Science.gov

Sample records for negative band structure

  1. 16O + 16O molecular structures of positive- and negative-parity superdeformed bands in 34S

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yasutaka

    2016-05-01

    The structures of excited states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method(GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity super de formed(SD) bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative parity SD band.

  2. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient. PMID:17025558

  3. Negative parity bands of {sup 115}Pd and band structures in {sup 113,115,117}Pd

    SciTech Connect

    Fong, D.; Hwang, J.K.; Ramayya, A.V.; Hamilton, J.H.; Gore, P.M.; Jones, E.F.; Luo, Y.X.; Walters, W.B.; Rasmussen, J.O.; Lee, I.Y.; Macchiavelli, A.O.; Wu, S.C.; Stoyer, M.A.; Zhu, S.J.; Daniel, A.V.; Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Cole, J.D.; Donangelo, R.; Ma, W.C.

    2005-07-01

    Level structures of {sup 113,115,117}Pd have been studied using the Gammasphere and a spontaneous fission source of {sup 252}Cf. A new 85.1-keV transition was identified in {sup 113}Pd. This indicates that the spin and parity of the isomeric state is 9/2{sup -} rather than the previously assigned 11/2{sup -}. New low-energy transitions are confirmed in {sup 115,117}Pd. In {sup 115}Pd, the 39.0.- and 49.0-keV transitions are shown to be in prompt coincidence. This coincidence relationship indicates a spin and parity assignment of 1/2{sup +} for the ground state rather than the previously assigned 3/2{sup +}.

  4. Wide band negative magnetic permeability materials (NMPM) with composite metalsemiconductor structures based on the Drude model, and applications to negative-refractive index (NIM).

    PubMed

    Benedetti, A; Sibilia, C; Bertolotti, M

    2007-05-28

    Composite structures based on metal open rings and thin wires are well established, for obtaining efficient negative index materials (NIM), acting as metamaterials in the long wavelength regime. The main losses are due both to metal absorption and to the inner electric resistance of metals; to overcome this latter loss we propose a new metal-semiconductor structure dimensioned by direct synthesis method, which offers an almost perfect Drude-like effective magnetic permeability. The choice of particular semiconductor components allows to get a negative resistance for the current induced by the electromagnetic field, which cancels that of the metal but puts a limit to the spectral response of the metamaterial. We consider some parasite effects, such as bianisotropy and incorrect values of structural parameters, to see limitations and features of this new NIM technology. PMID:19546961

  5. Tunable two-dimensional acoustic meta-structure composed of funnel-shaped unit cells with multi-band negative acoustic property

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong

    2015-10-01

    This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.

  6. Origin of termination of negative-parity bands

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Lenske, H.

    2015-11-01

    The cluster approach is applied to study the mechanism of termination of the negative-parity band built on the ground state of even-even nucleus. For the several even-even nuclei, the terminating spins are predicted. The method is suggested for the verification of the cluster interpretation of the band termination.

  7. Band structure in 113Sn

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2016-07-01

    The structure of collective bands in 113Sn, populated in the reaction 100Mo(19F,p 5 n ) at a beam energy of 105 MeV, has been studied. A new positive-parity sequence of eight states extending up to 7764.9 keV and spin (39 /2+) has been observed. The band is explained as arising from the coupling of the odd valence neutron in the g7 /2 or the d5 /2 orbital to the deformed 2p-2h proton configuration of the neighboring even-A Sn isotope. Lifetimes of six states up to an excitation energy of 9934.9 keV and spin 47 /2-belonging to a Δ I =2 intruder band have been measured for the first time, including an upper limit for the last state, from Doppler-shift-attenuation data. A moderate average quadrupole deformation β2=0.22 ±0.02 is deduced from these results for the five states up to spin 43 /2- . The transition quadrupole moments decrease with increase in rotational frequency, indicating a reduction of collectivity with spin, a feature common for terminating bands. The behavior of the kinematic and dynamic moments of inertia as a function of rotational frequency has been studied and total Routhian surface calculations have been performed in an attempt to obtain an insight into the nature of the states near termination.

  8. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  9. Band structure of 235U

    NASA Astrophysics Data System (ADS)

    Ward, D.; Macchiavelli, A. O.; Clark, R. M.; Cline, D.; Cromaz, M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Görgen, A.; Hayes, A. B.; Lane, G. J.; Lee, I.-Y.; Nakatsukasa, T.; Schmidt, G.; Stephens, F. S.; Svensson, C. E.; Teng, R.; Vetter, K.; Wu, C. Y.

    2012-12-01

    Over a period of several years we have performed three separate experiments at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron in which 235U (thick target) was Coulomb-excited. The program involved stand-alone experiments with Gammmasphere and with the 8pi Spectrometer using 136Xe beams at 720 MeV, and a CHICO-Gammasphere experiment with a 40Ca beam at 184 MeV. In addition to extending the known negative-parity bands to high spin, we have assigned levels in some seven positive-parity bands which are in some cases (e.g., [631]1/2, [624]7/2, and [622]5/2) strongly populated by E3 excitation. The CHICO data have been analyzed to extract E2 and E3 matrix elements from the observed yields. Additionally, many M1 matrix elements could be extracted from the γ-ray branching ratios. A number of new features have emerged, including the unexpected attenuation of magnetic transitions between states of the same Nilsson multiplet, the breakdown of Coriolis staggering at high spin, and the effect of E3 collectivity on Coriolis interactions.

  10. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  11. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  12. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  13. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    SciTech Connect

    Lee, David A.; Vedral, L. James; Smith, David A.; Pinchuk, Anatoliy O.; Musselman, Randall L.

    2015-04-15

    Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  14. Negative capacitance switching via VO{sub 2} band gap engineering driven by electric field

    SciTech Connect

    He, Xinfeng; Xu, Jing; Xu, Xiaofeng Gu, Congcong; Chen, Fei; Wu, Binhe Wang, Chunrui Xing, Huaizhong; Chen, Xiaoshuang; Chu, Junhao

    2015-03-02

    We report the negative capacitance behavior of an energy band gap modulation quantum well with a sandwich VO{sub 2} layer structure. The phase transition is probed by measuring its capacitance. With the help of theoretical calculations, it shows that the negative capacitance changes of the quantum well device come from VO{sub 2} band gap by continuously tuning the temperature or voltage. Experiments reveal that as the current remains small enough, joule heating can be ignored, and the insulator-metal transition of VO{sub 2} can be induced by the electric field. Our results open up possibilities for functional devices with phase transitions induced by external electric fields other than the heating or electricity-heat transition.

  15. Quasiparticle band structure of HgSe

    SciTech Connect

    Rohlfing, M.; Louie, S.G.

    1998-04-01

    Motivated by a recent discussion about the existence of a fundamental gap in HgSe [Phys. Rev. Lett. {bold 78}, 3165 (1997)], we calculate the quasiparticle band structure of HgSe within the GW approximation for the electron self-energy. The band-structure results show that HgSe is a semimetal, which is in agreement with most experimental data. We observe a strong wave-vector dependence of the self-energy of the lowest conduction band, leading to an increased dispersion and a small effective mass. This may help to interpret recent photoemission spectroscopy measurements. {copyright} {ital 1998} {ital The American Physical Society}

  16. Band structure of core-shell semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Pistol, Mats-Erik; Pryor, Craig

    2009-03-01

    We present band structures of strained core-shell nanowires composed of zincblende III-V (binary) semiconductors. We consider all combinations of AlN, GaN, InN, and all combinations of AlP, GaP, AlAs, GaAs, InP, InAs, AlSb, GaSb, and InSb. We compute the γ- and X-conduction band minima as well as the valence band maximum, all as functions of the core and shell radii. The calculations were performed using continuum elasticity theory for the strain, eight-band strain-dependent k.p theory for the γ-point energies, and single band approximation for the X-point conduction minima. We identify structures with type-I, type-II and type-III band alignment, as well as systems in which one material becomes metallic due to a negative band-gap. We identify structures that may support exciton crystals with and without photoexcitation. We have also computed the effective masses, from which the confinement energy may be estimated. All the results [Pistol and Pryor, Phys. Rev. B 78, 115319] are available in graphical and tabular form at www.semiconductor.physics.uiowa.edu

  17. Nonreciprocal microwave band-gap structures.

    PubMed

    Belov, P A; Tretyakov, S A; Viitanen, A J

    2002-07-01

    An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper, we consider plane electromagnetic waves in this medium and design an analytical model for the material parameters. An analytical solution for plane-wave reflection from a planar interface is also presented. In the proposed material, a new electrically controlled stop band appears for one of the two circularly polarized eigenwaves in a frequency band around the ferrimagnetic resonance frequency. This frequency can be well below the usual lattice band gap, which allows the realization of rather compact structures. The main properties of the material are outlined. PMID:12241501

  18. Band structure engineering in organic semiconductors.

    PubMed

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-17

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043

  19. Dual-band quasi-zero refraction and negative refraction in coin-shaped metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Hou, Zhi-Ling; Liu, Ya-Min; Li, Zhong-Jun; Liu, Xingda; Fang, Hui-Min

    2015-05-01

    This paper demonstrates a metamaterial capable of realizing a dual-band quasi-zero refractive index and a negative refractive index, which consists of a coin-shaped slice and two parallel planar wires. The zero refractive index is achieved over a very wide frequency range. The bandwidth of the first band of the quasi-zero index can reach up to 3 GHz, and the width of the second band exhibiting low loss is 0.4 GHz. Between these two bands, the negative refractive index band is 9.0-13.9 GHz. The corresponding formulas of electric plasma frequency and magnetic plasma frequency are established, and the theoretical results agree well with the simulated results. The proposed metamaterial may have potential applications in multiband or broadband devices.

  20. Complex banded structures in directional solidification processes.

    PubMed

    Korzhenevskii, A L; Rozas, R E; Horbach, J

    2016-01-27

    A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos. PMID:26704726

  1. Magnon band structure of periodic composites

    NASA Astrophysics Data System (ADS)

    Vasseur, J. O.; Dobrzynski, L.; Djafari-Rouhani, B.; Puszkarski, H.

    1996-07-01

    innodata J. O. VASSEUR et al. MAGNON BAND STRUCTURE OF PERIODIC COMPOSITES We calculate the spin-wave spectra of two-dimensional composite materials consisting of periodic square arrays of parallel cylinders made of a ferromagnetic material embedded in a ferromagnetic background. Each material is described by its spontaneous magnetization MS and exchange constant A. An external static magnetic field is applied along the direction of the cylinders and both ferromagnetic materials are assumed to be magnetized parallel to this magnetic field. We consider the spin-waves propagation in the plane perpendicular to the cylinders. We reveal the existence of gaps in the magnon band structure of composite systems such as the periodic array of Fe cylinders in an EuO matrix. We investigate the existence of these gaps in relation to the physical parameters of the materials involved. We also study the influence of the lattice parameter (i.e., the square array periodicity) and the effect of the filling fraction of the cylinders on the magnon band structure.

  2. The band-gap enhanced photovoltaic structure

    NASA Astrophysics Data System (ADS)

    Tessler, Nir

    2016-05-01

    We critically examine the recently suggested structure that was postulated to potentially add 50% to the photo-conversion efficiency of organic solar cells. We find that the structure could be realized using stepwise increase in the gap as long as the steps are not above 0.1 eV. We also show that the charge extraction is not compromised due to an interplay between the contact's space charge and the energy level modification, which result in a flat energy band at the extracting contact.

  3. Tunable band gap near the Dirac point in nonlinear negative-zero-positive index metamaterial waveguide

    SciTech Connect

    Shen Ming; Ruan Linxu; Shi Jielong; Wang Qi; Wang Xinglin

    2011-04-15

    We make theoretical investigations of the nonlinear guided modes near the Dirac point (DP) in nonlinear negative-zero-positive index metamaterial (NZPIM) waveguide. When the nonlinearity is self-focusing, an asymmetric forbidden band exists near the DP that can be modulated by the strength of the nonlinearity. However, the self-defocusing nonlinearity can completely eliminate the asymmetric band gap. We also study the nonlinear surface waves in such nonlinear NZPIM waveguide. These results may predict analogous phenomena in nonlinear graphene.

  4. Band structure of doubly-odd nuclei around mass 130

    SciTech Connect

    Higashiyama, Koji; Yoshinaga, Naotaka

    2011-05-06

    Nuclear structure of the doublet bands in the doubly-odd nuclei with mass A{approx}130 is studied in terms of a pair-truncated shell model. The model reproduces quite well the energy levels of the doublet bands and the electromagnetic transitions. The analysis of the electromagnetic transitions reveals new band structure of the doublet bands.

  5. Band structure of odd-mass lanthanum nuclei

    NASA Astrophysics Data System (ADS)

    Sharma, Deepti; Verma, Preeti; Singh, Suram; Bharti, Arun; Khosa, S. K.

    2014-04-01

    Negative parity energy states in 121-131La have been studied using Projected Shell Model (PSM). Some nuclear structure properties like yrast spectra, back-bending in moment of inertia, reduced transition probabilities and band diagrams have been described. The experimental feature of the co-existence of prolate-oblate shapes in 125-131La isotopes has been satisfactorily explained by PSM results. Comparison of the theoretical data with their experimental counterparts has also been made. From the calculations, it is found that the yrast states arise because of multi-quasiparticle states.

  6. Sustained gamma-band EEG following negative words in depression and schizophrenia

    PubMed Central

    Siegle, Greg J.; Condray, Ruth; Thase, Michael E.; Keshavan, Matcheri; Steinhauer, Stuart R.

    2013-01-01

    Introduction Sustained and elaborative emotional information processing in depression and decreased affective elaboration in schizophrenia are considered hallmarks of these disorders but have not been directly measured. Gamma-band (35–45 Hz) EEG, has been associated with semantic functions such as feature binding and may index these elaborative processing. This study examined whether there were group differences in baseline and sustained gamma-band EEG following emotional stimuli in healthy adults as well as adults with depression and schizophrenia. Methods 24 never-depressed healthy controls, 14 patients with DSM-IV unipolar major depressive disorder, and 15 patients with DSM-IV schizophrenia completed a lexical emotion identification task during EEG assessment. Gamma band EEG (35–45 Hz) in response to negative words was the primary dependent measure. Results As predicted, depressed individuals displayed sustained and increased gamma-band EEG throughout the task, and particularly in the seconds following negative words. Individuals with schizophrenia displayed decreased gamma-band activity throughout the task. Conclusions These data suggest that gamma-band EEG, measured over several seconds, may serve as a useful index of sustained semantic information processing. Depressed individuals appear to engage in sustained elaboration following emotional stimuli, whereas individuals with schizophrenia are not as prone to this type of elaborative processing. PMID:20005267

  7. Elucidating the stop bands of structurally colored systems through recursion

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Vukusic, Peter

    2013-04-01

    Interference is the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics: specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer structure and solve it using recursion relations. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursion. We compare to experimental data for various beetles, whose optical structure resembles the proposed model. Thus, using only the phenomenon of interference and the idea of recursion, we are able to elucidate the concept of band structure in the context of the experimentally observed high reflectance and iridescent appearance of structurally colored beetles.

  8. Rotational band structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Poves, A.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Richard, A. L.; Rissanen, J.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈20 neon, sodium, and magnesium isotopes that make up what is commonly called the "island of inversion." However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I =6+ produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA (γ -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.

  9. Rotational Band Structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, Heather; NSCL E11029 Collaboration Team

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N =20 neon, sodium, and magnesium isotopes that make up what is commonly called the ``Island of Inversion''. However, rotational band structures, a characteristic fingerprint of a rigid non-spherical shape, have yet to be observed. We report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I = 6+, produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ-ray tracking detector array, GRETINA. Large-scale shell model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked shell model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results. This material is based upon work supported by the U.S. DOE, Office of Science, NP Office under Contract No. DE-AC02-05CH11231 (LBNL). GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL was supported by NSF.

  10. Segmental structure in banded mongoose calls.

    PubMed

    Fitch, W Tecumseh

    2012-01-01

    In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. PMID:23206277

  11. Segmental structure in banded mongoose calls

    PubMed Central

    2012-01-01

    In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. See research article http://www.biomedcentral.com/1741-7007/10/97 PMID:23206277

  12. A Theoretical Structure of High School Concert Band Performance

    ERIC Educational Resources Information Center

    Bergee, Martin J.

    2015-01-01

    This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…

  13. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM... Structure of bands. (a) DHS may, after coordination with OPM, establish ranges of basic pay for bands,...

  14. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Lian, Ke-Yan; Qiu, Qi; Luo, Yi

    2015-02-01

    Nitrogen-doping brings novel properties and promising applications into graphene, but the underlying mechanism is still in debate. To determine the key factor in motivating the negative differential resistance (NDR) behaviour of nitrogen-doped graphene, the electronic structure and transport properties of an 11-dimer wide nitrogen-doped armchair graphene nanoribbon (N-AGNR) were systematically studied by first principles calculations. Both the effect of interaction between N-dopants and the effect of doping-sublattice on the NDR were examined for the first time. Taking into account the two effects, N-AGNR becomes metallic or semiconducting depending on the doping configuration, and its Fermi level varies in a large range. NDR was firmly verified not to be intrinsic for N-AGNRs. However, it is totally determined by whether nitrogen-doping induces half-filled energy bands (HFEBs) because it is HFEBs that cross the Fermi level and determine the transport properties of N-AGNR under low biases. With the bias increasing, the transmission spectrum near the Fermi level showed a flag shape, and therefore, the corresponding transport channel is totally suppressed at a certain bias, resulting in the NDR behaviour with a configuration-dependent peak-to-valley current ratio (PVCR) up to 104. Our findings give new insights into the microscopic mechanism of chemical doping induced NDR behaviour and will be useful in building NDR-based nanodevices in the future.

  15. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  16. Transition probabilities and Franck-Condon factors for the second negative band system of O2(+)

    NASA Technical Reports Server (NTRS)

    Fox, J. L.; Dalgarno, A.

    1990-01-01

    Transition probabilities for the second negative band system of O2(+) are computed using the dipole transition moment presented by Wetmore et al. (1984). Vibrational levels v double prime = 0 - 54 of the X2Pi(g) ground state and v prime = - 33 of the excited A2Pi(u) state are included. Franck-Condon factors for ionization-excitation of O2 to O2(+) are also presented.

  17. Birefringence and band structure of CdP2 crystals

    NASA Astrophysics Data System (ADS)

    Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.

    2013-08-01

    The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||сbands. Minimal direct energy intervals correspond to transitions Г1→Г1 for Е||с and Г2→Г1 for Е⊥с. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Г1→Г1 and Г2→Г1 band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5-10 eV and optical functions (n, k, ε1, ε2,d2ε1/dE2 and d2ε2/dE2) were calculated by using Kramers-Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  18. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  19. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  20. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  1. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  2. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon

    PubMed Central

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-01-01

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing. PMID:26012369

  3. Band Structure Controlled by Chiral Imprinting

    NASA Astrophysics Data System (ADS)

    Reyes Cervantes, Adrian; Castro-Garay, P.; Ramos-Garcia, Ruben

    2008-03-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, we find the solution of the boundary--value problem for the reflection and transmission of incident optical waves due to the elastomer. We show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested bandgaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  4. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  5. Fractional Band Filling in an Atomic Chain Structure

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; Kirakosian, A.; Altmann, K. N.; Bromberger, C.; Erwin, S. C.; McChesney, J. L.; Lin, J.-L.; Himpsel, F. J.

