approximately 0.5 cm. The camera images a region with characteristic length of 2.6 cm for the small particles and 4.7 cm. for the large particles. The local direction of particle flow is determined by calculating the correlation function for sub-regions of 32 x 32 pixels. The velocity vector map is created from this correlation function using the time between images (we use 15 to 30 ms). The software is sensitive variations of 1/64th of a pixel. We produce velocity maps at various heights, each consisting of 3844 velocities. We break this map into three vertical zones for increased height information. The concentration profile is measured using an expanded (1 cm diameter) linearly polarized HeNe Laser incident on the fluidized bed. A COHU camera (gamma=1, AGC off) with a lens and a polarizer images the transmitted linearly polarized light to minimize the effects of multiply scattered light. The intensity profile (640 X 480 pixels) is well described by a Gaussian fit and the height of the Gaussian is used to characterize the concentration. This value is compared to the heights found for known concentrations. The sedimentation velocity is estimated using by imaging a region near the bottom of the bed and using PIV to measure the velocity as a function of time. With a nearly uniform concentration profile, the time can be converted to height information. The stable fluidized beds are made from large pseudo-monodisperse particles (silica spheres with radii (250-300) microns and (425-500) microns) dispersed in a glycerin/water mix. The Peclet number is

  11. Separation of hydrophobic organic compound from surfactant solutions with activated carbon in a fixed bed.

    PubMed

    Liu, Jianfei; Chen, Jiajun; Jiang, Lin; Chen, Cheng

    2013-01-01

    The adsorption behavior of phenanthrene (PHE) in Triton X-100 (TX100) solutions with fixed activated carbon (AC) bed was studied to recover the surfactant. The effect of various parameters like bed depths, flow rates, influent TX100 concentration, and influent PHE concentration were investigated. The breakthrough time of both TX100 and PHE increased with the increase of bed height and decrease of flow rate and influent concentration. In the case of fixed length, a lower flow rate, higher concentration of TX100, and lower concentration of PHE will benefit the longer effective surfactant recovery time. The adsorption data were integrated into bed depth service time models. The height of exchange zone of TX100 should be much shorter than that of PHE, which provides conditions to separate the hydrophobic organic compound from surfactant solutions with AC in a fixed bed. It is likely that the adsorption process is controlled by hydrophobic interaction. PMID:24292481

  12. Turning patients over in bed

    MedlinePlus

    ... so the person is not at risk of rolling out of the bed. The patient's bottom arm ... M, et al. Risk assessment and prevention of pressure ulcers: a clinical practice guideline from the American ...

  13. Bed Bugs: The Australian Response

    PubMed Central

    Doggett, Stephen L.; Orton, Christopher J.; Lilly, David G.; Russell, Richard C.

    2011-01-01

    Australia has experienced a sudden and unexpected resurgence in bed bug infestations from both Cimex lectularius L. and Cimex hemipterus F. A survey in 2006 revealed that infestations had increased across the nation by an average of 4,500% since the start of the decade. In response, a multi-disciplinary approach to combat the rise of this public health pest was implemented and involved the coordinated efforts of several organizations. The key components of the strategy included the introduction of a pest management standard ‘A Code of Practice for the Control of Bed Bug Infestations in Australia’ that defines and promotes ‘best practice’ in bed bug eradication, the development of a policy and procedural guide for accommodation providers, education of stakeholders in best management practices, and research. These strategies continue to evolve with developments that lead to improvements in ‘best practice’ while bed bugs remain problematic in Australia. PMID:26467616

  14. Flight Analogs (Bed Rest Research)

    NASA Video Gallery

    Flight Analogs / Bed Rest Research Projects provide NASA with a ground based research platform to complement space research. By mimicking the conditions of weightlessness in the human body here on ...

  15. Bed surface bed profile adjustments to a series of water pulses in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Ferrer-Boix, C.; Hassan, M. A.

    2014-12-01

    This research aims to explore the interactions between the bed surface texture, the bed topography and the sediment transport (rate and grain size distribution) to a series of water pulses in gravel bed-rivers. We conducted a set of runs in a 18 m-long tilting flume, 1 m-wide. Low flow discharges (Q = 65 l/s) during periods of variable duration (between t = 10 h and t = 1 h) were alternated with high flow rates (Q = 90 l/s) of constant duration (t = 1.5 h). Sediment was fed at a constant rate (Qfeed = 7.5 kg/h) throughout the runs. Eight experiments were consecutively conducted: the final configuration of the previous run was the initial condition for the subsequent experiment. The initial bed texture of the experiments was obtained after a 280 h-long run at low flow, the last 40 h of which under starving conditions. The initial bed slope was S0 = 0.022 m/m. A poorly-sorted grain size distribution (Dg = 5.65 mm and sg = 3.05) was used as a feeding material. The same material was used as the initial condition for the antecedent experiment (280 h-long). Intensive measurements of the bed surface, bed topography and sediment transport were taken during the runs. Provisional results of the experimental campaign demonstrate that: (i) bed topography rapidly adjusts to water pulses: bed aggrades during low flow periods to subsequently degrade during water pulses. However, the rate of change of the bed profile decreases with the number of water pulses; (ii) the surface texture maintains an approximately invariant texture during the runs with no significant changes before and after the pulses; (iii) bedload transport dramatically adjusts to water pulses (increasing its rate and getting coarser). The relative increase in the bedload transport during the pulses diminishes as the number of pulses increases. A detailed analysis of the evolution of the bed profile shows the formation of transverse ribs during low flow periods which slowly migrate upstream. These bedforms are not

  16. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  17. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu

    2009-05-15

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  18. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  19. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  20. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  1. Hydrocarbon conversion-regeneration process using dilute and dense beds

    SciTech Connect

    Bartholic, D.B.; Barger, D.F.

    1989-07-25

    This patent describes an improvement in a hydrocarbon conversion process wherein a hydrocarbon feed is converted to lower boiling products in a reactor by contacting the same at elevated temperatures with fluid solid material to form the lower boiling products wherein spent solid material containing coke from the reactor is separated from reaction products and stripped of volatile hydrocarbons in a stripping zone, stripped material is regenerated with an oxygen-containing gas in a regeneration zone and hot freshly regenerated fluid solid material returned to the reactor. The improvement comprises carrying out both conversion and regeneration at gas velocities greater than 3 1/2 ft. per second sufficient to achieve a dilute phase entrained solids zone, passing the solid material and gases from both the reactor and regeneration zone through cyclone preseparators for rapid disengagement and removal of greater than 80% solids from gases and returning the solid material without vapors to a dense bed contained in a vessel other than the regenerator or reactor. The pressure at the inlet to the preseparators being substantially the same as the pressure in the vessel containing the dense bed of solid material.

  2. Rapid ignition of fluidized bed boiler

    DOEpatents

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  3. Space station propulsion test bed

    NASA Technical Reports Server (NTRS)

    Briley, G. L.; Evans, S. A.

    1989-01-01

    A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

  4. Clinical physiology of bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  5. Model for boiling and dryout in particle beds. [LMFBR

    SciTech Connect

    Lipinski, R. J.

    1982-06-01

    Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.

  6. A preliminary report on the bentonite beds of the lower Virgin Creek Member of the Pierre Shale, Stanley County, South Dakota ( USA).

    USGS Publications Warehouse

    Collins, D.S.

