Science.gov

Sample records for nebula photo-dissociation region

  1. [C II] 158 μm and [N II] 205 μm emission from IC 342. Disentangling the emission from ionized and photo-dissociated regions

    NASA Astrophysics Data System (ADS)

    Röllig, M.; Simon, R.; Güsten, R.; Stutzki, J.; Israel, F. P.; Jacobs, K.

    2016-06-01

    Context. Atomic fine-structure line emission is a major cooling process in the interstellar medium (ISM). In particular the [C II] 158 μm line is one of the dominant cooling lines in photon-dominated regions (PDRs). However, it is not confined to PDRs but can also originate from the ionized gas closely surrounding young massive stars. The proportion of the [C II] emission from H II regions relative to that from PDRs can vary significantly. Aims: We investigate the question of how much of the [C II] emission in the nucleus of the nearby spiral galaxy IC 342 is contributed by PDRs and by the ionized gas. We examine the spatial variations of starburst/PDR activity and study the correlation of the [C II] line with the [N II] 205 μm emission line coming exclusively from the H II regions. Methods: We present small maps of [C II] 158 μm and [N II] 205 μm lines recently observed with the GREAT receiver on board SOFIA. We present different methods to utilize the superior spatial and spectral resolution of our new data to infer information on how the gas kinematics in the nuclear region influence the observed line profiles. In particular we present a super-resolution method to derive how unresolved, kinematically correlated structures in the beam contribute to the observed line shapes. Results: We find that the emission coming from the ionized gas shows a kinematic component in addition to the general Doppler signature of the molecular gas. We interpret this as the signature of two bi-polar lobes of ionized gas expanding out of the galactic plane. We then show how this requires an adaptation of our understanding of the geometrical structure of the nucleus of IC 342. Examining the starburst activity we find ratios I( [C II] ) /I(12CO(1-0)) between 400 and 1800 in energy units. Applying predictions from numerical models of H II and PDR regions to derive the contribution from the ionized phase to the total [C II] emission we find that 35-90% of the observed [C II] intensity

  2. Dust processing in the Carina nebula region

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Mori, Tamami I.; Okada, Yoko

    2015-10-01

    Dust processing in the Carina nebula is investigated based on mid- to far-infrared spectroscopy with Infrared Space Observatory (ISO). Mapping observations over a central 40‧ ×20‧ area of the nebula with PHT-S, SWS, and LWS onboard ISO not only reveal spectroscopically that the mid-infrared unidentified infrared (UIR) bands at 6.2, 7.7, 8.6, and 11.3 μm are absent in the ionized region, but also indicate that the 11.3 μm may behave differently from the other three UIR bands near the edge of the ionized region, suggesting a variation either in the size distribution or in the ionization fraction of the band carriers. The correlation of [NII]122 μm and [SiII]35 μm line emissions observed with SWS and LWS is reinvestigated based on the recent atomic data as well as the latest cosmic abundance, suggesting that a large fraction (> 70%), if not all, of silicon returns to the gas phase in the Carina nebula, suggesting that silicates cannot survive under harsh conditions, such as massive star-forming regions. The present observations clearly show dust processing taking place in active regions in the Galaxy.

  3. Isotope effects in photo dissociation of ozone with visible light

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  4. Spatially resolved physical conditions of molecular gas: a zoom-in from circumnuclear region of M83 to Carina nebula.

    NASA Astrophysics Data System (ADS)

    Wu, Ronin; Madden, Suzanne; Galliano, Frédéric; Wilson, Christine; Onaka, Takashi; Nakamura, Tomohiko

    2015-08-01

    Since the launch of the Herschel Space Observatory, our understanding about the photo-dissociation regions (PDR) has taken a step forward. In the bandwidth of the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) on board Herschel, ten CO rotational transitions, including J=4-3 to J=13-12, and three fine structure lines, including [CI] 609, [CI] 370, and [NII] 250 micron, are covered. This presentation focuses on the physical conditions of molecular gas probed by the Herschel SPIRE/FTS.Based on the spatially resolved physical parameters derived from the CO spectral line energy distribution (SLED) map and the comparisons with the dust properties and star-formation tracers, I will first present our findings at the circumnuclear region of M83, and then zoom in toward the young open cluster, Trumpler 14, in Carina nebula. I will discuss (1) the potential of using [NII] 250 and [CI] 370 micron as star-formation tracers; (2) the reliability of tracing molecular gas with CO; (3) the excitation mechanisms of warm CO; (4) the possibility of studying stellar feedback by tracing the thermal pressure of intersetllar molecular gas.

  5. Stability of Small Grains in HII Regions and Reflection Nebulae

    NASA Technical Reports Server (NTRS)

    Werner, M. W.; Gauthier, T. N., III; Cawlfield, T.

    1993-01-01

    We have analyzed IRAS data to assess the relative amounts of small and large grains in HII regions and reflection nebulae. Our most important finding is that no evidence for small grain destruction is seen in reflection nebulae, even for [high] values of the radiation energy density at which significant grain destruction apparently occurs in HII regions. This suggests that it is not only the total radiant energy density but also the energy per photon which determines the stability of small grains in astrophysical environments.

  6. High dispersion observations of selected regions in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Boeshaar, G. O.; Harvel, C. A.; Mallama, A. D.; Perry, P. M.; Thompson, R. W.; Turnrose, B.

    High resolution spectral observations were made of several regions of the Orion Nebula near theta (2) Ori A using the IUE. The positions were selected using a moderate spatial resolution map from a previous low dispersion IUE survery of this section of the nebula. With the SWP and LWR cameras, 28 pectra were obtained of the bright bar, three Taylor-Munch cloudlets, and several surrounding locations. Emission lines of He, C, N, O, Mg, and Si allow a characterization of these cloudlets and of the gas in and around the bar. Small aperture observations provide radial velocity information for the ultraviolet emission of these features. These data show ionization variations from region to region and are suggestive of stellar wind interactions between the cloudlets and theta(2) Ori A.

  7. The Extended Region Around the Planetary Nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.'

    The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet.

    Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly.

    When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star.

    Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades.

    In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red

  8. Surface mapping of selected regions in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Perry, P. M.; Turnrose, B. E.; Harvel, C. A.; Thompson, R. W.; Mallama, A. D.

    1981-01-01

    Low dispersion, large aperture, ultraviolet spectra of selected regions in the Orion Nebula were obtained with the International Ultraviolet Explorer (IUE) scientific instrument. Spectra obtained at 35 contiguous locations defining a mosaic within the nebula were used to generate monochromatic images of high spatial resolution at the wavelengths of the ultraviolet emission lines. Image processing techniques were utilized to generate and analyze these ultraviolet surface maps. The imagery at the three wavelengths studied shows definite differences in the spatial distribution of emission from the CII CIII and OII ions. Ways of using the imagery to determine ionization structure and C/O abundance ratios throughout the regions observed are developed, in addition to means of analyzing the extensive continuum measurements in terms of dust scattering characteristics.

  9. Photo-dissociation quantum yields of mammalian oxyhemoglobin investigated by a nanosecond laser technique

    SciTech Connect

    Yang Ningli; Zhang Shuyi . E-mail: zhangsy@nju.edu.cn; Kuo Paokuang; Qu Min; Fang Jianwen; Li Jiahuang; Hua Zichun

    2007-02-23

    The photo-dissociations of oxyhemoglobin of several mammals, such as human, bovine, pig, horse, and rabbit, have been studied. By means of optical pump-probe technique, the quantum yields for photo-dissociation of these oxyhemoglobin have been determined at pH 7 and 20 {sup o}C. A nanosecond laser at 532 nm is used as the pumping source, and a xenon lamp through a monochrometer provides a probe light at 432 nm. The experimental results show that the quantum yields of these mammalian oxyhemoglobin are different from each other, especially for that of rabbit. By analyzing the amino acid sequences and tetramer structures as well as the flexibility and hydrophobicity of the different hemoglobin, possible explanations for the differences are proposed.

  10. Ice Forming Regions during Evolution of the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The condensation/sublimation front using a two dimensional model of the evolving solar system is investigated based on combined viscous and radiative heating. The snow line is shown to be a two-branched curve reflecting the competing effects of solar heating in the photosphere and internal heating at the center plane. The evolution of the icy region is described from a limited region early in the disk evolution to final positions near 1 AU. The snow line evolution predicted using two surface density models, a Hayashi minimum mass power law and an analytical solution of the nebula evolution equation. Possible effects of this dynamic motion on disk chemistry and organic molecule formation is also described.

  11. GT2_proyer_3: Unveiling the evolutionary paths of the most massive stars through the study of their ejected nebulae

    NASA Astrophysics Data System (ADS)

    Royer, P.

    2011-05-01

    Several important questions remain open regarding the latest stages of evolution of the most massive stars, in particular regarding the exact evolutionary paths between the various subtypes of O stars, LBVs and Wolf-Rayet stars, and the mass-loss history of these objects throughout their lives. In the framework of the MESS GTKP+GT1, we have obtained or will obtain PACS imaging of 9 massive star nebulae of various types (LBV, LBV candidate, OF/WN, Of?p, WR) and PACS spectroscopy of 4 of them. In this short follow-up proposal we want to obtain PACS line spectroscopy for 3 peculiar massive and evolved objects for which spectroscopy is lacking. In particular, these observations will allow to determine the elemental abundances in the nebulae as well as the mass of the neutral gas using the fine structure lines formed in the ionized gas and in the photo-dissociation region respectively.

  12. Spectroscopy of planetary nebulae in the region of Canis Major

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Yu.

    2012-11-01

    We present the results of a pilot project of spectroscopic observations for planetary nebulae (PNe) and PN candidates in Canis Major, a sky region where the remnant of a disrupted dwarf galaxy cannibalized by the Milky Way may be located. The spectra of seven objects were taken while testing the SALT spectrograph (South African Astronomical Observatory). All elemental abundances have been obtained by the T e method, where the electron temperature is calculated directly using the measured weak auroral [OIII] λ 4363 Å and/or [NII] λ 5755 Å lines. We have measured the intensities of all the detected emission lines and determined the abundances of oxygen and several other elements (N, Ne, S, Cl, C, and He) in all PNe. The radial velocity for one PN has been measured for the first time and the velocities for all of the remaining PNe have been measured with a considerably better accuracy than that of the previously published ones. The elemental abundances for three PNe have been calculated for the first time and the accuracies of determining the abundances for three others have been improved. The measured heavy-element abundance ratios (S/O, Ne/O, Cl/O) are in good agreement with their typical values for HII regions. Among the PNe studied, ESO 428-05 is the first and so far the most likely candidate for belonging to the remnants of a possible dwarf galaxy disrupted by the tidal interaction with the Milky Way.

  13. A survey for PAH emission in H II regions, planetary and proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Demuizon, M.; Cox, P.; Lequeux, J.

    1989-01-01

    The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.

  14. Deep ROSAT HRI observations of the Orion nebula region

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.

    1995-01-01

    We present results from three deep ROSAT high-resolution imager observations of the Orion Nebula star-forming region. The X-ray images contain over 1500 cataloged stars in a roughly 0.8 sq deg region centered on the Trapezium. In all, 389 distinct X-ray sources have been detected, at least two-thirds of which are associated with a single proper-motion cluster member. X-ray emission is detected from stars of all spectral types, from massive O- and B-type components of the Trapezium to the coolest, low-mass pre-main-sequence (PMS) stars. In this paper we focus primarily on X-ray emission from the late-type PMS stars. Of the approximately 100 late-type cluster members with measured spectral types, approximately three-fourths have been detected; we have derived X-ray luminosity upper limits for the remaining stars. We found coronal X-ray emission turns on around spectral type F6, with the upper envelope of activity increasing with deceasing effective temperature. When plotted in an X-ray luminosity versus bolometric luminosity diagram, late-type PMS stars lie below a 'saturation' line corresponding to L(sub x)/L(sub bol) approximately 10(exp -3). For approximately solar-mass PMS stars, we find a median X-ray luminosity approximately 1 x 10(exp 30) ergs/s. The late G, K, and M stars exhibit nearly a two order of magnitude spread in X-ray luminosity and in L(sub x)/L(sub bol) at a given effective temperature. Plots of X-ray activity versus v sin i rotational velocity and rotational period appear to show no clear dependence of activity on rotation. However, because only a small fraction of late-type PMS stars in the Orion Nebula have measured v sin i or P(sub rot) and because of uncertainties in L(sub x) and L(sub x)/L(sub bol), we believe the data are not conclusive on this point. Light curves of the detected X-ray sources have revealed at least 10 strong X-ray flares with characteristic rise times greater than or approximately equal to 1 hr and decay times ranging from

  15. NICMOS PEELS AWAY LAYERS OF DUST TO SHOW INNER REGION OF DUSTY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has penetrated layers of dust in a star-forming cloud to uncover a dense, craggy edifice of dust and gas . This region is called the Cone Nebula (NGC 2264), so named because, in ground-based images, it has a conical shape. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the nebula's inner regions. But the Cone is so dense that even the near-infared 'eyes' of NICMOS can't penetrate all the way through it. The image shows the upper 0.5 light-years of the nebula. The entire nebula is 7 light-years long. The Cone resides in a turbulent star-forming region, located 2,500 light-years away in the constellation Monoceros. Radiation from hot, young stars [located beyond the top of the image] has slowly eroded the nebula over millions of years. Ultraviolet light heats the edges of the dark cloud, releasing gas into the relatively empty region of surrounding space. NICMOS has peeled away the outer layers of dust to reveal even denser dust. The denser regions give the nebula a more three-dimensional structure than can be seen in the visible-light picture at left, taken by the Advanced Camera for Surveys aboard the Hubble telescope. In peering through the dusty facade to the nebula's inner regions, NICMOS has unmasked several stars [yellow dots at upper right]. Astronomers don't know whether these stars are behind the dusty nebula or embedded in it. The four bright stars lined up on the left are in front of the nebula. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The NICMOS color composite image was made by combining photographs taken in J-band, H-band, and Paschen-alpha filters. The NICMOS images were taken

  16. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  17. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  18. Physical Conditions in Low Ionization Regions of the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Baldwin, J. A.; Crotts, A.; DuFour, R. J.; Ferland, G. J.; Heathcote, S.; Hester, J. J.; Korista, K. T.; Martin, P. J.; ODell, C. R.

    1996-01-01

    We reexamine the spectroscopic underpinnings of recent claims that low ionization (O(I)) and (Fe(II)) lines from the Orion H(II) region are produced in a region where the iron-carrying grains have been destroyed and the electron density is surprisingly high. Our new HST and CTIO observations show that previous reported detections of(O(I)) lambda 5577 were strongly affected by telluric emission. Our line limits consistent with a moderate density (approx. 10(exp 4)/cu. cm photoionized gas. We show that a previously proposed model of the Orion H(II) region reproduces the observed (O(I)) and (Fe(II)) spectrum. These lines are fully consistent with formation in a moderate density dusty region.

  19. Photoevaporation of Disks Around Young Stars: Application to Ultracompact HII Regions, Proplyds, and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Young massive stars produce sufficient Lyman continuum photon luminosity to significantly affect the structure and evolution of the accretion disks surrounding them. A nearly static, ionized, isothermal 10' K atmosphere forms above the neutral disk, creating a photoevaporative flow from the outer parts of the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for greater than or approximately 10(exp 5) years for disk masses M(sub d) to approximately 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which axe externally illuminated by the UV photons from the nearby massive star theta(sup 1)C.

  20. [Determination of total cyanides and sulfides in wastewater using ion chromatography coupled with ultraviolet photo-dissociation/gas-membrane diffusion].

    PubMed

    Lu, Keping

    2015-03-01

    An automated system for the determination of total cyanides and sulfides in wastewater has been developed using flow injection, ultraviolet (UV) photo-dissociation, gas-membrane diffusion, column trapping, ion chromatography separation and pulsed amperometric detection. When the sample was mixed with sulfuric acid and hypophosphorous acid medium containing the appropriate amount of sulfamic acid, ascorbic acid, EDTA and citric acid, metal-cyanide complexes such as Fe (CN)3-(6) can be photo-dissociated by 312 nm UV light, which results in hydrogen cyanide ( HCN) and similarly, sulfides release hydrogen sulfide (H2S). These products were diffused through a 0.45 µm hydrophobic porous polypropylene membrane and were then absorbed in the dilute NaOH solution, concentrated with a Metrosep A PCC 1 HC/4.0 column, separated on an IonPac AS7 column, and finally detected by the pulsed amperometric detector with Ag electrode. The total cyanides and sulfides were good linear in the range of 0.5-1,000 µg/L with correlation coefficients of 0.998 9 and 0.999 7 respectively. The recoveries were 93%-102% and the limits of detection were 0.5 µg/L for total cyanides and 1.0 µg/L for sulfides under the conditions of the sample volume of 100 µL and the signal to noise ratio of 5. The sample throughput of the system was six samples per hour. The results from this new method have been compared with the ones obtained with the standard method, which shows a good agreement. PMID:26182472

  1. Photometry of the central region of the Andromeda Nebula

    SciTech Connect

    Sharov, A.S.; Liutyi, V.M.

    1980-05-01

    The photoelectric U, B, V observations of the central region of M81 made in 166 fields at distances of 54-351 arcsec from the center are used to explain the structure of the central condensation of the galaxy. The surface-brightness isophotes can be fit by ellipses varying in axial ratio from 0.9 to 0.6 and in position angle from 70 to 45 deg. The central condensation may include a bar in the form of a triaxial ellipsoid the nucleus occupies an asymmetric position in this condensation, shifted by 22 arcsec northwest relative to the most distant U isophote at a 368 arcsec. The apparent eccentricity with respect to the outlying isophotes is caused by distribution of dust, as shown by the colorimetric B - V, U - B color-index profiles reflecting the dust in the central condensation of M31.

  2. RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H II REGIONS AND PLANETARY NEBULAE: {kappa}-DISTRIBUTED ELECTRONS

    SciTech Connect

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.

    2012-06-20

    The measurement of electron temperatures and metallicities in H II regions and planetary nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What is worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H II regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a '{kappa}-distribution' for the electron energies. Such distributions are widely found in solar system plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H II regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from H II regions and PNe, it appears that {kappa} {approx}> 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.

  3. A catalog of planetary nebula candidates and HII regions in NGC 3109

    NASA Astrophysics Data System (ADS)

    Peña, M.; Richer, M. G.; Stasińska, G.

    2007-04-01

    Aims:Images obtained with the ESO VLT and FORS1 in [O iii] 5007 on- and off-band, as well as rGunn filters, are analyzed to search for planetary nebula (PN) candidates. Methods: In the continuum-subtracted [O iii] 5007 on-band images, a large number of emission-line regions were detected. We describe the criteria employed for distinguishing PN candidates from compact HII regions. Results: The most unambiguous discriminators for the two classes of nebulae are the sizes and properties of the ionizing stars. Based upon these criteria, we have found 20 PN candidates for which we present coordinates, nebular [O iii] fluxes, and stellar magnitudes. The cumulative luminosity function for these PNe is discussed. A catalog of HII regions listing coordinates, nebular [O iii] fluxes, stellar magnitudes, and other characteristics is also presented. We find that HII regions are rather concentrated towards the disk of the galaxy, while PNe are distributed also above and below this structure, consistent with their belonging to an older stellar population. Based on observations collected at the European Southern Observatory, VLT, Paranal, Chile, program ID 076.B-0166.

  4. Testing Models of Low-Excitation Photodissociation Regions with Far-Infrared Observations of Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Young Owl, Rolaine C.; Meixner, Margaret M.; Fong, David; Haas, Michael R.; Rudolph, Alexander L.; Tielens, A. G. G. M.

    2002-10-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions (PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 μm, [C II] 158 μm, and [Si II] 35 μm and the adjacent far-infrared continuum to these lines. Our analysis of these far-infrared observations provides estimates of the physical conditions in each reflection nebula. In our sample of reflection nebulae, the stellar effective temperatures are 10,000-30,000 K, the gas densities are 4×102-2×104 cm-3, the gas temperatures are 200-690 K, and the incident far-ultraviolet intensities are 300-8100 times the ambient interstellar radiation field strength (1.2×10-4 ergs cm-2 s-1 sr-1). Our observations are compared with current theory for low-excitation PDRs. The [C II] 158 μm to [O I] 63 μm line ratio decreases with increasing incident far-ultraviolet intensity. This trend is due in part to a positive correlation of gas density with incident far-ultraviolet intensity. We show that this correlation arises from a balance of pressure between the H II region and the surrounding PDR. The [O I] 145 to 63 μm line ratio is higher (greater than 0.1) than predicted and is insensitive to variations in incident far-ultraviolet intensity and gas density. The stellar temperature has little effect on the heating efficiency that primarily had the value 3×10-3, within a factor of 2. This result agrees with a model that modifies the photoelectric heating theory to account for color temperature effects and predicts that the heating efficiencies would vary by less than a factor of 3 with the color temperature of the illuminating field. In addition to the single-pointing observations, an [O I] 63 μm scan was done across the molecular ridge of one of our sample reflection nebulae, NGC 1977. The result appears to support previous suggestions that the ionization front of this well-studied PDR is not purely edge-on.

  5. Denser Sampling of the Rosette Nebula with Faraday Rotation Measurements: Improved Estimates of Magnetic Fields in H II Regions

    NASA Astrophysics Data System (ADS)

    Costa, Allison H.; Spangler, Steven R.; Sink, Joseph R.; Brown, Shea; Mao, Sui Ann

    2016-04-01

    We report Faraday rotation measurements of 11 extragalactic radio sources with lines of sight through the Rosette Nebula, a prominent H ii region associated with the star cluster NGC 2244. The goal of these measurements is to better determine the strength and structure of the magnetic field in the nebula. We calculate the rotation measure (RM) through two methods, a least-squares fit to χ ({λ }2) and Rotation Measure Synthesis. In conjunction with our results from Savage et al., we find an excess RM due to the shell of the nebula of +40 to +1200 rad m-2 above a background RM of +147 rad m-2. We discuss two forms of a simple shell model intended to reproduce the magnitude of the observed RM as a function of distance from the center of the Rosette Nebula. The models represent different physical situations for the magnetic field within the shell of the nebula. The first assumes that there is an increase in the magnetic field strength and plasma density at the outer radius of the H ii region, such as would be produced by a strong magnetohydrodynamic shock wave. The second model assumes that any increase in the RM is due solely to an increase in the density, and the Galactic magnetic field is unaffected in the shell. We employ a Bayesian analysis to compare the two forms of the model. The results of this analysis were inconclusive, although the model without amplification of the interstellar magnetic field is weakly favored.

  6. Fast, Low-ionization Emission Regions of the Planetary Nebula M2-42

    NASA Astrophysics Data System (ADS)

    Danehkar, A.; Parker, Q. A.; Steffen, W.

    2016-02-01

    Spatially resolved observations of the planetary nebula M2-42 (PN G008.2-04.8) obtained with the Wide Field Spectrograph on the Australian National University 2.3 m telescope have revealed the remarkable features of bipolar collimated jets emerging from its main structure. Velocity-resolved channel maps derived from the [N ii] λ6584 emission line disentangle different morphological components of the nebula. This information is used to develop a three-dimensional morpho-kinematic model, which consists of an equatorial dense torus and a pair of asymmetric bipolar outflows. The expansion velocity of about 20 km s-1 is measured from the spectrum integrated over the main shell. However, the deprojected velocities of the jets are found to be in the range of 80-160 km s-1 with respect to the nebular center. It is found that the mean density of the collimated outflows, 595 ± 125 cm-3, is five times lower than that of the main shell, 3150 cm-3, whereas their singly ionized nitrogen and sulfur abundances are about three times higher than those determined from the dense shell. The results indicate that the features of the collimated jets are typical of fast, low-ionization emission regions.

