Science.gov

Sample records for negative band structure

  1. 16O + 16O molecular structures of positive- and negative-parity superdeformed bands in 34S

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yasutaka

    2016-05-01

    The structures of excited states in 34S are investigated using the antisymmetrized molecular dynamics and generator coordinate method(GCM). The GCM basis wave functions are calculated via energy variation with a constraint on the quadrupole deformation parameter β. By applying the GCM after parity and angular momentum projections, the coexistence of two positive- and one negative-parity super de formed(SD) bands are predicted, and low-lying states and other deformed bands are obtained. The SD bands have structures of 16O + 16O + two valence neutrons in molecular orbitals around the two 16O cores in a cluster picture. The configurations of the two valence neutrons are δ2 and π2 for the positive-parity SD bands and π1δ1 for the negative parity SD band.

  2. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient. PMID:17025558

  3. Negative parity bands of {sup 115}Pd and band structures in {sup 113,115,117}Pd

    SciTech Connect

    Fong, D.; Hwang, J.K.; Ramayya, A.V.; Hamilton, J.H.; Gore, P.M.; Jones, E.F.; Luo, Y.X.; Walters, W.B.; Rasmussen, J.O.; Lee, I.Y.; Macchiavelli, A.O.; Wu, S.C.; Stoyer, M.A.; Zhu, S.J.; Daniel, A.V.; Ter-Akopian, G.M.; Oganessian, Yu.Ts.; Cole, J.D.; Donangelo, R.; Ma, W.C.

    2005-07-01

    Level structures of {sup 113,115,117}Pd have been studied using the Gammasphere and a spontaneous fission source of {sup 252}Cf. A new 85.1-keV transition was identified in {sup 113}Pd. This indicates that the spin and parity of the isomeric state is 9/2{sup -} rather than the previously assigned 11/2{sup -}. New low-energy transitions are confirmed in {sup 115,117}Pd. In {sup 115}Pd, the 39.0.- and 49.0-keV transitions are shown to be in prompt coincidence. This coincidence relationship indicates a spin and parity assignment of 1/2{sup +} for the ground state rather than the previously assigned 3/2{sup +}.

  4. Wide band negative magnetic permeability materials (NMPM) with composite metalsemiconductor structures based on the Drude model, and applications to negative-refractive index (NIM).

    PubMed

    Benedetti, A; Sibilia, C; Bertolotti, M

    2007-05-28

    Composite structures based on metal open rings and thin wires are well established, for obtaining efficient negative index materials (NIM), acting as metamaterials in the long wavelength regime. The main losses are due both to metal absorption and to the inner electric resistance of metals; to overcome this latter loss we propose a new metal-semiconductor structure dimensioned by direct synthesis method, which offers an almost perfect Drude-like effective magnetic permeability. The choice of particular semiconductor components allows to get a negative resistance for the current induced by the electromagnetic field, which cancels that of the metal but puts a limit to the spectral response of the metamaterial. We consider some parasite effects, such as bianisotropy and incorrect values of structural parameters, to see limitations and features of this new NIM technology. PMID:19546961

  5. Tunable two-dimensional acoustic meta-structure composed of funnel-shaped unit cells with multi-band negative acoustic property

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Kim, Boseung; Min, Dongki; Park, Junhong

    2015-10-01

    This paper presents a two-dimensional heat-exhaust and sound-proof acoustic meta-structure exhibiting tunable multi-band negative effective mass density. The meta-structure was composed of periodic funnel-shaped units in a square lattice. Each unit cell operates simultaneously as a Helmholtz resonator (HR) and an extended pipe chamber resonator (EPCR), leading to a negative effective mass density creating bandgaps for incident sound energy dissipation without transmission. This structure allowed large heat-flow through the cross-sectional area of the extended pipe since the resonance was generated by acoustic elements without using solid membranes. The pipes were horizontally directed to a flow source to enable small flow resistance for cooling. Measurements of the sound transmission were performed using a two-load, four-microphone method for a unit cell and small reverberation chamber for two-dimensional panel to characterize the acoustic performance. The effective mass density showed significant frequency dependent variation exhibiting negative values at the specific bandgaps, while the effective bulk modulus was not affected by the resonator. Theoretical models incorporating local resonances in the multiple resonator units were proposed to analyze the noise reduction mechanism. The acoustic meta-structure parameters to create broader frequency bandgaps were investigated using the theoretical model. The negative effective mass density was calculated to investigate the creation of the bandgaps. The effects of design parameters such as length, cross-sectional area, and volume of the HR; length and cross-sectional area of the EPCR were analyzed. To maximize the frequency band gap, the suggested acoustic meta-structure panel, small neck length, and cross-sectional area of the HR, large EPCR length was advantageous. The bandgaps became broader when the two resonant frequencies were similar.

  6. Origin of termination of negative-parity bands

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Lenske, H.

    2015-11-01

    The cluster approach is applied to study the mechanism of termination of the negative-parity band built on the ground state of even-even nucleus. For the several even-even nuclei, the terminating spins are predicted. The method is suggested for the verification of the cluster interpretation of the band termination.

  7. Band structure in 113Sn

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2016-07-01

    The structure of collective bands in 113Sn, populated in the reaction 100Mo(19F,p 5 n ) at a beam energy of 105 MeV, has been studied. A new positive-parity sequence of eight states extending up to 7764.9 keV and spin (39 /2+) has been observed. The band is explained as arising from the coupling of the odd valence neutron in the g7 /2 or the d5 /2 orbital to the deformed 2p-2h proton configuration of the neighboring even-A Sn isotope. Lifetimes of six states up to an excitation energy of 9934.9 keV and spin 47 /2-belonging to a Δ I =2 intruder band have been measured for the first time, including an upper limit for the last state, from Doppler-shift-attenuation data. A moderate average quadrupole deformation β2=0.22 ±0.02 is deduced from these results for the five states up to spin 43 /2- . The transition quadrupole moments decrease with increase in rotational frequency, indicating a reduction of collectivity with spin, a feature common for terminating bands. The behavior of the kinematic and dynamic moments of inertia as a function of rotational frequency has been studied and total Routhian surface calculations have been performed in an attempt to obtain an insight into the nature of the states near termination.

  8. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  9. Band structure of 235U

    NASA Astrophysics Data System (ADS)

    Ward, D.; Macchiavelli, A. O.; Clark, R. M.; Cline, D.; Cromaz, M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Görgen, A.; Hayes, A. B.; Lane, G. J.; Lee, I.-Y.; Nakatsukasa, T.; Schmidt, G.; Stephens, F. S.; Svensson, C. E.; Teng, R.; Vetter, K.; Wu, C. Y.

    2012-12-01

    Over a period of several years we have performed three separate experiments at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron in which 235U (thick target) was Coulomb-excited. The program involved stand-alone experiments with Gammmasphere and with the 8pi Spectrometer using 136Xe beams at 720 MeV, and a CHICO-Gammasphere experiment with a 40Ca beam at 184 MeV. In addition to extending the known negative-parity bands to high spin, we have assigned levels in some seven positive-parity bands which are in some cases (e.g., [631]1/2, [624]7/2, and [622]5/2) strongly populated by E3 excitation. The CHICO data have been analyzed to extract E2 and E3 matrix elements from the observed yields. Additionally, many M1 matrix elements could be extracted from the γ-ray branching ratios. A number of new features have emerged, including the unexpected attenuation of magnetic transitions between states of the same Nilsson multiplet, the breakdown of Coriolis staggering at high spin, and the effect of E3 collectivity on Coriolis interactions.

  10. Photonic band gap structure simulator

    DOEpatents

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  11. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  12. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  13. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    SciTech Connect

    Lee, David A.; Vedral, L. James; Smith, David A.; Pinchuk, Anatoliy O.; Musselman, Randall L.

    2015-04-15

    Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  14. Negative capacitance switching via VO{sub 2} band gap engineering driven by electric field

    SciTech Connect

    He, Xinfeng; Xu, Jing; Xu, Xiaofeng Gu, Congcong; Chen, Fei; Wu, Binhe Wang, Chunrui Xing, Huaizhong; Chen, Xiaoshuang; Chu, Junhao

    2015-03-02

    We report the negative capacitance behavior of an energy band gap modulation quantum well with a sandwich VO{sub 2} layer structure. The phase transition is probed by measuring its capacitance. With the help of theoretical calculations, it shows that the negative capacitance changes of the quantum well device come from VO{sub 2} band gap by continuously tuning the temperature or voltage. Experiments reveal that as the current remains small enough, joule heating can be ignored, and the insulator-metal transition of VO{sub 2} can be induced by the electric field. Our results open up possibilities for functional devices with phase transitions induced by external electric fields other than the heating or electricity-heat transition.

  15. Quasiparticle band structure of HgSe

    SciTech Connect

    Rohlfing, M.; Louie, S.G.

    1998-04-01

    Motivated by a recent discussion about the existence of a fundamental gap in HgSe [Phys. Rev. Lett. {bold 78}, 3165 (1997)], we calculate the quasiparticle band structure of HgSe within the GW approximation for the electron self-energy. The band-structure results show that HgSe is a semimetal, which is in agreement with most experimental data. We observe a strong wave-vector dependence of the self-energy of the lowest conduction band, leading to an increased dispersion and a small effective mass. This may help to interpret recent photoemission spectroscopy measurements. {copyright} {ital 1998} {ital The American Physical Society}

  16. Band structure of core-shell semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Pistol, Mats-Erik; Pryor, Craig

    2009-03-01

    We present band structures of strained core-shell nanowires composed of zincblende III-V (binary) semiconductors. We consider all combinations of AlN, GaN, InN, and all combinations of AlP, GaP, AlAs, GaAs, InP, InAs, AlSb, GaSb, and InSb. We compute the γ- and X-conduction band minima as well as the valence band maximum, all as functions of the core and shell radii. The calculations were performed using continuum elasticity theory for the strain, eight-band strain-dependent k.p theory for the γ-point energies, and single band approximation for the X-point conduction minima. We identify structures with type-I, type-II and type-III band alignment, as well as systems in which one material becomes metallic due to a negative band-gap. We identify structures that may support exciton crystals with and without photoexcitation. We have also computed the effective masses, from which the confinement energy may be estimated. All the results [Pistol and Pryor, Phys. Rev. B 78, 115319] are available in graphical and tabular form at www.semiconductor.physics.uiowa.edu

  17. Nonreciprocal microwave band-gap structures.

    PubMed

    Belov, P A; Tretyakov, S A; Viitanen, A J

    2002-07-01

    An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper, we consider plane electromagnetic waves in this medium and design an analytical model for the material parameters. An analytical solution for plane-wave reflection from a planar interface is also presented. In the proposed material, a new electrically controlled stop band appears for one of the two circularly polarized eigenwaves in a frequency band around the ferrimagnetic resonance frequency. This frequency can be well below the usual lattice band gap, which allows the realization of rather compact structures. The main properties of the material are outlined. PMID:12241501

  18. Band structure engineering in organic semiconductors.

    PubMed

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-17

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043

  19. Dual-band quasi-zero refraction and negative refraction in coin-shaped metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Hou, Zhi-Ling; Liu, Ya-Min; Li, Zhong-Jun; Liu, Xingda; Fang, Hui-Min

    2015-05-01

    This paper demonstrates a metamaterial capable of realizing a dual-band quasi-zero refractive index and a negative refractive index, which consists of a coin-shaped slice and two parallel planar wires. The zero refractive index is achieved over a very wide frequency range. The bandwidth of the first band of the quasi-zero index can reach up to 3 GHz, and the width of the second band exhibiting low loss is 0.4 GHz. Between these two bands, the negative refractive index band is 9.0-13.9 GHz. The corresponding formulas of electric plasma frequency and magnetic plasma frequency are established, and the theoretical results agree well with the simulated results. The proposed metamaterial may have potential applications in multiband or broadband devices.

  20. Complex banded structures in directional solidification processes.

    PubMed

    Korzhenevskii, A L; Rozas, R E; Horbach, J

    2016-01-27

    A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos. PMID:26704726

  1. Magnon band structure of periodic composites

    NASA Astrophysics Data System (ADS)

    Vasseur, J. O.; Dobrzynski, L.; Djafari-Rouhani, B.; Puszkarski, H.

    1996-07-01

    innodata J. O. VASSEUR et al. MAGNON BAND STRUCTURE OF PERIODIC COMPOSITES We calculate the spin-wave spectra of two-dimensional composite materials consisting of periodic square arrays of parallel cylinders made of a ferromagnetic material embedded in a ferromagnetic background. Each material is described by its spontaneous magnetization MS and exchange constant A. An external static magnetic field is applied along the direction of the cylinders and both ferromagnetic materials are assumed to be magnetized parallel to this magnetic field. We consider the spin-waves propagation in the plane perpendicular to the cylinders. We reveal the existence of gaps in the magnon band structure of composite systems such as the periodic array of Fe cylinders in an EuO matrix. We investigate the existence of these gaps in relation to the physical parameters of the materials involved. We also study the influence of the lattice parameter (i.e., the square array periodicity) and the effect of the filling fraction of the cylinders on the magnon band structure.

  2. The band-gap enhanced photovoltaic structure

    NASA Astrophysics Data System (ADS)

    Tessler, Nir

    2016-05-01

    We critically examine the recently suggested structure that was postulated to potentially add 50% to the photo-conversion efficiency of organic solar cells. We find that the structure could be realized using stepwise increase in the gap as long as the steps are not above 0.1 eV. We also show that the charge extraction is not compromised due to an interplay between the contact's space charge and the energy level modification, which result in a flat energy band at the extracting contact.

  3. Tunable band gap near the Dirac point in nonlinear negative-zero-positive index metamaterial waveguide

    SciTech Connect

    Shen Ming; Ruan Linxu; Shi Jielong; Wang Qi; Wang Xinglin

    2011-04-15

    We make theoretical investigations of the nonlinear guided modes near the Dirac point (DP) in nonlinear negative-zero-positive index metamaterial (NZPIM) waveguide. When the nonlinearity is self-focusing, an asymmetric forbidden band exists near the DP that can be modulated by the strength of the nonlinearity. However, the self-defocusing nonlinearity can completely eliminate the asymmetric band gap. We also study the nonlinear surface waves in such nonlinear NZPIM waveguide. These results may predict analogous phenomena in nonlinear graphene.

  4. Band structure of doubly-odd nuclei around mass 130

    SciTech Connect

    Higashiyama, Koji; Yoshinaga, Naotaka

    2011-05-06

    Nuclear structure of the doublet bands in the doubly-odd nuclei with mass A{approx}130 is studied in terms of a pair-truncated shell model. The model reproduces quite well the energy levels of the doublet bands and the electromagnetic transitions. The analysis of the electromagnetic transitions reveals new band structure of the doublet bands.

  5. Band structure of odd-mass lanthanum nuclei

    NASA Astrophysics Data System (ADS)

    Sharma, Deepti; Verma, Preeti; Singh, Suram; Bharti, Arun; Khosa, S. K.

    2014-04-01

    Negative parity energy states in 121-131La have been studied using Projected Shell Model (PSM). Some nuclear structure properties like yrast spectra, back-bending in moment of inertia, reduced transition probabilities and band diagrams have been described. The experimental feature of the co-existence of prolate-oblate shapes in 125-131La isotopes has been satisfactorily explained by PSM results. Comparison of the theoretical data with their experimental counterparts has also been made. From the calculations, it is found that the yrast states arise because of multi-quasiparticle states.

  6. Sustained gamma-band EEG following negative words in depression and schizophrenia

    PubMed Central

    Siegle, Greg J.; Condray, Ruth; Thase, Michael E.; Keshavan, Matcheri; Steinhauer, Stuart R.

    2013-01-01

    Introduction Sustained and elaborative emotional information processing in depression and decreased affective elaboration in schizophrenia are considered hallmarks of these disorders but have not been directly measured. Gamma-band (35–45 Hz) EEG, has been associated with semantic functions such as feature binding and may index these elaborative processing. This study examined whether there were group differences in baseline and sustained gamma-band EEG following emotional stimuli in healthy adults as well as adults with depression and schizophrenia. Methods 24 never-depressed healthy controls, 14 patients with DSM-IV unipolar major depressive disorder, and 15 patients with DSM-IV schizophrenia completed a lexical emotion identification task during EEG assessment. Gamma band EEG (35–45 Hz) in response to negative words was the primary dependent measure. Results As predicted, depressed individuals displayed sustained and increased gamma-band EEG throughout the task, and particularly in the seconds following negative words. Individuals with schizophrenia displayed decreased gamma-band activity throughout the task. Conclusions These data suggest that gamma-band EEG, measured over several seconds, may serve as a useful index of sustained semantic information processing. Depressed individuals appear to engage in sustained elaboration following emotional stimuli, whereas individuals with schizophrenia are not as prone to this type of elaborative processing. PMID:20005267

  7. Elucidating the stop bands of structurally colored systems through recursion

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Vukusic, Peter

    2013-04-01

    Interference is the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics: specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer structure and solve it using recursion relations. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursion. We compare to experimental data for various beetles, whose optical structure resembles the proposed model. Thus, using only the phenomenon of interference and the idea of recursion, we are able to elucidate the concept of band structure in the context of the experimentally observed high reflectance and iridescent appearance of structurally colored beetles.

  8. Rotational Band Structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, Heather; NSCL E11029 Collaboration Team

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N =20 neon, sodium, and magnesium isotopes that make up what is commonly called the ``Island of Inversion''. However, rotational band structures, a characteristic fingerprint of a rigid non-spherical shape, have yet to be observed. We report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I = 6+, produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ-ray tracking detector array, GRETINA. Large-scale shell model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked shell model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results. This material is based upon work supported by the U.S. DOE, Office of Science, NP Office under Contract No. DE-AC02-05CH11231 (LBNL). GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL was supported by NSF.

  9. Rotational band structure in 32Mg

    NASA Astrophysics Data System (ADS)

    Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Poves, A.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Richard, A. L.; Rissanen, J.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.

    2016-03-01

    There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈20 neon, sodium, and magnesium isotopes that make up what is commonly called the "island of inversion." However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I =6+ produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA (γ -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.

  10. Segmental structure in banded mongoose calls.

    PubMed

    Fitch, W Tecumseh

    2012-01-01

    In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. PMID:23206277

  11. Segmental structure in banded mongoose calls

    PubMed Central

    2012-01-01

    In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. See research article http://www.biomedcentral.com/1741-7007/10/97 PMID:23206277

  12. A Theoretical Structure of High School Concert Band Performance

    ERIC Educational Resources Information Center

    Bergee, Martin J.

    2015-01-01

    This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…

  13. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM... Structure of bands. (a) DHS may, after coordination with OPM, establish ranges of basic pay for bands,...

  14. Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Fei; Lian, Ke-Yan; Qiu, Qi; Luo, Yi

    2015-02-01

    Nitrogen-doping brings novel properties and promising applications into graphene, but the underlying mechanism is still in debate. To determine the key factor in motivating the negative differential resistance (NDR) behaviour of nitrogen-doped graphene, the electronic structure and transport properties of an 11-dimer wide nitrogen-doped armchair graphene nanoribbon (N-AGNR) were systematically studied by first principles calculations. Both the effect of interaction between N-dopants and the effect of doping-sublattice on the NDR were examined for the first time. Taking into account the two effects, N-AGNR becomes metallic or semiconducting depending on the doping configuration, and its Fermi level varies in a large range. NDR was firmly verified not to be intrinsic for N-AGNRs. However, it is totally determined by whether nitrogen-doping induces half-filled energy bands (HFEBs) because it is HFEBs that cross the Fermi level and determine the transport properties of N-AGNR under low biases. With the bias increasing, the transmission spectrum near the Fermi level showed a flag shape, and therefore, the corresponding transport channel is totally suppressed at a certain bias, resulting in the NDR behaviour with a configuration-dependent peak-to-valley current ratio (PVCR) up to 104. Our findings give new insights into the microscopic mechanism of chemical doping induced NDR behaviour and will be useful in building NDR-based nanodevices in the future.

  15. Achieving Higher Energies via Passively Driven X-band Structures

    NASA Astrophysics Data System (ADS)

    Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra

    2014-03-01

    Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.

  16. Transition probabilities and Franck-Condon factors for the second negative band system of O2(+)

    NASA Technical Reports Server (NTRS)

    Fox, J. L.; Dalgarno, A.

    1990-01-01

    Transition probabilities for the second negative band system of O2(+) are computed using the dipole transition moment presented by Wetmore et al. (1984). Vibrational levels v double prime = 0 - 54 of the X2Pi(g) ground state and v prime = - 33 of the excited A2Pi(u) state are included. Franck-Condon factors for ionization-excitation of O2 to O2(+) are also presented.

  17. Birefringence and band structure of CdP2 crystals

    NASA Astrophysics Data System (ADS)

    Beril, S. I.; Stamov, I. G.; Syrbu, N. N.; Zalamai, V. V.

    2013-08-01

    The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (nk||с>nk||у) at λ>λ0 and negative (nk||сbands. Minimal direct energy intervals correspond to transitions Г1→Г1 for Е||с and Г2→Г1 for Е⊥с. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2 K equals to 10.6 meV/K and 3.2 mev/K for Г1→Г1 and Г2→Г1 band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5-10 eV and optical functions (n, k, ε1, ε2,d2ε1/dE2 and d2ε2/dE2) were calculated by using Kramers-Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.

  18. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  19. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  20. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  1. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  2. Electronic Band Structure and Sub-band-gap Absorption of Nitrogen Hyperdoped Silicon

    PubMed Central

    Zhu, Zhen; Shao, Hezhu; Dong, Xiao; Li, Ning; Ning, Bo-Yuan; Ning, Xi-Jing; Zhao, Li; Zhuang, Jun

    2015-01-01

    We investigated the atomic geometry, electronic band structure, and optical absorption of nitrogen hyperdoped silicon based on first-principles calculations. The results show that all the paired nitrogen defects we studied do not introduce intermediate band, while most of single nitrogen defects can introduce intermediate band in the gap. Considering the stability of the single defects and the rapid resolidification following the laser melting process in our sample preparation method, we conclude that the substitutional nitrogen defect, whose fraction was tiny and could be neglected before, should have considerable fraction in the hyperdoped silicon and results in the visible sub-band-gap absorption as observed in the experiment. Furthermore, our calculations show that the substitutional nitrogen defect has good stability, which could be one of the reasons why the sub-band-gap absorptance remains almost unchanged after annealing. PMID:26012369

  3. Band Structure Controlled by Chiral Imprinting

    NASA Astrophysics Data System (ADS)

    Reyes Cervantes, Adrian; Castro-Garay, P.; Ramos-Garcia, Ruben

    2008-03-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, we find the solution of the boundary--value problem for the reflection and transmission of incident optical waves due to the elastomer. We show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested bandgaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  4. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  5. Fractional Band Filling in an Atomic Chain Structure

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; Kirakosian, A.; Altmann, K. N.; Bromberger, C.; Erwin, S. C.; McChesney, J. L.; Lin, J.-L.; Himpsel, F. J.

    2003-05-01

    A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of ≥1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

  6. Intrathecal, Polyspecific Antiviral Immune Response in Oligoclonal Band Negative Multiple Sclerosis

    PubMed Central

    Brecht, Isabel; Weissbrich, Benedikt; Braun, Julia; Toyka, Klaus Viktor; Weishaupt, Andreas; Buttmann, Mathias

    2012-01-01

    Background Oligoclonal bands (OCB) are detected in the cerebrospinal fluid (CSF) in more than 95% of patients with multiple sclerosis (MS) in the Western hemisphere. Here we evaluated the intrathecal, polyspecific antiviral immune response as a potential diagnostic CSF marker for OCB-negative MS patients. Methodology/Principal Findings We tested 46 OCB-negative German patients with paraclinically well defined, definite MS. Sixteen OCB-negative patients with a clear diagnosis of other autoimmune CNS disorders and 37 neurological patients without evidence for autoimmune CNS inflammation served as control groups. Antibodies against measles, rubella, varicella zoster and herpes simplex virus in paired serum and CSF samples were determined by ELISA, and virus-specific immunoglobulin G antibody indices were calculated. An intrathecal antibody synthesis against at least one neurotropic virus was detected in 8 of 26 (31%) patients with relapsing-remitting MS, 8 of 12 (67%) with secondary progressive MS and 5 of 8 (63%) with primary progressive MS, in 3 of 16 (19%) CNS autoimmune and 3 of 37 (8%) non-autoimmune control patients. Antibody synthesis against two or more viruses was found in 11 of 46 (24%) MS patients but in neither of the two control groups. On average, MS patients with a positive antiviral immune response were older and had a longer disease duration than those without. Conclusion Determination of the intrathecal, polyspecific antiviral immune response may allow to establish a CSF-supported diagnosis of MS in OCB-negative patients when two or more of the four virus antibody indices are elevated. PMID:22792316

  7. Unfolding the band structure of non-crystalline photonic band gap materials

    NASA Astrophysics Data System (ADS)

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-08-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.

  8. Unfolding the band structure of non-crystalline photonic band gap materials.

    PubMed

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  9. Unfolding the band structure of non-crystalline photonic band gap materials

    PubMed Central

    Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining

    2015-01-01

    Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434

  10. Band structure in Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Bachas, Constantin; Tomaras, Theodore

    2016-05-01

    We show how Yang-Mills theory on S3 × ℝ can exhibit a spectrum with continuous bands if coupled either to a topological 3-form gauge field, or to a dynamical axion with heavy Peccei-Quinn scale. The basic mechanism consists in associating winding histories to a bosonic zero mode whose role is to convert a circle in configuration space into a helix. The zero mode is, respectively, the holonomy of the 3-form field or the axion momentum. In these models different θ sectors coexist and are only mixed by (non-local) volume operators. Our analysis sheds light on, and extends Seiberg's proposal for modifying the topological sums in quantum field theories. It refutes a recent claim that B + L violation at LHC is unsuppressed.

  11. Band structure engineering of topological insulator heterojunctions

    NASA Astrophysics Data System (ADS)

    Jin, Kyung-Hwan; Yeom, Han Woong; Jhi, Seung-Hoon

    2016-02-01

    We investigate the topological surface states in heterostructures formed from a three-dimensional topological insulator (TI) and a two-dimensional insulating thin film, using first-principles calculations and the tight-binding method. Utilizing a single Bi or Sb bilayer on top of the topological insulators B i2S e3 , B i2T e3 , B i2T e2Se , and S b2T e3 , we find that the surface states evolve in very peculiar but predictable ways. We show that strong hybridization between the bilayer and TI substrates causes the topological surface states to migrate to the top bilayer. It is found that the difference in the work function of constituent layers, which determines the band alignment and the strength of hybridization, governs the character of newly emerged Dirac states.

  12. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    PubMed

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively. PMID:26647772

  13. Locally resonant periodic structures with low-frequency band gaps

    NASA Astrophysics Data System (ADS)

    Cheng, Zhibao; Shi, Zhifei; Mo, Y. L.; Xiang, Hongjun

    2013-07-01

    Presented in this paper are study results of dispersion relationships of periodic structures composited of concrete and rubber, from which the frequency band gap can be found. Two models with fixed or free boundary conditions are proposed to approximate the bound frequencies of the first band gap. Studies are conducted to investigate the low-frequency and directional frequency band gaps for their application to engineering. The study finds that civil engineering structures can be designed to block harmful waves, such as earthquake disturbance.

  14. Banded Electron Structure Formation in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Banded electron structures in energy-time spectrograms have been observed in the inner magnetosphere concurrent with a sudden relaxation of geomagnetic activity. In this study, the formation of these banded structures is considered with a global, bounce-averaged model of electron transport, and it is concluded that this structure is a natural occurrence when plasma sheet electrons are captured on closed drift paths near the Earth. These bands do not appear unless there is capture of plasma sheet electrons; convection along open drift paths making open pass around the Earth do not have time to develop this feature. The separation of high-energy bands from the injection population due to the preferential advection of the gradient-curvature drift creates spikes in the energy distribution, which overlap to form a series of bands in the energy spectrograms. The lowest band is the bulk of the injected population in the sub-key energy range. Using the Kp history for an observed banded structure event, a cloud of plasma sheet electrons is captured and the development of their distribution function is examined and discussed.

  15. Development of X-Band Dielectric-Loaded Accelerating Structures

    SciTech Connect

    Gold, S. H.; Jing, C.; Kanareykin, A.; Gai, W.; Konecny, R.; Power, J. G.; Kinkead, A. K.

    2010-11-04

    This paper presents a progress report on the development and testing of X-band dielectric-loaded accelerating structures. Recent tests on several quartz DLA structures with different inner diameters are reported. Designs for gap-free DLA structures are presented. Also, planned new experiments are discussed, including higher gradient traveling-wave and standing-wave structures and special grooved structures for multipactor suppression.

  16. Effective band structure of random III-V alloys

    NASA Astrophysics Data System (ADS)

    Popescu, Voicu; Zunger, Alex

    2010-03-01

    Random substitutional alloys have no long range order (LRO) or translational symmetry so rigorously speaking they have no E(k) band structure or manifestations thereof. Yet, many experiments on alloys are interpreted using the language of band theory, e.g. inferring Van Hove singularities, band dispersion and effective masses. Many standard alloy theories (VCA- or CPA-based) have the LRO imposed on the alloy Hamiltonian, assuming only on-site disorder, so they can not be used to judge the extent of LRO that really exists. We adopt the opposite way, by using large (thousand atom) randomly generated supercells in which chemically identical alloy atoms are allowed to have different local environments (a polymorphous representation). This then drives site-dependent atomic relaxation as well as potential fluctuations. The eigenstates from such supercells are then mapped onto the Brillouin zone (BZ) of the primitive cell, producing effective band dispersion. Results for (In,Ga)X show band-like behaviour only near the centre and faces of the BZ but rapidly lose such characteristics away from γ or for higher bands. We further analyse the effects of stoichiometry variation, internal relaxation, and short-range order on the alloy band structure.

  17. Band formation in coupled-resonator slow-wave structures.

    PubMed

    Möller, Björn M; Woggon, Ulrike; Artemyev, Mikhail V

    2007-12-10

    Sequences of coupled-resonator optical waveguides (CROWs) have been examined as slow-wave structures. The formation of photonic bands in finite systems is studied in the frame of a coupled oscillator model. Several types of resonator size tuning in the system are evaluated in a systematical manner. We show that aperiodicities in sequences of coupled microspheres provide an additional degree of freedom for the design of photonic bands. PMID:19551030

  18. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    SciTech Connect

    Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Jiang, Yu-Chi

    2014-09-15

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  19. Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2014-09-01

    In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.

  20. Electron emission from conduction band of heavily phosphorus doped diamond negative electron affinity surface

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Masuzawa, Tomoaki; Mimura, Hidenori; Okano, Ken

    2016-02-01

    Hydrogen (H)-terminated surfaces of diamond have attracted significant attention due to their negative electron affinity (NEA), suggesting high-efficiency electron emitters. Combined with n-type doping technique using phosphorus (P) as donors, the unique NEA surface makes diamond a promising candidate for vacuum cold-cathode applications. However, high-electric fields are needed for the electron emission from the n-type doped diamond with NEA. Here we have clarified the electron emission mechanism of field emission from P-doped diamond having NEA utilizing combined ultraviolet photoelectron spectroscopy/field emission spectroscopy (UPS/FES). An UP spectrum has confirmed the NEA of H-terminated (1 1 1) surface of P-doped diamond. Despite the NEA, electron emission occurs only when electric field at the surface exceeds 4.2  ×  106 V cm-1. Further analysis by UPS/FES has revealed that the emitted energy level is shifted, indicating that the electron emission mechanism of n-type diamond having NEA surface does not follow a standard field emission theory, but is dominated by potential barrier formed within the diamond due to upward band bending. The reduction of internal barrier is the key to achieve high-efficiency electron emitters using P-doped diamond with NEA, of which application ranges from high-resolution electron spectroscopy to novel vacuum nanoelectronics devices.

  1. A comparative audit of anticardiolipin antibodies in oligoclonal band negative and positive multiple sclerosis.

    PubMed

    Vilisaar, Janek; Wilson, Martin; Niepel, Graham; Blumhardt, Lance D; Constantinescu, Cris S

    2005-08-01

    It has been suggested that multiple sclerosis (MS) patients with positive anticardiolipin antibodies (ACLA) have some atypical features, including absent oligoclonal bands (OCB) in the cerebrospinal fluid (CSF). Our aim was to compare the frequencies of ACLA and related laboratory and clinical features in OCB negative (OCB-) and positive (OCB+) MS patients. We compared 41 OCB- patients attending a MS Clinic in a tertiary referral center, with 206 OCB+ patients. ACLA, anti-beta2-glycoprotein and other autoantibodies, lupus anticoagulant and coagulation markers were measured. We found a higher frequency of ACLA in OCB- patients, 18/41 versus 33/206 in OCB+ patients (P<0.0001). OCB- patients had more progressive MS than OCB+ subjects. There were no differences in age, sex, Expanded Disability Status Scale (EDSS) score, antiphospholipid syndrome symptoms between the groups. ACLA+ MS patients were more frequently in the OCB- group. Although this may suggest that they represent a special subgroup of MS, no other clinical or laboratory findings distinguish the groups. Although OCB- MS patients may be thought to be less active immunologically, this study shows they have more frequently ACLA than OCB+ patients. OCB- MS patients in our cohort do not appear to have a more benign form of MS, as has previously been suggested. PMID:16042217

  2. Ultraflattened high negative chromatic dispersion over O+E+S+C+L+U bands of a microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Mahmud, Russel Reza; Razzak, S. M. Abdur; Hasan, Md. Imran; Hasanuzzaman, G. K. M.

    2015-09-01

    This paper presents a large negative flattened dispersion with high birefringence for a very wide wavelength range by designing a new high index lead silicate (SF57) soft glass equiangular decagonal spiral microstructured optical fiber (DS-MOF). The bandwidth supports the second and third windows covering the O+E+S+C+L+U bands in the infrared region. The guiding properties of the DS-MOF are investigated by the finite-element method with a perfectly matched layer boundary. The proposed design is a suitable candidate for the application of residual dispersion compensation with maintaining polarization characteristics since it offers a high negative flattened dispersion of -(453±7) psṡnm-1 km-1 with a high birefringence of the order 10-2 for the wide wavelength range of 1.15 to 1.75 μm. The DS-MOF has some circular air holes that make the fabrication process simple. In addition, the effects of changing the structural parameters by up to ±4% are also analyzed to ensure the accuracy during the fabrication process.

  3. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    NASA Astrophysics Data System (ADS)

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-04-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices.

  4. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12.

    PubMed

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-01-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924

  5. Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12

    PubMed Central

    Ge, Xianghong; Mao, Yanchao; Liu, Xiansheng; Cheng, Yongguang; Yuan, Baohe; Chao, Mingju; Liang, Erjun

    2016-01-01

    In this paper, we present a novel material with the formula of ZrScMo2VO12 for the first time. It was demonstrated that this material exhibits not only excellent negative thermal expansion (NTE) property over a wide temperature range (at least from 150 to 823 K), but also very intense photoluminescence covering the entire visible region. Structure analysis shows that ZrScMo2VO12 has an orthorhombic structure with the space group Pbcn (No. 60) at room temperature. A phase transition from monoclinic to orthorhombic structure between 70 and 90 K is also revealed. The intense white light emission is tentatively attributed to the n- and p-type like co-doping effect which creates not only the donor- and acceptor-like states in the band gap, but also donor-acceptor pairs and even bound exciton complexes. The excellent NTE property integrated with the intense white-light emission implies a potential application of this material in light emitting diode and other photoelectric devices. PMID:27098924

  6. Complex band structure of topological insulator Bi2Se3.

    PubMed

    Betancourt, J; Li, S; Dang, X; Burton, J D; Tsymbal, E Y; Velev, J P

    2016-10-01

    Topological insulators are very interesting from a fundamental point of view, and their unique properties may be useful for electronic and spintronic device applications. From the point of view of applications it is important to understand the decay behavior of carriers injected in the band gap of the topological insulator, which is determined by its complex band structure (CBS). Using first-principles calculations, we investigate the dispersion and symmetry of the complex bands of Bi2Se3 family of three-dimensional topological insulators. We compare the CBS of a band insulator and a topological insulator and follow the CBS evolution in both when the spin-orbit interaction is turned on. We find significant differences in the CBS linked to the topological band structure. In particular, our results demonstrate that the evanescent states in Bi2Se3 are non-trivially complex, i.e. contain both the real and imaginary contributions. This explains quantitatively the oscillatory behavior of the band gap obtained from Bi2Se3 (0 0 0 1) slab calculations. PMID:27485021

  7. Simulation of the Band Structure of Graphene and Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Mina, Aziz N.; Awadallah, Attia A.; Phillips, Adel H.; Ahmed, Riham R.

    2012-02-01

    Simulation technique has been performed to simulate the band structure of both graphene and carbon nanotube. Accordingly, the dispersion relations for graphene and carbon nanotube are deduced analytically, using the tight binding model & LCAO scheme. The results from the simulation of the dispersion relation of both graphene and carbon nanotube were found to be consistent with those in the literature which indicates the correctness of the process of simulation technique. The present research is very important for tailoring graphene and carbon nanotube with specific band structure, in order to satisfy the required electronic properties of them.

  8. Novel structural flexibility identification in narrow frequency bands

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Moon, F. L.

    2012-12-01

    A ‘Sub-PolyMAX’ method is proposed in this paper not only for estimating modal parameters, but also for identifying structural flexibility by processing the impact test data in narrow frequency bands. The traditional PolyMAX method obtains denominator polynomial coefficients by minimizing the least square (LS) errors of frequency response function (FRF) estimates over the whole frequency range, but FRF peaks in different structural modes may have different levels of magnitude, which leads to the modal parameters identified for the modes with small FRF peaks being inaccurate. In contrast, the proposed Sub-PolyMAX method implements the LS solver in each subspace of the whole frequency range separately; thus the results identified from a narrow frequency band are not affected by FRF data in other frequency bands. In performing structural identification in narrow frequency bands, not in the whole frequency space, the proposed method has the following merits: (1) it produces accurate modal parameters, even for the modes with very small FRF peaks; (2) it significantly reduces computation cost by reducing the number of frequency lines and the model order in each LS implementation; (3) it accurately identifies structural flexibility from impact test data, from which structural deflection under any static load can be predicted. Numerical and laboratory examples are investigated to verify the effectiveness of the proposed method.

  9. Reconfigurable wave band structure of an artificial square ice

    NASA Astrophysics Data System (ADS)

    Iacocca, Ezio; Gliga, Sebastian; Stamps, Robert L.; Heinonen, Olle

    2016-04-01

    Artificial square ices are structures composed of magnetic nanoelements arranged on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each vertex, leading to geometrical frustration. Using a semianalytical approach, we show that square ices exhibit a rich spin-wave band structure that is tunable both by external magnetic fields and the magnetization configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the element edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semianalytical approach. Our results show that artificial square ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.

  10. 5 CFR 9701.321 - Structure of bands.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY...

  11. Band-structure loops and multistability in cavity QED

    SciTech Connect

    Prasanna Venkatesh, B.; O'Dell, D. H. J.; Larson, J.

    2011-06-15

    We calculate the band structure of ultracold atoms located inside a laser-driven optical cavity. For parameters where the atom-cavity system exhibits bistability, the atomic band structure develops loop structures akin to the ones predicted for Bose-Einstein condensates in ordinary (noncavity) optical lattices. However, in our case the nonlinearity derives from the cavity back-action rather than from direct interatomic interactions. We find both bi- and tristable regimes associated with the lowest band, and show that the multistability we observe can be analyzed in terms of swallowtail catastrophes. Dynamic and energetic stability of the mean-field solutions is also discussed, and we show that the bistable solutions have, as expected, one unstable and two stable branches. The presence of loops in the atomic band structure has important implications for proposals concerning Bloch oscillations of atoms inside optical cavities [Peden et al., Phys. Rev. A 80, 043803 (2009); Prasanna Venkatesh et al., Phys. Rev. A 80, 063834 (2009)].