    1987-01-01

    The Virgin Creek Member of the Pierre Shales has been divided by earlier workers into lower and upper zones based on weathering and shale differences. Of the 49 bentonite beds of the lower Virgin Creek, the Government Draw Bentonite Beds, and bentonite bed 20 are the best markers for correlation from stream valley to stream valley. The variation of number and thickness of shale and bentonite beds is due to bioturbation, current activity, differential compaction, basin subsidence, and merging and splitting of bentonite beds. Three distinctive concretion horizons have the potential of also being used as stratigraphic markers within the study area. They include a nodule zone between two bentonite beds, barite(?) concretions that locally mark the lower contact of the Virgin Crrek, and a set of concretions at the contact between the upper and lower Virgin Creek. -from Author

  7. Flow separation and shear stress over angle-of-repose bed forms: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Lefebvre, Alice; Paarlberg, Andries J.; Winter, Christian

    2014-02-01

    Large asymmetric bed forms commonly develop in rivers. The turbulence associated with flow separation that develops over their steep lee side is responsible for the form shear stress which can represent a substantial part of total shear stress in rivers. This paper uses the Delft3D modeling system to investigate the effects of bed form geometry and forcing conditions on flow separation length and associated turbulence, and bed form shear stress over angle-of-repose (30° lee side angle) bed forms. The model was validated with lab measurements that showed sufficient agreement to be used for a systematic analysis. The influence of flow velocity, bed roughness, relative height (bed form height/water depth), and aspect ratio (bed form height/length) on the variations of the normalized length of the flow separation zone, the extent of the wake region (where the turbulent kinetic energy (TKE) was more than 70% of the maximum TKE), the average TKE within the wake region and the form shear stress were investigated. Form shear stress was found not to scale with the size of the flow separation zone but to be related to the product of the normalized extent of the wake region (extent of the wake region/extent of water body above the bed form) and the average TKE within the wake region. The results add to understanding of the hydrodynamics of bed forms and may be used for the development of better parameterizations of small-scale processes for application in large-scale studies.

  8. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  9. Storm Bed Imprinting on the Northern California Shelf: Interaction of Fluvial and Marine Processes.

    NASA Astrophysics Data System (ADS)

    Swift, D. J.; Fan, S.; Niedoroda, A. W.; Reed, C.; Borgeld, J. C.; Crockett, J. S.

    2001-05-01

    Seismic records and cores from ONR's STRATAFORM program indicate that the Holocene deposits on the northern California shelf consist of a succession of back-stepping, storm-generated event beds, deposited as sediment undergoes cross-shelf dispersal from intermittently flooding river mouths. The beds are modified to varying degrees by secondary processes (gravity transport, bioturbation). Box core observations show that there is "mud line" on the shelf surface at approximately the 45 m isobath. Long cores show that within the 3-dimensional sediment body, nearshore sand beds intertongue with offshore mud beds beneath this line. However, numerical simulations suggest a more complex relationship. Instead of intertonguing, most event beds begin as sand beds in the nearshore sand deposit, pass through an interbedded zone, and enter the offshore mud deposit as mud beds. Event stratification is difficult to discern both seaward and landward of the transitional zone, mainly because the Cutoff Percentage has been exceeded in these areas (percent thickness of an upward-fining bed which must be preserved to observe grain size contrast). There are thus three facies bodies present, an Amalgamated Sand Facies on the inner shelf (sand beds on sand beds), an Interbedded Sand and Mud Facies on the central shelf, and an offshore Laminated or Bioturbated Mud Facies. Several other parameters are useful for defining these facies. The degree of condensation (extent to which each bed has cannibalized its predecessor) can be measured by the Reworking Ratio (ratio of mean annual resuspension depth to deposition per event). This value decreases seaward across the shelf to a minimum in the Interbedded Facies in response to decreasing wave energy flux into the sea floor. It then increases seaward across the outer shelf, as the decrease in available sediment becomes more important. The standard deviation of bed thickness is (in part) a measure of variation in storm intensity, and is a

  10. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  11. Development and refinement of test bed simulations

    NASA Technical Reports Server (NTRS)

    Dravid, Narayan V.; Miller, Dean R.; Patterson, Alex G.; Gombos, Frank J.

    1989-01-01

    Lewis Research Center of NASA, with support from Rocketdyne, was engaged in non-real time computer simulation effort for the Space Station Freedom Electric Power System (EPS) EASY5, a simulation package, is used as the primary tool for this activity. Early in the design of the EPS, two test beds were set up at Lewis. The Integrated Test Bed (ITB), that combines and upgrades these test beds, is in the planning stage. The test beds are designed to functionally represent many of the components of the EPS and their interconnections. The simulation effort is primarily directed towards these test beds. Model verification is performed using test bed data.

  12. Zone separator for multiple zone vessels

    DOEpatents

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  13. Comments on the transition between cohesive and cohesionless sediment bed exchange

    NASA Astrophysics Data System (ADS)

    Mehta, Ashish J.; Letter, Joseph V.

    2013-10-01

    The presence of both cohesive and cohesionless particles in estuarine and lacustrine sediments makes it essential to model bed exchange of both types of particles. The usual practice is to select a purely empirical estimate of particle diameter marking the transition between the two behaviors. Based on available data on particle erosion and deposition in non-oscillating flows and viscoplastic properties of bed sediment, we have attempted to examine the likelihood of identifying the transition diameter within a less empirical framework. From the relationship between diameter and bed shear stress for a variety of cohesive and cohesionless sediments, it appears that two transition diameters can be defined. One is the largest diameter of clay mineral particles at which cohesion is considered to vanish. The other is the smallest diameter at which cohesionless behavior is assumed to end at the limit of the well-known Shields' relationship extended to very fine particles. These two diameters appear to be reasonably close for mainly inorganic mineral sediments. Assuming they are equal, six zones of bed exchange are identified in terms of diameter and bed shear stress. Depending on these two variables, zones of only erosion, no erosion or deposition, and only deposition can be designated. Realistic modeling of bed exchange of multi-size sediments requires that the full range of diameters be considered. Extension of this analysis to organic-rich sediments is pending better understanding of their rheological properties.

  14. Laboratory rearing of bed bugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resurgence of bed bugs Cimex lectularius L. in the United States and worldwide has resulted in an increase in research by university, government, and industry scientists directed at the biology and control of this blood-sucking pest. A need has subsequently arisen for producing sufficient biolog...

  15. Physiology Of Prolonged Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1991-01-01

    Report describes physiological effects of prolonged bed rest. Rest for periods of 24 hours or longer deconditions body to some extent; healing proceeds simultaneously with deconditioning. Report provides details on shifts in fluid electrolytes and loss of lean body mass, which comprises everything in body besides fat - that is, water, muscle, and bone. Based on published research.

  16. Fluidized-Bed Reactor System

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1985-01-01

    Gas pyrolysis in hot fluidized beds minimized by use of selectively filtered radiation and parabolic cavity. Reactor is parabolic cavity of two or more axes in which light emanating from one axis bounces off walls of cavity and passes through object axis to heat sample.

  17. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  18. Electromechanics of packed granular beds

    SciTech Connect

    Robinson, K.S.

    1982-01-01

    Strong, electrical, interparticle forces are induced by applied electric fields within packed beds of dielectric particles. Proposed applications utilizing electropacked beds (EPBs) or electrofluidized beds (EFBs) include air filtration and gas clean-up, fine particle separation, commercial drying and coating processes, heat and mass transfer, and bulk bed control. A new distributed circuit model of the electrical interparticle force is presented that identifies the role of surface roughness as determining the interparticle spacing. The dc steady state force is predicted to increase nearly linearly with the applied electric field and is theoretically independent of particle surface conductivity. The electric stress is found to vary nearly linearly with the applied electric field. Data are generally consistent with the theoretical contention that increased surface roughness decreases electromechanical effects. Surface conductivity variations of three to four times have no measurable effect on the dc steady state electric stress. The electric stress is insensitive to the dielectric properties of the interstitial gas eliminating Townsend discharge as a candidate for the nonlinear charge transport process thought to occur near interparticle contacts. The theoretical upper bound of the electric stress calculated using the distributed circuit model falls within the scatter of the data if a limit on the electric field in the interparticle gap which models nonlinear charge transport is in the range of 1 to 6 x 10/sup 7/ V/m. Estimates of the charge relaxation time using transient angle of repose experiments are somewhat smaller but comparable with theoretical values calculated by ignoring nonlinear charge transport.