  7. Following the Water: the Evolution of Ice-forming Regions in the Early Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    The abundances of water-vapor and water-ice during the first ten million years of the protoplanetary solar nebula are simulated using a new condensation/sublimation model. This study builds on a "snow line" model reported in ApJ 627 L153 (2005); it uses a simple phenomenological model where water vapor molecules evolve from solar atomic abundance and eventually condenses to ice at colder points in the nebula once the water-vapor partial pressure exceeds a value determined by the phase diagram for water. The synthesis of water vapor from elementary species is modeled with a chemical network consisting of about 400 species and 4000 reactions. The evolution of the icy zone (and its relative abundance of solid ice) is traced from a limited region in the early hotter disk to its final state at the time when the gas is expelled and a planetary system begins to form. Possible effects of this dynamic motion on disk chemistry and organic molecule formation are also described.

  8. Horsehead nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view.

    The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view.

    Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars.

    The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope.

    The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ.

    This popular celestial target was the clear

  9. SPECTROPHOTOMETRY OF THE HUYGENS REGION OF THE ORION NEBULA, THE EXTENDED ORION NEBULA, AND M 43: SCATTERED LIGHT SYSTEMATICALLY DISTORTS CONDITIONS DERIVED FROM EMISSION LINES

    SciTech Connect

    O'Dell, C. R.; Harris, Jessica A. E-mail: jessica.a.harris@vanderbilt.ed

    2010-10-15

    We report on medium resolution spectrophotometry of the Orion Nebula region, including for the first time the Extended Orion Nebula (EON) and the nearby M 43. The 49 long-slit observations were divided into 99 smaller samples, which have allowed determinations of the amount of extinction, extinction-corrected H{beta} surface brightness, electron temperatures (from [S II], [N II], and [O III]), and electron densities (from [S II] and [Cl III]) throughout much of this complex region. We verify an earlier conclusion from a radio/optical study that beyond about 5' from {theta}{sup 1}Ori C local emission begins to be contaminated by scattering of light from the much brighter central Huygens region of M 42, and this scattered light component becomes dominant at large distances. This contamination means that the derived properties for the outer regions are not accurate. From comparison of the light from the dominant star in M 43 with the continuum of that nebula (which is almost entirely scattered starlight), it is determined that scattered light is enhanced in the blue, which can lead to observed Balmer line ratios that are theoretically impossible and erroneous electron temperatures. This blue scattering of emission lines is important even in the Huygens region because it means that at anything except very high spectroscopic resolution the observed lines are a blend of the original and scattered light, with shorter wavelength lines being artificially enhanced. This can lead to overestimates of the electron temperatures derived from the nebular and auroral line ratios of forbidden lines. This phenomenon is probably applicable to many other H II regions. We have been able to use extinction-insensitive line ratios, the extinction-corrected surface brightness in H{beta}, and the equivalent width of the continuum to create for the first time a three-dimensional model of the entire M 42, EON, and M 43 region. This is an irregular concave blister of ionized gas bounded on the

  10. Spectrophotometry of the Huygens Region of the Orion Nebula, the Extended Orion Nebula, and M 43: Scattered Light Systematically Distorts Conditions Derived from Emission Lines

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Harris, Jessica A.

    2010-10-01

    We report on medium resolution spectrophotometry of the Orion Nebula region, including for the first time the Extended Orion Nebula (EON) and the nearby M 43. The 49 long-slit observations were divided into 99 smaller samples, which have allowed determinations of the amount of extinction, extinction-corrected Hβ surface brightness, electron temperatures (from [S II], [N II], and [O III]), and electron densities (from [S II] and [Cl III]) throughout much of this complex region. We verify an earlier conclusion from a radio/optical study that beyond about 5' from θ1Ori C local emission begins to be contaminated by scattering of light from the much brighter central Huygens region of M 42, and this scattered light component becomes dominant at large distances. This contamination means that the derived properties for the outer regions are not accurate. From comparison of the light from the dominant star in M 43 with the continuum of that nebula (which is almost entirely scattered starlight), it is determined that scattered light is enhanced in the blue, which can lead to observed Balmer line ratios that are theoretically impossible and erroneous electron temperatures. This blue scattering of emission lines is important even in the Huygens region because it means that at anything except very high spectroscopic resolution the observed lines are a blend of the original and scattered light, with shorter wavelength lines being artificially enhanced. This can lead to overestimates of the electron temperatures derived from the nebular and auroral line ratios of forbidden lines. This phenomenon is probably applicable to many other H II regions. We have been able to use extinction-insensitive line ratios, the extinction-corrected surface brightness in Hβ, and the equivalent width of the continuum to create for the first time a three-dimensional model of the entire M 42, EON, and M 43 region. This is an irregular concave blister of ionized gas bounded on the outside by apparent

  11. An atlas of emission line fluxes of planetary nebulae in the 1150-3200 A region

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Mccracken, C. W.

    1981-01-01

    Emission line fluxes for 28 planetary nebulae are presented. The nebulae were chosen to cover a wide range of excitation classes, apparent diameters, location in the sky, and types of central stars. All objects were observed in the low dispersion mode of the IUE spectrographs, using the large entrance aperture.

  12. THE EMISSION NEBULA Sh 2-174: A RADIO INVESTIGATION OF THE SURROUNDING REGION

    SciTech Connect

    Ransom, R. R.; Kothes, R.; Geisbuesch, J.; Landecker, T. L.; Reich, W.

    2015-02-01

    Sh 2-174 is believed to be either a planetary nebula (PN) or ionized, ambient interstellar medium (ISM). We present in this paper 1420 MHz polarization, 1420 MHz total intensity (Stokes-I), and neutral hydrogen (H I) images of the region around Sh 2-174. The radio images address not only the nature of the object, but also the history of the relationship between Sh 2-174 and its surrounding environment. The H I images show that Sh 2-174 sits presently at the center of a ∼1.°2 × ∼0.°4 cloud (with peak hydrogen density n {sub H} = 4 ± 2 cm{sup –3}). The Stokes-I image shows thermal-emission peaks (with electron densities n{sub e} = 11 ± 3 cm{sup –3}) coincident with the R-band optical nebula, as well as low-surface-brightness emission from an ionized ''halo'' around Sh 2-174 and from an ionized ''plateau'' extending southeast from the cloud. The polarization images reveal Faraday-rotation structures along the projected trajectory of Sh 2-174, including a high-contrast structure with ''arms'' that run precisely along the eastern edge of the H I cloud and a wide central region that merges with the downstream edge of Sh 2-174. The high-contrast structure is consistent with an ionized tail that has both early-epoch (before Sh 2-174 entered the cloud) and present-epoch (after Sh 2-174 entered the cloud) components. Furthermore, our rotation-measure analysis indicates that the ISM magnetic field is deflected at the leading edge of Sh 2-174. The downstream tail and upstream field deflection point to a PN-ISM interaction. Our estimated space velocity for the host white dwarf (GD 561) demonstrates that Sh 2-174 entered the cloud ∼27,000 yr ago, and gives a PN-ISM interaction timescale ≲ 2.0 × 10{sup 5} yr. We estimate an ambient magnetic field in the cloud of 11 ± 3 μG.

  13. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  14. The planetary nebulae and H II regions in NGC 6822 revisited. Clues to AGB nucleosynthesis

    NASA Astrophysics Data System (ADS)

    García-Rojas, Jorge; Peña, Miriam; Flores-Durán, Sheila; Hernández-Martínez, Liliana

    2016-02-01

    Aims: The chemical behaviour of an ample sample of planetary nebulae (PNe) in NGC 6822 is analysed. Methods: Spectrophotometric data of 11 PNe and two H ii regions were obtained with the OSIRIS spectrograph attached to the Gran Telescopio Canarias. Data for other 13 PNe and three H ii regions were retrieved from the literature. Physical conditions and chemical abundances of O, N, Ne, Ar, and S were derived in a consistent way for 19 PNe and 4 H ii regions. Results: Abundances in the PNe sample are widely distributed showing 12 + log (O/H) from 7.4 to 8.2 and 12 + log (Ar/H) from 4.97 to 5.80. Two groups of PNe can be differentiated: one old with low metallicity (12 + log (O/H) <8.0 and 12 + log (Ar/H) < 5.7) and another younger one with metallicities similar to the values for H ii regions. The old objects are distributed in a larger volume than the young ones. An important fraction of PNe (over 30%) was found to be highly N-rich (Peimbert Type I PNe). Such PNe occur at any metallicity. In addition, about 60% of the sample presents high ionization (He++/He ≥ 0.1), possessing a central star with effective temperature higher than 100 000 K. Possible biases in the sample are discussed. From comparison with stellar evolution models by Karakas (2010) and Fishlock et al. (2014) of the observed N/O abundance ratios, our PNe should have had initial masses that are lower than 4 M⊙, although if the comparison is made with Ne vs. O abundances, the initial masses should have been lower than 2 M⊙. It appears that these models of stars of 2-3 M⊙ are producing too much 22Ne in the stellar surface at the end of the AGB. On the other hand, the comparison with another set of stellar evolution models with a different treatment of convection and on the assumptions about the overshoot of the convective core during the core H-burning phase, provided there is reasonable agreement between the observed and predicted N/O and Ne/H ratios if initial masses of more massive stars are

  15. Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC 6720

    PubMed Central

    Cox, N. L. J.; Pilleri, P.; Berné, O.; Cernicharo, J.; Joblin, C.

    2015-01-01

    Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μm aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7–8 μm range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules. PMID:26924856

  16. AGILE detection of enhanced gamma-ray emission from the Crab Nebula region

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Striani, E.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Pittori, C.; Verrecchia, F.; Argan, A.; Trois, A.; de Paris, G.; Vittorini, V.; D'Ammando, F.; Sabatini, S.; Piano, G.; Costa, E.; Donnarumma, I.; Feroci, M.; Pacciani, L.; Del Monte, E.; Lazzarotto, F.; Soffitta, P.; Evangelista, Y.; Lapshov, I.; Chen, A.; Giuliani, A.; Marisaldi, M.; Di Cocco, G.; Labanti, C.; Fuschino, F.; Galli, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Pucella, G.; Rapisarda, M.; Vercellone, S.; Pellizzoni, A.; Pilia, M.; Barbiellini, G.; Longo, F.; Picozza, P.; Morselli, A.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Giommi, P.; Santolamazza, P.; Lucarelli, F.; Colafrancesco, S.; Salotti, L.

    2010-09-01

    AGILE is detecting an increased gamma-ray flux from a source positionally consistent with the Crab Nebula. Integrating during the period 2010-09-19 00:10 UT to 2010-09-21 00:10 UT the AGILE-GRID detected enhanced gamma-ray emission above 100 MeV from a source at Galactic coordinates (l,b) = (184.6, -6.0) +/- 0.4 (stat.) +/- 0.1 (syst.) deg, and flux F > 500 e-8 ph/cm2/sec above 100 MeV, corresponding to an excess with significance above 4.4 sigma with respect to the average flux from the Crab nebula (F = (220 +/- 15)e-8 ph/cm^2/sec, Pittori et al., 2009, A&A, 506, 1563).

  17. On the Nonthermal κ-distributed Electrons in Planetary Nebulae and H II Regions: The κ Index and Its Correlations with Other Nebular Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zhang, Bing; Liu, Xiao-Wei

    2016-01-01

    Recently, a suspicion arose that the free electrons in planetary nebulae (PNs) and H ii regions might have nonthermal energy distributions. In this scenario, a κ index is introduced to characterize the electron energy distributions, with smaller κ values indicating larger deviations from Maxwell-Boltzmann distributions. Assuming that this is the case, we determine the κ values for a sample of PNs and H ii regions by comparing the intensities of [O iii] collisionally excited lines and the hydrogen Balmer jump. We find the average κ indices of PNs and H ii regions to be 27 and 32, respectively. Correlations between the resultant κ values and various physical properties of the nebulae are examined to explore the potential origin of nonthermal electrons in photoionized gaseous nebulae. However, no positive result is obtained. Thus, the current analysis does not lend support to the idea that κ-distributed electrons are present in PNs and H ii regions.

  18. Photometric study of NGC 2023 in the 3500 A to 10000 A region - Confirmation of a near-IR emission process in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Kraiman, J. B.; Witt, A. N.

    1984-01-01

    A surface brightness study of the reflection nebula NGC 2023 covering the 3500-10,000 A wavelength region performed with uvby photoelectric photometry and BVRI imaging with a CCD detector is reported along with VRI photometry of a cluster of embedded red stars. The nebular radiation in the 3500-5500 A region is dust-scattered starlight originating in the star HD 37903. The embedded red stars are probably pre-main sequence stars. The nebular surface brightness in R and I exceeds that expected on the basis of a reasonable radiative transfer model by factors of two and more than three, respectively. The excess radiation is extended across the nebula in a manner similar to the scattered light. The extended red emission may be interpreted as the high-frequency extension of extended emission discovered by Sellgren, Werner, and Dinerstein (1983) in the 2-5 micron region in NGC 2023 and two other reflection nebulae.

  19. Doradus Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/21 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars.

    The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago.

    The stars in R136 produce intense 'stellar winds,' streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust.

    This mosaic image of 30 Doradus consists of five overlapping

  20. THE INTEGRATED DIFFUSE X-RAY EMISSION OF THE CARINA NEBULA COMPARED TO OTHER MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Chu, You-Hua; Gruendl, Robert A.; Oey, M. S.; Pittard, Julian M.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) has shown that the Carina Nebula displays bright, spatially-complex soft diffuse X-ray emission. Here, we 'sum up' the CCCP diffuse emission work by comparing the global morphology and spectrum of Carina's diffuse X-ray emission to other famous sites of massive star formation with pronounced diffuse X-ray emission: M17, NGC 3576, NGC 3603, and 30 Doradus. All spectral models require at least two diffuse thermal plasma components to achieve adequate spectral fits, a softer component with kT = 0.2-0.6 keV and a harder component with kT = 0.5-0.9 keV. In several cases these hot plasmas appear to be in a state of non-equilibrium ionization that may indicate recent and current strong shocks. A cavity north of the embedded giant H II region NGC 3576 is the only region studied here that exhibits hard diffuse X-ray emission; this emission appears to be nonthermal and is likely due to a recent cavity supernova, as evidenced by a previously-known pulsar and a newly-discovered pulsar wind nebula also seen in this cavity. All of these targets exhibit X-ray emission lines that are not well modeled by variable-abundance thermal plasmas and that might be attributed to charge exchange at the shock between the hot, tenuous, X-ray-emitting plasma and cold, dense molecular material; this is likely evidence for dust destruction at the many hot/cold interfaces that characterize massive star-forming regions.

  1. Radial metallicity gradients in spiral galaxies from H II regions and planetary nebulae: probing galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia

    2015-08-01

    Radial metallicity gradients, typically observed in spiral galaxies, are excellent constraints for chemical evolution models. The contemporary studies of the two stellar populations, whose progenitors have formed at different times, yield to the chemical and time constraining of the models. In this context, planetary nebula and HII region analysis proved to be ideal two-epochs test populations. We present an assortment of galaxies whose oxygen abundances have been determined both with weak- and strong-line methods, and whose radial metallicity gradients and their evolution in time have disclosed very interesting correlations with the galaxy characteristics. New results from our Gemini/GMOS observations, and a review of the best literature data, set the stage for a better understanding of spiral galaxy evolution.

  2. Irradiated interfaces in the Ara OB1, Carina, Eagle Nebula, and Cyg OB2 massive star formation regions

    NASA Astrophysics Data System (ADS)

    Hartigan, P.; Palmer, J.; Cleeves, L. I.

    2012-12-01

    Regions of massive star formation offer some of the best and most easily-observed examples of radiation hydrodynamics. Boundaries where fully-ionized H II regions transition to neutral/molecular photodissociation regions (PDRs) are of particular interest because marked temperature and density contrasts across the boundaries lead to evaporative flows and fluid dynamical instabilities that can evolve into spectacular pillar-like structures. When detached from their parent clouds, pillars become ionized globules that often harbor one or more young stars. H2 molecules at the interface between a PDR and an H II region absorb ultraviolet light from massive stars, and the resulting fluoresced infrared emission lines are an ideal way to trace this boundary independent of obscuring dust. This paper presents H2 images of four regions of massive star formation that illustrate different types of PDR boundaries. The Ara OB1 star formation region contains a striking long wall that has several wavy structures which are present in H2, but the emission is not particularly bright because the ambient UV fluxes are relatively low. In contrast, the Carina star formation region shows strong H2 fluorescence both along curved walls and at the edges of spectacular pillars that in some cases have become detached from their parent clouds. The less-spectacular but more well-known Eagle Nebula has two regions that have strong fluorescence in addition to its pillars. While somewhat older than the other regions, Cyg OB2 has the highest number of massive stars of the regions surveyed and contains many isolated, fluoresced globules that have head-tail morphologies which point towards the sources of ionizing radiation. These images provide a collection of potential astrophysical analogs that may relate to ablated interfaces observed in laser experiments of radiation hydrodynamics.

  3. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    SciTech Connect

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H. E-mail: elena@bao.sci.am E-mail: pyo@subaru.naoj.org E-mail: smm23@kent.ac.uk E-mail: c.davis@jach.hawaii.edu E-mail: gerald.schieven@nrc-cnrc.gc.ca

    2010-03-15

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband H{alpha} and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  4. A Tactile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  5. Butterfly Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this image of the 'butterfly wing'- shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, 1997 as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA shuttle astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles.

  6. X-RAY INVESTIGATION OF THE DIFFUSE EMISSION AROUND PLAUSIBLE {gamma}-RAY EMITTING PULSAR WIND NEBULAE IN KOOKABURRA REGION

    SciTech Connect

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu

    2012-05-10

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV {gamma}-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of {sigma}{sub X} = 1.'66 and {sigma}{sub X} = 1.'49, respectively. The peaks of the diffuse X-ray emission are located within the {gamma}-ray excess maps obtained by H.E.S.S. and the offsets from the {gamma}-ray peaks are 2.'8 for PSR J1420-6048 and 4.'5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with {Gamma} = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 {mu}G and 2.5 {mu}G, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  7. X-Ray Investigation of the Diffuse Emission around Plausible γ-Ray Emitting Pulsar Wind Nebulae in Kookaburra Region

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-05-01

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV γ-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of σX = 1farcm66 and σX = 1farcm49, respectively. The peaks of the diffuse X-ray emission are located within the γ-ray excess maps obtained by H.E.S.S. and the offsets from the γ-ray peaks are 2farcm8 for PSR J1420-6048 and 4farcm5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with Γ = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 μG and 2.5 μG, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  8. Orion Nebula and Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1998-01-01

    This report summarizes the research performed at Rice University related to NASA-Ames University consortium grant NCC2-5199 during the two year period 1996 September 1 through 1998 August 31. The research program, titled Orion Nebula and Planetary Nebulae, involved the analysis of Hubble Space Telescope (HST) imagery and spectroscopy of the Orion Nebula and of the planetary nebulae NGC 6818 and NGC 6210. In addition, we analyzed infrared spectra of the Orion Nebula taken with the Infrared Space Observatory (ISO) The primary collaborators at NASA-Ames were Drs. R. H. Rubin, A. G. C. M. Tielens, S. W. J. Colgan, and S. D. Lord (Tielens & Lord has since changed institutions). Other collaborators include Drs. P. G. Martin (CITA, Toronto), G. J. Ferland (U. KY), J. A. Baldwin (CTIO, Chile), J. J. Hester (ASU), D. K. Walter (SCSU), and P. Harrington (U. MD). In addition to the Principal Investigator, Professor Reginald J. Dufour of the Department of Space Physics & Astronomy, the research also involved two students, Mr. Matthew Browning and Mr. Brent Buckalew. Mr. Browning will be graduating from Rice in 1999 May with a B.A. degree in Physics and Mr. Buckalew continues as a graduate student in our department, having recently received a NASA GSRP research fellowship (sponsored by Ames). The collaboration was very productive, with two refereed papers already appearing in the literature, several others in preparation, numerous meeting presentations and two press releases. Some of our research accomplishments are highlighted below. Attached to the report are copies of the two major publications. Note that this research continues to date and related extensions of it recently has been awarded time with the HST for 1999-2000.

  9. A search for planetary Nebulae with the Sloan digital sky survey: the outer regions of M31

    SciTech Connect

    Kniazev, Alexei Y.; Grebel, Eva K.; Martínez-Delgado, David; Zucker, Daniel B.; Rix, Hans-Walter; Snedden, Stephanie A.

    2014-01-01

    We have developed a method to identify planetary nebula (PN) candidates in imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the SDSS's five-band sampling of emission lines in PN spectra, which results in a color signature distinct from that of other sources. Selection criteria based on this signature can be applied to nearby galaxies in which PNe appear as point sources. We applied these criteria to the whole area of M31 as scanned by the SDSS, selecting 167 PN candidates that are located in the outer regions of M31. The spectra of 80 selected candidates were then observed with the 2.2 m telescope at Calar Alto Observatory. These observations and cross-checks with literature data show that our method has a selection rate efficiency of about 90%, but the efficiency is different for the different groups of PN candidates. In the outer regions of M31, PNe trace different well-known morphological features like the Northern Spur, the NGC 205 Loop, the G1 Clump, etc. In general, the distribution of PNe in the outer region 8 < R < 20 kpc along the minor axis shows the {sup e}xtended disk{sup —}a rotationally supported low surface brightness structure with an exponential scale length of 3.21 ± 0.14 kpc and a total mass of ∼10{sup 10} M {sub ☉}, which is equivalent to the mass of M33. We report the discovery of three PN candidates with projected locations in the center of Andromeda NE, a very low surface brightness giant stellar structure in the outer halo of M31. Two of the PNe were spectroscopically confirmed as genuine PNe. These two PNe are located at projected distances along the major axis of ∼48 Kpc and ∼41 Kpc from the center of M31 and are the most distant PNe in M31 found up to now. With the new PN data at hand we see the obvious kinematic connection between the continuation of the Giant Stream and the Northern Spur. We suggest that 20%-30% of the stars in the Northern Spur area may belong to the Giant Stream. In our data we also

  10. Stingray Nebula

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue).

  11. The Orion Nebula

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This spectacular color panorama of the center the Orion nebula is one of the largest pictures ever assembled from individual images taken with NASA's Hubble Space Telescope. The picture, seamlessly composited from a mosaic of 15 separate fields, covers an area of sky about five percent the area covered by the full Moon. The seemingly infinite tapestry of rich detail revealed by Hubble shows a churning turbulent star factory set within a maelstrom of flowing, luminescent gas. Though this 2.5 light-years wide view is still a small portion of the entire nebula, it includes almost all of the light from the bright glowing clouds of gas and a star cluster associated with the nebula. The mosaic reveals at least 153 glowing protoplanetary disks (first discovered with the Hubble in 1992, and dubbed 'proplyds') that are believed to be embryonic solar systems that will eventually form planets. (Our solar system has long been considered the relic of just such a disk that formed around the newborn Sun). The proplyds that are closest to the Trapezium stars (image center) are shedding some of their gas and dust. The pressure of starlight from the hottest stars forms 'tails' which act like wind vanes pointing away from the Trapezium. These tails result from the light from the star pushing the dust and gas away from the outside layers of the proplyds. In addition to the luminescent proplyds, seven disks are silhouetted against the bright background of the nebula. Located 1,500 light-years away, along our spiral arm of the Milky Way, the Orion nebula is located in the middle of the sword region of the constellation Orion the Hunter, which dominates the early winter evening sky at northern latitudes.

  12. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  13. Abundances of Planetary Nebula NGC 5315

    NASA Technical Reports Server (NTRS)

    Pottasch, S. R.; Beintema, D. A.; Koorneef, J.; Salas, J. Bernard; Feibelman, W. A.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The ISO and IUE spectra of the elliptical nebula NGC 5315 is presented. These spectra axe combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous determinations. The HST Nicmos observations of the nebula in 3 emission lines are also presented. These observations are used to determine the helium abundance as a function of position in the nebula. A discussion is given of possible evolutionary effects.

  14. Planetary nebulae

    NASA Astrophysics Data System (ADS)

    Gieseking, F.