  12. Band structure of W and Mo by empirical pseudopotential method

    NASA Technical Reports Server (NTRS)

    Sridhar, C. G.; Whiting, E. E.

    1977-01-01

    The empirical pseudopotential method (EPM) is used to calculate the band structure of tungsten and molybdenum. Agreement between the calculated reflectivity, density of states, density of states at the Fermi surface and location of the Fermi surface from this study and experimental measurements and previous calculations is good. Also the charge distribution shows the proper topological distribution of charge for a bcc crystal.

  13. Photonic Band Gap structures: A new approach to accelerator cavities

    SciTech Connect

    Kroll, N. |; Smith, D.R.; Schultz, S.

    1992-12-31

    We introduce a new accelerator cavity design based on Photonic Band Gap (PGB) structures. The PGB cavity consists of a two-dimensional periodic array of high dielectric, low loss cylinders with a single removal defect, bounded on top and bottom by conducting sheets. We present the results of both numerical simulations and experimental measurements on the PGB cavity.

  14. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect

    Marsh, Roark A.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  15. Complex band structure in neutron-deficient {sup 178}Hg

    SciTech Connect

    Kondev, F. G.; Carpenter, M. P.; Janssens, R. V. F.; Wiedenhoever, I.; Alcorta, M.; Bhattacharyya, P.; Brown, L. T.; Davids, C. N.; Fischer, S. M.; Khoo, T. L.

    2000-01-01

    Using the GAMMASPHERE array in conjunction with the Fragment Mass Analyzer, the level structure of the near drip-line nucleus {sup 178}Hg has been considerably expanded with the recoil-decay tagging technique. Of particular interest is a new rotational band which exhibits a complex decay towards the low spin states arising from both the prolate-deformed and the nearly spherical coexisting minima. It is proposed that this band is associated at low spin with an octupole vibration which is crossed at moderate frequency by a shape driving, two quasiproton excitation. (c) 1999 The American Physical Society.

  16. Electronic band structure of magnetic bilayer graphene superlattices

    SciTech Connect

    Pham, C. Huy; Nguyen, T. Thuong

    2014-09-28

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  17. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  18. Band structures in 98Ru and 99Ru

    NASA Astrophysics Data System (ADS)

    Van Voorthuysen, E. H. Du Marchie; Devoigt, M. J. A.; Blasi, N.; Jansen, J. F. W.

    1981-03-01

    The level schemes of 98, 99Ru were studied with the reactions 98Mo(α, 3nγ) and 98Mo(α, 4nγ) at Eα = 35 to 55 MeV, using a large variety of in-beam γ-ray detection techniques and conversion-electron measurements. A search for the 3 - state was carried out with the reaction 98Ru(p, p'). The ground-state band of 98Ru was excited up to Jπ = (12) + and a negative-parity band up to (15) -. New levels in 98Ru were found at Ex = 2285 ( Jπ = 4 +), 2435 ( Jπ = (3 -, 4 +)), 2671, 3540, 4224, 4847, 4915 ( Jπ = (12) +), 4989 ( Jπ = (12 +)), 5521 ( Jπ = (13) -), 5889, 6591 ( Jπ = (15) -), and 7621 keV. New unambiguous spin and parity assignments were made for the levels at Ex = 2014 and 3852 keV, as Jπ = 3 + and 9 -, respectively. New levels in 99Ru were found at Ex = 1976, 2021 ( J π = ( {15}/{2}+) ), 2393, 2401 ( J π = ( {17}/{2}+) ), 2875 (π = (+)), 3037, 3201 ( J π = ( {23}/{2}) -), 3460 ( J = ( {17}/{2}) ), 3484 ( J π = ( {21}/{2}+) ), 3985, 4224 ( J π = ( {27}/{2}-) ), and 5359 keV. The 1070 keV, J π = {11}/{2}- level in 99Ru has a half-life of 2.8 ns. A strongly excited negative-parity band is built on this level. A positive-parity band based on the ground state was excited up to J π = ( {21}/{2}+) . The level schemes are well reproduced by the interacting boson model in the vibrational limit.

  19. Coupling effect of quantum wells on band structure

    NASA Astrophysics Data System (ADS)

    Jie, Chen; Weiyou, Zeng

    2015-10-01

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps.

  20. Rotational band structure in odd-odd /sup 132/La

    SciTech Connect

    Oliveira, J. R. B.; Emediato, L. G. R.; Rizzutto, M. A.; Ribas, R. V.; Seale, W. A.; Rao, M. N.; Medina, N. H.; Botelho, S.; Cybulska, E. W.

    1989-06-01

    The level scheme of /sup 132/La was obtained with in-beam gamma spectroscopy techniques using fusion evaporation reactions with /sup 10,11/B, /sup 14/N beams and isotopic targets of Te and Sn. Two rotational band structures were seen. One band, assigned to the ..pi../ital h//sub 11/2//direct product/..nu..h/sub 11/2/, shows a smaller signature splitting as compared to the isotones /sup 134/Pr and /sup 136/Pm, indicating a slight reduction of triaxiality. The other band has been tentatively assigned the ..pi..(422)3/2/sup +//direct product/..nu..h/sub 11/2/ configuration, and shows no signature splitting indicating a near prolate shape.

  1. Mid-frequency Band Dynamics of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  2. Identical band gaps in structurally re-entrant honeycombs.

    PubMed

    Zhu, Zhu-Wei; Deng, Zi-Chen

    2016-08-01

    Structurally re-entrant honeycomb is a sort of artificial lattice material, characterized by star-like unit cells with re-entrant topology, as well as a high connectivity that the number of folded sheets jointing at each vertex is at least six. In-plane elastic wave propagation in this highly connected honeycomb is investigated through the application of the finite element method in conjunction with the Bloch's theorem. Attention is devoted to exploring the band characteristics of two lattice configurations with different star-like unit cells, defined as structurally square re-entrant honeycomb (SSRH) and structurally hexagonal re-entrant honeycomb (SHRH), respectively. Identical band gaps involving their locations and widths, interestingly, are present in the two considered configurations, attributed to the resonance of the sketch folded sheets, the basic component elements for SSRH and SHRH. In addition, the concept of heuristic models is implemented to elucidate the underlying physics of the identical gaps. The phenomenon of the identical bandgaps is not only beneficial for people to further explore the band characteristics of lattice materials, but also provides the structurally re-entrant honeycombs as potential host structures for the design of lattice-based metamaterials of interest for elastic wave control. PMID:27586722

  3. Measurement of valence band structure in arbitrary dielectric films

    SciTech Connect

    Uhm, Han S.; Choi, Eun H.

    2012-10-15

    A new way of measuring the band structure of various dielectric materials using the secondary electron emission from Auger neutralization of ions is introduced. The first example of this measurement scheme is the magnesium oxide (MgO) films with respect to the application of the films in the display industries. The density of state in the valence bands of MgO film and MgO film with a functional layer (FL) deposited over a dielectric surface reveals that the density peak of film with a FL is considerably less than that of film, thereby indicating a better performance of MgO film with functional layer in display devices. The second example of the measurement is the boron-zinc oxide (BZO) films with respect to the application of the films to the development of solar cells. The measurement of density of state in BZO film suggests that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film. Secondary electron emission by the Auger neutralization of ions is highly instrumental for the determination of the density of states in the valence band of dielectric materials.

  4. Spin wave band structure of artificial square ices

    NASA Astrophysics Data System (ADS)

    Iacocca, Ezio; Gliga, Sebastian; Stamps, Robert; Heinonen, Olle

    Artificial square spin ices are structures composed of magnetic elements located on the sites of a geometrically frustrated, two-dimensional square lattice. Using a semi-analytical approach, we show that square spin ices exhibit a rich spin wave band structure that is tunable both by external magnetic fields and the magnetic state of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the edges of each element, leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semi-analytical approach. This study shows that the magnon spectra, and therefore group and phase velocities and band gap, can be manipulated by external fields, temperature, or more sophisticated techniques such as using spin torque on individual elements, and suggesting that artificial square spin ices can be used as metamaterials for spin waves. Our results close the gap between the research fields of artificial spin ices and magnonics. E.I. acknowledges the Swedish Research Council, Reg.No. 637-2014-6863. The work by O.H. was funded by the Department of Energy Office of Science, Materials Sciences and Engineering Division. The work by R.L.S. was funded by EPSRC EP/L002922/1.

  5. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.

    PubMed

    Ulstrup, Søren; Čabo, Antonija Grubišić; Miwa, Jill A; Riley, Jonathon M; Grønborg, Signe S; Johannsen, Jens C; Cacho, Cephise; Alexander, Oliver; Chapman, Richard T; Springate, Emma; Bianchi, Marco; Dendzik, Maciej; Lauritsen, Jeppe V; King, Phil D C; Hofmann, Philip

    2016-06-28

    The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure. PMID:27267820

  6. Calculation of complex band structure for low symmetry lattices

    NASA Astrophysics Data System (ADS)

    Srivastava, Manoj; Zhang, Xiaoguang; Cheng, Hai-Ping

    2009-03-01

    Complex band structure calculation is an integral part of a first-principles plane-wave based quantum transport method. [1] The direction of decay for the complex wave vectors is also the transport direction. The existing algorithm [1] has the limitation that it only allows the transport direction along a lattice vector perpendicular to the basal plane formed by two other lattice vectors, e.g., the c-axis of a tetragonal lattice. We generalize this algorithm to nonorthogonal lattices with transport direction not aligned with any lattice vector. We show that this generalization leads to changes in the boundary conditions and the Schrodinger's equation projected to the transport direction. We present, as an example, the calculation of the complex band structure of fcc Cu along a direction perpendicular to the (111) basal plane. [1] Hyoung Joon Choi and Jisoon Ihm, Phys. Rev. B 59, 2267 (1999).

  7. Graphene on Ru(0001): Evidence for two graphene band structures

    SciTech Connect

    Katsiev, Khabibulakh; Losovyj, Yaroslav; Zhou, Zihao; Vescovo, E; Liu, L.; Dowben, P. A.; Goodman, D. Wayne

    2012-05-03

    High-resolution photoemission illustrates that the band structure of graphene on Ru(0001) exhibits a well-defined splitting. This splitting is largest with the graphene directly on the Ru(0001) substrate, whereas with a chemisorbed oxygen spacer layer between the graphene and the metal substrate, this splitting is considerably reduced. This splitting is attributed to a combination of chemical interactions between graphene and Ru(0001) and to screening of the former by the latter, not spin-orbit coupling.

  8. Sub-band structure engineering for advanced CMOS channels

    NASA Astrophysics Data System (ADS)

    Takagi, Shin-ichi; Mizuno, T.; Tezuka, T.; Sugiyama, N.; Nakaharai, S.; Numata, T.; Koga, J.; Uchida, K.

    2005-05-01

    This paper reviews our recent studies of novel CMOS channels based on the concept of sub-band structure engineering. This device design concept can be realized as strained-Si channel MOSFETs, ultra-thin SOI MOSFETs and Ge-on-Insulator (GOI) MOSFETs. An important factor for the electron mobility enhancement is the introduction of larger sub-band energy splitting between the 2- and 4-fold valleys on a (1 0 0) surface, which can be obtained in strained-Si and ultra-thin body channels. The electrical properties of strained-Si MOSFETs are summarized with an emphasis on strained-SOI structures. Also, the importance of the precise control of ultra-thin SOI thickness is pointed out from the experimental results of the SOI thickness dependence of mobility. Furthermore, it is shown that the increase in the sub-band energy splitting can also be effective in obtaining higher current drive of n-channel MOSFETs under ballistic transport regime. This suggests that the current drive enhancement based on MOS channel engineering utilizing strain and ultra-thin body structures can be extended to ultra-short channel MOSFETs dominated by ballistic transport.

  9. Band structure and density of states of. beta. -silicon nitride

    SciTech Connect

    Ren, S.Y.; Ching, W.Y.

    1980-01-01

    The electronic energy band structure of ..beta..-Si/sub 3/N/sub 4/ has been calculated using the first principles LCAO method. The bottom of the Conduction Band (CB) is at GAMMA and the top of the valence band (VB) is located along GAMMAA line. The very flat top VB along GAMMAA accounts for a large hole effective mass. The indirect band gap obtained is very close to the experimental value of 5.2 eV. The density of states (DOS) and partial DOS are also obtained and are in good agreement with photoemission data. In the VB region from -20. to -14. eV the states are entirely composed of N 2s states while in the range from -10.5 eV up, the states are predominately N 2p in character. In the CB region, the DOS is dominated by Si 3s and 3p orbital components. These results are consistent with charge analysis which indicates that on average, 0.56 electron is transferred from Si to N per Si-N bond.

  10. Electronic band structure and photoemission: A review and projection

    SciTech Connect

    Falicov, L.M.

    1987-09-01

    A brief review of electronic-structure calculations in solids, as a means of interpreting photoemission spectra, is presented. The calculations are, in general, of three types: ordinary one-electron-like band structures, which apply to bulk solids and are the basis of all other calculations; surface modified calculations, which take into account, self-consistently if at all possible, the presence of a vacuum-solid interface and of the electronic modifications caused thereby; and many-body calculations, which go beyond average-field approximations and consider dynamic rearrangement effects caused by electron-electron correlations during the photoemission process. 44 refs.

  11. Band to band tunneling in III-V semiconductors: Implications of complex band structure, strain, orientation, and off-zone center contribution

    SciTech Connect

    Majumdar, Kausik

    2014-05-07

    In this paper, we use a tight binding Hamiltonian with spin orbit coupling to study the real and complex band structures of relaxed and strained GaAs. A simple d orbital on-site energy shift coupled with appropriate scaling of the off-diagonal terms is found to correctly reproduce the band-edge shifts with strain. Four different 〈100〉 strain combinations, namely, uniaxial compressive, uniaxial tensile, biaxial compressive, and biaxial tensile strain are studied, revealing rich valence band structure and strong relative orientation dependent tunneling. It is found that complex bands are unable to provide unambiguous tunneling paths away from the Brillouin zone center. Tunneling current density distribution over the Brillouin zone is computed using non-equilibrium Green's function approach elucidating a physical picture of band to band tunneling.

  12. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  13. Measurements of the energy band gap and valence band structure of AgSbTe2

    NASA Astrophysics Data System (ADS)

    Jovovic, V.; Heremans, J. P.

    2008-06-01

    The de Haas-van Alphen effect, galvanomagnetic and thermomagnetic properties of high-quality crystals of AgSbTe2 are measured and analyzed. The transport properties reveal the material studied here to be a very narrow-gap semiconductor (Eg≈7.6±3meV) with ˜5×1019cm-3 holes in a valence band with a high density of states and thermally excited ˜1017cm-3 high-mobility (2200cm2/Vs) electrons at 300 K. The quantum oscillations are measured with the magnetic field oriented along the ⟨111⟩ axis. Taken together with the Fermi energy derived from the transport properties, the oscillations confirm the calculated valence band structure composed of 12 half-pockets located at the X -points of the Brillouin zone, six with a density-of-states effective mass mda∗≫0.21me and six with mdb∗≫0.55me , giving a total density-of-states effective mass, including Fermi pocket degeneracy, of md∗≈1.7±0.2me ( me is the free electron mass). The lattice term dominates the thermal conductivity, and the electronic contribution in samples with both electrons and holes present is in turn dominated by the ambipolar term. The low thermal conductivity and very large hole mass of AgSbTe2 make it a most promising p -type thermoelectric material.

  14. Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Dong; Wang, Yue-Sheng

    2016-05-01

    The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation. xml:lang="fr"

  15. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    SciTech Connect

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.

    2008-12-10

    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  16. X-BAND TRAVELING WAVE RF DEFLECTOR STRUCTURES

    SciTech Connect

    Wang, J.W.; Tantawi, S.; /SLAC

    2008-12-18

    Design studies on the X-Band transverse RF deflectors operating at HEM{sub ll} mode have been made for two different applications. One is for beam measurement of time-sliced emittance and slice energy spread for the upgraded LCLS project, its optimization in RF efficiency and system design are carefully considered. Another is to design an ultra-fast RF kicker in order to pick up single bunches from the bunch-train of the B-factory storage ring. The challenges are to obtain very short structure filling time with high RF group velocity and good RF efficiency with reasonable transverse shunt impedance. Its RF system will be discussed.

  17. Effect of tool eccentricity on surface periodic banded structures in friction stir welding

    NASA Astrophysics Data System (ADS)

    Guo, N.; Wang, M. R.; Meng, Q.; Zhou, L.; Tang, D. Y.

    2015-12-01

    This paper describes the relationship between tool eccentricity and surface formation of periodic banded structures in friction stir welding. Motion characteristics of welding tool are calculated to explore the forming mechanism of banded structures. The results reveal that the welding tool motion differences on advancing side and retreating side caused by eccentricity are crucial for the formation of banded structures. The crests and troughs of banded structures form during tool motion on retreating side and advancing side, respectively.

  18. Negation, questions, and structure building in a homesign system

    PubMed Central

    Franklin, Amy; Giannakidou, Anastasia; Goldin-Meadow, Susan

    2013-01-01

    Deaf children whose hearing losses are so severe that they cannot acquire spoken language, and whose hearing parents have not exposed them to sign language, use gestures called homesigns to communicate. Homesigns have been shown to contain many of the properties of natural languages. Here we ask whether homesign has structure building devices for negation and questions. We identify two meanings (negation, question) that correspond semantically to propositional functions, that is, to functions that apply to a sentence (whose semantic value is a proposition, φ) and yield another proposition that is more complex (¬φ for negation; ?φ for question). Combining φ with¬ or ? thus involves sentence modification. We propose that these negative and question functions are structure building operators, and we support this claim with data from an American homesigner. We show that: (a) each meaning is marked by a particular form in the child’s gesture system (side-to-side headshake for negation, manual flip for question); (b) the two markers occupy systematic, and different, positions at the periphery of the gesture sentences (headshake at the beginning, flip at the end); and (c) the flip is extended from questions to other uses associated with the wh-form (exclamatives, referential expressions of location) and thus functions like a category in natural languages. If what we see in homesign is a language creation process (Goldin-Meadow, 2003), and if negation and question formation involve sentential modification, then our analysis implies that homesign has at least this minimal sentential syntax. Our findings thus contribute to ongoing debates about properties that are fundamental to language and language learning. PMID:23630971

  19. Negation, questions, and structure building in a homesign system.

    PubMed

    Franklin, Amy; Giannakidou, Anastasia; Goldin-Meadow, Susan

    2011-03-01

    Deaf children whose hearing losses are so severe that they cannot acquire spoken language, and whose hearing parents have not exposed them to sign language, use gestures called homesigns to communicate. Homesigns have been shown to contain many of the properties of natural languages. Here we ask whether homesign has structure building devices for negation and questions. We identify two meanings (negation, question) that correspond semantically to propositional functions, that is, to functions that apply to a sentence (whose semantic value is a proposition, ϕ) and yield another proposition that is more complex (¬ϕ for negation; ?ϕ for question). Combining ϕ with ¬ or ? thus involves sentence modification. We propose that these negative and question functions are structure building operators, and we support this claim with data from an American homesigner. We show that: (a) each meaning is marked by a particular form in the child's gesture system (side-to-side headshake for negation, manual flip for question); (b) the two markers occupy systematic, and different, positions at the periphery of the gesture sentences (headshake at the beginning, flip at the end); and (c) the flip is extended from questions to other uses associated with the wh-form (exclamatives, referential expressions of location) and thus functions like a category in natural languages. If what we see in homesign is a language creation process (Goldin-Meadow, 2003), and if negation and question formation involve sentential modification, then our analysis implies that homesign has at least this minimal sentential syntax. Our findings thus contribute to ongoing debates about properties that are fundamental to language and language learning. PMID:23630971

  20. Brain Structural Signatures of Negative Symptoms in Depression and Schizophrenia

    PubMed Central

    Chuang, Jie-Yu; Murray, Graham K.; Metastasio, Antonio; Segarra, Nuria; Tait, Roger; Spencer, Jenny; Ziauddeen, Hisham; Dudas, Robert B.; Fletcher, Paul C.; Suckling, John

    2014-01-01

    Negative symptoms occur in several major mental health disorders with undetermined mechanisms and unsatisfactory treatments; identification of their neural correlates might unveil the underlying pathophysiological basis and pinpoint the therapeutic targets. In this study, participants with major depressive disorder (n = 24), schizophrenia (n = 22), and healthy controls (n = 20) were assessed with 10 frequently used negative symptom scales followed by principal component analysis (PCA) of the scores. A linear model with the prominent components identified by PCA was then regressed on gray and white-matter volumes estimated from T1-weighted magnetic resonance imaging. In depressed patients, negative symptoms such as blunted affect, alogia, withdrawal, and cognitive impairment, assessed mostly via clinician-rated scales were inversely associated with gray matter volume in the bilateral cerebellum. In patients with schizophrenia, anhedonia, and avolition evaluated via self-rated scales inversely related to white-matter volume in the left anterior limb of internal capsule/anterior thalamic radiation and positively in the left superior longitudinal fasiculus. The pathophysiological mechanisms underlying negative symptoms might differ between depression and schizophrenia. These results also point to future negative symptom scale development primarily focused on detecting and monitoring the corresponding changes to brain structure or function. PMID:25221526

  1. Burnout studies of X-band radar negative resistance transistor low noise amplifiers

    NASA Astrophysics Data System (ADS)

    Paul, D. K.; Gardner, P.

    1992-03-01

    GaAs FETs and HEMTs can be configured to give low noise, negative resistance microwave amplification. Such low noise amplifiers have the advantage of an inherent bypass path after device burnout. This feature is potentially useful in radar receiver applications. Test results for prototype LNAs are described, showing burnout energies comparable to those of conventional transmission mode amplifiers using similar devices. Bypass path losses after burnout are around 4 dB, approximately 20 dB less than for a failed transmission mode amplifier.

  2. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  3. Polar semiconductor heterojunction structure energy band diagram considerations

    NASA Astrophysics Data System (ADS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  4. Band structure and the optical gain of GaInNAs/GaAs quantum wells modeled within 10-band and 8-band kp model

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Kudrawiec, R.; Miloszewski, J. M.; Weetman, P.; Misiewicz, J.; Wartak, M. S.

    2013-02-01

    The band structure and optical gain have been calculated for GaInNAs/GaAs quantum wells (QWs) with various nitrogen concentrations within the 10-band and 8-band kp models. Two approaches to calculate optical properties of GaInNAs/GaAs QWs have been compared and discussed in the context of available material parameters for dilute nitrides and the conduction band nonparabolicity due to the band anti-crossing (BAC) interaction between the N-related resonant level and the conduction band of a host material. It has been clearly shown that this nonparabolicity can be neglected in optical gain calculations since the dispersion of conduction band up to the Femi level is very close to parabolic for carrier concentrations typical for laser operation, i.e., 5 × 1018 cm-3. This means that the 8-band kp model when used to calculate the optical gain is very realistic and much easier to apply in QWs containing new dilute nitrides for which the BAC parameters are unknown. In such an approach, the energy gap and electron effective mass for N-containing materials are needed, instead of BAC parameters. These parameters are available experimentally much easier than BAC parameters.

  5. Influence of Structural Parameters on a Novel Metamaterial Absorber Structure at K-band Frequency

    NASA Astrophysics Data System (ADS)

    Cuong, Tran Manh; Thuy, Nguyen Thi; Tuan, Le Anh

    2016-05-01

    Metamaterials nowadays continue to gain attention thanks to their special electromagnetic characteristics. An increasing number of studies are being conducted on the absolute electromagnetic absorber configurations of high impedance surface materials at a certain frequency band. These configurations are usually fabricated with a layer of metal structure based on a dielectric sheet. In this study, we present an optimal design of a novel electromagnetic absorber metamaterial configuration working at a 23-GHz frequency range (K band).

  6. Tellurite glass defect-core spiral photonic crystal fiber with low loss and large negative flattened dispersion over S + C + L + U wavelength bands.

    PubMed

    Hasan, Md Rabiul; Hasan, Md Imran; Anower, Md Shamim

    2015-11-10

    A defected-core spiral photonic crystal fiber is proposed to achieve very large negative flattened dispersion and small confinement loss. Simulation results reveal that the designed structure exhibits very large flattened dispersion over S+C+L+U wavelength bands and an average dispersion of about -720.7  ps nm(-1) km(-1) with an absolute dispersion variation of 12.7  ps nm(-1)  km(-1) over the wavelength ranging from 1.45 to 1.65 μm. The proposed fiber has five air-hole rings in the cladding leading to very small confinement loss of 0.00111  dB/km at the excitation wavelength of 1.55 μm. The tolerance of the fiber dispersion of ±2% changing in the structural parameters is investigated for practical conditions. PMID:26560773

  7. Analysis of the electronic structure of crystals through band structure unfolding

    NASA Astrophysics Data System (ADS)

    Gordienko, A. B.; Kosobutsky, A. V.

    2016-03-01

    In this work, we consider an alternative implementation of the band structure unfolding method within the framework of the density functional theory, which combines the advantages of the basis of localized functions and plane waves. This approach has been used to analyze the electronic structure of the ordered CuCl x Br1- x copper halide alloys and F 0 center in MgO that enables us to reveal qualitatively the features remaining hidden when using the standard supercell method, because of the complex band structure of systems with defects.

  8. Invariant expansion for the trigonal band structure of graphene

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Zülicke, U.

    2010-12-01

    We present a symmetry analysis of the trigonal band structure in graphene, elucidating the transformational properties of the underlying basis functions and the crucial role of time-reversal invariance. Group theory is used to derive an invariant expansion of the Hamiltonian for electron states near the K points of the graphene Brillouin zone. Besides yielding the characteristic k -linear dispersion and higher oder corrections to it, this approach enables the systematic incorporation of all terms arising from external electric and magnetic fields, strain, and spin-orbit coupling up to any desired order. Several new contributions are found, in addition to reproducing results obtained previously within tight-binding calculations. Physical ramifications of these new terms are discussed.

  9. Phononic and photonic band gap structures: modelling and applications

    NASA Astrophysics Data System (ADS)

    Armenise, Mario N.; Campanella, Carlo E.; Ciminelli, Caterina; Dell'Olio, Francesco; Passaro, Vittorio M. N.

    2010-01-01

    Photonic crystals (PhCs) are artificial materials with a permittivity which is a periodic function of the position, with a period comparable to the wavelength of light. The most interesting characteristic of such materials is the presence of photonic band gaps (PBGs). PhCs have very interesting properties of light confinement and localization together with the strong reduction of the device size, orders of magnitude less than the conventional photonic devices, allowing a potential very high scale of integration. These structures possess unique characteristics enabling to operate as optical waveguides, high Q resonators, selective filters, lens or superprism. The ability to mould and guide light leads naturally to novel applications in several fields. Band gap formation in periodic structures also pertains to elastic wave propagation. Composite materials with elastic coefficients which are periodic functions of the position are named phononic crystals. They have properties similar to those of photonic crystals and corresponding applications too. By properly choosing the parameters one may obtain phononic crystals (PhnCs) with specific frequency gaps. An elastic wave, whose frequency lies within an absolute gap of a phononic crystal, will be completely reflected by it. This property allows realizing non-absorbing mirrors of elastic waves and vibration-free cavities which might be useful in high-precision mechanical systems operating in a given frequency range. Moreover, one can use elastic waves to study phenomena such as those associated with disorder, in more or less the same manner as with electromagnetic waves. The authors present in this paper an introductory survey of the basic concepts of these new technologies with particular emphasis on their main applications, together with a description of some modelling approaches.

  10. Role of interface band structure on hot electron transport

    NASA Astrophysics Data System (ADS)

    Garramone, John J.

    Knowledge of electron transport through materials and interfaces is fundamentally and technologically important. For example, metal interconnects within integrated circuits suffer increasingly from electromigration and signal delay due to an increase in resistance from grain boundary and sidewall scattering since their dimensions are becoming shorter than the electron mean free path. Additionally, all semiconductor based devices require the transport of electrons through materials and interfaces where scattering and parallel momentum conservation are important. In this thesis, the inelastic and elastic scattering of hot electrons are studied in nanometer thick copper, silver and gold films deposited on silicon substrates. Hot electrons are electron with energy greater than kBT above the Fermi level (EF). This work was performed utilizing ballistic electron emission microscopy (BEEM) which is a three terminal scanning tunneling microscopy (STM) technique that measures the percentage of hot electrons transmitted across a Schottky barrier interface. Hot electron attenuation lengths of the metals were extracted by measuring the BEEM current as a function of metal overlayer thickness for both hot electron and hot hole injection at 80 K and under ultra high vacuum. The inelastic and elastic scattering lengths were extracted by fitting the energetic dependence of the measured attenuation lengths to a Fermi liquid based model. A sharp increase in the attenuation length is observed at low injection energies, just above the Schottky barrier height, only for metals on Si(001) substrates. In contrast, the attenuation length measured on Si(111) substrates shows a sharp decrease. These results indicate that interface band structure and parallel momentum conservation have significant impact upon the transport of hot electrons across non epitaxial metal-semiconductor interfaces. In addition, they help to separate effects upon hot electron transport that are inherent to the metal

  11. Collective Band Structures in the Neutron-Rich 107,109Ru Nuclei

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-jiang; Gan, Cui-yun; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; M, Sakhaee; W, Ma C.; Long, Gui-lu; Deng, Jing-kang; Zhu, Ling-yan; Li, Ming; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; Y, Dardenne K.; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; N, Johnson R.; F, McGowan K.

    1998-11-01

    The levels in neutron-rich odd-A 107,109Ru nuclei have been investigated by using γ-γ- and γ-γ-γ-coincidence studies of the prompt γ-rays from the spontaneous fission of 252Cf. The ground state bands and the negative parity bands are identified and expanded in both nuclei. Triaxial rotor plus particle model calculations indicate the ground state bands originate from ν(d5/2 + g7/2) quasiparticle configurations and the negative parity bands are from νh11/2 orbital.

  12. Investigations of the Band Structure and Morphology of Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Knox, Kevin R.

    2011-12-01

    In this dissertation, I examine the electronic structure of two very different types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces. The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and micro probe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load

  13. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  14. Hyperspectral bands prediction based on inter-band spectral correlation structure

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman M.; Sharkawy, Mohamed El.; Elramly, Salwa H.

    2013-02-01

    Hyperspectral imaging has been widely studied in many applications; notably in climate changes, vegetation, and desert studies. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and spaceborne imaging. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we analyze the spectral cross correlation between bands for AVIRIS and Hyperion hyperspectral data; spectral cross correlation matrix is calculated, assessing the strength of the spectral matrix, we propose new technique to find highly correlated groups of bands in the hyperspectral data cube based on "inter band correlation square", and finally, we propose a new technique of band regrouping based on correlation values weights for different group of bands as network of correlation.

  15. Band-structure analysis from photoreflectance spectroscopy in (Ga,Mn)As

    SciTech Connect

    Yastrubchak, Oksana; Gluba, Lukasz; Zuk, Jerzy; Wosinski, Tadeusz; Andrearczyk, Tomasz; Domagala, Jaroslaw Z.; Sadowski, Janusz

    2013-12-04

    Modulation photoreflectance spectroscopy has been applied to study the band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn content. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap-transition energy in the (Ga,Mn)As layers with increasing Mn content are interpreted in terms of a disordered valence band, extended within the band gap, formed, in highly Mn-doped (Ga,Mn)As, as a result of merging the Mn-related impurity band with the host GaAs valence band.

  16. Band structure of ABC-trilayer graphene superlattice

    SciTech Connect

    Uddin, Salah Chan, K. S.

    2014-11-28

    We investigate the effect of one-dimensional periodic potentials on the low energy band structure of ABC trilayer graphene first by assuming that all the three layers have the same potential. Extra Dirac points having the same electron hole crossing energy as that of the original Dirac point are generated by superlattice potentials with equal well and barrier widths. When the potential height is increased, the numbers of extra Dirac points are increased. The dispersions around the Dirac points are not isotropic. It is noted that the dispersion along the k{sub y} direction for k{sub x} = 0 oscillates between a non-linear dispersion and a linear dispersion when the potential height is increased. When the well and barrier widths are not identical, the symmetry of the conduction and valence bands is broken. The extra Dirac points are shifted either upward or downward depending on the barrier and well widths from the zero energy, while the position of the central Dirac point oscillates with the superlattice potential height. By considering different potentials for different layers, extra Dirac points are generated not from the original Dirac points but from the valleys formed in the energy spectrum. Two extra Dirac points appear from each pair of touched valleys, so four Dirac points appeared in the spectrum at particular barrier height. By increasing the barrier height of superlattice potential two Dirac points merge into the original Dirac point. This emerging and merging of extra Dirac points is different from the equal potential case.

  17. Quantum structure of negation and conjunction in human thought

    PubMed Central

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-01-01

    We analyze in this paper the data collected in a set of experiments investigating how people combine natural concepts. We study the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction Fruits And Vegetables, but also their conjunction when one or both concepts are negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on conceptual combinations, revealing systematic deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a new significant and a priori unexpected deviation from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an “emergent reasoning” and a “logical reasoning,” and that these two processes are represented in a Fock space algebraic structure. PMID:26483715

  18. Quantum structure of negation and conjunction in human thought.

    PubMed

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-01-01

    We analyze in this paper the data collected in a set of experiments investigating how people combine natural concepts. We study the mutual influence of conceptual conjunction and negation by measuring the membership weights of a list of exemplars with respect to two concepts, e.g., Fruits and Vegetables, and their conjunction Fruits And Vegetables, but also their conjunction when one or both concepts are negated, namely, Fruits And Not Vegetables, Not Fruits And Vegetables, and Not Fruits And Not Vegetables. Our findings sharpen and advance existing analysis on conceptual combinations, revealing systematic deviations from classical (fuzzy set) logic and probability theory. And, more important, our results give further considerable evidence to the validity of our quantum-theoretic framework for the combination of two concepts. Indeed, the representation of conceptual negation naturally arises from the general assumptions of our two-sector Fock space model, and this representation faithfully agrees with the collected data. In addition, we find a new significant and a priori unexpected deviation from classicality, which can exactly be explained by assuming that human reasoning is the superposition of an "emergent reasoning" and a "logical reasoning," and that these two processes are represented in a Fock space algebraic structure. PMID:26483715

  19. Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves

    SciTech Connect

    Sakai, Osamu; Sakaguchi, Takui; Tachibana, Kunihide

    2007-04-01

    Two theoretical approaches appropriate for two-dimensional plasma photonic crystals reveal dispersions of propagating waves including photonic (electromagnetic) band gaps and multiflatbands. A modified plane-wave expansion method yields dispersions of collisional periodical plasmas, and the complex-value solution of a wave equation by a finite difference method enables us to obtain dispersions with structure effects in an individual microplasma. Periodical plasma arrays form band gaps as well as normal photonic crystals, and multiflatbands are present below the electron plasma frequency in the transverse electric field mode. Electron elastic collisions lower the top frequency of the multiflatbands but have little effect on band gap properties. The spatial gradient of the local dielectric constant resulting from an electron density profile widens the frequency region of the multiflatbands, as demonstrated by the change of surface wave distributions. Propagation properties described in dispersions including band gaps and flatbands agree with experimental observations of microplasma arrays.

  20. Projected shell model study of band structure of 90Nb

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Singh, Dhanvir; Gupta, Anuradha; Singh, Suram; Bharti, Arun

    2016-05-01

    A systematic study of two-quasiparticle bands of the odd-odd 90Nb nucleus is performed using the projected shell model approach. Yrast band with some other bands have been obtained and back-bending in moment of inertia has also been calculated and compared with the available experimental. On comparing the available experimental data, it is found that the treatment with PSM provides a satisfactory explanation of the available data.

  1. Influence of banded structure on the mechanical properties of a high-strength maraging steel

    SciTech Connect

    Ahmed, M.; Salam, I.; Hashmi, F.H.; Khan, A.Q.

    1997-04-01

    Chemical inhomogeneity results in the formation of banded structure in high-strength maraging steels. Segregation of titanium and molybdenum was found to be the primary cause of banded structure formation. When the concentrations of these elements increased beyond certain critical levels, bands comprising different grain sizes formed. The inclusions existed preferentially along the interface of the bands. A high-temperature homogenization treatment substantially reduced or eliminated the banded structure. The large grain size resulting from the homogenization treatment was subsequently reduced by a grain refinement treatment. The mechanical properties of the steel substantially improved following homogenization and grain refinement.

  2. Simultaneous Hosting of Positive and Negative Trions and the Enhanced Direct Band Emission in MoSe2/MoS2 Heterostacked Multilayers.

    PubMed

    Kim, Min Su; Seo, Changwon; Kim, Hyun; Lee, Jubok; Luong, Dinh Hoa; Park, Ji-Hoon; Han, Gang Hee; Kim, Jeongyong

    2016-06-28

    Heterostacking of layered transition-metal dichalcogenide (LTMD) monolayers (1Ls) offers a convenient way of designing two-dimensional exciton systems. Here we demonstrate the simultaneous hosting of positive trions and negative trions in heterobilayers made by vertically stacking 1L MoSe2 and 1L MoS2. The charge transfer occurring between the 1Ls of MoSe2 and MoS2 converted the polarity of trions in 1L MoSe2 from negative to positive, resulting in the presence of positive trions in the 1L MoSe2 and negative trions in the 1L MoS2 of the same heterostacked bilayer. Significantly enhanced MoSe2 photoluminescence (PL) in the heterostacked bilayers compared to the PL of 1L MoSe2 alone suggests that, unlike other previously reported heterostacked bilayers, direct band transition of 1L MoSe2 in heterobilayer was enhanced after the vertical heterostacking. Moreover, by inserting hexagonal BN monolayers between 1L MoSe2 and 1L MoS2, we were able to adjust the charge transfer to maximize the MoSe2 PL of the heteromultilayers and have achieved a 9-fold increase of the PL emission. The enhanced optical properties of our heterostacked LTMDs suggest the exciting possibility of designing LTMD structures that exploit the superior optical properties of 1L LTMDs. PMID:27187667

  3. Global Kinetic Modeling of Banded Electron Structures in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Significant fluxes of 10 eV to 30 keV electrons have been detected in the plasmasphere, appearing as banded structures in energy with broad spatial extents and slowly evolving over several days. It is thought that these populations are decaying plasma sheet electrons injected into the corotating region of near-Earth space. This capture can occur when the convective electric field drops rapidly and the Alfven boundary suddenly outward, trapping the inner edge of the plasma sheet along closed drift paths. Our bounce-averaged kinetic model of superthermal electron transport is able to simulate this capture and the subsequent drift, diffusion, and decay of the plasma cloud. Results of this simulation will be shown and discussed, from the initial injection during the elevated convection to the final loss of the particles. It is thought that not only Coulomb collisions but also wave-particle interactions play a significant role in altering the plasma cloud. Quasilinear diffusion is currently being incorporated into the model and the importance of this mechanism will be examined. Also, the high anisotropy of the trapped population could be unstable and generate plasma waves. These and other processes will be investigated to determine the final fate of the cloud and to quantify where, how, and when the energy of the plasma cloud is deposited. Comparisons with CRRES observations of these events are shown to verify the model and explain the data.

  4. Electronic band structure calculations of bismuth-antimony nanowires

    NASA Astrophysics Data System (ADS)

    Levin, Andrei; Dresselhaus, Mildred

    2012-02-01

    Alloys of bismuth and antimony received initial interest due to their unmatched low-temperature thermoelectric performance, and have drawn more recent attention as the first 3D topological insulators. One-dimensional bismuth-antimony (BiSb) nanowires display interesting quantum confinement effects, and are expected to exhibit even better thermoelectric properties than bulk BiSb. Due to the small, anisotropic carrier effective masses, the electronic properties of BiSb nanowires show great sensitivity to nanowire diameter, crystalline orientation, and alloy composition. We develop a theoretical model for calculating the band structure of BiSb nanowires. For a given crystalline orientation, BiSb nanowires can be in the semimetallic, direct semiconducting, or indirect semiconducting phase, depending on nanowire diameter and alloy composition. These ``phase diagrams'' turn out to be remarkably similar among the different orientations, which is surprising in light of the anisotropy of the bulk BiSb Fermi surface. We predict a novel direct semiconducting phase for nanowires with diameter less than ˜15 nm, over a narrow composition range. We also find that, in contrast to the bulk and thin film BiSb cases, a gapless state with Dirac dispersion cannot be realized in BiSb nanowires.