    2003-05-01

    A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of ≥1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

  6. Intrathecal, Polyspecific Antiviral Immune Response in Oligoclonal Band Negative Multiple Sclerosis

    PubMed Central

    Brecht, Isabel; Weissbrich, Benedikt; Braun, Julia; Toyka, Klaus Viktor; Weishaupt, Andreas; Buttmann, Mathias

    2012-01-01

    Background Oligoclonal bands (OCB) are detected in the cerebrospinal fluid (CSF) in more than 95% of patients with multiple sclerosis (MS) in the Western hemisphere. Here we evaluated the intrathecal, polyspecific antiviral immune response as a potential diagnostic CSF marker for OCB-negative MS patients. Methodology/Principal Findings We tested 46 OCB-negative German patients with paraclinically well defined, definite MS. Sixteen OCB-negative patients with a clear diagnosis of other autoimmune CNS disorders and 37 neurological patients without evidence for autoimmune CNS inflammation served as control groups. Antibodies against measles, rubella, varicella zoster and herpes simplex virus in paired serum and CSF samples were determined by ELISA, and virus-specific immunoglobulin G antibody indices were calculated. An intrathecal antibody synthesis against at least one neurotropic virus was detected in 8 of 26 (31%) patients with relapsing-remitting MS, 8 of 12 (67%) with secondary progressive MS and 5 of 8 (63%) with primary progressive MS, in 3 of 16 (19%) CNS autoimmune and 3 of 37 (8%) non-autoimmune control patients. Antibody synthesis against two or more viruses was found in 11 of 46 (24%) MS patients but in neither of the two control groups. On average, MS patients with a positive antiviral immune response were older and had a longer disease duration than those without. Conclusion Determination of the intrathecal, polyspecific antiviral immune response may allow to establish a CSF-supported diagnosis of MS in OCB-negative patients when two or more of the four virus antibody indices are elevated. PMID:22792316

  7. Unfolding the band structure of non-crystalline photonic band gap materials

    PubMed Central

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  8. Unfolding the band structure of non-crystalline photonic band gap materials

    NASA Astrophysics Data System (ADS)

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-08-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.

  9. Unfolding the band structure of non-crystalline photonic band gap materials.

    PubMed

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  10. Band structure engineering of topological insulator heterojunctions

    NASA Astrophysics Data System (ADS)

    Jin, Kyung-Hwan; Yeom, Han Woong; Jhi, Seung-Hoon

    2016-02-01

    We investigate the topological surface states in heterostructures formed from a three-dimensional topological insulator (TI) and a two-dimensional insulating thin film, using first-principles calculations and the tight-binding method. Utilizing a single Bi or Sb bilayer on top of the topological insulators B i2S e3 , B i2T e3 , B i2T e2Se , and S b2T e3 , we find that the surface states evolve in very peculiar but predictable ways. We show that strong hybridization between the bilayer and TI substrates causes the topological surface states to migrate to the top bilayer. It is found that the difference in the work function of constituent layers, which determines the band alignment and the strength of hybridization, governs the character of newly emerged Dirac states.

  11. Band structure in Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Bachas, Constantin; Tomaras, Theodore

    2016-05-01

    We show how Yang-Mills theory on S3 × ℝ can exhibit a spectrum with continuous bands if coupled either to a topological 3-form gauge field, or to a dynamical axion with heavy Peccei-Quinn scale. The basic mechanism consists in associating winding histories to a bosonic zero mode whose role is to convert a circle in configuration space into a helix. The zero mode is, respectively, the holonomy of the 3-form field or the axion momentum. In these models different θ sectors coexist and are only mixed by (non-local) volume operators. Our analysis sheds light on, and extends Seiberg's proposal for modifying the topological sums in quantum field theories. It refutes a recent claim that B + L violation at LHC is unsuppressed.

  12. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    PubMed

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively. PMID:26647772

  13. Locally resonant periodic structures with low-frequency band gaps

    NASA Astrophysics Data System (ADS)

    Cheng, Zhibao; Shi, Zhifei; Mo, Y. L.; Xiang, Hongjun

    2013-07-01

    Presented in this paper are study results of dispersion relationships of periodic structures composited of concrete and rubber, from which the frequency band gap can be found. Two models with fixed or free boundary conditions are proposed to approximate the bound frequencies of the first band gap. Studies are conducted to investigate the low-frequency and directional frequency band gaps for their application to engineering. The study finds that civil engineering structures can be designed to block harmful waves, such as earthquake disturbance.

  14. Banded Electron Structure Formation in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Banded electron structures in energy-time spectrograms have been observed in the inner magnetosphere concurrent with a sudden relaxation of geomagnetic activity. In this study, the formation of these banded structures is considered with a global, bounce-averaged model of electron transport, and it is concluded that this structure is a natural occurrence when plasma sheet electrons are captured on closed drift paths near the Earth. These bands do not appear unless there is capture of plasma sheet electrons; convection along open drift paths making open pass around the Earth do not have time to develop this feature. The separation of high-energy bands from the injection population due to the preferential advection of the gradient-curvature drift creates spikes in the energy distribution, which overlap to form a series of bands in the energy spectrograms. The lowest band is the bulk of the injected population in the sub-key energy range. Using the Kp history for an observed banded structure event, a cloud of plasma sheet electrons is captured and the development of their distribution function is examined and discussed.

  15. Development of X-Band Dielectric-Loaded Accelerating Structures

    SciTech Connect

    Gold, S. H.; Jing, C.; Kanareykin, A.; Gai, W.; Konecny, R.; Power, J. G.; Kinkead, A. K.

    2010-11-04

    This paper presents a progress report on the development and testing of X-band dielectric-loaded accelerating structures. Recent tests on several quartz DLA structures with different inner diameters are reported. Designs for gap-free DLA structures are presented. Also, planned new experiments are discussed, including higher gradient traveling-wave and standing-wave structures and special grooved structures for multipactor suppression.

  16. Effective band structure of random III-V alloys

    NASA Astrophysics Data System (ADS)

    Popescu, Voicu; Zunger, Alex

    2010-03-01

    Random substitutional alloys have no long range order (LRO) or translational symmetry so rigorously speaking they have no E(k) band structure or manifestations thereof. Yet, many experiments on alloys are interpreted using the language of band theory, e.g. inferring Van Hove singularities, band dispersion and effective masses. Many standard alloy theories (VCA- or CPA-based) have the LRO imposed on the alloy Hamiltonian, assuming only on-site disorder, so they can not be used to judge the extent of LRO that really exists. We adopt the opposite way, by using large (thousand atom) randomly generated supercells in which chemically identical alloy atoms are allowed to have different local environments (a polymorphous representation). This then drives site-dependent atomic relaxation as well as potential fluctuations. The eigenstates from such supercells are then mapped onto the Brillouin zone (BZ) of the primitive cell, producing effective band dispersion. Results for (In,Ga)X show band-like behaviour only near the centre and faces of the BZ but rapidly lose such characteristics away from γ or for higher bands. We further analyse the effects of stoichiometry variation, internal relaxation, and short-range order on the alloy band structure.

  17. Band formation in coupled-resonator slow-wave structures.

    PubMed

    Möller, Björn M; Woggon, Ulrike; Artemyev, Mikhail V

    2007-12-10

    Sequences of coupled-resonator optical waveguides (CROWs) have been examined as slow-wave structures. The formation of photonic bands in finite systems is studied in the frame of a coupled oscillator model. Several types of resonator size tuning in the system are evaluated in a systematical manner. We show that aperiodicities in sequences of coupled microspheres provide an additional degree of freedom for the design of photonic bands. PMID:19551030

  18. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    SciTech Connect

    Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Jiang, Yu-Chi

    2014-09-15

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  19. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2014-09-01

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  20. Ultraflattened high negative chromatic dispersion over O+E+S+C+L+U bands of a microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Mahmud, Russel Reza; Razzak, S. M. Abdur; Hasan, Md. Imran; Hasanuzzaman, G. K. M.

    2015-09-01

    This paper presents a large negative flattened dispersion with high birefringence for a very wide wavelength range by designing a new high index lead silicate (SF57) soft glass equiangular decagonal spiral microstructured optical fiber (DS-MOF). The bandwidth supports the second and third windows covering the O+E+S+C+L+U bands in the infrared region. The guiding properties of the DS-MOF are investigated by the finite-element method with a perfectly matched layer boundary. The proposed design is a suitable candidate for the application of residual dispersion compensation with maintaining polarization characteristics since it offers a high negative flattened dispersion of -(453±7) psṡnm-1 km-1 with a high birefringence of the order 10-2 for the wide wavelength range of 1.15 to 1.75 μm. The DS-MOF has some circular air holes that make the fabrication process simple. In addition, the effects of changing the structural parameters by up to ±4% are also analyzed to ensure the accuracy during the fabrication process.

  1. Electron emission from conduction band of heavily phosphorus doped diamond negative electron affinity surface

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Masuzawa, Tomoaki; Mimura, Hidenori; Okano, Ken

    2016-02-01

    Hydrogen (H)-terminated surfaces of diamond have attracted significant attention due to their negative electron affinity (NEA), suggesting high-efficiency electron emitters. Combined with n-type doping technique using phosphorus (P) as donors, the unique NEA surface makes diamond a promising candidate for vacuum cold-cathode applications. However, high-electric fields are needed for the electron emission from the n-type doped diamond with NEA. Here we have clarified the electron emission mechanism of field emission from P-doped diamond having NEA utilizing combined ultraviolet photoelectron spectroscopy/field emission spectroscopy (UPS/FES). An UP spectrum has confirmed the NEA of H-terminated (1 1 1) surface of P-doped diamond. Despite the NEA, electron emission occurs only when electric field at the surface exceeds 4.2  ×  106 V cm-1. Further analysis by UPS/FES has revealed that the emitted energy level is shifted, indicating that the electron emission mechanism of n-type diamond having NEA surface does not follow a standard field emission theory, but is dominated by potential barrier formed within the diamond due to upward band bending. The reduction of internal barrier is the key to achieve high-efficiency electron emitters using P-doped diamond with NEA, of which application ranges from high-resolution electron spectroscopy to novel vacuum nanoelectronics devices.

  2. A comparative audit of anticardiolipin antibodies in oligoclonal band negative and positive multiple sclerosis.

    PubMed

    Vilisaar, Janek; Wilson, Martin; Niepel, Graham; Blumhardt, Lance D; Constantinescu, Cris S

    2005-08-01

    It has been suggested that multiple sclerosis (MS) patients with positive anticardiolipin antibodies (ACLA) have some atypical features, including absent oligoclonal bands (OCB) in the cerebrospinal fluid (CSF). Our aim was to compare the frequencies of ACLA and related laboratory and clinical features in OCB negative (OCB-) and positive (OCB+) MS patients. We compared 41 OCB- patients attending a MS Clinic in a tertiary referral center, with 206 OCB+ patients. ACLA, anti-beta2-glycoprotein and other autoantibodies, lupus anticoagulant and coagulation markers were measured. We found a higher frequency of ACLA in OCB- patients, 18/41 versus 33/206 in OCB+ patients (P<0.0001). OCB- patients had more progressive MS than OCB+ subjects. There were no differences in age, sex, Expanded Disability Status Scale (EDSS) score, antiphospholipid syndrome symptoms between the groups. ACLA+ MS patients were more frequently in the OCB- group. Although this may suggest that they represent a special subgroup of MS, no other clinical or laboratory findings distinguish the groups. Although OCB- MS patients may be thought to be less active immunologically, this study shows they have more frequently ACLA than OCB+ patients. OCB- MS patients in our cohort do not appear to have a more benign form of MS, as has previously been suggested. PMID:16042217

  3. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    NASA Astrophysics Data System (ADS)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  4. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    PubMed

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-01-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924

  5. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    PubMed Central

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-01-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924

  6. Complex band structure of topological insulator Bi2Se3.

    PubMed

    Betancourt, J; Li, S; Dang, X; Burton, J D; Tsymbal, E Y; Velev, J P

    2016-10-01

    Topological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators. We compare the CBS of a band insulator and a topological insulator and follow the CBS evolution in both when the spin-orbit interaction is turned on. We find significant differences in the CBS linked to the topological band structure. In particular, our results demonstrate that the evanescent states in Bi2Se3 are non-trivially complex, i.e. contain both the real and imaginary contributions. This explains quantitatively the oscillatory behavior of the band gap obtained from Bi2Se3 (0 0 0 1) slab calculations. PMID:27485021

  7. Simulation of the Band Structure of Graphene and Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Mina, Aziz N.; Awadallah, Attia A.; Phillips, Adel H.; Ahmed, Riham R.

    2012-02-01

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model & LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  8. Novel structural flexibility identification in narrow frequency bands

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Moon, F. L.

    2012-12-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method.

  9. Reconfigurable wave band structure of an artificial square ice

    NASA Astrophysics Data System (ADS)

    Iacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; Heinonen, Olle

    2016-04-01

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.

  10. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY...

  11. Photonic Band Gap structures: A new approach to accelerator cavities

    SciTech Connect

    Kroll, N. |; Smith, D.R.; Schultz, S.

    1992-12-31

    We introduce a new accelerator cavity design based on Photonic Band Gap (PGB) structures. The PGB cavity consists of a two-dimensional periodic array of high dielectric, low loss cylinders with a single removal defect, bounded on top and bottom by conducting sheets. We present the results of both numerical simulations and experimental measurements on the PGB cavity.

  12. Band-structure loops and multistability in cavity QED

    SciTech Connect

    Prasanna Venkatesh, B.; O'Dell, D. H. J.; Larson, J.

    2011-06-15

    We calculate the band structure of ultracold atoms located inside a laser-driven optical cavity. For parameters where the atom-cavity system exhibits bistability, the atomic band structure develops loop structures akin to the ones predicted for Bose-Einstein condensates in ordinary (noncavity) optical lattices. However, in our case the nonlinearity derives from the cavity back-action rather than from direct interatomic interactions. We find both bi- and tristable regimes associated with the lowest band, and show that the multistability we observe can be analyzed in terms of swallowtail catastrophes. Dynamic and energetic stability of the mean-field solutions is also discussed, and we show that the bistable solutions have, as expected, one unstable and two stable branches. The presence of loops in the atomic band structure has important implications for proposals concerning Bloch oscillations of atoms inside optical cavities [Peden et al., Phys. Rev. A 80, 043803 (2009); Prasanna Venkatesh et al., Phys. Rev. A 80, 063834 (2009)].

  13. Band structure of W and Mo by empirical pseudopotential method

    NASA Technical Reports Server (NTRS)

    Sridhar, C. G.; Whiting, E. E.

    1977-01-01

    The empirical pseudopotential method (EPM) is used to calculate the band structure of tungsten and molybdenum. Agreement between the calculated reflectivity, density of states, density of states at the Fermi surface and location of the Fermi surface from this study and experimental measurements and previous calculations is good. Also the charge distribution shows the proper topological distribution of charge for a bcc crystal.

  14. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect

    Marsh, Roark A.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  15. Complex band structure in neutron-deficient {sup 178}Hg

    SciTech Connect

    Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Wiedenhoever, I.; Alcorta, M.; Bhattacharyya, P.; Brown, L. T.; Davids, C. N.; Fischer, S. M.; Khoo, T. L.

    2000-01-01

    Using the GAMMASPHERE array in conjunction with the Fragment Mass Analyzer, the level structure of the near drip-line nucleus {sup 178}Hg has been considerably expanded with the recoil-decay tagging technique. Of particular interest is a new rotational band which exhibits a complex decay towards the low spin states arising from both the prolate-deformed and the nearly spherical coexisting minima. It is proposed that this band is associated at low spin with an octupole vibration which is crossed at moderate frequency by a shape driving, two quasiproton excitation. (c) 1999 The American Physical Society.

  16. Electronic band structure of magnetic bilayer graphene superlattices

    SciTech Connect

    Pham, C. Huy; Nguyen, T. Thuong

    2014-09-28

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  17. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  18. Band structures in 98Ru and 99Ru

    NASA Astrophysics Data System (ADS)

    Van Voorthuysen, E. H. Du Marchie; Devoigt, M. J. A.; Blasi, N.; Jansen, J. F. W.

    1981-03-01

    The level schemes of 98, 99Ru were studied with the reactions 98Mo(α, 3nγ) and 98Mo(α, 4nγ) at Eα = 35 to 55 MeV, using a large variety of in-beam γ-ray detection techniques and conversion-electron measurements. A search for the 3 - state was carried out with the reaction 98Ru(p, p'). The ground-state band of 98Ru was excited up to Jπ = (12) + and a negative-parity band up to (15) -. New levels in 98Ru were found at Ex = 2285 ( Jπ = 4 +), 2435 ( Jπ = (3 -, 4 +)), 2671, 3540, 4224, 4847, 4915 ( Jπ = (12) +), 4989 ( Jπ = (12 +)), 5521 ( Jπ = (13) -), 5889, 6591 ( Jπ = (15) -), and 7621 keV. New unambiguous spin and parity assignments were made for the levels at Ex = 2014 and 3852 keV, as Jπ = 3 + and 9 -, respectively. New levels in 99Ru were found at Ex = 1976, 2021 ( J π = ( {15}/{2}+) ), 2393, 2401 ( J π = ( {17}/{2}+) ), 2875 (π = (+)), 3037, 3201 ( J π = ( {23}/{2}) -), 3460 ( J = ( {17}/{2}) ), 3484 ( J π = ( {21}/{2}+) ), 3985, 4224 ( J π = ( {27}/{2}-) ), and 5359 keV. The 1070 keV, J π = {11}/{2}- level in 99Ru has a half-life of 2.8 ns. A strongly excited negative-parity band is built on this level. A positive-parity band based on the ground state was excited up to J π = ( {21}/{2}+) . The level schemes are well reproduced by the interacting boson model in the vibrational limit.

  19. Coupling effect of quantum wells on band structure

    NASA Astrophysics Data System (ADS)

    Jie, Chen; Weiyou, Zeng

    2015-10-01

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps.

  20. Rotational band structure in odd-odd /sup 132/La

    SciTech Connect

    Oliveira, J. R. B.; Emediato, L. G. R.; Rizzutto, M. A.; Ribas, R. V.; Seale, W. A.; Rao, M. N.; Medina, N. H.; Botelho, S.; Cybulska, E. W.