  19. Review: granulation and fluidized beds

    SciTech Connect

    Kono, H.

    1981-01-01

    The history of granulation techniques is very long; however, the systematic study of the granulation phenomenon began only after 1950. The first, distinguished paper treating the fundamental binding mechanism of granules was published by Rumpf in 1958. Although there are several binding forces, the discussion in this paper is confined to granulation involving the capillary energy of a liquid-particle system. This technique has been applied widely and successfully to various fields of powder technology because of its advantages of simplicity and economy (ref. 2). Granules with diameters larger than 5 mm can be prepared efficiently by rotating-type granulators, such as a pan or a trommel (ref. 3, 4, 5). On the other hand, the purpose of fluidized-bed granulators (hereafter abbreviated as FBG) is to produce small granules with diameters from 0.3 to 3 mm (ref. 6). Because it contains a small amount of liquid, a fluidized-bed granulator has a fluidization state differing significantly from that of an ordinary fluidized bed. The dispersion of liquid and powder in the bed plays an important role in the granulation mechanism. This mechanism is compared to that of pan granulators, and the differences in characteristics are discussed.

  20. Quality of economically extractable coal beds in the Gillette coal field as compared with other Tertiary coal beds in the Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.

    2002-01-01

    The Powder River Basin, and specifically the Gillette coal field, contains large quantities of economically extractable coal resources. These coal resources have low total sulfur content and ash yield, and most of the resources are subbituminous in rank. A recent U.S Geological Survey study of economically extractable coal in the Gillette coal field focused on five coal beds, the Wyodak rider, Upper Wyodak, Canyon, Lower Wyodak-Werner, and Gates/Kennedy. This report compares the coal quality of these economically extractable coal beds to coal in the Wyodak-Anderson coal zone in the Powder River Basin and in the Gillette coal field (Flores and others, 1999) and other produced coal in the Gillette coal field (Glass, 2000). The Upper Wyodak, Canyon, and Lower Wyodak/Werner beds are within the Wyodak-Anderson coal zone. Compared with all coal in the Wyodak-Anderson coal zone, both throughout the Powder River Basin and just within the Gillette coal field; the thick, persistent Upper Wyodak coal bed in the Gillette coal field has higher mean gross calorific value (8,569 Btu/lb), lower mean ash yield (5.8 percent), and lower mean total sulfur content (0.46 percent).

  1. Utility of Recycled Bedding for Laboratory Rodents

    PubMed Central

    Miyamoto, Toru; Li, Zhixia; Kibushi, Tomomi; Okano, Shinya; Yamasaki, Nakamichi; Kasai, Noriyuki

    2009-01-01

    Animal facilities generate a large amount of used bedding containing excrement as medical waste. We developed a recycling system for used bedding that involves soft hydrothermal processing. In this study, we examined the effects of bedding type on growth, hematologic and serum biochemical values, and organ weights of female and male mice reared on either recycled or fresh bedding from 3 to 33 wk of age. Neither growth nor physiology differed between mice housed on recycled bedding compared with fresh bedding. When 14-wk-old mice were bred, litter size and total number of weaned pups showed no significant differences between animals raised on recycled or fresh bedding. Because bedding type influences the environment within cages and animal rooms, we evaluated particulate and ammonia data from cages and animal rooms. Values were significantly lower from cages and rooms that used recycled bedding than from those using fresh bedding, thus indicating that recycled bedding has the potential to improve the environment within both cages and animal rooms. Overall, this study revealed that recycled bedding is an excellent material for use in housing laboratory rodents. Specifically, recycled bedding may reduce medical waste and maintain healthy environments within cages and animal rooms. PMID:19653951

  2. DEVELOPMENT OF A METHODOLOGY FOR REGIONAL EVALUATION OF CONFINING BED INTEGRITY

    EPA Science Inventory

    For safe underground injection of liquid waste, confining formations must be thick, extensive, and have low permeability. Recognition of faults that extend from the potential injection zone to underground sources of drinking water is critical for evaluation of confining-bed integ...

  3. Heat exchanges between a fluidized bed and small-sized bodies

    SciTech Connect

    Teplitskii, Yu.S.

    1995-06-01

    On the basis of the two-zone model, a procedure is developed for calculating the complex heat exchange of a probe of small dimensions (comparable with the diameter of the bed particles). The procedure takes into account the influence of the fluidizing agent pressure.

  4. The NASA Bed Rest Project

    NASA Technical Reports Server (NTRS)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  5. EVALUATING MULTICOMPONENT COMPETITIVE ADSORPTION IN FIXED BEDS

    EPA Science Inventory

    An equilibrium column model (ECM) was developed to evaluate multicomponent competition in fixed-bed adsorption columns. The model ignores mass transfer resistances and uses ideal adsorbed solution theory to predict the competitive effects in multicomponent mixtures. The bed capac...

  6. Pulling a patient up in bed

    MedlinePlus

    Moving a patient in bed ... takes at least 2 people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  7. Pulling a patient up in bed

    MedlinePlus

    Moving a patient in bed ... takes at least two people to safely move a patient up in bed. Friction from rubbing can ... A slide sheet is the best way to prevent friction. If you do not have one, you ...

  8. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  9. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends

    NASA Astrophysics Data System (ADS)

    Blanckaert, K.

    2010-09-01

    The bed topography and associated flow field are investigated in a laboratory configuration with parameters that are representative for sharp natural meander bends. Zones of inward mass transport are characterized by a quasi-linear transverse bed profile, whereas zones of outward mass transport, induced by pronounced curvature variations, are characterized by a quasi-horizontal shallow point bar at the inside of the bend, a deep pool at the outside, and an increase in overall cross-sectional area. These quasi-bilinear bed profiles can be attributed to the curvature-induced secondary flow that is confined to the pool. Topographic steering, mainly due to mass conservation, concentrates the major part of the discharge over the deepest zones of the bend. But the pattern of depth-averaged velocities, which is relevant with respect to the development of the bed topography, does not show maximum values over the deepest zones. A term-by-term analysis of the depth-averaged streamwise momentum equation reveals that the water surface gradient is the principal mechanism with respect to flow velocity redistribution, although inertia and secondary flow are also processes of dominant order of magnitude. A required condition for the occurrence of adverse pressure gradients and flow recirculation due to planform curvature variations is established. A different type of flow recirculation, due to a subtle feedback between the flow and the bed topography, occurs over the point bar. The neglect of the influence of vertical velocities impinging on the bed in models for sediment transport is identified as a major shortcoming in the modeling of the morphodynamics of meandering river channels.

  10. Accretionary lapilli in altered tuffs associated with coal beds.

    USGS Publications Warehouse

    Bohor, B.F.; Triplehorn, D.M.

    1984-01-01

    Accretionary lapilli (concentrically-zoned structures with featureless cores and layered rims, composed of volcanic materials) have been previously recognized in recent volcanic eruptions, and in rocks from obvious volcanic environments. The present paper extends the known occurrences to rocks of less obvious volcanic origin; in some cases the lapilli are the primary evidence for their volcanic origin. They are reported from tonsteins (clay beds associated with coals and generally interpreted as altered tuffs), and clays not associated with coals or previously interpreted as volcanic in origin, (flint in Missouri and Kentucky). -W.P.F.