  5. Miniaturization of electromagnetic band gap structures for mobile applications

    NASA Astrophysics Data System (ADS)

    Goussetis, G.; Feresidis, A. P.; Palikaras, G. K.; Kitra, M.; Vardaxoglou, J. C.

    2005-12-01

    It is well known that interference of the human body affects the performance of the antennas in mobile phone handsets. In this contribution, we investigate the use of miniaturized metallodielectric electromagnetic band gap (MEBG) structures embedded in the case of a mobile handset as a means of decoupling the antenna from the user's hand. The closely coupled MEBG concept is employed to achieve miniaturization of the order of 15:1. Full wave dispersion relations for planar closely coupled MEBG arrays are presented and are validated experimentally. The performance of a prototype handset with an embedded conformal MEBG is assessed experimentally and is compared to a similar prototype without the MEBG. Reduction in the detuning of the antenna because of the human hand by virtue of the MEBG is demonstrated. Moreover, the efficiency of the handset when loaded with a human hand model is shown to improve when the MEBG is in place. The improvements are attributed to the decoupling of the antenna from the user's hand, which is achieved by means of suppressing the fields in the locality of the hand.

  6. Examining the latent structure of negative symptoms: is there a distinct subtype of negative symptom schizophrenia?

    PubMed

    Blanchard, Jack J; Horan, William P; Collins, Lindsay M

    2005-09-15

    Negative symptoms have emerged as a replicable factor of symptomatology within schizophrenia. Although rating scales provide assessments along dimensions of severity, categorization into a negative symptom subtype is typically conducted. A categorical view of negative symptoms is best reflected in the proposal that enduring, primary negative symptoms, or deficit symptoms, reflect a distinct subtype of schizophrenia . Despite an accumulation of findings that support a categorical conceptualization, the data are also consistent with a dimensional-only model where negative symptom subtypologies simply reflect an extreme on a continuum of severity. Using taxometric statistical methods , the present study examined whether a taxonic, or latent class, model best describes negative symptoms in a sample of 238 schizophrenia patients. In order to obtain more stable estimates of symptoms, ratings on the Scale for the Assessment of Negative Symptoms [Andreasen, N.C., 1982. Negative symptoms in schizophrenia: Definition and reliability. Arch. Gen. Psychiatry 39, 784-788.] were averaged across two assessments over a 6-month period. Two taxometric methods, maximum covariance analysis (MAXCOV) and mean above minus below a cut (MAMBAC) identified a latent class or taxon with a base rate of approximately 28-36%. Members of the negative symptom taxon differed from the nontaxon class in that taxon members were more likely to be male and demonstrated poorer social functioning. Taxon and nontaxon schizophrenia patients did not differ in psychotic or affective symptoms. The findings converge to provide support for a categorical view of negative symptoms. Further research is required to replicate the present taxonic findings and to examine characteristics (including possible etiological factors) associated with this negative symptom taxon. PMID:15916881

  7. An adaptive piezoelectric vibration absorber enhanced by a negative capacitance applied to a shell structure

    NASA Astrophysics Data System (ADS)

    Gripp, J. A. B.; Góes, L. C. S.; Heuss, O.; Scinocca, F.

    2015-12-01

    Piezoelectric shunt damping is a well-known technique to damp mechanical vibrations of a structure, using a piezoelectric transducer to convert mechanical vibration energy into electrical energy, which is dissipated in an electrical resistance. Resonant shunts consisting of a resistance and an inductance connected to a piezoelectric transducer are used to damp structural vibrations in narrow frequency bands, but their performance is very sensitive to variations in structural modal frequencies and transducer capacitance. In order to overcome this drawback, a piezoelectric shunt damping technique with improved performance and robustness is presented in this paper. The design of the adaptive circuit considers the variation of the host structure’s natural frequency as a project parameter. This paper describes an adaptive resonant piezoelectric vibration absorber enhanced by a synthetic negative capacitance applied to a shell structure. The resonant shunt circuit autonomously adapts its inductance value by comparing the phase difference of the vibration velocity and the current flowing through the shunt circuit. Moreover, a synthetic negative capacitance is added to the shunt circuit to enhance the vibration attenuation provided by the piezoelectric absorber. The circuitry is implemented using analog components. Validation of the proposed method is done by bonding the piezoelectric absorber on a free-formed metallic shell.

  8. Band structure parameters of metallic diamond from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Achatz, P.; Nicolaou, A.; Le Fèvre, P.; Bertran, F.; Taleb-Ibrahimi, A.; Bustarret, E.

    2015-07-01

    The electronic band structure of heavily boron doped diamond was investigated by angle-resolved photoemission spectroscopy on (100)-oriented epilayers. A unique set of Luttinger parameters was deduced from a comparison of the experimental band structure of metallic diamond along the Δ (Γ X ) and Σ (Γ K ) high-symmetry directions of the reciprocal space, with theoretical band structure calculations performed both within the local density approximation and by an analytical k . p approach. In this way, we were able to describe the experimental band structure over a large three-dimensional region of the reciprocal space and to estimate hole effective masses in agreement with previous theoretical and experimental papers.

  9. Nitrogen defects in wide band gap oxides: defect equilibria and electronic structure from first principles calculations.

    PubMed

    Polfus, Jonathan M; Bjørheim, Tor S; Norby, Truls; Haugsrud, Reidar

    2012-09-01

    The nitrogen related defect chemistry and electronic structure of wide band gap oxides are investigated by density functional theory defect calculations of N(O)(q), NH(O)(×), and (NH2)(O)(·) as well as V(O)(··) and OH(O)(·) in MgO, CaO, SrO, Al(2)O(3), In(2)O(3), Sc(2)O(3), Y(2)O(3), La(2)O(3), TiO(2), SnO(2), ZrO(2), BaZrO(3), and SrZrO(3). The N(O)(q) acceptor level is found to be deep and the binding energy of NH(O)(×) with respect to N(O)' and (OH(O)(·) is found to be significantly negative, i.e. binding, in all of the investigated oxides. The defect structure of the oxides was found to be remarkably similar under reducing and nitriding conditions (1 bar N(2), 1 bar H(2) and 1 × 10(-7) bar H(2)O): NH(O)(×) predominates at low temperatures and [N(O)'] = 2[V(O)(··) predominates at higher temperatures (>900 K for most of the oxides). Furthermore, we evaluate how the defect structure is affected by non-equilibrium conditions such as doping and quenching. In terms of electronic structure, N(O)' is found to introduce isolated N-2p states within the band gap, while the N-2p states of NH(O)(×) are shifted towards, or overlap with the VBM. Finally, we assess the effect of nitrogen incorporation on the proton conducting properties of oxides and comment on their corrosion resistance in nitriding atmospheres in light of the calculated defect structures. PMID:22828729

  10. First principle study of band structure of SrMO3 perovskites

    NASA Astrophysics Data System (ADS)

    Daga, Avinash; Sharma, Smita

    2016-05-01

    First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO3 where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO3 and SrZrO3 to be insulating. A small band gap is observed in SrMoO3 perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all the calculations.

  11. Band structures in silicene on monolayer gallium phosphide substrate

    NASA Astrophysics Data System (ADS)

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian

    2016-07-01

    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  12. Electronic transitions in GdN band structure

    SciTech Connect

    Vidyasagar, R. Kita, T.; Sakurai, T.; Ohta, H.

    2014-05-28

    Using the near-infrared (NIR) absorbance spectroscopy, electronic transitions and spin polarization of the GdN epitaxial film have been investigated; and the GdN epitaxial film was grown by a reactive rf sputtering technique. The GdN film exhibited three broad bands in the NIR frequency regimes; and those bands are attributable primarily to the minority and majority spin transitions at the X-point and an indirect transition along the Γ-X symmetric direction of GdN Brillouin zone. We experimentally observe a pronounced red-shift of the indirect band gap when cooling down below the Curie temperature which is ascribed to the orbital-dependent coulomb interactions of Gd-5dxy electrons, which tend to push-up the N-2p bands. On the other hand, we have evaluated the spin polarization of 0.17 (±0.005), which indicates that the GdN epitaxial film has almost 100% spin-polarized carriers. Furthermore, the experimental result of GdN electronic transitions are consistent with the previous reports and are thus well-reproduced. The Arrott plots evidenced that the Curie temperature of GdN film is 36 K and the large spin moment is explained by the nitrogen vacancies and the intra-atomic exchange interaction.

  13. Valence Band Structure of Highly Efficient p-type Thermoelectric PbTe-PbS Alloys

    SciTech Connect

    Jaworski, C. M.; Nielsen, Mechele; Wang, Hsin; Girard, Steven N.; Cai, Wei; Porter, Wallace D; Kanatzidis, Mercouri G.; Heremans, J. P.

    2013-01-01

    New experimental evidence is given relevant to the temperature-dependence of valence band structure of PbTe and PbTe1-xSx alloys (0.04 x 0.12), and its effect on the thermoelectric figure of merit zT. The x = 0.08 sample has zT ~ 1.55 at 773K. The magnetic field dependence of the high-temperature Hall resistivity of heavily p-type (> 1019 cm-3) Na-doped PbTe1-xSx reveals the presence of high-mobility electrons. This put in question prior analyses of the Hall coefficient and the conclusion that PbTe would be an indirect gap semiconductor at temperatures where its zT is optimal. Possible origins for these electrons are discussed: they can be induced by photoconductivity, or by the topology of the Fermi surface when the L and -bands merge. Negative values for the low-temperature thermopower are also observed. Our data show that PbTe continues to be a direct gap semiconductor at temperatures where the zT and S2 of p-type PbTe are optimal e.g. 700-900K. The previously suggested temperature induced rapid rise in energy of the heavy hole LVB relative to the light hole UVB is not supported by the experimental data.

  14. Band structures extending to very high spin in Xe126

    NASA Astrophysics Data System (ADS)

    Rønn Hansen, C.; Sletten, G.; Hagemann, G. B.; Herskind, B.; Jensen, D. R.; Bringel, P.; Engelhardt, C.; Hübel, H.; Neußer-Neffgen, A.; Singh, A. K.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Bednarczyk, P.; Byrski, T.; Curien, D.; Benzoni, G.; Bracco, A.; Camera, F.; Leoni, S.; Clark, R. M.; Fallon, P.; Korichi, A.; Roccaz, J.; Maj, A.; Wilson, J. N.; Lisle, J. C.; Steinhardt, T.; Thelen, O.; Ødegård, S. W.

    2007-09-01

    High-spin states in Xe126 have been populated in the Se82(Ca48,4n)Xe126 reaction in two experiments, one at the VIVITRON accelerator in Strasbourg using the Euroball detector array, and a subsequent one with ATLAS at Argonne using the Gammasphere Ge-detector array. Levels and assignments made previously for Xe126 up to I=20 have been confirmed and extended. Four regular bands extending to a spin of almost I=60, which are interpreted as two pairs of signature partners with opposite parity, are identified for the first time. The α = 0 partner of each pair is connected to the lower-lying levels, whereas the two α = 1 partners remain floating. A fractional Doppler shift analysis of transitions in the strongest populated (π,α)=(-,0) band provides a value of 5.20.50.4 b for the transition quadrupole moment, which can be related to a minimum in the potential-energy surface calculated by the ULTIMATE CRANKER cranked shell-model code at ɛ≈0.35 and γ≈5°. The four lowest bands calculated for this minimum compare well with the two signature pairs experimentally observed over a wide spin range. A sharp upbend at ℏω~1170 keV is interpreted as a crossing with a band involving the j15/2 neutron orbital, for which pairing correlations are expected to be totally quenched. The four long bands extend to within ˜5 spin units of a crossing with an yrast line defined by calculated hyperdeformed transitions and will serve as important stepping stones into the spin region beyond 60ħ for future experiments.

  15. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4.

    PubMed

    Errandonea, Daniel; Muñoz, Alfonso; Rodríguez-Hernández, Placida; Gomis, Oscar; Achary, S Nagabhusan; Popescu, Catalin; Patwe, Sadeque J; Tyagi, Avesh K

    2016-05-16

    The high-pressure crystal structure, lattice-vibrations, and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressure on it. They also predict a possible high-pressure phase. A room-temperature pressure-volume equation of state is determined, and the effect of pressure on the coordination polyhedron of Bi and Sb is discussed. Raman- and infrared-active phonons were measured and calculated. In particular, calculations provide assignments for all the vibrational modes as well as their pressure dependence. In addition, the band structure and electronic density of states under pressure were also calculated. The calculations combined with the optical measurements allow us to conclude that BiSbO4 is an indirect-gap semiconductor, with an electronic band gap of 2.9(1) eV. Finally, the isothermal compressibility tensor for BiSbO4 is given at 1.8 GPa. The experimental (theoretical) data revealed that the direction of maximum compressibility is in the (0 1 0) plane at ∼33° (38°) to the c-axis and 47° (42°) to the a-axis. The reliability of the reported results is supported by the consistency between experiments and calculations. PMID:27128858

  16. Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER, Herschel-SPIRE

    2016-01-01

    Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.

  17. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  18. Band structure of germanium carbides for direct bandgap silicon photonics

    NASA Astrophysics Data System (ADS)

    Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.

    2016-08-01

    Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.

  19. Collective band structures in the 99Tc nucleus

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Xiao, Z. G.; Zhu, S. J.; Patial, M.; Qi, C.; Cederwall, B.; Zhang, Z.; Wang, R. S.; Yi, H.; Yan, W. H.; Cheng, W. J.; Huang, Y.; Lyu, L. M.; Zhang, Y.; Wu, X. G.; He, C. Y.; Zheng, Y.; Li, G. S.; Li, C. B.; Li, H. W.; Liu, J. J.; Luo, P. W.; Hu, S. P.; Wang, J. L.; Wu, Y. H.

    2015-05-01

    Excited states in 99Tc with energies up to 6 MeV have been populated using the 96Zr(7Li,4 n )99Tc reaction with a laboratory beam energy of 35 MeV. Coincident γ rays from excited nuclei produced in the reactions were detected using an array of coaxial, planar, and clover-type high-purity germanium detectors. A total of 60 new γ -ray transitions and 21 new levels are identified and placed into a new level scheme. Two collective bands assigned to be built on the π g9 /2 [422 ]5 /2 + and π p1 /2 [301 ]1 /2 - Nilsson configurations have been extended with spins up to 35/2 and 33 /2 ℏ , respectively. Backbending and signature inversion have been observed in the yrast band. The large signature splitting of the positive-parity band in 99Tc may be caused by a triaxial deformation, which agrees well with the electromagnetic properties, theoretical calculations based on total Routhian surface, and triaxial particle-rotor model calculations.

  20. Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure

    NASA Astrophysics Data System (ADS)

    Xu, Kai-kai; Xiao, Zhong-yin; Tang, Jing-yao; Liu, De-jun; Wang, Zi-hua

    2016-07-01

    In the paper, a novel three-layered chiral structure is proposed and investigated, which consists of a split-ring resonator sandwiched between two layers of sub-wavelength gratings. This designed structure can achieve simultaneously asymmetric transmission with an extremely broad bandwidth and high amplitude as well as multi-band 90° polarization rotator with very low dispersion. Numerical simulations adopted two kinds of softwares with different algorithms demonstrate that asymmetric parameter can reach a maximum of 0.99 and over than 0.8 from 4.6 to 16.8 GHz, which exhibit magnitude and bandwidth improvement over previous chiral metamaterials in microwave bands (S, C, X and Ku bands). Specifically, the reason of high amplitude is analyzed in detail based on the Fabry-perot like resonance. Subsequently, the highly efficient polarization conversion with very low dispersion between two orthogonal linearly polarized waves is also analyzed by the optical activity and ellipticity. Finally, the electric fields are also investigated and further demonstrate the correctness of the simulated and calculated results.

  1. Electron momentum density, band structure, and structural properties of SrS

    SciTech Connect

    Sharma, G.; Munjal, N.; Vyas, V.; Kumar, R.; Sharma, B. K.; Joshi, K. B.

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  2. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    NASA Technical Reports Server (NTRS)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  3. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  4. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide

    SciTech Connect

    Arkhipenko, V. I.; Simonchik, L. V. Usachonak, M. S.; Callegari, Th.; Sokoloff, J.

    2014-09-28

    We demonstrate the ability to develop one-dimensional electromagnetic band gap structure in X-band waveguide solely by using the positive columns of glow discharges in neon at the middle pressure. Plasma inhomogeneities are distributed uniformly along a typical X-band waveguide with cross section of 23×10 mm². It is shown that electron densities larger than 10¹⁴ cm ⁻³ are needed in order to create an effective one-dimensional electromagnetic band gap structure. Some applications for using the one-dimensional electromagnetic band gap structure in waveguide as a control of microwave (broadband filter and device for variation of pulse duration) are demonstrated.

  5. Reconstruction of crystal band structure from the power spectrum of strong-field generated high harmonics

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ming; Ho, Tak-San; Chu, Shih-I.

    2016-05-01

    The study of high harmonic generation in solid driven by intense laser fields is a subject of much current interest. Recently we introduce a new optimization method to directly reconstruct the band structure of the crystal from the power spectrum of strong-field generated high harmonics. Without loss of generality, the reconstruction is formulated for a one-dimensional single band model as a minimization problem and solved by a derivative-free unconstrained optimization algorithm-NEWUOA. The method can be readily generalized to treat multi-band problems. Numerical simulations are presented to demonstrate the applicability of the method, and the reconstructed band structure is found to be in excellent agreement with the exact one. It is also shown that our optimization method remains robust and efficient even starting from the poorly guessed band structure.

  6. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    SciTech Connect

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  7. Nonlinear excitations in the honeycomb lattice: Beyond the high-symmetry points of the band structure

    NASA Astrophysics Data System (ADS)

    Arévalo, Edward; Morales-Molina, Luis

    2016-05-01

    The interplay between nonlinearity and the band structure of pristine honeycomb lattices is systematically explored. For that purpose, a theory of collective excitations valid for the first Brillouin zone of the lattice is developed. Closed-form expressions of two-dimensional excitations are derived for Bloch wave numbers beyond the high-symmetry points of the band structure. A description of the regions of validity of different nonlinear excitations in the first-Brillouin zone is given. We find that the unbounded nature of these excitations in nonlinear honeycomb latices is a signature of the strong influence of the Dirac cones in other parts of the band structure.

  8. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    SciTech Connect

    Zhang Haifeng; Liu Shaobin; Kong Xiangkun; Bian Borui; Dai Yi

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  9. Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3

    PubMed Central

    Ho, Ching-Hwa; Chen, Hsin-Hung

    2014-01-01

    The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga2S3) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga2S3. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga2S3. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga2S3 crystal is revealed. PMID:25142550

  10. Band Structure and Effective Mass in Monolayer MoS2.

    PubMed

    Wu, Ming-Ting; Fan, Jun-Wei; Chen, Kuan-Ting; Chang, Shu-Tong; Lin, Chung-Yi

    2015-11-01

    Monolayer transition-metal dichalcogenide is a very promising two-dimensional material for future transistor technology. Monolayer molybdenum disulfide (MoS2), owing to the unique electronic properties of its atomically thin two-dimensional layered structure, can be made into a high-performance metal-oxide-semiconductor field-effect transistor, or MOSFET. In this work, we focus on band structure and carrier mobility calculations for MoS2. We use the tight-binding method to calculate the band structure, including a consideration of the linear combination of different atomic orbitals, the interaction of neighboring atoms, and spin-orbit coupling for different tight-binding matrices. With information about the band structure, we can obtain the density of states, the effective mass, and other physical quantities. Carrier mobility using the Kubo-Greenwood formula is calculated based on the tight-binding band structure. PMID:26726660

  11. Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides

    SciTech Connect

    Shaposhnikov, V. L. Migas, D. B.; Borisenko, V. E.; Dorozhkin, N. N.

    2009-02-15

    The pseudopotential method has been used to optimize the crystal lattice and calculate the energy band spectra for iron, ruthenium and, osmium monosilicides. It is found that all these compounds are indirect-gap semiconductors with band gaps of 0.17, 0.22, and 0.50 eV (FeSi, RuSi, and OsSi, respectively). A distinctive feature of their band structure is the 'loop of extrema' both in the valence and conduction bands near the center of the cubic Brillouin zone.

  12. Electronic band structure effects in monolayer, bilayer, and hybrid graphene structures

    NASA Astrophysics Data System (ADS)

    Puls, Conor

    Since its discovery in 2005, graphene has been the focus of intense theoretical and experimental study owing to its unique two-dimensional band structure and related electronic properties. In this thesis, we explore the electronic properties of graphene structures from several perspectives including the magnetoelectrical transport properties of monolayer graphene, gap engineering and measurements in bilayer graphene, and anomalous quantum oscillation in the monolayer-bilayer graphene hybrids. We also explored the device implications of our findings, and the application of some experimental techniques developed for the graphene work to the study of a complex oxide, Ca3Ru2O7, exhibiting properties of strongly correlated electrons. Graphene's high mobility and ballistic transport over device length scales, make it suitable for numerous applications. However, two big challenges remain in the way: maintaining high mobility in fabricated devices, and engineering a band gap to make graphene compatible with logical electronics and various optical devices. We address the first challenge by experimentally evaluating mobilities in scalable monolayer graphene-based field effect transistors (FETs) and dielectric-covered Hall bars. We find that the mobility is limited in these devices, and is roughly inversely proportional to doping. By considering interaction of graphene's Dirac fermions with local charged impurities at the interface between graphene and the top-gate dielectric, we find that Coulomb scattering is responsible for degraded mobility. Even in the cleanest devices, a band gap is still desirable for electronic applications of graphene. We address this challenge by probing the band structure of bilayer graphene, in which a field-tunable energy band gap has been theoretically proposed. We use planar tunneling spectroscopy of exfoliated bilayer graphene flakes demonstrate both measurement and control of the energy band gap. We find that both the Fermi level and

  13. Band structure and optical transitions in semiconducting double-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Makaev, D. V.; D'Yachkov, P. N.

    2006-11-01

    The electronic structure of semiconducting double-wall carbon nanotubes (CNTs) is calculated using the linearized augmented cylindrical wave method. The consideration is performed in the framework of the local density functional theory and the muffin-tin (MT) approximation for the one-electron Hamiltonian. The electronic spectrum of a double-wall CNT is determined by the free motion of electrons in the interatomic space of the two cylindrical layers, scattering by the MT spheres, and tunneling through the classically impenetrable region. Calculated results for double-wall CNTs of the ( n, 0)@( n', 0) zigzag type indicate that the shift of the band-gap width depends on whether n and n' are divided by 3 with a remainder of 1 or 2. It is found that, regardless of the type of the inner tube, the energy gap E g of the outer tube decreases by 0.15-0.22 eV if the tube belongs to the sequence n = 2 (mod 3). For the outer tubes of the sequence n = 1 (mod 3), the shifts of the band gap Δ E g are always negative -0.15 ≤ Δ E g ≤ -0.05 eV. In both cases, the shifts Δ E g weakly oscillate rather than decrease in going to tubes of a larger diameter d. For the inner tubes, the changes in the band gap Δ E g are more sensitive to the diameter. At 10 ≤ n ≤ 16, the shifts Δ E g are positive and the maximum value of Δ E g equals 0.39 and 0.32 for the sequences n = 2 (mod 3) and n = 1 (mod 3), respectively. In going to the inner tubes of a larger diameter, Δ E g rapidly drops and then oscillates in the range from -0.05 to 0.06 eV. The calculated results indicate that the shifts of the optical band gaps in core and shell tubes upon the formation of double-wall CNTs are significant, which must hinder the identification of double-wall CNTs by optical methods. On the other hand, the obtained results open up possibilities for a more detailed classification of double-wall nanotubes.

  14. The electronic band structure of GaBiAs/GaAs layers: Influence of strain and band anti-crossing

    NASA Astrophysics Data System (ADS)

    Batool, Z.; Hild, K.; Hosea, T. J. C.; Lu, X.; Tiedje, T.; Sweeney, S. J.

    2012-06-01

    The GaBixAs1-x bismide III-V semiconductor system remains a relatively underexplored alloy particularly with regards to its detailed electronic band structure. Of particular importance to understanding the physics of this system is how the bandgap energy Eg and spin-orbit splitting energy Δo vary relative to one another as a function of Bi content, since in this alloy it becomes possible for Δo to exceed Eg for higher Bi fractions, which occurrence would have important implications for minimising non-radiative Auger recombination losses in such structures. However, this situation had not so far been realised in this system. Here, we study a set of epitaxial layers of GaBixAs1-x (2.3% ≤ x ≤ 10.4%), of thickness 30-40 nm, grown compressively strained onto GaAs (100) substrates. Using room temperature photomodulated reflectance, we observe a reduction in Eg, together with an increase in Δo, with increasing Bi content. In these strained samples, it is found that the transition energy between the conduction and heavy-hole valence band edges is equal with that between the heavy-hole and spin-orbit split-off valence band edges at ˜9.0 ± 0.2% Bi. Furthermore, we observe that the strained valence band heavy-hole/light-hole splitting increases with Bi fraction at a rate of ˜15 (±1) meV/Bi%, from which we are able to deduce the shear deformation potential. By application of an iterative strain theory, we decouple the strain effects from our experimental measurements and deduce Eg and Δo of free standing GaBiAs; we find that Δo indeed does come into resonance with Eg at ˜10.5 ± 0.2% Bi. We also conclude that the conduction/valence band alignment of dilute-Bi GaBiAs on GaAs is most likely to be type-I.

  15. S-band accelerating structures for the PAL-XFEL

    NASA Astrophysics Data System (ADS)

    Lee, Heung-Soo; Park, Young Jung; Joo, Young-Do; Heo, Hoon; Heo, Jinyul; Kim, Sang-Hee; Park, Soung-Soo; Hwang, Woon Ha; Kang, Heung-Sik; Kim, Kwang-woo; Ko, In-Soo; Oh, Kyoung-Min; Noh, Sung-Joo; Bak, Yong Hwan; Matsumoto, Hiroshi

    2015-02-01

    One hundred seventy-two accelerating structures are required for the Pohang Accelerator Laboratory X-ray free-electron laser's (PAL-XFEL's) 10-GeV main linear accelerator. So far, we have purchased 80 structures from Mitsubishi Heavy Industry (MHI), which have quasi-symmetric couplers in the accelerating structure to reduce the quadruple and the sextuple components of the electric field in the coupling cavity. High-power tests have been conducted for the first structure of the MHI structure, and Research Instruments (RI) has developed a 3-m long accelerating structure that has an operating frequency of 2856 MHz and in/out couplers of quasi-symmetric racetrack shape for the PAL-XFEL linear accelerator. This structure also has been tested by PAL and RI in the Pohang accelerator laboratory (PAL) to check the maximum available electric field gradient. We will describe the test results of these structures and the current status for the fabrication of the other accelerating structures in this paper.

  16. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    SciTech Connect

    Zhu, Hong; Sun, Wenhao; Ceder, Gerbrand; Armiento, Rickard; Lazic, Predrag

    2014-02-24

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carriers in bulk crystalline semiconductors. The proposed mechanism of orbital interaction on band structure is demonstrated for IV-VI thermoelectric semiconductors. For IV-VI materials, we find that the convergence of multiple carrier pockets not only displays a strong correlation with the s-p and spin-orbit coupling but also coincides with the enhancement of power factor. Our results suggest a useful path to engineer the band structure and an enticing solid-solution design principle to enhance thermoelectric performance.

  17. Band structure and thermopower of doped YCuO2

    SciTech Connect

    Singh, David J

    2008-01-01

    First-principles calculations and Boltzmann transport theory are used to analyze the thermopower and related properties of p-type delafossite structure YCuO{sub 2}. We find that the electrical transport properties are only mildly anisotropic in spite of the layered crystal structure and that this compound has high thermopowers indicative of a material that may be a good thermoelectric.

  18. Effect of band structure on the hot-electron transfer over Au photosensitized brookite TiO2.

    PubMed

    Zhao, Ming; Xu, Hua; Ouyang, Shuxin; Li, Dewang; Meng, Xianguang; Ye, Jinhua

    2016-02-01

    Au photosensitization can endow TiO2 visible-light-driven photocatalytic properties. Herein, via facet-optimized brookite TiO2 with tunable electronic band structures as the substrate, we found that intense visible light excitation of Au will result in the accumulation of hot-electrons, which will negatively shift the EF of Au and lower the Schottky barrier, thus ensuring their consecutive injections into the CB of TiO2; in this case, hot-electrons with more reduction potential will lead to superior photocatalytic activity. PMID:26784860

  19. Theoretical Analysis on the Band Structure Variance of the Electron Doped 1111 Iron-based Superconductors

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Usui, H.; Iimura, S.; Sato, Y.; Matsuishi, S.; Hosono, H.; Kuroki, K.

    We perform first principles band calculation of electron doped iron-based superconductors adopting the virtual crystal approximation. We find that when electrons are doped by element substitution in the blocking layer, the band structure near the Fermi level is affected due to the increase of the positive charge in the layer. On the other hand, when Fe in the conducting layer is substituted by Co, the band structure is barely affected. This difference should be a key factor in understanding the phase diagram of the heavily doped electron doped systems LnFeAsO1-xHx.

  20. Band structure of hydrogenated silicene on Ag(111): Evidence for half-silicane

    NASA Astrophysics Data System (ADS)

    Wang, W.; Olovsson, W.; Uhrberg, R. I. G.

    2016-02-01

    In the case of graphene, hydrogenation removes the conductivity due to the bands forming the Dirac cone by opening up a band gap. This type of chemical functionalization is of the utmost importance for electronic applications. As predicted by theoretical studies, a similar change in the band structure is expected for silicene, the closest analog to graphene. We here report a study of the atomic and electronic structures of hydrogenated silicene with hydrogen on one side, the so-called half-silicane. The ("2 √{3 }×2 √{3 } ") phase of silicene on Ag(111) was used in this Rapid Communication since it can be formed homogeneously across the entire surface of the Ag substrate. Low-energy electron diffraction and scanning tunneling microscopy data clearly show that hydrogenation changes the structure of silicene on Ag(111) resulting in a (1 × 1) periodicity with respect to the silicene lattice. The hydrogenated silicene also exhibits a quasiregular (2 √{3 }×2 √{3 } )-like arrangement of vacancies. Angle-resolved photoelectron spectroscopy revealed two dispersive bands which can be unambiguously assigned to half-silicane. The common top of these bands is located at ˜0.9 eV below the Fermi level. We find that the experimental bands are closely reproduced by the theoretical band structure of free-standing silicene with H adsorbed on the upper hexagonal sublattice.

  1. Spatially resolved methane band photometry of Jupiter. III - Cloud vertical structures for several axisymmetric bands and the Great Red Spot

    SciTech Connect

    West, R.A.; Tomasko, M.G.

    1980-02-01

    The paper presents cloud structure models for Jupiter's Great Red Spot, Equatorial and North Tropical Zones, North and South Temperate Zones, and North and South Polar Regions. The models are based on images of Jupiter in three methane bands and nearby continuum radiative transfer calculations include multiple scattering and absorption from three aerosol layers. The model results include the transition in the upper-cloud altitude to 3 km lower altitude from the tropical zones to temperate zones and polar regions, a N/S asymmetry in cloud thickness in the tropical and temperature zones, and the presence of aerosols up to about 0.3 bar in the Great Red Spot and Equatorial Zone. It is concluded that polarization data are sensitive to aerosols in and above the upper cloud layer but insensitive to deeper cloud structure.

  2. Spatially resolved methane band photometry of Jupiter. III - Cloud vertical structures for several axisymmetric bands and the Great Red Spot

    NASA Technical Reports Server (NTRS)

    West, R. A.; Tomasko, M. G.

    1980-01-01

    The paper presents cloud structure models for Jupiter's Great Red Spot, Equatorial and North Tropical Zones, North and South Temperate Zones, and North and South Polar Regions. The models are based on images of Jupiter in three methane bands and nearby continuum; radiative transfer calculations include multiple scattering and absorption from three aerosol layers. The model results include the transition in the upper-cloud altitude to 3 km lower altitude from the tropical zones to temperate zones and polar regions, a N/S asymmetry in cloud thickness in the tropical and temperature zones, and the presence of aerosols up to about 0.3 bar in the Great Red Spot and Equatorial Zone. It is concluded that polarization data are sensitive to aerosols in and above the upper cloud layer but insensitive to deeper cloud structure.

  3. The band structure of birefractive CdGa2S4 crystals

    NASA Astrophysics Data System (ADS)

    Stamov, I. G.; Syrbu, N. N.; Parvan, V. I.; Zalamai, V. V.; Tiginyanu, I. M.

    2013-11-01

    In this paper, we report on the spectral dependence of Δn=no-ne for CdGa2S4 single crystals for shorter and longer wavelengths than the isotropic wavelength λ0=485.7 nm (300 K). It was established that Δn is positive at λ>λ0 and it is negative in the spectral range λ<λ0. The isotropic wavelength λ0 exhibits blue spectral shift with temperature decreasing. The ground and excited states of three excitonic series A, B and C with binding energies of 53 meV, 52 meV and 46 meV, respectively, were found out at 10 K. The effective masses of electrons for k=0 were derived from the calculation of excitonic spectra: mc∥(Е∥с)=0.21m0 and mc⊥(Е⊥с)=0.19m0. The holes masses are equal to 0.59m0 and 0.71m0 for Е∥с and Е⊥с, respectively. The value of valence bands splitting, V1-V2, by crystalline field equals 24 meV, and V2-V3 splitting due to the spin-orbital interaction equals to 130 meV. The optical functions n, k, ε1 and ε2 for Е⊥с and Е∥с polarizations were calculated by means of Kramers-Kronig analyses in the energy interval 3-6 eV. The evidenced features are discussed taking into account the results of new theoretical calculations of CdGa2S4 band structure.

  4. Delta I = 1 staggering effect for negative parity rotational bands with K = 1/2 in W/Os/Pt odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Taha, M. M.

    2015-11-01

    The anomalous negative-parity bands of odd-mass nuclei W/Os/Pt for N = 103 isotones are studied within the framework of particle rotor model (PRM). The phenomenon of Δ I = 1 staggering or signature splitting in energies occurs as one plots the gamma transitional energy over spin (EGOS) versus spin for the 1/2-[521] band originating from N = 5 single particle orbital. The rotational band with K = 1/2 separates into two signature partners. The levels with I = 1/2, 5/2, 9/2,… are displaced relatively to the levels with I = 3/2,7/2,11/2,…. The deviations of the level energies from the rigid rotor values is described by Coriolis coupling.

  5. Functional topography of band 3: specific structural alteration linked to function aberrations in human erythrocytes

    SciTech Connect

    Kay, M.M.B.; Bosman, G.J.C.G.M.; Lawrence, C.

    1988-01-01

    Band 3 is the major anion transport polypeptide of erythrocytes. It appears to be the binding site of several glycolytic enzymes. Structurally, band 3 is the major protein spanning the erythrocyte membrane and connects the plasma membrane to band 2.1, which binds to the cytoskeleton. In the present study, the authors report an alteration of band 3 molecule that is associated with the following changes: erythrocyte shape change from discoid to thorny cells (acanthocytes), restriction of rotational diffusion of band 3 in the membrane, increase in anion transport, and decrease in the number of high-affinity ankyrin-binding sites. Changes in erythrocyte IgG binding, glyceraldehyde-3-phosphate dehydrogenase, fluorescence polarization (indicative of membrane fluidity), and other membrane proteins as determined by polyacrylamide gel electrophoresis were not detected. Cells containing the altered band 3 polypeptide were obtained from individuals with abnormal erythrocyte morphology. Two-dimensional peptide maps revealed differences in the M/sub r/ 17,000 anion transport segment of band 3 consistent with additions of tyrosines or tyrosine-containing peptides. The data suggest that (i) this alteration of band 3 does not result in accelerated aging as does cleavage and (ii) structural changes in the anion transport region result in alterations in anion transport.

  6. Fine structure of the red luminescence band in undoped GaN

    SciTech Connect

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.

    2014-01-20

    Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RL band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.

  7. Tuning two-dimensional band structure of Cu(111) surface-state electrons that interplay with artificial supramolecular architectures

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Wang, Weihua; Tan, Liang Z.; Li, Xing Guang; Shi, Zilang; Kuang, Guowen; Liu, Pei Nian; Louie, Steven G.; Lin, Nian

    2013-12-01

    We report on the modulation of two-dimensional (2D) bands of Cu(111) surface-state electrons by three isostructural supramolecular honeycomb architectures with different periodicity or constituent molecules. Using Fourier-transformed scanning tunneling spectroscopy and model calculations, we resolved the 2D band structures and found that the intrinsic surface-state band is split into discrete bands. The band characteristics including band gap, band bottom, and bandwidth are controlled by the network unit cell size and the nature of the molecule-surface interaction. In particular, Dirac cones emerge where the second and third bands meet at the K points of the Brillouin zone of the supramolecular lattice.

  8. Energy loss of ions at metal surfaces: Band-structure effects

    SciTech Connect

    Alducin, M.; Silkin, V.M.; Juaristi, J.I.; Chulkov, E.V.

    2003-03-01

    We study band-structure effects on the energy loss of protons scattered off the Cu (111) surface. The distance dependent stopping power for a projectile traveling parallel to the surface is calculated within the linear response theory. The self-consistent electronic response of the system is evaluated within the random-phase approximation. In order to characterize the surface band structure, the electronic single-particle wave functions and energies are obtained by solving the Schroedinger equation with a realistic one-dimensional model potential. This potential reproduces the main features of the Cu (111) surface: the energy band gap for electron motion along the surface normal, as well as the binding energy of the occupied surface state and the first image state. Comparison of our results with those obtained within the jellium model allows us to characterize the band-structure effects in the energy loss of protons interacting with the Cu (111) surface.

  9. Electronic band structure and effective mass parameters of Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Lu Low, Kain; Yang, Yue; Han, Genquan; Fan, Weijun; Yeo, Yee-Chia

    2012-11-01

    This work investigates the electronic band structures of bulk Ge1-xSnx alloys using the empirical pseudopotential method (EPM) for Sn composition x varying from 0 to 0.2. The adjustable form factors of EPM were tuned in order to reproduce the band features that agree well with the reported experimental data. Based on the adjusted pseudopotential form factors, the band structures of Ge1-xSnx alloys were calculated along high symmetry lines in the Brillouin zone. The effective masses at the band edges were extracted by using a parabolic line fit. The bowing parameters of hole and electron effective masses were then derived by fitting the effective mass at different Sn compositions by a quadratic polynomial. The hole and electron effective mass were examined for bulk Ge1-xSnx alloys along specific directions or orientations on various crystal planes. In addition, employing the effective-mass Hamiltonian for diamond semiconductor, band edge dispersion at the Γ-point calculated by 8-band k.p. method was fitted to that obtained from EPM approach. The Luttinger-like parameters were also derived for Ge1-xSnx alloys. They were obtained by adjusting the effective-mass parameters of k.p method to fit the k.p band structure to that of the EPM. These effective masses and derived Luttinger parameters are useful for the design of optical and electronic devices based on Ge1-xSnx alloys.