    1989-06-01

    The level scheme of /sup 132/La was obtained with in-beam gamma spectroscopy techniques using fusion evaporation reactions with /sup 10,11/B, /sup 14/N beams and isotopic targets of Te and Sn. Two rotational band structures were seen. One band, assigned to the ..pi../ital h//sub 11/2//direct product/..nu..h/sub 11/2/, shows a smaller signature splitting as compared to the isotones /sup 134/Pr and /sup 136/Pm, indicating a slight reduction of triaxiality. The other band has been tentatively assigned the ..pi..(422)3/2/sup +//direct product/..nu..h/sub 11/2/ configuration, and shows no signature splitting indicating a near prolate shape.

  1. Identical band gaps in structurally re-entrant honeycombs.

    PubMed

    Zhu, Zhu-Wei; Deng, Zi-Chen

    2016-08-01

    Structurally re-entrant honeycomb is a sort of artificial lattice material, characterized by star-like unit cells with re-entrant topology, as well as a high connectivity that the number of folded sheets jointing at each vertex is at least six. In-plane elastic wave propagation in this highly connected honeycomb is investigated through the application of the finite element method in conjunction with the Bloch's theorem. Attention is devoted to exploring the band characteristics of two lattice configurations with different star-like unit cells, defined as structurally square re-entrant honeycomb (SSRH) and structurally hexagonal re-entrant honeycomb (SHRH), respectively. Identical band gaps involving their locations and widths, interestingly, are present in the two considered configurations, attributed to the resonance of the sketch folded sheets, the basic component elements for SSRH and SHRH. In addition, the concept of heuristic models is implemented to elucidate the underlying physics of the identical gaps. The phenomenon of the identical bandgaps is not only beneficial for people to further explore the band characteristics of lattice materials, but also provides the structurally re-entrant honeycombs as potential host structures for the design of lattice-based metamaterials of interest for elastic wave control. PMID:27586722

  2. Mid-frequency Band Dynamics of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  3. Measurement of valence band structure in arbitrary dielectric films

    SciTech Connect

    Uhm, Han S.; Choi, Eun H.

    2012-10-15

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  4. Spin wave band structure of artificial square ices

    NASA Astrophysics Data System (ADS)

    Iacocca, Ezio; Gliga, Sebastian; Stamps, Robert; Heinonen, Olle

    Artificial square spin ices are structures composed of magnetic elements located on the sites of a geometrically frustrated, two-dimensional square lattice. Using a semi-analytical approach, we show that square spin ices exhibit a rich spin wave band structure that is tunable both by external magnetic fields and the magnetic state of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the edges of each element, leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semi-analytical approach. This study shows that the magnon spectra, and therefore group and phase velocities and band gap, can be manipulated by external fields, temperature, or more sophisticated techniques such as using spin torque on individual elements, and suggesting that artificial square spin ices can be used as metamaterials for spin waves. Our results close the gap between the research fields of artificial spin ices and magnonics. E.I. acknowledges the Swedish Research Council, Reg.No. 637-2014-6863. The work by O.H. was funded by the Department of Energy Office of Science, Materials Sciences and Engineering Division. The work by R.L.S. was funded by EPSRC EP/L002922/1.

  5. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.

    PubMed

    Ulstrup, Søren; Čabo, Antonija Grubišić; Miwa, Jill A; Riley, Jonathon M; Grønborg, Signe S; Johannsen, Jens C; Cacho, Cephise; Alexander, Oliver; Chapman, Richard T; Springate, Emma; Bianchi, Marco; Dendzik, Maciej; Lauritsen, Jeppe V; King, Phil D C; Hofmann, Philip

    2016-06-28

    The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure. PMID:27267820

  6. Calculation of complex band structure for low symmetry lattices

    NASA Astrophysics Data System (ADS)

    Srivastava, Manoj; Zhang, Xiaoguang; Cheng, Hai-Ping

    2009-03-01

    Complex band structure calculation is an integral part of a first-principles plane-wave based quantum transport method. [1] The direction of decay for the complex wave vectors is also the transport direction. The existing algorithm [1] has the limitation that it only allows the transport direction along a lattice vector perpendicular to the basal plane formed by two other lattice vectors, e.g., the c-axis of a tetragonal lattice. We generalize this algorithm to nonorthogonal lattices with transport direction not aligned with any lattice vector. We show that this generalization leads to changes in the boundary conditions and the Schrodinger's equation projected to the transport direction. We present, as an example, the calculation of the complex band structure of fcc Cu along a direction perpendicular to the (111) basal plane. [1] Hyoung Joon Choi and Jisoon Ihm, Phys. Rev. B 59, 2267 (1999).

  7. Graphene on Ru(0001): Evidence for two graphene band structures

    SciTech Connect

    Katsiev, Khabibulakh; Losovyj, Yaroslav; Zhou, Zihao; Vescovo, E; Liu, L.; Dowben, P. A.; Goodman, D. Wayne

    2012-05-03

    High-resolution photoemission illustrates that the band structure of graphene on Ru(0001) exhibits a well-defined splitting. This splitting is largest with the graphene directly on the Ru(0001) substrate, whereas with a chemisorbed oxygen spacer layer between the graphene and the metal substrate, this splitting is considerably reduced. This splitting is attributed to a combination of chemical interactions between graphene and Ru(0001) and to screening of the former by the latter, not spin-orbit coupling.

  8. Sub-band structure engineering for advanced CMOS channels

    NASA Astrophysics Data System (ADS)

    Takagi, Shin-ichi; Mizuno, T.; Tezuka, T.; Sugiyama, N.; Nakaharai, S.; Numata, T.; Koga, J.; Uchida, K.

    2005-05-01

    This paper reviews our recent studies of novel CMOS channels based on the concept of sub-band structure engineering. This device design concept can be realized as strained-Si channel MOSFETs, ultra-thin SOI MOSFETs and Ge-on-Insulator (GOI) MOSFETs. An important factor for the electron mobility enhancement is the introduction of larger sub-band energy splitting between the 2- and 4-fold valleys on a (1 0 0) surface, which can be obtained in strained-Si and ultra-thin body channels. The electrical properties of strained-Si MOSFETs are summarized with an emphasis on strained-SOI structures. Also, the importance of the precise control of ultra-thin SOI thickness is pointed out from the experimental results of the SOI thickness dependence of mobility. Furthermore, it is shown that the increase in the sub-band energy splitting can also be effective in obtaining higher current drive of n-channel MOSFETs under ballistic transport regime. This suggests that the current drive enhancement based on MOS channel engineering utilizing strain and ultra-thin body structures can be extended to ultra-short channel MOSFETs dominated by ballistic transport.

  9. Band structure and density of states of. beta. -silicon nitride

    SciTech Connect

    Ren, S.Y.; Ching, W.Y.

    1980-01-01

    The electronic energy band structure of ..beta..-Si/sub 3/N/sub 4/ has been calculated using the first principles LCAO method. The bottom of the Conduction Band (CB) is at GAMMA and the top of the valence band (VB) is located along GAMMAA line. The very flat top VB along GAMMAA accounts for a large hole effective mass. The indirect band gap obtained is very close to the experimental value of 5.2 eV. The density of states (DOS) and partial DOS are also obtained and are in good agreement with photoemission data. In the VB region from -20. to -14. eV the states are entirely composed of N 2s states while in the range from -10.5 eV up, the states are predominately N 2p in character. In the CB region, the DOS is dominated by Si 3s and 3p orbital components. These results are consistent with charge analysis which indicates that on average, 0.56 electron is transferred from Si to N per Si-N bond.

  10. Electronic band structure and photoemission: A review and projection

    SciTech Connect

    Falicov, L.M.

    1987-09-01

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs.

  11. Band to band tunneling in III-V semiconductors: Implications of complex band structure, strain, orientation, and off-zone center contribution

    SciTech Connect

    Majumdar, Kausik

    2014-05-07

    In this paper, we use a tight binding Hamiltonian with spin orbit coupling to study the real and complex band structures of relaxed and strained GaAs. A simple d orbital on-site energy shift coupled with appropriate scaling of the off-diagonal terms is found to correctly reproduce the band-edge shifts with strain. Four different 〈100〉 strain combinations, namely, uniaxial compressive, uniaxial tensile, biaxial compressive, and biaxial tensile strain are studied, revealing rich valence band structure and strong relative orientation dependent tunneling. It is found that complex bands are unable to provide unambiguous tunneling paths away from the Brillouin zone center. Tunneling current density distribution over the Brillouin zone is computed using non-equilibrium Green's function approach elucidating a physical picture of band to band tunneling.

  12. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  13. Measurements of the energy band gap and valence band structure of AgSbTe2

    NASA Astrophysics Data System (ADS)

    Jovovic, V.; Heremans, J. P.

    2008-06-01

    The de Haas-van Alphen effect, galvanomagnetic and thermomagnetic properties of high-quality crystals of AgSbTe2 are measured and analyzed. The transport properties reveal the material studied here to be a very narrow-gap semiconductor (Eg≈7.6±3meV) with ˜5×1019cm-3 holes in a valence band with a high density of states and thermally excited ˜1017cm-3 high-mobility (2200cm2/Vs) electrons at 300 K. The quantum oscillations are measured with the magnetic field oriented along the ⟨111⟩ axis. Taken together with the Fermi energy derived from the transport properties, the oscillations confirm the calculated valence band structure composed of 12 half-pockets located at the X -points of the Brillouin zone, six with a density-of-states effective mass mda∗≫0.21me and six with mdb∗≫0.55me , giving a total density-of-states effective mass, including Fermi pocket degeneracy, of md∗≈1.7±0.2me ( me is the free electron mass). The lattice term dominates the thermal conductivity, and the electronic contribution in samples with both electrons and holes present is in turn dominated by the ambipolar term. The low thermal conductivity and very large hole mass of AgSbTe2 make it a most promising p -type thermoelectric material.

  14. Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Dong; Wang, Yue-Sheng

    2016-05-01

    The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation. xml:lang="fr"

  15. X-BAND TRAVELING WAVE RF DEFLECTOR STRUCTURES

    SciTech Connect

    Wang, J.W.; Tantawi, S.; /SLAC

    2008-12-18

    Design studies on the X-Band transverse RF deflectors operating at HEM{sub ll} mode have been made for two different applications. One is for beam measurement of time-sliced emittance and slice energy spread for the upgraded LCLS project, its optimization in RF efficiency and system design are carefully considered. Another is to design an ultra-fast RF kicker in order to pick up single bunches from the bunch-train of the B-factory storage ring. The challenges are to obtain very short structure filling time with high RF group velocity and good RF efficiency with reasonable transverse shunt impedance. Its RF system will be discussed.

  16. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  17. Negation, questions, and structure building in a homesign system

    PubMed Central

    Franklin, Amy; Giannakidou, Anastasia; Goldin-Meadow, Susan

    2013-01-01

    Deaf children whose hearing losses are so severe that they cannot acquire spoken language, and whose hearing parents have not exposed them to sign language, use gestures called homesigns to communicate. Homesigns have been shown to contain many of the properties of natural languages. Here we ask whether homesign has structure building devices for negation and questions. We identify two meanings (negation, question) that correspond semantically to propositional functions, that is, to functions that apply to a sentence (whose semantic value is a proposition, φ) and yield another proposition that is more complex (¬φ for negation; ?φ for question). Combining φ with¬ or ? thus involves sentence modification. We propose that these negative and question functions are structure building operators, and we support this claim with data from an American homesigner. We show that: (a) each meaning is marked by a particular form in the child’s gesture system (side-to-side headshake for negation, manual flip for question); (b) the two markers occupy systematic, and different, positions at the periphery of the gesture sentences (headshake at the beginning, flip at the end); and (c) the flip is extended from questions to other uses associated with the wh-form (exclamatives, referential expressions of location) and thus functions like a category in natural languages. If what we see in homesign is a language creation process (Goldin-Meadow, 2003), and if negation and question formation involve sentential modification, then our analysis implies that homesign has at least this minimal sentential syntax. Our findings thus contribute to ongoing debates about properties that are fundamental to language and language learning. PMID:23630971

  18. Negation, questions, and structure building in a homesign system.

    PubMed

    Franklin, Amy; Giannakidou, Anastasia; Goldin-Meadow, Susan

    2011-03-01

    Deaf children whose hearing losses are so severe that they cannot acquire spoken language, and whose hearing parents have not exposed them to sign language, use gestures called homesigns to communicate. Homesigns have been shown to contain many of the properties of natural languages. Here we ask whether homesign has structure building devices for negation and questions. We identify two meanings (negation, question) that correspond semantically to propositional functions, that is, to functions that apply to a sentence (whose semantic value is a proposition, ϕ) and yield another proposition that is more complex (¬ϕ for negation; ?ϕ for question). Combining ϕ with ¬ or ? thus involves sentence modification. We propose that these negative and question functions are structure building operators, and we support this claim with data from an American homesigner. We show that: (a) each meaning is marked by a particular form in the child's gesture system (side-to-side headshake for negation, manual flip for question); (b) the two markers occupy systematic, and different, positions at the periphery of the gesture sentences (headshake at the beginning, flip at the end); and (c) the flip is extended from questions to other uses associated with the wh-form (exclamatives, referential expressions of location) and thus functions like a category in natural languages. If what we see in homesign is a language creation process (Goldin-Meadow, 2003), and if negation and question formation involve sentential modification, then our analysis implies that homesign has at least this minimal sentential syntax. Our findings thus contribute to ongoing debates about properties that are fundamental to language and language learning. PMID:23630971

  19. Effect of tool eccentricity on surface periodic banded structures in friction stir welding

    NASA Astrophysics Data System (ADS)

    Guo, N.; Wang, M. R.; Meng, Q.; Zhou, L.; Tang, D. Y.

    2015-12-01

    This paper describes the relationship between tool eccentricity and surface formation of periodic banded structures in friction stir welding. Motion characteristics of welding tool are calculated to explore the forming mechanism of banded structures. The results reveal that the welding tool motion differences on advancing side and retreating side caused by eccentricity are crucial for the formation of banded structures. The crests and troughs of banded structures form during tool motion on retreating side and advancing side, respectively.

  20. Brain Structural Signatures of Negative Symptoms in Depression and Schizophrenia

    PubMed Central

    Chuang, Jie-Yu; Murray, Graham K.; Metastasio, Antonio; Segarra, Nuria; Tait, Roger; Spencer, Jenny; Ziauddeen, Hisham; Dudas, Robert B.; Fletcher, Paul C.; Suckling, John

    2014-01-01

    Negative symptoms occur in several major mental health disorders with undetermined mechanisms and unsatisfactory treatments; identification of their neural correlates might unveil the underlying pathophysiological basis and pinpoint the therapeutic targets. In this study, participants with major depressive disorder (n = 24), schizophrenia (n = 22), and healthy controls (n = 20) were assessed with 10 frequently used negative symptom scales followed by principal component analysis (PCA) of the scores. A linear model with the prominent components identified by PCA was then regressed on gray and white-matter volumes estimated from T1-weighted magnetic resonance imaging. In depressed patients, negative symptoms such as blunted affect, alogia, withdrawal, and cognitive impairment, assessed mostly via clinician-rated scales were inversely associated with gray matter volume in the bilateral cerebellum. In patients with schizophrenia, anhedonia, and avolition evaluated via self-rated scales inversely related to white-matter volume in the left anterior limb of internal capsule/anterior thalamic radiation and positively in the left superior longitudinal fasiculus. The pathophysiological mechanisms underlying negative symptoms might differ between depression and schizophrenia. These results also point to future negative symptom scale development primarily focused on detecting and monitoring the corresponding changes to brain structure or function. PMID:25221526

  1. Burnout studies of X-band radar negative resistance transistor low noise amplifiers

    NASA Astrophysics Data System (ADS)

    Paul, D. K.; Gardner, P.

    1992-03-01

    GaAs FETs and HEMTs can be configured to give low noise, negative resistance microwave amplification. Such low noise amplifiers have the advantage of an inherent bypass path after device burnout. This feature is potentially useful in radar receiver applications. Test results for prototype LNAs are described, showing burnout energies comparable to those of conventional transmission mode amplifiers using similar devices. Bypass path losses after burnout are around 4 dB, approximately 20 dB less than for a failed transmission mode amplifier.

  2. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  3. Polar semiconductor heterojunction structure energy band diagram considerations

    NASA Astrophysics Data System (ADS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  4. Band structure and the optical gain of GaInNAs/GaAs quantum wells modeled within 10-band and 8-band kp model

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Kudrawiec, R.; Miloszewski, J. M.; Weetman, P.; Misiewicz, J.; Wartak, M. S.

    2013-02-01

    The band structure and optical gain have been calculated for GaInNAs/GaAs quantum wells (QWs) with various nitrogen concentrations within the 10-band and 8-band kp models. Two approaches to calculate optical properties of GaInNAs/GaAs QWs have been compared and discussed in the context of available material parameters for dilute nitrides and the conduction band nonparabolicity due to the band anti-crossing (BAC) interaction between the N-related resonant level and the conduction band of a host material. It has been clearly shown that this nonparabolicity can be neglected in optical gain calculations since the dispersion of conduction band up to the Femi level is very close to parabolic for carrier concentrations typical for laser operation, i.e., 5 × 1018 cm-3. This means that the 8-band kp model when used to calculate the optical gain is very realistic and much easier to apply in QWs containing new dilute nitrides for which the BAC parameters are unknown. In such an approach, the energy gap and electron effective mass for N-containing materials are needed, instead of BAC parameters. These parameters are available experimentally much easier than BAC parameters.

  5. Influence of Structural Parameters on a Novel Metamaterial Absorber Structure at K-band Frequency

    NASA Astrophysics Data System (ADS)

    Cuong, Tran Manh; Thuy, Nguyen Thi; Tuan, Le Anh

    2016-05-01

    Metamaterials nowadays continue to gain attention thanks to their special electromagnetic characteristics. An increasing number of studies are being conducted on the absolute electromagnetic absorber configurations of high impedance surface materials at a certain frequency band. These configurations are usually fabricated with a layer of metal structure based on a dielectric sheet. In this study, we present an optimal design of a novel electromagnetic absorber metamaterial configuration working at a 23-GHz frequency range (K band).

  6. Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands.

    PubMed

    Hasan, Md Rabiul; Hasan, Md Imran; Anower, Md Shamim

    2015-11-10

    A defected-core spiral photonic crystal fiber is proposed to achieve very large negative flattened dispersion and small confinement loss. Simulation results reveal that the designed structure exhibits very large flattened dispersion over S+C+L+U wavelength bands and an average dispersion of about -720.7  ps nm(-1) km(-1) with an absolute dispersion variation of 12.7  ps nm(-1)  km(-1) over the wavelength ranging from 1.45 to 1.65 μm. The proposed fiber has five air-hole rings in the cladding leading to very small confinement loss of 0.00111  dB/km at the excitation wavelength of 1.55 μm. The tolerance of the fiber dispersion of ±2% changing in the structural parameters is investigated for practical conditions. PMID:26560773

  7. Analysis of the electronic structure of crystals through band structure unfolding

    NASA Astrophysics Data System (ADS)

    Gordienko, A. B.; Kosobutsky, A. V.