  11. Structural implications on the deposition of the Upper Freeport coal bed in eastern Greene County, Pennsylvania

    SciTech Connect

    Shaffer, B.N. )

    1993-08-01

    The orientation, geometry, thickness, and quality of the Upper Freeport coal bed suggests that syndepositional tectonic activity influenced the accumulation of peat and its laterally equivalent sediments. Both strike-parallel and strike-normal structures appear to influence the deposition of the Upper Freeport coal bed. Strike-parallel structures are faults that were active during the Carboniferous, but do not penetrate into the Carboniferous section. The Carboniferous rocks at the surface within the study area reflect deeper structures as a series of gentle synclines and anticlines. The Upper Freeport coal bed was deposited as a domed peat across the Belle Vernon anticline, which represents the upthrown side of a syndepositionally active deep fault. Laterally equivalent fluvial channel sediments were deposited on the downthrown side of the structure, represented at the surface by the Waynesburg syncline. The influence of syndepositionally active faults on the distribution, thickness, and quality of the Upper Freeport coal bed is similar to the previously reported influence of contemporaneous growth faults on the distribution and thickness of Carboniferous coal beds in Kentucky and Alabama. Strike-normal features also influence the position, geometry, and thickness of the Upper Freeport coal bed. The strike-normal features appear to be produced by deep strike-slip faulting. A major no-coal zone within the Upper Freeport coal bed lies within and parallel to the trend of a cross-strike discontinuity within the study area.

  12. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    SciTech Connect

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu.

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  13. Oxygen consumption along bed forms under losing and gaining streamflow conditions

    NASA Astrophysics Data System (ADS)

    De Falco, Natalie; Arnon, Shai; Boano, Fulvio

    2016-04-01

    Recent studies have demonstrated that bed forms are the most significant geomorphological structure that drives hyporheic exchange and biogeochemical processes in stream networks. Other studies also demonstrated that due to the hyporheic flow patterns within bed form, biogeochemical processes do not occur uniformly along and within the bed forms. The objective of this work was to systematically evaluate how losing or gaining flow conditions affect oxygen consumption by biofilm along sandy bed forms. We measured the effects of losing and gaining flow conditions on oxygen consumption by combining modeling and experiments in a novel laboratory flume system that enable the control of losing and gaining fluxes. Oxygen consumption was measured after growing a benthic biofilm fed with Sodium Benzoate (as a carbon source) and measuring the distribution of oxygen in the streambed with microelectrodes. The experimental results were analyzed using a novel code that calculates vertical profiles of reaction rates in the presence of hyporheic water fluxes. These experimental observations and modeling revealed that oxygen distribution varied along the bed forms. The zone of oxygen consumption (i.e. depth of penetration) was the largest at the upstream side of the bed form and the smallest in the lee side (at the lowest part of the bed form), regardless of the flow conditions. Also, the zone of oxygen consumption was the largest under losing conditions, the smallest under gaining conditions, and in-between under neutral conditions. The distribution of oxygen consumption rates determined with our new model will be also discussed. Our preliminary results enable us to show the importance of the coupling between flow conditions and oxygen consumption along bed forms and are expected to improve our understanding of nutrient cycling in streams.

  14. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  15. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  16. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  17. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  18. 21 CFR 868.5180 - Rocking bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Rocking bed. 868.5180 Section 868.5180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5180 Rocking bed. (a) Identification. A rocking bed is a...

  19. Bed Bug Education for School Maintenance

    ERIC Educational Resources Information Center

    Henriksen, Missy

    2012-01-01

    Bed bugs are a growing problem, not only in homes and hotels, but also in schools and colleges. Facility administrators and staff need to understand the bed bug resurgence and develop best practices to deal with an infestation. In this article, the author offers tips for preventing and treating bed bugs in school and university settings.

  20. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  1. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  2. Two-stage fixed-bed gasifier with selectable middle gas off-take point

    DOEpatents

    Strickland, Larry D.; Bissett, Larry A.

    1992-01-01

    A two-stage fixed bed coal gasifier wherein an annular region is in registry with a gasification zone underlying a devolatilization zone for extracting a side stream of high temperature substantially tar-free gas from the gasifier. A vertically displaceable skirt means is positioned within the gasifier to define the lower portion of the annular region so that vertical displacement of the skirt means positions the inlet into the annular region in a selected location within or in close proximity to the gasification zone for providing a positive control over the composition of the side stream gas.

  3. Two-stage fixed-bed gasifier with selectable middle gas off-take point

    SciTech Connect

    Strickland, L.D.; Bissett, L.A.

    1991-12-31

    A two-stage fixed bed coal gasifier wherein an annular region is in registry with a gasification zone underlying a devolatilization zone for extracting a side stream of high temperature substantially tar-free gas from the gasifier. A vertically displaceable skirt means is positioned within the gasifier to define the lower portion of the annular region so that vertical displacement of the skirt means positions the inlet into the annular region in a selected location within or in close proximity to the gasification zone for providing a positive control over the composition of the side stream gas.

  4. Hyporheic Exchange in Gravel-Bed Rivers with Pool-Riffle Morphology: A 3D Model

    NASA Astrophysics Data System (ADS)

    Tonina, D.; Buffington, J. M.

    2004-12-01

    The hyporheic zone is a saturated band of sediment that surrounds river flow and forms a linkage between the river and the aquifer. It is a rich ecotone where benthic, hyporheic, and groundwater species temporarily or permanently reside. Head gradients along the streambed draw river water into the hyporheic zone and expel pore water into the stream. This process, known as hyporheic exchange, is important for delivering nutrients, oxygen and other solutes to the sediment, and for washing away waste products to support this ecotone. It is an essential component of the carbon and nitrogen cycles, and it controls in-stream contaminant transport. Although hyporheic exchange has been studied in sand-bed rivers with two-dimensional dune morphology, few studies have been conducted for gravel-bed rivers with three-dimensional pool-riffle geometry. The hyporheic zone of gravel-bed rivers is particularly important for salmonids, many of which are currently at risk world wide. Salmon and trout lay their eggs within the hyporheic zone for incubation. After hatching, the alevins live in the gravel before emerging into the stream. The upwelling and downwelling hyporheic fluxes are intense in these streams due to the highly permeable sediment and strong head variations forced by shallow flow over high-amplitude bed forms. Moreover, gravel-bed rivers show a wide range of flow regimes that change seasonally and have strong effects on hyporheic exchange. To study this exchange, we used four sets of pool-riffle geometries in twelve recirculating flume experiments. We kept a constant bed-form wavelength, but changed the bed-form amplitude and imposed three discharges, covering a wide range of hydraulic and geometric characteristics. Hyporheic exchange was predicted from a three-dimensional model based on bedform-induced pumping transport, where the boundary head profile is the pressure head distribution at the sediment interface, measured with an array of mini-piezometers buried within

  5. Adsorption dynamics of a layered bed PSA for H{sub 2} recovery from coke oven gas

    SciTech Connect

    Yang, J.; Lee, C.H.