    1983-02-01

    The first planetary nebula (PN) was discovered by Darquier in 1779. In 1981, a compilation of galactic PN listed a total of 1455 objects. Outside the Milky Way Galaxy, PN are currently known in the Magellanic Clouds and in several members of the local group of galaxies. The PN have a rich emission-line spectrum, which makes it possible to recognize them at large distances. A central stellar object can be observed within the nebula. In 1927, spectral lines at 4959 A and 5007 A emitted by the PN could finally be identified as 'forbidden lines' of O(++). The life expectancy of a PN, estimated on the basis of the observed expansion rate, is only about 30,000 years. The PN have a number of interesting characteristics which are partly related to the high effective temperature and luminosity of the central stars, the presence of a particle system under extreme physical conditions, and the stellar material provided by the PN for the interstellar medium. Attention is given to the determination of the distance of PN, the Shklovsky distances, and two mysterious aspects related to the spectrum

  15. The Structure of the Nearby Giant Star-Forming Region 30 Doradus

    NASA Astrophysics Data System (ADS)

    Pellegrini, Eric; Baldwin, Jack; Hanson, Margaret; Ferland, Gary; Troland, Thomas

    2007-08-01

    The rates of star formation and chemical evolution are controlled in part by the interaction of stellar radiation and winds with the remnant molecular gas from which the stars have formed. We are carrying out a detailed, panchromatic study of these processes in the two nearest giant star-forming regions, 30 Doradus and NGC 3603, as an aide in understanding the nature of Giant Extragalactic H II Regions, starbursts, and Ultra-Luminous IR Galaxies. We recently completed our observations of NGC 3603. Here we request 2 nights on the Blanco telescope to obtain a dense grid of optical long-slit spectra criss- crossing 30 Dor. These will cover the [S II] doublet (to measure N_e) and also [O III], H(beta), [O I], H(alpha) and [N II] to measure the ionization mechanism and ionization parameter, at ~3800 different spots in the nebula. We also request 3 nights on SOAR to take K-band long slit spectra covering H^+ Br(gamma) and several H_2 lines across three representative edge-on ionization fronts in 30 Dor. The IR spectra will be taken in locations also covered by the optical spectra, and will tell us about the structure, pressure support and heating mechanisms in the photo-dissociation regions (PDRs) at these points. Either half of this project can stand on its own, but both parts together will permit the PI to complete his PhD thesis.

  16. Ammonia observations in the LBV nebula G79.29+0.46. Discovery of a cold ring and some warm spots

    NASA Astrophysics Data System (ADS)

    Rizzo, J. R.; Palau, Aina; Jiménez-Esteban, F.; Henkel, C.

    2014-04-01

    Context. The surroundings of luminous blue variable (LBV) stars are excellent laboratories to study the effects of their high UV radiation, powerful winds, and strong ejection events onto the surrounding gas and dust. Aims: We aim at determining the physical parameters of the dense gas near G79.29+0.46, an LBV-candidate located at the centre of two concentric infrared rings, which may interact with the infrared dark cloud (IRDC) G79.3+0.3. Methods: The Effelsberg 100 m telescope was used to observe the NH3 (1, 1) and (2, 2) emission in a field of view of 7' × 7' including the infrared rings and a part of the IRDC. In addition, we observed particular positions in the NH3 (3,3) transition toward the strongest region of the IRDC, which is also closest to the ring nebula. Results: We report here the first coherent ring-like structure of dense NH3 gas associated with an evolved massive star. It is well traced in both ammonia lines, surrounding an already known infrared ring nebula; its column density is two orders of magnitude lower than the IRDC. The NH3 emission in the IRDC is characterized by a low and uniform rotational temperature (Trot~10 K) and moderately high opacities in the (1, 1) line. The rest of the observed field is spotted by warm or hot zones (Trot>30 K) and characterized by optically thin emission of the (1, 1) line. The NH3 abundances are about 10-8 in the IRDC, and 10-10-10-9 elsewhere. The warm temperatures and low abundances of NH3 in the ring suggest that the gas is being heated and photo-dissociated by the intense UV field of the LBV star. An outstanding region is found to the south-west (SW) of the LBV star within the IRDC. The NH3 (3, 3) emission at the centre of the SW region reveals two velocity components tracing gas at temperatures >30 K. Of particular interest is the northern edge of the SW region, which coincides with the border of the ring nebula and a region of strong 6 cm continuum emission; here, the opacity of the (1, 1) line and the

  17. Ghost Head Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth.

    The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas.

    NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000.

    The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas.

    In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center

  18. The Reflection Nebula in Orion

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Just weeks after NASA astronauts repaired the Hubble Space Telescope in December 1999, the Hubble Heritage Project snapped this picture of NGC 1999, a nebula in the constellation Orion. The Heritage astronomers, in collaboration with scientists in Texas and Ireland, used Hubble's Wide Field and Planetary Camera 2 (WFPC2) to obtain the color image. NGC 1999 is an example of a reflection nebula. Like fog around a street lamp, a reflection nebula shines only because the light from an imbedded source illuminates its dust; the nebula does not emit any visible light of its own. NGC 1999 lies close to the famous Orion Nebula, about 1,500 light-years from Earth, in a region of our Milky Way galaxy where new stars are being formed actively. NGC 1999 was discovered some two centuries ago by Sir William Herschel and his sister Caroline, and was cataloged later in the 19th century as object 1999 in the New General Catalogue. This data was collected in January 2000 by the Hubble Heritage Team with the collaboration of star-formation experts C. Robert O'Dell (Rice University), Thomas P. Ray (Dublin Institute for Advanced Study), and David Corcoran (University of Limerick).

  19. Ultraviolet photometry of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Holm, A. V.

    1972-01-01

    Nine of the planetary nebulae observed by the Wisconsin filter photometers are compared with 15 Monocerotis in the spectral region 1430-4250 A. The data are corrected for the degradation of the filters of stellar photometer number four with time. Comparisons with simple models indicate that most of the observed nebulae are subject to some interstellar extinction in the far ultraviolet. However, NGC 246 and NGC 1360 appear to be nearly unreddened. Thus far no unexpected features have been found in the observations.

  20. A model of Jupiter's sulfur nebula

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1976-01-01

    A simple model of Jupiter's S II emission nebula is developed on the basis of a complete treatment of electron-impact excitation of sulfur ions. Forbidden line emission from S II ions excited by electron collisions in the Jovian nebula is analyzed, and existing observations are interpreted using a simple model of an S II nebula which is uniform in depth. The results show that the depth of the nebula is 300,000 to 600,000 km, the electron density is about 3160 per cu cm, the electron temperature is approximately 25,000 K, and the S II concentration is roughly 79 ions per cu cm. It is noted that these plasma conditions are quite different from those reported for the same region on the basis of Pioneer 10 data, indicating that the S II nebula is a sporadic event. Io is suggested as the source of the sulfur.

  1. Revisiting the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2004-06-01

    ESO/MPG 2.2m telescope at La Silla, to obtain very deep images of this region. ESO PR Photo 20/04 shows a false-colour composite of images obtained in four different wavebands (see technical information below). Among others, these observations allow the astronomers to measure the rates of mass that falls onto the young stars (the mass accretion rates) and to determine if it depends on the position of the stars in the cluster. If this were the case, it would indicate that the final stages of star formation are affected by the onset of ionising radiation from the most massive stars. From a preliminary study with the Hubble Space Telescope, the astronomers found that indeed the mass accretion rates are lower in the Orion Nebula Cluster than in other, more diffuse star-forming regions. The analysis of these new WFI images should allow confirmation of this hypothesis. The astronomers also obtained images of the Orion Nebula in several narrow-band filters corresponding to emission lines - hydrogen (Halpha), oxygen ([OIII]), and sulphur ([SII]) - enabling them to probe the morphology of the nebula in these prominent lines. It is rather obvious from the image that for example some regions are redder than others, providing the astronomers with important clues on the conditions prevailing in the nebula. In the next months, a large international collaboration also led by M. Robberto will use the Hubble Space Telescope to survey with unprecedented sensitivity (23-25 mag) and spatial resolution approximately 50% of the field imaged by the present WFI observations. The astronomers expect to discover and classify an unknown but substantial population of young double stars, low mass stars and brown dwarfs.

  2. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  3. Wolf-Rayet nebulae

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2016-07-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 103 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses.

  4. PULSAR WIND NEBULAE WITH THICK TOROIDAL STRUCTURE

    SciTech Connect

    Chevalier, Roger A.; Reynolds, Stephen P. E-mail: reynolds@ncsu.edu

    2011-10-10

    We investigate a class of pulsar wind nebulae that show synchrotron emission from a thick toroidal structure. The best studied such object is the small radio and X-ray nebula around the Vela pulsar, which can be interpreted as the result of interaction of a mildly supersonic inward flow with the recent pulsar wind. Such a flow near the center of a supernova remnant can be produced in a transient phase when the reverse shock reaches the center of the remnant. Other nebulae with a thick toroidal structure are G106.6+2.9 and G76.9+1.0. Their structure contrasts with young pulsar nebulae like the Crab Nebula and 3C 38, which show a more chaotic, filamentary structure in the synchrotron emission. In both situations, a torus-jet structure is present where the pulsar wind passes through a termination shock, indicating the flow is initially toroidal. We suggest that the difference is due to the Rayleigh-Taylor instability that operates when the outer boundary of the nebula is accelerating into freely expanding supernova ejecta. The instability gives rise to mixing in the Crab and related objects, but is not present in the nebulae with thick toroidal regions.

  5. Large scale processes in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    Most proposed chondrule formation mechanisms involve processes occurring inside the solar nebula, so the large scale (roughly 1 to 10 AU) structure of the nebula is of general interest for any chrondrule-forming mechanism. Chondrules and Ca, Al-rich inclusions (CAIs) might also have been formed as a direct result of the large scale structure of the nebula, such as passage of material through high temperature regions. While recent nebula models do predict the existence of relatively hot regions, the maximum temperatures in the inner planet region may not be high enough to account for chondrule or CAI thermal processing, unless the disk mass is considerably greater than the minimum mass necessary to restore the planets to solar composition. Furthermore, it does not seem to be possible to achieve both rapid heating and rapid cooling of grain assemblages in such a large scale furnace. However, if the accretion flow onto the nebula surface is clumpy, as suggested by observations of variability in young stars, then clump-disk impacts might be energetic enough to launch shock waves which could propagate through the nebula to the midplane, thermally processing any grain aggregates they encounter, and leaving behind a trail of chondrules.

  6. The Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's new Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of the Tarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars.

    At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years.

    The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon.

    The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars.

    The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers

  7. A KINEMATIC DISTANCE STUDY OF THE PLANETARY NEBULAE-SUPERNOVA REMNANT-H II REGION COMPLEX AT G35.6–0.5

    SciTech Connect

    Zhu, H.; Tian, W. W.; Su, H. Q.; Torres, D. F.; Pedaletti, G. E-mail: tww@bao.ac.cn

    2013-10-01

    Two possible planetary nebulae (PN G035.5–00.4 and IRAS 18551+0159), one newly re-identified supernova remnant (SNR G35.6–0.4), and one H II region (G35.6–0.5) form a line-of-sight-overlapping complex known as G35.6–0.5. We analyze 21 cm H I absorption spectra toward the complex to constrain the kinematic distances of these objects. PN G035.5–00.4 has a distance from 3.8 ± 0.4 kpc to 5.4 ± 0.7 kpc. IRAS 18551+0159 is at 4.3 ± 0.5 kpc. We discuss the distance for SNR 35.6–0.4, for which the previous estimate was 10.5 kpc, and find a plausible distance of 3.6 ± 0.4 kpc. The new distance of SNR G35.6–0.4 and the derived mass for the ∼55 km s{sup –1} CO molecular cloud can accommodate an association with HESS J1858+020. We also conclude that SNR G35.6–0.4 is unlikely to be associated with PSR J1857+0210 or PSR J1857+0212, which are projected onto the SNR area.

  8. Stars in the Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula, that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region.

  9. Spatial variation of the cooling lines in the reflection nebula NGC 7023

    NASA Astrophysics Data System (ADS)

    Bernard-Salas, J.; Habart, E.; Köhler, M.; Abergel, A.; Arab, H.; Lebouteiller, V.; Pinto, C.; van der Wiel, M. H. D.; White, G. J.; Hoffmann, M.

    2015-02-01

    Context. The north-west photo-dissociation region (PDR) in the reflection nebula NGC 7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great opportunity to study the link between the morphology and energetics of these regions. Aims: We study the spatial variation of the far-infrared fine-structure lines of [C ii] (158 μm) and [O i] (63 and 145 μm). These lines trace the local gas conditions across the PDR. We also compare their emission with molecular tracers including rotational and ro-vibrational lines of H2 and high-rotational lines of CO. Methods: We used observations from the Herschel/PACS instrument to map the spatial distribution of these fine-structure lines. The observed region covers a square area of about 110″ × 110″ with an angular resolution that varies from 4'' to 11''. We compared this emission with ground-based and Spitzer observations of H2 lines, Herschel/SPIRE observations of CO lines, and Spitzer/IRAC 3.6 μm images that trace the emission of polycyclic aromatic hydrocarbons. We used a PDR code to model the [O i]145 μm line and infer the physical conditions in the region. Results: The [C ii] (158 μm) and [O i] (63 and 145 μm) lines arise from the warm cloud surface where the PDR is located and the gas is warm, cooling the region. We find that although the relative contribution to the cooling budget over the observed region is dominated by [O i]63 μm (>30%), H2 contributes significantly in the PDR (~35%), as does [C ii]158 μm outside the PDR (30%). Other species contribute little to the cooling ([O i]145 μm 9%, and CO 4%). Enhanced emission of these far-infrared atomic lines trace the presence of condensations, where high-excitation CO rotational lines and dust emission in the submillimetre are detected as well. The [O i] maps resolve these condensations into two structures and show that the peak of [O i] is slightly displaced

  10. The population of planetary nebulae and H II regions in M 81. A study of radial metallicity gradients and chemical evolution

    NASA Astrophysics Data System (ADS)

    Stanghellini, L.; Magrini, L.; Villaver, E.; Galli, D.

    2010-10-01

    Context. M 81 is an ideal laboratory to investigate the galactic chemical and dynamical evolution through the study of its young and old stellar populations. Aims: We analyze the chemical abundances of planetary nebulae and H ii regions in the M 81 disk for insight on galactic evolution, and compare it with that of other galaxies, including the Milky Way. Methods: We acquired Hectospec/MMT spectra of 39 PNe and 20 H ii regions, with 33 spectra viable for temperature and abundance analysis. Our PN observations represent the first PN spectra in M 81 ever published, while several H ii region spectra have been published before, although without a direct electron temperature determination. We determine elemental abundances of helium, nitrogen, oxygen, neon, sulfur, and argon in PNe and H ii regions, and determine their averages and radial gradients. Results: The average O/H ratio of PNe compared to that of the H ii regions indicates a general oxygen enrichment in M 81 in the last ~10 Gyr. The PN metallicity gradient in the disk of M 81 is Δlog(O/H)/ΔRG = -0.055 ± 0.02 dex/kpc. Neon and sulfur in PNe have a radial distribution similar to that of oxygen, with similar gradient slopes. If we combine our H ii sample with the one in the literature we find a possible mild evolution of the gradient slope, with results consistent with gradient steepening with time. Additional spectroscopy is needed to confirm this trend. There are no type I PNe in our M 81 sample, consistently with the observation of only the brightest bins of the PNLF, the galaxy metallicity, and the evolution of post-AGB shells. Conclusions: Both the young and the old populations of M 81 disclose shallow but detectable negative radial metallicity gradient, which could be slightly steeper for the young population, thus not excluding a mild gradients steepening with the time since galaxy formation. During its evolution M 81 has been producing oxygen; its total oxygen enrichment exceeds that of other nearby

  11. Investigating CXOU J163802.6–471358: A new pulsar wind nebula in the norma region?

    SciTech Connect

    Jakobsen, Simone J.; Watson, Darach; Tomsick, John A.; Gotthelf, Eric V.; Kaspi, Victoria M.

    2014-06-01

    We present the first analysis of the extended source CXOU J163802.6–471358, which was discovered serendipitously during the Chandra X-ray survey of the Norma region of the Galactic spiral arms. The X-ray source exhibits a cometary appearance with a point source and an extended tail region. The complete source spectrum is fitted well with an absorbed power law model and jointly fitting the Chandra spectrum of the full source with one obtained from an archived XMM-Newton observation results in best fit parameters N {sub H} =1.5{sub −0.5}{sup +0.7}×10{sup 23} cm{sup −2} and Γ=1.1{sub −0.6}{sup +0.7} (90% confidence uncertainties). The unabsorbed luminosity of the full source is then L{sub X}∼4.8×10{sup 33}d{sub 10}{sup 2} erg s{sup –1} with d {sub 10} = d/10 kpc, where a distance of 10 kpc is a lower bound inferred from the large column density. The radio counterpart found for the source using data from the Molonglo Galactic Plane Survey epoch-2 shows an elongated tail offset from the X-ray emission. No infrared counterpart was found. The results are consistent with the source being a previously unknown pulsar driving a bow shock through the ambient medium.

  12. Large-scale processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, A. P.

    1994-01-01

    Theoretical models of the structure of a minimum mass solar nebula should be able to provide the physical context to help evaluate the efficacy of any mechanism proposed for the formation of chondrules or Ca, Al-rich inclusions (CAI's). These models generally attempt to use the equations of radiative hydrodynamics to calculate the large-scale structure of the solar nebula throughout the planet-forming region. In addition, it has been suggested that chondrules and CAI's (=Ch&CAI's) may have been formed as a direct result of large-scale nebula processing such as passage of material through high-temperature regions associated with the global structure of the nebula. In this report we assess the status of global models of solar nebula structure and of various related mechanisms that have been suggested for Ch and CAI formation.

  13. Mapping Observations of the Horsehead Nebula and the NGC 2023 Region in the NH3 (1,1),(2,2) and (3,3) Lines with the Nobeyama 45 m Telescope

    NASA Astrophysics Data System (ADS)

    Ohashi, S.; Kitamura, Y.; Akashi, T.

    2013-10-01

    We performed mapping observations of the Horsehead Nebula and the NGC 2023 region in the NH3 (1,1), (2,2) and (3,3) lines. We identified five dense cores (Cores A to E), and estimated the masses and kinetic temperatures of the cores by analyzing the NH3 lines. For all the cores, the temperature tends to increase in the outer parts, suggesting heating due to the ionized gas from IC 434. Core B is discovered by this work and indicates a sign of infalling motion.

  14. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  15. Argon and neon in Galactic nebulae

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.

    1995-01-01

    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  16. Lightning in the Protoplanetary Nebula?

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.

    1997-01-01

    Lightning in the protoplanetary nebula has been proposed as a mechanism for creating meteoritic chondrules: enigmatic mm-sized silicate spheres formed in the nebula by the brief melting of cold precursors.

  17. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  18. THE DISCOVERY OF A LARGE Ly{alpha}+He II NEBULA AT z {approx} 1.67: A CANDIDATE LOW METALLICITY REGION?

    SciTech Connect

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T. E-mail: dey@noao.edu

    2009-09-01

    We have discovered a {approx}45 kpc Ly{alpha} nebula (or Ly{alpha} 'blob') at z {approx} 1.67 which exhibits strong, spatially extended He II emission and very weak C IV and C III] emission. This is the first spatially extended Ly{alpha}+He II emitter observed and the lowest redshift Ly{alpha} blob yet found. Strong Ly{alpha} and He II{lambda}1640 emission in the absence of metal lines has been proposed as a unique observational signature of primordial galaxy formation (e.g., from gravitational cooling radiation or Population III star formation), but no convincing examples of spatially extended Ly{alpha}+He II emitters have surfaced either in Ly{alpha}-emitting galaxy surveys at high redshifts (z > 4) or in studies of Ly{alpha} nebulae at lower redshifts. From comparisons with photoionization models, we find that the observed line ratios in this nebula are consistent with low metallicity gas (Z {approx}< 10{sup -2}-10{sup -3} Z{sub sun}), but that this conclusion depends on the unknown ionization parameter of the system. The large He II equivalent width ({approx}37 {+-} 10 A) and the large He II/Ly{alpha} ratio (0.12 {+-} 0.04) suggest that the cloud is being illuminated by a hard ionizing continuum, either an active galactic nucleus (AGN) or very low metallicity stars, or perhaps powered by gravitational cooling radiation. Thus far there is no obvious sign of a powerful AGN in or near the system, so in order to power the nebula while remaining hidden from view even in the mid-infrared, the AGN would need to be heavily obscured. Despite the strong Ly{alpha}+He II emission, it is not yet clear what is the dominant power source for this nebula. The system therefore serves as an instructive example of how the complexities of true astrophysical sources will complicate matters when attempting to use a strong Ly{alpha}+He II signature as a unique tracer of primordial galaxy formation.

  19. Orion Nebula and Bow Shock

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a bow shock around a very young star in the nearby Orion nebula, an intense star-forming region of gas and dust.

    A picture, from the Hubble Heritage team, is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/05 or http://www.jpl.nasa.gov/images/wfpc . It was taken in February 1995 as part of the Hubble Orion Nebula mosaic by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Named for the crescent-shaped wave a ship makes as it moves through water, a bow shock can form in space when two gas streams collide. In this case, the young star, LL Ori, emits a vigorous wind, a stream of charged particles moving rapidly outward from the star. Our own Sun has a less energetic version of this wind that is responsible for auroral displays on the Earth.

    The material spewed from LL Ori collides with slow-moving gas evaporating away from the center of the Orion nebula, located to the lower right of the image. The surface where the two winds collide is seen as the crescent-shaped bow shock.

    Unlike a water wave from a ship, this interstellar bow shock is three-dimensional. The filamentary emission has a distinct boundary on the side facing away from LL Ori, but is diffuse on the side closest to the star, a trait common to many bow shocks.

    A second, fainter bow shock can be seen around a star near the upper right-hand corner of the image. Astronomers have identified numerous shock fronts in this complex star-forming region and are using this data to understand the complex phenomena associated with star birth.

    The Orion nebula is a close neighbor in our Milky Way galaxy, at only 1,500 light-years from Earth. The filters used in this color composite represent oxygen, nitrogen, and hydrogen emissions.

  20. The Eagle Nebula

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These eerie, dark pillar-like structures are columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the 'Eagle Nebula' (also called M16 -- the 16th object in Charles Messier's 18th century catalog of 'fuzzy' objects that aren't comets), a nearby star-forming region 7,000 light-years away in the constellation Serpens. Ultraviolet light is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three dimensional nature of the clouds. The tallest pillar (left) is about a light-year long from base to tip. As the pillars themselves are slowly eroded away by the ultraviolet light, small globules of even denser gas buried within the pillars are uncovered. These globules have been dubbed 'EGGs.' EGGs is an acronym for 'Evaporating Gaseous Globules,' but it is also a word that describes what these objects are. Forming inside at least some of the EGGs are embryonic stars, stars that abruptly stop growing when the EGGs are uncovered and they are separated from the larger reservoir of gas from which they were drawing mass. Eventually, the stars themselves emerge from the EGGs as the EGGs themselves succumb to photoevaporation. The picture was taken on April 1, 1995 with the Hubble Space Telescope Wide Field and Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emission from singly-ionized sulfur atoms. Green shows emission from hydrogen. Blue shows light emitted by doubly- ionized oxygen atoms.