    2016-03-01

    In this work, we consider an alternative implementation of the band structure unfolding method within the framework of the density functional theory, which combines the advantages of the basis of localized functions and plane waves. This approach has been used to analyze the electronic structure of the ordered CuCl x Br1- x copper halide alloys and F 0 center in MgO that enables us to reveal qualitatively the features remaining hidden when using the standard supercell method, because of the complex band structure of systems with defects.

  8. Invariant expansion for the trigonal band structure of graphene

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Zülicke, U.

    2010-12-01

    We present a symmetry analysis of the trigonal band structure in graphene, elucidating the transformational properties of the underlying basis functions and the crucial role of time-reversal invariance. Group theory is used to derive an invariant expansion of the Hamiltonian for electron states near the K points of the graphene Brillouin zone. Besides yielding the characteristic k -linear dispersion and higher oder corrections to it, this approach enables the systematic incorporation of all terms arising from external electric and magnetic fields, strain, and spin-orbit coupling up to any desired order. Several new contributions are found, in addition to reproducing results obtained previously within tight-binding calculations. Physical ramifications of these new terms are discussed.

  9. Phononic and photonic band gap structures: modelling and applications

    NASA Astrophysics Data System (ADS)

    Armenise, Mario N.; Campanella, Carlo E.; Ciminelli, Caterina; Dell'Olio, Francesco; Passaro, Vittorio M. N.

    2010-01-01

    Photonic crystals (PhCs) are artificial materials with a permittivity which is a periodic function of the position, with a period comparable to the wavelength of light. The most interesting characteristic of such materials is the presence of photonic band gaps (PBGs). PhCs have very interesting properties of light confinement and localization together with the strong reduction of the device size, orders of magnitude less than the conventional photonic devices, allowing a potential very high scale of integration. These structures possess unique characteristics enabling to operate as optical waveguides, high Q resonators, selective filters, lens or superprism. The ability to mould and guide light leads naturally to novel applications in several fields. Band gap formation in periodic structures also pertains to elastic wave propagation. Composite materials with elastic coefficients which are periodic functions of the position are named phononic crystals. They have properties similar to those of photonic crystals and corresponding applications too. By properly choosing the parameters one may obtain phononic crystals (PhnCs) with specific frequency gaps. An elastic wave, whose frequency lies within an absolute gap of a phononic crystal, will be completely reflected by it. This property allows realizing non-absorbing mirrors of elastic waves and vibration-free cavities which might be useful in high-precision mechanical systems operating in a given frequency range. Moreover, one can use elastic waves to study phenomena such as those associated with disorder, in more or less the same manner as with electromagnetic waves. The authors present in this paper an introductory survey of the basic concepts of these new technologies with particular emphasis on their main applications, together with a description of some modelling approaches.

  10. Role of interface band structure on hot electron transport

    NASA Astrophysics Data System (ADS)

    Garramone, John J.

    Knowledge of electron transport through materials and interfaces is fundamentally and technologically important. For example, metal interconnects within integrated circuits suffer increasingly from electromigration and signal delay due to an increase in resistance from grain boundary and sidewall scattering since their dimensions are becoming shorter than the electron mean free path. Additionally, all semiconductor based devices require the transport of electrons through materials and interfaces where scattering and parallel momentum conservation are important. In this thesis, the inelastic and elastic scattering of hot electrons are studied in nanometer thick copper, silver and gold films deposited on silicon substrates. Hot electrons are electron with energy greater than kBT above the Fermi level (EF). This work was performed utilizing ballistic electron emission microscopy (BEEM) which is a three terminal scanning tunneling microscopy (STM) technique that measures the percentage of hot electrons transmitted across a Schottky barrier interface. Hot electron attenuation lengths of the metals were extracted by measuring the BEEM current as a function of metal overlayer thickness for both hot electron and hot hole injection at 80 K and under ultra high vacuum. The inelastic and elastic scattering lengths were extracted by fitting the energetic dependence of the measured attenuation lengths to a Fermi liquid based model. A sharp increase in the attenuation length is observed at low injection energies, just above the Schottky barrier height, only for metals on Si(001) substrates. In contrast, the attenuation length measured on Si(111) substrates shows a sharp decrease. These results indicate that interface band structure and parallel momentum conservation have significant impact upon the transport of hot electrons across non epitaxial metal-semiconductor interfaces. In addition, they help to separate effects upon hot electron transport that are inherent to the metal

  11. Collective Band Structures in the Neutron-Rich 107,109Ru Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; Gan, Cui-yun; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; M, Sakhaee; W, Ma C.; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; Y, Dardenne K.; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; N, Johnson R.; F, McGowan K.

    1998-11-01

    The levels in neutron-rich odd-A 107,109Ru nuclei have been investigated by using γ-γ- and γ-γ-γ-coincidence studies of the prompt γ-rays from the spontaneous fission of 252Cf. The ground state bands and the negative parity bands are identified and expanded in both nuclei. Triaxial rotor plus particle model calculations indicate the ground state bands originate from ν(d5/2 + g7/2) quasiparticle configurations and the negative parity bands are from νh11/2 orbital.

  12. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Knox, Kevin R.

    2011-12-01

    In this dissertation, I examine the electronic structure of two very different types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces. The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and micro probe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load

  13. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  14. Hyperspectral bands prediction based on inter-band spectral correlation structure

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman M.; Sharkawy, Mohamed El.; Elramly, Salwa H.

    2013-02-01

    Hyperspectral imaging has been widely studied in many applications; notably in climate changes, vegetation, and desert studies. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and spaceborne imaging. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we analyze the spectral cross correlation between bands for AVIRIS and Hyperion hyperspectral data; spectral cross correlation matrix is calculated, assessing the strength of the spectral matrix, we propose new technique to find highly correlated groups of bands in the hyperspectral data cube based on "inter band correlation square", and finally, we propose a new technique of band regrouping based on correlation values weights for different group of bands as network of correlation.

  15. Band-structure analysis from photoreflectance spectroscopy in (Ga,Mn)As

    SciTech Connect

    Yastrubchak, Oksana; Gluba, Lukasz; Zuk, Jerzy; Wosinski, Tadeusz; Andrearczyk, Tomasz; Domagala, Jaroslaw Z.; Sadowski, Janusz

    2013-12-04

    Modulation photoreflectance spectroscopy has been applied to study the band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn content. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap-transition energy in the (Ga,Mn)As layers with increasing Mn content are interpreted in terms of a disordered valence band, extended within the band gap, formed, in highly Mn-doped (Ga,Mn)As, as a result of merging the Mn-related impurity band with the host GaAs valence band.

  16. Quantum structure of negation and conjunction in human thought

    PubMed Central

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-01-01

    We analyze in this paper the data collected in a set of experiments investigating how people combine natural concepts. We study the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction Fruits And Vegetables, but also their conjunction when one or both concepts are negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on conceptual combinations, revealing systematic deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a new significant and a priori unexpected deviation from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an “emergent reasoning” and a “logical reasoning,” and that these two processes are represented in a Fock space algebraic structure. PMID:26483715

  17. Quantum structure of negation and conjunction in human thought.

    PubMed

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-01-01

    We analyze in this paper the data collected in a set of experiments investigating how people combine natural concepts. We study the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction Fruits And Vegetables, but also their conjunction when one or both concepts are negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on conceptual combinations, revealing systematic deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a new significant and a priori unexpected deviation from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an "emergent reasoning" and a "logical reasoning," and that these two processes are represented in a Fock space algebraic structure. PMID:26483715

  18. Band structure of ABC-trilayer graphene superlattice

    SciTech Connect

    Uddin, Salah Chan, K. S.

    2014-11-28

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k{sub y} direction for k{sub x} = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case.

  19. Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves

    SciTech Connect

    Sakai, Osamu; Sakaguchi, Takui; Tachibana, Kunihide

    2007-04-01

    Two theoretical approaches appropriate for two-dimensional plasma photonic crystals reveal dispersions of propagating waves including photonic (electromagnetic) band gaps and multiflatbands. A modified plane-wave expansion method yields dispersions of collisional periodical plasmas, and the complex-value solution of a wave equation by a finite difference method enables us to obtain dispersions with structure effects in an individual microplasma. Periodical plasma arrays form band gaps as well as normal photonic crystals, and multiflatbands are present below the electron plasma frequency in the transverse electric field mode. Electron elastic collisions lower the top frequency of the multiflatbands but have little effect on band gap properties. The spatial gradient of the local dielectric constant resulting from an electron density profile widens the frequency region of the multiflatbands, as demonstrated by the change of surface wave distributions. Propagation properties described in dispersions including band gaps and flatbands agree with experimental observations of microplasma arrays.

  20. Projected shell model study of band structure of 90Nb

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Singh, Dhanvir; Gupta, Anuradha; Singh, Suram; Bharti, Arun

    2016-05-01

    A systematic study of two-quasiparticle bands of the odd-odd 90Nb nucleus is performed using the projected shell model approach. Yrast band with some other bands have been obtained and back-bending in moment of inertia has also been calculated and compared with the available experimental. On comparing the available experimental data, it is found that the treatment with PSM provides a satisfactory explanation of the available data.

  1. Influence of banded structure on the mechanical properties of a high-strength maraging steel

    SciTech Connect

    Ahmed, M.; Salam, I.; Hashmi, F.H.; Khan, A.Q.

    1997-04-01

    Chemical inhomogeneity results in the formation of banded structure in high-strength maraging steels. Segregation of titanium and molybdenum was found to be the primary cause of banded structure formation. When the concentrations of these elements increased beyond certain critical levels, bands comprising different grain sizes formed. The inclusions existed preferentially along the interface of the bands. A high-temperature homogenization treatment substantially reduced or eliminated the banded structure. The large grain size resulting from the homogenization treatment was subsequently reduced by a grain refinement treatment. The mechanical properties of the steel substantially improved following homogenization and grain refinement.

  2. Simultaneous Hosting of Positive and Negative Trions and the Enhanced Direct Band Emission in MoSe2/MoS2 Heterostacked Multilayers.

    PubMed

    Kim, Min Su; Seo, Changwon; Kim, Hyun; Lee, Jubok; Luong, Dinh Hoa; Park, Ji-Hoon; Han, Gang Hee; Kim, Jeongyong

    2016-06-28

    Heterostacking of layered transition-metal dichalcogenide (LTMD) monolayers (1Ls) offers a convenient way of designing two-dimensional exciton systems. Here we demonstrate the simultaneous hosting of positive trions and negative trions in heterobilayers made by vertically stacking 1L MoSe2 and 1L MoS2. The charge transfer occurring between the 1Ls of MoSe2 and MoS2 converted the polarity of trions in 1L MoSe2 from negative to positive, resulting in the presence of positive trions in the 1L MoSe2 and negative trions in the 1L MoS2 of the same heterostacked bilayer. Significantly enhanced MoSe2 photoluminescence (PL) in the heterostacked bilayers compared to the PL of 1L MoSe2 alone suggests that, unlike other previously reported heterostacked bilayers, direct band transition of 1L MoSe2 in heterobilayer was enhanced after the vertical heterostacking. Moreover, by inserting hexagonal BN monolayers between 1L MoSe2 and 1L MoS2, we were able to adjust the charge transfer to maximize the MoSe2 PL of the heteromultilayers and have achieved a 9-fold increase of the PL emission. The enhanced optical properties of our heterostacked LTMDs suggest the exciting possibility of designing LTMD structures that exploit the superior optical properties of 1L LTMDs. PMID:27187667

  3. Miniaturization of electromagnetic band gap structures for mobile applications

    NASA Astrophysics Data System (ADS)

    Goussetis, G.; Feresidis, A. P.; Palikaras, G. K.; Kitra, M.; Vardaxoglou, J. C.

    2005-12-01

    It is well known that interference of the human body affects the performance of the antennas in mobile phone handsets. In this contribution, we investigate the use of miniaturized metallodielectric electromagnetic band gap (MEBG) structures embedded in the case of a mobile handset as a means of decoupling the antenna from the user's hand. The closely coupled MEBG concept is employed to achieve miniaturization of the order of 15:1. Full wave dispersion relations for planar closely coupled MEBG arrays are presented and are validated experimentally. The performance of a prototype handset with an embedded conformal MEBG is assessed experimentally and is compared to a similar prototype without the MEBG. Reduction in the detuning of the antenna because of the human hand by virtue of the MEBG is demonstrated. Moreover, the efficiency of the handset when loaded with a human hand model is shown to improve when the MEBG is in place. The improvements are attributed to the decoupling of the antenna from the user's hand, which is achieved by means of suppressing the fields in the locality of the hand.

  4. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  5. Global Kinetic Modeling of Banded Electron Structures in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Significant fluxes of 10 eV to 30 keV electrons have been detected in the plasmasphere, appearing as banded structures in energy with broad spatial extents and slowly evolving over several days. It is thought that these populations are decaying plasma sheet electrons injected into the corotating region of near-Earth space. This capture can occur when the convective electric field drops rapidly and the Alfven boundary suddenly outward, trapping the inner edge of the plasma sheet along closed drift paths. Our bounce-averaged kinetic model of superthermal electron transport is able to simulate this capture and the subsequent drift, diffusion, and decay of the plasma cloud. Results of this simulation will be shown and discussed, from the initial injection during the elevated convection to the final loss of the particles. It is thought that not only Coulomb collisions but also wave-particle interactions play a significant role in altering the plasma cloud. Quasilinear diffusion is currently being incorporated into the model and the importance of this mechanism will be examined. Also, the high anisotropy of the trapped population could be unstable and generate plasma waves. These and other processes will be investigated to determine the final fate of the cloud and to quantify where, how, and when the energy of the plasma cloud is deposited. Comparisons with CRRES observations of these events are shown to verify the model and explain the data.

  6. Examining the latent structure of negative symptoms: is there a distinct subtype of negative symptom schizophrenia?

    PubMed

    Blanchard, Jack J; Horan, William P; Collins, Lindsay M

    2005-09-15

    Negative symptoms have emerged as a replicable factor of symptomatology within schizophrenia. Although rating scales provide assessments along dimensions of severity, categorization into a negative symptom subtype is typically conducted. A categorical view of negative symptoms is best reflected in the proposal that enduring, primary negative symptoms, or deficit symptoms, reflect a distinct subtype of schizophrenia . Despite an accumulation of findings that support a categorical conceptualization, the data are also consistent with a dimensional-only model where negative symptom subtypologies simply reflect an extreme on a continuum of severity. Using taxometric statistical methods , the present study examined whether a taxonic, or latent class, model best describes negative symptoms in a sample of 238 schizophrenia patients. In order to obtain more stable estimates of symptoms, ratings on the Scale for the Assessment of Negative Symptoms [Andreasen, N.C., 1982. Negative symptoms in schizophrenia: Definition and reliability. Arch. Gen. Psychiatry 39, 784-788.] were averaged across two assessments over a 6-month period. Two taxometric methods, maximum covariance analysis (MAXCOV) and mean above minus below a cut (MAMBAC) identified a latent class or taxon with a base rate of approximately 28-36%. Members of the negative symptom taxon differed from the nontaxon class in that taxon members were more likely to be male and demonstrated poorer social functioning. Taxon and nontaxon schizophrenia patients did not differ in psychotic or affective symptoms. The findings converge to provide support for a categorical view of negative symptoms. Further research is required to replicate the present taxonic findings and to examine characteristics (including possible etiological factors) associated with this negative symptom taxon. PMID:15916881

  7. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure

    NASA Astrophysics Data System (ADS)

    Gripp, J. A. B.; Góes, L. C. S.; Heuss, O.; Scinocca, F.

    2015-12-01

    Piezoelectric shunt damping is a well-known technique to damp mechanical vibrations of a structure, using a piezoelectric transducer to convert mechanical vibration energy into electrical energy, which is dissipated in an electrical resistance. Resonant shunts consisting of a resistance and an inductance connected to a piezoelectric transducer are used to damp structural vibrations in narrow frequency bands, but their performance is very sensitive to variations in structural modal frequencies and transducer capacitance. In order to overcome this drawback, a piezoelectric shunt damping technique with improved performance and robustness is presented in this paper. The design of the adaptive circuit considers the variation of the host structure’s natural frequency as a project parameter. This paper describes an adaptive resonant piezoelectric vibration absorber enhanced by a synthetic negative capacitance applied to a shell structure. The resonant shunt circuit autonomously adapts its inductance value by comparing the phase difference of the vibration velocity and the current flowing through the shunt circuit. Moreover, a synthetic negative capacitance is added to the shunt circuit to enhance the vibration attenuation provided by the piezoelectric absorber. The circuitry is implemented using analog components. Validation of the proposed method is done by bonding the piezoelectric absorber on a free-formed metallic shell.

  8. Band structure parameters of metallic diamond from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Achatz, P.; Nicolaou, A.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Bustarret, E.

    2015-07-01

    The electronic band structure of heavily boron doped diamond was investigated by angle-resolved photoemission spectroscopy on (100)-oriented epilayers. A unique set of Luttinger parameters was deduced from a comparison of the experimental band structure of metallic diamond along the Δ (Γ X ) and Σ (Γ K ) high-symmetry directions of the reciprocal space, with theoretical band structure calculations performed both within the local density approximation and by an analytical k . p approach. In this way, we were able to describe the experimental band structure over a large three-dimensional region of the reciprocal space and to estimate hole effective masses in agreement with previous theoretical and experimental papers.

  9. Nitrogen defects in wide band gap oxides: defect equilibria and electronic structure from first principles calculations.

    PubMed

    Polfus, Jonathan M; Bjørheim, Tor S; Norby, Truls; Haugsrud, Reidar

    2012-09-01

    The nitrogen related defect chemistry and electronic structure of wide band gap oxides are investigated by density functional theory defect calculations of N(O)(q), NH(O)(×), and (NH2)(O)(·) as well as V(O)(··) and OH(O)(·) in MgO, CaO, SrO, Al(2)O(3), In(2)O(3), Sc(2)O(3), Y(2)O(3), La(2)O(3), TiO(2), SnO(2), ZrO(2), BaZrO(3), and SrZrO(3). The N(O)(q) acceptor level is found to be deep and the binding energy of NH(O)(×) with respect to N(O)' and (OH(O)(·) is found to be significantly negative, i.e. binding, in all of the investigated oxides. The defect structure of the oxides was found to be remarkably similar under reducing and nitriding conditions (1 bar N(2), 1 bar H(2) and 1 × 10(-7) bar H(2)O): NH(O)(×) predominates at low temperatures and [N(O)'] = 2[V(O)(··) predominates at higher temperatures (>900 K for most of the oxides). Furthermore, we evaluate how the defect structure is affected by non-equilibrium conditions such as doping and quenching. In terms of electronic structure, N(O)' is found to introduce isolated N-2p states within the band gap, while the N-2p states of NH(O)(×) are shifted towards, or overlap with the VBM. Finally, we assess the effect of nitrogen incorporation on the proton conducting properties of oxides and comment on their corrosion resistance in nitriding atmospheres in light of the calculated defect structures. PMID:22828729

  10. First principle study of band structure of SrMO3 perovskites

    NASA Astrophysics Data System (ADS)

    Daga, Avinash; Sharma, Smita

    2016-05-01

    First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO3 where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO3 and SrZrO3 to be insulating. A small band gap is observed in SrMoO3 perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all the calculations.