  10. Electron microscopy and x-ray diffraction evidence for two Z-band structural states.

    PubMed

    Perz-Edwards, Robert J; Reedy, Michael K

    2011-08-01

    In vertebrate muscles, Z-bands connect adjacent sarcomeres, incorporate several cell signaling proteins, and may act as strain sensors. Previous electron microscopy (EM) showed Z-bands reversibly switch between a relaxed, "small-square" structure, and an active, "basketweave" structure, but the mechanism of this transition is unknown. Here, we found the ratio of small-square to basketweave in relaxed rabbit psoas muscle varied with temperature, osmotic pressure, or ionic strength, independent of activation. By EM, the A-band and both Z-band lattice spacings varied with temperature and pressure, not ionic strength; however, the basketweave spacing was consistently 10% larger than small-square. We next sought evidence for the two Z-band structures in unfixed muscles using x-ray diffraction, which indicated two Z-reflections whose intensity ratios and spacings correspond closely to the EM measurements for small-square and basketweave if the EM spacings are adjusted for 20% shrinkage due to EM processing. We conclude that the two Z-reflections arise from the small-square and basketweave forms of the Z-band as seen by EM. Regarding the mechanism of transition during activation, the effects of Ca(2+) in the presence of force inhibitors suggested that the interconversion of Z-band forms was correlated with tropomyosin movement on actin. PMID:21806939

  11. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  12. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  13. Fine-structure enhancement — assessment of a simple method to resolve overlapping bands in spectra

    NASA Astrophysics Data System (ADS)

    Barth, Andreas

    2000-05-01

    A simple mathematical procedure — fine-structure enhancement — has been assessed on its ability to resolve overlapping bands in spectra. Its advantages and limitations have been explored using synthetic and experimental spectra. Fine-structure enhancement involves smoothing the original spectrum, multiplying the smoothed spectrum with a weighting factor and subtracting this spectrum from the original spectrum. As a result, the fine-structure of the original spectrum is enhanced in the processed spectrum and bands that overlap in the original spectrum appear as distinct bands in the processed spectrum. To be resolved by fine-structure enhancement, Lorentzian lines have to be separated by more than their quarter width at half maximum, Gaussian lines by more than their half width at half maximum. A comparison of fine-structure enhancement and Fourier self-deconvolution shows that Fourier self-deconvolution has in theory a higher potential to resolve overlapping bands. However, this depends crucially on the correct choice of the parameters. In practice, when parameters commonly used are chosen for Fourier self-deconvolution, fine-structure enhancement leads to similar results. This is demonstrated at the example of the infrared absorbance spectrum of the protein papain, where the amide I band components could be resolved similarly with both methods. Thus, fine-structure enhancement seems to be a simple alternative to Fourier self-deconvolution that does not require specialised software.

  14. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin

    2011-09-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  15. Superlattice band structure: New and simple energy quantification condition

    NASA Astrophysics Data System (ADS)

    Maiz, F.

    2014-10-01

    Assuming an approximated effective mass and using Bastard's boundary conditions, a simple method is used to calculate the subband structure for periodic semiconducting heterostructures. Our method consists to derive and solve the energy quantification condition (EQC), this is a simple real equation, composed of trigonometric and hyperbolic functions, and does not need any programming effort or sophistic machine to solve it. For less than ten wells heterostructures, we have derived and simplified the energy quantification conditions. The subband is build point by point; each point presents an energy level. Our simple energy quantification condition is used to calculate the subband structure of the GaAs/Ga0.5Al0.5As heterostructures, and build its subband point by point for 4 and 20 wells. Our finding shows a good agreement with previously published results.

  16. Band structure of solids from clusters SCF potentials

    SciTech Connect

    Nour, S.; Chermette, H.

    1995-01-05

    The possibilities and limits of the molecular orbital theory to deal with the problem of determining electronic structure of solids have been explored. A cluster model based on the charge neutrality in the solid has been used in test calculations on some III-V semiconductors and have given quite satisfactory results. Recommendations are given to widen the field of applications of this procedure. 33 refs., 5 figs., 2 tabs.

  17. Relationships between magnetic foot points and G-band bright structures

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Tsuneta, S.; Kitakoshi, Y.; Katsukawa, Y.; Bonet, J. A.; Vargas Domínguez, S.; Rouppe van der Voort, L. H. M.; Sakamoto, Y.; Ebisuzaki, T.

    2007-09-01

    Aims:Magnetic elements are thought to be described by flux tube models, and are well reproduced by MHD simulations. However, these simulations are only partially constrained by observations. We observationally investigate the relationship between G-band bright points and magnetic structures to clarify conditions, which make magnetic structures bright in G-band. Methods: The G-band filtergrams together with magnetograms and dopplergrams were taken for a plage region covered by abnormal granules as well as ubiquitous G-band bright points, using the Swedish 1-m Solar Telescope (SST) under very good seeing conditions. Results: High magnetic flux density regions are not necessarily associated with G-band bright points. We refer to the observed extended areas with high magnetic flux density as magnetic islands to separate them from magnetic elements. We discover that G-band bright points tend to be located near the boundary of such magnetic islands. The concentration of G-band bright points decreases with inward distance from the boundary of the magnetic islands. Moreover, G-band bright points are preferentially located where magnetic flux density is higher, given the same distance from the boundary. There are some bright points located far inside the magnetic islands. Such bright points have higher minimum magnetic flux density at the larger inward distance from the boundary. Convective velocity is apparently reduced for such high magnetic flux density regions regardless of whether they are populated by G-band bright points or not. The magnetic islands are surrounded by downflows. Conclusions: These results suggest that high magnetic flux density, as well as efficient heat transport from the sides or beneath, are required to make magnetic elements bright in G-band.

  18. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  19. Valence band structure of the icosahedral Ag-In-Yb quasicrystal

    SciTech Connect

    Sharma, H. R.; Simutis, G.; Dhanak, V. R.; Nugent, P. J.; McGrath, R.; Cui, C.; Shimoda, M.; Tsai, A. P.; Ishii, Y.

    2010-03-01

    The valence band structure of the icosahedral (i) Ag-In-Yb quasicrystal, which is isostructural to the binary i-Cd-Yb system, is investigated by ultraviolet photoemission spectroscopy (UPS). Experimental results are compared with electronic-structure calculations of a cubic approximant of the same phase. UPS spectra from the fivefold, threefold, and twofold i-Ag-In-Yb surfaces reveal that the valence band near to the Fermi level is dominated by Yb 4f-derived states, in agreement with calculations. The spectra also exhibit peaks which are surface core level shifted, caused by changes in the electronic structure in surface layers. Calculations yield a pseudogap in the density of states due to a hybridization of the Yb 5d band with the Ag 5p and In 5p bands. Both experimental and calculated band features are very similar to those of Cd-Yb. The modification of the band structure after surface treatment by sputtering and by oxidation is also studied. Additionally, the work function of i-Ag-In-Yb measured from the width of UPS spectrum is found to be almost unaffected by surface orientation, but increases after sputtering or oxidation.

  20. Structure sensitive bands in the vibrational spectra of metal complexes of tetraphenylporphine

    NASA Astrophysics Data System (ADS)

    Oshio, Hiroki; Ama, Tomoharu; Watanabe, Takeshi; Kincaid, James; Nakamoto, Kazuo

    The i.r. and RR spectra of twenty Fe(TPP)LL' type complexes have been measured to locate structure-sensitive bands. In i.r. spectra, band I (1350-1330 cm -1) and band III (469-432 cm -1) are spin-state sensitive whereas band II (806-790 cm -1) is oxidation-state sensitive and slightly spin-state sensitive in the Fe(II) state. To examine the nature of these bands, the i.r. spectra of Co(TPP), (Fe(TPP)) 2O and their d8 and d20 analogs have been measured, and empirical assignments proposed. In RR spectra, band C (1545-1498 cm -1, ap) and band D (1565-1540 cm -1, p) are spin-state sensitive whereas band E (391-376 cm -1, p) is sensitive to both spin and oxidation states. These results on RR spectra are in good agreement with those of previous workers.

  1. Electronic structure and band alignment at an epitaxial spinel/perovskite heterojunction.

    PubMed

    Qiao, Liang; Li, Wei; Xiao, Haiyan; Meyer, Harry M; Liang, Xuelei; Nguyen, N V; Weber, William J; Biegalski, Michael D

    2014-08-27

    The electronic properties of solid-solid interfaces play critical roles in a variety of technological applications. Recent advances of film epitaxy and characterization techniques have demonstrated a wealth of exotic phenomena at interfaces of oxide materials, which are critically dependent on the alignment of their energy bands across the interface. Here we report a combined photoemission and electrical investigation of the electronic structures across a prototypical spinel/perovskite heterojunction. Energy-level band alignment at an epitaxial Co3O4/SrTiO3(001) heterointerface indicates a chemically abrupt, type I heterojunction without detectable band bending at both the film and substrate. The unexpected band alignment for this typical p-type semiconductor on SrTiO3 is attributed to its intrinsic d-d interband excitation, which significantly narrows the fundamental band gap between the top of the valence band and the bottom of the conduction band. The formation of the type I heterojunction with a flat-band state results in a simultaneous confinement of both electrons and holes inside the Co3O4 layer, thus rendering the epitaxial Co3O4/SrTiO3(001) heterostructure to be a very promising material for high-efficiency luminescence and optoelectronic device applications. PMID:25075939

  2. Band structure of silicene in the tight binding approximation

    SciTech Connect

    Gert, A. V. Nestoklon, M. O.; Yassievich, I. N.

    2015-07-15

    The electronic structure of silicene is simulated by the tight binding method with the basis sp{sup 3}d{sup 5}s*. The results are in good agreement with ab initio calculations. The effective Hamiltonian of silicene in the vicinity of the Dirac point is constructed by the method of invariants. Silicon atoms in silicene are located in two parallel planes displaced perpendicularly to each other by Δ{sub z}; the energy spectrum essentially depends on this displacement. Using the tight binding technique, the coefficients of the effective Hamiltonian are determined for various values of Δ{sub z}.

  3. Electronic- and band-structure evolution in low-doped (Ga,Mn)As

    SciTech Connect

    Yastrubchak, O.; Gluba, L.; Żuk, J.; Sadowski, J.; MAX-Lab, Lund University, 22100 Lund ; Krzyżanowska, H.; Department of Physics and Astronomy, Vanderbilt University, 6506 Stevenson Center, Nashville, Tennessee 37325 ; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2013-08-07

    Modulation photoreflectance spectroscopy and Raman spectroscopy have been applied to study the electronic- and band-structure evolution in (Ga,Mn)As epitaxial layers with increasing Mn doping in the range of low Mn content, up to 1.2%. Structural and magnetic properties of the layers were characterized with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. The revealed results of decrease in the band-gap-transition energy with increasing Mn content in very low-doped (Ga,Mn)As layers with n-type conductivity are interpreted as a result of merging the Mn-related impurity band with the host GaAs valence band. On the other hand, an increase in the band-gap-transition energy with increasing Mn content in (Ga,Mn)As layers with higher Mn content and p-type conductivity indicates the Moss-Burstein shift of the absorption edge due to the Fermi level location within the valence band, determined by the free-hole concentration. The experimental results are consistent with the valence-band origin of mobile holes mediating ferromagnetic ordering in the (Ga,Mn)As diluted ferromagnetic semiconductor.

  4. Quasiparticle band structure of the almost-gapless transition-metal-based Heusler semiconductors

    NASA Astrophysics Data System (ADS)

    Tas, M.; Şaşıoǧlu, E.; Galanakis, I.; Friedrich, C.; Blügel, S.

    2016-05-01

    Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the G W approximation within the framework of the FLAPW method, we study the quasiparticle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the s p -electron based semiconductors such as Si and GaAs, in these systems, the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2 eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the s p -chemical element.

  5. Engineering the electronic structure and band gap of boron nitride nanoribbon via external electric field

    NASA Astrophysics Data System (ADS)

    Chegel, Raad

    2016-06-01

    By using the third nearest neighbor modified tight binding (3NN-TB) method, the electronic structure and band gap of BNNRs under transverse electric fields are explored. The band gap of the BNNRs has a decreasing with increasing the intensity of the applied electric field, independent on the ribbon edge types. Furthermore, an analytic model for the dependence of the band gap in armchair and zigzag BNNRs on the electric field is proposed. The reduction of E g is similar for some N a armchair and N z zigzag BNNRs independent of their edges.

  6. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    SciTech Connect

    Hossain, Nadir; Sweeney, Stephen; Hosea, Jeff; Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang; Kunert, Bernerdette

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  7. Band-Structure Engineering of Gold Atomic Wires on Silicon by Controlled Doping

    NASA Astrophysics Data System (ADS)

    Choi, Won Hoon; Kang, Pil Gyu; Ryang, Kyung Deuk; Yeom, Han Woong

    2008-03-01

    We report on the systematic tuning of the electronic band structure of atomic wires by controlling the density of impurity atoms. The atomic wires are self-assembled on Si(111) by substitutional gold adsorbates and extra silicon atoms are deposited as the impurity dopants. The one-dimensional electronic band of gold atomic wires, measured by angle-resolved photoemission, changes from a fully metallic to semiconducting one with its band gap increasing above 0.3 eV along with an energy shift as a linear function of the Si dopant density. The gap opening mechanism is suggested to be related to the ordering of the impurities.

  8. Two-zone heterogeneous structure within shear bands of a bulk metallic glass

    SciTech Connect

    Shao, Yang; Yao, Kefu; Liu, Xue; Li, Mo

    2013-10-21

    Shear bands, the main plastic strain carrier in metallic glasses, are severely deformed regions often considered as disordered and featureless. Here we report the observations of a sandwich-like heterogeneous structure inside shear bands in Pd{sub 40.5}Ni{sub 40.5}P{sub 19} metallic glass sample after plastic deformation by high-resolution transmission electron microscopy. The experimental results suggest a two-step plastic deformation mechanism with corresponding microstructure evolution at atomic scale, which may intimately connected to the stability of the shear band propagation and the overall plastic deformability.

  9. Promoting Photochemical Water Oxidation with Metallic Band Structures.

    PubMed

    Liu, Hongfei; Moré, René; Grundmann, Henrik; Cui, Chunhua; Erni, Rolf; Patzke, Greta R

    2016-02-10

    The development of economic water oxidation catalysts is a key step toward large-scale water splitting. However, their current exploration remains empirical to a large extent. Elucidating the correlations between electronic properties and catalytic activity is crucial for deriving general and straightforward catalyst design principles. Herein, strongly correlated electronic systems with abundant and easily tunable electronic properties, namely La(1-x)Sr(x)BO3 perovskites and La(2-x)Sr(x)BO4 layered perovskites (B = Fe, Co, Ni, or Mn), were employed as model systems to identify favorable electronic structures for water oxidation. We established a direct correlation between the enhancement of catalytic activity and the insulator to metal transition through tuning the electronic properties of the target perovskite families via the La(3+)/Sr(2+) ratio. Their improved photochemical water oxidation performance was clearly linked to the increasingly metallic character. These electronic structure-activity relations provide a promising guideline for constructing efficient water oxidation catalysts. PMID:26771537

  10. Band structure analysis of (1 × 2)-H/Pd(110)-pr

    NASA Astrophysics Data System (ADS)

    Shuttleworth, I. G.

    2013-09-01

    A novel method of band structure analysis based on the atomic orbital (AO) coefficients in LCAO-DFT has been applied to the (1 × 2)-H/Pd(110)-pr system. The analysis has revealed symmetry-dependent Pd 4d band splitting due to H ligand effects; ensemble effects due to the (1 × 2) Pd reconstruction are shown to be relatively minor.

  11. Coexisting Honeycomb and Kagome Characteristics in the Electronic Band Structure of Molecular Graphene.

    PubMed

    Paavilainen, Sami; Ropo, Matti; Nieminen, Jouko; Akola, Jaakko; Räsänen, Esa

    2016-06-01

    We uncover the electronic structure of molecular graphene produced by adsorbed CO molecules on a copper (111) surface by means of first-principles calculations. Our results show that the band structure is fundamentally different from that of conventional graphene, and the unique features of the electronic states arise from coexisting honeycomb and Kagome symmetries. Furthermore, the Dirac cone does not appear at the K-point but at the Γ-point in the reciprocal space and is accompanied by a third, almost flat band. Calculations of the surface structure with Kekulé distortion show a gap opening at the Dirac point in agreement with experiments. Simple tight-binding models are used to support the first-principles results and to explain the physical characteristics behind the electronic band structures. PMID:27176628

  12. Observation of Nonlinear Looped Band Structure of Bose-Einstein condensates in an optical lattice

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Elizabeth; Koller, Silvio; Brown, Roger; Wyllie, Robert; Wilson, Ryan; Porto, Trey

    2016-05-01

    We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce ``swallow-tail'' looped band structure. By carefully preparing different initial coherent states and observing their subsequent decay, we observe distinct decay rates, which provide direct evidence for multi-valued band structure. The double well lattice both stabilizes the looped band structure and allows for dynamic preparation of different initial states, including states within the loop structure. We confirm our state preparation procedure with dynamic Gross-Pitaevskii calculations. The excited loop states are found to be more stable than dynamically unstable ground states, but decay faster than expected based on a mean-field stability calculation, indicating the importance of correlations beyond a mean-field description. Now at Georgia Tech Research Institute.

  13. Predicted band structures of III-V semiconductors in the wurtzite phase

    SciTech Connect

    De, A.; Pryor, Craig E.

    2010-04-15

    While non-nitride III-V semiconductors typically have a zinc-blende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier ab initio calculations, and where experimental results are available (InP, InAs, and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may facilitate the development of spin-based devices.

  14. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    NASA Astrophysics Data System (ADS)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-01

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  15. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    SciTech Connect

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  16. Research on the large band gaps in multilayer radial phononic crystal structure

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Guan, Dong

    2016-04-01

    In this paper, we study the band gaps (BGs) of new proposed radial phononic crystal (RPC) structure composed of multilayer sections. The band structure, transmission spectra and eigenmode displacement fields of the multilayer RPC are calculated by using finite element method (FEM). Due to the vibration coupling effects between thin circular plate and intermediate mass, the RPC structure can exhibit large BGs, which can be effectively shifted by changing the different geometry values. This study shows that multilayer RPC can unfold larger and lower BGs than traditional phononic crystals (PCs) and RPC can be composed of single material.

  17. The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation

    NASA Astrophysics Data System (ADS)

    Dolgos, Michelle R.; Paraskos, Alexandra M.; Stoltzfus, Matthew W.; Yarnell, Samantha C.; Woodward, Patrick M.

    2009-07-01

    The electronic structures of six ternary metal oxides containing isolated vanadate ions, Ba 3(VO 4) 2, Pb 3(VO 4) 2, YVO 4, BiVO 4, CeVO 4 and Ag 3VO 4 were studied using diffuse reflectance spectroscopy and electronic structure calculations. While the electronic structure near the Fermi level originates largely from the molecular orbitals of the vanadate ion, both experiment and theory show that the cation can strongly influence these electronic states. The observation that Ba 3(VO 4) 2 and YVO 4 have similar band gaps, both 3.8 eV, shows that cations with a noble gas configuration have little impact on the electronic structure. Band structure calculations support this hypothesis. In Pb 3(VO 4) 2 and BiVO 4 the band gap is reduced by 0.9-1.0 eV through interactions of (a) the filled cation 6 s orbitals with nonbonding O 2 p states at the top of the valence band, and (b) overlap of empty 6 p orbitals with antibonding V 3 d-O 2 p states at the bottom of the conduction band. In Ag 3VO 4 mixing between filled Ag 4 d and O 2 p states destabilizes states at the top of the valence band leading to a large decrease in the band gap ( Eg=2.2 eV). In CeVO 4 excitations from partially filled 4 f orbitals into the conduction band lower the effective band gap to 1.8 eV. In the Ce 1-xBi xVO 4 (0≤ x≤0.5) and Ce 1-xY xVO 4 ( x=0.1, 0.2) solid solutions the band gap narrows slightly when Bi 3+ or Y 3+ are introduced. The nonlinear response of the band gap to changes in composition is a result of the localized nature of the Ce 4 f orbitals.

  18. Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in graphene-integrated structures.

    PubMed

    Liu, Feng; Zhan, Tianrong; Zhu, Alexander Y; Yi, Fei; Shi, Wangzhou

    2016-01-25

    We theoretically investigate the polaritonic band structure and dispersion properties of graphene using transfer matrix methods, with strongly coupled graphene plasmons (GPs) and molecular infrared vibrations as a representative example. Two common geometrical configurations are considered: graphene coupled subwavelength dielectric grating (GSWDG) and graphene nanoribbons (GNR). By exploiting the dispersion and the band structure, we show the possibility of tailoring desired polaritonic behavior in each of the two configurations. We compare the strength of coupling occurring in both structures and find that the interaction is stronger in GNR than that of GSWDG structure as a result of the stronger field confinement of the edge modes. The band structure and dispersion analysis not only sheds light on the physics of the hybridized polariton formation but also offers insight into tailoring the optical response of graphene light-matter interactions for numerous applications, such as biomolecular sensing and detection. PMID:26832528

  19. Band structure of the quasi two-dimensional purple molybdenum bronze

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.

    2006-09-01

    The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.

  20. The structure of the stable negative ion of calcium

    SciTech Connect

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    The structure of the Ca/sup /minus// ion has been determined using a crossed laser-ion beams apparatus. The photoelectron detachment spectrum shows that, contrary to earlier expectations, the Ca/sup /minus// ion is stably bound in the (4s/sup 2/4p)/sup 2/p state. The electron affinity of Ca was measured to be 0.043 /sup + -/ 0.007 eV.

  1. UWB Band-notched Adjustable Antenna Using Concentric Split-ring Slots Structure

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Hong, J. S.

    2014-09-01

    In this paper, a kind of concentric split-ring slots structure is utilized to design a novel triple-band-notched UWB antenna. Firstly, a concentric split-ring slots structure that has a higher VSWR than that of a single slot at notch frequency is presented. What's more, the structure is very simple and feasible to obtain notched-band at different frequency by adjustment of the length of slot. Secondly, a triple-band-notched antenna, whose notched bands are at 3.52-3.81 GHz for WiMAX and 5.03-5.42 GHz and 5.73-56.17 GHz for WLAN, is designed by using this structure. At last, a compact size of 24 × 30 mm2 of the proposed antenna has been fabricated and measured and it is shown that the proposed antenna has a broadband matched impedance (3.05-14 GHz, VSWR < 2), relatively stable gain and good omnidirectional radiation patterns at low bands.

  2. Electron-Phonon Renormalization of Electronic Band Structures of C Allotropes and BN Polymorphs

    NASA Astrophysics Data System (ADS)

    Tutchton, Roxanne M.; Marchbanks, Christopher; Wu, Zhigang

    The effect of lattice vibration on electronic band structures has been mostly neglected in first-principles calculations because the electron-phonon (e-ph) renormalization of quasi-particle energies is often small (< 100 meV). However, in certain materials, such as diamond, the electron-phonon coupling reduces the band gap by nearly 0.5 eV, which is comparable to the many-body corrections of the electronic band structures calculated using the density functional theory (DFT). In this work, we compared two implementations of the Allen-Heine-Cardona theory in the EPW code and the ABINIT package respectively. Our computations of Si and diamond demonstrate that the ABINIT implementation converges much faster. Using this method, the e-ph renormalizations of electronic structures of three C allotropes (diamond, graphite, graphene) and four BN polymorphs (zincblend, wurtzite, mono-layer, and layered-hexagonal) were calculated. Our results suggest that (1) all of the zero-point renormalizations of band gaps in these materials, except for graphene, are larger than 100 meV, and (2) there are large variations in e-ph renormalization of band gaps due to differences in crystal structure. This work was supported by a U.S. DOE Early Career Award (Grant No. DE-SC0006433). Computations were carried out at the Golden Energy Computing Organization at CSM and the National Energy Research Scientific Computing Center (NERSC).

  3. Band structures of nonmagnetic transition-metal oxides: PdO and PtO

    SciTech Connect

    Hass, K.C. ); Carlsson, A.E. )

    1992-08-15

    The electronic band structures of PdO and PtO are calculated using the augmented-spherical-wave method and the local-density approximation. Our results are consistent with the widely held view of these materials as conventional band insulators with the crystal-field splitting of metal {ital d} states primarily responsible for gap formation. A significant role for correlation effects as well cannot be ruled out. The predicted valence-band structure for PdO agrees well with published photoemission data. The electronic structure of PtO is qualitatively similar. In both cases the calculated gap is direct and occurs at the {ital M} point of the Brillouin zone. The magnitude of the gap is found to be larger in PtO, which we attribute to the more relativistic nature of Pt compared to Pd.

  4. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    NASA Astrophysics Data System (ADS)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  5. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGESBeta

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; Hozumi, Hideaki; Gao, Yongqian; Eda, Goki; Mattevi, Cecilia; Fujita, Takeshi; Yoshigoe, Akitaka; Ishizuka, Shinji; et al

    2016-04-08

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  6. First-principle electronic structure calculations for magnetic moment in iron-based superconductors: An LSDA + negative U study

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Hayashi, N.; Nakai, N.; Okumura, M.; Machida, M.

    2009-10-01

    screening is unusual, e.g., an overscreening occurs, the estimation of U may not simply give a positive value. In this paper, we explain why the negative U correction successfully works on these iron-based compounds. We would like to suggest that a situation, in which the on-site intra-band U becomes smaller than the inter-band U‧, emerges in these compounds. Such a situation is peculiar to multi-band cases and leads to an effective intra-band attraction. Moreover, the situation can create a full-gap Cooper pair, which is consistent with several observations. The contents of this paper are as follows. Section 2 briefly explains the calculation framework and gives U dependences of the magnetic moment for two cases, i.e., the mother and doped compounds. In addition, we compare the Fermi-surfaces between U=0 and U=-1. In Section 3, we discuss unique features of the electronic structure in iron-based superconductors and explain which type of situation requires the negative U correction.

  7. Electronic structure of graphene on a reconstructed Pt(100) surface: Hydrogen adsorption, doping, and band gaps

    NASA Astrophysics Data System (ADS)

    Ulstrup, Søren; Nilsson, Louis; Miwa, Jill A.; Balog, Richard; Bianchi, Marco; Hornekær, Liv; Hofmann, Philip

    2013-09-01

    We probe the structure and electronic band structure of graphene grown on a Pt(100) substrate using scanning tunneling microscopy, low energy electron diffraction, and angle-resolved photoemission spectroscopy. It is found that the graphene layer lacks a well-defined azimuthal orientation with respect to the substrate, causing a circular smearing of the π band instead of a well-defined Dirac cone near the Fermi level. The graphene is found to be electron doped placing the Dirac point ˜0.45 eV below the Fermi level, and a gap of 0.15±0.03 eV is found at the Dirac point. We dose atomic hydrogen and monitor the coverage on the graphene by analyzing the impurity-induced broadening of the π-band width. Saturation of graphene on Pt(100) with hydrogen does not expand the band gap, but instead hydrogen-mediated broadening and rehybridization of the graphene sp2 bonds into sp3 leads to a complete disruption of the graphene π band, induces a lifting of the Pt(100) reconstruction, and introduces a dispersing Pt state near the Fermi level. Deposition of rubidium on graphene on Pt(100) leads to further electron doping, pushing the Dirac point to a binding energy of ˜1.35 eV, and increasing the band gap to 0.65±0.04 eV.

  8. Band structure tunability in MoS2 under interlayer compression: A DFT and GW study

    NASA Astrophysics Data System (ADS)

    Espejo, C.; Rangel, T.; Romero, A. H.; Gonze, X.; Rignanese, G.-M.

    2013-06-01

    The electronic band structures of MoS2 monolayer and 2H1 bulk polytype are studied within density-functional theory (DFT) and many-body perturbation theory (GW approximation). Interlayer van der Waals (vdW) interactions, responsible for bulk binding, are calculated with the postprocessing Wannier functions method. From both fat bands and Wannier functions analysis, it is shown that the transition from a direct band gap in the monolayer to an indirect band gap in bilayer or bulk systems is triggered by medium- to short-range electronic interactions between adjacent layers, which arise at the equilibrium interlayer distance determined by the balance between vdW attraction and exchange repulsion. The semiconductor-to-semimetal (S-SM) transition is found from both theoretical methods: around c=10.7 Å and c=9.9 Å for DFT and GW, respectively. A metallic transition is also observed for the interlayer distance c=9.7 Å. Dirac conelike band structures and linear bands near Fermi level are found for shorter c lattice parameter values. The VdW correction to total energy was used to estimate the pressure at which S-SM transition takes place from a fitting to a model equation of state.

  9. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    SciTech Connect

    Peterman, D.J.

    1980-01-01

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

  10. Band Structure of Helimagnons in MnSi Resolved by Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kugler, M.; Brandl, G.; Waizner, J.; Janoschek, M.; Georgii, R.; Bauer, A.; Seemann, K.; Rosch, A.; Pfleiderer, C.; Böni, P.; Garst, M.

    2015-08-01

    A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh . Its spin-wave excitations—the helimagnons—experience Bragg scattering off this periodicity, leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering, the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.

  11. Transient band structures in the ultrafast demagnetization of ferromagnetic gadolinium and terbium

    NASA Astrophysics Data System (ADS)

    Teichmann, Martin; Frietsch, Björn; Döbrich, Kristian; Carley, Robert; Weinelt, Martin

    2015-01-01

    We compare the laser-driven demagnetization dynamics of the rare earths gadolinium and terbium by mapping their transient valance band structures with time- and angle-resolved photoelectron spectroscopy. In both metals, the minority and majority spin valence bands evolve independently with different time constants after optical excitation. The ultrafast shift of the partially unoccupied minority spin bulk band to higher binding energy and of the majority spin surface state to lower binding energy suggests spin transport between surface and bulk. The slower response of the fully occupied majority spin band follows the lattice temperature and is attributed to Elliott-Yafet type spin-flip scattering. Terbium shows a stronger and faster decay of the exchange splitting, pointing to ultrafast magnon emission via 4 f spin-to-lattice coupling.

  12. Enlarged band gap and electron switch in graphene-based step-barrier structure

    SciTech Connect

    Lu, Wei-Tao Ye, Cheng-Zhi; Li, Wen

    2013-11-04

    We study the transmission through a step-barrier in gapped graphene and propose a method to enlarge the band gap. The step-barrier structure consists of two or more barriers with different strengths. It is found that the band gap could be effectively enlarged and controlled by adjusting the barrier strengths in the light of the mass term. Klein tunneling at oblique incidence is suppressed due to the asymmetry of step-barrier, contrary to the cases in single-barrier and superlattices. Furthermore, a tunable conductance channel could be opened up in the conductance gap, suggesting an application of the structure as an electron switch.

  13. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    SciTech Connect

    Srinet, Gunjan Kumar, Ravindra Sajal, Vivek

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  14. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  15. Complex band structure with ultrasoft pseudopotentials: fcc Ni and Ni nanowire

    NASA Astrophysics Data System (ADS)

    Smogunov, Alexander; Dal Corso, Andrea; Tosatti, Erio

    2003-06-01

    We generalize to magnetic transition metals the approach proposed by Choi and Ihm for calculating the complex band structure of periodic systems, a key ingredient for future calculations of conductivity of an open quantum system within the Landauer-Buttiker theory. The method is implemented with ultrasoft pseudopotentials and plane wave basis set in a DFT-LSDA ab initio scheme. As a first example, we present the complex band structure of bulk fcc Ni (which constitutes the tips of a Ni nanocontact) and monatomic Ni wire (the junction between two tips). Based on our results, we anticipate some features of the spin-dependent conductance in a Ni nanocontact.

  16. Dependence of the band structure of C-60 monolayers on molecularorientations and doping observed by angle resolved photoemission

    SciTech Connect

    Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Shen, Z.X.

    2008-01-17

    We present angle resolved photoemission studies of C60monolayers deposited on Ag surfaces. The electronic structure of thesemonolayers is derived from the partial filling of the narrow, 6-folddegenerated, C60 conduction band. By comparing the band structure in twomonolayers deposited, respectively, on Ag(111) and Ag(100), we show thatthe molecular degree of freedom, in this case the relative orientationsbetween C60 molecules, is essential to describe the band structure. Wefurther show that the evolution of the band as a function of doping doesnot follow a rigid band-filling picture. Phase separation is observedbetween a metallic and an insulating phase, which might be a result ofstrong correlations.

  17. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  18. Understanding the electronic band structure of Pt-alloys for surface reactivity

    NASA Astrophysics Data System (ADS)

    Jung, Jongkeun; Kim, Beomyoung; Hong, Ji Sook; Jin, Tae Won; Shim, Ji Hoon; Nemsak, Slavomir; Denlinger, Jonathan D.; Masashi, Arita; Kenya, Shimada; Kim, Changyoung; Mun, Bongjin Simon

    In polymer exchange membrane fuel cell (PEMFC), the oxygen reduction reaction (ORR) at cathode side has been continuously investigated due to its critical importance in performance of fuel cell. So far, even with best industrial catalyst made with Pt, the performance of ORR is too far below from the commercial purpose. In 2007, Stamenkovic et al. showed that Pt alloys with 3- dtransition metal exhibited significantly improved ORR performance and pointed out the altered electronic structure of surface as the major contributing factor for enhanced ORR. Since 1990, with the advance of DFT calculation, the trend of surface chemical reactivity is explained with the analysis of d-band structures, known as d-band model. While d-band provides valid insight on surface chemical reactivity based on the valence band DOS, the relation between surface work function and DOS has not been well understood. The element-specific local electronic band structure of Pt alloys are identified by ARPES measurement, and the correlation between surface work function and local charge density is investigated.

  19. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    DOE PAGESBeta

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content,more » we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less

  20. High binding energy band structure of Bi-2212 as measured by ARPES

    NASA Astrophysics Data System (ADS)

    McElroy, K.; Graf, J.; Gweon, G.-H.; Zhou, S. Y.; Sahrakorpi, S.; Lindroos, M.; Markiewicz, R. S.; Bansil, A.; Eisaki, H.; Sasagawa, T.; Takagi, H.; Uchida, S.; Lanzara, A.

    2006-03-01

    The study of the electronic structure of high temperature superconductors by angle resolved photoemission spectroscopy (ARPES) has so far focused on the states near the Fermi level, believed to be fundamental for most of the properties of cuprates. However, it is well known that in doped Mott insulators the low and high energy physics are strongly coupled one to the other. Therefore, to gain insight on the real physics of cuprates a full characterization of the electronic band structure up to energies of the order of the lower Hubbard band and beyond is needed. Here we report a detailed, doping dependent study of the band structure of Bi2212 superconductors at energies of the order of 1-2 eV. The experimental results are interpreted in terms of local density approximation (LDA) based computations, where the presence of the ``spaghetti'' of Cu-O and O-bands is predicted. Comparison between computed and measured bands provides insight into many-body renormalization effects.

  1. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    SciTech Connect

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.

  2. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites

    PubMed Central

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-01-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013

  3. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites.

    PubMed

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R; Zhang, Cheng; Villaire, William L; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-01-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013

  4. Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations.

    PubMed

    Zhang, Ning; Chen, Chen; Mei, Zongwei; Liu, Xiaohe; Qu, Xiaolei; Li, Yunxiang; Li, Siqi; Qi, Weihong; Zhang, Yuanjian; Ye, Jinhua; Roy, Vellaisamy A L; Ma, Renzhi

    2016-04-27

    Exploring surface-exposed highly active crystal facets for photocatalytic oxidations is promising in utilizing monoclinic WO3 semiconductor. However, the previously reported highly active facets for monoclinic WO3 were mainly toward enhancing photocatalytic reductions. Here we report that the WO3 with {100} facet orientation and tuned surface electronic band structure can effectively enhance photocatalytic oxidation properties. The {100} faceted WO3 single crystals are synthesized via a facile hydrothermal method. The UV-visible diffuse reflectance, X-ray photoelectron spectroscopy valence band spectra, and photoelectrochemical measurements suggest that the {100} faceted WO3 has a much higher energy level of valence band maximum compared with the normal WO3 crystals without preferred orientation of the crystal face. The density functional theory calculations reveal that the shift of O 2p and W 5d states in {100} face induce a unique band structure. In comparison with the normal WO3, the {100} faceted WO3 exhibits an O2 evolution rate about 5.1 times in water splitting, and also shows an acetone evolution rate of 4.2 times as well as CO2 evolution rate of 3.8 times in gaseous degradation of 2-propanol. This study demonstrates an efficient crystal face engineering route to tune the surface electronic band structure for enhanced photocatalytic oxidations. PMID:27045790

  5. Band stop vibration suppression using a passive X-shape structured lever-type isolation system

    NASA Astrophysics Data System (ADS)

    Liu, Chunchuan; Jing, Xingjian; Chen, Zhaobo

    2016-02-01

    In the paper, band-stop vibration suppression property using a novel X-shape structured lever-type isolation system is studied. The geometrical nonlinear property of an X-shape supporting structure is used to improve the band-stop characteristics in the low frequency range of the lever-type vibration isolator. With the dynamics modeling of this hybrid structural system, it is shown that the proposed hybrid vibration system has very beneficial nonlinear stiffness and damping properties which are helpful to achieve much wider stop bandwidth. Theoretical results demonstrate that the anti-resonant frequencies, width and magnitude of the stop band can all be flexibly designed with structural parameters, and the parameters of the X-shape supporting structure are very critical for designing the band-stop frequency to achieve excellent low-frequency isolation performance. The results in the study provide a new approach to the design of the passive vibration suppression system in the low frequency region.

  6. Complete multipactor suppression in an X-band dielectric-loaded accelerating structure

    NASA Astrophysics Data System (ADS)

    Jing, C.; Gold, S. H.; Fischer, Richard; Gai, W.

    2016-05-01

    Multipactor is a major issue limiting the gradient of rf-driven Dielectric-Loaded Accelerating (DLA) structures. Theoretical models have predicted that an axial magnetic field applied to DLA structures may completely block the multipactor discharge. However, previous attempts to demonstrate this magnetic field effect in an X-band traveling-wave DLA structure were inconclusive, due to the axial variation of the applied magnetic field, and showed only partial suppression of the multipactor loading [Jing et al., Appl. Phys. Lett. 103, 213503 (2013)]. The present experiment has been performed under improved conditions with a uniform axial magnetic field extending along the length of an X-band standing-wave DLA structure. Multipactor loading began to be continuously reduced starting from 3.5 kG applied magnetic field and was completely suppressed at ˜8 kG. Dependence of multipactor suppression on the rf gradient inside the DLA structure was also measured.

  7. Band gap structures in two-dimensional super porous phononic crystals.

    PubMed

    Liu, Ying; Sun, Xiu-zhan; Chen, Shao-ting

    2013-02-01

    As one kind of new linear cellular alloys (LCAs), Kagome honeycombs, which are constituted by triangular and hexagonal cells, attract great attention due to the excellent performance compared to the ordinary ones. Instead of mechanical investigation, the in-plane elastic wave dispersion in Kagome structures are analyzed in this paper aiming to the multi-functional application of the materials. Firstly, the band structures in the common two-dimensional (2D) porous phononic structures (triangular or hexagonal honeycombs) are discussed. Then, based on these results, the wave dispersion in Kagome honeycombs is given. Through the component cell porosity controlling, the effects of component cells on the whole responses of the structures are investigated. The intrinsic relation between the component cell porosity and the critical porosity of Kagome honeycombs is established. These results will provide an important guidance in the band structure design of super porous phononic crystals. PMID:23089223

  8. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Kevin Jerome Sutherland

    2001-05-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  9. Factor Structure and Construct Validity of the Scale for the Assessment of Negative Symptoms.

    ERIC Educational Resources Information Center

    Sayers, Steven L.; And Others

    1996-01-01

    Confirmatory factor analysis (CFA) was used to examine the underlying structure of negative symptoms of schizophrenia as measured by the Scale for the Assessment of Negative Symptoms (SANS). CFA results from the assessment of 401 patients were largely supported by CFA results from a second assessment of 345 patients. (SLD)

  10. Damping Effect Studies for X-band Normal Conducting High Gradient Standing Wave Structures

    SciTech Connect

    Pei, S.; Li, Z.; Tantawi, S.G.; Dolgashev, V.A.; Wang, J.; /SLAC

    2009-08-03

    The Multi-TeV colliders should have the capability to accelerate low emittance beam with high rf efficiency, X-band normal conducting high gradient accelerating structure is one of the promising candidate. However, the long range transverse wake field which can cause beam emittance dilution is one of the critical issues. We examined effectiveness of dipole mode damping in three kinds of X-band, {pi}-mode standing wave structures at 11.424GHz with no detuning considered. They represent three damping schemes: damping with cylindrical iris slot, damping with choke cavity and damping with waveguide coupler. We try to reduce external Q factor below 20 in the first two dipole bands, which usually have very high (R{sub T}/Q){sub T}. The effect of damping on the acceleration mode is also discussed.