  1. [Fe II] 1.257 μm and He I 1.083 μm Emission in the Central Region of the Orion Nebula: H II Region, HH Flows, Jets, and Proplyds

    NASA Astrophysics Data System (ADS)

    Takami, Michihiro; Usuda, Tomonori; Sugai, Hajime; Suto, Hiroshi; Pyo, Tae-Soo; Takeyama, Norihide; Aoki, Tetsuo; Mizutani, Kohei; Tanaka, Masuo

    2002-02-01

    The [Fe II] 1.257 μm and He I 1.083 μm emission lines were observed in the central 6'×8' region of the Orion Nebula, and their excitation in the photoionized H II region, HH flows, jets, and proplyds is investigated. Observations were carried out using the imaging Fabry-Perot spectrometer MUSE at the National Astronomical Observatory of Japan 1.5 m infrared telescope, which provides a 4'×4' field of view and a spectral resolution λ/δλ of ~2000 at the observed wavelengths. The [Fe II] images exhibit (1) filamentary structures and diffuse emission, which presumably arise from ionization fronts of the photoionized H II region, and (2) a number of knots, some of which are newly identified. Centroidal velocities in most of the knots are negative relative to those in the ionization fronts by up to -60 km s-1, and observed line profiles in the bright knots exhibit blueshifted wings, agreeing with bow shock models. The He I 1.083 μm emission in the observed region is dominated by the photoionized H II region, and its distribution reflects the complicated nature of the excitation. The He I images also contain blueshifted emission from several HH flows and jets and redshifted emission associated with proplyds. Our results for the shocks suggest that the [Fe II] 1.257 μm and He I 1.083 μm emission reflects the ionization of the preshock gas: the [Fe II] 1.257 μm emission is prominent in shocks propagating in molecular/atomic gas, while the He I 1.083 μm is prominent in shocks in the photoionized H II region. Different line excitation in these shocks can be explained by the following physical properties and processes: (1) difference of the excitation energies from the ground state (1 and 20 eV for the [Fe II] and He I lines, respectively), (2) resonance scattering and collisional excitation from the metastable state, enhancing the He I 1.083 μm line in shocks in the photoionized H II region, (3) a large photoionization cross section of Fe+, causing the absence of

  2. Colors of reflection nebulae. I - Phase function effects in the Merope nebula

    NASA Technical Reports Server (NTRS)

    Witt, A. N.

    1985-01-01

    The subject of color differences between reflection nebulae and their illuminating stars is reexamined in the light of developments of observational techniques, permitting accurate surface-brightness photometry over an expanded spectral region from the UV to the IR. Color-color diagrams for reflection nebulae can yield useful information about the wavelength dependence of the scattering properties of nebular dust without excessive sensitivity to the specific nebular geometry or the presence of multiple scattering, resulting in considerable savings in computational efforts. As an illustration, the color-difference method was applied to existing data for the Merope nebula, covering the spectral region 1550-5500 A. Strong evidence for a monotonically changing phase function of scattering at wavelengths less than or equal to 3500 A is found. The result is interpreted in the context of a plausible geometry for the Merope environment as providing support for a bimodal size distribution of nebular dust grains.

  3. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  4. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  5. The Ring Nebula

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA Hubble Space Telescope has captured the sharpest view yet of the most famous of all planetary nebulae, the Ring Nebula (M57). In this October 1998 image, the telescope has looked down a barrel of gas cast off by a dying star thousands of years ago. This photo reveals elongated dark clumps of material embedded in the gas at the edge of the nebula; the dying central star floating in a blue haze of hot gas. The nebula is about a light-year in diameter and is located some 2,000 light-years from Earth in the direction of the constellation Lyra. The colors are approximately true colors. The color image was assembled from three black-and-white photos taken through different color filters with the Hubble telescope's Wide Field and Planetary Camera 2. Blue isolates emission from very hot helium, which is located primarily close to the hot central star. Green represents ionized oxygen, which is located farther from the star. Red shows ionized nitrogen, which is radiated from the coolest gas, located farthest from the star. The gradations of color illustrate how the gas glows because it is bathed in ultraviolet radiation from the remnant central star, whose surface temperature is a white-hot 216,000 degrees Fahrenheit (120,000 degrees Celsius).

  6. Infrared polarimetry of the NGC 6334 V bipolar nebula

    SciTech Connect

    Nakagawa, Takao; Matsuhara, Hideo; Okuda, Haruyuki; Shibai, Hiroshi; Nagata, Tetsuya Kyoto Univ. )

    1990-03-01

    Exceptionally high degrees (up to about 100 percent) of polarization were observed in the L-prime band (3.8 microns) toward the NGC 6334 V bipolar nebula. The observed symmetric polarization pattern indicates that the nebula is a reflection nebula consisting of two lobes illuminated by a central obscured star. The distribution of polarization requires that one of the lobes consist of a lemon-shaped cavity which scatters light mainly at its surface, whereas a conical cavity model is appropriate for the other lobe. This asymmetry of the lobes is probably due to a density gradient in the ambient cloud material in this region. 17 refs.

  7. The abundances of neon, sulfur, and argon in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Beck, S. C.; Lacy, J. H.; Townes, C. H.; Aller, L. H.; Geballe, T. R.; Baas, F.

    1981-01-01

    New infrared observations of Ne II, Ar III, and S IV are used in optical observations of other ionization states of the considered elements to evaluate the abundances of neon, argon, and sulfur in 18 planetary nebulae. Attention is also given to one or more of the infrared lines in 18 other nebulae. It is pointed out that S IV was detected in approximately 90% of the observed objects, while Ar III was found in about 80%, and Ne II in roughly one-third. It is noted that optical observations typically include only a limited region of the nebula, while the infrared measurements frequently involve integration over the entire nebular image.

  8. The Boomerang Nebula - the coolest place in the Universe?

    NASA Astrophysics Data System (ADS)

    2003-02-01

    gas away from the dying central star. The star has been losing as much as one-thousandth of a solar mass of material per year for 1500 years. This is 10-100 times more than in other similar objects. The rapid expansion of the nebula has enabled it to become the coldest known region in the Universe. The image was exposed for 1000 seconds through a green-yellow filter. The light in the image comes from starlight from the central star reflected by dust particles.

  9. Solar nebula condensates and the composition of comets

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1989-01-01

    Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.

  10. VLT Images the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Summary A new, high-resolution colour image of one of the most photographed celestial objects, the famous "Horsehead Nebula" (IC 434) in Orion, has been produced from data stored in the VLT Science Archive. The original CCD frames were obtained in February 2000 with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope on Paranal (Chile). The comparatively large field-of-view of the FORS2 camera is optimally suited to show this extended object and its immediate surroundings in impressive detail. PR Photo 02a/02 : View of the full field around the Horsehead Nebula. PR Photo 02b/02 : Enlargement of a smaller area around the Horse's "mouth" A spectacular object ESO PR Photo 02a/02 ESO PR Photo 02a/02 [Preview - JPEG: 400 x 485 pix - 63k] [Normal - JPEG: 800 x 970 pix - 896k] [Full-Res - JPEG: 1951 x 2366 pix - 4.7M] ESO PR Photo 02b/02 ESO PR Photo 02b/02 [Preview - JPEG: 400 x 501 pix - 91k] [Normal - JPEG: 800 x 1002 pix - 888k] [Full-Res - JPEG: 1139 x 1427 pix - 1.9M] Caption : PR Photo 02a/02 is a reproduction of a composite colour image of the Horsehead Nebula and its immediate surroundings. It is based on three exposures in the visual part of the spectrum with the FORS2 multi-mode instrument at the 8.2-m KUEYEN telescope at Paranal. PR Photo 02b/02 is an enlargement of a smaller area. Technical information about these photos is available below. PR Photo 02a/02 shows the famous "Horsehead Nebula" , which is situated in the Orion molecular cloud complex. Its official name is Barnard 33 and it is a dust protrusion in the southern region of the dense dust cloud Lynds 1630 , on the edge of the HII region IC 434 . The distance to the region is about 1400 light-years (430 pc). This beautiful colour image was produced from three images obtained with the multi-mode FORS2 instrument at the second VLT Unit Telescope ( KUEYEN ), some months after it had "First Light", cf. PR 17/99. The image files were extracted from the VLT Science Archive Facility and the

  11. Diffusive redistribution of water vapor in the solar nebula revisited

    NASA Technical Reports Server (NTRS)

    Sears, William D.

    1993-01-01

    Stevenson and Lunine presented a model for enhancing the abundance of solid material in the region of the solar nebula at the water condensation point. This was used to provide a means to produce a much more rapid formation of Jupiter than the standard solar nebula models. However, they underestimated the drag induced sun-ward radial drift of the planetesimals of interest. Reanalysis reveals that these particles would spread over the inner solar system and might influence the formation of the asteroids.

  12. The Cat's Eye Nebula

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. This color picture, taken with the Wide Field Planetary Camera-2, is a composite of three images taken at different wavelengths. (red, hydrogen-alpha; blue, neutral oxygen, 6300 angstroms; green, ionized nitrogen, 6584 angstroms). The image was taken on September 18, 1994. NGC 6543 is 3,000 light- years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas. The process has nothing to do with planet formation, which is predicted to happen early in a star's life.

  13. THE 'SPIROGRAPH' NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    THE 'SPIROGRAPH' NEBULA Glowing like a multi-faceted jewel, the planetary nebula IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. This photograph is one of the latest from NASA's Hubble Space Telescope, obtained with the Wide Field Planetary Camera 2. A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999 through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO). EDITOR'S NOTE: For additional information, please contact Dr. Raghvendra Sahai, Jet Propulsion Laboratory, MS 183-900, 4800 Oak Grove Drive, Pasadena, CA 91109, (phone) 818-354-0452, (fax) 818-393-9088, (e-mail) sahai@bb8.jpl

  14. Bipolar nebulae and mass loss from red giant stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1985-01-01

    Observations of several bipolar nebulae are used to learn something of the nature of mass loss from the probable red-giant progenitors of these nebulae. Phenomena discussed are: (1) probable GL 2688's optical molecular emissions; (2) newly discovered very high velocity knots along the axis of OH 0739 - 14, which reveal evidence for mass ejections of + or 300 km/s from the M9 III star embedded in this nebula; (3) the bipolar structure of three extreme carbon stars, and the evidence for periodic mass ejection in IRC + 30219, also at high speed (about 80 km/s); and (4) the curious cool TiO-rich region above Parsamian 13, which may represent the very recent shedding of photospheric material from a cool, oxygen-rich giant. Several general key questions about bipolar nebulae that relate to the process of mass loss from their progenitor stars are raised.

  15. The Gum nebula and related problems

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Brandt, J. C.; Stecher, T. P.

    1971-01-01

    Papers were presented in conference sessions on the Gum nebula, the Vela X remnant, the hot stars gamma Velorum and zeta Puppis, the B associations in the Vela-Puppis complex, and pulsars. Ground-based optical and radio astronomy; rocket and satellite observations in the radio, visible, ultraviolet, and X-ray regions; and theoretical problems in the physical state of the interstellar medium, stellar evolution, and runaway star dynamics were considered.

  16. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  17. Thermal Heterogeneity in the Solar Nebula: Paradox?

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    1995-09-01

    remain suspended at all altitudes throughout a turbulent disk [10], spatial thermal heterogeneity would be a conceivable solution if samples from a range of nebular altitudes can be preserved in a planetesimal. The nebula's midplane temperature (T(sub)m) may have dropped from about 1200 K to 700 K over radial distances of 2 AU to 3 AU [8], and provided that mixing of products from throughout this region was possible, the paradox could again be explained [2]. The other alternative, temporal variations, is perhaps the more traditional choice. CAIs are interpreted as the first condensates from an early, hot nebula, with the bulk of the chondritic material condensing later at somewhat lower nebular temperatures. The flash heating that melted the chondrules occurred when the nebula had cooled even further. Radiative hydrodynamical models [11] of temperatures in a nebula undergoing mass accretion at astronomically-inferred rates [12,13] imply that inner nebula temperatures are a strong function of the nebula mass. At orbital radii of 2 AU to 3 AU, a 0.04 M nebula has T(sub)m similar to 1400 K, a 0.02 M nebula has T(sub)m similar to 1200 K to 700 K, and a 0.01 M nebula has T(sub)m similar to 800 K to 500 K. An initial nebula mass of at least 0.04 M may be necessary, considering the inefficiency of the planet formation process. If the thermal history of the solar nebula can be represented by this sequence of models with decreasing nebula mass, then the full range of ambient nebula temperatures implied by the meteoritical data could be explained. References: [1] Palme H. and Boynton W. V. (1993) in Protostars and Planets III (E. H. Levy and J. I. Lunine, eds.), 979. [2] Humayun M. and Clayton R. N. (1995) GCA, 59, 2131. [3] Wasson J. T. (1993) Meteoritics, 28, 14. [4] Grossman L. (1980) Annu. Rev. Earth. Planet. Sci., 8, 559. [5] Stolper E. and Paque J. M. (1986) GCA, 50, 1785. [6] Ott U. (1993) Nature, 364, 25. [7] Morfill G. E. (1988) Icarus, 75, 371. [8] Boss A. P. (1993

  18. HIGH-ACCURACY QUARTIC FORCE FIELD CALCULATIONS FOR THE SPECTROSCOPIC CONSTANTS AND VIBRATIONAL FREQUENCIES OF 1{sup 1} A' l-C{sub 3}H{sup -}: A POSSIBLE LINK TO LINES OBSERVED IN THE HORSEHEAD NEBULA PHOTODISSOCIATION REGION

    SciTech Connect

    Fortenberry, Ryan C.; Lee, Timothy J.; Huang, Xinchuan; Crawford, T. Daniel

    2013-07-20

    It has been shown that rotational lines observed in the Horsehead nebula photodissociation region (PDR) are probably not caused by l-C{sub 3}H{sup +}, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 {sup 1} A' C{sub 3}H{sup -}. The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D{sub eff} for C{sub 3}H{sup -} is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C{sub 3}H{sup +}. As a result, 1 {sup 1} A' C{sub 3}H{sup -} is a more viable candidate for these observed rotational transitions. It has been previously proposed that at least C{sub 6}H{sup -} may be present in the Horsehead nebular PDR formed by way of radiative attachment through its dipole-bound excited state. C{sub 3}H{sup -} could form in a similar way through its dipole-bound state, but its valence excited state increases the number of relaxation pathways possible to reach the ground electronic state. In turn, the rate of formation for C{sub 3}H{sup -} could be greater than the rate of its destruction. C{sub 3}H{sup -} would be the seventh confirmed interstellar anion detected within the past decade and the first C{sub n}H{sup -} molecular anion with an odd n.

  19. High-accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 11 A' l-C3H-: A Possible Link to Lines Observed in the Horsehead Nebula Photodissociation Region

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-07-01

    It has been shown that rotational lines observed in the Horsehead nebula photodissociation region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 1 A' C3H-. The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D eff for C3H- is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H+. As a result, 1 1 A' C3H- is a more viable candidate for these observed rotational transitions. It has been previously proposed that at least C6H- may be present in the Horsehead nebular PDR formed by way of radiative attachment through its dipole-bound excited state. C3H- could form in a similar way through its dipole-bound state, but its valence excited state increases the number of relaxation pathways possible to reach the ground electronic state. In turn, the rate of formation for C3H- could be greater than the rate of its destruction. C3H- would be the seventh confirmed interstellar anion detected within the past decade and the first C n H- molecular anion with an odd n.

  20. Atomic hydrogen in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Silverglate, Peter R.; Altschuler, Daniel R.; Giovanardi, Carlo

    1987-01-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization.

  1. Spectrometry of nebulae

    NASA Astrophysics Data System (ADS)

    Acker, A.

    2011-04-01

    Nebular emission lines are easy to observe, and their spectrum contains a lot of information. We explain the mechanisms of production of the emissions, and the relation between the intensity of the recombination and forbidden lines, and the physical parameters of the objects. A gallery of emission lines spectra is presented, and a rough analysis will clarify their differences. The case of Planetary Nebulae will be developed, in order to determine the extinction constant, the plasma parameters (electron density and temperature), the chemical abundances, and also the properties of the central star (temperature, mass, stellar wind velocity, age).

  2. Rotten Egg Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae.

    'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2.

    The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2.

    The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures.

    A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and

  3. Misclassified planetary nebulae

    NASA Astrophysics Data System (ADS)

    Sabbadin, F.

    1986-08-01

    The classifications of 130 objects as planetary nebulae (PNs) in the catalogs of Kohoutek (1965, 1969, and 1972) are reexamined by analyzing their images on the IR (755-885-nm) and red (610-690-nm) plates of the NIR photographic survey of the Galactic plane of Hoessel et al. (1985). Factors affecting the IR and red brightness of normal stars and emission-line objects are discussed, and it is shown that PNs should be brighter in the red than in the IR. Thirty-six supposed PNs for which this is not the case are identified, and it is suggested that they have been improperly classified.

  4. An Infrared Study of the Juggler Nebula

    NASA Technical Reports Server (NTRS)

    Holbrook, J. C.; Temi, P.; Rank, D.; Bregman, J.

    1996-01-01

    This work is an examination of the infrared reflection nebula surrounding a protostellar source, IRS 1, in the CRL 2136 region at 2.2, 3.08, and 3.45 micron. The greatest absorption due to water ice occurs within 5 arcsec (10,000 AU, D = 2000 pc) of IRS 1. The water ice absorption decreases with increasing radius from IRS 1. This Tau(sub ice) structure suggests that the water ice is primarily associated with IRS 1. The flux from IRS 1 has a (2.2) - (3.45) color of 5, much redder than the nebula. The color structure combined with the Tau(sub ice) structure suggests the presence of an icy-dusty disk around IRS 1 orientated NE to SW. Radio CO maps presented by Kastner et al. reveal a molecular outflow orientated perpendicular to the disk. The south and east reflection lobes line the conical cavity created by the blueshifted molecular outflow.

  5. Direct photography of the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Roosen, R. G.; Thompson, J.; Ludden, D. J.

    1976-01-01

    The paper discusses a series of wide-angle photographs taken of the Gum Nebula in the traditional region including H-alpha with the aid of a 40-cm and an 80-cm lens in both the red and the green. The photographs support the large dimensions (75 deg in galactic longitude by 40 deg in galactic latitude) of the Gum Nebula suggested earlier, and the appearance is consistent with an origin due to photons from a supernova outburst. The relatively high-density gas has cooled and is visible on the red plates. The low-density gas has remained at a high temperature and may be visible as diffuse emission on the green plates.

  6. The ultraviolet spectrum of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Davidson, K.; Gull, T. R.; Maran, S. P.; Stecher, T. P.; Fesen, R. A.; Parise, R. A.; Harvel, C. A.; Kafatos, M.; Trimble, V. L.

    1982-01-01

    Ultraviolet spectroscopy of the Crab Nebula done by the International Ultraviolet Explorer satellite is described, and an estimate of the carbon abundance is made, noting data reduction to remove spectral defects caused by radiation hits. The important C IV 1549, He II 1640, and semiforbidden C III 1908 emission line intensities were measured and upper limits placed on other ultraviolet features for the brightest filamentary region in the Nebula. The emission lines imply an average ionic abundance ratio n(C+2)/n(O+2) in the range from 0.4 to 1.5 in the observed gaseous condensations. The elemental abundance ratio of carbon to oxygen is probably in the same range. Analysis shows that there is no perceptible excess of carbon due to presupernova nucleosynthesis in the observed region. The large helium abundance, small carbon and oxygen abundances, and presence of a neutron star in the Crab Nebula suggest that the presupernova star had a mass close to eight solar masses.

  7. A study of the far infrared counterparts of new candidates for planetary nebulae

    NASA Astrophysics Data System (ADS)

    Iyengar, K. V. K.

    1986-05-01

    The IRAS Point Source Catalog was searched for infrared counterparts of the fourteen new candidates for planetary nebulae of low surface brightness detected by Hartl and Tritton (1985). Five of these candidates were identified with sources in the Catalog. All five nebulae are found in regions of high cirrus flux at 100 microns, and all have both point sources and small size extended sources with numbers varying from field to field. The infrared emission from these nebulae is connected with dust temperatures of about 100 K, characteristic of planetary nebulae.

  8. Ly(alpha) Photolysis in the Primitive Solar Nebula

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall

    1998-01-01

    This is the final report for the third year of work on this project. Our proposal was to quantitatively investigate the importance of photochemistry in the solar nebula. In the generally accepted theory for the chemical evolution of the primitive solar nebula, Prinn and Fegley argued that photochemistry is unimportant, and that thermochemistry controls the relative abundances of molecular species throughout the planet-forming region. They provided useful estimates of the chemical energy available to the solar nebula from a variety of sources, and established that even the small photolysis rate due to starlight is more important than the photolysis rate from direct sunlight (although small, the UV flux from starlight could have processed a non-negligible fraction of the solar nebula. The reason for this is that the opacity of the disk was so large that direct sunlight could only penetrate to 0.1 AU or so, despite the expectation that the protosun, if comparable to a T-Tauri star, would be emitting up to 104 more H I Ly(alpha) photons than the current sun. We developed a Monte Carlo resonance fine radiative transfer code, capable of accurately calculating the radiation field of H I Ly(alpha), He I 584 A, and He II 304 A emissions throughout the nebula and the nearby interstellar medium in which it is embedded. We applied the code to two appropriate models of the primitive solar nebula. Our model provided the photolysis rates of various species over the entire surface layer of the nebula, and from this we evaluated the importance of UV photochemistry due to backscattered solar UV resonance line emissions on different parts of the nebula. The results discussed below were presented.

  9. Giant Hα Nebula Surrounding the Starburst Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Ohyama, Youichi; Komiyama, Yutaka; Kashikawa, Nobunari; Tanaka, Hisashi; Okamura, Sadanori

    2016-03-01

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ˜90 kpc in diameter and the total Hα luminosity amounts to LHα ≈ 1.6 × 1042 erg s-1. The volume filling factor and the mass of the warm ionized gas are ˜10-4-10-5 and ˜5 × 108 M⊙, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ˜102 Myr ago, formed the extended ionized gas nebula of NGC 6240. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. Ly(alpha) Photolysis in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    1998-01-01

    This is the final report for the third year of work on this project. Our proposal was to quantitatively investigate the importance of photochemistry in the solar nebula. In the generally accepted theory for the chemical evolution of the primitive solar nebula, Prinn and Fegley argued that photochemistry is unimportant, and that thermochemistry controls the relative abundances of molecular species throughout the planet-forming region. They provided useful estimates of the chemical energy available to the solar nebula from a variety of sources, and established that even the small photolysis rate due to starlight is more important than the photolysis rate from direct sunlight (although small, the UV flux from starlight could have processed a non-negligible fraction of the solar nebula. The reason for this is that the opacity of the disk was so large that direct sunlight could only penetrate to 0.1 AU or so, despite the expectation that the protosun, if comparable to a T-Tauri star, would be emitting up to 10(exp 4) more H I Ly(alpha) photons than the current sun. We developed a Monte Carlo resonance fine radiative transfer code, capable of accurately calculating the radiation field of H I Ly(alpha), He I 584 A, and He II 304 A emissions throughout the nebula and the nearby interstellar medium in which it is embedded. We applied the code to two appropriate models of the primitive solar nebula. Our model provided the photolysis rates of various species over the entire surface layer of the nebula, and from this we evaluated the importance of UV photochemistry due to backscattered solar UV resonance line emissions on different parts of the nebula. The results discussed below were presented.

  11. Ionization nebulae surrounding supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.

    1994-01-01

    In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.

  12. Recent Progress in Studies of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    2008-01-01

    The synchrotron-emitting nebulae formed by energetic winds from young pulsars provide information on a wide range phenomena that contribute to their structure. High resolution X-ray observations reveal jets and toroidal structures in many systems, along with knot-like structures whose emission is observed to be time-variable. Large-scale filaments seen in optical and radio images mark instability regions where the expanding nebulae interact with the surrounding ejecta, and spectral studies reveal the presence of these ejecta in the form of thermal X-ray emission. Infrared studies probe the frequency region where evolutionary and magnetic field effects conspire to change the broadband synchrotron spectrum dramatically, and studies of the innermost regions of the nebulae provide constraints on the spectra of particles entering the nebula. At the highest energies, TeV gamma-ray observations provide a probe of the spectral region that, for low magnetic fields, corresponds to particles with energies just below the X-ray-emitting regime. Here I summarize the structure of pulsar wind nebulae and review several new observations that have helped drive a recent resurgence in theoretical modeling of these systems.