  11. Band structures in silicene on monolayer gallium phosphide substrate

    NASA Astrophysics Data System (ADS)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  12. Electronic transitions in GdN band structure

    SciTech Connect

    Vidyasagar, R. Kita, T.; Sakurai, T.; Ohta, H.

    2014-05-28

    Using the near-infrared (NIR) absorbance spectroscopy, electronic transitions and spin polarization of the GdN epitaxial film have been investigated; and the GdN epitaxial film was grown by a reactive rf sputtering technique. The GdN film exhibited three broad bands in the NIR frequency regimes; and those bands are attributable primarily to the minority and majority spin transitions at the X-point and an indirect transition along the Γ-X symmetric direction of GdN Brillouin zone. We experimentally observe a pronounced red-shift of the indirect band gap when cooling down below the Curie temperature which is ascribed to the orbital-dependent coulomb interactions of Gd-5dxy electrons, which tend to push-up the N-2p bands. On the other hand, we have evaluated the spin polarization of 0.17 (±0.005), which indicates that the GdN epitaxial film has almost 100% spin-polarized carriers. Furthermore, the experimental result of GdN electronic transitions are consistent with the previous reports and are thus well-reproduced. The Arrott plots evidenced that the Curie temperature of GdN film is 36 K and the large spin moment is explained by the nitrogen vacancies and the intra-atomic exchange interaction.

  13. Valence Band Structure of Highly Efficient p-type Thermoelectric PbTe-PbS Alloys

    SciTech Connect

    Jaworski, C. M.; Nielsen, Mechele; Wang, Hsin; Girard, Steven N.; Cai, Wei; Porter, Wallace D; Kanatzidis, Mercouri G.; Heremans, J. P.

    2013-01-01

    New experimental evidence is given relevant to the temperature-dependence of valence band structure of PbTe and PbTe1-xSx alloys (0.04 x 0.12), and its effect on the thermoelectric figure of merit zT. The x = 0.08 sample has zT ~ 1.55 at 773K. The magnetic field dependence of the high-temperature Hall resistivity of heavily p-type (> 1019 cm-3) Na-doped PbTe1-xSx reveals the presence of high-mobility electrons. This put in question prior analyses of the Hall coefficient and the conclusion that PbTe would be an indirect gap semiconductor at temperatures where its zT is optimal. Possible origins for these electrons are discussed: they can be induced by photoconductivity, or by the topology of the Fermi surface when the L and -bands merge. Negative values for the low-temperature thermopower are also observed. Our data show that PbTe continues to be a direct gap semiconductor at temperatures where the zT and S2 of p-type PbTe are optimal e.g. 700-900K. The previously suggested temperature induced rapid rise in energy of the heavy hole LVB relative to the light hole UVB is not supported by the experimental data.

  14. Band structures extending to very high spin in Xe126

    NASA Astrophysics Data System (ADS)

    Rønn Hansen, C.; Sletten, G.; Hagemann, G. B.; Herskind, B.; Jensen, D. R.; Bringel, P.; Engelhardt, C.; Hübel, H.; Neußer-Neffgen, A.; Singh, A. K.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Bednarczyk, P.; Byrski, T.; Curien, D.; Benzoni, G.; Bracco, A.; Camera, F.; Leoni, S.; Clark, R. M.; Fallon, P.; Korichi, A.; Roccaz, J.; Maj, A.; Wilson, J. N.; Lisle, J. C.; Steinhardt, T.; Thelen, O.; Ødegård, S. W.

    2007-09-01

    High-spin states in Xe126 have been populated in the Se82(Ca48,4n)Xe126 reaction in two experiments, one at the VIVITRON accelerator in Strasbourg using the Euroball detector array, and a subsequent one with ATLAS at Argonne using the Gammasphere Ge-detector array. Levels and assignments made previously for Xe126 up to I=20 have been confirmed and extended. Four regular bands extending to a spin of almost I=60, which are interpreted as two pairs of signature partners with opposite parity, are identified for the first time. The α = 0 partner of each pair is connected to the lower-lying levels, whereas the two α = 1 partners remain floating. A fractional Doppler shift analysis of transitions in the strongest populated (π,α)=(-,0) band provides a value of 5.20.50.4 b for the transition quadrupole moment, which can be related to a minimum in the potential-energy surface calculated by the ULTIMATE CRANKER cranked shell-model code at ɛ≈0.35 and γ≈5°. The four lowest bands calculated for this minimum compare well with the two signature pairs experimentally observed over a wide spin range. A sharp upbend at ℏω~1170 keV is interpreted as a crossing with a band involving the j15/2 neutron orbital, for which pairing correlations are expected to be totally quenched. The four long bands extend to within ˜5 spin units of a crossing with an yrast line defined by calculated hyperdeformed transitions and will serve as important stepping stones into the spin region beyond 60ħ for future experiments.

  15. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations. PMID:27128858

  16. Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER, Herschel-SPIRE

    2016-01-01

    Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.

  17. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  18. Band structure of germanium carbides for direct bandgap silicon photonics

    NASA Astrophysics Data System (ADS)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  19. Collective band structures in the 99Tc nucleus

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Xiao, Z. G.; Zhu, S. J.; Patial, M.; Qi, C.; Cederwall, B.; Zhang, Z.; Wang, R. S.; Yi, H.; Yan, W. H.; Cheng, W. J.; Huang, Y.; Lyu, L. M.; Zhang, Y.; Wu, X. G.; He, C. Y.; Zheng, Y.; Li, G. S.; Li, C. B.; Li, H. W.; Liu, J. J.; Luo, P. W.; Hu, S. P.; Wang, J. L.; Wu, Y. H.

    2015-05-01

    Excited states in 99Tc with energies up to 6 MeV have been populated using the 96Zr(7Li,4 n )99Tc reaction with a laboratory beam energy of 35 MeV. Coincident γ rays from excited nuclei produced in the reactions were detected using an array of coaxial, planar, and clover-type high-purity germanium detectors. A total of 60 new γ -ray transitions and 21 new levels are identified and placed into a new level scheme. Two collective bands assigned to be built on the π g9 /2 [422 ]5 /2 + and π p1 /2 [301 ]1 /2 - Nilsson configurations have been extended with spins up to 35/2 and 33 /2 ℏ , respectively. Backbending and signature inversion have been observed in the yrast band. The large signature splitting of the positive-parity band in 99Tc may be caused by a triaxial deformation, which agrees well with the electromagnetic properties, theoretical calculations based on total Routhian surface, and triaxial particle-rotor model calculations.

  20. Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure

    NASA Astrophysics Data System (ADS)

    Xu, Kai-kai; Xiao, Zhong-yin; Tang, Jing-yao; Liu, De-jun; Wang, Zi-hua

    2016-07-01

    In the paper, a novel three-layered chiral structure is proposed and investigated, which consists of a split-ring resonator sandwiched between two layers of sub-wavelength gratings. This designed structure can achieve simultaneously asymmetric transmission with an extremely broad bandwidth and high amplitude as well as multi-band 90° polarization rotator with very low dispersion. Numerical simulations adopted two kinds of softwares with different algorithms demonstrate that asymmetric parameter can reach a maximum of 0.99 and over than 0.8 from 4.6 to 16.8 GHz, which exhibit magnitude and bandwidth improvement over previous chiral metamaterials in microwave bands (S, C, X and Ku bands). Specifically, the reason of high amplitude is analyzed in detail based on the Fabry-perot like resonance. Subsequently, the highly efficient polarization conversion with very low dispersion between two orthogonal linearly polarized waves is also analyzed by the optical activity and ellipticity. Finally, the electric fields are also investigated and further demonstrate the correctness of the simulated and calculated results.

  1. Electron momentum density, band structure, and structural properties of SrS

    SciTech Connect

    Sharma, G.; Munjal, N.; Vyas, V.; Kumar, R.; Sharma, B. K.; Joshi, K. B.

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  2. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    NASA Technical Reports Server (NTRS)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  3. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  4. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    SciTech Connect

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  5. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide

    SciTech Connect

    Arkhipenko, V. I.; Simonchik, L. V. Usachonak, M. S.; Callegari, Th.; Sokoloff, J.

    2014-09-28

    We demonstrate the ability to develop one-dimensional electromagnetic band gap structure in X-band waveguide solely by using the positive columns of glow discharges in neon at the middle pressure. Plasma inhomogeneities are distributed uniformly along a typical X-band waveguide with cross section of 23×10 mm². It is shown that electron densities larger than 10¹⁴ cm ⁻³ are needed in order to create an effective one-dimensional electromagnetic band gap structure. Some applications for using the one-dimensional electromagnetic band gap structure in waveguide as a control of microwave (broadband filter and device for variation of pulse duration) are demonstrated.

  6. Reconstruction of crystal band structure from the power spectrum of strong-field generated high harmonics

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ming; Ho, Tak-San; Chu, Shih-I.

    2016-05-01

    The study of high harmonic generation in solid driven by intense laser fields is a subject of much current interest. Recently we introduce a new optimization method to directly reconstruct the band structure of the crystal from the power spectrum of strong-field generated high harmonics. Without loss of generality, the reconstruction is formulated for a one-dimensional single band model as a minimization problem and solved by a derivative-free unconstrained optimization algorithm-NEWUOA. The method can be readily generalized to treat multi-band problems. Numerical simulations are presented to demonstrate the applicability of the method, and the reconstructed band structure is found to be in excellent agreement with the exact one. It is also shown that our optimization method remains robust and efficient even starting from the poorly guessed band structure.

  7. Nonlinear excitations in the honeycomb lattice: Beyond the high-symmetry points of the band structure

    NASA Astrophysics Data System (ADS)

    Arévalo, Edward; Morales-Molina, Luis

    2016-05-01

    The interplay between nonlinearity and the band structure of pristine honeycomb lattices is systematically explored. For that purpose, a theory of collective excitations valid for the first Brillouin zone of the lattice is developed. Closed-form expressions of two-dimensional excitations are derived for Bloch wave numbers beyond the high-symmetry points of the band structure. A description of the regions of validity of different nonlinear excitations in the first-Brillouin zone is given. We find that the unbounded nature of these excitations in nonlinear honeycomb latices is a signature of the strong influence of the Dirac cones in other parts of the band structure.

  8. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun; Bian Borui; Dai Yi

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  9. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3

    PubMed Central

    Ho, Ching-Hwa; Chen, Hsin-Hung

    2014-01-01

    The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga2S3) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga2S3. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga2S3. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga2S3 crystal is revealed. PMID:25142550

  10. Band Structure and Effective Mass in Monolayer MoS2.

    PubMed

    Wu, Ming-Ting; Fan, Jun-Wei; Chen, Kuan-Ting; Chang, Shu-Tong; Lin, Chung-Yi

    2015-11-01

    Monolayer transition-metal dichalcogenide is a very promising two-dimensional material for future transistor technology. Monolayer molybdenum disulfide (MoS2), owing to the unique electronic properties of its atomically thin two-dimensional layered structure, can be made into a high-performance metal-oxide-semiconductor field-effect transistor, or MOSFET. In this work, we focus on band structure and carrier mobility calculations for MoS2. We use the tight-binding method to calculate the band structure, including a consideration of the linear combination of different atomic orbitals, the interaction of neighboring atoms, and spin-orbit coupling for different tight-binding matrices. With information about the band structure, we can obtain the density of states, the effective mass, and other physical quantities. Carrier mobility using the Kubo-Greenwood formula is calculated based on the tight-binding band structure. PMID:26726660

  11. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  12. Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures

    NASA Astrophysics Data System (ADS)

    Puls, Conor

    Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons. Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility. Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and

  13. Band structure and optical transitions in semiconducting double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Makaev, D. V.; D'Yachkov, P. N.

    2006-11-01

    The electronic structure of semiconducting double-wall carbon nanotubes (CNTs) is calculated using the linearized augmented cylindrical wave method. The consideration is performed in the framework of the local density functional theory and the muffin-tin (MT) approximation for the one-electron Hamiltonian. The electronic spectrum of a double-wall CNT is determined by the free motion of electrons in the interatomic space of the two cylindrical layers, scattering by the MT spheres, and tunneling through the classically impenetrable region. Calculated results for double-wall CNTs of the ( n, 0)@( n', 0) zigzag type indicate that the shift of the band-gap width depends on whether n and n' are divided by 3 with a remainder of 1 or 2. It is found that, regardless of the type of the inner tube, the energy gap E g of the outer tube decreases by 0.15-0.22 eV if the tube belongs to the sequence n = 2 (mod 3). For the outer tubes of the sequence n = 1 (mod 3), the shifts of the band gap Δ E g are always negative -0.15 ≤ Δ E g ≤ -0.05 eV. In both cases, the shifts Δ E g weakly oscillate rather than decrease in going to tubes of a larger diameter d. For the inner tubes, the changes in the band gap Δ E g are more sensitive to the diameter. At 10 ≤ n ≤ 16, the shifts Δ E g are positive and the maximum value of Δ E g equals 0.39 and 0.32 for the sequences n = 2 (mod 3) and n = 1 (mod 3), respectively. In going to the inner tubes of a larger diameter, Δ E g rapidly drops and then oscillates in the range from -0.05 to 0.06 eV. The calculated results indicate that the shifts of the optical band gaps in core and shell tubes upon the formation of double-wall CNTs are significant, which must hinder the identification of double-wall CNTs by optical methods. On the other hand, the obtained results open up possibilities for a more detailed classification of double-wall nanotubes.

  14. The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing

    NASA Astrophysics Data System (ADS)

    Batool, Z.; Hild, K.; Hosea, T. J. C.; Lu, X.; Tiedje, T.; Sweeney, S. J.

    2012-06-01

    The GaBixAs1-x bismide III-V semiconductor system remains a relatively underexplored alloy particularly with regards to its detailed electronic band structure. Of particular importance to understanding the physics of this system is how the bandgap energy Eg and spin-orbit splitting energy Δo vary relative to one another as a function of Bi content, since in this alloy it becomes possible for Δo to exceed Eg for higher Bi fractions, which occurrence would have important implications for minimising non-radiative Auger recombination losses in such structures. However, this situation had not so far been realised in this system. Here, we study a set of epitaxial layers of GaBixAs1-x (2.3% ≤ x ≤ 10.4%), of thickness 30-40 nm, grown compressively strained onto GaAs (100) substrates. Using room temperature photomodulated reflectance, we observe a reduction in Eg, together with an increase in Δo, with increasing Bi content. In these strained samples, it is found that the transition energy between the conduction and heavy-hole valence band edges is equal with that between the heavy-hole and spin-orbit split-off valence band edges at ˜9.0 ± 0.2% Bi. Furthermore, we observe that the strained valence band heavy-hole/light-hole splitting increases with Bi fraction at a rate of ˜15 (±1) meV/Bi%, from which we are able to deduce the shear deformation potential. By application of an iterative strain theory, we decouple the strain effects from our experimental measurements and deduce Eg and Δo of free standing GaBiAs; we find that Δo indeed does come into resonance with Eg at ˜10.5 ± 0.2% Bi. We also conclude that the conduction/valence band alignment of dilute-Bi GaBiAs on GaAs is most likely to be type-I.

  15. S-band accelerating structures for the PAL-XFEL

    NASA Astrophysics Data System (ADS)

    Lee, Heung-Soo; Park, Young Jung; Joo, Young-Do; Heo, Hoon; Heo, Jinyul; Kim, Sang-Hee; Park, Soung-Soo; Hwang, Woon Ha; Kang, Heung-Sik; Kim, Kwang-woo; Ko, In-Soo; Oh, Kyoung-Min; Noh, Sung-Joo; Bak, Yong Hwan; Matsumoto, Hiroshi

    2015-02-01

    One hundred seventy-two accelerating structures are required for the Pohang Accelerator Laboratory X-ray free-electron laser's (PAL-XFEL's) 10-GeV main linear accelerator. So far, we have purchased 80 structures from Mitsubishi Heavy Industry (MHI), which have quasi-symmetric couplers in the accelerating structure to reduce the quadruple and the sextuple components of the electric field in the coupling cavity. High-power tests have been conducted for the first structure of the MHI structure, and Research Instruments (RI) has developed a 3-m long accelerating structure that has an operating frequency of 2856 MHz and in/out couplers of quasi-symmetric racetrack shape for the PAL-XFEL linear accelerator. This structure also has been tested by PAL and RI in the Pohang accelerator laboratory (PAL) to check the maximum available electric field gradient. We will describe the test results of these structures and the current status for the fabrication of the other accelerating structures in this paper.

  16. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    SciTech Connect

    Zhu, Hong; Sun, Wenhao; Ceder, Gerbrand; Armiento, Rickard; Lazic, Predrag

    2014-02-24

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carriers in bulk crystalline semiconductors. The proposed mechanism of orbital interaction on band structure is demonstrated for IV-VI thermoelectric semiconductors. For IV-VI materials, we find that the convergence of multiple carrier pockets not only displays a strong correlation with the s-p and spin-orbit coupling but also coincides with the enhancement of power factor. Our results suggest a useful path to engineer the band structure and an enticing solid-solution design principle to enhance thermoelectric performance.

  17. Band structure and thermopower of doped YCuO2

    SciTech Connect

    Singh, David J

    2008-01-01

    First-principles calculations and Boltzmann transport theory are used to analyze the thermopower and related properties of p-type delafossite structure YCuO{sub 2}. We find that the electrical transport properties are only mildly anisotropic in spite of the layered crystal structure and that this compound has high thermopowers indicative of a material that may be a good thermoelectric.

  18. Effect of band structure on the hot-electron transfer over Au photosensitized brookite TiO2.

    PubMed

    Zhao, Ming; Xu, Hua; Ouyang, Shuxin; Li, Dewang; Meng, Xianguang; Ye, Jinhua

    2016-02-01

    Au photosensitization can endow TiO2 visible-light-driven photocatalytic properties. Herein, via facet-optimized brookite TiO2 with tunable electronic band structures as the substrate, we found that intense visible light excitation of Au will result in the accumulation of hot-electrons, which will negatively shift the EF of Au and lower the Schottky barrier, thus ensuring their consecutive injections into the CB of TiO2; in this case, hot-electrons with more reduction potential will lead to superior photocatalytic activity. PMID:26784860

  19. Theoretical Analysis on the Band Structure Variance of the Electron Doped 1111 Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Usui, H.; Iimura, S.; Sato, Y.; Matsuishi, S.; Hosono, H.; Kuroki, K.