  11. Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice

    NASA Astrophysics Data System (ADS)

    Forti, S.; Stöhr, A.; Zakharov, A. A.; Coletti, C.; Emtsev, K. V.; Starke, U.

    2016-09-01

    The electronic band structure of an epitaxial graphene superlattice, generated by intercalating a monolayer of Cu atoms, is directly imaged by angle-resolved photoelectron spectroscopy. The 3.2 nm lateral period of the superlattice is induced by a varying registry between the graphene honeycomb and the Cu atoms as imposed by the heteroepitaxial interface Cu/SiC. The carbon atoms experience a lateral potential across the supercell of an estimated value of about 65 meV. The potential leads to strong energy renormalization in the band structure of the graphene layer and the emergence of mini-Dirac cones. The mini-cones’ band velocity is reduced to about half of graphene's Fermi velocity. Notably, the ordering of the interfacial Cu atoms can be reversibly blocked by mild annealing. The superlattice indeed disappears at ∼220 °C.

  12. Photoelectron spectroscopic study of band alignment of polymer/ZnO photovoltaic device structure

    SciTech Connect

    Nagata, T.; Chikyow, T.; Oh, S.; Wakayama, Y.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K.; Ikeno, N.

    2013-01-28

    Using x-ray photoelectron spectroscopy, we investigated the band alignment of a Ag/poly(3-hexylthiophene-2,5-diyl) (P3HT)/ZnO photovoltaic structure. At the P3HT/ZnO interface, a band bending of P3HT and a short surface depletion layer of ZnO were observed. The offset between the highest occupied molecular orbital of P3HT and the conduction band minimum of ZnO at the interface contributed to the open circuit voltage (Voc) was estimated to be approximately 1.5 {+-} 0.1 eV, which was bigger than that of the electrically measured effective Voc of P3HT/ZnO photovoltaic devices, meaning that the P3HT/ZnO photovoltaic structure has the potential to provide improved photovoltaic properties.

  13. Fully opposite spin polarization of electron and hole bands in DyN and related band structures of GdN and HoN

    NASA Astrophysics Data System (ADS)

    Cheiwchanchamnangij, Tawinan; Lambrecht, Walter R. L.

    2015-07-01

    Using quasiparticle self-consistent G W calculations, we show that DyN has an unusual nearly zero indirect gap semimetallic band structure in which the states near the valence band maximum are fully minority spin polarized at Γ while the states near the conduction band minimum (at X ) have fully majority spin character. This arises due to a strong hybridization of one of the minority spin f states of dysprosium with the N-2 p bands. The reason why only one of the f bands hybridizes is explained using symmetry arguments. We show that in HoN, this hybridization is already strongly reduced because of the deeper Ho-4 f minority spin states.

  14. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors

    DOE PAGESBeta

    Wang, Zhenbin; Chu, Iek -Heng; Zhou, Fei; Ong, Shyue Ping

    2016-05-09

    Narrow-band red-emitting phosphors are a critical component of phosphor-converted light-emitting diodes for highly efficient illumination-grade lighting. In this work, we report the discovery of a quantitative descriptor for narrow-band Eu2+-activated emission identified through a comparison of the electronic structures of known narrow-band and broad-band phosphors. We find that a narrow emission bandwidth is characterized by a large splitting of more than 0.1 eV between the two highest Eu2+ 4f7 bands. By incorporating this descriptor in a high-throughput first-principles screening of 2259 nitride compounds, we identify five promising new nitride hosts for Eu2+-activated red-emitting phosphors that are predicted to exhibit goodmore » chemical stability, thermal quenching resistance, and quantum efficiency, as well as narrow-band emission. Lastly, our findings provide important insights into the emission characteristics of rare-earth activators in phosphor hosts and a general strategy to the discovery of phosphors with a desired emission peak and bandwidth.« less

  15. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    SciTech Connect

    Canulescu, S. Schou, J.; Rechendorff, K.; Pleth Nielsen, L.; Borca, C. N.; Jones, N. C.; Hoffmann, S. V.; Bordo, K.; Ambat, R.

    2014-03-24

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3 eV, which is about ∼1.4 eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

  16. Interacting quasi-band theory for electronic states in compound semiconductor alloys: Wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kishi, Ayaka; Oda, Masato; Shinozuka, Yuzo

    2016-05-01

    This paper reports on the electronic states of compound semiconductor alloys of wurtzite structure calculated by the recently proposed interacting quasi-band (IQB) theory combined with empirical sp3 tight-binding models. Solving derived quasi-Hamiltonian 24 × 24 matrix that is characterized by the crystal parameters of the constituents facilitates the calculation of the conduction and valence bands of wurtzite alloys for arbitrary concentrations under a unified scheme. The theory is applied to III–V and II–VI wurtzite alloys: cation-substituted Al1‑ x Ga x N and Ga1‑ x In x N and anion-substituted CdS1‑ x Se x and ZnO1‑ x S x . The obtained results agree well with the experimental data, and are discussed in terms of mutual mixing between the quasi-localized states (QLS) and quasi-average bands (QAB): the latter bands are approximately given by the virtual crystal approximation (VCA). The changes in the valence and conduction bands, and the origin of the band gap bowing are discussed on the basis of mixing character.

  17. Structure and Evolution of Convection Band Occurred over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kim, W.; Lee, T.

    2011-12-01

    A significant portion of the annual precipitation on the Korean peninsula is produced by heavy precipitation systems (HPSs) during summer. HPSs over the Korean peninsula could be classified into four major types (convection bands, cloud clusters, isolated thunderstorms, and squall lines) by phenomenological analysis. Among four major types of HPSs, convection bands (CBs) tend to concentrate a large amount of rainfall over limited area due to their quasi-stationary behavior for several hours. Convective cells embedded in CB move along the band and new cells are continuously formed in the upstream of the band. In this study, the structure and evolution of CB have been investigated using NCEP Climate Forecast System Reanalysis (CFSR) data and Weather Research and Forecasting (WRF) model. Thirty CB cases occurred during 2000-2010 were selected to conduct composite analysis. We obtained several profiles which represent northern area (NA), southern area (SA), and upstream area (UA) of CB by composite analysis. Modest band-perpendicular wind component (5 m s-1) is found in the level of 925-1000 hPa in SA, while band-perpendicular wind component of NA is nearly zero. Additionally, equivalent potential temperature in the lower-troposphere of SA is about 10 K larger than that of NA. Low-level band-perpendicular wind component of SA seems to play an important role in the development of CB by providing the environment for large-scale convergence and transporting warm and moist air from southern area of CB. Band-parallel wind component is predominant in the middle- and lower-troposphere. On the basis of the results of composite analysis, ideal simulation for the evolution of CB was set up. The analysis for the evolution of CB is in progress.

  18. Three-Dimensional Structure of Vertebrate Muscle Z-Band: The Small-Square Lattice Z-Band in Rat Cardiac Muscle

    PubMed Central

    Burgoyne, Thomas; Morris, Edward P.; Luther, Pradeep K.

    2015-01-01

    The Z-band in vertebrate striated muscle crosslinks actin filaments of opposite polarity from adjoining sarcomeres and transmits tension along myofibrils during muscular contraction. It is also the location of a number of proteins involved in signalling and myofibrillogenesis; mutations in these proteins lead to myopathies. Understanding the high-resolution structure of the Z-band will help us understand its role in muscle contraction and the role of these proteins in the function of muscle. The appearance of the Z-band in transverse-section electron micrographs typically resembles a small-square lattice or a basketweave appearance. In longitudinal sections, the Z-band width varies more with muscle type than species: slow skeletal and cardiac muscles have wider Z-bands than fast skeletal muscles. As the Z-band is periodic, Fourier methods have previously been used for three-dimensional structural analysis. To cope with variations in the periodic structure of the Z-band, we have used subtomogram averaging of tomograms of rat cardiac muscle in which subtomograms are extracted and compared and similar ones are averaged. We show that the Z-band comprises four to six layers of links, presumably α-actinin, linking antiparallel overlapping ends of the actin filaments from the adjoining sarcomeres. The reconstruction shows that the terminal 5–7 nm of the actin filaments within the Z-band is devoid of any α-actinin links and is likely to be the location of capping protein CapZ. PMID:26362007

  19. Three-Dimensional Structure of Vertebrate Muscle Z-Band: The Small-Square Lattice Z-Band in Rat Cardiac Muscle.

    PubMed

    Burgoyne, Thomas; Morris, Edward P; Luther, Pradeep K

    2015-11-01

    The Z-band in vertebrate striated muscle crosslinks actin filaments of opposite polarity from adjoining sarcomeres and transmits tension along myofibrils during muscular contraction. It is also the location of a number of proteins involved in signalling and myofibrillogenesis; mutations in these proteins lead to myopathies. Understanding the high-resolution structure of the Z-band will help us understand its role in muscle contraction and the role of these proteins in the function of muscle. The appearance of the Z-band in transverse-section electron micrographs typically resembles a small-square lattice or a basketweave appearance. In longitudinal sections, the Z-band width varies more with muscle type than species: slow skeletal and cardiac muscles have wider Z-bands than fast skeletal muscles. As the Z-band is periodic, Fourier methods have previously been used for three-dimensional structural analysis. To cope with variations in the periodic structure of the Z-band, we have used subtomogram averaging of tomograms of rat cardiac muscle in which subtomograms are extracted and compared and similar ones are averaged. We show that the Z-band comprises four to six layers of links, presumably α-actinin, linking antiparallel overlapping ends of the actin filaments from the adjoining sarcomeres. The reconstruction shows that the terminal 5-7nm of the actin filaments within the Z-band is devoid of any α-actinin links and is likely to be the location of capping protein CapZ. PMID:26362007

  20. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  1. Impact of the valence band structure of Cu2O on excitonic spectra

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Main, Jörg; Feldmaier, Matthias; Wunner, Günter; Uihlein, Christoph

    2016-05-01

    We present a method to calculate the excitonic spectra of all direct semiconductors with a complex valence band structure. The Schrödinger equation is solved using a complete basis set with Coulomb-Sturmian functions. This method also allows for the computation of oscillator strengths. Here we apply this method to investigate the impact of the valence band structure of cuprous oxide (Cu2O ) on the yellow exciton spectrum. Results differ from those of J. Thewes et al. [Phys. Rev. Lett. 115, 027402 (2015), 10.1103/PhysRevLett.115.027402]; the differences are discussed and explained. The difference between the second and third Luttinger parameter can be determined by comparisons with experiments; however, the evaluation of all three Luttinger parameters is not uniquely possible. Our results are consistent with band structure calculations. Considering also a finite momentum ℏ K of the center of mass, we show that the large K -dependent line splitting observed for the 1 S exciton state by G. Dasbach et al. [Phys. Rev. Lett. 91, 107401 (2003), 10.1103/PhysRevLett.91.107401] is not related to an exchange interaction but rather to the complex valence band structure of Cu2O .

  2. Band structure analysis of an analytically solvable Hill equation with continuous potential

    NASA Astrophysics Data System (ADS)

    Morozov, G. V.; Sprung, D. W. L.

    2015-03-01

    This paper concerns analytically solvable cases of Hill’s equation containing a continuously differentiable periodic potential. We outline a procedure for constructing the Floquet-Bloch fundamental system, and analyze the band structure of the system. The similarities to, and differences from, the cases of a piecewise constant periodic potential and the Mathieu potential, are illuminated.

  3. Doping and strain dependence of the electronic band structure in Ge and GeSn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Gallagher, James; Senaratne, Charutha; Brown, Christopher; Fernando, Nalin; Zollner, Stefan; Kouvetakis, John; Menendez, Jose

    2015-03-01

    A systematic study of the effect of dopants and strain on the electronic structure of Ge and GeSn alloys is presented. Samples were grown by UHV-CVD on Ge-buffered Si using Ge3H8 and SnD4 as the sources of Ge and Sn, and B2H6/P(GeH3)3 as dopants. High-energy critical points in the joint-density of electronic states were studied using spectroscopic ellipsometry, which yields detailed information on the strain and doping dependence of the so-called E1, E1 +Δ1 , E0' and E2 transitions. The corresponding dependencies of the lowest direct band gap E0 and the fundamental indirect band gap Eindwere studied via room-T photoluminescence spectroscopy. Of particular interest for this work were the determination of deformation potentials, band gap renormalization effects, Burstein-Moss shifts due to the presence of carriers at band minima, and the dependence of other critical point parameters, such as amplitudes and phase angles, on the doping concentration. The selective blocking of transitions due to high doping makes it possible to investigate the precise k-space location of critical points. These studies are complemented with detailed band-structure calculations within a full-zone k-dot- p approach. Supported by AFOSR under DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  4. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  5. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-bandgap structure.

    PubMed

    Liu, Hao; Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1-10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  6. Design of UWB Monopole Antenna with Dual Notched Bands Using One Modified Electromagnetic-Bandgap Structure

    PubMed Central

    Xu, Ziqiang

    2013-01-01

    A modified electromagnetic-bandgap (M-EBG) structure and its application to planar monopole ultra-wideband (UWB) antenna are presented. The proposed M-EBG which comprises two strip patch and an edge-located via can perform dual notched bands. By properly designing and placing strip patch near the feedline, the proposed M-EBG not only possesses a simple structure and compact size but also exhibits good band rejection. Moreover, it is easy to tune the dual notched bands by altering the dimensions of the M-EBG. A demonstration antenna with dual band-notched characteristics is designed and fabricated to validate the proposed method. The results show that the proposed antenna can satisfy the requirements of VSWR < 2 over UWB 3.1–10.6 GHz, except for the rejected bands of the world interoperability for microwave access (WiMAX) and the wireless local area network (WLAN) at 3.5 GHz and 5.5 GHz, respectively. PMID:24170984

  7. Tuning the band structures of single walled silicon carbide nanotubes with uniaxial strain: a first principles study

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Xiao, H. Y.; Gao, Fei; Weber, William J.

    2008-05-09

    Electronic band structures of single-walled silicon carbide nanotubes are studied under uniaxial strain using first principles calculations. The band structure can be tuned by mechanical strain in a wide energy range. The band gap decreases with uniaxial tensile strain, but initially increases with uniaxial compressive strain and then decreases with further increases in compressive strain. These results may provide a way to tune the electronic structures of silicon carbide nanotubes, which may have promising applications in building nanodevices.

  8. Effects of strain on the band structure of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Janotti, Anderson; Scheffler, Matthias; Van de Walle, Chris G.

    2014-09-01

    We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (202¯1), (303¯1), and (303¯1¯) orientations, our calculated deformation potentials have provided results for polarization ratios in good agreement with the experimental observations, providing further confidence in the accuracy of our values.

  9. Infrared detectors and lasers operating in the 3-12 μm range using band-gap engineered structures with type II band-gap alignment

    NASA Astrophysics Data System (ADS)

    Swaminathan, Venkataraman; Little, John W.; Tober, Richard L.

    2006-02-01

    The Type II broken band-gap alignment in semiconductor structures wherein the conduction band minimum is in one semiconductor (e.g., InAs) and the valence band maximum is in another (e.g., GaInSb) offers certain unique advantages which can be utilized to realize band-gap engineered novel quantum electro-optic devices such as lasers and detectors. The advantages of the type II structures include reduced Auger recombination, extending the effective band-gap energy of materials wherein type I band-gap alignment would give rise to difficulties such as miscibility gap. In this paper we describe the work carried out at the Army Research Laboratory on type II semiconductor quantum electro-optic devices such as IR lasers and detectors operating in the 3-12 μm range. Specifically we will cover the progress made in GaSb based type II strained layer superlattice IR detectors and Interband Cascade IR Lasers. We will also present our recent work in self-assembled quantum dots which have type II band-gap alignment with the matrix material in which the dots are embedded.

  10. Ferromagnetism and the electronic band structure in (Ga,Mn)(Bi,As) epitaxial layers

    SciTech Connect

    Yastrubchak, O.; Sadowski, J.; Domagala, J. Z.; Andrearczyk, T.; Wosinski, T.

    2014-08-18

    Impact of Bi incorporation into (Ga,Mn)As layers on their electronic- and band-structures as well as their magnetic and structural properties has been studied. Homogenous (Ga,Mn)(Bi,As) layers of high structural perfection have been grown by the low-temperature molecular-beam epitaxy technique. Post-growth annealing treatment of the layers results in an improvement of their structural and magnetic properties and an increase in the hole concentration in the layers. The modulation photoreflectance spectroscopy results are consistent with the valence-band model of hole-mediated ferromagnetism in the layers. This material combines the properties of (Ga,Mn)As and Ga(Bi,As) ternary compounds and offers the possibility of tuning its electrical and magnetic properties by controlling the alloy composition.

  11. Nonlinear optical response of semiconductor-nanocrystals-embedded photonic band gap structure

    SciTech Connect

    Liao, Chen; Zhang, Huichao; Tang, Luping; Zhou, Zhiqiang; Lv, Changgui; Cui, Yiping; Zhang, Jiayu

    2014-04-28

    Colloidal CdSe/ZnS core/shell nanocrystals (NCs), which were dispersed in SiO{sub 2} sol, were utilized to fabricate a SiO{sub 2}:NCs/TiO{sub 2} all-dielectric photonic band gap (PBG) structure. The third-order nonlinear refractive index (n{sub 2}) of the PBG structure was nearly triple of that of the SiO{sub 2}:NCs film due to the local field enhancement in the PBG structure. The photoinduced change in refractive index (Δn) could shift the PBG band edge, so the PBG structure would show significant transmission modification, whose transmission change was ∼17 folds of that of the SiO{sub 2}:NCs film. Under excitation of a 30 GW/cm{sup 2} femtosecond laser beam, a transmission decrease of 80% was realized.

  12. Electronic band structures and photovoltaic properties of MWO{sub 4} (M=Zn, Mg, Ca, Sr) compounds

    SciTech Connect

    Kim, Dong Wook; Cho, In-Sun; Shin, Seong Sik; Lee, Sangwook; Noh, Tae Hoon; Kim, Dong Hoe; Jung, Hyun Suk; Hong, Kug Sun

    2011-08-15

    Divalent metal tungstates, MWO{sub 4}, with wolframite (M=Zn and Mg) and scheelite (M=Ca and Sr) structures were prepared using a conventional solid state reaction method. Their electronic band structures were investigated by a combination of electronic band structure calculations and electrochemical measurements. From these investigations, it was found that the band structures (i.e. band positions and band gaps) of the divalent metal tungstates were significantly influenced by their crystal structural environments, such as the W-O bond length. Their photovoltaic properties were evaluated by applying to the working electrodes for dye-sensitized solar cells. The dye-sensitized solar cells employing the wolframite-structured metal tungstates (ZnWO{sub 4} and MgWO{sub 4}) exhibited better performance than those using the scheelite-structured metal tungstates (CaWO{sub 4} and SrWO{sub 4}), which was attributed to their enhanced electron transfer resulting from their appropriate band positions. - Graphical abstract: The electronic band structures of divalent metal tungstates are described from the combination of experimental results and theoretical calculations, and their electronic structure-dependent photovoltaic performances are also studied. Highlights: > MWO{sub 4} compounds with wolframite (M=Zn and Mg) and scheelite structure (M=Ca and Sr) were prepared. > Their electronic band structures were investigated by the calculations and the measurements. > Their photovoltaic properties were determined by the crystal and electronic structures.

  13. B4N and Fe3BN nitrides bands structure and theoretical determination of bulk modulus

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.

    2007-06-01

    With the evolution of material science there was some technological evolution as well as the need of finding new links which could be applied to diverse areas of knowledge. Thus, in this article, we study nitrides bands structures which contain boron, in two different stoichiometries Fe3BN and B4N. The choice of these compounds is meant to plan new links and to understand nitrides fundamental state properties facing these new crystalline structures. In order to resolve the compound band structure we used the method of linear Muffin Tin orbital (LMTO), with atomic sphere approximation (ASA). By using this method we obtained the energy of formation as a function of the lattice parameter as one of the results. We find the equilibrium lattice parameter of 6.9755 a.u., for the Fe3BN nitride, and in B4N, we have 6.8589 a.u. We also discuss in this article the charge transference between sites and the influence of pressure on the compound properties, as well as the Bulk modulus that is 239.82 GPa for Fe3BN and 105.48 GPa for B4N. We show the behaviour of the density of states (DOS) of the new band structure found for the proposed crystalline structure Fe3BN, in which the B atom replace the Fe atom in the corner of the structure γ‧- Fe4N.

  14. Crystal Structure and Band Gap Engineering in Polyoxometalate-Based Inorganic-Organic Hybrids.

    PubMed

    Roy, Soumyabrata; Sarkar, Sumanta; Pan, Jaysree; Waghmare, Umesh V; Dhanya, R; Narayana, Chandrabhas; Peter, Sebastian C

    2016-04-01

    We have demonstrated engineering of the electronic band gap of the hybrid materials based on POMs (polyoxometalates), by controlling its structural complexity through variation in the conditions of synthesis. The pH- and temperature-dependent studies give a clear insight into how these experimental factors affect the overall hybrid structure and its properties. Our structural manipulations have been successful in effectively tuning the optical band gap and electronic band structure of this kind of hybrids, which can find many applications in the field of photovoltaic and semiconducting devices. We have also addressed a common crystallographic disorder observed in Keggin-ion (one type of heteropolyoxometalate [POMs])-based hybrid materials. Through a combination of crystallographic, spectroscopic, and theoretical analysis of four new POM-based hybrids synthesized with tactically varied reaction conditions, we trace the origin and nature of the disorder associated with it and the subtle local structural coordination involved in its core picture. While the crystallography yields a centrosymmetric structure with planar coordination of Si, our analysis with XPS, IR, and Raman spectroscopy reveals a tetrahedral coordination with broken inversion symmetry, corroborated by first-principles calculations. PMID:26986739

  15. Topological band order, structural, electronic and optical properties of XPdBi (X = Lu, Sc) compounds

    NASA Astrophysics Data System (ADS)

    Narimani, M.; Nourbakhsh, Z.

    2016-05-01

    In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel-Vosco generalized gradient approximations and modified Becke-Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.

  16. Investigation of band structure of {sup 103,105}Rh using microscopic computational technique

    SciTech Connect

    Kumar, Amit; Singh, Suram; Bharti, Arun

    2015-08-28

    The high-spin structure in {sup 61}Cu nucleus is studied in terms of effective two body interaction. In order to take into account the deformed BCS basis, the basis states are expanded in terms of the core eigenfunctions. Yrast band with some other bands havew been obtained and back-bending in moment of inertia has also been calculated and compared with the available experimental data for {sup 61}Cu nucleus. On comparing the available experimental as well as other theoretical data, it is found that the treatment with PSM provides a satisfactory explanation of the available data.

  17. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma

    NASA Astrophysics Data System (ADS)

    Vladimirov, S. V.; Ishihara, O.

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.

  18. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    PubMed

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed. PMID:27575225

  19. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    NASA Astrophysics Data System (ADS)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  20. Structural characteristic correlated to the electronic band gap in Mo S2

    NASA Astrophysics Data System (ADS)

    Chu, Shengqi; Park, Changyong; Shen, Guoyin

    2016-07-01

    The structural evolution with pressure in bulk Mo S2 has been investigated by high-pressure x-ray diffraction using synchrotron radiation. We found that the out-of-plane S-Mo-S bond angle θ increases and that in in-plane angle ϕ decreases linearly with increasing pressure across the known semiconducting-to-metal phase transition, whereas the Mo-S bond length and the S-Mo-S trilayer thickness display only little change. Extrapolating the experimental result along the in-plane lattice parameter with pressure, both S-Mo-S bond angles trend to those found in monolayer Mo S2 , which manifests as a structural characteristic closely correlating the electronic band gap of Mo S2 to its physical forms and phases, e.g., monolayer as direct band gap semiconductor, multilayer or bulk as indirect band gap semiconductor, and high-pressure (>19 GPa ) bulk form as metal. Combined with the effects of bond strength and van der Waals interlayer interactions, the structural correlations between the characteristic bond angle and electronic band gaps are readily extendible to other transition metal dichalcogenide systems (M X2 , where M =Mo , W and X =S , Se, Te).

  1. Non-negative matrix factorization and term structure of interest rates

    NASA Astrophysics Data System (ADS)

    Takada, Hellinton H.; Stern, Julio M.

    2015-01-01

    Non-Negative Matrix Factorization (NNMF) is a technique for dimensionality reduction with a wide variety of applications from text mining to identification of concentrations in chemistry. NNMF deals with non-negative data and results in non-negative factors and factor loadings. Consequently, it is a natural choice when studying the term structure of interest rates. In this paper, NNMF is applied to obtain factors from the term structure of interest rates and the procedure is compared with other very popular techniques: principal component analysis and Nelson-Siegel model. The NNMF approximation for the term structure of interest rates is better in terms of fitting. From a practitioner point of view, the NNMF factors and factor loadings obtained possess straightforward financial interpretations due to their non-negativeness.

  2. G0W0 band structure of CdWO4.

    PubMed

    Laasner, Raul

    2014-03-26

    The full quasiparticle band structure of CdWO4 is calculated within the single-shot GW (G0W0) approximation using maximally localized Wannier functions, which allows one to assess the validity of the commonly used scissor operator. Calculations are performed using the Godby-Needs plasmon pole model and the accurate contour deformation technique. It is shown that while the two methods yield identical band gap energies, the low-lying states are given inaccurately by the plasmon pole model. We report a band gap energy of 4.94 eV, including spin-orbit interaction at the DFT-LDA (density functional theory-local density approximation) level. Quasiparticle renormalization in CdWO4 is shown to be correlated with localization distance. Electron and hole effective masses are calculated at the DFT and G0W0 levels. PMID:24599225

  3. Band gap and electronic structure of MgSiN{sub 2}

    SciTech Connect

    Quirk, J. B. Råsander, M.; McGilvery, C. M.; Moram, M. A.; Palgrave, R.

    2014-09-15

    Density functional theory calculations and electron energy loss spectroscopy indicate that the electronic structure of ordered orthorhombic MgSiN{sub 2} is similar to that of wurtzite AlN. A band gap of 5.7 eV was calculated for both MgSiN{sub 2} (indirect) and AlN (direct) using the Heyd-Scuseria-Ernzerhof approximation. Correction with respect to the experimental room-temperature band gap of AlN indicates that the true band gap of MgSiN{sub 2} is 6.2 eV. MgSiN{sub 2} has an additional direct gap of 6.3 eV at the Γ point.

  4. Exploring the Electronic Band Structure of Organometal Halide Perovskite via Photoluminescence Anisotropy of Individual Nanocrystals.

    PubMed

    Täuber, Daniela; Dobrovolsky, Alexander; Camacho, Rafael; Scheblykin, Ivan G

    2016-08-10

    Understanding electronic processes in organometal halide perovskites, flourishing photovoltaic, and emitting materials requires unraveling the origin of their electronic transitions. Light polarization studies can provide important information regarding transition dipole moment orientations. Investigating individual methylammonium lead triiodide perovskite nanocrystals enabled us to detect the polarization of photoluminescence intensity and photoluminescence excitation, hidden in bulk samples by ensemble averaging. Polarization properties of the crystals were correlated with their photoluminescence spectra and electron microscopy images. We propose that distortion of PbI6 octahedra leads to peculiarities of the electronic band structure close to the band-edge. Namely, the lowest band transition possesses a transition dipole moment along the apical Pb-I-Pb bond resulting in polarized photoluminescence. Excitation of photoluminescence above the bandgap is unpolarized because it involves molecular orbitals delocalized both in the apical and equatorial directions of the perovskite octahedron. Trap-assisted emission at 77 K, rather surprisingly, was polarized similar to the bandgap emission. PMID:27462927

  5. Stable porous crystalline silicon with nanotubular structure: A predicted allotrope with direct band gap

    NASA Astrophysics Data System (ADS)

    Tang, Chi-Pui; Cao, Jie; Xiong, Shi-Jie

    2015-06-01

    On basis of the first principle calculation we show that a crystalline structure of silicon, as a novel allotrope with nanotubular holes along two perpendicular directions, is stable. The calculations on geometrical and electronic properties reveal that this allotrope possesses a direct band gap wider by 0.5 eV than the indirect one of silicon with diamond structure. The crystal belongs to I41/AMD space group, showing anisotropic optical properties and Young modulus. The bulk modulus is 64.4 GPa and the density is 1.9 g/cm3, lower than that of the diamond silicon due to the presence of nanotubular holes. It is hopeful that the allotrope may widely expand applications of silicon in many fields due to its direct band gap and specific nanotubular structure.

  6. Giant magnetoresistance and band structure of topological semimetal RhSb3

    NASA Astrophysics Data System (ADS)

    Wang, Kefeng; Wang, Limin; Nakajima, Y.; Wang, Renxiong; Yong, Jie; Paglione, J.

    2015-03-01

    Recently materials with skutterudite structure such as CoSb3 were predicted to provide a promising platform for the realization of new topological materials such as topological insulators and Dirac-Weyl semimetals. Here we report a detailed study of the electronic structure and magnetotransport properties of high quality RhSb3 single crystals. First-principles electronic structure calculations reveal a highly dispersive band with Sb-p and Rh-3d weight that shows apparent band inversion. Inclusion of spin-orbit coupling leaves the Fermi level pinned to a doublet, indicating a topological semimetal. Our synthesized high-quality single crystals show typical metallic behavior but with very small residual resistivity ratio, a sign of semimetal behavior, in zero field. We will present magnetotrasport data that exhibits a very large magnetoresistance that hints of a very sensitive evolution of electronic properties and Dirac-like spectrum.

  7. Sonic Stop-Bands for Periodic Arrays of Metallic Rods: Honeycomb Structure

    NASA Astrophysics Data System (ADS)

    Kushwaha, M. S.; Djafari-Rouhani, B.

    1998-12-01

    Extensive band structures have been computed for periodic arrays (in the honeycomb structure) of rigid metallic rods in air. Multiple complete acoustic stop bands have been obtained within which sound and vibrations are forbidden. These gaps start opening up for a filling fractionf≥8% and tend to increase with the filling fraction, exhibiting a maximum at the close-packing. A tandem structure has also been proposed that allows an ultrawideband filter for environmental or industrial noise to be achieved in the desired frequency range. This work is motivated by the recent experimental observation of sound attenuation on the sculpture by Eusebio Sempere, exhibited at the Juian March Foundation in Madrid [21] and complements the corresponding theoretical work [22, 23].

  8. Bloch mode synthesis: Ultrafast methodology for elastic band-structure calculations

    NASA Astrophysics Data System (ADS)

    Krattiger, Dimitri; Hussein, Mahmoud I.

    2014-12-01

    We present a methodology for fast band-structure calculations that is generally applicable to problems of elastic wave propagation in periodic media. The methodology, called Bloch mode synthesis, represents an extension of component mode synthesis, a set of substructuring techniques originally developed for structural dynamics analysis. In Bloch mode synthesis, the unit cell is divided into interior and boundary degrees-of-freedom, which are described, respectively, by a set of normal modes and a set of constraint modes. A combination of these mode sets then forms a reduced basis for the band structure eigenvalue problem. The reduction is demonstrated on a phononic-crystal model and a locally resonant elastic-metamaterial model and is shown to accurately predict the frequencies and Bloch mode shapes with a dramatic decrease in computation time in excess of two orders of magnitude.

  9. Spatially resolved methane band photometry of Saturn. II - Cloud structure models at four latitudes

    NASA Technical Reports Server (NTRS)

    West, R. A.

    1983-01-01

    Saturn's cloud vertical structures in the Equatorial Zone, South Equatorial Belt, and North and South Temperate Regions near + or - 30 deg latitudes are determined by means of an analysis of spatially resolved reflectivity measurements in the 6190, 7250, and 8996 A methane bands. Radiative transfer models are computed for a structure whose parameters are the methane column abundance in an aerosol-free layer at the top of the atmosphere, and the specific abundance of methane in a semiinfinite homogeneous gas-and-cloud mixture deep in the atmosphere. The structure for the South Equatorial Belt resembles that for the North Temperate Region. The level where unit cloud optical depth occurs in the South Temperate Region is deeper than the corresponding level at other latitudes. The differences between model parameters derived by means of different absorption bands are discussed.

  10. Band structure and electron-phonon coupling in H3S : A tight-binding model

    NASA Astrophysics Data System (ADS)

    Ortenzi, L.; Cappelluti, E.; Pietronero, L.

    2016-08-01

    We present a robust tight-binding description, based on the Slater-Koster formalism, of the band structure of H3S in the Im3 ¯m structure, stable in the range of pressure P =180 -220 GPa. We show that the interatomic hopping between the 3 s and 3 p orbitals (and partially between the 3 p orbitals themselves) of sulfur is fundamental to capturing the relevant physics associated with the Van Hove singularities close to the Fermi level. Comparing the model so defined with density functional theory calculations we obtain a very good agreement not only of the overall band structure but also of the low-energy states and the Fermi surface properties. The description in terms of Slater-Koster parameters permits us also to evaluate at a microscopic level a hopping-resolved linear electron-lattice coupling which can be employed for further tight-binding analyses also at a local scale.

  11. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  12. Structure of the doublet bands in doubly odd nuclei: The case of {sup 128}Cs

    SciTech Connect

    Ganev, H. G.; Brant, S.

    2010-09-15

    The structure of the {Delta}J=1 doublet bands in {sup 128}Cs is investigated within the framework of the interacting vector boson-fermion model. A new, purely collective interpretation of these bands is given on the basis of the used boson-fermion dynamical symmetry of the model. The energy levels of the doublet bands as well as the absolute B(E2) and B(M1) transition probabilities between the states of both yrast and yrare bands are described quite well. The observed odd-even staggering of both B(M1) and B(E2) values is reproduced by the introduction of an appropriate interaction term of quadrupole type, which produces such a staggering effect in the transition strengths. The calculations show that the appearance of doublet bands in certain odd-odd nuclei could be a consequence of the realization of a larger dynamical symmetry based on the noncompact supersymmetry group OSp(2{Omega}/12,R).

  13. Engineered band structure for an enhanced performance on quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Bin Bin; Wang, Ye Feng; Wei, Dong; Cui, Bin; Chen, Yu; Zeng, Jing Hui

    2016-06-01

    A photon-to-current efficiency of 2.93% is received for the Mn-doped CdS (MCdS)-quantum dot sensitized solar cells (QDSSCs) using Mn:ZnO (MZnO) nanowire as photoanode. Hydrothermal synthesized MZnO are spin-coated on fluorine doped tin oxide (FTO) glass with P25 paste to serve as photoanode after calcinations. MCdS was deposited on the MZnO film by the successive ionic layer adsorption and reaction method. The long lived excitation energy state of Mn2+ is located inside the conduction band in the wide bandgap ZnO and under the conduction band of CdS, which increases the energetic overlap of donor and acceptor states, reducing the "loss-in-potential," inhibiting charge recombination, and accelerating electron injection. The engineered band structure is well reflected by the electrochemical band detected using cyclic voltammetry. Cell performances are evidenced by current density-voltage (J-V) traces, diffuse reflectance spectra, transient PL spectroscopy, and incident photon to current conversion efficiency characterizations. Further coating of CdSe on MZnO/MCdS electrode expands the light absorption band of the sensitizer, an efficiency of 4.94% is received for QDSSCs.

  14. On the structure of the two-stream instability-complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Davidson, Ronald C.; Liu, Jian; Xiao, Jianyuan

    2016-07-01

    The two-stream instability is probably the most important elementary example of collective instabilities in plasma physics and beam-plasma systems. For a warm plasma with two charged particle species, the instability diagram of the two-stream instability based on a 1D warm-fluid model exhibits an interesting band structure that has not been explained. We show that the band structure for this instability is the consequence of the Hamiltonian nature of the warm two-fluid system. Interestingly, the Hamiltonian nature manifests as a complex G-Hamiltonian structure in wave-number space, which directly determines the instability diagram. Specifically, it is shown that the boundaries between the stable and unstable regions are locations for Krein collisions between eigenmodes with different Krein signatures. In terms of physics, this rigorously implies that the system is destabilized when a positive-action mode resonates with a negative-action mode, and that this is the only mechanism by which the system can be destabilized. It is anticipated that this physical mechanism of destabilization is valid for other collective instabilities in conservative systems in plasma physics, accelerator physics, and fluid dynamics systems, which admit infinite-dimensional Hamiltonian structures.

  15. Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON

    NASA Astrophysics Data System (ADS)

    Schwöbel, André; Precht, Ruben; Motzko, Markus; Carrillo Solano, Mercedes A.; Calvet, Wolfram; Hausbrand, René; Jaegermann, Wolfram

    2014-12-01

    Lithium phosphorus oxynitride (LiPON) is a solid state electrolyte commonly used in thin film batteries (TFBs). Advanced TFBs face the issue of detrimental electrode-electrolyte interlayer formation, related to the electronic structure of the interface. In this contribution, we study the valence band structure of LiPON using resonant photoemission and synchrotron photoemission with variable excitation energies. The identification of different valence band features is done according to the known valence band features of meta- and orthophosphates. Additionally we compare our results with partial density of states simulations from literature. We find that the valence band structure is similar to the known metaphosphates with an additional contribution of nitrogen states at the top of the valence band. From the results we conclude that synchrotron X-ray photoemission (XPS) is a useful tool to study the valence band structure of nitridated alkali phosphate glasses.

  16. Negative differential resistance in direct bandgap GeSn p-i-n structures

    NASA Astrophysics Data System (ADS)

    Schulte-Braucks, C.; Stange, D.; von den Driesch, N.; Blaeser, S.; Ikonic, Z.; Hartmann, J. M.; Mantl, S.; Buca, D.

    2015-07-01

    Certain GeSn alloys are group IV direct bandgap semiconductors with prospects for electrical and optoelectronical applications. In this letter, we report on the temperature dependence of the electrical characteristics of high Sn-content Ge 0.89 Sn 0.11 p-i-n diodes. NiGeSn contacts were used to minimize the access resistance and ensure compatibility with silicon technology. The major emphasis is placed on the negative differential resistance in which peak to valley current ratios up to 2.3 were obtained. TCAD simulations were performed to identify the origin of the various current contributions, providing evidence for direct band to band tunneling and trap assisted tunneling.

  17. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-01

    Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau

  18. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    NASA Astrophysics Data System (ADS)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  19. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    PubMed

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. PMID:27367475

  20. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds

    SciTech Connect

    Jungwirth, T.; Novak, V.; Cukr, M.; Zemek, J.; Marti, X.; Horodyska, P.; Nemec, P.; Holy, V.; Maca, F.; Shick, A. B.; Masek, J.; Kuzel, P.; Nemec, I.; Gallagher, B. L.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.

    2011-01-15

    Our ab initio theory calculations predict a semiconducting band structure of I-Mn-V compounds. We demonstrate on LiMnAs that high-quality materials with group-I alkali metals in the crystal structure can be grown by molecular beam epitaxy. Optical measurements on the LiMnAs epilayers are consistent with the theoretical electronic structure. Our calculations also reproduce earlier reports of high antiferromagnetic ordering temperature and predict large, spin-orbit-coupling-induced magnetic anisotropy effects. We propose a strategy for employing antiferromagnetic semiconductors in high-temperature semiconductor spintronics.

  1. Spherical silicon-shell photonic band gap structures fabricated by laser-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, Z. Y.; Lu, Y. F.

    2007-02-01

    Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.