  13. CRL 618: A Nascent Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Tafoya, D.; Loinard, L.; Fonfría, J. P.; Vlemmings, W. H. T.; Martí-Vidal, I.; Pech, G.

    2014-04-01

    CRL 618 is an object that exhibits characteristics of both AGB and post-AGB star. It also displays a spectacular array of bipolar lobes with a dense equatorial region, which makes it an excellent object to study the development of asymmetries in evolved stars. In the recent decades, an elliptical compact HII region located in the center of the nebula has been seen to be increasing in size and flux. This seems to be due to the ionization of the circumstellar envelope by the central star, and it would be indicating the beginning of the planetary nebula phase for CRL 618. We analyzed interferometric radio continuum data at ~5 and 22 GHz from observations carried out at seven epochs with the VLA. We traced the increase of the flux of the ionized region over a period of ~26 years. We measured the dimensions of the HII region directly from the brightness distribution images to determine the increase of its size over time. For one of the epochs we analyzed observations at six frequencies from which we estimated the electron density distribution. We carried out model calculations of the spectral energy distribution at two different epochs to corroborate our observational results. We found that the radio continuum flux and the size of the ionized region have been increasing monotonically in the last three decades. The size of the major axis of the HII region shows a dependance with frequency, which has been interpreted as a result of a gradient of the electron density in this direction. The growth of the HII region is due to the expansion of an ionized wind whose mass-loss rate increased continuously for a period of ~100 years until a few decades ago, when the mass-loss rate experienced a sudden decline. Our results indicate that the beginning of the ionization of the circumstellar envelope began around 1971, which marks the start of the planetary nebula phase of CRL 618.

  14. Photodissociation Regions in the Interstellar Medium of Galaxies

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global

  15. Light and Shadow in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Previously unseen details of a mysterious, complex structure within the Carina Nebula (NGC 3372) are revealed by this image of the 'Keyhole Nebula,' obtained with NASA's Hubble Space Telescope. The picture is a montage assembled from four different April 1999 telescope pointings with Hubble's Wide Field Planetary Camera 2, which used six different color filters. The picture is dominated by a large, approximately circular feature, which is part of the Keyhole Nebula, named in the 19th century by Sir John Herschel. This region, about 8000 light-years from Earth, is located adjacent to the famous explosive variable star Eta Carinae, which lies just outside the field of view toward the upper right. The high resolution of the Hubble images reveals the relative three- dimensional locations of many of these features, as well as showing numerous small dark globules that may be in the process of collapsing to form new stars. Two striking large, sharp-edged dust clouds are located near the bottom center and upper left edges of the image. The former is immersed within the ring and the latter is just outside the ring. The pronounced pillars and knobs of the upper left cloud appear to point toward a luminous, massive star located just outside the field further toward the upper left, which may be responsible for illuminating and sculpting them by means of its high-energy radiation and stellar wind of high-velocity ejected material. These large dark clouds may eventually evaporate, or if there are sufficiently dense condensations within them, give birth to small star clusters. The Carina Nebula, with an overall diameter of more than 200 light- years, is one of the outstanding features of the Southern Hemisphere portion of the Milky Way. The diameter of the Keyhole ring structure shown here is about 7 light-years. These data were collected by the Hubble Heritage Team and Nolan R. Walborn (STScI), Rodolfo H. Barba' (La Plata Observatory, Argentina), and Adeline Caulet (France).

  16. Physical Structure of Planetary Nebulae. I. The Owl Nebula

    NASA Astrophysics Data System (ADS)

    Guerrero, Martín A.; Chu, You-Hua; Manchado, Arturo; Kwitter, Karen B.

    2003-06-01

    The Owl Nebula is a triple-shell planetary nebula with the outermost shell being a faint bow-shaped halo. We have obtained deep narrowband images and high-dispersion echelle spectra in the Hα, [O III], and [N II] emission lines to determine the physical structure of each shell in the nebula. These spatiokinematic data allow us to rule out hydrodynamic models that can reproduce only the nebular morphology. Our analysis shows that the inner shell of the main nebula is slightly elongated with a bipolar cavity along its major axis, the outer nebula is a filled envelope coexpanding with the inner shell at 40 km s-1, and the halo has been braked by the interstellar medium as the Owl Nebula moves through it. To explain the morphology and kinematics of the Owl Nebula, we suggest the following scenario for its formation and evolution. The early mass loss at the TP-AGB phase forms the halo, and the superwind at the end of the AGB phase forms the main nebula. The subsequent fast stellar wind compressed the superwind to form the inner shell and excavated an elongated cavity at the center, but this has ceased in the past. At the current old age the inner shell is backfilling the central cavity. Based on observations made with the William Herschel Telescope, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias, and with the Burrell Schmidt telescope of the Warner and Swasey Observatory, Case Western Reserve University.

  17. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The

  18. Video Zoom into Veil Nebula

    NASA Video Gallery

    This video opens with a backyard view of the nighttime sky centered on the constellation Cygnus, the Swan. We zoom into a vast donut-shaped feature called the Veil Nebula. It is the tattered expand...

  19. The Great Crab Nebula Superflare

    NASA Video Gallery

    There are strange goings-on in the Crab Nebula. On April 12, 2011, NASA's Fermi Gamma-ray Space Telescope detected the most powerful in a series of gamma-ray flares occurring somewhere within the s...

  20. Detection of submillimeter polarization in the Orion nebula

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.; Dragovan, M.; Novak, G.

    1984-01-01

    Linear polarization has been observed in the submillimeter radiation (270 microns) from two regions of Orion: one centered in the Kleinmann-Low nebula and one centered 1.5 arcmin south of the nebula. The observations were performed in September of 1983 and January of 1984 with the NASA Kuiper Airborne Observatory (KAO). The polarizations measured for the two regions were both 1.7 percent, plus or minus 0.4 and 0.5 percent, respectively. The angle of the outflow from both sources was 27 degrees, plus or minus seven degrees. An upper limit for polarization in the submillimeter radiation from the nebula W3(OH) was established at 1.6 percent. The observational data are compared with results from several other recent polarimetric observations of Orion, and some of their implications are discussed.

  1. Kinematics of planetary nebulae. II

    NASA Astrophysics Data System (ADS)

    Purgathofer, A.; Perinotto, M.

    1981-08-01

    In a program of study of radial velocities of planetary nebulae, 84 spectra of eight planetary nebulae in the direction of the galactic anticenter have been obtained at the L. Figl Observatory near Vienna with an image tube spectrograph giving a reciprocal dispersion of 26 A/mm. With this material, the kinematical behavior of the objects was studied, and it is shown that most of them deviate significantly from circular motion in the Galaxy.

  2. IUE Tomography of the Rosette Nebula

    NASA Astrophysics Data System (ADS)

    van Buren, Dave

    We propose to obtain SWP and LWR spectra of a dozen 8th magnitude O and B stars associated with the Rosette Nebula in Monoceros for the purpose of determining the structure and kinematics of this HII region / stellar wind bubble. The ability to sense along numerous lines of sight will allow us to determine the detailed physical conditions which exist in the nebula, both inside the bubble and in the HII region exterior to it. This picture can then be compared in detail to the theory of stellar wind bubbles, HII region dynamics, photodissociation fronts and shock destruction of grains. The hot gas in the bubble has been detected in the soft x-rays by the Einstein satellite, so we anticipate a structure similar to that found by Castor, McCray and Weaver for adiabatic (non-radiative) stellar wind bubbles. Such adiabatic bubbles are ideal laboratories for the study of thermal conduction on astrophysical scales. While we will probably not be able to detect the conductive interface between the hot bubble interior and the swept up shell, we will be able to determine many properties of the bubble. These properties in turn will point to the Rosette's suitability as a cosmic laboratory for studying conductive interfaces with the Space Telescope. The energetics and mass balance of HII regions and stellar wind bubbles is important for a number of problems: the physical conditions in and near star forming regions; the structure and evolution of "superbubbles"; and galactic "ecology".

  3. Planetary nebulae and the interstellar medium

    NASA Technical Reports Server (NTRS)

    Aller, L. H.

    1986-01-01

    In addition to available published data on planetary nebulae (PN), some 40 objects largely concentrated towards the galactic center and anticenter regions were included. All were observed with the Lick 3(sup m) telescope and image tube scanner. Abundances of C, N, O, Ne, Cl, and Ar were determined by a procedure in which theoretical models were used to obtain ionization correction factors (ICF). Of the 106 PN, 66 are N-rich and 40 are N-poor. There appear to be no significant differences between the average compositions in the solar neighborhood and the average taken over the entire observable portion of the galaxy.

  4. The Gum Nebula and Related Problems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Proceedings of a symposium concerning the Gum Nebula (GN) and related topics are reported. Papers presented include: Colin Gum and the discovery of the GN; identification of the GN as the fossil Stromgren sphere of Vela X Supernova; size and shape of GN; formation of giant H-2 regions following supernova explosions; radio astronomy Explorer 1 observations of GN; cosmic ray effects in the GN; low intensity H beta emission from the interstellar medium; and how to recognize and analyze GN. Astronomical charts and diagrams are included.

  5. The spatial distribution of infrared radiation from visible reflection nebulae

    NASA Technical Reports Server (NTRS)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  6. Molecular chemistry and the missing mass problem in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Kimura, R. K.; Gruenwald, R.; Aleman, I.

    2012-05-01

    Context. Detections of molecular lines, mainly from H2 and CO, reveal molecular material in planetary nebulae. Observations of a variety of molecules suggest that the molecular composition in these objects differs from that found in interstellar clouds or in circumstellar envelopes. The success of the models, which are mostly devoted to explain molecular densities in specific planetary nebulae, is still partial however. Aims: The present study aims at identifying the influence of stellar and nebular properties on the molecular composition of planetary nebulae by means of chemical models. A comparison of theoretical results with those derived from the observations may provide clues to the conditions that favor the presence of a particular molecule. Methods: A self-consistent photoionization numerical code was adapted to simulate cold molecular regions beyond the ionized zone. The code was used to obtain a grid of models and the resulting column densities are compared with those inferred from observations. Results: Our models show that the inclusion of an incident flux of X-rays is required to explain the molecular composition derived for planetary nebulae. We also obtain a more accurate relation for the N(CO)/N(H2) ratio in these objects. Molecular masses obtained by previous works in the literature were then recalculated, showing that these masses can be underestimated by up to three orders of magnitude. We conclude that the problem of the missing mass in planetary nebulae can be solved by a more accurate calculation of the molecular mass.

  7. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  8. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  9. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore R.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  10. THE TRIFID NEBULA: STELLAR SIBLING RIVALRY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    previously in the Eagle Nebula, another star-forming region photographed by Hubble. The stalk has survived because at its tip there is a knot of gas that is dense enough to resist being eaten away by the powerful radiation. Reflected starlight at the tip of the EGG may be due to light from the Trifid's central star, or from a young stellar object buried within the EGG. Similarly, a tiny spike of emission pointing outward from the EGG looks like a small stellar jet. Hubble astronomers are tentatively interpreting this jet as the last gasp from a star that was cut off from its supply lines 100,000 years ago. The images were taken Sept. 8, 1997 through filters that isolate emission from hydrogen atoms, ionized sulfur atoms, and doubly ionized oxygen atoms. The images were combined in a single color composite picture. While the resulting picture is not true color, it is suggestive of what a human eye might see. Credits: NASA and Jeff Hester (Arizona State University)

  11. A search for planetary nebulae on the 'POSS'

    NASA Astrophysics Data System (ADS)

    Dengel, J.; Hartl, H.; Weinberger, R.

    1980-05-01

    Results of a search for new planetary nebulae on a quarter of the Palomar Observatory Sky Survey (POSS) E plates are reported. A total of 218 prints evenly scattered over all accessible galactic longitudes and latitudes was examined, in addition to the entire region between longitudes 33 and 213 deg and latitudes + or - 2 deg. Five objects satisfying the criteria of emission nebulosity characteristic of planetary nebulae and/or a central blue star were detected, as well as another three dozen very faint, roundish unlisted objects. The coordinates, dimensions, central star magnitudes, surfaces brightnesses, nebular magnitudes, volumes and estimated distances of the five probable planetary nebulae are presented, and it is noted that all but one of them are of considerably low surface brightness.

  12. 3D Model of the Eta Carinae Little Homunculus Nebula

    NASA Astrophysics Data System (ADS)

    Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas; Groh, Jose H.; Gull, Theodore R.; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji

    2015-01-01

    We extend our morpho-kinematic 3D modeling of the Homunculus nebula (Steffen et al., 2014) to the interior nested Little Homunculus. The model is based on spectroscopic observations from HST/STIS. We find that the structure of the interior Little Homunculus is rather flat in the polar regions and interacts with the main Homunculus nebula only on one side, towards the periastron direction of the binary orbit. Furthermore, the two lobes of the LH are misaligned, also towards the periastron direction. As an explanation for the misalignment we propose that, in both cases, shortly after the eruptions that created the bipolar nebulae from the primary star, the off-center wind of the secondary has pushed the ejecta towards the periastron directions, since the secondary is most of the time near the apastron. Future hydrodynamic simulations are warranted to confirm this scenario.

  13. Infrared reflection nebulae in Orion molecular cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Y.; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New obervations of Orion Molecular Cloud-2 have been made from 1-100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry and spectrophotometry has shown that the extended emission regions associated with two of the previously known near infrared sources, IRS1 and IRS4, are infrared reflection nebulae, and that the compact sources IRS1 and IRS4 are the main luminosity sources in the cloud. The constraints from the far infrared observations and an analysis of the scattered light from the IRS1 nebula show that OMC-2/IRS1 can be characterized by L less than or equal to 500 Solar luminosities and T approx. 1000 K. The near infrared (1-5) micron albedo of the grains in the IRS1 nebula is greater than 0.08.

  14. Infrared reflection nebulae in Orion Molecular Cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08.

  15. [Fe iii] lines in the planetary nebula NGC 2392

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Fang, Xuan; Chau, Wayne; Hsia, Chin-Hao; Liu, Xiao-Wei; Kwok, Sun

    2012-08-01

    The Eskimo Nebula (NGC 2392) is a young double-shell planetary nebula (PN). Its intrinsic structure and the responsible shaping mechanism are still not fully understood. We present new optical spectroscopy of NGC 2392 at two different locations to obtain the spectra of the inner and outer shells. Several [Fe iii] lines are clearly detected. We find that these [Fe iii] lines mostly originate from the inner shell. Therefore, we suggest that NGC 2392 might have an intrinsic structure similar to the Ant Nebula Mz 3, which exhibits a number of [Fe iii] lines from the central dense regions. In this scenario, the inner and outer shells correspond to the central emission core and the outer lobes of Mz 3, respectively.

  16. COMPARING SYMBIOTIC NEBULAE AND PLANETARY NEBULAE LUMINOSITY FUNCTIONS

    SciTech Connect

    Frankowski, Adam; Soker, Noam E-mail: soker@physics.technion.ac.i

    2009-10-01

    We compare the observed symbiotic nebulae (SyN) luminosity function (SyNLF) in the [O III] lambda5007 A line to the planetary nebulae (PN) luminosity function (PNLF) and find that the intrinsic SyNLF (ISyNLF) of galactic SyNs has-within its uncertainty of 0.5-0.8 mag-very similar cutoff luminosity and general shape to those of the PNLF. The [O III]/(Halpha+[N II]) line ratios of SyNs and PNs are shown to be also related. Possible implications of these results for the universality of the PNLF are briefly outlined.

  17. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  18. The Trifid Nebula: Stellar Sibling Rivalry

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  19. Forming Planets in the Hostile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are

  20. Probing Early-Type Galaxy Halos Using Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Merrifield, Michael; Arnaboldi, Magda; Coccato, Lodovico; Gerhard, Ortwin; Napolitano, Nicola; Pulsoni, Claudia; Planetary Nebula Spectrograph Collaboration

    2016-01-01

    Planetary nebulae offer an invaluable probe of the stellar kinematics at very large radii in early-type galaxies, reaching regimes where we can learn about both the dark matter halo of the system and the formation history of the stellar component. We present results from the largest kinematic survey to-date of extragalactic planetary nebulae in the outer halos early-type galaxies, obtained using the custom Planetary Nebula Spectrograph instrument. The survey currently comprises validated homogeneous catalogs for 33 early-type galaxies, with data typically extending to beyond 5 effective radii.This survey confirms that planetary nebulae trace the bulk stellar population very closely, allowing these data to be combined with more conventional absorption-line spectral studies at smaller radii. Analysis shows that: (1) there is a kinematic dichotomy amongst the galaxies between those that display rapidly-falling velocity disperson profiles and those where the dispersion remains roughly constant with radius - a distinction that reflects both orbital and mass profile differences; (2) rotation in outer regions correlates strongly with rotation in inner regions - they are fairly monolithic systems; (3) the velocity field usually contains symmetries that indicate triaxiality; (4) some systems have outer velocity fields that imply these regions are not in any sort of equilibrium.

  1. Molecular Hydrogen in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Speck, Angela K.; Baldridge, Sean; Matsuura, Mikako

    2015-08-01

    Planetary Nebulae (PNe) have long played the role of laboratories for investigating atomic, molecular, dust and plasma physics, which have applications to diverse other astrophysical environments. In this presentation we will discuss clumpy structures within planetary nebulae that are the hosts to, and protectors of molecular gas in an otherwise forbidding ionized zone. We will present new observations of the molecular hydrogen emission from several PNe and discuss their implications for the formation, evolution and survival/demise of such molecular globules. The science behind dust and molecule formation and survival that apply to many other astronomical objects and places.

  2. Planetesimal Formation in the Outer Solar Nebula

    NASA Technical Reports Server (NTRS)

    Supulver, K. D.

    1996-01-01

    A numerical investigation of the orbital trajectories of individual particles in the turbulent outer solar nebula has been performed. The (spherical) particle consists of an unchanging mm-sized 'dust' core surrounded by an H2O ice mantle; the density of both core and mantle is 0.5 g/cm(exp 3). The simulations include the effects of H2O condensation from the gas phase, H2O sublimation from the particle surface, and collisional growth via particle collisions with a background distribution of small H2O grains. The model nebula is an azimuthally symmetric minimum-mass nebula of solar composition with a vertical (and radial) temperature gradient. Particle evolution follows a pattern. A particle starting out in a cool region grows via condensation and collisional accretion until it is large enough (decimeter- to meter-sized) to decouple somewhat from the turbulence. (This growth occurs on a timescale of several thousand years at 10 AU; at 30 AU, the timescale is approx. 104 years.) The particle then moves rapidly inward toward the sun due to secular gas drag forces, sublimates much of its icy mantle, and slows its inward migration as it gets caught up in the turbulence again (due to its now-smaller size) at the 'sublimation boundary,' where the ambient gas temperature is approx. 150 K. Such a process could, on a short timescale (i.e., a timescale much shorter than the nebular gas lifetime of approx. 106 yr), generate a population of decimeter- to meter-sized bodies which would then collisionally accrete to form planetesimals.

  3. Binary stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Köhler, R.; Petr-Gotzens, M. G.; McCaughrean, M. J.; Bouvier, J.; Duchêne, G.; Quirrenbach, A.; Zinnecker, H.

    2006-11-01

    We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5-15 arcmin (0.65-2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13 arcsec-1.12 arcsec (60-500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M⊙ is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from θ^1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.

  4. Binary Stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Köhler, Rainer; Petr-Gotzens, Monika G.; McCaughrean, Mark J.; Bouvier, Jerome; Duchêne, Gaspard; Quirrenbach, Andreas; Zinnecker, Hans

    2007-08-01

    We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5 - 15 arcmin (0.65 - 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13 - 1.12 arcsec (60 - 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 Msun is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from θ1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.

  5. Monitoring the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo

    The VYSOS (Variable Young Stars Optical Survey) project has at its disposal five small telescopes: a 5-inch and a 20-inch robotic optical imaging telescope in Hawaii funded by the NSF, and a 6-inch robotic optical imaging telescope, a 32-inch robotic infrared imaging telescope, and a 60-inch optical spectroscopic telescope in Chile, funded and operated from Germany. Through an agreement between the leaders of the two sites (B. Reipurth and R. Chini), it has been decided to devote a significant fraction of time on these facilities to a large Key Project, conducting a massive monitoring survey of the Orion Nebula Cluster. The vast data streams are being reduced through automated customized pipelines. The applicant seeks funding to employ a postdoc and an undergraduate assistant to work at the University of Hawaii and collaborate on the analysis of the data. Virtually all young stars are variable, with a wide range of amplitudes and characteristic timescales. This is mainly due to accretion shocks as material from circumstellar disks fall onto the stars along magnetic funnel flows, but also giant star spots, magnetic flares, occultations by orbiting dust condensations, and eclipses by companions can modulate the light from the nascent star. It is increasingly recognized that the rather static view of pre-main sequence evolution that has prevailed for many years is misleading, and that time-dependent phenomena may hold the key to an understanding of the way young stars grow and their circumstellar environments evolve. The VYSOS project is designed to bring sophisticated modern techniques to bear on the long neglected problem of variability in young solar type stars. To interpret the observations they will be compared to sophisticated MHD models of circumstellar disks around young stars. The Orion Nebula Cluster is the nearest rich region of star formation, and numerous, albeit heterogeneous, studies exist of the cluster members. The present study will provide the first

  6. Imaging study of NGC 3372, the Carina nebula - II. Evidence of activity in the complex Trumpler 14/Car I photodissociation region

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Persi, P.; Bohigas, J.; Roth, M.; Gómez, M.

    2006-04-01

    We present the results of an imaging survey, from the optical to the mid-infrared, of the dark cloud associated with Car I, a dense cloud that is subject to an intense ultraviolet radiation field from the rich stellar cluster Trumpler 14. New ground-based broad- and narrow-band near-infrared and narrow-band optical images are analysed in combination with archived Spitzer/InfraRed Array Camera (IRAC) images to study this photodissociation region (PDR) and the triggering of a new generation of stars within the cloud, particularly close to its edges. Evidence is given of a clumpy morphology of the dense cloud. The ionization/dissociation front is delineated at the edges of these clumps. The existence of a number of embedded low- to intermediate-mass pre-main-sequence objects is confirmed by their considerable infrared excesses arising from discs and/or detectable X-ray emission. Most of the young stellar objects (YSOs) are located on or just behind ionization fronts, though a few are also outside the cloud. The infrared properties of the YSOs are discussed. Two Class I objects stand out, one of them is an FU Orionis system candidate that had an outburst of more than 3mag in K between 1993 and 2003, with further evidence that it occurred in the 2000-02 period. Molecular hydrogen line filamentary emission behind the Balmer and Brackett lines along the ionization front is seen delineating the edges of the dense cloud. This emission is also seen in all IRAC images. The diffuse, filamentary emission is very similar in all four 3.6, 4.5, 5.8 and 8μm bands, though there seem to be subtle differences. Across a bright section of the ionization/dissociation front, we found that, within the observational uncertainties, the maximum emission in all four IRAC channels coincides with that of H2 2.12μm. The western, embedded, dissociation front close to the CO peak (Car I-W) is seen delineated by a bright, long bar of emission in the 3-12μm images, in the Midcourse Space

  7. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  8. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    NASA Technical Reports Server (NTRS)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  9. A HYPERSPECTRAL VIEW OF THE CRAB NEBULA

    SciTech Connect

    Charlebois, M.; Drissen, L.; Bernier, A.-P.; Grandmont, F.; Binette, L. E-mail: ldrissen@phy.ulaval.c

    2010-05-15

    We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the H{beta}, [O III] {lambda}4959, {lambda}5007, H{alpha}, [N II] {lambda}6548, {lambda}6584, and [S II] {lambda}6717, {lambda}6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Megantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Cadez et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/H{alpha}, [S II]/H{alpha}, and [S II] {lambda}6717 /[S II] {lambda}6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

  10. A Hyperspectral View of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Charlebois, M.; Drissen, L.; Bernier, A.-P.; Grandmont, F.; Binette, L.