    We perform first principles band calculation of electron doped iron-based superconductors adopting the virtual crystal approximation. We find that when electrons are doped by element substitution in the blocking layer, the band structure near the Fermi level is affected due to the increase of the positive charge in the layer. On the other hand, when Fe in the conducting layer is substituted by Co, the band structure is barely affected. This difference should be a key factor in understanding the phase diagram of the heavily doped electron doped systems LnFeAsO1-xHx.

  20. Band structure of hydrogenated silicene on Ag(111): Evidence for half-silicane

    NASA Astrophysics Data System (ADS)

    Wang, W.; Olovsson, W.; Uhrberg, R. I. G.

    2016-02-01

    In the case of graphene, hydrogenation removes the conductivity due to the bands forming the Dirac cone by opening up a band gap. This type of chemical functionalization is of the utmost importance for electronic applications. As predicted by theoretical studies, a similar change in the band structure is expected for silicene, the closest analog to graphene. We here report a study of the atomic and electronic structures of hydrogenated silicene with hydrogen on one side, the so-called half-silicane. The ("2 √{3 }×2 √{3 } ") phase of silicene on Ag(111) was used in this Rapid Communication since it can be formed homogeneously across the entire surface of the Ag substrate. Low-energy electron diffraction and scanning tunneling microscopy data clearly show that hydrogenation changes the structure of silicene on Ag(111) resulting in a (1 × 1) periodicity with respect to the silicene lattice. The hydrogenated silicene also exhibits a quasiregular (2 √{3 }×2 √{3 } )-like arrangement of vacancies. Angle-resolved photoelectron spectroscopy revealed two dispersive bands which can be unambiguously assigned to half-silicane. The common top of these bands is located at ˜0.9 eV below the Fermi level. We find that the experimental bands are closely reproduced by the theoretical band structure of free-standing silicene with H adsorbed on the upper hexagonal sublattice.

  1. Spatially resolved methane band photometry of Jupiter. III - Cloud vertical structures for several axisymmetric bands and the Great Red Spot

    SciTech Connect

    West, R.A.; Tomasko, M.G.

    1980-02-01

    The paper presents cloud structure models for Jupiter's Great Red Spot, Equatorial and North Tropical Zones, North and South Temperate Zones, and North and South Polar Regions. The models are based on images of Jupiter in three methane bands and nearby continuum radiative transfer calculations include multiple scattering and absorption from three aerosol layers. The model results include the transition in the upper-cloud altitude to 3 km lower altitude from the tropical zones to temperate zones and polar regions, a N/S asymmetry in cloud thickness in the tropical and temperature zones, and the presence of aerosols up to about 0.3 bar in the Great Red Spot and Equatorial Zone. It is concluded that polarization data are sensitive to aerosols in and above the upper cloud layer but insensitive to deeper cloud structure.

  2. Spatially resolved methane band photometry of Jupiter. III - Cloud vertical structures for several axisymmetric bands and the Great Red Spot

    NASA Technical Reports Server (NTRS)

    West, R. A.; Tomasko, M. G.

    1980-01-01

    The paper presents cloud structure models for Jupiter's Great Red Spot, Equatorial and North Tropical Zones, North and South Temperate Zones, and North and South Polar Regions. The models are based on images of Jupiter in three methane bands and nearby continuum; radiative transfer calculations include multiple scattering and absorption from three aerosol layers. The model results include the transition in the upper-cloud altitude to 3 km lower altitude from the tropical zones to temperate zones and polar regions, a N/S asymmetry in cloud thickness in the tropical and temperature zones, and the presence of aerosols up to about 0.3 bar in the Great Red Spot and Equatorial Zone. It is concluded that polarization data are sensitive to aerosols in and above the upper cloud layer but insensitive to deeper cloud structure.

  3. The band structure of birefractive CdGa2S4 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Parvan, V. I.; Zalamai, V. V.; Tiginyanu, I. M.

    2013-11-01

    In this paper, we report on the spectral dependence of Δn=no-ne for CdGa2S4 single crystals for shorter and longer wavelengths than the isotropic wavelength λ0=485.7 nm (300 K). It was established that Δn is positive at λ>λ0 and it is negative in the spectral range λ<λ0. The isotropic wavelength λ0 exhibits blue spectral shift with temperature decreasing. The ground and excited states of three excitonic series A, B and C with binding energies of 53 meV, 52 meV and 46 meV, respectively, were found out at 10 K. The effective masses of electrons for k=0 were derived from the calculation of excitonic spectra: mc∥(Е∥с)=0.21m0 and mc⊥(Е⊥с)=0.19m0. The holes masses are equal to 0.59m0 and 0.71m0 for Е∥с and Е⊥с, respectively. The value of valence bands splitting, V1-V2, by crystalline field equals 24 meV, and V2-V3 splitting due to the spin-orbital interaction equals to 130 meV. The optical functions n, k, ε1 and ε2 for Е⊥с and Е∥с polarizations were calculated by means of Kramers-Kronig analyses in the energy interval 3-6 eV. The evidenced features are discussed taking into account the results of new theoretical calculations of CdGa2S4 band structure.

  4. Delta I = 1 staggering effect for negative parity rotational bands with K = 1/2 in W/Os/Pt odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Taha, M. M.

    2015-11-01

    The anomalous negative-parity bands of odd-mass nuclei W/Os/Pt for N = 103 isotones are studied within the framework of particle rotor model (PRM). The phenomenon of Δ I = 1 staggering or signature splitting in energies occurs as one plots the gamma transitional energy over spin (EGOS) versus spin for the 1/2-[521] band originating from N = 5 single particle orbital. The rotational band with K = 1/2 separates into two signature partners. The levels with I = 1/2, 5/2, 9/2,… are displaced relatively to the levels with I = 3/2,7/2,11/2,…. The deviations of the level energies from the rigid rotor values is described by Coriolis coupling.

  5. Functional topography of band 3: specific structural alteration linked to function aberrations in human erythrocytes

    SciTech Connect

    Kay, M.M.B.; Bosman, G.J.C.G.M.; Lawrence, C.

    1988-01-01

    Band 3 is the major anion transport polypeptide of erythrocytes. It appears to be the binding site of several glycolytic enzymes. Structurally, band 3 is the major protein spanning the erythrocyte membrane and connects the plasma membrane to band 2.1, which binds to the cytoskeleton. In the present study, the authors report an alteration of band 3 molecule that is associated with the following changes: erythrocyte shape change from discoid to thorny cells (acanthocytes), restriction of rotational diffusion of band 3 in the membrane, increase in anion transport, and decrease in the number of high-affinity ankyrin-binding sites. Changes in erythrocyte IgG binding, glyceraldehyde-3-phosphate dehydrogenase, fluorescence polarization (indicative of membrane fluidity), and other membrane proteins as determined by polyacrylamide gel electrophoresis were not detected. Cells containing the altered band 3 polypeptide were obtained from individuals with abnormal erythrocyte morphology. Two-dimensional peptide maps revealed differences in the M/sub r/ 17,000 anion transport segment of band 3 consistent with additions of tyrosines or tyrosine-containing peptides. The data suggest that (i) this alteration of band 3 does not result in accelerated aging as does cleavage and (ii) structural changes in the anion transport region result in alterations in anion transport.

  6. Fine structure of the red luminescence band in undoped GaN

    SciTech Connect

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RL band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.

  7. Tuning two-dimensional band structure of Cu(111) surface-state electrons that interplay with artificial supramolecular architectures

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Wang, Weihua; Tan, Liang Z.; Li, Xing Guang; Shi, Zilang; Kuang, Guowen; Liu, Pei Nian; Louie, Steven G.; Lin, Nian

    2013-12-01

    We report on the modulation of two-dimensional (2D) bands of Cu(111) surface-state electrons by three isostructural supramolecular honeycomb architectures with different periodicity or constituent molecules. Using Fourier-transformed scanning tunneling spectroscopy and model calculations, we resolved the 2D band structures and found that the intrinsic surface-state band is split into discrete bands. The band characteristics including band gap, band bottom, and bandwidth are controlled by the network unit cell size and the nature of the molecule-surface interaction. In particular, Dirac cones emerge where the second and third bands meet at the K points of the Brillouin zone of the supramolecular lattice.

  8. Energy loss of ions at metal surfaces: Band-structure effects

    SciTech Connect

    Alducin, M.; Silkin, V.M.; Juaristi, J.I.; Chulkov, E.V.

    2003-03-01

    We study band-structure effects on the energy loss of protons scattered off the Cu (111) surface. The distance dependent stopping power for a projectile traveling parallel to the surface is calculated within the linear response theory. The self-consistent electronic response of the system is evaluated within the random-phase approximation. In order to characterize the surface band structure, the electronic single-particle wave functions and energies are obtained by solving the Schroedinger equation with a realistic one-dimensional model potential. This potential reproduces the main features of the Cu (111) surface: the energy band gap for electron motion along the surface normal, as well as the binding energy of the occupied surface state and the first image state. Comparison of our results with those obtained within the jellium model allows us to characterize the band-structure effects in the energy loss of protons interacting with the Cu (111) surface.

  9. Electron microscopy and x-ray diffraction evidence for two Z-band structural states.

    PubMed

    Perz-Edwards, Robert J; Reedy, Michael K

    2011-08-01

    In vertebrate muscles, Z-bands connect adjacent sarcomeres, incorporate several cell signaling proteins, and may act as strain sensors. Previous electron microscopy (EM) showed Z-bands reversibly switch between a relaxed, "small-square" structure, and an active, "basketweave" structure, but the mechanism of this transition is unknown. Here, we found the ratio of small-square to basketweave in relaxed rabbit psoas muscle varied with temperature, osmotic pressure, or ionic strength, independent of activation. By EM, the A-band and both Z-band lattice spacings varied with temperature and pressure, not ionic strength; however, the basketweave spacing was consistently 10% larger than small-square. We next sought evidence for the two Z-band structures in unfixed muscles using x-ray diffraction, which indicated two Z-reflections whose intensity ratios and spacings correspond closely to the EM measurements for small-square and basketweave if the EM spacings are adjusted for 20% shrinkage due to EM processing. We conclude that the two Z-reflections arise from the small-square and basketweave forms of the Z-band as seen by EM. Regarding the mechanism of transition during activation, the effects of Ca(2+) in the presence of force inhibitors suggested that the interconversion of Z-band forms was correlated with tropomyosin movement on actin. PMID:21806939

  10. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  11. Electronic band structure and effective mass parameters of Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Lu Low, Kain; Yang, Yue; Han, Genquan; Fan, Weijun; Yeo, Yee-Chia

    2012-11-01

    This work investigates the electronic band structures of bulk Ge1-xSnx alloys using the empirical pseudopotential method (EPM) for Sn composition x varying from 0 to 0.2. The adjustable form factors of EPM were tuned in order to reproduce the band features that agree well with the reported experimental data. Based on the adjusted pseudopotential form factors, the band structures of Ge1-xSnx alloys were calculated along high symmetry lines in the Brillouin zone. The effective masses at the band edges were extracted by using a parabolic line fit. The bowing parameters of hole and electron effective masses were then derived by fitting the effective mass at different Sn compositions by a quadratic polynomial. The hole and electron effective mass were examined for bulk Ge1-xSnx alloys along specific directions or orientations on various crystal planes. In addition, employing the effective-mass Hamiltonian for diamond semiconductor, band edge dispersion at the Γ-point calculated by 8-band k.p. method was fitted to that obtained from EPM approach. The Luttinger-like parameters were also derived for Ge1-xSnx alloys. They were obtained by adjusting the effective-mass parameters of k.p method to fit the k.p band structure to that of the EPM. These effective masses and derived Luttinger parameters are useful for the design of optical and electronic devices based on Ge1-xSnx alloys.

  12. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  13. Fine-structure enhancement — assessment of a simple method to resolve overlapping bands in spectra

    NASA Astrophysics Data System (ADS)

    Barth, Andreas

    2000-05-01

    A simple mathematical procedure — fine-structure enhancement — has been assessed on its ability to resolve overlapping bands in spectra. Its advantages and limitations have been explored using synthetic and experimental spectra. Fine-structure enhancement involves smoothing the original spectrum, multiplying the smoothed spectrum with a weighting factor and subtracting this spectrum from the original spectrum. As a result, the fine-structure of the original spectrum is enhanced in the processed spectrum and bands that overlap in the original spectrum appear as distinct bands in the processed spectrum. To be resolved by fine-structure enhancement, Lorentzian lines have to be separated by more than their quarter width at half maximum, Gaussian lines by more than their half width at half maximum. A comparison of fine-structure enhancement and Fourier self-deconvolution shows that Fourier self-deconvolution has in theory a higher potential to resolve overlapping bands. However, this depends crucially on the correct choice of the parameters. In practice, when parameters commonly used are chosen for Fourier self-deconvolution, fine-structure enhancement leads to similar results. This is demonstrated at the example of the infrared absorbance spectrum of the protein papain, where the amide I band components could be resolved similarly with both methods. Thus, fine-structure enhancement seems to be a simple alternative to Fourier self-deconvolution that does not require specialised software.

  14. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  15. Superlattice band structure: New and simple energy quantification condition

    NASA Astrophysics Data System (ADS)

    Maiz, F.

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga0.5Al0.5As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  16. Band structure of solids from clusters SCF potentials

    SciTech Connect

    Nour, S.; Chermette, H.

    1995-01-05

    The possibilities and limits of the molecular orbital theory to deal with the problem of determining electronic structure of solids have been explored. A cluster model based on the charge neutrality in the solid has been used in test calculations on some III-V semiconductors and have given quite satisfactory results. Recommendations are given to widen the field of applications of this procedure. 33 refs., 5 figs., 2 tabs.

  17. Relationships between magnetic foot points and G-band bright structures

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Tsuneta, S.; Kitakoshi, Y.; Katsukawa, Y.; Bonet, J. A.; Vargas Domínguez, S.; Rouppe van der Voort, L. H. M.; Sakamoto, Y.; Ebisuzaki, T.

    2007-09-01

    Aims:Magnetic elements are thought to be described by flux tube models, and are well reproduced by MHD simulations. However, these simulations are only partially constrained by observations. We observationally investigate the relationship between G-band bright points and magnetic structures to clarify conditions, which make magnetic structures bright in G-band. Methods: The G-band filtergrams together with magnetograms and dopplergrams were taken for a plage region covered by abnormal granules as well as ubiquitous G-band bright points, using the Swedish 1-m Solar Telescope (SST) under very good seeing conditions. Results: High magnetic flux density regions are not necessarily associated with G-band bright points. We refer to the observed extended areas with high magnetic flux density as magnetic islands to separate them from magnetic elements. We discover that G-band bright points tend to be located near the boundary of such magnetic islands. The concentration of G-band bright points decreases with inward distance from the boundary of the magnetic islands. Moreover, G-band bright points are preferentially located where magnetic flux density is higher, given the same distance from the boundary. There are some bright points located far inside the magnetic islands. Such bright points have higher minimum magnetic flux density at the larger inward distance from the boundary. Convective velocity is apparently reduced for such high magnetic flux density regions regardless of whether they are populated by G-band bright points or not. The magnetic islands are surrounded by downflows. Conclusions: These results suggest that high magnetic flux density, as well as efficient heat transport from the sides or beneath, are required to make magnetic elements bright in G-band.

  18. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  19. Valence band structure of the icosahedral Ag-In-Yb quasicrystal

    SciTech Connect

    Sharma, H. R.; Simutis, G.; Dhanak, V. R.; Nugent, P. J.; McGrath, R.; Cui, C.; Shimoda, M.; Tsai, A. P.; Ishii, Y.

    2010-03-01

    The valence band structure of the icosahedral (i) Ag-In-Yb quasicrystal, which is isostructural to the binary i-Cd-Yb system, is investigated by ultraviolet photoemission spectroscopy (UPS). Experimental results are compared with electronic-structure calculations of a cubic approximant of the same phase. UPS spectra from the fivefold, threefold, and twofold i-Ag-In-Yb surfaces reveal that the valence band near to the Fermi level is dominated by Yb 4f-derived states, in agreement with calculations. The spectra also exhibit peaks which are surface core level shifted, caused by changes in the electronic structure in surface layers. Calculations yield a pseudogap in the density of states due to a hybridization of the Yb 5d band with the Ag 5p and In 5p bands. Both experimental and calculated band features are very similar to those of Cd-Yb. The modification of the band structure after surface treatment by sputtering and by oxidation is also studied. Additionally, the work function of i-Ag-In-Yb measured from the width of UPS spectrum is found to be almost unaffected by surface orientation, but increases after sputtering or oxidation.

  20. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    PubMed

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications. PMID:25075939

  1. Structure sensitive bands in the vibrational spectra of metal complexes of tetraphenylporphine

    NASA Astrophysics Data System (ADS)

    Oshio, Hiroki; Ama, Tomoharu; Watanabe, Takeshi; Kincaid, James; Nakamoto, Kazuo

    The i.r. and RR spectra of twenty Fe(TPP)LL' type complexes have been measured to locate structure-sensitive bands. In i.r. spectra, band I (1350-1330 cm -1) and band III (469-432 cm -1) are spin-state sensitive whereas band II (806-790 cm -1) is oxidation-state sensitive and slightly spin-state sensitive in the Fe(II) state. To examine the nature of these bands, the i.r. spectra of Co(TPP), (Fe(TPP)) 2O and their d8 and d20 analogs have been measured, and empirical assignments proposed. In RR spectra, band C (1545-1498 cm -1, ap) and band D (1565-1540 cm -1, p) are spin-state sensitive whereas band E (391-376 cm -1, p) is sensitive to both spin and oxidation states. These results on RR spectra are in good agreement with those of previous workers.

  2. Band structure of silicene in the tight binding approximation

    SciTech Connect

    Gert, A. V. Nestoklon, M. O.; Yassievich, I. N.

    2015-07-15

    The electronic structure of silicene is simulated by the tight binding method with the basis sp{sup 3}d{sup 5}s*. The results are in good agreement with ab initio calculations. The effective Hamiltonian of silicene in the vicinity of the Dirac point is constructed by the method of invariants. Silicon atoms in silicene are located in two parallel planes displaced perpendicularly to each other by Δ{sub z}; the energy spectrum essentially depends on this displacement. Using the tight binding technique, the coefficients of the effective Hamiltonian are determined for various values of Δ{sub z}.

  3. Electronic- and band-structure evolution in low-doped (Ga,Mn)As

    SciTech Connect

    Yastrubchak, O.; Gluba, L.; Żuk, J.; Sadowski, J.; MAX-Lab, Lund University, 22100 Lund ; Krzyżanowska, H.; Department of Physics and Astronomy, Vanderbilt University, 6506 Stevenson Center, Nashville, Tennessee 37325 ; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2013-08-07

    Modulation photoreflectance spectroscopy and Raman spectroscopy have been applied to study the electronic- and band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn doping in the range of low Mn content, up to 1.2%. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap-transition energy with increasing Mn content in very low-doped (Ga,Mn)As layers with n-type conductivity are interpreted as a result of merging the Mn-related impurity band with the host GaAs valence band. On the other hand, an increase in the band-gap-transition energy with increasing Mn content in (Ga,Mn)As layers with higher Mn content and p-type conductivity indicates the Moss-Burstein shift of the absorption edge due to the Fermi level location within the valence band, determined by the free-hole concentration. The experimental results are consistent with the valence-band origin of mobile holes mediating ferromagnetic ordering in the (Ga,Mn)As diluted ferromagnetic semiconductor.