    1998-06-01

    The adsorption dynamics of a layered bed packed with activated carbon and zeolite 5A were studied experimentally and theoretically through breakthrough experiments and two-bed pressure swing adsorption (PSA) processes by using coke oven gas (56.4 vol.% H{sub 2}; 26.6 vol.% CH{sub 4}; 8.4 vol.% CO; 5.5 vol.% N{sub 2}; and 3.1 vol.% CO{sub 2}). The results of breakthrough curves of a layered bed showed an intermediate behavior of those of zeolite-5A bed and activated carbon bed, because each concentration front propagates with its own wavefront velocity in each layer by a different adsorption equilibrium. Since a fast and dispersed mass-transfer zone of CO in the zeolite layer of a layered bed leads to a long leading front of the N{sub 2} wavefront, controlling the leading wavefront of the N{sub 2} plays a very important role in obtaining a high-purity product and in determining the optimum carbon ratio of a PSA process for H{sub 2} recovery from coke oven gas. The layered bed PSA process was simulated in a simplified form of two single-adsorbent beds linked in series. The dynamic model incorporating mass, energy, and momentum balances agreed well with the experimental data. Concentration profiles inside the adsorption bed were also investigated.

  6. Pulsed atmospheric fluidized bed combustion

    SciTech Connect

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  7. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    SciTech Connect

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  8. Clinical skills: bed making and patient positioning.

    PubMed

    Pellatt, Glynis Collis

    Providing a clean, comfortable bed and positioning a patient in the optimum posture for prevention of complications and to enable maximum independence are fundamental nursing skills. Bed-making is a daily routine that requires practical and technical skills. Selecting the correct posture for a patient in bed or in a chair is essential for physiological functioning and recovery. In this article bed-making is described, as are positioning and re-positioning in relation to patients in bed, armchairs and wheelchairs. Infection control and moving and handling issues are also considered. PMID:17505378

  9. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  10. Patterning the Renal Vascular Bed

    PubMed Central

    Herzlinger, Doris; Hurtado, Romulo

    2015-01-01

    The renal vascular bed has a stereotypic architecture that is essential for the kidney’s role in excreting metabolic waste and regulating the volume and composition of body fluids. The kidney’s excretory functions are dependent on the delivery of the majority of renal blood flow to the glomerular capillaries, which filter plasma removing from it metabolic waste, as well as vast quantities of solutes and fluids. The renal tubules reabsorb from the glomerular filtrate solutes and fluids required for homeostasis, while the post-glomerular capillary beds return these essential substances back into the systemic circulation. Thus, the kidney’s regulatory functions are dependent on the close proximity or alignment of the post-glomerular capillary beds with the renal tubules. This review will focus on our current knowledge of the mechanisms controlling the embryonic development of the renal vasculature. An understanding of this process is critical for developing novel therapies to prevent vessel rarefaction and will be essential for engineering renal tissues suitable for restoring kidney function to the ever-increasing population of patients with end stage renal disease. PMID:25128732

  11. Scaling of pressurized fluidized beds

    SciTech Connect

    Guralnik, S.; Glicksman, L.R.

    1994-10-01

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  12. Rivesville multicell fluidized bed boiler

    SciTech Connect

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  13. Vadose zone microbiology

    SciTech Connect

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results in the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.

  14. Bed bug aggregation pheromone finally identified.

    PubMed

    Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard

    2015-01-19

    Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. PMID:25529634

  15. Subtidal and intertidal mussel beds ( Mytilus edulis L.) in the Wadden Sea: diversity differences of associated epifauna

    NASA Astrophysics Data System (ADS)

    Saier, Bettina

    2002-04-01

    In 1997 and 1998, surveys were performed to compare species composition, abundance and diversity of non-attached epifauna (>1 mm) in low intertidal and adjacent shallow subtidal zones of three mussel beds ( Mytilus edulis L.) near the island of Sylt in the North Sea. The community structure was similar when compared within tidal zones: no significant differences in species numbers and abundances were recorded between locations and between years. A comparison between tidal zones, however, revealed higher diversity, species densities and total species numbers in the subtidal (per 1,000 cm2: H '=2.0±0.16; 12 ±1 species density; 22 species) than the intertidal zone (per 1,000 cm2: H '=0.7±0.27; 6±2 species density; 19 species). Abundances significantly dropped with increasing submergence from 2,052 (±468) m-2 to 1,184 (±475) m-2. This was mainly due to significantly higher densities of both juvenile periwinkles, Littorina littorea, and crabs, Carcinus maenas, in intertidal mussel beds. However, many less dominant species were significantly more abundant in subtidal mussel beds. This study revealed that in the non-attached epifaunal community of mussel beds the tidal level effect within metres was strong, whilst the spatial variability in a much wider (kilometre) range but the same tidal level was negligible. The high epifaunal diversity in the subtidal zone suggests that the protective measures for mussel beds against the effects of mussel fishery should be extended from the intertidal to the subtidal zone, if the integrity of the mussel bed community in the Wadden Sea National Park is to be maintained.

  16. Linear test bed. Volume 1: Test bed no. 1. [aerospike test bed with segmented combustor

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Linear Test Bed program was to design, fabricate, and evaluation test an advanced aerospike test bed which employed the segmented combustor concept. The system is designated as a linear aerospike system and consists of a thrust chamber assembly, a power package, and a thrust frame. It was designed as an experimental system to demonstrate the feasibility of the linear aerospike-segmented combustor concept. The overall dimensions are 120 inches long by 120 inches wide by 96 inches in height. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure, at a mixture ratio of 5.5. At the design conditions, the sea level thrust is 200,000 pounds. The complete program including concept selection, design, fabrication, component test, system test, supporting analysis and posttest hardware inspection is described.

  17. Distribution of compaction bands in 3D in an aeolian sandstone: The role of cross-bed orientation

    NASA Astrophysics Data System (ADS)

    Deng, Shang; Aydin, Atilla

    2012-10-01

    We report the occurrence of bed-parallel and high-angle compaction bands as well as crooked or wiggly compaction bands in the aeolian Aztec Sandstone exposed throughout the Valley of Fire State Park, Nevada. Field observations at several locations within the Park show that depositional domains (dune units characterized by cross-beds therein) with particular ranges of cross-bed orientations corresponding to certain deformational/structural domains (compaction bands of different orientations) occur adjacent to each other in a consistent pattern. We distinguish three architectural categories of depositional and structural domains: 1) cross-beds with bed-parallel compaction bands, 2) cross-beds with high-angle compaction bands, and 3) cross-beds with both bed-parallel and high-angle compaction bands overlapping in a relatively narrow transition zone. The field data demonstrates that the orientation of the cross-beds for each of these domains falls into a certain range. In fact, there is a strong correlation between the bottom set and high-angle compaction bands and the top set and the low-angle bed-parallel compaction bands. This implies that the cross-bed heterogeneity and the resulting mechanical anisotropy may play a significant role in the formation, orientation, distribution, and compartmentalization of compaction bands in the study area. Data sets on the dimensions of both depositional and structural domains indicate that they are interrelated and show a wide range of distributions. There is plenty of evidence for contemporaneous age relationships between compaction bands of various orientations. Based on this temporal relationship, we propose that at least one set of bands, and perhaps all of them, accommodated primarily localized compaction oblique to the principal planes of stress. Alternatively, if each set of the compaction bands represents the principal planes, then, the stress orientation must have varied spatially, perhaps due to the anisotropy of the

  18. Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves.

    PubMed

    Bose, Sujit K; Dey, Subhasish

    2009-09-01

    Based on the Reynolds averaged Navier-Stokes (RANS) equations and the time-averaged continuity equation, a theory of turbulent shear flow over an undulating sand bed is developed addressing the instability criterion of plane sand beds in free-surface flows leading to the formation of sand waves. In the analysis, the integration of RANS equations leads to generalized Saint Venant equations, in which the time-averaged streamwise velocity is characterized by a power law obtained from turbulence closure, treating the curvilinear streamlines by the Boussinesq approximation. As a consequence, the modified pressure distribution has a departure from the traditionally linear hydrostatic pressure distribution. The instability analysis of a plane sand bed yields the curves of the Froude number versus nondimensional wave number, determining an instability zone for which at lower Froude numbers (less than 0.8), the plane bed becomes unstable with the formation of dunes; whereas at higher Froude numbers, the plane bed becomes unstable with the formation of standing waves and antidunes. For higher Froude numbers, the experimental data for antidunes lie within the unstable zone; while for lower Froude numbers, the same is found for dunes with some experimental scatter. PMID:19905209

  19. Design of a laboratory scale fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Wikström, E.; Andersson, P.; Marklund, S.