    2010-05-01

    We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the Hβ, [O III] λ4959, λ5007, Hα, [N II] λ6548, λ6584, and [S II] λ6717, λ6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Mégantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Čadež et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/Hα, [S II]/Hα, and [S II] λ6717 /[S II] λ6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

  11. Optical line intensities in the Trifid nebula

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1985-07-01

    Observations of the Trifid nebula (M20) obtained in H-alpha; He I (587.6 nm); and the forbidden lines of N II (658.3 nm), S II (671.6 and 673 nm), O III (500.7 nm), and O II (272.6 and 372.9 nm) using either the CIT long-slit spectrograph or a direct-mode CCD with narrow-band interference filters on the 92-cm telescope at KPNO are reported. The data are presented in extensive graphs and characterized in detail and a model is proposed to explain the scattering measurements. Findings discussed include a single central O7 V star with Teff = about 37,500 K, a dusty plasma ionized by this star, mean nebular electron density 150/cu cm, a central hole of radius 0.2 times that of the ionized zone, dust extending beyond the ionized region, overall temperature 7000-8000 K, filament temperatures up to 9000 K, dust optical depth 1.5 at H-beta, dust albedo 0.5, emission-nebula radius 2.8 pc, and total mass about 1700 solar mass (comprising 340 solar mass ionized material, about 800 solar mass unionized cloud material, and about 600 solar mass in an outer dust sphere). 18 references.

  12. Deuterium fractionation of water in the Solar nebula

    NASA Astrophysics Data System (ADS)

    Albertsson, Tobias; Semenov, Dmitry; Henning, Thomas

    2013-07-01

    Water evaporates in the inner regions of protoplanetary disks and is frozen onto grains in the outer regions. Therefore its presence in vast quantities on Earth is puzzling. Subsequent delivery through bombardment by primitive bodies formed in the outer icy regions is the favored mechanism. By studying water D/H ratios one hopes to understand whether the water was mainly delivered by comets or asteroids. Using an extended deuterium chemistry network coupled to a 2D chemo-dynamical disk model, we investigate the evolution of the D/H ratio of water in the young Solar nebula. We find that both the laminar and mixing Solar nebula models show the Earth's ocean water D/H ratio at 2-3 AU. In addition, the 2D-mixing model explains better the water D/H values observed in the Oort- and Jupiter-family comets.

  13. Millimeter-wave Molecular Line Observations of the Tornado Nebula

    NASA Astrophysics Data System (ADS)

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-08-01

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, 13CO, and HCO+ with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V LSR = -14 km s-1 and +5 km s-1. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado "head" in the -14 km s-1 cloud, also suggesting the interaction. Virial analysis shows that the +5 km s-1 cloud is more tightly bound by self-gravity than the -14 km s-1 cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s-1 cloud collided into the -14 km s-1 cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  14. A model of unpulsed very high energy gamma rays from the Crab Nebula and pulsar

    NASA Technical Reports Server (NTRS)

    Kwok, P. W.; Cheng, K. S.; Lau, M. M.

    1991-01-01

    The angular resolution of gamma-ray detectors does not allow one to separate the nebula from the pulsar in the Crab. It is generally assumed that the steady emission of gamma rays comes from the nebula. Using the 'outer magnetospheric gap' model, an alternative mechanism in which the steady emission of gamma rays could come from a compact region, a couple of light cylinder radii beyond the pulsar.

  15. Kinematic study of planetary nebulae in NGC 6822

    NASA Astrophysics Data System (ADS)

    Flores-Durán, S. N.; Peña, M.; Hernández-Martínez, L.; García-Rojas, J.; Ruiz, M. T.

    2014-08-01

    Context. The kinematics of planetary nebulae in external galaxies and in our own is a clue for understanding the behavior of the low- and intermediate-mass stars and their relation with other components of the galaxies. Aims: By measuring precise radial velocities of planetary nebulae (which belong to the intermediate-age population), H ii regions and A-type supergiant stars (which are members of the young population) in NGC 6822, we aim to determine whether both types of population share the kinematics of the disk of H i found in this galaxy. Methods: Spectroscopic data for six planetary nebulae were obtained with the high spectral-resolution spectrograph Magellan Inamori Kyocera Echelle (MIKE) on the Magellan telescope at Las Campanas Observatory. Data for another three PNe and one H ii region were obtained from the SPM Catalog of Extragalactic Planetary Nebulae, which employed the Manchester Echelle Spectrometer attached to the 2.1m telescope at the Observatorio Astronómico Nacional, México. An additional PN and one H ii region were observed with this same telescope-spectrograph in 2013. Thus, in total we have high-quality data for 10 of the 26 PNe detected in this galaxy. In the wavelength calibrated spectra, the heliocentric radial velocities were measured with a precision better than 5-6 km s-1. Data for two additional H ii regions and two A-type supergiant stars were collected from the literature. The heliocentric radial velocities of the different objects were compared to the velocities of the H i disk at the same position. Results: From the analysis of radial velocities we found that H ii regions and A-type supergiants do share the kinematics of the H i disk at the same position, as expected for these young objects. In contrast, most planetary nebula velocities differ significantly (more than 12 km s-1) from that of the H i at the same position. The kinematics of planetary nebulae is different from the young population kinematics and is more similar to

  16. Recent work on bipolar nebulae

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1983-01-01

    The results of recent studies of bipolar nebulae (BPN) using nebular-polarization mapping, spectropolarimetry, near-IR spectroscopy, far-IR photometry, and radio-maser and continuum observations are surveyed. The characteristics of several BPN of different evolutionary types are discussed and illustrated with spectra, model drawings, and maps. As shown in a Hertzsprung-Russell diagram of 19 BPN, this morphological class includes pre-main-sequence stars, red giants in transition to ordinary planetary nebulae, pre-white-dwarfs, a dust-shrouded carbon star, and a visual binary with a type-O primary. VLA 6-cm observations of the latter object, MWC 349, reveal a morphology similar to the optical structure of the Red Rectangle illuminated by HD 44179: it is suggested that equatorial dusty tori may occur commonly at different phases of stellar evolution, and hence that BPN may be relatively abundant, although short-lived, phenomena.

  17. The western Veil nebula (Image)

    NASA Astrophysics Data System (ADS)

    Glenny, M.

    2009-12-01

    The western Veil nebula in Cygnus. 15-part mosaic by Mike Glenny, Gloucestershire, taken over several months mostly in the autumn of 2008. 200mm LX90/f10 autoguided, Meade UHC filter, 0.3xFR/FF, Canon 20Da DSLR. Exposures each typically 10x360 secs at ISO1600, processed in Registax4, PixInsight (for flat field correction) & Photoshop CS.

  18. The Orion nebula star cluster

    NASA Technical Reports Server (NTRS)

    Panek, R. J.

    1982-01-01

    Photography through filters which suppress nebular light reveal a clustering of faint red stars centered on the Trapezium, this evidences a distinct cluster within the larger OB1 association. Stars within about 20 ft of trapezium comprise the Orion Nebula star cluster are considered. Topics discussed re: (1) extinction by dust grains; (2) photometric peculiarities; (3) spectroscopic peculiarities; (4) young variables; (5) the distribution and motion of gas within the cluster.

  19. Lyman Alpha Photochemistry in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of the project "Lyman Alpha Photochemistry in the Solar Nebula" was to model photochemistry in the primitive solar nebula and the early solar systems. As part of the modeling, it was necessary to model the composition of the gas and dust accreted by the solar nebula. This final report contains a list of publications where the results of this project have been published.

  20. A symmetric bipolar nebula around MWC 922.

    PubMed

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A. PMID:17431173

  1. An ACS H-alpha Survey of the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2004-07-01

    We propose an H-alpha ACS imaging survey covering 540 square arcminutes of the Carina Nebula, including an unbiased survey of the bright core, and several prominent dust pillars in the rich southern region of the nebula. Carina provides an important link between well-studied nearby H II regions like Orion, and more distant mini-starbusts like 30 Doradus. CVZ orbits will allow extremely efficient use of HST to map a large area of this complex and important region - more than 95 percent of the proposed survey will be observed by HST for the first time. This survey will provide a complete census of microjets, proplyds, and silhouette disks with diameters as small as 200 AU, enough to spatially resolve disks like those in Orion, and will provide the first catalog of outflows {jets} from embedded low-mass stars, thin filamentary shocks, and wind-wind collisions in Carina. An accurate census of these phenomena is needed to characterize the star formation activity and gas dynamics as a function of position in the nebula, and to determine if models for protoplanetary disk evaporation from Orion are applicable in more extreme regions. Our previous ground-based optical and IR surveys have already revealed dozens of candidates for this type of activity - but this is just the tip of the iceberg. Our proposed HST/ACS survey promises to be a bonanza for understanding ongoing low-mass star formation influenced by extremely high-mass stars.

  2. An ACS H-alpha Survey of the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2005-07-01

    We propose an H-alpha ACS imaging survey covering 540 square arcminutes of the Carina Nebula, including an unbiased survey of the bright core, and several prominent dust pillars in the rich southern region of the nebula. Carina provides an important link between well-studied nearby H II regions like Orion, and more distant mini-starbusts like 30 Doradus. CVZ orbits will allow extremely efficient use of HST to map a large area of this complex and important region - more than 95 percent of the proposed survey will be observed by HST for the first time. This survey will provide a complete census of microjets, proplyds, and silhouette disks with diameters as small as 200 AU, enough to spatially resolve disks like those in Orion, and will provide the first catalog of outflows {jets} from embedded low-mass stars, thin filamentary shocks, and wind-wind collisions in Carina. An accurate census of these phenomena is needed to characterize the star formation activity and gas dynamics as a function of position in the nebula, and to determine if models for protoplanetary disk evaporation from Orion are applicable in more extreme regions. Our previous ground-based optical and IR surveys have already revealed dozens of candidates for this type of activity - but this is just the tip of the iceberg. Our proposed HST/ACS survey promises to be a bonanza for understanding ongoing low-mass star formation influenced by extremely high-mass stars.

  3. Radial Migration of Phyllosilicates in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Ciesla, F. J.; Lauretta, D. S.; Hood, L. L.

    2004-01-01

    It has long been recognized that the high temperatures of the inner solar nebula (within approx. 3 AU) would not have allowed water to be incorporated into solids. However, the presence of water on the surface of Earth, as well as evidence for it on the surface of an early Mars imply that water was incorporated into solid bodies in this region. How this water was delivered to the solid bodies has yet to be identified. In this abstract we explore the possibility that hydrous minerals, such as phyllosilicates, formed somewhere in the asteroid belt region of the solar nebula or beyond, and then migrated inward where they would be accreted into larger bodies.

  4. Detection of submillimeter polarization in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.; Dragovan, M.; Novak, G.

    1984-01-01

    Linear polarization of the submillimeter (270 micron) continuum radiation from two regions of Orion was observed: one centered on the Kleinmann-Low Nebula and one centered on the 400 micron peak 1.5' south of the nebula. The polarizations measured for these regions are P = (1.7 +/-0.4)% at phi = 23 deg +/-7 deg and P=(1.7 +/- 0.5)% at phi = 27 deg +/- 7 deg respectively. A 2(sigma) upper limit, P or = 1.6%, was found for the nebular W3(OH). The position angle at KL is orthogonal to that measured at 11 microns by Dyck and Beichman and at 11 and 20 microns by Knacke and Capps. The far-IR values for KL reported by Gull et. al. (approx 2%) and by Cudlip et al. (1 to 2% level) are consistent with the submillimeter results.

  5. Detection of submillimeter polarization in the Orion Nebula

    SciTech Connect

    Hildebrand, R.H.; Dragovan, M.; Novak, G.

    1984-10-01

    Linear polarization of the submillimeter (270 micron) continuum radiation from two regions of Orion was observed: one centered on the Kleinmann-Low Nebula and one centered on the 400 micron peak 1.5' south of the nebula. The polarizations measured for these regions are P (1.7 +/-0.4)% at phi 23 deg +/-7 deg and P (1.7 +/- 0.5)% at phi 27 deg +/- 7 deg respectively. A 2(sigma) upper limit, P or 1.6%, was found for the nebular W3(OH). The position angle at KL is orthogonal to that measured at 11 microns by Dyck and Beichman and at 11 and 20 microns by Knacke and Capps. The far-IR values for KL reported by Gull et. al. (approx 2%) and by Cudlip et al. (1 to 2% level) are consistent with the submillimeter results.

  6. Preliminary report on IUE spectra of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Davidson, K.; Gull, T. R.; Maran, S. P.; Stecher, T. P.; Kafatos, M.; Trimble, V. L.

    1981-01-01

    The Crab Nebula is marginally observable with the IUE. Observations of the optically brightest filamentary regions, made with IUE in August 1979, show the C IV lambda 1549, He II lambda 1640, and C III lambda 1909 emission lines. The intensities of these lines were compared with the visual wavelength data. It appears that carbon is not overabundant in the Crab; carbon/oxygen is approximately normal and oxygen is slightly scarcer than normal as a fraction of the total mass.

  7. Planetary Nebulae with Supporting IR Data

    NASA Technical Reports Server (NTRS)

    Harrington, J. Patrick

    1999-01-01

    We present new HST/WFPC2 imagery for the planetary nebula (PN) NGC 6818. Observations were made in line filters F437N, F487N, F502N, and F656N plus continuum filter F547M. The primary goal was to develop a high spatial resolution (approx. 0.1 in.) map of the intrinsic line ratio [O III] 4363/5007 and thereby evaluate the electron temperature (T(sub e)) and the mean-square T(sub e) variation (t(sup 2) across the PN. In this process we developed an extinction map from the F487N (H(beta)) and F656N (H(alpha)) images by comparing the observed line ratios in each pixel to the theoretical ratio and computing a c(H(beta)) map which was used to correct the observed 4363/5007 ratios for reddening. We also adjust for the continuum contribution to the line filter data. We present color-coded pictures of the reddening (c(H(beta))) map, the [O III] T(sub e) map, as well as our determinations of t(sup 2). The T(sub e) map shows a decline from approx. 14000 K in the inner regions to approx. 11000 K at the outer edge. Such a radial T(sub e) gradient is expected for a high-excitation nebula with a prominent He(++) zone such as NGC 6818. A composite of images taken in 3 filters (F656N, red; F487N, blue; and F502N, [O III] 5007, green) shows a roughly spherical outer envelope as well as a brighter vase-shaped interior "bubble". There is a prominent orifice to the North and a smaller one to the South, along the major axis, possibly caused by a blow-out from a fast wind. This nebula has an appearance remarkably similar to that of the PN NGC 3918 previously imaged with HST by H. Bond. We note from the continuum images (F547M) two stars in the nebular field that are fainter than the prominent central star; these are roughly 2-4 sec. N and NE of the central star. Further study is needed to establish whether or not there may be a physical association of either star with the central star.

  8. SCATTERED NEBULAR LIGHT IN THE EXTENDED ORION NEBULA

    SciTech Connect

    O'Dell, C. R.; Goss, W. M.

    2009-11-15

    We have combined 327.5 MHz radio observations and optical spectroscopy to study conditions in the Extended Orion Nebula (EON). We see a steady progression of characteristics with increasing distance from the dominant photoionizing star {theta}{sup 1}Ori C. This progression includes a decrease in the F(H{alpha})/F(H{beta}) ratio, an increase in the relative strength of scattered stellar continuum, decrease in electron density determined from the [S II] doublet, and increase in the ratio of emission measures derived from the H{beta} line and the 327.5 MHz radio continuum. We conclude that beyond about 5' south of {theta}{sup 1}Ori C that scattered light from the much brighter central Huygens region of the nebula significantly contaminates local emission. This strengthens earlier arguments that wavelength and model-dependent scattering of emission-line radiation imposes a fundamental limit on our ability to determine the physical conditions and abundances in this and arguably other similar Galactic Nebulae. The implications for the study of extragalactic H II regions are even more severe. We confirm the result of an earlier study that at least the eastern boundary of the EON is dominated by scattered light from the Huygens region.

  9. MULTIPLE GENERATIONS OF STARS IN THE TARANTULA NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula -- that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Note for your calendar; Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  10. VLT observations of the asymmetric Etched Hourglass Nebula, MyCn 18

    NASA Astrophysics Data System (ADS)

    Clyne, N.; Redman, M. P.; Lloyd, M.; Matsuura, M.; Singh, N.; Meaburn, J.

    2014-09-01

    Context. The mechanisms that form extreme bipolar planetary nebulae remain unclear. Aims: The physical properties, structure, and dynamics of the bipolar planetary nebula, MyCn 18, are investigated in detail with the aim of understanding the shaping mechanism and evolutionary history of this object. Methods: VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical Echelle spectra are used to investigate MyCn 18. Morpho-kinematic modelling was used to firmly constrain the structure and kinematics of the source. A timescale analysis was used to determine the kinematical age of the nebula and its main components. Results: A spectroscopic study of MyCn 18's central and offset region reveals the detailed make-up of its nebular composition. Molecular hydrogen, atomic helium, and Bracket gamma emission are detected from the central regions of MyCn 18. ISAAC spectra from a slit position along the narrow waist of the nebula demonstrate that the ionised gas resides closer to the centre of the nebula than the molecular emission. A final reconstructed 3D model of MyCn 18 was generated, which provides kinematical information on the expansion velocity of its nebular components by means of position-velocity (P-V) arrays. A kinematical age of the nebula and its components were obtained by the P-V arrays and timescale analysis. Conclusions: The structure and kinematics of MyCn 18 are better understood using an interactive 3D modelling tool called SHAPE. A dimensional and timescale analysis of MyCn 18's major components provides a possible mechanism for the nebula's asymmetry. The putative central star is somewhat offset from the geometric centre of the nebula, which is thought to be the result of a binary system. We speculate that the engulfing and destruction of an exoplanet during the asymptotic giant branch phase may have been a key event in shaping MyCn 18 and generating of its hypersonic knotty outflow.

  11. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    SciTech Connect

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-10

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  12. ISO Spectroscopy of Proto-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  13. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pe 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the fo planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoeb open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cass Phoebe (mean diameter 213 km) is a former TNO now orbiting Saturn. VIMS spectral maps of Phoebe's surface reveal a complex consisting of prominent aromatic (CH) and aliphatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 µm). Phoebe is the source encircling Saturn, and from which particles (5-20 µm size) spiral inward toward Saturn. They encounter Iapetus and Hyperion wh blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aroma abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, com carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis o itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 4, which is larger than the value found in the di as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inv understanding the content and degree of processing of that nebular material. There are other Phoebe-like TNOs that are presently b in the organic spectral region, but JWST will open that possibility for a number of objects. We now need to explore and understand organic-bearing Solar System material to the solar nebula and the inventory of ISM materials incorporated therein.

  14. Owl Nebula (M97, NGC 3587)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A planetary nebula in the constellation Ursa Major, position RA 11 h 14.8 m, dec. +55° 01'. The Owl is 3' across and gets its name from two adjacent dark patches that have the appearance of large eyes. The nebula is eleventh magnitude, and the central star is a faint magnitude 16....

  15. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  16. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  17. Astrophysics and the solar nebula

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph; Duley, Walter; Goebel, John; Greenberg, J. Mayo; Kerridge, John; Lin, Douglas; Mackinnon, Ian; Rietmeijer, Frans; Stephens, John; Tomasko, Martin; Nuth, Joseph

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) nucleation of refractory vapors at low pressure/high temperature; (2) coagulation of refractory grains; (3) optical properties of refractory grains; (4) mantle growth on refractory cores; (5) coagulation of core-mantle grains; (6) optical properties of core-mantle grains; (7) lightning strokes in the primitive solar nebula; and (8) separation of dust from a grain/gas mixture that interacts with a meter-sized planetesimal to determine if accretion occurs. The required capabilities and desired hardware for the facility are detailed.

  18. The Orion Nebula in the Far-Infrared: FIFI-LS/SOFIA Mapped the PDR

    NASA Astrophysics Data System (ADS)

    Klein, Randolf

    2016-01-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps in several fine structure lines obtained with FIFI-LS cover the nebula from the BN/KL-object in the west to the bar in the south-east and gull feature in north-east. The fine structure lines can be used as a diagnostic for the physical conditions of the photon-dominated region (PDR), the interface between the HII-region and the molecular cloud.

  19. PAH and H2 emission in the Ring Nebula

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.; Pilleri, P.; Berné, O.; Cernicharo, J.; Joblin, C.

    2016-07-01

    This paper presents the Spitzer IRS (Infra Red Spectrograph) detection of mid-infrared polycyclic aromatic hydrocarbon (PAH) emission features and H2 associated with dense knots in the ring of the “oxygen-rich” (C/O∼⃒0.6-0.8) planetary nebula (PN) NGC6720 (Ring Nebula). We explored a further three oxygen-rich extended PNe with similar dataset available. These turned out to be non-detection of PAHs, although two of these do contain H2 emission knots. The presence of PAHs is discussed in the context of a bottom-up formation mechanism, in which first small hydrocarbons, and later PAHs, are formed in warm dense knots inside the ionised regions of PNe.

  20. Magellanic cloud planetary nebula with suspected strong forbidden iron lines.

    PubMed

    Aller, L H; Czyzak, S J

    1983-03-01

    The relatively high-excitation nebula (Westerlund-Smith object 25) in the large Magellanic cloud shows prominent forbidden lines of [Ar IV], the close [Ne IV] pair lambda4724, 4726, [Ca V] lambda5309, [Fe V] lambda4227, and probably [Fe VI] and [Fe VII], as well. A conventional interpretation of observations secured with a vidicon detector at the Cerro Tololo 4-m telescopes indicates an essentially "normal" helium abundance but depletions of N, O, Ne, and other elements with respect to our own galaxy. When a comparison is made with diffuse nebulae or H II regions in the large Magellanic cloud, we find helium to be more abundant, oxygen to be depleted, and nitrogen, neon, and argon to be comparable. The abundance of sulfur is uncertain. Iron in the gaseous phase is certainly more plentiful than in conventional planetaries. PMID:16593294

  1. Magellanic Cloud Planetary Nebula with Suspected Strong Forbidden Iron Lines

    NASA Astrophysics Data System (ADS)

    Aller, L. H.; Czyzak, S. J.

    1983-03-01

    The relatively high-excitation nebula (Westerlund-Smith object 25) in the large Magellanic cloud shows prominent forbidden lines of [Ar IV], the close [Ne IV] pair λ 4724, 4726, [Ca V] λ 5309, [Fe V] λ 4227, and probably [Fe VI] and [Fe VII], as well. A conventional interpretation of observations secured with a vidicon detector at the Cerro Tololo 4-m telescopes indicates an essentially ``normal'' helium abundance but depletions of N, O, Ne, and other elements with respect to our own galaxy. When a comparison is made with diffuse nebulae or H II regions in the large Magellanic cloud, we find helium to be more abundant, oxygen to be depleted, and nitrogen, neon, and argon to be comparable. The abundance of sulfur is uncertain. Iron in the gaseous phase is certainly more plentiful than in conventional planetaries.

  2. Magellanic cloud planetary nebula with suspected strong forbidden iron lines

    PubMed Central

    Aller, L. H.; Czyzak, S. J.

    1983-01-01

    The relatively high-excitation nebula (Westerlund-Smith object 25) in the large Magellanic cloud shows prominent forbidden lines of [Ar IV], the close [Ne IV] pair λ4724, 4726, [Ca V] λ5309, [Fe V] λ4227, and probably [Fe VI] and [Fe VII], as well. A conventional interpretation of observations secured with a vidicon detector at the Cerro Tololo 4-m telescopes indicates an essentially “normal” helium abundance but depletions of N, O, Ne, and other elements with respect to our own galaxy. When a comparison is made with diffuse nebulae or H II regions in the large Magellanic cloud, we find helium to be more abundant, oxygen to be depleted, and nitrogen, neon, and argon to be comparable. The abundance of sulfur is uncertain. Iron in the gaseous phase is certainly more plentiful than in conventional planetaries. PMID:16593294

  3. The violent interstellar medium associated with the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Laurent, C.; Paul, J. A.; Pettini, M.