  4. Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors

    NASA Astrophysics Data System (ADS)

    Tas, M.; Şaşıoǧlu, E.; Galanakis, I.; Friedrich, C.; Blügel, S.

    2016-05-01

    Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the G W approximation within the framework of the FLAPW method, we study the quasiparticle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the s p -electron based semiconductors such as Si and GaAs, in these systems, the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2 eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the s p -chemical element.

  5. Band-Structure Engineering of Gold Atomic Wires on Silicon by Controlled Doping

    NASA Astrophysics Data System (ADS)

    Choi, Won Hoon; Kang, Pil Gyu; Ryang, Kyung Deuk; Yeom, Han Woong

    2008-03-01

    We report on the systematic tuning of the electronic band structure of atomic wires by controlling the density of impurity atoms. The atomic wires are self-assembled on Si(111) by substitutional gold adsorbates and extra silicon atoms are deposited as the impurity dopants. The one-dimensional electronic band of gold atomic wires, measured by angle-resolved photoemission, changes from a fully metallic to semiconducting one with its band gap increasing above 0.3 eV along with an energy shift as a linear function of the Si dopant density. The gap opening mechanism is suggested to be related to the ordering of the impurities.

  6. Two-zone heterogeneous structure within shear bands of a bulk metallic glass

    SciTech Connect

    Shao, Yang; Yao, Kefu; Liu, Xue; Li, Mo

    2013-10-21

    Shear bands, the main plastic strain carrier in metallic glasses, are severely deformed regions often considered as disordered and featureless. Here we report the observations of a sandwich-like heterogeneous structure inside shear bands in Pd{sub 40.5}Ni{sub 40.5}P{sub 19} metallic glass sample after plastic deformation by high-resolution transmission electron microscopy. The experimental results suggest a two-step plastic deformation mechanism with corresponding microstructure evolution at atomic scale, which may intimately connected to the stability of the shear band propagation and the overall plastic deformability.

  7. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    NASA Astrophysics Data System (ADS)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  8. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    SciTech Connect

    Hossain, Nadir; Sweeney, Stephen; Hosea, Jeff; Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang; Kunert, Bernerdette

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  9. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  10. Band structure analysis of (1 × 2)-H/Pd(110)-pr

    NASA Astrophysics Data System (ADS)

    Shuttleworth, I. G.

    2013-09-01

    A novel method of band structure analysis based on the atomic orbital (AO) coefficients in LCAO-DFT has been applied to the (1 × 2)-H/Pd(110)-pr system. The analysis has revealed symmetry-dependent Pd 4d band splitting due to H ligand effects; ensemble effects due to the (1 × 2) Pd reconstruction are shown to be relatively minor.

  11. Predicted band structures of III-V semiconductors in the wurtzite phase

    SciTech Connect

    De, A.; Pryor, Craig E.

    2010-04-15

    While non-nitride III-V semiconductors typically have a zinc-blende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier ab initio calculations, and where experimental results are available (InP, InAs, and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may facilitate the development of spin-based devices.

  12. Coexisting Honeycomb and Kagome Characteristics in the Electronic Band Structure of Molecular Graphene.

    PubMed

    Paavilainen, Sami; Ropo, Matti; Nieminen, Jouko; Akola, Jaakko; Räsänen, Esa

    2016-06-01

    We uncover the electronic structure of molecular graphene produced by adsorbed CO molecules on a copper (111) surface by means of first-principles calculations. Our results show that the band structure is fundamentally different from that of conventional graphene, and the unique features of the electronic states arise from coexisting honeycomb and Kagome symmetries. Furthermore, the Dirac cone does not appear at the K-point but at the Γ-point in the reciprocal space and is accompanied by a third, almost flat band. Calculations of the surface structure with Kekulé distortion show a gap opening at the Dirac point in agreement with experiments. Simple tight-binding models are used to support the first-principles results and to explain the physical characteristics behind the electronic band structures. PMID:27176628

  13. Observation of Nonlinear Looped Band Structure of Bose-Einstein condensates in an optical lattice

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Elizabeth; Koller, Silvio; Brown, Roger; Wyllie, Robert; Wilson, Ryan; Porto, Trey

    2016-05-01

    We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce ``swallow-tail'' looped band structure. By carefully preparing different initial coherent states and observing their subsequent decay, we observe distinct decay rates, which provide direct evidence for multi-valued band structure. The double well lattice both stabilizes the looped band structure and allows for dynamic preparation of different initial states, including states within the loop structure. We confirm our state preparation procedure with dynamic Gross-Pitaevskii calculations. The excited loop states are found to be more stable than dynamically unstable ground states, but decay faster than expected based on a mean-field stability calculation, indicating the importance of correlations beyond a mean-field description. Now at Georgia Tech Research Institute.

  14. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    NASA Astrophysics Data System (ADS)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-01

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  15. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    SciTech Connect

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  16. Research on the large band gaps in multilayer radial phononic crystal structure

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Guan, Dong

    2016-04-01

    In this paper, we study the band gaps (BGs) of new proposed radial phononic crystal (RPC) structure composed of multilayer sections. The band structure, transmission spectra and eigenmode displacement fields of the multilayer RPC are calculated by using finite element method (FEM). Due to the vibration coupling effects between thin circular plate and intermediate mass, the RPC structure can exhibit large BGs, which can be effectively shifted by changing the different geometry values. This study shows that multilayer RPC can unfold larger and lower BGs than traditional phononic crystals (PCs) and RPC can be composed of single material.

  17. The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation

    NASA Astrophysics Data System (ADS)

    Dolgos, Michelle R.; Paraskos, Alexandra M.; Stoltzfus, Matthew W.; Yarnell, Samantha C.; Woodward, Patrick M.

    2009-07-01

    The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9-1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d-O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( Eg=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1-xBi xVO 4 (0≤ x≤0.5) and Ce 1-xY xVO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals.

  18. Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures.

    PubMed

    Liu, Feng; Zhan, Tianrong; Zhu, Alexander Y; Yi, Fei; Shi, Wangzhou

    2016-01-25

    We theoretically investigate the polaritonic band structure and dispersion properties of graphene using transfer matrix methods, with strongly coupled graphene plasmons (GPs) and molecular infrared vibrations as a representative example. Two common geometrical configurations are considered: graphene coupled subwavelength dielectric grating (GSWDG) and graphene nanoribbons (GNR). By exploiting the dispersion and the band structure, we show the possibility of tailoring desired polaritonic behavior in each of the two configurations. We compare the strength of coupling occurring in both structures and find that the interaction is stronger in GNR than that of GSWDG structure as a result of the stronger field confinement of the edge modes. The band structure and dispersion analysis not only sheds light on the physics of the hybridized polariton formation but also offers insight into tailoring the optical response of graphene light-matter interactions for numerous applications, such as biomolecular sensing and detection. PMID:26832528

  19. Band structure of the quasi two-dimensional purple molybdenum bronze

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.

    2006-09-01

    The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.

  20. The structure of the stable negative ion of calcium

    SciTech Connect

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    The structure of the Ca/sup /minus// ion has been determined using a crossed laser-ion beams apparatus. The photoelectron detachment spectrum shows that, contrary to earlier expectations, the Ca/sup /minus// ion is stably bound in the (4s/sup 2/4p)/sup 2/p state. The electron affinity of Ca was measured to be 0.043 /sup + -/ 0.007 eV.

  1. Electron-Phonon Renormalization of Electronic Band Structures of C Allotropes and BN Polymorphs

    NASA Astrophysics Data System (ADS)

    Tutchton, Roxanne M.; Marchbanks, Christopher; Wu, Zhigang

    The effect of lattice vibration on electronic band structures has been mostly neglected in first-principles calculations because the electron-phonon (e-ph) renormalization of quasi-particle energies is often small (< 100 meV). However, in certain materials, such as diamond, the electron-phonon coupling reduces the band gap by nearly 0.5 eV, which is comparable to the many-body corrections of the electronic band structures calculated using the density functional theory (DFT). In this work, we compared two implementations of the Allen-Heine-Cardona theory in the EPW code and the ABINIT package respectively. Our computations of Si and diamond demonstrate that the ABINIT implementation converges much faster. Using this method, the e-ph renormalizations of electronic structures of three C allotropes (diamond, graphite, graphene) and four BN polymorphs (zincblend, wurtzite, mono-layer, and layered-hexagonal) were calculated. Our results suggest that (1) all of the zero-point renormalizations of band gaps in these materials, except for graphene, are larger than 100 meV, and (2) there are large variations in e-ph renormalization of band gaps due to differences in crystal structure. This work was supported by a U.S. DOE Early Career Award (Grant No. DE-SC0006433). Computations were carried out at the Golden Energy Computing Organization at CSM and the National Energy Research Scientific Computing Center (NERSC).

  2. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  3. Band structures of nonmagnetic transition-metal oxides: PdO and PtO

    SciTech Connect

    Hass, K.C. ); Carlsson, A.E. )

    1992-08-15

    The electronic band structures of PdO and PtO are calculated using the augmented-spherical-wave method and the local-density approximation. Our results are consistent with the widely held view of these materials as conventional band insulators with the crystal-field splitting of metal {ital d} states primarily responsible for gap formation. A significant role for correlation effects as well cannot be ruled out. The predicted valence-band structure for PdO agrees well with published photoemission data. The electronic structure of PtO is qualitatively similar. In both cases the calculated gap is direct and occurs at the {ital M} point of the Brillouin zone. The magnitude of the gap is found to be larger in PtO, which we attribute to the more relativistic nature of Pt compared to Pd.

  4. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    NASA Astrophysics Data System (ADS)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  5. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGESBeta

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; Hozumi, Hideaki; Gao, Yongqian; Eda, Goki; Mattevi, Cecilia; Fujita, Takeshi; Yoshigoe, Akitaka; Ishizuka, Shinji; et al

    2016-04-08

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  6. First-principle electronic structure calculations for magnetic moment in iron-based superconductors: An LSDA + negative U study

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Hayashi, N.; Nakai, N.; Okumura, M.; Machida, M.

    2009-10-01

    screening is unusual, e.g., an overscreening occurs, the estimation of U may not simply give a positive value. In this paper, we explain why the negative U correction successfully works on these iron-based compounds. We would like to suggest that a situation, in which the on-site intra-band U becomes smaller than the inter-band U‧, emerges in these compounds. Such a situation is peculiar to multi-band cases and leads to an effective intra-band attraction. Moreover, the situation can create a full-gap Cooper pair, which is consistent with several observations. The contents of this paper are as follows. Section 2 briefly explains the calculation framework and gives U dependences of the magnetic moment for two cases, i.e., the mother and doped compounds. In addition, we compare the Fermi-surfaces between U=0 and U=-1. In Section 3, we discuss unique features of the electronic structure in iron-based superconductors and explain which type of situation requires the negative U correction.

  7. Electronic structure of graphene on a reconstructed Pt(100) surface: Hydrogen adsorption, doping, and band gaps

    NASA Astrophysics Data System (ADS)

    Ulstrup, Søren; Nilsson, Louis; Miwa, Jill A.; Balog, Richard; Bianchi, Marco; Hornekær, Liv; Hofmann, Philip

    2013-09-01

    We probe the structure and electronic band structure of graphene grown on a Pt(100) substrate using scanning tunneling microscopy, low energy electron diffraction, and angle-resolved photoemission spectroscopy. It is found that the graphene layer lacks a well-defined azimuthal orientation with respect to the substrate, causing a circular smearing of the π band instead of a well-defined Dirac cone near the Fermi level. The graphene is found to be electron doped placing the Dirac point ˜0.45 eV below the Fermi level, and a gap of 0.15±0.03 eV is found at the Dirac point. We dose atomic hydrogen and monitor the coverage on the graphene by analyzing the impurity-induced broadening of the π-band width. Saturation of graphene on Pt(100) with hydrogen does not expand the band gap, but instead hydrogen-mediated broadening and rehybridization of the graphene sp2 bonds into sp3 leads to a complete disruption of the graphene π band, induces a lifting of the Pt(100) reconstruction, and introduces a dispersing Pt state near the Fermi level. Deposition of rubidium on graphene on Pt(100) leads to further electron doping, pushing the Dirac point to a binding energy of ˜1.35 eV, and increasing the band gap to 0.65±0.04 eV.

  8. Band structure tunability in MoS2 under interlayer compression: A DFT and GW study

    NASA Astrophysics Data System (ADS)

    Espejo, C.; Rangel, T.; Romero, A. H.; Gonze, X.; Rignanese, G.-M.

    2013-06-01

    The electronic band structures of MoS2 monolayer and 2H1 bulk polytype are studied within density-functional theory (DFT) and many-body perturbation theory (GW approximation). Interlayer van der Waals (vdW) interactions, responsible for bulk binding, are calculated with the postprocessing Wannier functions method. From both fat bands and Wannier functions analysis, it is shown that the transition from a direct band gap in the monolayer to an indirect band gap in bilayer or bulk systems is triggered by medium- to short-range electronic interactions between adjacent layers, which arise at the equilibrium interlayer distance determined by the balance between vdW attraction and exchange repulsion. The semiconductor-to-semimetal (S-SM) transition is found from both theoretical methods: around c=10.7 Å and c=9.9 Å for DFT and GW, respectively. A metallic transition is also observed for the interlayer distance c=9.7 Å. Dirac conelike band structures and linear bands near Fermi level are found for shorter c lattice parameter values. The VdW correction to total energy was used to estimate the pressure at which S-SM transition takes place from a fitting to a model equation of state.

  9. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    SciTech Connect

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

  10. Band Structure of Helimagnons in MnSi Resolved by Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kugler, M.; Brandl, G.; Waizner, J.; Janoschek, M.; Georgii, R.; Bauer, A.; Seemann, K.; Rosch, A.; Pfleiderer, C.; Böni, P.; Garst, M.

    2015-08-01

    A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh . Its spin-wave excitations—the helimagnons—experience Bragg scattering off this periodicity, leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering, the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.

  11. Transient band structures in the ultrafast demagnetization of ferromagnetic gadolinium and terbium

    NASA Astrophysics Data System (ADS)

    Teichmann, Martin; Frietsch, Björn; Döbrich, Kristian; Carley, Robert; Weinelt, Martin

    2015-01-01

    We compare the laser-driven demagnetization dynamics of the rare earths gadolinium and terbium by mapping their transient valance band structures with time- and angle-resolved photoelectron spectroscopy. In both metals, the minority and majority spin valence bands evolve independently with different time constants after optical excitation. The ultrafast shift of the partially unoccupied minority spin bulk band to higher binding energy and of the majority spin surface state to lower binding energy suggests spin transport between surface and bulk. The slower response of the fully occupied majority spin band follows the lattice temperature and is attributed to Elliott-Yafet type spin-flip scattering. Terbium shows a stronger and faster decay of the exchange splitting, pointing to ultrafast magnon emission via 4 f spin-to-lattice coupling.

  12. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    SciTech Connect

    Srinet, Gunjan Kumar, Ravindra Sajal, Vivek

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  13. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  14. Enlarged band gap and electron switch in graphene-based step-barrier structure

    SciTech Connect

    Lu, Wei-Tao Ye, Cheng-Zhi; Li, Wen

    2013-11-04

    We study the transmission through a step-barrier in gapped graphene and propose a method to enlarge the band gap. The step-barrier structure consists of two or more barriers with different strengths. It is found that the band gap could be effectively enlarged and controlled by adjusting the barrier strengths in the light of the mass term. Klein tunneling at oblique incidence is suppressed due to the asymmetry of step-barrier, contrary to the cases in single-barrier and superlattices. Furthermore, a tunable conductance channel could be opened up in the conductance gap, suggesting an application of the structure as an electron switch.

  15. Complex band structure with ultrasoft pseudopotentials: fcc Ni and Ni nanowire

    NASA Astrophysics Data System (ADS)

    Smogunov, Alexander; Dal Corso, Andrea; Tosatti, Erio

    2003-06-01

    We generalize to magnetic transition metals the approach proposed by Choi and Ihm for calculating the complex band structure of periodic systems, a key ingredient for future calculations of conductivity of an open quantum system within the Landauer-Buttiker theory. The method is implemented with ultrasoft pseudopotentials and plane wave basis set in a DFT-LSDA ab initio scheme. As a first example, we present the complex band structure of bulk fcc Ni (which constitutes the tips of a Ni nanocontact) and monatomic Ni wire (the junction between two tips). Based on our results, we anticipate some features of the spin-dependent conductance in a Ni nanocontact.

  16. Dependence of the band structure of C-60 monolayers on molecularorientations and doping observed by angle resolved photoemission

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Shen, Z.X.

    2008-01-17

    We present angle resolved photoemission studies of C60monolayers deposited on Ag surfaces. The electronic structure of thesemonolayers is derived from the partial filling of the narrow, 6-folddegenerated, C60 conduction band. By comparing the band structure in twomonolayers deposited, respectively, on Ag(111) and Ag(100), we show thatthe molecular degree of freedom, in this case the relative orientationsbetween C60 molecules, is essential to describe the band structure. Wefurther show that the evolution of the band as a function of doping doesnot follow a rigid band-filling picture. Phase separation is observedbetween a metallic and an insulating phase, which might be a result ofstrong correlations.

  17. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  18. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    SciTech Connect

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.

  19. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites

    PubMed Central

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-01-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013

  20. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites.

    PubMed

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R; Zhang, Cheng; Villaire, William L; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-01-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013

  1. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    DOE PAGESBeta

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content,more » we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less

  2. High binding energy band structure of Bi-2212 as measured by ARPES

    NASA Astrophysics Data System (ADS)

    McElroy, K.; Graf, J.; Gweon, G.-H.; Zhou, S. Y.; Sahrakorpi, S.; Lindroos, M.; Markiewicz, R. S.; Bansil, A.; Eisaki, H.; Sasagawa, T.; Takagi, H.; Uchida, S.; Lanzara, A.

    2006-03-01

    The study of the electronic structure of high temperature superconductors by angle resolved photoemission spectroscopy (ARPES) has so far focused on the states near the Fermi level, believed to be fundamental for most of the properties of cuprates. However, it is well known that in doped Mott insulators the low and high energy physics are strongly coupled one to the other. Therefore, to gain insight on the real physics of cuprates a full characterization of the electronic band structure up to energies of the order of the lower Hubbard band and beyond is needed. Here we report a detailed, doping dependent study of the band structure of Bi2212 superconductors at energies of the order of 1-2 eV. The experimental results are interpreted in terms of local density approximation (LDA) based computations, where the presence of the ``spaghetti'' of Cu-O and O-bands is predicted. Comparison between computed and measured bands provides insight into many-body renormalization effects.