    1998-04-01

    The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion

  20. Distribution of bromine in bedded halite in the Green River Formation, southwestern Wyoming

    USGS Publications Warehouse

    Higley, D.K.

    1983-01-01

    The Wilkins Peak Member of the Eocene Green River Formation of southwestern Wyoming contains a series of halite-trona beds deposited in ancestral Lake Gosiute. X-ray fluorescence analysis of 311) salt samples from 10 core holes revealed bromine contents ranging from 11 to 174 ppm. The average concentration, corrected to 100 percent sodium chloride, is approximately 80 ppm. The bromine content of most halite beds increases from the base upward. Variations or 'spikes' in the bromine profile and reversals of the upward increase in bromine are evidenced within several salt beds. Bromine of bed 10 salt zones exhibits a high degree of correlation laterally. No increase in bromine concentration for correlated salt zones was noted from the basin margins to the depositional center in the northeastern part of the study area. A great disparity in salt thickness from the depositional center to the margins suggests stratified lake conditions in which denser, sodium-chloride-saturated bottom brines did not extend to the margins during part of the depositional history of bed 10. Paleosalinity trends of Lake Gosiute determined from the bromine distribution include the following: (1) chemically stratified lake conditions with dense, highly saline bottom waters and a fresher water zone above during much of the depositional history of the halites, (2) gradual evaporation of lake waters in a closed basin with resultant upward increase in salinity for most intervals studied, and (3) absence of lateral lake-bottom salinity gradients or postdepositional salt alteration as determined by the lateral constancy of bromine concentrations for correlated bed 10 halite.

  1. Behavior of the mass transfer zone in a biosorption column.

    PubMed

    Naja, Ghinwa; Volesky, Bohumil

    2006-06-15

    Modeling of the mass transfer zone behavior under variable conditions in a flow-through fixed-bed sorption column enabled the prediction of breakthrough curves for Cu2+ and Ca-preloaded Sargassum fluitans biomass. The mass transfer resistance, particle diffusion, and the axial dispersion were incorporated in the model. The dynamics of the mass transfer zone was described under variable sorption column operating conditions including different column lengths and fluid flow rates. Accurate estimation of the behavior of the mass transfer zone as it progressed through the column, reflected eventually in the breakthrough curve, assisted in its relevant interpretations. Furthermore, the proposed mathematical model of the biosorption process was capable of demonstrating the expanding and broadening of the mass transfer zone linked to the equilibrium sorption isotherm. The fundamental understanding of the mass transfer zone dynamics is particularly important for process scale-up where maintaining the process efficiency is critical. PMID:16830573

  2. 33 CFR 3.35-15 - Sector Charleston Marine Inspection Zone and Captain of the Port Zone; Marine Safety Unit Savannah.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 80°53′06″ W, near the eastern tip of Oyster Bed Island; thence east on a line bearing 084° T to..., longitude 74°29′53″ W; thence northwest to the point of origin; and in addition, all the area described in... Port Zones start near the eastern tip of Oyster Bed Island at latitude 32°02′23″ N, longitude...

  3. 33 CFR 3.35-15 - Sector Charleston Marine Inspection Zone and Captain of the Port Zone; Marine Safety Unit Savannah.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 80°53′06″ W, near the eastern tip of Oyster Bed Island; thence east on a line bearing 084° T to..., longitude 74°29′53″ W; thence northwest to the point of origin; and in addition, all the area described in... Port Zones start near the eastern tip of Oyster Bed Island at latitude 32°02′23″ N, longitude...

  4. 33 CFR 3.35-15 - Sector Charleston Marine Inspection Zone and Captain of the Port Zone; Marine Safety Unit Savannah.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 80°53′06″ W, near the eastern tip of Oyster Bed Island; thence east on a line bearing 084° T to..., longitude 74°29′53″ W; thence northwest to the point of origin; and in addition, all the area described in... Port Zones start near the eastern tip of Oyster Bed Island at latitude 32°02′23″ N, longitude...

  5. 33 CFR 3.35-15 - Sector Charleston Marine Inspection Zone and Captain of the Port Zone; Marine Safety Unit Savannah.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 80°53′06″ W, near the eastern tip of Oyster Bed Island; thence east on a line bearing 084° T to..., longitude 74°29′53″ W; thence northwest to the point of origin; and in addition, all the area described in... Port Zones start near the eastern tip of Oyster Bed Island at latitude 32°02′23″ N, longitude...

  6. Deep Bed Iodine Sorbent Testing FY 2011 Report

    SciTech Connect

    Nick Soelberg; Tony Watson

    2011-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  7. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  8. Marker Bed 139: a study of drillcore from a systematic array. [Salado Formation

    SciTech Connect

    Borns, D.J.

    1985-08-01

    In southeastern New Mexico, Marker Bed 139 (referred to in this report as MB139) is one of 45 numbered siliceous or sulfatic units within the Salado Formation of the northern Delaware Basin. MB139 is divided into five zones. Zones I and V are the upper and lower contact zones, respectively. Zone II is a syndepositionally deformed subunit of polyhalitic anhydrite. Zone III is mixed anhydrite and polyhalitic anhydrite, a distinctive pale-green and pink, with subhorizontal fractures. Zone IV consists of interlayered halite and anhydrite without the overprint of polyhalite. This sequence was transitional between submarine and subaerial. The anhydritic units of MB139 formed in salt-pan or mudflat environments or both. Undulations observed along the upper contact of MB139 are interpreted to result from traction deposits or from reworking of the upper portion of the marker bed during the transition from anhydrite to halite deposition. Zones II and III exhibit soft-sediment deformation and later traces of dewatering; e.g., formation of stylolites. Such deformation is not observed in the halite above MB139 or in Zone V and the halite units below MB139. A distinctive set of subhorizontal fractures occurs in MB139 in mid-Zone III and, to some extent, in Zone IV. These fractures are partially infilled with halite and polyhalite. Brine occurrences at the mined facility horizon at the Waste Isolation Pilot Plant may be related to these fractures. The fractures formed either in response to stress cycles that were functions of sedimentation and erosion, or in response to deformation in the underlying Castile Formation. The subhorizontal orientation, dominant in the sampling to date, is more consistent with the interplay between stress and sedimentation cycles.

  9. Fluidized bed charcoal particle production system

    SciTech Connect

    Sowards, N.K.

    1985-04-09

    A fluidized bed charcoal particle production system, including apparatus and method, wherein pieces of combustible waste, such as sawdust, fragments of wood, etc., are continuously disposed within a fluidized bed of a pyrolytic vessel. Preferably, the fluidized bed is caused to reach operating temperatures by use of an external pre-heater. The fluidized bed is situated above an air delivery system at the bottom of the vessel, which supports pyrolysis within the fluidized bed. Charcoal particles are thus formed within the bed from the combustible waste and are lifted from the bed and placed in suspension above the bed by forced air passing upwardly through the bed. The suspended charcoal particles and the gaseous medium in which the particles are suspended are displaced from the vessel into a cyclone mechanism where the charcoal particles are separated. The separated charcoal particles are quenched with water to terminate all further charcoal oxidation. The remaining off-gas is burned and, preferably, the heat therefrom used to generate steam, kiln dry lumber, etc. Preferably, the bed material is continuously recirculated and purified by removing tramp material.