    1982-06-01

    The physical conditions and chemical composition of the interstellar medium in line to HD 93205, an O3V star in the Great Carina Nebula, were studied, using UV spectra. The two main high velocity components show different relative abundance patterns. The red shifted component shows no depletion. For the blue shifted component, the relative abundance pattern seems difficult to explain in terms of elements locked into grains. Its composition is attributed to mixing with freshly synthetized material ejected by a recent supernova explosion. One low velocity component is identified with the normal interstellar gas in the disk of the Galaxy. In this component, column densities of interstellar CIV and SiIV, free from contamination by circumstellar material, were measured. The other low velocity component is identified with the approaching part of the expanding ionized nebula around the Carina OB associations. It consists of a dense HII region in which the two conspicuous OI fine structure lines originate.

  4. External Photoevaporation of the Solar Nebula: Jupiter's Noble Gas Enrichments

    NASA Astrophysics Data System (ADS)

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (~3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H2. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H2, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (lsim 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot & Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions <~ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot & Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ~0.1 M ⊕ of water vapor in the outer solar nebula and protoplanetary disks in H II regions.

  5. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    SciTech Connect

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.

  6. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-08-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC with the goal of analyzing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low-excitation nebula with weak emission lines from H+, He+, and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N, and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜ 1 M⊙) formed in a metal-poor environment.

  7. EXTENDED HARD X-RAY EMISSION FROM THE VELA PULSAR WIND NEBULA

    SciTech Connect

    Mattana, F.; Terrier, R.; Zurita Heras, J. A.; Goetz, D.; Caballero, I.; Soldi, S.; Schanne, S.; Ponti, G.; Falanga, M.; Renaud, M.

    2011-12-10

    The nebula powered by the Vela pulsar is one of the best examples of an evolved pulsar wind nebula, allowing access to the particle injection history and the interaction with the supernova ejecta. We report on the INTEGRAL discovery of extended emission above 18 keV from the Vela nebula. The northern side has no known counterparts and it appears larger and more significant than the southern one, which is in turn partially coincident with the cocoon, the soft X-ray, and TeV filament toward the center of the remnant. We also present the spectrum of the Vela nebula in the 18-400 keV energy range as measured by IBIS/ISGRI and SPI on board the INTEGRAL satellite. The apparent discrepancy between IBIS/ISGRI, SPI, and previous measurements is understood in terms of the point-spread function, supporting the hypothesis of a nebula more diffuse than previously thought. A break at {approx}25 keV is found in the spectrum within 6' from the pulsar after including the Suzaku XIS data. Interpreted as a cooling break, this points out that the inner nebula is composed of electrons injected in the last {approx}2000 years. Broadband modeling also implies a magnetic field higher than 10 {mu}G in this region. Finally, we discuss the nature of the northern emission, which might be due to fresh particles injected after the passage of the reverse shock.

  8. Detection of shocked atomic gas in the Kleinmann-Low nebula

    NASA Technical Reports Server (NTRS)

    Werner, M.; Crawford, M. K.; Genzel, R.; Hollenbach, D. J.; Townes, C. H.; Watson, F. M.

    1984-01-01

    The 63 micrometer (3)p(1)-(3)P(2) fine structure line emission of neutral atomic oxygen at the center of the Orion nebula with a resolution of 30" is presented. There are three main emission peaks. One is associated with the region of strongest thermal radio continuum radiation close to the Trapezium cluster, and probably arises at the interface between the HII region and the dense Orion molecular cloud. The other two line emission peaks, associated with the Kleinmann Low nebula, are similar in both distribution and velocity to those of the 2 micrometer S(1) line of molecular hydrogen and of the high velocity wings of rotational CO emission. The OI emission from the KL nebula can be produced in the shocked gas associated with the mass outflows in this region and is an important coolant of the shocked gas.

  9. Detection of shocked atomic gas in the Kleinmann-Low nebula

    NASA Technical Reports Server (NTRS)

    Werner, M. W.; Hollenbach, D. J.; Crawford, M. K.; Genzel, R.; Townes, C. H.; Watson, D. M.

    1984-01-01

    The 63 micrometer (3)P(1)-(3)P(2) fine structure line emission of neutral atomic oxygen at the center of the Orion nebula with a resolution of 30'' is presented. There are three main emission peaks. One is associated with the region of strongest thermal radio continuum radiation close to the Trapezium cluster, and probably arises at the interface between the H II region and the dense Orion molecular cloud. The other two line emission peaks, associated with the Kleinmann-Low nebula, are similar in both distribution and velocity to those of the 2 micrometer S(1) line of molecular hydrogen and of the high velocity wings of rotational CO emission. The OI emission from the KL nebula can be produced in the shocked gas associated with the mass outflows in this region and is an important coolant of the shocked gas.

  10. Spectroscopy of the ringlike nebula toward the open cluster NGC 3572

    NASA Astrophysics Data System (ADS)

    Noumaru, Junichi; Ogura, Katsuo

    1993-11-01

    Low-dispersion spectroscopy has been obtained for the ringlike nebula which Phelps and Janes (1991) found in the direction of the young open cluster NGC 3572 and suspected as a planetary nebula. Some nearby nebulosities have also been observed. Analyses of these data indicate that all of them, including the NGC 3572 ring, are H II regions. Morphological considerations of the region show that the nearby nebulosities are bright rims which are associated with the H II region BBW 342 and are partly hidden by the obscuring matter lying on this side. The NGC 3572 ring could be of the same nature. However, as the alternative interpretation, it could be a ring nebula (probably a wind-blown bubble) around a massive star (WR/Of star or LBV).

  11. Reconstruction and visualization of planetary nebulae.

    PubMed

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae. PMID:16144246

  12. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA (color)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This colorful photo shows a ground-based image of the entire Crab Nebula, the remnant of a supernova explosion witnessed over 900 years ago. The nebula, which is 10 light-years across, is located 7,000 light-years away in the constellation Taurus. The green, yellow and red filaments concentrated toward the edges of the nebula are remnants of the star that were ejected into space by the explosion. At the center of the Crab Nebula lies the Crab Pulsar -- the collapsed core of the exploded star. The Crab Pulsar is a rapidly rotating neutron star -- an object only about six miles across, but containing more mass than our Sun. As it rotates at a rate of 30 times per second the Crab Pulsar's powerful magnetic field sweeps around, accelerating particles, and whipping them out into the nebula at speeds close to that of light. The blue glow in the inner part of the nebula -- light emitted by energetic electrons as they spiral through the Crab's magnetic field -- is powered by the Crab Pulsar. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  13. THE ROTTEN EGG NEBULA A PLANETARY NEBULA IN THE MAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The object shown in these NASA/ESA Hubble Space Telescope images is a remarkable example of a star going through death throes just as it dramatically transforms itself from a normal red giant star into a planetary nebula. This process happens so quickly that such objects are quite rare, even though astronomers believe that most stars like the Sun will eventually go through such a phase. This star, with the prosaic name of OH231.8+4.2, is seen in these infrared pictures blowing out gas and dust in two opposite directions. So much dust has been cast off and now surrounds the star that it cannot be seen directly, only its starlight that is reflected off the dust. The flow of gas is very fast, with a velocity up to 450,000 mph (700,000 km/h). With extreme clarity, these Hubble Near Infrared Camera and Multi-Object Spectrometer (NICMOS) images reveal that the fast-moving gas and dust are being collimated into several thin streamers (on the right) and a jet-like structure (on the left), which can be seen extending away from the centers of both pictures. On the right, wisps of material in jet-like streamers appear to strike some dense blobs of gas. This interaction must produce strong shock waves in the gas. The pictures represent two views of the object. The color image is a composite of four images taken with different NICMOS infrared filters on March 28, 1998. It shows that the physical properties of the material, both composition and temperature, vary significantly throughout the outflowing material. The black-and-white image was taken with one NICMOS infrared filter. That image is able to show more clearly the faint detail and structure in the nebula than can be achieved with the color composites. Observations by radio astronomers have found many unusual molecules in the gas around this star, including many containing sulfur, such as hydrogen sulfide and sulfur dioxide. These sulfur compounds are believed to be produced in the shock waves passing through the gas

  14. Processing NASA Earth Science Data on Nebula Cloud

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Pham, Long; Kempler, Steven

    2012-01-01

    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  15. Mixing and Transport in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    2003-01-01

    models of marginally gravitationally unstable disks to study the preservation of isotopic heterogeneity in evolving protoplanetary disks. Such heterogeneity might arise from the infall onto the disk s surface of solids processed in the X-wind region of the disk, or derived from stellar nucleosynthesis and injected by R-T fingers. The technique used consists of solving a color equation, identical to the gas continuity equation, which follows the time evolution in three space dimensions of an arbitrarily placed initial color field, i.e., a dye inserted the disk. The models show that significant concentrations of color could persist for time periods of about a thousand years or more, even in the most dynamically active region of such a disk. Such a time period might be long enough for solids to coagulate and grow to significant sizes while retaining the isotopic signature of their birth region in the nebula.

  16. The Nebula around the Luminous Blue Variable WRAY 15-751 as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemekers, D.; Royer, P.; Naze, Y.; Magain, P.; Exter, K.; Waelkens, C.; Groenewegen, M.

    2013-06-01

    To understand the evolution of massive stars it is crucial to study the nebulae associated to Luminous Blue Variables which can reveal the star mass-loss history. We obtained far-infrared Herschel PACS imaging and spectroscopic observations of the nebula associated with the Luminous Blue Variable star WRAY 15-751. These images revealed a second nebula, bigger and cooler, lying in an empty cavity that probably delineates the remnant of the O-star bubble formed when the star was on the Main Sequence. The dust mass and temperature were derived from the modeling of the far-infrared SED. The analysis of the emission line spectrum revealed that the main nebula consists of a region of photoionised gas surrounded by a thin photodissociation region. Both regions are mixed with dust. The calculated C, N, O abundances, together with the estimated mass-loss rate, show that the nebula was ejected from the star during a Red Supergiant phase. This is compatible with the latest evolutionary tracks for a ~40 Mo star with little rotation.

  17. Search for continuous fluorescence in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.; Witt, A. N.

    1975-01-01

    Photometric and spectrophotometric observations have been made of the reflection nebulae NGC 1435, NGC 2068, NGC 7023, and IC 1287 in an attempt to detect continuous fluorescence by dust grains. Several effects of importance for observations of such faint objects are discussed, including instrumental light scattering, a photographic effect, and a time-delay effect which can occur if the illuminating star is a spectrum variable. It is found that continuous fluorescence by interstellar grains is not likely to exist and that it cannot account for more than 10% of the total surface brightness of these reflection nebulae. No evidence of diffuse interstellar features is found in the spectra of these nebulae.

  18. Far-ultraviolet imagery of the Barnard Loop Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    An electrographic Schmidt camera carried on a sounding rocket has yielded far-ultraviolet (1050-2000 A and 1230-2000 A) images of the Barnard Loop Nebula and of the general background in the Orion region due to scattering of ultraviolet starlight by interstellar dust particles. The total intensity in the Barnard Loop region agrees well with OAO-2 measurements, but the discrete Loop structure contributes only some 15% of the total. The measurements are consistent with a relatively high albedo for the dust grains in the far-ultraviolet.

  19. Survey for Radio Nebulae Around Ultraluminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; Heil, Martha Nicole; Mushotzky, Richard

    2016-01-01

    The nature of ultraluminous X-ray sources (ULX) is an ongoing debate. As such sources appear to violate the Eddington Limit for the expected masses of stellar remnants, ULX may represent a class of super-Eddington objects, "intermediate" mass black holes (IMBH) emitting at sub-Eddington levels, or a diverse population including examples of both. Most initial efforts to search for radio emission associated with ULX did so with high angular resolution in hopes of applying the "fundamental plane of black hole activity" which relates X-ray luminosity, radio luminosity, and black hole mass. The predicted radio flux densities for such compact radio emission are quite low meaning that even non-detections leave open much of the mass range associated with IMBH. However, a small number of ULX have been associated with extended radio emission and these radio nebulae have sizes and energetics that differentiate them from more common classes of extended objects such as HII regions and supernova remnants. We report here on the results of a cohesive study to identify and characterize ULX radio nebula associated with unbiased samples of ULX. This study has two prongs: one relying upon archival Very Large Array data and one using new, dedicated Jansky Very Large Array observations. Several new candidate ULX radio nebulae are identified and characterized, and along with limits from non-detections we discuss implications for the overall population of ULX.

  20. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  1. Planetary nebulae and their mimics: The MASH-MEN Project

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Parker, Quentin A.; Frew, David J.; Bojicic, Ivan

    2012-08-01

    The total number of true, likely and possible planetary nebulae (PN) now known in the Milky Way is about 3000, approximately twice the number known a decade ago. The new discoveries are a legacy of the recent availability of wide-field, narrowband imaging surveys, primarily in the light of Hα. The two most important are the AAO/UKST SuperCOSMOS Hα survey SHS and the Isaac Newton photometric Hα survey IPHAS, which are responsible for most of the new discoveries. A serious problem with previous PN catalogs is that several different kinds of astrophysical objects are able to mimic PN in some of their observed properties leading to significant contamination. These objects include H~II regions and Strömgren zones around young O/B stars, reflection nebulae, Wolf-Rayet ejecta, supernova remnants, Herbig-Haro objects, young stellar objects, B[e] stars, symbiotic stars and outflows, late-type stars, cataclysmic variables, low redshift emission-line galaxies, and even image/detector flaws. PN catalogs such as the Macquarie/AAO/Strasbourg Hα Planetary Nebula catalog (MASH) have been carefully vetted to remove these mimics using the wealth of new wide-field multi-wavelength data and our 100% follow-up spectroscopy to produce a compilation of new PN discoveries of high purity. During this process significant numbers of PN mimics have been identified. The aim of this project is to compile these MASH rejects into a catalog of Miscellaneous Emission Nebulae (MEN) and to highlight the most unusual and interesting examples. A new global analysis of these MEN objects is underway before publishing the MEN catalog online categorizing objects by type together with their spectra and multi-wavelength images.

  2. Millimeter-wave molecular line observations of the Tornado nebula

    SciTech Connect

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-08-10

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, {sup 13}CO, and HCO{sup +} with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V{sub LSR} = –14 km s{sup –1} and +5 km s{sup –1}. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s{sup –1} cloud, also suggesting the interaction. Virial analysis shows that the +5 km s{sup –1} cloud is more tightly bound by self-gravity than the –14 km s{sup –1} cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s{sup –1} cloud collided into the –14 km s{sup –1} cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  3. The Herschel view of the nebula around the luminous blue variable star AG Carinae

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Cox, N. L. J.; Nazé, Y.; Rauw, G.; Waelkens, C.; Groenewegen, M. A. T.

    2015-06-01

    Far-infrared Herschel PACS imaging and spectroscopic observations of the nebula around the luminous blue variable (LBV) star AG Car have been obtained along with optical imaging in the Hα+[ N ii ] filter. In the infrared light, the nebula appears as a clumpy ring shell that extends up to 1.2 pc with an inner radius of 0.4 pc. It coincides with the Hα nebula, but extends further out. Dust modeling of the nebula was performed and indicates the presence of large grains. The dust mass is estimated to be ~0.2 M⊙. The infrared spectrum of the nebula consists of forbidden emission lines over a dust continuum. Apart from ionized gas, these lines also indicate the existence of neutral gas in a photodissociation region that surrounds the ionized region. The abundance ratios point towards enrichment by processed material. The total mass of the nebula ejected from the central star amounts to ~15 M⊙, assuming a dust-to-gas ratio typical of LBVs. The abundances and the mass-loss rate were used to constrain the evolutionary path of the central star and the epoch at which the nebula was ejected, with the help of available evolutionary models. This suggests an ejection during a cool LBV phase for a star of ~55 M⊙ with little rotation. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, La Silla, Chile.Appendices are available in electronic form at http://www.aanda.org

  4. Signatures of Chemical Evolution in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha

    2011-01-01

    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or

  5. Planetary nebulae and stellar evolution

    NASA Technical Reports Server (NTRS)

    Maran, S. P.

    1983-01-01

    Newly defined characteristics of planetary nebulae (PN) derived from analysis of a photometric survey of 57 PN are reported. The data were combined with measurements of 27 other PN made since 1918 and were found to indicate core masses ranging from 0.55-1.0 solar mass. N/O elemental abundance ratios observed were correlated with the planetary nuclei masses, and were in direct proportion. IUE data on PN that overlapped a large part of the survey indicated that the PN in the galactic disk are more massive than PN in the halo. It is suggested that PN evolve into white dwarfs, a hypothesis supported by astrometric solutions for three nearby visual binaries featuring white dwarfs with well-determined masses. It is noted, however, that PN with masses exceeding one solar mass have been sighted in the Magellanic Clouds.

  6. Abundance patterns in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Henry, Richard B. C.

    1990-06-01

    Abundances of He, N, O, and Ne have been uniformly calculated for 192 planetary nebulas residing in the Galactic disk and halo, the LMC, the SMC, and M31. Direct correlations appear to exist for type I as well as non-type I objects for the following pairs of parameters: N/O-He/H, N/O-N/H, and Ne/H-O/H. Separately, type I planetaries show a weak anticorrelation between N/O and O/H, while non-type I's exhibit direct correlations between N/H and O/H and between N/O and O/H. From these patterns, it is inferred that non-type I's synthesize N via the CN cycle. Type I planetaries, on the other hand, manufacture N at least partially via the ON cycle, destroying O in the process. Neither type appears to synthesize O or Ne.

  7. The Orion Nebula: Still Full of Surprises

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that

  8. The Orion Nebula: Still Full of Surprises

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that

  9. BY POPULAR DEMAND: HUBBLE OBSERVES THE HORSEHEAD NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view. The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view. Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars. The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope. The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ. This popular celestial target was the clear winner among more

  10. MHD Solutions for Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; López, J. A.; Franco, J.

    2004-07-01

    This paper provides solutions for the origin of post-AGB winds, their acceleration up to high speed, and the subsequent formation of extremely collimated proto-planetary nebulae. Several wind models with terminal velocities from a few tens of kms up to 103 kms are calculated, which produce proto-planetary nebulae with linear momentum in the range 1036-1040 gcms and with kinetic energies in the range 1042-1047 erg. These results match available observations of proto-planetary nebulae. In the present simplistic scheme, the driver of the wind is just the magnetic pressure at the stellar surface. Other forces are not taken into account in this study, except gravity. We conclude that mass-loss rates of post-AGB stars and transition times from late AGB up to planetary nebula central stars could be directly linked with the production of magnetic field at the stellar core.

  11. Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Nazé, Y.; Magain, P.; Exter, K.; Waelkens, C.; Groenewegen, M. A. T.

    2013-09-01

    We have obtained far-infrared Herschel-PACS imaging and spectroscopic observations of the nebular environment of the luminous blue variable (LBV) WRAY 15-751. The far-infrared images clearly show that the main, dusty nebula is a shell of radius 0.5 pc and width 0.35 pc extending outside the Hα nebula. Furthermore, these images reveal a second, bigger and fainter dust nebula that is observed for the first time. Both nebulae lie in an empty cavity, very likely the remnant of the O-star wind bubble formed when the star was on the main sequence. The kinematic ages of the nebulae are calculated to be about 2 × 104 and 8 × 104 years, and we estimated that each nebula contains ~0.05 M⊙ of dust. Modeling of the inner nebula indicates a Fe-rich dust. The far-infrared spectrum of the main nebula revealed forbidden emission lines coming from ionized and neutral gas. Our study shows that the main nebula consists of a shell of ionized gas surrounded by a thin photodissociation region illuminated by an "average" early-B star. We derive the abundance ratios N/O = 1.0 ± 0.4 and C/O = 0.4 ± 0.2, which indicate a mild N/O enrichment. From both the ionized and neutral gas components we estimate that the inner shell contains 1.7 ± 0.6 M⊙ of gas. Assuming a similar dust-to-gas ratio for the outer nebula, the total mass ejected by WRAY 15-751 amounts to 4 ± 2 M⊙. The measured abundances, masses and kinematic ages of the nebulae were used to constrain the evolution of the star and the epoch at which the nebulae were ejected. Our results point to an ejection of the nebulae during the red super-giant (RSG) evolutionary phase of an ~40 M⊙ star. The multiple shells around the star suggest that the mass-loss was not a continuous ejection but rather a series of episodes of extreme mass-loss. Our measurements are compatible with the recent evolutionary tracks computed for an ~40 M⊙ star with little rotation. They support the O-BSG-RSG-YSG-LBV filiation and the idea that high

  12. Anatomy of the Photodissociation Region in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Meixner, M. M.; vanderWerf, P. P.; Bregman, J.; Tauber, J. A.; Stutzki, J.; Rank, D.

    1993-01-01

    Much of the interstellar gas resides in photodissociation regions whose chemistry and energy balance is controlled by the flux of far-ultraviolet radiation upon them. These photons can ionize and dissociate molecules and heat the gas through the photoelectric effect working on dust grains. These regions have been extensively modeled theoretically, but detailed observational studies are few. Mapping of the prominent Orion Bar photo-dissociation region at wavelengths corresponding to the carbon-hydrogen stretching mode of polycyclic aromatic hydrocarbons, the 1-0 S(l) line of molecular hydrogen, and the J = 1-0 rotational line of carbon monoxide allows the penetration of the far-ultraviolet radiation into the cloud to be traced. The results strongly support the theoretical models and show conclusively that the incident far-ultraviolet radiation field, not shocks as has sometimes been proposed, is responsible for the emission in the Orion Bar.

  13. The Crab Nebula and related supernova remnants; Proceedings of the Workshop, George Mason University, Fairfax, VA, October 11, 12, 1984

    NASA Astrophysics Data System (ADS)

    Kafatos, M. C.; Henry, R. B. C.

    Papers are presented on the Crab Nebula's composition, helium distribution, outer structure and jet, and evolution. Attention is given to line emission from supernova remnants and charge transfer reactions, a magnetohydrodynamic model of the Crab Nebula and its radiation, inferences made using data on the pulsed flux from the crab pulsar, a new interpretation of the crab pulsar X-ray interpulse radiation, and evolutionary models of the Crab Nebula's progenitor. Other topics include the evolution of the centimeter flux of 3C58 and the Crab Nebula, a search for a shock wave around the Crab Nebula, high resolution radio studies of the Crab Nebula, supernova shell structure, and the nature of the remnant 0540-693 and its implications for the study of crablike remnants. Papers are also presented on X-ray observations of: Crab-like remnants, the Crab Nebula, the Vela X region, W28, and 3C400.2. Other papers include the 50 millisecond pulsar in the Large Magellanic Cloud and the X-ray pulse emission mechanism, optical emission from the plerionic core of CTB 80, and one-arcminute resolution observations of W50.

  14. The Crab Nebula and related supernova remnants; Proceedings of the Workshop, George Mason University, Fairfax, VA, October 11, 12, 1984

    NASA Technical Reports Server (NTRS)

    Kafatos, M. C. (Editor); Henry, R. B. C. (Editor)

    1985-01-01

    Papers are presented on the Crab Nebula's composition, helium distribution, outer structure and jet, and evolution. Attention is given to line emission from supernova remnants and charge transfer reactions, a magnetohydrodynamic model of the Crab Nebula and its radiation, inferences made using data on the pulsed flux from the crab pulsar, a new interpretation of the crab pulsar X-ray interpulse radiation, and evolutionary models of the Crab Nebula's progenitor. Other topics include the evolution of the centimeter flux of 3C58 and the Crab Nebula, a search for a shock wave around the Crab Nebula, high resolution radio studies of the Crab Nebula, supernova shell structure, and the nature of the remnant 0540-693 and its implications for the study of crablike remnants. Papers are also presented on X-ray observations of: Crab-like remnants, the Crab Nebula, the Vela X region, W28, and 3C400.2. Other papers include the 50 millisecond pulsar in the Large Magellanic Cloud and the X-ray pulse emission mechanism, optical emission from the plerionic core of CTB 80, and one-arcminute resolution observations of W50.