  2. Structural phase transition in IrTe2: A combined study of optical spectroscopy and band structure calculations

    PubMed Central

    Fang, A. F.; Xu, G.; Dong, T.; Zheng, P.; Wang, N. L.

    2013-01-01

    Ir1−xPtxTe2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px, py) and Te pz bands. PMID:23362455

  3. Auxetic materials with large negative Poisson's ratios based on highly oriented carbon nanotube structures

    NASA Astrophysics Data System (ADS)

    Chen, Luzhuo; Liu, Changhong; Wang, Jiaping; Zhang, Wei; Hu, Chunhua; Fan, Shoushan

    2009-06-01

    Auxetic materials with large negative Poisson's ratios are fabricated by highly oriented carbon nanotube structures. The Poisson's ratio can be obtained down to -0.50. Furthermore, negative Poisson's ratios can be maintained in the carbon nanotube/polymer composites when the nanotubes are embedded, while the composites show much better mechanical properties including larger strain-to-failure (˜22%) compared to the pristine nanotube thin film (˜3%). A theoretical model is developed to predict the Poisson's ratios. It indicates that the large negative Poisson's ratios are caused by the realignment of curved nanotubes during stretching and the theoretical predictions agree well with the experimental results.

  4. Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering.

    PubMed

    Yuan, Wei; Zhou, Ning; Shi, Lei; Zhang, Ke-Qin

    2015-07-01

    Because structural color is fadeless and dye-free, structurally colored materials have attracted great attention in a wide variety of research fields. In this work, we report the use of a novel structural coloration strategy applied to the fabrication of colorful colloidal fibers. The nanostructured fibers with tunable structural colors were massively produced by colloidal electrospinning. Experimental results and theoretical modeling reveal that the homogeneous and noniridescent structural colors of the electrospun fibers are caused by two phenomena: reflection due to the band gap of photonic structure and Mie scattering of the colloidal spheres. Our unprecedented findings show promise in paving way for the development of revolutionary dye-free technology for the coloration of various fibers. PMID:26066732

  5. Changing dynamic behavior of periodic structures by using piezoelectric circuitry with negative resistance

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wang, X.; Tang, J.

    2009-03-01

    Integrating a piezoelectric circuitry, which consists of a piezoelectric transducer connected with electrical circuitry elements, to a mechanical structure can alter the dynamic behavior of the structural system. From a system dynamics standpoint, these circuitry elements are analogous to the mass, damping, and stiffness elements in the mechanical regime. Using op amp circuits we can synthesize circuitry elements with interesting characteristics such as tunable or negative elements. In this research, we demonstrate that the negative resistance element can reduce the overall system damping, thereby changing the dynamic response of mechanical structures. In particular, it will be shown that not only the response amplitude can be amplified; the response pattern in the mistuned periodic structure can be altered significantly upon the change of local structural properties. Such phenomena are analyzed systematically, and the potential advantage for structural damage detection is highlighted.

  6. Rotational Structure of the Ir/fir Bands of Small Pahs

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Gruet, S.; Vervloet, M.; Goubet, M.; Huet, T. R.; Georges, R.; Soulard, P.; Asselin, P.

    2013-06-01

    Accurate spectroscopic measurements in the laboratory of PAH molecules are required to better understand their excitation/relaxation processes which could be responsible for the Unidentified Infrared Bands observed in various objects in space. In particular very few is known concerning the rotational structure of the IR/FIR bands of PAHs. We used the high resolution Fourier Transform interferometer of the AILES beamline of synchrotron SOLEIL to record the rotationally resolved spectra of several IR/FIR vibrational modes of naphthalene (C_{10}H_{8}) and its derivatives: quinoline (C_9H_7N), isoquinoline (C_9H_7N), azulene (C_{10}H_{8}), quinoxaline (C_8H_6N_2), quinazoline (C_8H_6N_2). Firstly, the intense band associated with the ν_{46} CH bending out of plane mode of naphthalene recorded under jet conditions (Jet-AILES experiment developed on the AILES beamline by the IPR-LADIR-PhLAM consortium) revealed transitions involving low J and Ka rotational quantum numbers. These new data permitted to accurately fit the ground state rotational constants and to improve the ν_{46} band constants. As a second step, we performed the rotational analysis of the low frequency ν_{47} and ν_{48} bands of naphthalene recorded at room-temperature in the long absorption pathlength cell from ISMO. As a last step, the high resolution spectra of several bands of azulene, quinoline, isoquinoline and quinoxaline were recorded at room temperature and analyzed using the same procedure. All the rotational constants fitted in the present work were compared to the results of anharmonic DFT calculations realized at various levels of accuracy. S. Albert, et al.; Faraday Discussions, 150, 51 (2011)

  7. Control of Spin Wave Band Structure and Propagation in Two-Dimensional Magnonic Crystals

    NASA Astrophysics Data System (ADS)

    Sietsema, Glade; Flatté, Michael E.

    2015-03-01

    We have studied the properties of spin waves in two-dimensional magnonic crystals consisting of a magnetic material arranged in a lattice of cylinders and embedded in a second magnetic material. Dispersion curves, linewidths, and spin wave propagation patterns were obtained from the Landau-Lifshitz-Gilbert equation using the plane wave expansion method. We have examined how these results are affected by various parameters including the shape of the cylinders, the lattice structure, the material properties, and the spin-orbit interaction. Adjusting these values can open or close band gaps and drastically shift the frequency range of the band structure. The spin wave propagation patterns were found to exhibit high directionality dependent on the excitation frequency and can also be modified with the aforementioned parameters. This work was supported in part by DARPA/MESO and by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  8. Band structures of a dipolar Bose-Einstein condensate in one-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Lin, Yuanyao; Lee, Ray-Kuang; Kao, Yee-Mou; Jiang, Tsin-Fu

    2008-08-01

    We derive the effective Gross-Pitaevskii equation for a cigar-shaped dipolar Bose-Einstein condensate in one-dimensional lattices and investigate the band structures numerically. Due to the anisotropic and the long-ranged dipole-dipole interaction in addition to the known contact interaction, we elucidate the possibility of modifying the band structures by changing the alignment of the dipoles with the axial direction. With the considerations of the transverse parts and the practical physical parameters of a cigar-shaped trap, we show the possibility to stabilize an attractive condensate simply by adjusting the orientation angle of dipoles. Some interesting Bloch waves at several particle current densities are identified for possible experimental observations.

  9. Band gap and chemically ordered domain structure of a graphene analogue BCN

    NASA Astrophysics Data System (ADS)

    Venu, K.; Kanuri, S.; Raidongia, K.; Hembram, K. P. S. S.; Waghmare, U. V.; Datta, R.

    2010-12-01

    Chemically synthesized few layer graphene analogues of B xC yN z are characterized by aberration corrected transmission electron microscopy and high resolution electron energy loss spectroscopy (HREELS) to determine the local phase, electronic structure and band gap. HREELS band gap studies of a B xC yN z composition reveal absorption edges at 2.08, 3.43 and 6.01 eV, indicating that the B xC yN z structure may consist of domains of different compositions. The K-absorption edge energy position of the individual elements in B xC yN z is determined and compared with h-BN and graphite. An understanding of these experimental findings is developed with complementary first-principles based calculations of the various ordered configurations of B xC yN z.

  10. Band structure and optical properties of amber studied by first principles

    NASA Astrophysics Data System (ADS)

    Rao, Zhi-Fan; Zhou, Rong-Feng

    2013-03-01

    The band structure and density of states of amber is studied by the first principles calculation based on density of functional theory. The complex structure of amber has 214 atoms and the band gap is 5.0 eV. The covalent bond is combined C/O atoms with H atoms. The O 2p orbital is the biggest effect near the Fermi level. The optical properties' results show that the reflectivity is low, and the refractive index is 1.65 in visible light range. The highest absorption coefficient peak is at 172 nm and another higher peak is at 136 nm. These convince that the amber would have a pretty sheen and that amber is a good and suitable crystal for jewelry and ornaments.

  11. Influence of structural parameters on tunable photonic band gaps modulated by liquid crystals

    NASA Astrophysics Data System (ADS)

    Huang, Aiqin; Zheng, Jihong; Jiang, Yanmeng; Zhou, Zengjun; Tang, Pingyu; Zhuang, Songlin

    2011-10-01

    Tunable photonic crystals (PCs), which are infiltrated with nematic liquid crystals (LCs), tune photonic band gap (PBG) by rotating directors of LCs when applied with the external electrical field. Using the plane wave expansion method, we simulated the PBG structure of two-dimensional tunable PCs with a triangular lattice of circular column, square column and hexagon column, respectively. When PCs are composed of LCs and different substrate materials such as germanium (Ge) and silicon (Si), the influence of structural parameters including column shape and packing ration on PBG is discussed separately. Numerical simulations show that absolute PBG can't be found at any conditions, however large tuning range of polarized wave can be achieved by rotating directors of LCs. The simulation results provide theoretical guidance for the fabrication of field-sensitive polarizer with big tunable band range.

  12. Efficient quasiparticle band-structure calculations for cubic and noncubic crystals

    SciTech Connect

    Wenzien, B.; Cappellini, G.; Bechstedt, F.

    1995-05-15

    An efficient method developed for the calculation of quasiparticle corrections to density-functional-theory--local-density-approximation (DFT-LDA) band structures of diamond and zinc-blende materials is generalized for crystals with other cubic, hexagonal, tetragonal, and orthorhombic Bravais lattices. Local-field effects are considered in the framework of a LDA-like approximation. The dynamical screening is treated by expanding the self-energy linearly in energy. The anisotropy of the inverse dielectric matrix is taken into account. The singularity of the Coulomb potential in the screened-exchange part of the electronic self-energy is treated using auxiliary functions of the appropriate symmetry. An application to the electronic quasiparticle band structure of wurtzite 2{ital H}-SiC is presented within the approach of norm-conserving, nonlocal, fully separable pseudopotentials and a plane-wave expansion of the wave functions for the underlying DFT-LDA.

  13. Review and prospects of magnonic crystals and devices with reprogrammable band structure.

    PubMed

    Krawczyk, M; Grundler, D

    2014-03-26

    Research efforts addressing spin waves (magnons) in microand nanostructured ferromagnetic materials have increased tremendously in recent years. Corresponding experimental and theoretical work in magnonics faces significant challenges in that spinwave dispersion relations are highly anisotropic and different magnetic states might be realized via, for example, the magnetic field history. At the same time, these features offer novel opportunities for wave control in solids going beyond photonics and plasmonics. In this topical review we address materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves. In particular, we discuss recent achievements and perspectives of reconfigurable magnonic devices for which band structures can be reprogrammed during operation. Such characteristics might be useful for multifunctional microwave and logic devices operating over a broad frequency regime on either the macroor nanoscale. PMID:24599025

  14. Observation of wakefields in a beam-driven photonic band gap accelerating structure.

    SciTech Connect

    Conde, M.; Yusof, Z.; Power, J. G.; Jing, C.; Gao, F.; Antipov, S.; Xu, P.; Zheng, S.; Chen, H.; Tang, C.; Gai, W.; High Energy Physics; Euclid Techlabs LLC; Tsinghua Univ.

    2009-12-01

    Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG) accelerating structure. Major monopole (TM{sub 01}- and TM{sub 02}-like) and dipole (TM{sub 11}- and TM{sub 12}-like) modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be {approx}10 times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to {approx} 30 MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations.

  15. Effective band structure of Ru-doped BaFe2As2

    NASA Astrophysics Data System (ADS)

    Reticcioli, M.; Profeta, G.; Franchini, C.; Continenza, A.

    2016-02-01

    The use of lattice cells in real space that are arbitrarily larger than the primitive one, is nowadays more and more often required by ab initio calculations to study disorder, vacancy or doping effects in real materials. This leads, however, to complex band structures which are hard to interpret. Therefore an unfolding procedure is sought for in order to obtain useful data, directly comparable with experimental results, such as angle-resolved photoemission spectroscopy measurements. Here, we present an extension of the unfolding procedure recently implemented in the VASP code, which includes a projection scheme that leads to a full reconstruction of the primitive space. As a test case, we apply this newly implemented scheme to the Ru-doped BaFe2As2 superconducting compound. The results provide a clear description of the effective electronic band structure in the conventional Brillouin zone, highlighting the crucial role played by doping in this compound.

  16. Ultrafast band-structure variations induced by fast Au ions in BeO

    NASA Astrophysics Data System (ADS)

    Schiwietz, G.; Czerski, K.; Grande, P. L.; Koteski, V.; Staufenbiel, F.

    2011-05-01

    Auger-electron spectra associated with Be atoms in the pure metal lattice and in an oxide have been investigated for 1.8 MeV/u 129Au 41+ ions and 2.7 keV primary electrons. The excitation and local energy transfer by such fast primary particles in solids is dominated by electronic processes. The electron-induced spectrum is compared to calculated band-structure results and it is relatively well understood. For the heavy-ion case, however, we observe a significant variation of the Auger electron spectrum, related to a variation of the electronic band structure. This spectrum points to a formation of a metal-like meta-stable electronic density of states.

  17. Band structure of topological insulators from noise measurements in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Cascales Sandoval, Juan Pedro; Martinez, Isidoro; Guerrero, Ruben; Chang, Cui-Zu; Katmis, Ferhat; Moodera, Jagadeesh; Aliev, Farkhad

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunnelling and noise spectroscopy utilizing TI/Al2O3/Co tunnel junctions with bottom TI electrodes of either Bi2Te3 or Bi2Se3. We demonstrate that features related to the band structure of the TI materials show up in the tunnelling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  18. Observations of LHR noise with banded structure by the sounding rocket S29 barium-GEOS

    NASA Technical Reports Server (NTRS)

    Koskinen, H. E. J.; Holmgren, G.; Kintner, P. M.

    1983-01-01

    The measurement of electrostatic noise near the lower hybrid frequency made by the sounding rocket S29 barium-GEOS is reported. The noise is related to the spin of the rocket and reaches well below the local lower hybrid resonance frequency. Above the altitude of 300 km the noise shows banded structure roughly organized by the hydrogen cyclotron frequency. Simultaneously with the banded structure a signal near the hydrogen cyclotron frequency is detected. This signal is also spin modulated. The character of the noise strongly suggests that it is locally generated by the rocket payload disturbing the plasma. If this interpretation is correct, plasma wave experiments on other spacecrafts are expected to observe similar phenomena.

  19. Analysis of tunable photonic band structure in an extrinsic plasma photonic crystal

    NASA Astrophysics Data System (ADS)

    King, Tzu-Chyang; Yang, Chih-Chiang; Hsieh, Pei-Hung; Chang, Tsung-Wen; Wu, Chien-Jang

    2015-03-01

    In this work, we theoretically investigate the tunable photonic band structure (PBS) for an extrinsic plasma photonic crystal (PPC). The extrinsic PPC is made of a bulk cold plasma layer which is influenced by an externally periodic static magnetic field. The PBS can be tuned by the variation of the magnitude of externally applied magnetic field. In addition, we also show that the PBS can be changed as a function of the electron density as well as the thickness variation.

  20. Temperature dependence of the InGaPN conduction band structure

    NASA Astrophysics Data System (ADS)

    Lin, K. I.; Wang, T. S.; Hwang, J. S.

    2008-03-01

    Material properties of III-N-V alloys, such as GaAsN, InGaAsN, and InGaPN, have been intensively studied, because a small amount of nitrogen (N) incorporation results in very large bandgap bowing and dramatic change in the band structure.^1,2 Recently, temperature dependence of the parameters, i.e. the localized states energy EN introduced by an isolated N and the interaction potential V, of the band anticrossing (BAC) model in GaAsN epilayers has been reported.^3 These properties have never been studied for InGaPN. In this work, temperature-dependent photoreflectance (PR) measurements are employed to characterize the conduction band structure of In0.54Ga0.46P1-yNy (y = 0 and 0.02) grown on GaAs substrates. The band gap and the upper subband E+ are observed in InGaPN as predicted by the BAC model. To investigate the energetic positions of the features in the PR spectra, a Kramers-Kronig analysis is proposed. Based on these PR data and the BAC model, we find EN=2.054 eV and V=1.513 eV at 293 K. With decreasing temperature, the energy of EN shifts significantly to higher energies. Simultaneously, the interaction potential V between the N states and the host conduction band also rises to higher values. The thermal shifts of EN and V are dEN/dT -0.43 meV/K and dV/dT -0.67 meV/K, respectively. 1.APL 88, 031907 (2006). 2.APL 89, 192116 (2006). 3.APL 89, 202105 (2006).

  1. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.

    PubMed

    Zhong, C; Zhang, H; Cao, Q P; Wang, X D; Zhang, D X; Ramamurty, U; Jiang, J Z

    2016-01-01

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and "liquid-like" regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested. PMID:27480496

  2. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study

    PubMed Central

    Zhong, C.; Zhang, H.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Ramamurty, U.; Jiang, J. Z.

    2016-01-01

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and “liquid-like” regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested. PMID:27480496

  3. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhong, C.; Zhang, H.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Ramamurty, U.; Jiang, J. Z.

    2016-08-01

    Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and “liquid-like” regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested.

  4. Efficient evaluation of epitaxial MoS2 on sapphire by direct band structure imaging

    NASA Astrophysics Data System (ADS)

    Kim, Hokwon; Dumcenco, Dumitru; Fregnaux, Mathieu; Benayad, Anass; Kung, Yen-Cheng; Kis, Andras; Renault, Olivier; Lanes Group, Epfl Team; Leti, Cea Team

    The electronic band structure evaluation of two-dimensional metal dichalcogenides is critical as the band structure can be greatly influenced by the film thickness, strain, and substrate. Here, we performed a direct measurement of the band structure of as-grown monolayer MoS2 on single crystalline sapphire by reciprocal-space photoelectron emission microscopy with a conventional laboratory ultra-violet He I light source. Arrays of gold electrodes were deposited onto the sample in order to avoid charging effects due to the insulating substrate. This allowed the high resolution mapping (ΔE = 0.2 eV Δk = 0.05 Å-1) of the valence states in momentum space down to 7 eV below the Fermi level. The high degree of the epitaxial alignment of the single crystalline MoS2 nuclei was verified by the direct momentum space imaging over a large area containing multiple nuclei. The derived values of the hole effective mass were 2.41 +/-0.05 m0 and 0.81 +/-0.05 m0, respectively at Γ and K points, consistent with the theoretical values of the freestanding monolayer MoS2 reported in the literature. HK acknowledges the french CEA Basic Technological Research program (RTB) for funding.

  5. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.

    PubMed

    Men, H; Lee, K Y K; Freund, R M; Peraire, J; Johnson, S G

    2014-09-22

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for robust topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors. PMID:25321732

  6. Band structure, Fermi surface, superconductivity, and resistivity of actinium under high pressure

    SciTech Connect

    Dakshinamoorthy, M.; Iyakutti, K.

    1984-12-15

    The electronic band structures of fcc actinium (Ac) have been calculated for a wide range of pressures by reducing the unit-cell volume from 1.0V/sub 0/ to 0.5V/sub 0/ with use of the relativistic augmented-plane-wave method. The density of states and Fermi-surface cross sections corresponding to various volumes are obtained. Calculations for the band-structure-related quantities such as electron-phonon mass enhancement factor lambda, superconducting transition temperature T/sub c/, and resistivity rho corresponding to different volumes are performed. It is seen that T/sub c/ increases with pressure, i.e., with decreasing volume. A new empirical relation for the volume dependence of T/sub c/ is proposed and its validity is checked using the T/sub c/ values obtained from the above band-structure results. The resistivity rho first increases with increasing pressure (i.e., with decreasing volume) and then decreases for higher pressures (i.e., for smaller volumes).

  7. Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    NASA Astrophysics Data System (ADS)

    Men, H.; Lee, K. Y. K.; Freund, R. M.; Peraire, J.; Johnson, S. G.

    2014-09-01

    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for \\emph{robust} topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.

  8. Electronic structure and optical properties of Cs2HgI4: Experimental study and band-structure DFT calculations

    NASA Astrophysics Data System (ADS)

    Lavrentyev, A. A.; Gabrelian, B. V.; Vu, V. T.; Shkumat, P. N.; Myronchuk, G. L.; Khvyshchun, M.; Fedorchuk, A. O.; Parasyuk, O. V.; Khyzhun, O. Y.

    2015-04-01

    High-quality single crystal of cesium mercury tetraiodide, Cs2HgI4, has been synthesized by the vertical Bridgman-Stockbarger method and its crystal structure has been refined. In addition, electronic structure and optical properties of Cs2HgI4 have been studied. For the crystal under study, X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated surfaces have been measured. The present X-ray photoelectron spectroscopy (XPS) results indicate that the Cs2HgI4 single crystal surface is very sensitive with respect to Ar+ ion-irradiation. In particular, Ar+ bombardment of the single crystal surface alters the elemental stoichiometry of the Cs2HgI4 surface. To elucidate peculiarities of the energy distribution of the electronic states within the valence-band and conduction-band regions of the Cs2HgI4 compound, we have performed first-principles band-structure calculations based on density functional theory (DFT) as incorporated in the WIEN2k package. Total and partial densities of states for Cs2HgI4 have been calculated. The DFT calculations reveal that the I p states make the major contributions in the upper portion of the valence band, while the Hg d, Cs p and I s states are the dominant contributors in its lower portion. Temperature dependence of the light absorption coefficient and specific electrical conductivity has been explored for Cs2HgI4 in the temperature range of 77-300 K. Main optical characteristics of the Cs2HgI4 compound have been elucidated by the first-principles calculations.

  9. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe

    SciTech Connect

    Shi, Guangsha; Kioupakis, Emmanouil

    2015-02-14

    We used density functional and many-body perturbation theory to calculate the quasiparticle band structures and electronic transport parameters of p-type SnSe both for the low-temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect band gap of 0.829 eV, while the Cmcm has a direct band gap of 0.464 eV. Both phases exhibit multiple local band extrema within an energy range comparable to the thermal energy of carriers from the global extrema. We calculated the electronic transport coefficients as a function of doping concentration and temperature for single-crystal and polycrystalline materials to understand the previous experimental measurements. The electronic transport coefficients are highly anisotropic and are strongly affected by bipolar transport effects at high temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at high temperature when doped in the 10{sup 19}–10{sup 20 }cm{sup −3} range.

  10. Temperature-dependent band structure of Hg1-xZnxTe-CdTe superlattices

    NASA Astrophysics Data System (ADS)

    Manassès, J.; Guldner, Y.; Vieren, J. P.; Voos, M.; Faurie, J. P.

    1991-12-01

    We present transport and far-infrared magneto-optical measurements in narrow-band-gap n-type Hg1-xZnxTe-CdTe superlattices. Hall and conductivity data obtained over a broad temperature range (1.5-300 K) show that these superlattices are semimetallic at low temperature and are degenerate intrinsic semiconductors for T>100 K, which constitutes an interesting situation in semiconductor-superlattice physics. The analysis of the data gives the Fermi energy as well as the temperature-dependent band gap, in good agreement with the calculated band structure, which predicts a semimetal-semiconductor transition induced by temperature in these heterostructures. We have measured the electron cyclotron resonances as a function of temperature with the magnetic field B applied parallel and perpendicular to the growth axis. The observed magneto-optical intraband transitions are in very satisfactory agreement with the calculated Landau levels and the Fermi energy. We show that the semimetal-semiconductor transition is characterized by an important reduction of the cyclotron mass measured with B perpendicular to the superlattice growth axis. The large variation of the conduction-band anisotropy calculated near the transition accounts for this effect.

  11. Band Structure of Helimagnons in MnSi Resolved by Inelastic Neutron Scattering.

    PubMed

    Kugler, M; Brandl, G; Waizner, J; Janoschek, M; Georgii, R; Bauer, A; Seemann, K; Rosch, A; Pfleiderer, C; Böni, P; Garst, M

    2015-08-28

    A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh. Its spin-wave excitations-the helimagnons-experience Bragg scattering off this periodicity, leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering, the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter. PMID:26371678

  12. Measurement of valence band structure in boron-zinc-oxide films by making use of ion beams

    SciTech Connect

    Uhm, Han S.; Kwon, Gi C.; Choi, Eun H.

    2011-12-26

    Measurement of valence band structure in the boron-zinc oxide (BZO) films was developed using the secondary electron emission due to the Auger neutralization of ions. The energy distribution profile of the electrons emitted from boron-zinc-oxide films was measured and rescaled so that Auger self-convolution arose; thus, revealing the detailed structure of the valence band and suggesting that a high concentration of boron impurity in BZO films may enhance the transition of electrons and holes through the band gap from the valence to the conduction band in zinc oxide crystals; thereby improving the conductivity of the film.

  13. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction.

    PubMed Central

    Girault, J. A.; Labesse, G.; Mornon, J. P.; Callebaut, I.

    1998-01-01

    The band 4.1 domain was first identified in the red blood cell protein band 4.1, and subsequently in ezrin, radixin, and moesin (ERM proteins) and other proteins, including tumor suppressor merlin/schwannomin, talin, unconventional myosins VIIa and X, and protein tyrosine phosphatases. Recently, the presence of a structurally related domain has been demonstrated in the N-terminal region of two groups of tyrosine kinases: the focal adhesion kinases (FAK) and the Janus kinases (JAK). Additional proteins containing the 4.1/JEF (JAK, ERM, FAK) domain include plant kinesin-like calmodulin-binding proteins (KCBP) and a number of uncharacterized open reading frames identified by systematic DNA sequencing. Phylogenetic analysis of amino acid sequences suggests that band 4.1/JEF domains can be grouped in several families that have probably diverged early during evolution. Hydrophobic cluster analysis indicates that the band 4.1/JEF domains might consist of a duplicated module of approximately 140 residues and a central hinge region. A conserved property of the domain is its capacity to bind to the membrane-proximal region of the C-terminal cytoplasmic tail of proteins with a single transmembrane segment. Many proteins with band 4.1/JEF domains undergo regulated intra- or intermolecular homotypic interactions. Additional properties common to band 4.1/JEF domains of several proteins are binding of phosphoinositides and regulation by GTPases of the Rho family. Many proteins with band 4. 1/JEF domains are associated with the actin-based cytoskeleton and are enriched at points of contact with other cells or the extracellular matrix, from which they can exert control over cell growth. Thus, proteins with band 4.1/JEF domain are at the crossroads between cytoskeletal organization and signal transduction in multicellular organisms. Their importance is underlined by the variety of diseases that can result from their mutations. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:9990861

  14. Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control

    NASA Astrophysics Data System (ADS)

    de La Rue, Richard M.

    Research into photonic crystal (PhC) and photonic band-gap (PBG) structures has been motivated, from the start, by their possible use in controlling, modifying and enhancing the light emission process from high refractive index solid materials. This chapter considers the possible role of such structures when incorporated into semiconductor diode based light-emitting devices. Both light-emitting diodes (LEDs) and lasers will be considered. In order to provide a proper framework for discussion and analysis, space is devoted to the historical development of III-V semiconductor based LEDs — and to competing alternative approaches that have been demonstrated for enhanced light extraction. The possible advantages of photonic quasi-crystal (PQC) structures over regularly periodic photon crystal structures for advanced LED designs are also considered. Photonic crystal structures potentially provide major enhancements in the performance of laser diodes (LDs) — and progress towards this performance enhancement will be reviewed.

  15. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE PAGESBeta

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  16. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure.

    PubMed

    Simakov, Evgenya I; Arsenyev, Sergey A; Buechler, Cynthia E; Edwards, Randall L; Romero, William P; Conde, Manoel; Ha, Gwanghui; Power, John G; Wisniewski, Eric E; Jing, Chunguang

    2016-02-12

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test. PMID:26918995

  17. Transactivation and transformation by Myb are negatively regulated by a leucine-zipper structure.

    PubMed Central

    Kanei-Ishii, C; MacMillan, E M; Nomura, T; Sarai, A; Ramsay, R G; Aimoto, S; Ishii, S; Gonda, T J

    1992-01-01

    The negative regulatory domain of the c-myb protooncogene product (c-Myb) normally represses transcriptional activation by c-Myb. We show here that a leucine-zipper structure is a component of the negative regulatory domain, because its disruption markedly increases both the transactivating and transforming capacities of c-Myb. We also demonstrate that this leucine-zipper structure can interact with cellular proteins. Our results suggest that an inhibitor that suppresses transactivation binds to c-Myb through the leucine zipper and that c-Myb can be oncogenically activated by missense mutation. Images PMID:1557416

  18. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    SciTech Connect

    Costa-Quintana, J.; Lopez-Aguilar, F. ); Balle, S. ); Salvador, R. Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 )

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  19. Band structure and density of States effects in co-based magnetic tunnel junctions.

    PubMed

    LeClair, P; Kohlhepp, J T; van De Vin, C H; Wieldraaijer, H; Swagten, H J M; de Jonge, W J M; Davis, A H; MacLaren, J M; Moodera, J S; Jansen, R

    2002-03-11

    Utilizing Co/Al(2)O(3)/Co magnetic tunnel junctions with Co electrodes of different crystalline phases, a clear relationship between electrode crystal structure and junction transport properties is presented. For junctions with one fcc(111) textured and one polycrystalline (polyphase and polydirectional) Co electrode, a strong asymmetry is observed in the magnetotransport properties, while when both electrodes are polycrystalline the magnetotransport is essentially symmetric. These observations are successfully explained within a model based on ballistic tunneling between the calculated band structures (density of states) of fcc-Co and hcp-Co. PMID:11909383

  20. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-01-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed.

  1. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    PubMed

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  2. Quasi-particle band structure of potassium-doped few-layer black phosphorus with GW approximation

    NASA Astrophysics Data System (ADS)

    Kim, Han-Gyu; Baik, Seung Su; Choi, Hyoung Joon

    We calculate the quasi-particle band structure of pristine and potassium-doped black phosphorus (BP) by using the GW approximation. We obtain band gaps of pristine bulk and few-layer BP and compare them with the result of the density functional calculations and experimental measurements. For potassium-doped cases, we calculate the electronic band structure of potassium-doped few-layer BPs with various doping densities. We obtain the critical doping density for the band-gap closing, and the energy-band dispersions when the band gap is inverted. We discuss Dirac semimetal properties of doped few-layer BPs obtained by the GW approximation. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2015-C3-039).

  3. InGaAs inversion layers band structure, electrostatics, and mobility modeling based on 8 band k → · p → theory

    NASA Astrophysics Data System (ADS)

    Pham, Anh-Tuan; Jin, Seonghoon; Choi, Woosung; Lee, Myoung-Jae; Cho, Seong-Ho; Kim, Young-Tae; Lee, Keun-Ho; Park, Youngkwan

    2015-11-01

    8 band k → · p → method is used to calculate subband structures of InGaAs inversion layers accounting for strong coupling between conduction and valence bands around Γ point as well as quantum confinement. Inversion layer mobility is computed employing Kubo-Greenwood formalism. Scatterings due to acoustic phonons, polar optical phonons, ionized impurities, interface fixed charges, surface roughness, and alloy disorder are included. The simulated low-field electron mobility results are in good agreement with experimental data with and without an InP capping layer.

  4. Crustal Structure Beneath Taiwan Using Frequency-band Inversion of Receiver Function Waveforms

    NASA Astrophysics Data System (ADS)

    Tomfohrde, D. A.; Nowack, R. L.

    Receiver function analysis is used to determine local crustal structure beneath Taiwan. We have performed preliminary data processing and polarization analysis for the selection of stations and events and to increase overall data quality. Receiver function analysis is then applied to data from the Taiwan Seismic Network to obtain radial and transverse receiver functions. Due to the limited azimuthal coverage, only the radial receiver functions are analyzed in terms of horizontally layered crustal structure for each station. In order to improve convergence of the receiver function inversion, frequency-band inversion (FBI) is implemented, in which an iterative inversion procedure with sequentially higher low-pass corner frequencies is used to stabilize the waveform inversion. Frequency-band inversion is applied to receiver functions at six stations of the Taiwan Seismic Network. Initial 20-layer crustal models are inverted for using prior tomographic results for the initial models. The resulting 20-1ayer models are then simplified to 4 to 5 layer models and input into an alternating depth and velocity frequency-band inversion. For the six stations investigated, the resulting simplified models provide an average estimate of 38 km for the Moho thickness surrounding the Central Range of Taiwan. Also, the individual station estimates compare well with the recent tomographic model of and the refraction results of Rau and Wu (1995) and the refraction results of Ma and Song (1997).

  5. Band structure and spin texture of Bi2Se3 3 d ferromagnetic metal interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Velev, Julian P.; Dang, Xiaoqian; Tsymbal, Evgeny Y.

    2016-07-01

    The spin-helical surface states in a three-dimensional topological insulator (TI), such as Bi2Se3 , are predicted to have superior efficiency in converting charge current into spin polarization. This property is said to be responsible for the giant spin-orbit torques observed in ferromagnetic metal/TI structures. In this work, using first-principles and model tight-binding calculations, we investigate the interface between the topological insulator Bi2Se3 and 3 d -transition ferromagnetic metals Ni and Co. We find that the difference in the work functions of the topological insulator and the ferromagnetic metals shift the topological surface states down about 0.5 eV below the Fermi energy where the hybridization of these surface states with the metal bands destroys their helical spin structure. The band alignment of Bi2Se3 and Ni (Co) places the Fermi energy far in the conduction band of bulk Bi2Se3 , where the spin of the carriers is aligned with the magnetization in the metal. Our results indicate that the topological surface states are unlikely to be responsible for the huge spin-orbit torque effect observed experimentally in these systems.

  6. Synthesis, structure and band gap energy of covalently linked cluster-assembled materials.

    PubMed

    Mandal, Sukhendu; Reber, Arthur C; Qian, Meichun; Liu, Ran; Saavedra, Hector M; Sen, Saikat; Weiss, Paul S; Khanna, Shiv N; Sen, Ayusman

    2012-10-28

    We have synthesized a series of cluster assembled materials in which the building blocks are As(7)(3-) clusters linked by group 12 metals, Zn, Cd and Hg, to investigate the effect of covalent linkers on the band gap energy. The synthesized assemblies include zero dimensional assemblies of [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-), [Hg(2)(As(7))(2)](4-), and [HgAsAs(14)](3-) in which the clusters are separated by cryptated counterions, and assemblies in which [Zn(As(7))(2)](4-), [Cd(As(7))(2)](4-) are linked by free alkali atoms into unusual three-dimensional structures. These covalently linked cluster-assembled materials have been characterized by elemental analysis, EDX and single-crystal X-ray diffraction. The crystal structure analysis revealed that in the case of Zn and Cd, the two As(7)(3-) units are linked by the metal ion, while in the case of Hg, two As(7)(3-) units are linked by either Hg-Hg or Hg-As dimers. Optical measurements indicate that the band gap energy ranges from 1.62 eV to 2.21 eV. A theoretical description based on cluster orbital theory is used to provide a microscopic understanding of the electronic character of the composite building blocks and the observed variations in the band gap energy. PMID:22940817

  7. Automatic control of negative emotions: Evidence that structured practice increases the efficiency of emotion regulation

    PubMed Central

    Christou-Champi, Spyros; Farrow, Tom F. D.; Webb, Thomas L.

    2015-01-01

    Emotion regulation (ER) is vital to everyday functioning. However, the effortful nature of many forms of ER may lead to regulation being inefficient and potentially ineffective. The present research examined whether structured practice could increase the efficiency of ER. During three training sessions, comprising a total of 150 training trials, participants were presented with negatively valenced images and asked either to “attend” (control condition) or “reappraise” (ER condition). A further group of participants did not participate in training but only completed follow-up measures. Practice increased the efficiency of ER as indexed by decreased time required to regulate emotions and increased heart rate variability (HRV). Furthermore, participants in the ER condition spontaneously regulated their negative emotions two weeks later and reported being more habitual in their use of ER. These findings indicate that structured practice can facilitate the automatic control of negative emotions and that these effects persist beyond training. PMID:24678930

  8. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  9. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Euaruksakul, Chanan; Liu, Zheng; Himpsel, F. J.; Liu, Feng; Lagally, Max G.

    2011-08-01

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate Δ valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both Δ and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  10. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  11. Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure

    NASA Astrophysics Data System (ADS)

    Behera, Harihar; Mukhopadhyay, Gautam

    2012-10-01

    We present ab initio calculations which show that the direct-band-gap, effective masses and Fermi velocities of charge carriers in ZnO monolayer (ML-ZnO) in graphene-like honeycomb structure are all tunable by application of in-plane homogeneous biaxial strain. Within our simulated strain limit of ±10%, the band gap remains direct and shows a strong non-linear variation with strain. Moreover, the average Fermi velocity of electrons in unstrained ML-ZnO is of the same order of magnitude as that in graphene. The results promise potential applications of ML-ZnO in mechatronics/straintronics and other nano-devices such as the nano-electromechanical systems (NEMS) and nano-optomechanical systems (NOMS).

  12. Towards direct-gap silicon phases by the inverse band structure design approach.

    PubMed

    Xiang, H J; Huang, Bing; Kan, Erjun; Wei, Su-Huai; Gong, X G

    2013-03-15

    Diamond silicon (Si) is the leading material in the current solar cell market. However, diamond Si is an indirect band gap semiconductor with a large energy difference (2.3 eV) between the direct gap and the indirect gap, which makes it an inefficient absorber of light. In this work, we develop a novel inverse band structure design approach based on the particle swarming optimization algorithm to predict the metastable Si phases with better optical properties than diamond Si. Using our new method, we predict a cubic Si(20) phase with quasidirect gaps of 1.55 eV, which is a promising candidate for making thin-film solar cells. PMID:25166584

  13. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  14. Electronic band structure of the layered compound Td-WTe2

    NASA Astrophysics Data System (ADS)

    Augustin, J.; Eyert, V.; Böker, Th.; Frentrup, W.; Dwelk, H.; Janowitz, C.; Manzke, R.

    2000-10-01

    We have studied the electronic structure of the layered compound Td-WTe2 experimentally using high-resolution angle-resolved photoelectron spectroscopy, and theoretically using density-functional based augmented spherical wave calculations. Comparison of the measured and calculated data shows in general good agreement. The theoretical results reveal the semimetallic as well as metallic character of Td-WTe2; the semimetallic character is due to a 0.5 eV overlap of Te 5p- and W 5d-like bands along Γ-Y, while the metallic character is due to two classical metallic bands. The rather low conductivity of Td-WTe2 is interpreted as resulting from a low density of states at the Fermi level.

  15. Enhanced modeling of band nonparabolicity with application to a mid-IR quantum cascade laser structure

    NASA Astrophysics Data System (ADS)

    Vukovic, N.; Radovanovic, J.; Milanovic, V.

    2014-09-01

    We analyze the influence of conduction-band nonparabolicity on bound electronic states in the active region of a quantum cascade laser (QCL). Our model assumes expansion of the conduction-band dispersion relation up to a fourth order in wavevector and use of a suitable second boundary condition at the interface of two III-V semiconductor layers. Numerical results, obtained by the transfer matrix method, are presented for two mid-infrared GaAs/Al0.33Ga0.67As QCL active regions, and they are in very good agreement with experimental data found in the literature. Comparison with a different nonparabolicity model is presented for the example of a GaAs/Al0.38Ga0.62As-based mid-IR QCL. Calculations have also been carried out for one THz QCL structure to illustrate the possible application of the model in the terahertz part of the spectrum.

  16. A novel band-pass filter based on a periodically drilled SIW structure

    NASA Astrophysics Data System (ADS)

    Coves, A.; Torregrosa-Penalva, G.; San-Blas, A. A.; Sánchez-Soriano, M. A.; Martellosio, A.; Bronchalo, E.; Bozzi, M.

    2016-04-01

    The design and fabrication of a band-pass step impedance filter based on high and low dielectric constant sections has been realized on substrate integrated waveguide (SIW) technology. The overall process includes the design of the ideal band-pass prototype filter, where the implementation of the impedance inverters has been carried out by means of waveguide sections of lower permittivity. This can be practically achieved by implementing arrays of air holes along the waveguide. Several SIW structures with and without arrays of air holes have been simulated and fabricated in order to experimentally evaluate their relative permittivity. Additionally, the equivalent filter in SIW technology has been designed and optimized. Finally, a prototype of the designed filter has been fabricated and measured, showing a good agreement between measurements and simulations, which demonstrates the validity of the proposed design approach.