  3. Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations.

    PubMed

    Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi

    2016-04-27

    Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations. PMID:27045790

  4. Understanding the electronic band structure of Pt-alloys for surface reactivity

    NASA Astrophysics Data System (ADS)

    Jung, Jongkeun; Kim, Beomyoung; Hong, Ji Sook; Jin, Tae Won; Shim, Ji Hoon; Nemsak, Slavomir; Denlinger, Jonathan D.; Masashi, Arita; Kenya, Shimada; Kim, Changyoung; Mun, Bongjin Simon

    In polymer exchange membrane fuel cell (PEMFC), the oxygen reduction reaction (ORR) at cathode side has been continuously investigated due to its critical importance in performance of fuel cell. So far, even with best industrial catalyst made with Pt, the performance of ORR is too far below from the commercial purpose. In 2007, Stamenkovic et al. showed that Pt alloys with 3- dtransition metal exhibited significantly improved ORR performance and pointed out the altered electronic structure of surface as the major contributing factor for enhanced ORR. Since 1990, with the advance of DFT calculation, the trend of surface chemical reactivity is explained with the analysis of d-band structures, known as d-band model. While d-band provides valid insight on surface chemical reactivity based on the valence band DOS, the relation between surface work function and DOS has not been well understood. The element-specific local electronic band structure of Pt alloys are identified by ARPES measurement, and the correlation between surface work function and local charge density is investigated.

  5. Band stop vibration suppression using a passive X-shape structured lever-type isolation system

    NASA Astrophysics Data System (ADS)

    Liu, Chunchuan; Jing, Xingjian; Chen, Zhaobo

    2016-02-01

    In the paper, band-stop vibration suppression property using a novel X-shape structured lever-type isolation system is studied. The geometrical nonlinear property of an X-shape supporting structure is used to improve the band-stop characteristics in the low frequency range of the lever-type vibration isolator. With the dynamics modeling of this hybrid structural system, it is shown that the proposed hybrid vibration system has very beneficial nonlinear stiffness and damping properties which are helpful to achieve much wider stop bandwidth. Theoretical results demonstrate that the anti-resonant frequencies, width and magnitude of the stop band can all be flexibly designed with structural parameters, and the parameters of the X-shape supporting structure are very critical for designing the band-stop frequency to achieve excellent low-frequency isolation performance. The results in the study provide a new approach to the design of the passive vibration suppression system in the low frequency region.

  6. Complete multipactor suppression in an X-band dielectric-loaded accelerating structure

    NASA Astrophysics Data System (ADS)

    Jing, C.; Gold, S. H.; Fischer, Richard; Gai, W.

    2016-05-01

    Multipactor is a major issue limiting the gradient of rf-driven Dielectric-Loaded Accelerating (DLA) structures. Theoretical models have predicted that an axial magnetic field applied to DLA structures may completely block the multipactor discharge. However, previous attempts to demonstrate this magnetic field effect in an X-band traveling-wave DLA structure were inconclusive, due to the axial variation of the applied magnetic field, and showed only partial suppression of the multipactor loading [Jing et al., Appl. Phys. Lett. 103, 213503 (2013)]. The present experiment has been performed under improved conditions with a uniform axial magnetic field extending along the length of an X-band standing-wave DLA structure. Multipactor loading began to be continuously reduced starting from 3.5 kG applied magnetic field and was completely suppressed at ˜8 kG. Dependence of multipactor suppression on the rf gradient inside the DLA structure was also measured.

  7. Band gap structures in two-dimensional super porous phononic crystals.

    PubMed

    Liu, Ying; Sun, Xiu-zhan; Chen, Shao-ting

    2013-02-01

    As one kind of new linear cellular alloys (LCAs), Kagome honeycombs, which are constituted by triangular and hexagonal cells, attract great attention due to the excellent performance compared to the ordinary ones. Instead of mechanical investigation, the in-plane elastic wave dispersion in Kagome structures are analyzed in this paper aiming to the multi-functional application of the materials. Firstly, the band structures in the common two-dimensional (2D) porous phononic structures (triangular or hexagonal honeycombs) are discussed. Then, based on these results, the wave dispersion in Kagome honeycombs is given. Through the component cell porosity controlling, the effects of component cells on the whole responses of the structures are investigated. The intrinsic relation between the component cell porosity and the critical porosity of Kagome honeycombs is established. These results will provide an important guidance in the band structure design of super porous phononic crystals. PMID:23089223

  8. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Kevin Jerome Sutherland

    2001-05-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  9. Factor Structure and Construct Validity of the Scale for the Assessment of Negative Symptoms.

    ERIC Educational Resources Information Center

    Sayers, Steven L.; And Others

    1996-01-01

    Confirmatory factor analysis (CFA) was used to examine the underlying structure of negative symptoms of schizophrenia as measured by the Scale for the Assessment of Negative Symptoms (SANS). CFA results from the assessment of 401 patients were largely supported by CFA results from a second assessment of 345 patients. (SLD)

  10. Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice

    NASA Astrophysics Data System (ADS)

    Forti, S.; Stöhr, A.; Zakharov, A. A.; Coletti, C.; Emtsev, K. V.; Starke, U.

    2016-09-01

    The electronic band structure of an epitaxial graphene superlattice, generated by intercalating a monolayer of Cu atoms, is directly imaged by angle-resolved photoelectron spectroscopy. The 3.2 nm lateral period of the superlattice is induced by a varying registry between the graphene honeycomb and the Cu atoms as imposed by the heteroepitaxial interface Cu/SiC. The carbon atoms experience a lateral potential across the supercell of an estimated value of about 65 meV. The potential leads to strong energy renormalization in the band structure of the graphene layer and the emergence of mini-Dirac cones. The mini-cones’ band velocity is reduced to about half of graphene's Fermi velocity. Notably, the ordering of the interfacial Cu atoms can be reversibly blocked by mild annealing. The superlattice indeed disappears at ∼220 °C.

  11. Damping Effect Studies for X-band Normal Conducting High Gradient Standing Wave Structures

    SciTech Connect

    Pei, S.; Li, Z.; Tantawi, S.G.; Dolgashev, V.A.; Wang, J.; /SLAC

    2009-08-03

    The Multi-TeV colliders should have the capability to accelerate low emittance beam with high rf efficiency, X-band normal conducting high gradient accelerating structure is one of the promising candidate. However, the long range transverse wake field which can cause beam emittance dilution is one of the critical issues. We examined effectiveness of dipole mode damping in three kinds of X-band, {pi}-mode standing wave structures at 11.424GHz with no detuning considered. They represent three damping schemes: damping with cylindrical iris slot, damping with choke cavity and damping with waveguide coupler. We try to reduce external Q factor below 20 in the first two dipole bands, which usually have very high (R{sub T}/Q){sub T}. The effect of damping on the acceleration mode is also discussed.

  12. Photoelectron spectroscopic study of band alignment of polymer/ZnO photovoltaic device structure

    SciTech Connect

    Nagata, T.; Chikyow, T.; Oh, S.; Wakayama, Y.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K.; Ikeno, N.

    2013-01-28

    Using x-ray photoelectron spectroscopy, we investigated the band alignment of a Ag/poly(3-hexylthiophene-2,5-diyl) (P3HT)/ZnO photovoltaic structure. At the P3HT/ZnO interface, a band bending of P3HT and a short surface depletion layer of ZnO were observed. The offset between the highest occupied molecular orbital of P3HT and the conduction band minimum of ZnO at the interface contributed to the open circuit voltage (Voc) was estimated to be approximately 1.5 {+-} 0.1 eV, which was bigger than that of the electrically measured effective Voc of P3HT/ZnO photovoltaic devices, meaning that the P3HT/ZnO photovoltaic structure has the potential to provide improved photovoltaic properties.

  13. Fully opposite spin polarization of electron and hole bands in DyN and related band structures of GdN and HoN

    NASA Astrophysics Data System (ADS)

    Cheiwchanchamnangij, Tawinan; Lambrecht, Walter R. L.

    2015-07-01

    Using quasiparticle self-consistent G W calculations, we show that DyN has an unusual nearly zero indirect gap semimetallic band structure in which the states near the valence band maximum are fully minority spin polarized at Γ while the states near the conduction band minimum (at X ) have fully majority spin character. This arises due to a strong hybridization of one of the minority spin f states of dysprosium with the N-2 p bands. The reason why only one of the f bands hybridizes is explained using symmetry arguments. We show that in HoN, this hybridization is already strongly reduced because of the deeper Ho-4 f minority spin states.

  14. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGESBeta

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; Ong, Shyue Ping

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit goodmore » chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  15. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    SciTech Connect

    Canulescu, S. Schou, J.; Rechendorff, K.; Pleth Nielsen, L.; Borca, C. N.; Jones, N. C.; Hoffmann, S. V.; Bordo, K.; Ambat, R.

    2014-03-24

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3 eV, which is about ∼1.4 eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

  16. Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kishi, Ayaka; Oda, Masato; Shinozuka, Yuzo

    2016-05-01

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp3 tight-binding models. Solving derived quasi-Hamiltonian 24 × 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III–V and II–VI wurtzite alloys: cation-substituted Al1‑ x Ga x N and Ga1‑ x In x N and anion-substituted CdS1‑ x Se x and ZnO1‑ x S x . The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character.

  17. Structure and Evolution of Convection Band Occurred over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, W.; Lee, T.

    2011-12-01

    A significant portion of the annual precipitation on the Korean peninsula is produced by heavy precipitation systems (HPSs) during summer. HPSs over the Korean peninsula could be classified into four major types (convection bands, cloud clusters, isolated thunderstorms, and squall lines) by phenomenological analysis. Among four major types of HPSs, convection bands (CBs) tend to concentrate a large amount of rainfall over limited area due to their quasi-stationary behavior for several hours. Convective cells embedded in CB move along the band and new cells are continuously formed in the upstream of the band. In this study, the structure and evolution of CB have been investigated using NCEP Climate Forecast System Reanalysis (CFSR) data and Weather Research and Forecasting (WRF) model. Thirty CB cases occurred during 2000-2010 were selected to conduct composite analysis. We obtained several profiles which represent northern area (NA), southern area (SA), and upstream area (UA) of CB by composite analysis. Modest band-perpendicular wind component (5 m s-1) is found in the level of 925-1000 hPa in SA, while band-perpendicular wind component of NA is nearly zero. Additionally, equivalent potential temperature in the lower-troposphere of SA is about 10 K larger than that of NA. Low-level band-perpendicular wind component of SA seems to play an important role in the development of CB by providing the environment for large-scale convergence and transporting warm and moist air from southern area of CB. Band-parallel wind component is predominant in the middle- and lower-troposphere. On the basis of the results of composite analysis, ideal simulation for the evolution of CB was set up. The analysis for the evolution of CB is in progress.

  18. Three-Dimensional Structure of Vertebrate Muscle Z-Band: The Small-Square Lattice Z-Band in Rat Cardiac Muscle

    PubMed Central

    Burgoyne, Thomas; Morris, Edward P.; Luther, Pradeep K.

    2015-01-01

    The Z-band in vertebrate striated muscle crosslinks actin filaments of opposite polarity from adjoining sarcomeres and transmits tension along myofibrils during muscular contraction. It is also the location of a number of proteins involved in signalling and myofibrillogenesis; mutations in these proteins lead to myopathies. Understanding the high-resolution structure of the Z-band will help us understand its role in muscle contraction and the role of these proteins in the function of muscle. The appearance of the Z-band in transverse-section electron micrographs typically resembles a small-square lattice or a basketweave appearance. In longitudinal sections, the Z-band width varies more with muscle type than species: slow skeletal and cardiac muscles have wider Z-bands than fast skeletal muscles. As the Z-band is periodic, Fourier methods have previously been used for three-dimensional structural analysis. To cope with variations in the periodic structure of the Z-band, we have used subtomogram averaging of tomograms of rat cardiac muscle in which subtomograms are extracted and compared and similar ones are averaged. We show that the Z-band comprises four to six layers of links, presumably α-actinin, linking antiparallel overlapping ends of the actin filaments from the adjoining sarcomeres. The reconstruction shows that the terminal 5–7 nm of the actin filaments within the Z-band is devoid of any α-actinin links and is likely to be the location of capping protein CapZ. PMID:26362007

  19. Three-Dimensional Structure of Vertebrate Muscle Z-Band: The Small-Square Lattice Z-Band in Rat Cardiac Muscle.

    PubMed

    Burgoyne, Thomas; Morris, Edward P; Luther, Pradeep K

    2015-11-01

    The Z-band in vertebrate striated muscle crosslinks actin filaments of opposite polarity from adjoining sarcomeres and transmits tension along myofibrils during muscular contraction. It is also the location of a number of proteins involved in signalling and myofibrillogenesis; mutations in these proteins lead to myopathies. Understanding the high-resolution structure of the Z-band will help us understand its role in muscle contraction and the role of these proteins in the function of muscle. The appearance of the Z-band in transverse-section electron micrographs typically resembles a small-square lattice or a basketweave appearance. In longitudinal sections, the Z-band width varies more with muscle type than species: slow skeletal and cardiac muscles have wider Z-bands than fast skeletal muscles. As the Z-band is periodic, Fourier methods have previously been used for three-dimensional structural analysis. To cope with variations in the periodic structure of the Z-band, we have used subtomogram averaging of tomograms of rat cardiac muscle in which subtomograms are extracted and compared and similar ones are averaged. We show that the Z-band comprises four to six layers of links, presumably α-actinin, linking antiparallel overlapping ends of the actin filaments from the adjoining sarcomeres. The reconstruction shows that the terminal 5-7nm of the actin filaments within the Z-band is devoid of any α-actinin links and is likely to be the location of capping protein CapZ. PMID:26362007

  20. Impact of the valence band structure of Cu2O on excitonic spectra

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Main, Jörg; Feldmaier, Matthias; Wunner, Günter; Uihlein, Christoph

    2016-05-01

    We present a method to calculate the excitonic spectra of all direct semiconductors with a complex valence band structure. The Schrödinger equation is solved using a complete basis set with Coulomb-Sturmian functions. This method also allows for the computation of oscillator strengths. Here we apply this method to investigate the impact of the valence band structure of cuprous oxide (Cu2O ) on the yellow exciton spectrum. Results differ from those of J. Thewes et al. [Phys. Rev. Lett. 115, 027402 (2015), 10.1103/PhysRevLett.115.027402]; the differences are discussed and explained. The difference between the second and third Luttinger parameter can be determined by comparisons with experiments; however, the evaluation of all three Luttinger parameters is not uniquely possible. Our results are consistent with band structure calculations. Considering also a finite momentum ℏ K of the center of mass, we show that the large K -dependent line splitting observed for the 1 S exciton state by G. Dasbach et al. [Phys. Rev. Lett. 91, 107401 (2003), 10.1103/PhysRevLett.91.107401] is not related to an exchange interaction but rather to the complex valence band structure of Cu2O .

  1. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  2. Band structure analysis of an analytically solvable Hill equation with continuous potential

    NASA Astrophysics Data System (ADS)

    Morozov, G. V.; Sprung, D. W. L.

    2015-03-01

    This paper concerns analytically solvable cases of Hill’s equation containing a continuously differentiable periodic potential. We outline a procedure for constructing the Floquet-Bloch fundamental system, and analyze the band structure of the system. The similarities to, and differences from, the cases of a piecewise constant periodic potential and the Mathieu potential, are illuminated.

  3. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    PubMed Central

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  4. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  5. Doping and strain dependence of the electronic band structure in Ge and GeSn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Gallagher, James; Senaratne, Charutha; Brown, Christopher; Fernando, Nalin; Zollner, Stefan; Kouvetakis, John; Menendez, Jose

    2015-03-01

    A systematic study of the effect of dopants and strain on the electronic structure of Ge and GeSn alloys is presented. Samples were grown by UHV-CVD on Ge-buffered Si using Ge3H8 and SnD4 as the sources of Ge and Sn, and B2H6/P(GeH3)3 as dopants. High-energy critical points in the joint-density of electronic states were studied using spectroscopic ellipsometry, which yields detailed information on the strain and doping dependence of the so-called E1, E1 +Δ1 , E0' and E2 transitions. The corresponding dependencies of the lowest direct band gap E0 and the fundamental indirect band gap Eindwere studied via room-T photoluminescence spectroscopy. Of particular interest for this work were the determination of deformation potentials, band gap renormalization effects, Burstein-Moss shifts due to the presence of carriers at band minima, and the dependence of other critical point parameters, such as amplitudes and phase angles, on the doping concentration. The selective blocking of transitions due to high doping makes it possible to investigate the precise k-space location of critical points. These studies are complemented with detailed band-structure calculations within a full-zone k-dot- p approach. Supported by AFOSR under DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  6. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  7. Tuning the band structures of single walled silicon carbide nanotubes with uniaxial strain: a first principles study

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Xiao, H. Y.; Gao, Fei; Weber, William J.

    2008-05-09

    Electronic band structures of single-walled silicon carbide nanotubes are studied under uniaxial strain using first principles calculations. The band structure can be tuned by mechanical strain in a wide energy range. The band gap decreases with uniaxial tensile strain, but initially increases with uniaxial compressive strain and then decreases with further increases in compressive strain. These results may provide a way to tune the electronic structures of silicon carbide nanotubes, which may have promising applications in building nanodevices.

  8. Effects of strain on the band structure of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Janotti, Anderson; Scheffler, Matthias; Van de Walle, Chris G.

    2014-09-01

    We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (202¯1), (303¯1), and (303¯1¯) orientations, our calculated deformation potentials have provided results for polarization ratios in good agreement with the experimental observations, providing further confidence in the accuracy of our values.

  9. Infrared detectors and lasers operating in the 3-12 μm range using band-gap engineered structures with type II band-gap alignment

    NASA Astrophysics Data System (ADS)

    Swaminathan, Venkataraman; Little, John W.; Tober, Richard L.

    2006-02-01

    The Type II broken band-gap alignment in semiconductor structures wherein the conduction band minimum is in one semiconductor (e.g., InAs) and the valence band maximum is in another (e.g., GaInSb) offers certain unique advantages which can be utilized to realize band-gap engineered novel quantum electro-optic devices such as lasers and detectors. The advantages of the type II structures include reduced Auger recombination, extending the effective band-gap energy of materials wherein type I band-gap alignment would give rise to difficulties such as miscibility gap. In this paper we describe the work carried out at the Army Research Laboratory on type II semiconductor quantum electro-optic devices such as IR lasers and detectors operating in the 3-12 μm range. Specifically we will cover the progress made in GaSb based type II strained layer superlattice IR detectors and Interband Cascade IR Lasers. We will also present our recent work in self-assembled quantum dots which have type II band-gap alignment with the matrix material in which the dots are embedded.

  10. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    SciTech Connect

    Yastrubchak, O.; Sadowski, J.; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2014-08-18

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.