  10. Granular Dynamics in Pebble Bed Reactor Cores

    NASA Astrophysics Data System (ADS)

    Laufer, Michael Robert

    This study focused on developing a better understanding of granular dynamics in pebble bed reactor cores through experimental work and computer simulations. The work completed includes analysis of pebble motion data from three scaled experiments based on the annular core of the Pebble Bed Fluoride Salt-Cooled High- Temperature Reactor (PB-FHR). The experiments are accompanied by the development of a new discrete element simulation code, GRECO, which is designed to offer a simple user interface and simplified two-dimensional system that can be used for iterative purposes in the preliminary phases of core design. The results of this study are focused on the PB-FHR, but can easily be extended for gas-cooled reactor designs. Experimental results are presented for three Pebble Recirculation Experiments (PREX). PREX 2 and 3.0 are conventional gravity-dominated granular systems based on the annular PB-FHR core design for a 900 MWth commercial prototype plant and a 16 MWth test reactor, respectively. Detailed results are presented for the pebble velocity field, mixing at the radial zone interfaces, and pebble residence times. A new Monte Carlo algorithm was developed to study the residence time distributions of pebbles in different radial zones. These dry experiments demonstrated the basic viability of radial pebble zoning in cores with diverging geometry before pebbles reach the active core. Results are also presented from PREX 3.1, a scaled facility that uses simulant materials to evaluate the impact of coupled fluid drag forces on the granular dynamics in the PB-FHR core. PREX 3.1 was used to collect first of a kind pebble motion data in a multidimensional porous media flow field. Pebble motion data were collected for a range of axial and cross fluid flow configurations where the drag forces range from half the buoyancy force up to ten times greater than the buoyancy force. Detailed analysis is presented for the pebble velocity field, mixing behavior, and residence time

  11. Bed bathing patients in hospital.

    PubMed

    Downey, Lindsey; Lloyd, Hilary

    There are a number of circumstances that may affect an individual's ability to maintain personal hygiene. Hospitalised patients, and in particular those who are bedridden, may become dependent on nursing staff to carry out their hygiene needs. Assisting patients to maintain personal hygiene is a fundamental aspect of nursing care. However, it is a task often delegated to junior or newly qualified staff. This article focuses on the principles of bed bathing patients in hospital, correct procedure and the importance of maintaining patient dignity and respect in clinical practice. PMID:18543852

  12. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  13. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  14. The Advanced Expander Test Bed

    NASA Technical Reports Server (NTRS)

    Masters, Arthur I.; Tabata, William K.

    1990-01-01

    The principal goals and design concepts of the Advanced Expander Test Bed (AETB) program are briefly reviewed. The AETB is planned as the focal point for the development and demonstration of high-performance oxygen/hydrogen engine technology and advanced component technology for the next space engine. The engine will operate at pressures up to 1200 psia over a wide range of conditions, easily accommodating mission-focused components. The discussion covers design requirements, design approach, conceptual design, the AETB cycle, and the AETB control system.

  15. MICROTURBULENCE IN GRAVEL BED STREAMS

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Kramer, C. M.

    2009-12-01

    The overarching objective of this investigation was to evaluate the role of relative submergence on the formation and evolution of cluster microforms in gravel bed streams and its implications to bedload transport. Secondary objectives of this research included (1) a detailed analysis of mean flow measurements around a clast; and (2) a selected number of experimental runs where the mean flow characteristics are linked together with the bed micro-topography observations around a clast. It is hypothesized that the relative submergence is an important parameter in defining the feedback processes between the flow and clasts, which governs the flow patterns around the clasts, thus directly affecting the depositional patterns of the incoming sediments. To examine the validity of the hypothesis and meet the objectives of this research, 19 detailed experimental runs were conducted in a tilting, water recirculating laboratory flume under well-controlled conditions. A fixed array of clast-obstacles were placed atop a well-packed bed with uniform size glass beads. During the runs, multifractional spherical particles were fed upstream of the clast section at a predetermined rate. State-of-the-art techniques/instruments, such as imaging analysis software, Large Scale Particle Velocimeter (LSPIV) and an Acoustic Doppler Velocimetry (ADV) were employed to provide unique quantitative measurements for bedload fluxes, clast/clusters geomorphic patterns, and mean flow characteristics in the vicinity of the clusters. Different flow patterns were recorded for the high relative submergence (HRS) and low relative submergence (LRS) experimental runs. The ADV measurements provided improved insight about the governing flow mechanisms for the HRS runs. These mechanisms were described with flow upwelling at the center of the flume and downwelling occurring along the flume walls. Flow downwelling corresponded to an increase in the free surface velocity. Additionally, the visual observations

  16. Measuring Hydrodynamics and Sediment Transport in the Swash Zone

    NASA Astrophysics Data System (ADS)

    Puleo, J. A.

    2014-12-01

    The swash zone is the most landward region of the nearshore where wave energy is ultimately dissipated or reflected. It is the most accessible region of the nearshore but is the most challenging for obtaining measurements and performing numerical modeling simulations. The challenging aspects are related to the moving shoreline, rapid changes in water depth, bed level fluctuations, swift, turbulent, direction-reversing flows, large suspended, bed and sheet flow sediment loads, large void fraction, and fluid infiltration and exfiltration from the beach. The major hurdle numerical modelers face is predicting sediment transport rates on a swash-by-swash basis as errors rapidly lead to inaccuracies in simulated morphological evolution. Recent advances in measurement capabilities are now helping to fill gaps in understanding of sediment transport processes and, in turn, improve predictive capability. Newly developed acoustic Doppler profiling velocimeters have allowed for the measurement of hydrodynamics in the direct vicinity of the bed including boundary layer development, bed shear stresses and turbulence dissipation. Bed shear stresses on natural beaches have been estimated at over 20 N/m2; an order of magnitude larger than in the surf zone. Vertical profiles of turbulence dissipation increase near the bed and near the water surface during uprush (shoreward-directed motion) indicating the simultaneous importance of bottom shear and bore-generated turbulence during this phase of motion. Dissipation during backwash (offshore-directed motion) originates at the bed with little influence from fluid motion near the water surface. Other sensors have enabled, for the first time, the measurement of time dependent sheet flow concentrations. Sheet flow thicknesses have been found to exceed 0.03 m under some natural swash zone conditions and concentrations within the mobile sheet flow layer approach the packed bed limit. Sheet flow sediment concentration profiles for varying

  17. Persisting intertidal seagrass beds in the northern Wadden Sea since the 1930s

    NASA Astrophysics Data System (ADS)

    Dolch, Tobias; Buschbaum, Christian; Reise, Karsten

    2013-09-01

    In contrast to the global crisis of seagrass ecosystems, intertidal Zostera-beds in the Northfrisian Wadden Sea (coastal North Sea) have recovered recently. Present areal extent resembles that of the mid 1930s. In spite of an intermittent loss in area by about 60% in the 1970s to 1990s, beds have maintained their general spatial distribution pattern. Aerial photographs from parts of the region in 1935-37, and the total region in 1958-59 and 2005 were visually analysed, and seagrass beds were recorded and quantified with a geographic information system (GIS). Data from direct aerial mapping were added to extend the survey until 2010. From the mid 2000s to 2010, intertidal seagrass areas estimated from these records range between 84 and 142 km2 (10-16% of the intertidal area), while records from the 1970 to 90s merely range between 30 and 40 km2 (3-5%) (Reise and Kohlus, 2008). Despite variation in size, core positions of individual seagrass beds were identified and they shifted very little over the last decades. Most beds occur in the upper intertidal zone and where barrier islands offer shelter against swell from the open sea. While land claim activities since the 1930s have irreversibly eliminated at least 11 km2 of seagrass beds, we suggest that intermittent losses of seagrass area were mainly caused by sediment dynamics and a phase of elevated eutrophication.