  17. Tunable electronic band structures and zero-energy modes of heterosubstrate-induced graphene superlattices

    NASA Astrophysics Data System (ADS)

    Fan, Xiong; Huang, Wenjun; Ma, Tianxing; Wang, Li-Gang

    2016-04-01

    We propose a tunable electronic band gap and zero-energy modes in periodic heterosubstrate-induced graphene superlattices. Interestingly, there is an approximate linear relation between the band gap and the proportion of an inhomogeneous substrate (i.e., percentages of different components) in the proposed superlattice, and the effect of structural disorder on the relation is discussed. In an inhomogeneous substrate with equal widths, zero-energy states emerge in the form of Dirac points by using asymmetric potentials, and the positions of Dirac points are addressed analytically. Further, the Dirac point exists at k =0 only for specific potentials; every time it appears, the group velocity vanishes in the ky direction, and the resonance occurs. For general cases of an inhomogeneous substrate with unequal widths, part of the zero-energy states are described analytically, and differently, they are not always Dirac points. Our prediction may be realized on a heterosubstrate such as SiO2/BN .

  18. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    NASA Astrophysics Data System (ADS)

    Othman, Mohamed A. K.; Veysi, Mehdi; Figotin, Alexander; Capolino, Filippo

    2016-03-01

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  19. HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band

    SciTech Connect

    Kubo, Kiyoshi

    2003-07-07

    HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e{sup +}e{sup -} linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 {micro}m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques. Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.

  20. Evolution of band structures in MoS2-based homo- and heterobilayers

    NASA Astrophysics Data System (ADS)

    Zhu, H. L.; Zhou, C. J.; Huang, X. J.; Wang, X. L.; Xu, H. Z.; Lin, Yong; Yang, W. H.; Wu, Y. P.; Lin, W.; Guo, F.

    2016-02-01

    Density functional theory calculations have been performed to elucidate the detailed evolution of band structures in MoS2-based homo- and heterobilayers. By constructing the energy-band alignments we observed that biaxial tensile and compressive strain in the constituent transition-metal dichalcogenide (TMD) monolayer shifts the states at the K C, Q C, and K V points down and up, respectively, while the states at the ΓV point are almost unaltered. In contrast, interlayer coupling tends to modify the states at the ΓV and Q C points by splitting the band-edge states of two strained or unstrained constituent TMD monolayers, while it does not affect the states at the K C and K V points. Considering the combined actions of strain and interlayer coupling, the relevant electronic parameters, especially the detailed evolution processes, of the band structures of the investigated bilayer systems can be clearly described. When further applying the extra biaxial strain to the three bilayer systems, it is found that energy differences ΔE(K C  -  Q C) and ΔE(K V  -  ΓV) decrease linearly as the increasing of the biaxial strain. According to the varying trends of ΔE(K C  -  Q C) and ΔE(K V  -  ΓV), MoS2 bilayer will maintain the indirect-bandgap character under any compressive or tensile strain. Differently, WS2/MoS2 heterobilayer transforms interestingly to the direct-bandgap material under the strain from  -1.6% to  -1.2% with the valence band maximum and conduction band minimum located at the K C and K V point respectively. The direct-to-indirect bandgap transition can be obtained for the WSe2/MoS2 heterobilayer when applying much larger extra tensile or compressive strain. The results offer an effective route to verify and tailor the electronic properties of TMD homo- and heterostructures and can be helpful in evaluating the performance of TMD-based electronic devices.

  1. Cohesive band structure of carbon nanotubes for applications in quantum transport.

    PubMed

    Arora, Vijay K; Bhattacharyya, Arkaprava

    2013-11-21

    An integrated cohesive band structure of carbon nanotubes (CNTs) applicable to all chirality directions (n, m), starting from the Dirac cone of a graphene nanolayer in k-space, is demarcated, in direct contrast to dissimilar chiral and achiral versions in the published literature. The electron wave state of a CNT is quantized into one-dimensional (1-D) nanostructure with a wrapping mode, satisfying the boundary conditions from one Dirac K-point to an equivalent neighboring one with an identical phase and returning to the same K point. The repetitive rotation for an identical configuration with added band index (n-m)mod3, yields one metallic (M) with zero bandgap corresponding to (n-m)mod3 = 0, semiconducting state SC1 with (n-m)mod3 = 1 and SC2 with (n-m)mod3 = 2. The band gap and effective mass of SC2 state are twice as large as those of SC1 state. A broad-spectrum expression signifying the linear dependence of the effective mass on the bandgap is obtained. Both the Fermi energy and the intrinsic velocity limiting the current to the saturation level is calculated as a function of the carrier concentration. Limitations of the parabolic approximation are pointed out. Several new features of the band structure are acquired in a seamlessly unified mode for all CNTs, making it suitable for all-encompassing applications. Applications of the theory to high-field transport are advocated with an example of a metallic CNT, in agreement with experimental observations. The mechanism behind the breakdown of the linear current-voltage relation of Ohm's law and the associated surge in resistance are explained on the basis of the nonequilibrium Arora's distribution function (NEADF). These results are important for the performance evaluation and characterization of a variety of applications on CNT in modern nanoscale circuits and devices. PMID:24061093

  2. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    NASA Astrophysics Data System (ADS)

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  3. The Internal Structure of Positive and Negative Affect: A Confirmatory Factor Analysis of the PANAS

    ERIC Educational Resources Information Center

    Tuccitto, Daniel E.; Giacobbi, Peter R., Jr.; Leite, Walter L.

    2010-01-01

    This study tested five confirmatory factor analytic (CFA) models of the Positive Affect Negative Affect Schedule (PANAS) to provide validity evidence based on its internal structure. A sample of 223 club sport athletes indicated their emotions during the past week. Results revealed that an orthogonal two-factor CFA model, specifying error…

  4. Perfect tunneling of obliquely-incident wave through a structure with a double-negative layer

    NASA Astrophysics Data System (ADS)

    Afanas'ev, S. A.; Sementsov, D. I.; Yakimov, Y. V.

    2016-06-01

    The oblique incidence of TE-polarized plane electromagnetic wave on a three-layered lossless structure containing the layer of double-negative medium is discussed. The resonant values of the angle of incidence are obtained, for which the perfect tunneling of electromagnetic power through the structure can be achieved. The results of exact numerical analysis are compared with approximate solution based on the model of symmetrical slab waveguide.

  5. Formation of ordered cellular structures in suspension via label-free negative magnetophoresis

    PubMed Central

    Krebs, Melissa D.; Erb, Randall M.; Yellen, Benjamin B.; Samanta, Bappaditya; Bajaj, Avinash; Rotello, Vincent M.; Alsberg, Eben

    2009-01-01

    The creation of ordered cellular structures is important for tissue engineering research. Here we present a novel strategy for the assembly of cells into linear arrangements by negative magnetophoresis using inert, cytocompatible magnetic nanoparticles. In this approach, magnetic nanoparticles dictate the cellular assembly without relying on cell binding or uptake. The linear cell structures are stable and can be further cultured without the magnetic field or nanoparticles, making this an attractive tool for tissue engineering. PMID:19326920

  6. Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure.

    PubMed

    Tolhurst, Thomas M; Leedahl, Brett; Andrews, Justin L; Marley, Peter M; Banerjee, Sarbajit; Moewes, Alexander

    2016-06-21

    New V2O5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure-property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V2O5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off dxy band in the ζ-phase. States of dxy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO6] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V2O5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V2O5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase. PMID:27230816

  7. Resonant tunneling diode based on band gap engineered graphene antidot structures

    NASA Astrophysics Data System (ADS)

    Palla, Penchalaiah; Ethiraj, Anita S.; Raina, J. P.

    2016-04-01

    The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green's Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved the Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.

  8. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    SciTech Connect

    Gladysiewicz, M.; Wartak, M. S.; Kudrawiec, R.

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  9. Prediction of the band structures of Bi2Te3-related binary and Sb/Se-doped ternary thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Ryu, Byungki; Kim, Bong-Seo; Lee, Ji Eun; Joo, Sung-Jae; Min, Bok-Ki; Lee, HeeWoong; Park, Sudong; Oh, Min-Wook

    2016-01-01

    Density functional calculations are performed to study the band structures of Bi2Te3-related binary (Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3) and Sb/Se-doped ternary compounds [(Bi1- x Sb x )2Te3 and Bi2(Te1- y Se y )3]. The band gap was found to be increased by Sb doping and to be monotonically increased by Se doping. In ternary compounds, the change in the conduction band structure is more significant as compared to the change in the valence band structure. The band degeneracy of the valence band maximum is maintained at 6 in binaries and ternaries. However, when going from Bi2Te3 to Sb2Te3 (Bi2Se3), the degeneracy of the conduction band minimum is reduced from 6 to 2(1). Based on the results for the band structures, we suggest suitable stoichiometries of ternary compounds for high thermoelectric performance.

  10. A high efficiency bulk graded band gap/PN junction solar cell structure at high concentration ratios

    SciTech Connect

    Borrego, J.M.; Gandhi, S.K.; Page, D.A.

    1984-05-01

    This paper presents an analysis of a solar cell structure for achieving high efficiency at high concentration ratios. The structure consists of a bulk graded band gap P region followed by a PN junction at the smaller band gap side. The advantage of this structure is that the open circuit voltage is determined by the value of the higher band gap and the short circuit current by the lower band gap. A structure with E /SUB G1/ = 2.0 eV and E /SUB G2/ = 0.7 eV has an estimated efficiency of 45% at 1000 suns. Material systems which can be used for the realization of this structure are briefly described.

  11. Band-structure calculations for semiconductors within generalized-density-functional theory

    NASA Astrophysics Data System (ADS)

    Remediakis, I. N.; Kaxiras, Efthimios

    1999-02-01

    We present band-structure calculations of several semiconductors and insulators within the framework of density-functional theory in the local-density approximation (DFT/LDA), employing the correction for excited states proposed by Fritsche and co-workers. We applied the method to examine typical elemental (C,Si,Ge), compound group-IV (SiC, SiGe, GeC) and compound III-IV semiconductors (AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb), and examined in detail the approximations involved in the conduction-band energy correction. This quite simple method (referred to as generalized density-functional theory), while not a substitute for more rigorous theoretical approaches such as the GW method, gives results in reasonable agreement with experiment. Thus, it makes possible the calculation of semiconductor band gaps with the computational effort of a DFT/LDA calculation, at least for systems where more elaborate methods are not readily applicable.

  12. Ab initio quasiparticle band structure of ABA and ABC-stacked graphene trilayers

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.; Louie, Steven G.

    2014-01-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density-functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low-energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the self-energy corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher-energy bands, which is proportional to the nearest-neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the self-energy corrections. Finally, other effects, such as trigonal warping, electron-hole asymmetry, and energy gaps, are discussed in terms of the associated parameters.

  13. Measuring large-scale structure with quasars in narrow-band filter surveys

    NASA Astrophysics Data System (ADS)

    Abramo, L. Raul; Strauss, Michael A.; Lima, Marcos; Hernández-Monteagudo, Carlos; Lazkoz, Ruth; Moles, Mariano; de Oliveira, Claudia Mendes; Sendra, Irene; Sodré, Laerte; Storchi-Bergmann, Thaisa

    2012-07-01

    We show that a large-area imaging survey using narrow-band filters could detect quasars in sufficiently high number densities, and with more than sufficient accuracy in their photometric redshifts, to turn them into suitable tracers of large-scale structure. If a narrow-band optical survey can detect objects as faint as i= 23, it could reach volumetric number densities as high as 10-4 h3 Mpc-3 (comoving) at z˜ 1.5. Such a catalogue would lead to precision measurements of the power spectrum up to z˜ 3-4. We also show that it is possible to employ quasars to measure baryon acoustic oscillations at high redshifts, where the uncertainties from redshift distortions and non-linearities are much smaller than at z≲ 1. As a concrete example we study the future impact of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS), which is a narrow-band imaging survey in the optical over 1/5 of the unobscured sky with 42 filters of ˜100-Å full width at half-maximum. We show that J-PAS will be able to take advantage of the broad emission lines of quasars to deliver excellent photometric redshifts, σz≃ 0.002 (1 +z), for millions of objects.

  14. Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy.

    PubMed

    Osterloh, Frank E

    2014-10-01

    The Shockley-Queisser analysis provides a theoretical limit for the maximum energy conversion efficiency of single junction photovoltaic cells. But besides the semiconductor bandgap no other semiconductor properties are considered in the analysis. Here, we show that the maximum conversion efficiency is limited further by the excited state entropy of the semiconductors. The entropy loss can be estimated with the modified Sackur-Tetrode equation as a function of the curvature of the bands, the degeneracy of states near the band edges, the illumination intensity, the temperature, and the band gap. The application of the second law of thermodynamics to semiconductors provides a simple explanation for the observed high performance of group IV, III-V, and II-VI materials with strong covalent bonding and for the lower efficiency of transition metal oxides containing weakly interacting metal d orbitals. The model also predicts efficient energy conversion with quantum confined and molecular structures in the presence of a light harvesting mechanism. PMID:26278444

  15. Wavefunction Properties and Electronic Band Structures of High-Mobility Semiconductor Nanosheet MoS2

    NASA Astrophysics Data System (ADS)

    Baik, Seung Su; Lee, Hee Sung; Im, Seongil; Choi, Hyoung Joon; Ccsaemp Team; Edl Team

    2014-03-01

    Molybdenum disulfide (MoS2) nanosheet is regarded as one of the most promising alternatives to the current semiconductors due to its significant band-gap and electron-mobility enhancement upon exfoliating. To elucidate such thickness-dependent properties, we have studied the electronic band structures of bulk and monolayer MoS2 by using the first-principles density-functional method as implemented in the SIESTA code. Based on the wavefunction analyses at the conduction band minimum (CBM) points, we have investigated possible origins of mobility difference between bulk and monolayer MoS2. We provide formation energies of substitutional impurities at the Mo and S sites, and discuss feasible electron sources which may induce a significant difference in the carrier lifetime. This work was supported by NRF of Korea (Grant Nos. 2009-0079462 and 2011-0018306), Nano-Material Technology Development Program (2012M3a7B4034985), and KISTI supercomputing center (Project No. KSC-2013-C3-008). Center for Computational Studies of Advanced Electronic Material Properties.

  16. Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures

    SciTech Connect

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng-Fatt; Schreck, Carl; Guy, Mikhael I.; O'Hern, Corey S.; Cao, Hui

    2010-11-15

    We study numerically the density of optical states (DOS) in two-dimensional photonic structures with short-range positional order and observe a transition from polycrystalline to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are formed within individual domains, which leads to a depletion of the DOS similar to that in periodic structures. In amorphous photonic media, the domain sizes are too small to form PBGs, thus the depletion of the DOS is weakened significantly. The critical domain size that separates the polycrystalline and amorphous regimes is determined by the attenuation length of Bragg scattering, which depends not only on the degree of positional order but also the refractive-index contrast of the photonic material. Even with relatively low-refractive-index contrast, we find that modest short-range positional order in photonic structures enhances light confinement via collective scattering and interference.

  17. Structural evaluation of Marman V-band coupling and flange with conoseal gasket

    NASA Technical Reports Server (NTRS)

    Oates, J. H.

    1972-01-01

    Results are described of a development test program directed at evaluating the structural capabilities of the Marman V-band coupling and flange with conoseal gasket. The intended end use was for the 75K NERVA flight engine propellant lines. Of major importance in the structural evaluation was the ability to predict stresses throughout the assembly for a variety of loading conditions. Computer finite element analysis was used to predict these stresses but, for the subject configuration, large uncertainties were introduced in modeling the complex geometry and boundary conditions. The purpose of the structural tests was to obtain actual stresses and deflections for correlation with, and updating of the finite element model. Results of the incomplete test program are inconclusive with respect to determining suitability for use on the NERVA engine.

  18. High Stability CFRP Support Structure for Ka Band Multi-Spot Cluster

    NASA Astrophysics Data System (ADS)

    Yarza, A.; Cano, J.; Ozores, E.

    2012-07-01

    In the recent days, Ka band mission are being implemented for telecommunication satellites as emergent technology. EADS CASA Espacio (ASTRIUM) has been doing developments able to face up the demanding requirements associated to this frequency band where aspects such as in orbit stability o manufacturing accuracy are essential. Once it has been demonstrated the capability to offer excellent antenna reflectors with low mass, very low ohmic losses, excellent RF performances and very stable in orbit thermoelastic behaviour, improvements at feeder-chain level have been developed with the aim to cover the global antenna mission with excellent performances. This paper presents the product developed to accommodate a KA band multi-spot cluster to cover a telecommunication mission. It includes a description of the tasks carried out until the current development status, with the definition of the mechanical specification used as applicable and the solutions applied to meet the requirements. A CFRP structure is proposed with the aim to achieve a light mass concept, structurally speaking optimized and capable to assemble multiple feeder chain and make independent the thermomechanical behaviour of each one. Moreover, the design with CFRP leads to very stable thermoelastic behaviour of the assembly and the feeder-chain with the scope to guaranty the stability of the RF-beam for the correct electrical performances. The compatibility between the carbon fibre structure and the Aluminium feeder chain is solved by means of isostatic devices that are capable to absorb the thermal stresses coming from the different thermal expansion coefficients of the materials used. The proposed design is to be confirmed over a Qualification Model, already manufactured, with the scope to be implemented as flight hardware in a commercial spacecraft. The product is to be tested in a full qualification environmental test campaign where the capability to withstand the dynamic loads and the thermal

  19. Sagittal acoustic waves in finite solid-fluid superlattices: Band-gap structure, surface and confined modes, and omnidirectional reflection and selective transmission

    NASA Astrophysics Data System (ADS)

    El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.; Aynaou, H.

    2008-11-01

    Using a Green’s function method, we present a comprehensive theoretical analysis of the propagation of sagittal acoustic waves in superlattices (SLs) made of alternating elastic solid and ideal fluid layers. This structure may exhibit very narrow pass bands separated by large stop bands. In comparison with solid-solid SLs, we show that the band gaps originate both from the periodicity of the system (Bragg-type gaps) and the transmission zeros induced by the presence of the solid layers immersed in the fluid. The width of the band gaps strongly depends on the thickness and the contrast between the elastic parameters of the two constituting layers. In addition to the usual crossing of subsequent bands, solid-fluid SLs may present a closing of the bands, giving rise to large gaps separated by flat bands for which the group velocity vanishes. Also, we give an analytical expression that relates the density of states and the transmission and reflection group delay times in finite-size systems embedded between two fluids. In particular, we show that the transmission zeros may give rise to a phase drop of π in the transmission phase, and therefore, a negative delta peak in the delay time when the absorption is taken into account in the system. A rule on the confined and surface modes in a finite SL made of N cells with free surfaces is demonstrated, namely, there are always N-1 modes in the allowed bands, whereas there is one and only one mode corresponding to each band gap. Finally, we present a theoretical analysis of the occurrence of omnidirectional reflection in a layered media made of alternating solid and fluid layers. We discuss the conditions for such a structure to exhibit total reflection of acoustic incident waves in a given frequency range for all incident angles. Also, we show how this structure can be used as an acoustic filter that may transmit selectively certain frequencies within the omnidirectional gaps. In particular, we show the possibility of

  20. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOEpatents

    Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  1. Effect of species structure and dielectric constant on C-band forest backscatter

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Landry, R.; Kilic, O.; Chauhan, N.; Khadr, N.; Leckie, D.

    1993-01-01

    A joint experiment between Canadian and USA research teams was conducted early in Oct. 1992 to determine the effect of species structure and dielectric variations on forest backscatter. Two stands, one red pine and one jack pine, in the Petawawa National Forestry Institute (PNFI) were utilized for the experiment. Extensive tree architecture measurements had been taken by the Canada Centre for Remote Sensing (CCRS) several months earlier by employing a Total Station surveying instrument which provides detailed information on branch structure. A second part of the experiment consisted of cutting down several trees and using dielectric probes to measure branch and needle permittivity values at both sites. The dielectric and the tree geometry data were used in the George Washington University (GWU) Vegetation Model to determine the C band backscattering coefficients of the individual stands for VV polarization. The model results show that backscatter at C band comes mainly from the needles and small branches and the upper portion of the trunks acts only as an attenuator. A discussion of variation of backscatter with specie structure and how dielectric variations in needles for both species may affect the total backscatter returns is provided.

  2. Accessing Surface Brillouin Zone and Band Structure of Picene Single Crystals

    NASA Astrophysics Data System (ADS)

    Xin, Qian; Duhm, Steffen; Bussolotti, Fabio; Akaike, Kouki; Kubozono, Yoshihiro; Aoki, Hideo; Kosugi, Taichi; Kera, Satoshi; Ueno, Nobuo

    2012-06-01

    We have experimentally revealed the band structure and the surface Brillouin zone of insulating picene single crystals (SCs), the mother organic system for a recently discovered aromatic superconductor, with ultraviolet photoelectron spectroscopy (UPS) and low-energy electron diffraction with a laser for photoconduction. A hole effective mass of 2.24m0 and the hole mobility μh≥9.0cm2/Vs (298 K) were deduced in the Γ-Y direction. We have further shown that some picene SCs did not show charging during UPS even without the laser, which indicates that pristine UPS works for high-quality organic SCs.

  3. Parametric analysis of 2D guided-wave photonic band gap structures

    NASA Astrophysics Data System (ADS)

    Ciminelli, C.; Peluso, F.; Armenise, M. N.

    2005-11-01

    The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices.

  4. Parametric analysis of 2D guided-wave photonic band gap structures.

    PubMed

    Ciminelli, C; Peluso, F; Armenise, M

    2005-11-28

    The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices. PMID:19503180

  5. Design and RF Measurements of AN X-Band Accelerating Structure for the Sparc Project

    NASA Astrophysics Data System (ADS)

    Alesini, D.; Bacci, A.; Falone, A.; Migliorati, M.; Mostacci, A.; Palpini, F.; Palumbo, L.; Spataro, B.

    The paper presents the design of an X-band accelerating section for linearizing the longitudinal phase space in the Frascati Linac Coherent Light Source (SPARC). The nine cells structure, operating on the π standing wave mode, is fed by a central coupler and has been designed to obtain a 42 MV/m accelerating gradient. The 2D profile has been obtained using the electromagnetic codes Superfish and Oscar2D while the coupler has been designed using HFSS. Bead-pull measurements made on a copper prototype have been performed and the results are illustrated and compared with the numerical predictions.

  6. Design and RF Measurements of AN X-Band Accelerating Structure for the Sparc Project

    NASA Astrophysics Data System (ADS)

    Alesini, D.; Bacci, A.; Falone, A.; Migliorati, M.; Mostacci, A.; Palpini, F.; Palumbo, L.; Spataro, B.

    2007-09-01

    The paper presents the design of an X-band accelerating section for linearizing the longitudinal phase space in the Frascati Linac Coherent Light Source (SPARC). The nine cells structure, operating on the π standing wave mode, is fed by a central coupler and has been designed to obtain a 42 MV/m accelerating gradient. The 2D profile has been obtained using the electromagnetic codes Superfish and Oscar2D while the coupler has been designed using HFSS. Bead-pull measurements made on a copper prototype have been performed and the results are illustrated and compared with the numerical predictions.

  7. Electronic band structure imaging of three layer twisted graphene on single crystal Cu(111)

    SciTech Connect

    Marquez Velasco, J.; Kelaidis, N.; Xenogiannopoulou, E.; Tsoutsou, D.; Tsipas, P.; Speliotis, Th.; Pilatos, G.; Likodimos, V.; Falaras, P.; Dimoulas, A.; Raptis, Y. S.

    2013-11-18

    Few layer graphene (FLG) is grown on single crystal Cu(111) by Chemical Vapor Deposition, and the electronic valence band structure is imaged by Angle-Resolved Photo-Emission Spectroscopy. It is found that graphene essentially grows polycrystalline. Three nearly ideal Dirac cones are observed along the Cu Γ{sup ¯}K{sup ¯} direction in k-space, attributed to the presence of ∼4° twisted three layer graphene with negligible interlayer coupling. The number of layers and the stacking order are compatible with Raman data analysis demonstrating the complementarity of the two techniques for a more accurate characterization of FLG.

  8. Complex band structure under plane-wave nonlocal pseudopotential Hamiltonian of metallic wires and electrodes

    SciTech Connect

    Yang, Chao

    2009-07-17

    We present a practical approach to calculate the complex band structure of an electrode for quantum transport calculations. This method is designed for plane wave based Hamiltonian with nonlocal pseudopotentials and the auxiliary periodic boundary condition transport calculation approach. Currently there is no direct method to calculate all the evanescent states for a given energy for systems with nonlocal pseudopotentials. On the other hand, in the auxiliary periodic boundary condition transport calculation, there is no need for all the evanescent states at a given energy. The current method fills this niche. The method has been used to study copper and gold nanowires and bulk electrodes.

  9. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    SciTech Connect

    Dabhi, Shweta Mankad, Venu Jha, Prafulla K.

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  10. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Li, Wei-Dong; Zhang, Yunbo; Liang, J.-Q.

    2003-06-01

    The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose-Josephson junction (BJJ) were investigated in terms of energy splitting. For EC/EJ≪1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ≫1, the energy splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the coherence phenomena of BJJ in proper condition such as EC/EJ˜1.

  11. Exceptional Contours and Band Structure Design in Parity-Time Symmetric Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Cerjan, Alexander; Raman, Aaswath; Fan, Shanhui

    2016-05-01

    We investigate the properties of two-dimensional parity-time symmetric periodic systems whose non-Hermitian periodicity is an integer multiple of the underlying Hermitian system's periodicity. This creates a natural set of degeneracies that can undergo thresholdless P T transitions. We derive a k .p perturbation theory suited to the continuous eigenvalues of such systems in terms of the modes of the underlying Hermitian system. In photonic crystals, such thresholdless P T transitions are shown to yield significant control over the band structure of the system, and can result in all-angle supercollimation, a P T -superprism effect, and unidirectional behavior.

  12. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    SciTech Connect

    Kevin Jerome Sutherland

    2001-06-27

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the

  13. Electronic band structure calculation of GaNAsBi alloys and effective mass study

    NASA Astrophysics Data System (ADS)

    Habchi, M. M.; Ben Nasr, A.; Rebey, A.; El Jani, B.

    2013-11-01

    Electronic band structures of GaNxAs1-x-yBiy dilute nitrides-bismides have been determined theoretically within the framework of the band anticrossing (BAC) model and k ṡ p method. We have developed computer codes based on our extended BAC model, denoted (16 × 16), in which the dimension of the used states basis was equal to 16. We have investigated the band gap and the spin orbit splitting as a function of Bi composition for alloys lattice matched to GaAs. We have found that the substitution of As element by N and Bi impurities leads to a significant reduction of band gap energy by roughly 198 meV/%Bi. Meanwhile, spin orbit splitting increases by 56 meV/%Bi regardless N content. There is an excellent agreement between the model predictions and experiment reported in the literature. In addition, alloys compositions and oscillator strengths of transition energies have been calculated for GaNAsBi alloys which represent active zone of temperature insensitive (1.55 μm and 1.3 μm) wavelength laser diodes intended for optical fiber communications. A crossover at about 0.6 eV has occurred between Eg and Δso of GaN.039As.893Bi.068. When the quaternary is lattice mismatched to GaAs, resonance energy increases with Bi content if N content decreases. On the other hand, effective mass behavior of carriers at Γ point has been discussed with respect to alloy composition, k-directions and lattice mismatch.

  14. Advances in X-Band TW Accelerator Structures Operating in the 100 MV/M Regime

    SciTech Connect

    Higo, Toshiyasu; Higashi, Yasuo; Matsumoto, Shuji; Yokoyama, Kazue; Adolphsen, Chris; Dolgashev, Valery; Jensen, Aaron; Laurent, Lisa; Tantawi, Sami; Wang, Faya; Wang, Juwen; Dobert, Steffen; Grudiev, Alexej; Riddone, Germana; Wuensch, Walter; Zennaro, Riccardo; /CERN

    2012-07-05

    A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for three years. The major outcome has been the demonstration of stable 100 MV/m gradient operation of a number of CLIC prototype structures. These structures were fabricated using the technology developed from 1994 to 2004 for the GLC/NLC linear collider initiative. One of the goals has been to refine the essential parameters and fabrication procedures needed to realize such a high gradient routinely. Another goal has been to develop structures with stronger dipole mode damping than those for GLC/NLC. The latter requires that the surface temperature rise during the pulse be higher, which may increase the breakdown rate. One structure with heavy damping has been RF processed and another is nearly finished. The breakdown rates of these structures were found to be higher by two orders of magnitude compared to those with equivalent acceleration mode parameters but without the damping features. This paper presents these results together with some of the earlier results from non-damped structures.

  15. Anisotropy of inter-band transitions and band structure of Cs3Zn6B9O21 nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Bovgyra, O. V.; Kurlak, V. Y.; Chrunik, M.; Majchrowski, A.; Jaroszewicz, L. R.; Ozga, K.

    2016-06-01

    Polarized optical functions near the fundamental absorption edge of novel Cs3Zn6B9O21 nonlinear optical crystals possessing a wide UV transparency down to 190 nm were investigated. The anisotropy of optical functions is not well studied yet which restrains the further strategy of the formation on its base of solid state compounds with desirable properties. The studies were performed using a band structure calculations as well as the experimental measurements of fundamental polarized UV absorption edge and X-ray photoelectron spectra of the studied crystals. The experimental data were used for evaluation of scissor factors of the band structure. The results of the calculations were compared with the XPS and polarized absorption optical spectra of the investigated crystals. The introduction of the scissor factor was performed in order to obtain a sufficient agreement with experiment. The observed anisotropy of absorption may be explained by the anisotropy of carrier effective masses.

  16. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  17. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers.

    PubMed

    Lam, Shu J; O'Brien-Simpson, Neil M; Pantarat, Namfon; Sulistio, Adrian; Wong, Edgar H H; Chen, Yu-Yen; Lenzo, Jason C; Holden, James A; Blencowe, Anton; Reynolds, Eric C; Qiao, Greg G

    2016-01-01

    With the recent emergence of reports on resistant Gram-negative 'superbugs', infections caused by multidrug-resistant (MDR) Gram-negative bacteria have been named as one of the most urgent global health threats due to the lack of effective and biocompatible drugs. Here, we show that a class of antimicrobial agents, termed 'structurally nanoengineered antimicrobial peptide polymers' (SNAPPs) exhibit sub-μM activity against all Gram-negative bacteria tested, including ESKAPE and colistin-resistant and MDR (CMDR) pathogens, while demonstrating low toxicity. SNAPPs are highly effective in combating CMDR Acinetobacter baumannii infections in vivo, the first example of a synthetic antimicrobial polymer with CMDR Gram-negative pathogen efficacy. Furthermore, we did not observe any resistance acquisition by A. baumannii (including the CMDR strain) to SNAPPs. Comprehensive analyses using a range of microscopy and (bio)assay techniques revealed that the antimicrobial activity of SNAPPs proceeds via a multimodal mechanism of bacterial cell death by outer membrane destabilization, unregulated ion movement across the cytoplasmic membrane and induction of the apoptotic-like death pathway, possibly accounting for why we did not observe resistance to SNAPPs in CMDR bacteria. Overall, SNAPPs show great promise as low-cost and effective antimicrobial agents and may represent a weapon in combating the growing threat of MDR Gram-negative bacteria. PMID:27617798

  18. rBPI21 interacts with negative membranes endothermically promoting the formation of rigid multilamellar structures.

    PubMed

    Domingues, Marco M; Bianconi, M Lucia; Barbosa, Leandro R S; Santiago, Patrícia S; Tabak, Marcel; Castanho, Miguel A R B; Itri, Rosangela; Santos, Nuno C

    2013-11-01

    rBPI21 belongs to the antimicrobial peptide and protein (AMP) family. It has high affinity for lipopolysaccharide (LPS), acting mainly against Gram-negative bacteria. This work intends to elucidate the mechanism of action of rBPI21 at the membrane level. Using isothermal titration calorimetry, we observed that rBPI21 interaction occurs only with negatively charged membranes (mimicking bacterial membranes) and is entropically driven. Differential scanning calorimetry shows that membrane interaction with rBPI21 is followed by an increase of rigidity on negatively charged membrane, which is corroborated by small angle X-ray scattering (SAXS). Additionally, SAXS data reveal that rBPI21 promotes the multilamellarization of negatively charged membranes. The results support the proposed model for rBPI21 action: first it may interact with LPS at the bacterial surface. This entropic interaction could cause the release of ions that maintain the packed structure of LPS, ensuring peptide penetration. Then, rBPI21 may interact with the negatively charged leaflets of the outer and inner membranes, promoting the interaction between the two bacterial membranes, ultimately leading to cell death. PMID:23792068

  19. Crystal lattice and band structure of the intermediate high-pressure phase of PbSe.

    PubMed

    Streltsov, S V; Manakov, A Yu; Vokhmyanin, A P; Ovsyannikov, S V; Shchennikov, V V

    2009-09-23

    In the present paper the results of fitting synchrotron diffraction data are obtained for the intermediate high-pressure phase (9.5 GPa) of the lead selenide based compound Pb(1-x)Sn(x)Se (x = 0.125)-an optoelectronic as well as a thermoelectric material-for two types of lattice symmetries Pnma (space group #62) and Cmcm (space group #63). Both lattice parameters and positions of atoms for the above mentioned structures have been used in calculations of the electron structure of high-pressure phases. The main difference between the electronic properties for Cmcm and Pnma structures established in electronic structure calculations is that in the first one the PbSe compound was found to be a metal, while in the second a small semiconductor gap (E(G) = 0.12 eV) was obtained. Moreover, the forces in the Cmcm structure are an order of magnitude larger than those calculated for the Pnma lattice. In the optimized, Pnma structure within a generalized gradient approximation (GGA), the band gap increases up to E(G) = 0.27 eV. The result coincides with the data on thermoelectric power and electrical resistance data pointing to a semiconductor gap of ∼0.2 eV at ∼9.5 GPa. Thus, the Pmna type of lattice seems to be a preferable version for the intermediate phase compared with the Cmcm one. PMID:21832372

  20. Band structure and transmission characteristics of complex phononic crystals by multi-level substructure scheme

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2015-10-01

    A fast scheme based on the multi-level substructure technique is proposed for the band structure and transmission characteristics calculation of phononic crystals uniformly. The main idea is that finite element models of phononic crystals are divided into several domains by a special multi-level decomposition. For the band structure calculation, the upscaling calculation is employed to condense the internal stiffness matrix of the unit cell into the Bloch boundary. Due to the internal stiffness matrix does not change along with reduced wave vectors in an iteration process, the scheme can reduce the computational scale and improve the efficiency greatly, meanwhile it does not introduce approximation into the traditional finite element model. For the transmission characteristics calculation, the unit cell of the phononic crystal is periodic which is taken as a substructure with the same coefficient matrix. Moreover, the downscaling calculation of internal displacements can be selected flexibly. Some closely watched examples of the three-dimensional locally resonant, defect state of Lamb wave and Bragg waveguide are analyzed. Numerical results indicate that the proposed scheme is efficient and accurate, which may widely be applicable and suitable for complex phononic crystal problems, and provides a reliable numerical tool to optimize and design crystal devices.

  1. Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles.

    PubMed

    Zhu, Qiushi; Zheng, Kaibo; Abdellah, Mohamed; Generalov, Alexander; Haase, Dörthe; Carlson, Stefan; Niu, Yuran; Heimdal, Jimmy; Engdahl, Anders; Messing, Maria E; Pullerits, Tonu; Canton, Sophie E

    2016-06-01

    After having emerged as primary contenders in the race for highly efficient optoelectronics materials, organolead halide perovskites (OHLP) are now being investigated in the nanoscale regime as promising building blocks with unique properties. For example, unlike their bulk counterpart, quantum dots of OHLP are brightly luminescent, owing to large exciton binding energies that cannot be rationalized solely on the basis of quantum confinement. Here, we establish the direct correlation between the structure and the electronic band-edge properties of CH3NH3PbBr3 nanoparticles. Complementary structural and spectroscopic measurements probing long-range and local order reveal that lattice strain influences the nature of the valence band and modifies the subtle stereochemical activity of the Pb(2+) lone-pair. More generally, this work demonstrates that the stereochemical activity of the lone-pair at the metal site is a specific physicochemical parameter coupled to composition, size and strain, which can be employed to engineer novel functionalities in OHLP nanomaterials. PMID:27189431

  2. Band structure of topological insulators from noise measurements in tunnel junctions

    SciTech Connect

    Cascales, Juan Pedro Martínez, Isidoro; Aliev, Farkhad G.; Katmis, Ferhat; Moodera, Jagadeesh S.; Chang, Cui-Zu; Guerrero, Rubén

    2015-12-21

    The unique properties of spin-polarized surface or edge states in topological insulators (TIs) make these quantum coherent systems interesting from the point of view of both fundamental physics and their implementation in low power spintronic devices. Here we present such a study in TIs, through tunneling and noise spectroscopy utilizing TI/Al{sub 2}O{sub 3}/Co tunnel junctions with bottom TI electrodes of either Bi{sub 2}Te{sub 3} or Bi{sub 2}Se{sub 3}. We demonstrate that features related to the band structure of the TI materials show up in the tunneling conductance and even more clearly through low frequency noise measurements. The bias dependence of 1/f noise reveals peaks at specific energies corresponding to band structure features of the TI. TI tunnel junctions could thus simplify the study of the properties of such quantum coherent systems that can further lead to the manipulation of their spin-polarized properties for technological purposes.

  3. Momentum-Space Imaging of the Dirac Band Structure in Molecular Graphene via Quasiparticle Interference

    NASA Astrophysics Data System (ADS)

    Stephenson, Anna; Gomes, Kenjiro K.; Ko, Wonhee; Mar, Warren; Manoharan, Hari C.

    2014-03-01

    Molecular graphene is a nanoscale artificial lattice composed of carbon monoxide molecules arranged one by one, realizing a dream of exploring exotic quantum materials by design. This assembly is done by atomic manipulation with a scanning tunneling microscope (STM) on a Cu(111) surface. To directly probe the transformation of normal surface state electrons into massless Dirac fermions, we map the momentum space dispersion through the Fourier analysis of quasiparticle scattering maps acquired at different energies with the STM. The Fourier analysis not only bridges the real-space and momentum-space data but also reveals the chiral nature of those quasiparticles, through a set of selection rules of allowed scattering involving the pseudospin and valley degrees of freedom. The graphene-like band structure can be reshaped with simple alterations to the lattice, such as the addition of a strain. We analyze the effect on the momentum space band structure of multiple types of strain on our system. Supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515.

  4. Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains

    NASA Astrophysics Data System (ADS)

    Buth, Christian

    2006-10-01

    We study the quasiparticle band structure of isolated, infinite (HF)∞ and (HCl)∞ bent (zigzag) chains and examine the effect of the crystal field on the energy levels of the constituent monomers. The chains are one of the simplest but realistic models of the corresponding three-dimensional crystalline solids. To describe the isolated monomers and the chains, we set out from the Hartree-Fock approximation, harnessing the advanced Green's function methods local molecular orbital algebraic diagrammatic construction (ADC) scheme and local crystal orbital ADC (CO-ADC) in a strict second order approximation, ADC(2,2) and CO-ADC(2,2), respectively, to account for electron correlations. The configuration space of the periodic correlation calculations is found to converge rapidly only requiring nearest-neighbor contributions to be regarded. Although electron correlations cause a pronounced shift of the quasiparticle band structure of the chains with respect to the Hartree-Fock result, the bandwidth essentially remains unaltered in contrast to, e.g., covalently bound compounds.