  15. Herschel observations of the nebula M1-67 around the Wolf-Rayet star WR 124

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Waelkens, C.; Groenewegen, M. A. T.; Barlow, M. J.

    2016-04-01

    Infrared Herschel imaging and spectroscopic observations of the nebula M1-67 around the Wolf-Rayet star WR 124 have been obtained along with optical imaging observations. The infrared images reveal a clumpy dusty nebula that extends up to 1 pc. The comparison with the optical images shows that the ionized gas nebula coincides with the dust nebula, the dust and the gas being mixed together. A photodissociation region is revealed from the infrared spectroscopic analysis. The analysis of the infrared spectrum of the nebula, where forbidden emission lines of ionized elements were detected, showed that the nebula consists of mildly processed material with the calculated abundance number ratios being N/O = 1.0 ± 0.5 and C/O = 0.46 ± 0.27. Based on a radiative transfer model, the dust mass of the nebula was estimated to be 0.22 M⊙ with a population of large grains being necessary to reproduce the observations. The comparison of the mass-loss rate and the abundance ratios to theoretical models of stellar evolution led to the conclusion that the nebular ejection took place during a RSG/YSG evolutionary phase of a central star with an initial mass of 32 M⊙. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, La Silla, Chile.

  16. Chemical composition of gaseous nebula NGC 6302.

    PubMed

    Aller, L H; Czyzak, S J

    1978-01-01

    The irregular emission nebula NGC 6302 exhibits a rich spectrum of lines ranging in excitation from [NI] to [FeVII]. An assessment of available spectroscopic data, covering a large intensity range, indicates excess of helium and nitrogen as compared with average planetary nebulae, but deficiencies in iron and calcium. These metals are presumably tied up in solid grains, as suggested by Shields for iron in NGC 7027. PMID:16592476

  17. Several evolutionary channels for bright planetary nebulae

    NASA Astrophysics Data System (ADS)

    Richer, Michael G.; McCall, Marshall L.

    2016-08-01

    The populations of bright planetary nebulae in the discs of spirals appear to differ in their spectral properties from those in ellipticals and the bulges of spirals. The bright planetary nebulae from the bulge of the Milky Way are entirely compatible with those observed in the discs of spiral galaxies. The similarity might be explained if the bulge of the Milky Way evolved secularly from the disc, in which case the bulge should be regarded as a pseudo-bulge.

  18. The Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D.; Gotthelf, E.; Halpern, J.

    2000-10-01

    We present high-resolution Chandra X-ray observations of PSR0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations of the pulsar separated by one month to search for morphological changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a morphology remarkably similar to the torus-like structure observed in the Crab Nebula, along with an axial Crab-like jet. The flux from the pulsar is found to be steady to within 0.75 %; the 3 sigma limit on the fractional increase in the pulsar's X-ray flux is <10-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer torus; if associated with the glitch, the inferred propogation velocity is ~0.5c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In this model, the bright, arc-shaped X-ray wisps are the shocked termination of a relativistic equatorial pulsar wind which is contained within the surrounding kidney-bean shaped synchrotron nebula which comprises the post-shock, but still relativistic, flow. In a departure from the Crab model, the magnetization parameter of the Vela pulsar wind is required to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B ~ 4 x 10-4G.

  19. Properties of young clusters near reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1983-01-01

    Near infrared observations in the reflection nebulae NGC 7023, 2023, and 2068 are used to study clusters of young stars found associated with these nebulae. At least 30% to 60% of these stars are pre-main sequence objects, as indicated by their infrared excesses, hydrogen line emission, or irregular variability. The spatial distributions and observed luminosity functions of these young open clusters are derived, and the inferred mass function and star formation efficiencies are discussed.

  20. The Cocoon nebula and its ionizing star: do stellar and nebular abundances agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2014-11-01

    Context. Main-sequence massive stars embedded in an H ii region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula (IC 5146), a close-by Galactic H ii region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to compare nebular and stellar abundances in detail in the same Galactic region. Aims: We investigate the chemical content of oxygen and other elements in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum, and a detailed spectroscopic analysis of the associated early B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines and optical recombination lines in photoionized nebulae. Methods: We collected long-slit spatially resolved spectroscopy of the Cocoon nebula and a high-resolution optical spectrum of the ionizing star. Standard nebular techniques along with updated atomic data were used to compute the physical conditions and gaseous abundances of O, N, and S in eight apertures extracted across a semidiameter of the nebula. We performed a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. Results: The Cocoon nebula and its ionizing star, located at a distance of 800±80 pc, have a chemical composition very similar to the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighborhood (up to 1.5 Kpc from the Sun) as derived from the study of the local cold-gas interstellar medium. The comparison of stellar and nebular collisionally excited line abundances in the Cocoon nebula indicates that O and N gas+dust nebular values agree

  1. ELEMENT DISTRIBUTIONS IN THE CRAB NEBULA

    SciTech Connect

    Satterfield, Timothy J.; Katz, Andrea M.; Sibley, Adam R.; MacAlpine, Gordon M.; Uomoto, Alan

    2012-07-15

    Images of the Crab Nebula have been obtained through custom interference filters that transmit emission from the expanding supernova remnant in He II {lambda}4686, H{beta}, He I {lambda}5876, [O I] {lambda}{lambda}6300, 6364, [N II] {lambda}{lambda}6548, 6583, [S II] {lambda}{lambda}6716, 6731, [S III] {lambda}9069, and [C I] {lambda}{lambda}9823, 9850. We present both raw and flux-calibrated emission-line images. Arrays of 19,440 photoionization models, with extensive input abundance ranges, were matched pixel by pixel to the calibrated data in order to derive corresponding element abundance or mass-fraction distributions for helium, carbon, nitrogen, oxygen, and sulfur. These maps show distinctive structure, and they illustrate regions of gas in which various stages of nucleosynthesis have apparently occurred, including the CNO cycle, helium burning, carbon burning, and oxygen burning. It is hoped that the calibrated observations and chemical abundance distribution maps will be useful for developing a better understanding of the precursor star evolution and the supernova explosive process.

  2. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  3. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations

  4. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or

  5. The Impact of FU Orionis Outbursts and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Bell, Robbins; Young, Richard E. (Technical Monitor)

    1998-01-01

    including the following effects: (1) heating of the planet forming region by direct radiation from the hot inner nebula; (2) heating by the diffuse radiation field of a coccooning envelope; and (3) time-dependent penetration of the increased luminosity from the above sources into the optically thick nebula. Some of this work is currently in progress. The potential effects on condensation and migration in the nebula and the thermal processing of solids will be evaluated.

  6. Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; Gotthelf, E. V.; Halpern, J. P.

    2001-07-01

    We present high-resolution Chandra X-ray observations of PSR B0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations separated by 1 month to search for changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a toroidal morphology remarkably similar to that observed in the Crab Nebula, along with an axial Crab-like jet. Between the two observations, taken ~3×105 s and ~3×106 s after the glitch, the flux from the pulsar is found to be steady to within 0.75% the 3 σ limit on the fractional increase in the pulsar's X-ray flux is <~10-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer arc; if associated with the glitch, the inferred propagation velocity is >~0.7c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In this model, the bright X-ray arcs are the shocked termination of a relativistic equatorial pulsar wind that is contained within the surrounding kidney-bean shaped synchrotron nebula comprising the postshock, but still relativistic, flow. In a departure from the Crab model, the magnetization parameter σ of the Vela pulsar wind is allowed to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B<=4×10-4 G. The inclination angle of the axis of the equatorial torus with respect to the line of sight is identical to that of the rotation axis of the pulsar as previously measured from the polarization of the radio pulse. The projection of the rotation axis on the sky may also be close to the direction of proper motion of the pulsar if previous radio measurements were confused by

  7. New Hα Stars, HHL Objects, and a Cometary Nebula

    NASA Astrophysics Data System (ADS)

    Melikian, N. D.; Karapetian, A. A.

    2001-04-01

    Preliminary results of observations of a region containing known H stars are presented. The observations were made on the 2.6-m telescope of the V. A. Ambartsumian Byurakan Astrophysical Observatory in August 2000. A VAGR integral field spectrograph was used in the observations. The size of the region studied is about 6×11 arcmin. Besides the two already known, five new H stars and five HHL objects were discovered in this region. One of these stars coincides with the well-known object RNO 127. One infrared and one cometary nebula were discovered. The presence of so many peculiar objects in a region of such size suggests that it is one of the youngest star-forming regions.

  8. AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA

    SciTech Connect

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide E-mail: william.waller@tufts.edu E-mail: bpatten@nsf.gov

    2009-03-15

    At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

  9. The emission nebula associated with V1974 Cygni: a unique object?

    NASA Astrophysics Data System (ADS)

    Casalegno, R.; Orio, M.; Mathis, J.; Conselice, C.; Gallagher, J.; Balman, S.; Della Valle, M.; Homeier, N.; Ögelman, H.

    2000-09-01

    Through a program of narrow band imaging, we have observed the changing structure of the Hα emission line around Nova Cyg 1992 (V1974 Cyg) at regular intervals from 1996 to 1999. Between 1994 and 1996, the nebular boundary advanced to the southwest at nearly the speed of light, implying that the nebula was created by an expanding wave of radiation originating in the explosion interacting with surrounding material. The expansion speed dropped to 0.35c during 1996-1999. We have taken spectra of the nebula in 1998 and 1999. Only Balmer lines are detected, no He I, [O III], [O II], [N II], or [S II]. There is also no trace of the high excitation nova lines (He II, NeV, etc). The Balmer lines are unresolved in velocity (FWHM<=100 km s-1). These spectra show that the nebula is not a reflection nebula, a conventional H II region, or a shock involving motions of the gas. The integrated Hα luminosity of the nebula between 1996 and 1999 is in the range =~ 1.3-2.2 x 1035 erg s-1. The Balmer decrement is normal for recombinations of a lightly reddened plasma. The lack of forbidden emission lines can only be understood if the electron temperature is low. This condition results if the energies of the ejected photoelectrons are shared among electrons, protons, and neutrals in a partially ionized medium. The He I lines are suppressed if the flash ionizing spectrum is truncated at or below the He0 ionization edge. The ionized material is on the front face of neutral sheets. The density is poorly determined, but is probably very large ( ~ 104 cm-3) in order to explain the brightest region of the nebula. The dynamical timescale is about a year and the recombination timescale of the same order. Bright patches are observed to fade in these times. The energy required to ionize the nebula is the bolometric luminosity of the nova for 30 days, smaller than the time during which the temperature of the nova photosphere was in the right range to produce the ionizing photons. We have also

  10. Chemical evolution models for NGC 6822 using planetary nebulae abundances

    NASA Astrophysics Data System (ADS)

    Hernández-Martínez, Liliana; Carigi, Leticia; Peña, Miriam; Peimbert, Manuel

    2012-08-01

    We present chemical evolution models for the dwarf irregular NGC 6822, using chemical abundances of Planetary Nebulae (PNe) and HII regions and also the mass of gas (M gas ) as observational constraints. Chemical evolution models have been calculated to reproduce the abundances as derived from both, collisionally excited lines (CELs) and recombination lines (RLs). In our models, the chemical contribution of low and intermediate mass stars (LIMS) is time delayed, while for the massive stars the chemical contribution is instantaneous, as in Franco & Carigi (2008). The chemical contribution of SNIa is included in our model, thus we are also able to reproduce the observational Fe/H abundance obtained from A stars.

  11. The Central Orion Nebula (M42) as seen by MUSE

    NASA Astrophysics Data System (ADS)

    Weilbacher, P. M.; Monreal-Ibero, A.; Mc Leod, A. F.; Ginsburg, A.; Kollatschny, W.; Sandin, C.; Wendt, M.; Wisotzki, L.; Bacon, R.

    2015-12-01

    The MUSE (Multi Unit Spectroscopic Explorer) instrument, an optical wide-field integral field spectrograph at the Very Large Telescope, has been operating successfully for about a year. Among the impressive sets of data collected during commissioning was a mosaic of the central Orion Nebula (M42), known as the Huygens region. During the past year, we have made the data ready for scientific use, and they are now publicly available to the community. An overview of the observations and their reduction, as well as two possible scientific applications, are presented.

  12. Star Formation in Giant Complexes: the Cat's Paw Nebula

    NASA Astrophysics Data System (ADS)

    Ascenso, Joana; Wolk, Scott; Lombardi, Marco; Alves, João; Rathborne, Jill; Forbrich, Jan; Leibundgut, Bruno; Hilker, Michael

    2013-07-01

    NGC 6334, the Cat's Paw Nebula, is a 106 M⊙ molecular cloud, one of the most massive known clouds in the Galaxy. It hosts the youngest massive cluster complex within 2 kpc of the Sun, and is therefore an ideal laboratory to investigate the onset and early evolution of star formation in an environment comparable to that of massive, extra-galactic complexes. Using multi-wavelength data, we are conducting the most sensitive and most complete characterization of this unique region to date.

  13. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  14. Far-ultraviolet imagery of the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    Two electrographic cameras carried on a sounding rocket have yielded useful-resolution far-ultraviolet (1000-2000 A) imagery of the Orion Nebula. The brightness distribution in the images is consistent with a primary source which is due to scattering of starlight by dust grains, although an emission-line contribution, particularly in the fainter outer regions, is not ruled out. The results are consistent with an albedo of the dust grains that is high in the far-ultraviolet and which increases toward shorter wavelengths below 1230 A.

  15. Neutral carbon in the Egg Nebula (AFGL 2688)

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Keene, J.; Phillips, T. G.; Huggins, P. J.; Wooten, H. A.; Masson, C.; Frerking, M. A.

    1983-01-01

    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells led to the detection, in the case of the "Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982).

  16. Neutral carbon in the Egg Nebula (AFGL 2688)

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Masson, C.; Frerking, M. A.; Beichman, C. A.; Keene, J.; Phillips, T. G.; Wootten, H. A.

    1983-01-01

    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells has led to the detection, in the case of the 'Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982).

  17. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models

    NASA Astrophysics Data System (ADS)

    Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.

    2016-08-01

    We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.

  18. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  19. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  20. A New Model for Water Vapor/Ice Abundance in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    Water is a unique substance in the protoplanetary nebula since both solid and gaseous phases coexist in large quantities. Quantitative estimates of their relative abundances are important parameters regarding the physical state of the nebula and planet formation processes. This new model is based on computing the chemical evolution of water molecules until its partial pressure is sufficient to pierce the vapor pressure curve for water. The point at which this occurs relative to its steady state values determines final gas/ice ratios. The wide range of temperatures and densities in typical protoplanetary disks result in a range of gadice ratios. It is found that although ice dominates the mid and far nebula, water vapor is predominant in the centerplane region of the near nebula and above the disk photosphere. An interesting near nebula effect is the appearance of a cloud of water ice at the temperature inversion elevation surrounded by vapor above and below. This work is partially supported by the NASA Astrobiology Institute.

  1. Solar Nebula Magnetohydrodynamic Dynamos: Kinematic Theory, Dynamical Constraints, and Magnetic Transport of Angular Momentum

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.

    1993-01-01

    A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.

  2. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models

    NASA Astrophysics Data System (ADS)

    Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.

    2016-08-01

    We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional MHD (see Porth et al. (2014) for details) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti (1984) model but the Porth et al. (2014) model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average P\\'eclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of $\\sim2\\times 10^{27} (L_{\\rm s}/0.42\\rm Ly) cm^{2}s^{-1}$ ($L_{\\rm s}$ is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of $\\gamma_{p}\\sim10^{10}$.

  3. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    SciTech Connect

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-06-10

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log ({nu}{sub b}[GHz]) = 2.84 {+-} 0.29 or {nu}{sub b} = 695{sup +651}{sub -336} GHz. The Crab Nebula is well resolved by the {approx}16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  4. Deciphering the bipolar planetary nebula Abell 14 with 3D ionization and morphological studies

    NASA Astrophysics Data System (ADS)

    Akras, S.; Clyne, N.; Boumis, P.; Monteiro, H.; Gonçalves, D. R.; Redman, M. P.; Williams, S.

    2016-04-01

    Abell 14 is a poorly studied object despite being considered a born-again planetary nebula. We performed a detailed study of its 3D morphology and ionization structure using the SHAPE and MOCASSIN codes. We found that Abell 14 is a highly evolved, bipolar nebula with a kinematical age of ˜19 400 yr for a distance of 4 kpc. The high He abundance, and N/O ratio indicate a progenitor of 5 M⊙ that has experienced the third dredge-up and hot bottom burning phases. The stellar parameters of the central source reveal a star at a highly evolved stage near to the white dwarf cooling track, being inconsistent with the born-again scenario. The nebula shows unexpectedly strong [N I] λ5200 and [O I] λ6300 emission lines indicating possible shock interactions. Abell 14 appears to be a member of a small group of highly evolved, extreme type-I planetary nebulae (PNe). The members of this group lie at the lower-left corner of the PNe regime on the [N II]/Hα versus [S II]/Hα diagnostic diagram, where shock-excited regions/objects are also placed. The low luminosity of their central stars, in conjunction with the large physical size of the nebulae, result in a very low photoionization rate, which can make any contribution of shock interaction easily perceptible, even for small velocities.

  5. Differential Proper-Motion Measurements of The Cygnus Egg Nebula; The Presence of Fast Equatorial Outflows

    NASA Astrophysics Data System (ADS)

    Tomasino, Rachael; Ueta, T.; Ferguson, B. A.

    2013-01-01

    We present the results of differential proper-motion analyses of the dust shell structure in the Egg Nebula (RAFGL 2688, V1610 Cyg), based on the archived two-epoch imaging-polarimetric data in the optical taken with the Hubble Space Telescope. We measured the amount of motion of local structures and the signature concentric arcs in the nebula by determining their relative shifts over an interval of 7.25 yr. We discovered that the optical polarization characteristics of the Egg Nebula was influenced by the marginal optical thickness of the circumstellar shell and the illumination of the nebula was done in two-step mechanism - most of the nebula is illuminated by the secondary/dust-scattered starlight emanating from the bipolar lobes themselves due to the central concentration of dust grains of more than 10^3 AU diameter that regulates the seepage of the starlight from the central region. Nevertheless, based on two types of differential proper-motion analyses we revealed interesting dynamics of the lobes and concentric arcs, which should provide solid constraints on the subsequent theoretical/numerical investigations.

  6. Differential Proper-Motion Measurements of The Cygnus Egg Nebula; The Presence of Fast Equatorial Outflows

    NASA Astrophysics Data System (ADS)

    Tomasino, Rachael; Ueta, Toshiya; Ferguson, Brian

    2012-10-01

    We present the results of differential proper-motion analyses of the dust shell structure in the Egg Nebula (RAFGL 2688, V1610 Cyg), based on the archived two-epoch imaging-polarimetric data in the optical taken with the Hubble Space Telescope. We measured the amount of motion of local structures and the signature concentric arcs in the nebula by determining their relative shifts over an interval of 7.25 yr. We discovered that the optical polarization characteristics of the Egg Nebula was influenced by the marginal optical thickness of the circumstellar shell and the illumination of the nebula was done in two-step mechanism - most of the nebula is illuminated by the secondary/dust-scattered starlight emanating from the bipolar lobes themselves due to the central concentration of dust grains of more than 10^3 AU diameter that regulates the seepage of the starlight from the central region. Nevertheless, based on two types of differential proper-motion analyses we revealed interesting dynamics of the lobes and concentric arcs, which should provide solid constraints on the subsequent theoretical/numerical investigations.

  7. The WO stars. II. Long slit spectroscopy of the G2.4+1.4 nebula around Sand 4.

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Rossi, C.; Norci, L.; Viotti, R.

    1995-11-01

    We have investigated the association of the massive, evolved WO star Sand 4 (WR 102) with the peculiar diffuse nebula G2.4+1.4 in which it is embedded. Long slit spectra at four different positions were used to study many regions of the nebula and to derive their physical parameters. From the Hα/Hβ ratio a mean E_B-V_=1.25 is derived, with regions of enhanced reddening around Sand 4, and, possibly, at the NE knot of the nebula. We find that the electron density varies from less than 100 to 900cm^-2^. The ionization largely changes from one region to another, reaching a maximum at the bright arc north of Sand 4. Regions of strong He II λ468.6 emission are found to the east and 4" west of Sand 4. Some of the knots of which the nebula is composed appear overabundant in He, with He/H up to >0.2. Two regions of the nebula present a marked nitrogen anomaly. We suggest that some regions of the nebula, to the NE and to the west might be the shock front which should have been generated by enhanced mass loss during a previous LBV phase of the star, which is presently forming a partially hidden ring-like structure. The variable helium and nitrogen enrichment of the nebula is tentatively linked with the evolutionary history of Sand 4, in the framework of the present-day evolutionary models of very high mass stars. We also suggest that the successive mass loss phases of the central star are associated with an evolutionary path in the He/H, N^+^/S^+^ diagram. The final fate of Sand 4 should be a type Ib supernova, embedded in a ring-like nebular structure, such as that observed in the Kepler SNR.

  8. GALEX Observations of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Panda, Swayamtrupta

    2016-05-01

    The first ultraviolet (UV) photometric observations of planetary nebulae (PNe) are presented using observations made by the Galaxy Evolution Explorer (GALEX). We have found 108 PNe detected by GALEX and resolved their angular diameters in near-UV (NUV) and also in far-UV (FUV) for 28 PNe considering a 3σ emission level beyond the background. Of the PNe, 57 are elliptical, 41 are circular and the rest 10 are bipolar in NUV. The emission lines that contribute to the NUV intrinsic flux are C III] and He II. The measured intrinsic luminosities considering the sole contribution from the central stars have been found to lie in the range of 10^37-10^51 erg/s. The comparative study of the angular sizes against effective wavelengths in 5 distinct regimes has shown that the listed PNe are bright in NUV which opens up the discussion related to the extent of hotness, the very high temperatures of the CSPNe and the exact nature of it. The intensity contour plots of the PNe have also provided us with over 10 well-defined candidates having bipolar morphological signatures, the origin and evolution of whose can be traced back to the dynamics of stellar winds in the post-AGB stage.

  9. Zinc abundances of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Smith, C. L.; Zijlstra, A. A.; Dinerstein, H. L.

    2014-07-01

    Zinc is a useful surrogate element for measuring Fe/H as, unlike iron, it is not depleted in the gas phase media. Zn/H and O/Zn ratios have been derived using the [Zn IV] emission line at 3.625 μm for a sample of nine Galactic planetary nebulae, seven of which are based upon new observations using the Very Large Telescope (VLT). Based on photoionization models, O/O++ is the most reliable ionization correction factor for zinc that can readily be determined from optical emission lines, with an estimated accuracy of 10 per cent or better for all targets in our sample. The majority of the sample is found to be subsolar in [Zn/H]. [O/Zn] in half of the sample is found to be consistent with solar within uncertainties, whereas the remaining half are enhanced in [O/Zn]. [Zn/H] and [O/Zn] as functions of Galactocentric distance have been investigated and there is little evidence to support a trend in either case.

  10. Near-infrared and ultraviolet spectrophotometry of the young planetary nebula Hubble 12

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Rossano, George S.; Erwin, Peter; Puetter, R. C.; Feibelman, Walter A.

    1993-01-01

    The young planetary nebula Hubble 12 is observed using near-IR and UV spectrophotometry. The brightness of the O I lines, which is greater than in any other planetary nebula yet measured, indicates that fluorescent excitation by stellar continuum is the principal mechanism generating these lines. Extinction, electron density, and electron temperature are determined using infrared measurements combined with UV data and published optical observations. The range in extinction, density, and temperature implies that, within the ionized region, pockets of emission with distinctly different conditions exist. Logarithmic abundances for helium, oxygen, and sulfur are presented.