  18. Through-water terrestrial laser scanning of gravel beds at the plot scale: a preliminary investigation

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Vericat, D.; Gibbins, C. G.

    2010-12-01

    Natural gravel surfaces are spatially variable. Measurement of their detailed structure is essential for understanding the interaction of roughness with near-bed flows and the sediment entrainment process. However, the acquisition of high resolution topographic data of a river bed is technically demanding where the bed is not regularly exposed by fluctuating water levels. Often the most geomorphologically active portion of a gravel bed river remains submerged even at low stages. Optical reflectance depth monitoring and through-water photogrammetry have been employed to map bed topography over relatively shallow submerged zones. This study presents laboratory and field experiments to demonstrate that through-water terrestrial laser scanning can also be used to provide high resolution DTMs of submerged gravel beds. The resulting point cloud data must be corrected for refraction before the registration process takes place. Additional errors arise from the internal architecture of the scanner as the offset between the arbitrary origin and the point from which the laser emanates must be calculated before refraction correction. These DTMs can be seamlessly embedded within larger sub aerial reach-scale surveys and can be acquired alongside flow measurements to examine the effects of three-dimensional surface geometry on turbulent flow fields.

  19. Suicide following an infestation of bed bugs

    PubMed Central

    Burrows, Stephanie; Perron, Stéphane; Susser, Stephanie

    2013-01-01

    Patient: Male, 62 Final Diagnosis: Bipolar disorder Symptoms: Bordeline personality disorder Medication: — Clinical Procedure: Bed bug infestation Specialty: Psychiatry Objective: Unusual clinical course Background: In the past decade, bed bug infestations have been increasingly common in high income countries. Psychological consequences of these infestations are rarely examined in the scientific literature. Case Report: We present a case, based on a coroner’s investigation report, of a woman with previous psychiatric morbidity who jumped to her death following repeated bed bug infestations in her apartment. Our case report shows that the bed bug infestations were the likely trigger for the onset a negative psychological state that ultimately led to suicide. Conclusions: Given the recent surge in infestations, rapid action needs to be taken not only in an attempt to control and eradicate the bed bugs but also to adequately care for those infested by bed bugs. PMID:23826461

  20. Hot zones evolution and dynamics in heterogeneous catalytic systems

    NASA Astrophysics Data System (ADS)

    Luss, D.; Marwaha, B.

    2002-03-01

    Stationary and complex moving hot regions formed for temperatures close to the extinction temperature of uniformly ignited states of several catalytic systems, such as thin rings and hollow cylinders, a thin radial flow reactor (RFR) and a shallow packed bed. IR imaging revealed that the hot and cold regions (temperature difference of the order of 100 °C) were separated by a sharp (about 3 mm wide) temperature front. The transition from the branch of uniformly ignited to the states with a hot region was usually supercritical. In some experiments a disjoint branch of states with hot regions existed and two qualitatively different states with hot zones existed under the same operating conditions. A very intricate periodic motion of a hot zone was observed in a shallow packed bed reactor. For example, Fig. 16 shows a hot zone which splits and later coalesces several times during the long (14 h) period. Hot pulse motions were observed on a single catalytic pellet. These were caused by global coupling between the surface reaction rate and the ambient reactant concentration and the inherent nonuniformity of the catalytic activity. It is not yet clear what rate processes generate the transversal hot zones in uniform packed bed reactors.

  1. Battery using a metal particle bed electrode

    SciTech Connect

    Evans, James V.; Savaskan, Gultekin

    1991-01-01

    A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

  2. Battery using a metal particle bed electrode

    SciTech Connect

    Evans, J.V.; Savaskan, G.

    1991-04-09

    A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

  3. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  4. Fuel bed characteristics of Sierra Nevada conifers

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M.

    1998-01-01

    A study of fuels in Sierra Nevada conifer forests showed that fuel bed depth and fuel bed weight significantly varied by tree species and developmental stage of the overstory. Specific values for depth and weight of woody, litter, and duff fuels are reported. There was a significant positive relationship between fuel bed depth and weight. Estimates of woody fuel weight using the planar intercept method were significantly related to sampled values. These relationships can be used to estimate fuel weights in the field.

  5. Physiology of prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1988-01-01

    Bed rest has been a normal procedure used by physicians for centuries in the treatment of injury and disease. Exposure of patients to prolonged bed rest in the horizontal position induces adaptive deconditioning responses. While deconditioning responses are appropriate for patients or test subjects in the horizontal position, they usually result in adverse physiological responses (fainting, muscular weakness) when the patient assume the upright posture. These deconditioning responses result from reduction in hydrostatic pressure within the cardiovascular system, virtual elimination of longitudinal pressure on the long bones, some decrease in total body metabolism, changes in diet, and perhaps psychological impact from the different environment. Almost every system in the body is affected. An early stimulus is the cephalic shift of fluid from the legs which increases atrial pressure and induces compensatory responses for fluid and electrolyte redistribution. Without countermeasures, deterioration in strength and muscle function occurs within 1 wk while increased calcium loss may continue for months. Research should also focus on drug and carbohydrate metabolism.

  6. Pressurized fluidized-bed combustion

    SciTech Connect

    Not Available

    1980-10-01

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  7. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  8. Fluidized bed regenerators for Brayton cycles

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters were made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.

  9. Fluidized bed regenerators for Brayton cycles

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.

    1975-01-01

    A recuperator consisting of two fluidized bed regenerators with circulating solid particles is considered for use in a Brayton cycle. These fluidized beds offer the possibility of high temperature operation if ceramic particles are used. Calculations of the efficiency and size of fluidized bed regenerators for typical values of operating parameters have been made and compared to a shell and tube recuperator. The calculations indicate that the fluidized beds will be more compact than the shell and tube as well as offering a high temperature operating capability.

  10. Heat transport model within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Marzadri, Alessandra; Tonina, Daniele; Bellin, Alberto

    2010-05-01

    Temperature is a key quantity in controlling water quality, aquatic habitats and the distribution of aquatic invertebrates within the hyporheic zone. Despite its importance in all processes (e.g., biogeochemical reactions and organism metabolism, growth, movement and migration) occurring within the streambed sediment, only few experimental and numerical works analyzed temperature distribution within the hyporheic zone, while little is known on the control that river morphology exerts on temperature dynamics. In the present work, we analyze the effects of river morphology on the thermal regime of the hyporheic zone from a modelling perspective. Our goal is to identify the dominant processes that affect the hyporheic thermal regime and gradients, which influence the rates of microbial and biogeochemical processes. With this objective in mind, we developed a simplified process-based model, which predicts the temperature pattern within the streambed sediment taking into account the external forcing due to the daily temperature variations of the in-stream water and the hyporheic exchange due to streambed morphology. To simplify the analysis the hydraulic conductivity of the streambed sediment is assumed homogeneous and isotropic, and the hyporheic velocity field is obtained analytically by solving the flow equation with the near-bed piezometric head of the stream flow as the linkage between surface and subsurface flows. Furthermore, we solved the heat transport equation with a Lagrangian approach and by neglecting transverse dispersivity. Our model results show a complex near-bed hyporheic temperature distributions, which vary temporally and are strongly related to the in-stream water residence time into the hyporheic zone and consequently to the bed morphology and flow discharge. We compared the temperature dynamics within the hyporheic zone of both large low-gradient and small steep streams to investigate the effect of stream morphology. Results show that the