  5. Nonorthogonal FDTD simulations for photonic band structures, states density, and transmission/reflection of photonic crystals

    NASA Astrophysics Data System (ADS)

    Le, Zichun; Yang, Yang; Quan, Bisheng; Wang, Weibiao; Wang, Xiaoxiao; Chi, Yongjiang; Ma, Lingfang

    2005-01-01

    Photonic crystals have been widely studied in the fields of physics, material science and optical information technology. In general, the standard rectangular finite difference time domain (FDTD) method is used to predict the performances of photonic crystals. It is however very time consuming and inefficient. The current authors developed a software called GCFE, which is based on a non-orthogonal FDTD method. The software can be used to predict the photonic band structures, photonic states density and transmission and/or reflection coefficients for one-dimensional to three-dimensional photonic crystals. In the present paper, the derivations of the discrete Maxwell"s equations in time-domain and space-domain and the derivation of the discrete transfer matrix in real-space domain are briefly described firstly. In addition, the design idea and the functions of GCFE version 2.0.00 are introduced. Moreover, the band structures, transmission and reflection coefficients and photonic states density for the photonic crystal with cube lattice are calculated by our GCFE software, and numerical application results are also shown.

  6. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    SciTech Connect

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-07-15

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed.

  7. The role of beryllium in the band structure of MgZnO: Lifting the valence band maximum

    SciTech Connect

    Chen, S. S.; Pan, X. H. E-mail: yezz@zju.edu.cn; Chen, W.; Zhang, H. H.; Dai, W.; Ding, P.; Huang, J. Y.; Lu, B.; Ye, Z. Z. E-mail: yezz@zju.edu.cn

    2014-09-22

    We investigate the effect of Be on the valence band maximum (VBM) of MgZnO by measuring the band offsets of Mg{sub x}Zn{sub 1−x}O/Be{sub x}Mg{sub y}Zn{sub 1−x−y}O heterojunctions using X-ray photoelectron spectroscopy measurements. Mg{sub x}Zn{sub 1−x}O and Be{sub x}Mg{sub y}Zn{sub 1−x−y}O films have been grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. The valence band offset (ΔE{sub V}) of Mg{sub 0.15}Zn{sub 0.85}O (E{sub g} = 3.62 eV)/Be{sub 0.005}Mg{sub 0.19}Zn{sub 0.805}O (E{sub g} = 3.73 eV) heterojunction is 0.01 eV and Be{sub 0.005}Mg{sub 0.19}Zn{sub 0.805}O has a lower VBM. The increased Mg composition is the main factor for the reduction of VBM. The VBM of Mg{sub x}Zn{sub 1−x}O is lower by 0.03 eV with the enlargement of E{sub g} from 3.62 eV to 3.73 eV by increasing Mg composition. Considering the effect of increased Mg composition, it is concluded that the little amount of Be makes the VBM go up by 0.02 eV when the E{sub g} of the alloy is 3.73 eV. The ΔE{sub V} of Mg{sub 0.11}Zn{sub 0.89}O (E{sub g} = 3.56 eV)/Be{sub 0.007}Mg{sub 0.12}Zn{sub 0.873}O (E{sub g} = 3.56 eV) heterojunction is calculated to be 0.03 eV and Be{sub 0.007}Mg{sub 0.12}Zn{sub 0.873}O has a higher VBM than Mg{sub 0.11}Zn{sub 0.89}O, which means that a little amount Be lifts the VBM by 0.03 eV when the E{sub g} of the alloy is 3.56 eV. The experimental measurements have offered a strong support for the theoretical research that alloying Be in Mg{sub x}Zn{sub 1−x}O alloys is hopeful to form a higher VBM and to enhance the p-type dopability of MgZnO.

  8. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    NASA Astrophysics Data System (ADS)

    Gao, Enlai; Xie, Bo; Xu, Zhiping

    2016-01-01

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO4 tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  9. Polarization sensitive surface band structure of doped BaTiO3(001).

    PubMed

    Rault, J E; Dionot, J; Mathieu, C; Feyer, V; Schneider, C M; Geneste, G; Barrett, N

    2013-09-20

    We present a spatial and wave-vector resolved study of the electronic structure of micron sized ferroelectric domains at the surface of a BaTiO(3)(001) single crystal. The n-type doping of the BaTiO(3) is controlled by in situ vacuum and oxygen annealing, providing experimental evidence of a surface paraelectric-ferroelectric transition below a critical doping level. Real space imaging of photoemission threshold, core level and valence band spectra show contrast due to domain polarization. Reciprocal space imaging of the electronic structure using linearly polarized light provides unambiguous evidence for the presence of both in- and out-of-plane polarization with two- and fourfold symmetry, respectively. The results agree well with first principles calculations. PMID:24093301

  10. Structure of the K{sup {pi}} = 4{sup +} bands in {sup 186,188}Os

    SciTech Connect

    Phillips, A. A.; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Bettermann, L.; Braun, N.; Burke, D. G.; Faestermann, T.; Kruecken, R.; Wirth, H.-F.; Hertenberger, R.

    2009-01-28

    The structures of {sub 3}{sup +} states in Os have been debated over several decades. Based on measured B(E2) values they were interpreted in {sup 186-192}Os as K{sup {pi}} = 4{sup +} two-phonon vibrations, whereas inelastic scattering, and (t,{alpha}) work imply a hexadecapole phonon description. To clarify the nature of these K{sup {pi}} = 4{sup +} bands in {sup 186,188}Os, we performed a ({sup 3}He,d) reaction on {sup 185,187}Re targets using 30 MeV {sup 3}He beams and a Q3D spectrograph. Absolute cross sections were obtained for excited states up to 3 MeV at 9 angles from 5 deg. to 50 deg. Results indicate a significant (5/2){sup +}[402]{sub {pi}}+(3/2){sup +}[402]{sub {pi}} component in agreement with quasiparticle phonon model predictions for a single hexadecapole phonon structure.

  11. Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael

    2006-09-01

    We study second harmonic generation in a metallodielectric photonic-band-gap structure made of alternating layers of silver and a generic, dispersive, linear, dielectric material. We find that under ideal conditions the conversion efficiency can be more than two orders of magnitude greater than the maximum conversion efficiency achievable in a single layer of silver. We interpret this enhancement in terms of the simultaneous availability of phase matching conditions over the structure and good field penetration into the metal layers. We also give a realistic example of a nine-period, Si3/N4Ag stack, where the backward conversion efficiency is enhanced by a factor of 50 compared to a single layer of silver. PMID:17025762

  12. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    SciTech Connect

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael

    2006-03-15

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.

  13. High-Pressure and Electronic Band Structure Studies on MoBC

    NASA Astrophysics Data System (ADS)

    Falconi, R.; de la Mora, P.; Morales, F.; Escamilla, R.; Camacho, C. O.; Acosta, M.; Escudero, R.

    2015-05-01

    In this work, high-pressure electrical resistivity measurements and electronic structure analysis on the intermetallic MoBC system are presented. Electrical resistivity measurements up to about 5 GPa using a diamond anvil cell on MoBC revealed that decreases in a non-monotonic way. Using Linearized Augmented Plane Wave method based on Density Functional Theory, we investigate the changes in the electronic structure of this compound as a function of pressure. The states at the Fermi level mainly come from the d orbitals of molybdenum atoms. As the pressure increases, the band width is enhanced and the total density of states at the Fermi level decreases. The Fermi surface for this compound possesses a two-dimensional character which prevails under an applied pressure of about 10 GPa. The results are compared with the chemical pressure effects on induced by the gradual and non-simultaneous elimination of B and C in the compound.

  14. Detection of beam induced dipole-mode signals in the SLC S-band structures

    SciTech Connect

    Seidel, M.; Adolphsen, C.; Assmann, R.; Whittum, D.H.

    1997-06-01

    Beam emittance dilution caused by wakefield effects is one of the important issues in the SLC linac. The detection of beam induced dipole mode signals in the C-band range could provide a direct measure of the strength of transverse wakefield kicks the beam experiences in the accelerating structures. The authors investigate the applicability of these microwave signals for the beam steering purposes. The RF distribution system in the linac sectors 2, 6 and 29 has been equipped with a simple experimental setup to observe the beam induced dipole mode signals. The paper discusses the setup, the mode-structure of the observed signals as well as experimental results from beam steering scans, obtained during the 95/96 SLC runs.

  15. A combined representation method for use in band structure calculations. 1: Method

    NASA Technical Reports Server (NTRS)

    Friedli, C.; Ashcroft, N. W.

    1975-01-01

    A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.

  16. Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial.

    PubMed

    Cheng, Yongzhi; Gong, Rongzhou; Cheng, Zhengze; Nie, Yan

    2014-09-01

    A near-perfect dual-band circular polarizer based on bilayer twisted, single split-ring resonator structure asymmetric chiral metamaterial was proposed and investigated. The simple bilayer structure with a 90° twisted angle allows for equalizing the orthogonal components of the electric field at the output interface with a 90° phase difference for a y-polarized wave propagating along the backward (-z) direction. It is found that right- and left-hand circular polarization are realized in transmissions at 7.8 and 10.1 GHz, respectively. Experiments agree well with numerical simulations, which exhibit that the polarization extinction ratio is more than 30 dB at the resonant frequencies. Further, the simple design also can be operated at the terahertz range by scaling down the geometrical parameters of the unit cell. PMID:25321375

  17. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2010-09-27

    Transmembrane signaling by the epidermal growth factor receptor (EGFR) involves ligand-induced dimerization and allosteric regulation of the intracellular tyrosine kinase domain. Crystallographic studies have shown how ligand binding induces dimerization of the EGFR extracellular region but cannot explain the high-affinity and low-affinity classes of cell-surface EGF-binding sites inferred from curved Scatchard plots. From a series of crystal structures of the Drosophila EGFR extracellular region, we show here how Scatchard plot curvature arises from negatively cooperative ligand binding. The first ligand-binding event induces formation of an asymmetric dimer with only one bound ligand. The unoccupied site in this dimer is structurally restrained, leading to reduced affinity for binding of the second ligand, and thus negative cooperativity. Our results explain the cell-surface binding characteristics of EGF receptors and suggest how individual EGFR ligands might stabilize distinct dimeric species with different signaling properties.

  18. Parametric analysis of a cylindrical negative Poisson’s ratio structure

    NASA Astrophysics Data System (ADS)

    Wang, Yuanlong; Wang, Liangmo; Ma, Zheng-dong; Wang, Tao

    2016-03-01

    Much research related to negative Poisson’s ratio (NPR), or auxetic, structures is emerging these days. Several types of 3D NPR structure have been proposed and studied, but almost all of them had cuboid shapes, which were not suitable for certain engineering applications. In this paper, a cylindrical NPR structure was developed and researched. It was expected to be utilized in springs, bumpers, dampers and other similar applications. For the purpose of parametric analysis, a method of parametric modeling of cylindrical NPR structures was developed using MATLAB scripts. The scripts can automatically establish finite element models, invoke ABAQUS, read results etc. Subsequently the influences of structural parameters, including number of cells, number of layers and layer heights, on the uniaxial compression behavior of cylinder NPR structures were researched. This led to the conclusion that the stiffness of the cylindrical NPR structure was enhanced on increasing the number of cells and reducing the effective layer height. Moreover, small numbers of layers resulted in a late transition area of the load-displacement curve from low stiffness to high stiffness. Moreover, the middle contraction regions were more apparent with larger numbers of cells, smaller numbers of layers and smaller effective layer heights. The results indicate that the structural parameters had significant effects on the load-displacement curves and deformed shapes of cylindrical NPR structures. This paper is conducive to the further engineering applications of cylindrical NPR structures.

  19. Comprehensive comparison and experimental validation of band-structure calculation methods in III-V semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Zerveas, George; Caruso, Enrico; Baccarani, Giorgio; Czornomaz, Lukas; Daix, Nicolas; Esseni, David; Gnani, Elena; Gnudi, Antonio; Grassi, Roberto; Luisier, Mathieu; Markussen, Troels; Osgnach, Patrik; Palestri, Pierpaolo; Schenk, Andreas; Selmi, Luca; Sousa, Marilyne; Stokbro, Kurt; Visciarelli, Michele

    2016-01-01

    We present and thoroughly compare band-structures computed with density functional theory, tight-binding, k · p and non-parabolic effective mass models. Parameter sets for the non-parabolic Γ, the L and X valleys and intervalley bandgaps are extracted for bulk InAs, GaAs and InGaAs. We then consider quantum-wells with thickness ranging from 3 nm to 10 nm and the bandgap dependence on film thickness is compared with experiments for In0.53Ga0.47 As quantum-wells. The impact of the band-structure on the drain current of nanoscale MOSFETs is simulated with ballistic transport models, the results provide a rigorous assessment of III-V semiconductor band structure calculation methods and calibrated band parameters for device simulations.

  20. Finite Element Method for Analysis of Band Structures of 2D Phononic Crystals with Archimedean-like tilings

    NASA Astrophysics Data System (ADS)

    Li, Jianbao; Wang, Yue-Sheng; Zhang, Chuanzeng

    2010-05-01

    In this paper, a finite element method based on the ABAQUS code and user subroutine is presented to evaluate the propagation of acoustic waves in the two-dimensional phononic crystals with Archimedean-like tilings. Two systems composed of cylinder scatters embedded in a host in Ladybug and Bathroom lattices are considered. Complete and accurate band structures and transmission spectra are obtained to identify the band gaps and eigenmodes. We found that Archimedean-like structures can have some advantages over the traditional square lattice regarding the completeness of the gap and its position and width. Also, due to the same square primitive unit cell and the first Brillouin zone, the two square-like lattices have similar acoustic response in lower bands. The results indicate that the finite element method is precise for the band structure computation of the complex phononic crystals with Archimedean tilings.

  1. Breakdown Characteristics Study on an 18 Cell X-band Structure

    SciTech Connect

    Wang Faya

    2009-01-22

    A CLIC designed 18 cells, low group velocity (2.4% to 1.0% c), X-band (11.4 GHz) accelerator structure (denoted T18) was designed at CERN, its cells were built at KEK, and it was assembled and tested at SLAC. An interesting feature of this structure is that the gradient in the last cell is about 50% higher than that in the first cell. This structure has been RF conditioned at SLAC NLCTA for about 1400 hours where it incurred about 2200 breakdowns. This paper presents the characteristics of these breakdowns, including 1) the breakdown rate dependence on gradient, pulse width and conditioning time, 2) the breakdown distribution along the structure, 3) relation between breakdown and pulsed heating dependence study and 4) electric field decay time for breakdown changing over the whole conditioning time. Overall, this structure performed very well, having a final breakdown rate of less than 1e-6/pulse/m at 106 MV/m with 230 ns pulse width.

  2. Breakdown Characteristics Study on an 18 Cell X-band Structure

    SciTech Connect

    Wang, Faya

    2008-11-12

    A CLIC designed 18 cells, low group velocity (2.4% to 1.0% c), X-band (11.4 GHz) accelerator structure (denoted T18) was designed at CERN, its cells were built at KEK, and it was assembled and tested at SLAC. An interesting feature of this structure is that the gradient in the last cell is about 50% higher than that in the first cell. This structure has been RF conditioned at SLAC NLCTA for about 1400 hours where it incurred about 2200 breakdowns. This paper presents the characteristics of these breakdowns, including (1) the breakdown rate dependence on gradient, pulse width and conditioning time, (2) the breakdown distribution along the structure, (3) relation between breakdown and pulsed heating dependence study and (4) electric field decay time for breakdown changing over the whole conditioning time. Overall, this structure performed very well, having a final breakdown rate of less than 1e-6/pulse/m at 106 MV/m with 230 ns pulse width.

  3. Europium underneath graphene on Ir(111): Intercalation mechanism, magnetism, and band structure

    NASA Astrophysics Data System (ADS)

    Schumacher, Stefan; Huttmann, Felix; Petrović, Marin; Witt, Christian; Förster, Daniel F.; Vo-Van, Chi; Coraux, Johann; Martínez-Galera, Antonio J.; Sessi, Violetta; Vergara, Ignacio; Rückamp, Reinhard; Grüninger, Markus; Schleheck, Nicolas; Meyer zu Heringdorf, Frank; Ohresser, Philippe; Kralj, Marko; Wehling, Tim O.; Michely, Thomas

    2014-12-01

    The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a (2 ×2 ) or a (√{3 }×√{3 }) R 30∘ superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n doping. The hybridization of the Ir surface state S1 with Gr states is lifted, and the moiré superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially, as found by x-ray magnetic circular dichroism. The (2 ×2 ) Eu structure displays plain paramagnetic behavior, whereas for the (√{3 }×√{3 }) R 30∘ structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.

  4. Strain Engineering of the Band Structure and Picosecond Carrier Dynamics of Single Semiconductor Nanowires Probed by Modulated Rayleigh Scattering Microscopy

    NASA Astrophysics Data System (ADS)

    Montazeri, Mohammad

    The band structure and carrier dynamics of GaAs, GaAs/GaP and InP semiconductor nanowires is explored using a variety of optical spectroscopy techniques including two newly developed techniques called Photomodulated and Transient Rayleigh scattering spectroscopy. The stress and electronic band structure of as-grown highly strained GaAs/GaP core/shell nanowire is studied via room temperature Raman scattering by phonons and low temperature photoluminescence spectroscopy. Raman measurements reveal the uniaxial nature of the shell-induced stress in the core GaAs nanowire with a significantly different degree of compression in the radial plane and axial direction of the nanowire. The uniaxial stress dramatically modifies the electronic band structure of the nanowire. Raman measurements predict that the shell-induced stress should shift the band gap of GaAs to higher energies by ~260 meV which is experimentally confirmed by low temperature photoluminescence spectroscopy. Furthermore, it is predicted that the uniaxial stress in the nanowire removes the degeneracy of the heavy and light hole valence bands at the zone center by ~100 meV. In order to probe the electronic band structure of single nanowires with high spatial and spectral resolution, the new technique of Photomodulated Rayleigh Scattering spectroscopy (PMRS) is introduced. We show that by photomodulating the dielectric function of the nanowire, the background-free and robust differential Rayleigh spectrum measures the band structure of the nanowire with exceptionally high energy resolution. PMRS measurements are performed on zincblende GaAs and zincblende and wurtzite InP nanowires at both room and low temperature. Furthermore, we show that the diameters of the nanowires can be extracted from the PMRS spectra with an uncertainty of only a few nanometers. By extending the PMRS spectroscopy into time domain, we introduce Transient Rayleigh Scattering spectroscopy (TRS) to study the ultrafast carrier dynamics and

  5. Structural Basis for a Reciprocating Mechanism of Negative Cooperativity in Dimeric Phosphagen Kinase Activity

    SciTech Connect

    Wu, X.; Ye, S; Guo, S; Yan, W; Bartlam, M; Rao, Z

    2010-01-01

    Phosphagen kinase (PK) family members catalyze the reversible phosphoryl transfer between phosphagen and ADP to reserve or release energy in cell energy metabolism. The structures of classic quaternary complexes of dimeric creatine kinase (CK) revealed asymmetric ligand binding states of two protomers, but the significance and mechanism remain unclear. To understand this negative cooperativity further, we determined the first structure of dimeric arginine kinase (dAK), another PK family member, at 1.75 {angstrom}, as well as the structure of its ternary complex with AMPPNP and arginine. Further structural analysis shows that the ligand-free protomer in a ligand-bound dimer opens more widely than the protomers in a ligand-free dimer, which leads to three different states of a dAK protomer. The unexpected allostery of the ligand-free protomer in a ligand-bound dimer should be relayed from the ligand-binding-induced allostery of its adjacent protomer. Mutations that weaken the interprotomer connections dramatically reduced the catalytic activities of dAK, indicating the importance of the allosteric propagation mediated by the homodimer interface. These results suggest a reciprocating mechanism of dimeric PK, which is shared by other ATP related oligomeric enzymes, e.g., ATP synthase. - Wu, X., Ye, S., Guo, S., Yan, W., Bartlam, M., Rao, Z. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.

  6. Observation of high-spin oblate band structures in {sup 141}Pm

    SciTech Connect

    Gu, L.; Zhu, S. J.; Wang, J. G.; Yeoh, E. Y.; Xiao, Z. G.; Zhang, M.; Liu, Y.; Ding, H. B.; Xu, Q.; Zhang, S. Q.; Meng, J.; Zhu, L. H.; Wu, X. G.; He, C. Y.; Li, G. S.; Wang, L. L.; Zheng, Y.; Zhang, B.

    2011-06-15

    The high-spin states of {sup 141}Pm have been investigated through the reaction {sup 126}Te({sup 19}F,4n) at a beam energy of 90 MeV. A previous level scheme has been updated with spins up to 49/2({h_bar}/2{pi}). Six collective bands at high spins are newly observed. Based on the systematic comparison, one band is proposed as a decoupled band; two bands with strong {Delta}I=1 M1 transitions inside the bands are suggested as the oblate bands with {gamma} {approx}-60 deg.; three other bands with large signature splitting have been proposed with the oblate-triaxial deformation with {gamma}{approx} -90 deg. The triaxial n-particle-n-hole particle rotor model calculations for one of the oblate bands in {sup 141}Pm are in good agreement with the experimental data. The other characteristics for these bands have been discussed.

  7. Electronic band structure and Shubnikov-de Haas effect in two-dimensional semimetallic InAs/GaSb nanostructure superlattice

    NASA Astrophysics Data System (ADS)

    Boutramine, Abderrazak; Nafidi, Abdelhakim; Barkissy, Driss; El-Frikhe, Es-Said; Charifi, Hicham; Elanique, Abdellatif; Chaib, Hassan

    2016-02-01

    We have investigated the band structure E( d = d 1 + d 2), E( k z) and E( k p), respectively, as a function of the SL period, d, in the growth direction and in plan of InAs( d 1 = 160 Å)/GaSb( d 2 = 105 Å) type II superlattice, performed in the envelope function formalism with the valence band offset, Λ, of 510 meV at 4.2 K. For the ratio d 1/ d 2 = 1.52, d and Λ dependence of the SL energy band gap show that the semiconductor-to-semimetal transition takes place at d c = 173 Å and Λ c = 463 meV. Therefore, this sample is semimetallic. The position of the Fermi level, E F = 500.2 meV, indicates n type conductivity. The spectra of energy, E( k z, k p), show a negative band gap of -48.3 meV. The cutoff wavelength | λ c| = 25.7 µm indicates that this sample can be used as a far-infrared detector. Further, we have interpreted the minima of the magnetoresistance oscillations, Shubnikov-de Haas effect, observed by D. M. Symons et al.

  8. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor.

    PubMed

    Sahakyan, M; Tran, V H

    2016-05-25

    The physical properties of the noncentrosymmetric superconductor Th7Co3 have been investigated by means of ac-magnetic susceptibility, magnetization, specific heat, electrical resistivity, magnetoresistance and Hall effect measurements. From these data it is established that Th7Co3 is a dirty type-II superconductor with [Formula: see text] K, [Formula: see text] and moderate electron-phonon coupling [Formula: see text]. Some evidences for anisotropic superconducting gap are found, including e.g. reduced specific heat jump ([Formula: see text]) at T c, diminished superconducting energy gap ([Formula: see text]) as compared to the BCS values, power law field dependence of the Sommerfeld coefficient at 0.4 K ([Formula: see text]), and a concave curvature of the [Formula: see text] line. The magnitudes of the thermodynamic critical field and the energy gap are consistent with mean-squared anisotropy parameter [Formula: see text]. The electronic specific heat in the superconducting state is reasonably fitted to an oblate spheroidal gap model. Calculations of scalar relativistic and fully relativistic electronic band structures reveal considerable differences in the degenerate structure, resulting from asymmetric spin-orbit coupling (ASOC). A large splitting energy of spin-up spin-down bands at the Fermi level E F, [Formula: see text] meV is observed and a sizeable ratio [Formula: see text] could classify the studied compound into the class of noncentrosymmetric superconductors with strong ASOC. The noncentrosymmetry of the crystal structure and the atomic relativistic effects are both responsible for an importance of ASOC in Th7Co3. The calculated results for the density of states show a Van Hove singularity just below E F and dominant role of the 6d electrons of Th to the superconductivity. PMID:27120582

  9. Electronic Band Structure and Optical Properties of Srn+1TinO3n+1 Ruddlesden-Popper Homologous Series

    NASA Astrophysics Data System (ADS)

    Reshak, Ali Hussain; Auluck, Sushil; Kityk, Ivan

    2008-07-01

    State-of-the-art calculations of electronic band structures, density of states and frequency-dependent optical properties have been reported for Srn+1TinO3n+1 (n=1, 2, 3, ∞) compounds. These materials possess indirect wide energy band gaps. The frequency dependent optical properties of n=1,2,3 compounds show considerable anisotropy and positive birefringence. The conduction band minimum is originates from Ti-d states, while the valence band maximum is governed by O-p states. The bandwidth of the Ti-d states is responsible for the decrease in the energy band gap as n changes from 1 to 2, 3, and ∞. We have analyzed the degree of hybridization on the basis of the ratio of the orbital overlapping within the muffin tin sphere.

  10. Electronic band structure trends of perovskite halides: Beyond Pb and Sn to Ge and Si

    NASA Astrophysics Data System (ADS)

    Huang, Ling-yi; Lambrecht, Walter R. L.

    2016-05-01

    The trends in electronic band structure are studied in the cubic A B X3 halide perovskites for A =Cs ; B =Pb , Sn, Ge, Si; and X =I , Br, Cl. The gaps are found to decrease from Pb to Sn and from Ge to Si, but increase from Sn to Ge. The trend is explained in terms of the atom s levels of the group-IV element and the atomic sizes which changes the amount of hybridization with X -p and hence the valence bandwidth. Along the same series spin-orbit coupling also decreases and this tends to increase the gap because of the smaller splitting of the conduction band minimum. Both effects compensate each other to a certain degree. The trend with halogens is to reduce the gap from Cl to I, i.e., with decreasing electronegativity. The role of the tolerance factor in avoiding octahedron rotations and octahedron edge sharing is discussed. The Ge containing compounds have tolerance factor t >1 and hence do not show the series of octahedral rotation distortions and the existence of edge-sharing octahedral phases known for Pb and Sn-based compounds, but rather a rhombohedral distortion. CsGeI3 is found to have a suitable gap for photovoltaics both in its cubic (high-temperature) and rhombohedral (low-temperature) phases. The structural stability of the materials in the different phases is also discussed. We find the rhombohedral phase to have lower total energy and slightly larger gaps but to present a less significant distortion of the band structure than the edge-sharing octahedral phases, such as the yellow phase in CsSnI3. The corresponding silicon based compounds have not yet been synthesized and therefore our estimates are less certain but indicate a small gap for cubic CsSiI3 and CsSiBr3 of about 0.2 ±0.2 eV and 0.8 ±0.6 eV for CsSiCl3. The intrinsic stability of the Si compounds is discussed.

  11. Band structure effects on resonant tunneling in III-V quantum wells versus two-dimensional vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Campbell, Philip M.; Tarasov, Alexey; Joiner, Corey A.; Ready, W. Jud; Vogel, Eric M.

    2016-01-01

    Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.

  12. Micro-metric electronic patterning of a topological band structure using a photon beam.

    PubMed

    Frantzeskakis, E; De Jong, N; Zwartsenberg, B; Huang, Y K; Bay, T V; Pronk, P; Van Heumen, E; Wu, D; Pan, Y; Radovic, M; Plumb, N C; Xu, N; Shi, M; De Visser, A; Golden, M S

    2015-01-01

    In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi(2-x)Sb(x)Te(3-y)Se(y) with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi(2-x)Sb(x)Te(3-y)Se(y) crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by 'writing' micron-sized letters in the Dirac point energy of the system. PMID:26543011

  13. Micro-metric electronic patterning of a topological band structure using a photon beam

    PubMed Central

    Frantzeskakis, E.; De Jong, N.; Zwartsenberg, B.; Huang, Y. K.; Bay, T. V.; Pronk, P.; Van Heumen, E.; Wu, D.; Pan, Y.; Radovic, M.; Plumb, N. C.; Xu, N.; Shi, M.; De Visser, A.; Golden, M. S.

    2015-01-01

    In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi2−xSbxTe3−ySey with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi2−xSbxTe3−ySey crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by ‘writing’ micron-sized letters in the Dirac point energy of the system. PMID:26543011

  14. Micro-metric electronic patterning of a topological band structure using a photon beam

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, E.; de Jong, N.; Zwartsenberg, B.; Huang, Y. K.; Bay, T. V.; Pronk, P.; van Heumen, E.; Wu, D.; Pan, Y.; Radovic, M.; Plumb, N. C.; Xu, N.; Shi, M.; de Visser, A.; Golden, M. S.

    2015-11-01

    In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi2-xSbxTe3-ySey with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi2-xSbxTe3-ySey crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by ‘writing’ micron-sized letters in the Dirac point energy of the system.

  15. Three-dimensional dynamic thermal imaging of structural flaws by dual-band infrared computed tomography

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Kornblum, B.T.; Perkins, D.E.; Schneberk, D.J.; Shapiro, A.B.

    1993-04-01

    We discuss three-dimensional (3D) dynamic thermal imaging of structure flaws using dual-band infrared (DBIR) computed tomography. Conventional thermography provides single-band infrared images which are difficult to interpret. Standard procedures yield imprecise (or qualitative) information about subsurface flaw sites which are typically masked by surface clutter. We use a DBIR imaging unique pioneered at LLNL to capture the time history of surface temperature difference for flash-heated targets. We relate these patterns to the location, size, shape and depth of subsurface flaws. We have demonstrated temperature accuracies of 0.2{degree}C, timing synchronizations of 3 ms (after onset of heat flash) and intervals of 42 ms, between images, during an 8 s cooling (and hearing) interval characterizing the front (and back) surface temperature-time history of an epoxy-glue disbond site in a flash-heated aluminum lap joint. This type of disbond played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. By ratioing DBIR images (near 5 and 10 micron), we located surface temperature patterns (generated by weak heat flow anomalies at subsurface flaw sites) and removed the emissivity mask (from surface roughness variations). We compared measurements with calculations from the three-dimensional, finite element computer code: TOPAZ3D. We combined infrared, ultrasound and x-ray imaging methods to characterize the lap joint disbond site spatial, bond quality, and material differences.

  16. SMALL-SCALE STRUCTURE OF THE INTERSTELLAR MEDIUM TOWARD {rho} Oph STARS: DIFFUSE BAND OBSERVATIONS

    SciTech Connect

    Cordiner, M. A.; Smith, A. M.; Sarre, P. J.; Fossey, S. J.

    2013-02-10

    We present an investigation of small-scale structure in the distribution of large molecules/dust in the interstellar medium through observations of diffuse interstellar bands (DIBs). High signal-to-noise optical spectra were recorded toward the stars {rho} Oph A, B, C, and DE using the University College London Echelle Spectrograph on the Anglo-Australian Telescope. The strengths of some of the DIBs are found to differ by about 5%-9% between the close binary stars {rho} Oph A and B, which are separated by a projected distance on the sky of only c. 344 AU. This is the first star system in which such small-scale DIB strength variations have been reported. The observed variations are attributed to differences between a combination of carrier abundance and the physical conditions present along each sightline. The sightline toward {rho} Oph C contains relatively dense, molecule-rich material and has the strongest {lambda}{lambda}5850 and 4726 DIBs. The gas toward DE is more diffuse and is found to exhibit weak ''C{sub 2}'' (blue) DIBs and strong yellow/red DIBs. The differences in diffuse band strengths between lines of sight are, in some cases, significantly greater in magnitude than the corresponding variations among atomic and diatomic species, indicating that the DIBs can be sensitive tracers of interstellar cloud conditions.

  17. Doping mode, band structure and photocatalytic mechanism of B-N-codoped TiO 2

    NASA Astrophysics Data System (ADS)

    Yuan, Jixiang; Wang, Enjun; Chen, Yongmei; Yang, Wensheng; Yao, Jianghong; Cao, Yaan

    2011-06-01

    The photocatalyst B and N codoped TiO 2 (B-N-TiO 2) was prepared via the sol-gel method by using boric acid and ammonia as B and N precursors. The doping mode, band structure and photocatalytic mechanism of B-N-TiO 2 were investigated well and elucidated in detail. B-N-TiO 2 showed the narrowed band gap and thus extended the optical absorption due to interstitial N and [NOB] species in the TiO 2 crystal lattice. The coexistence of interstitial N and [NOB] species in the TiO 2 crystal lattice and surface NO x species allowed the more efficient utilization of visible light. Simultaneously, interstitial [NOB] and N species and surface B 2O 3 and NO x species facilitated the separation of photo generated electrons and holes and suppress their recombination effectively. Hence, B-N-TiO 2 showed a higher photocatalytic activity than pure TiO 2, N-doped TiO 2 (N-TiO 2) and B-doped TiO 2 (B-TiO 2) under both UV and visible light irradiation.

  18. Structure of positive parity bands and observation of magnetic rotation in 108Ag

    NASA Astrophysics Data System (ADS)

    Sethi, Jasmine; Palit, R.

    2015-10-01

    The interplay of nuclear forces among the neutron particles (holes) and proton holes (particles) in the odd-odd nuclei gives rise to a variety of shapes and hence novel modes of excitations. The odd-odd nuclei in the A ~ 110 region have proton holes in the g9/2 orbital and the neutron particles in the h11/2 orbitals. A systematic study of shears mechanism in A ~ 110 region indicates the presence of magnetic rotation (MR) phenomenon in Ag and In isotopes. Therefore, the structure of doubly odd 108Ag nucleus was probed in two different reactions, i.e, 100Mo(11B, 4n)108Ag at 39 MeV and 94Zr(18O, p3n)108Ag at 72 MeV beam energies. The emitted γ-rays were detected using the Indian National Gamma Array (INGA) at TIFR, Mumbai. A significant number of new transitions and energy levels were identified. Lifetime measurements, using the Doppler shift attenuation method, have been carried out for a positive parity dipole band. Tilted Axis Cranking (TAC) calculations have been performed for two positive parity dipole bands.

  19. Measurements of band gap structure in diamond compressed to 370 GPa

    NASA Astrophysics Data System (ADS)

    Gamboa, Eliseo; Fletcher, Luke; Lee, Hae-Ja; Zastrau, Ulf; Gauthier, Maxence; Gericke, Dirk; Vorberger, Jan; Granados, Eduardo; Heimann, Phillip; Hastings, Jerome; Glenzer, Siegfried

    2015-06-01

    We present the first measurements of the electronic structure of dynamically compressed diamond demonstrating a widening of the band gap to pressures of up to 370 +/- 25 GPa. The 8 keV free electron laser x-ray beam from the Linac Coherently Light Source (LCLS) has been focussed onto a diamond foil compressed by two counter-propagating laser pulses to densities of up to 5.3 g/cm3 and temperatures of up to 3000 +/- 400 K. The x-ray pulse excites a collective interband transition of the valence electrons, leading to a plasmon-like loss. We find good agreement with the observed plasmon shift by including the pressure dependence of the band gap as determined from density functional theory simulations. This work was performed at the Matter at Extreme Conditions (MEC) instrument of LCLS, supported by the DOE Office of Science, Fusion Energy Science under Contract No. SF00515. This work was supported by DOE Office of Science, Fusion Energy Science under F.

  20. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    SciTech Connect

    Zaytsev, Kirill I. Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O.; Gorelik, Vladimir S.

    2014-06-07

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  1. Pronounced negative thermal expansion from a simple structure : Cubic ScF{sub 3}.

    SciTech Connect

    Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P.; X-Ray Science Division; Georgia Inst. of Tech.

    2010-10-19

    Scandium trifluoride maintains a cubic ReO{sub 3} type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at {approx}300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, {alpha}{sub l} {approx} -14 ppm K{sup -1}). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW{sub 2}O{sub 8} and positive thermal expansion above {approx}1100 K. While the cubic ReO{sub 3} structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF{sub 3} is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.

  2. Surface Organelles Assembled by Secretion Systems of Gram-Negative Bacteria: Diversity in Structure and Function

    PubMed Central

    Thanassi, David G.; Bliska, James B.; Christie, Peter J.

    2012-01-01

    Gram-negative bacteria express a wide variety of organelles on their cell surface. These surface structures may be the end products of secretion systems, such as the hair-like fibers assembled by the chaperone/usher and type IV pilus pathways, which generally function in adhesion to surfaces and bacterial-bacterial and bacterial-host interactions. Alternatively, the surface organelles may be integral components of the secretion machinery itself, such as the needle complex and pilus extensions formed by the type III and type IV secretion systems, which function in the delivery of bacterial effectors inside host cells. Bacterial surface structures perform functions critical for pathogenesis and have evolved to withstand forces exerted by the external environment and cope with defenses mounted by the host immune system. Given their essential roles in pathogenesis and exposed nature, bacterial surface structures also make attractive targets for therapeutic intervention. This review will describe the structure and function of surface organelles assembled by four different Gram-negative bacterial secretion systems: the chaperone/usher pathway, the type IV pilus pathway, and the type III and type IV secretion systems. PMID:22545799

  3. Effect of low-temperature annealing on the electronic- and band-structures of (Ga,Mn)As epitaxial layers

    NASA Astrophysics Data System (ADS)

    Yastrubchak, O.; Wosinski, T.; Gluba, L.; Andrearczyk, T.; Domagala, J. Z.; Żuk, J.; Sadowski, J.

    2014-01-01

    The effect of outdiffusion of Mn interstitials from (Ga,Mn)As epitaxial layers, caused by post-growth low-temperature annealing, on their electronic- and band-structure properties has been investigated by modulation photoreflectance (PR) spectroscopy. The annealing-induced changes in structural and magnetic properties of the layers were examined with high-resolution X-ray diffractometry and superconducting quantum interference device magnetometry, respectively. They confirmed an outdiffusion of Mn interstitials from the layers and an enhancement in their hole concentration, which were more efficient for the layer covered with a Sb cap acting as a sink for diffusing Mn interstitials. The PR results demonstrating a decrease in the band-gap-transition energy in the as-grown (Ga,Mn)As layers, with respect to that in the reference GaAs one, are interpreted by assuming a merging of the Mn-related impurity band with the GaAs valence band. Whereas an increase in the band-gap-transition energy caused by the annealing treatment of the (Ga,Mn)As layers is interpreted as a result of annealing-induced enhancement of the free-hole concentration and the Fermi level location within the valence band. The experimental results are consistent with the valence-band origin of itinerant holes mediating ferromagnetic ordering in (Ga,Mn)As, in agreement with the Zener model for ferromagnetic semiconductors.

  4. Effect of low-temperature annealing on the electronic- and band-structures of (Ga,Mn)As epitaxial layers

    SciTech Connect

    Yastrubchak, O. Gluba, L.; Żuk, J.; Wosinski, T. Andrearczyk, T.; Domagala, J. Z.; Sadowski, J.

    2014-01-07

    The effect of outdiffusion of Mn interstitials from (Ga,Mn)As epitaxial layers, caused by post-growth low-temperature annealing, on their electronic- and band-structure properties has been investigated by modulation photoreflectance (PR) spectroscopy. The annealing-induced changes in structural and magnetic properties of the layers were examined with high-resolution X-ray diffractometry and superconducting quantum interference device magnetometry, respectively. They confirmed an outdiffusion of Mn interstitials from the layers and an enhancement in their hole concentration, which were more efficient for the layer covered with a Sb cap acting as a sink for diffusing Mn interstitials. The PR results demonstrating a decrease in the band-gap-transition energy in the as-grown (Ga,Mn)As layers, with respect to that in the reference GaAs one, are interpreted by assuming a merging of the Mn-related impurity band with the GaAs valence band. Whereas an increase in the band-gap-transition energy caused by the annealing treatment of the (Ga,Mn)As layers is interpreted as a result of annealing-induced enhancement of the free-hole concentration and the Fermi level location within the valence band. The experimental results are consistent with the valence-band origin of itinerant holes mediating ferromagnetic ordering in (Ga,Mn)As, in agreement with the Zener model for ferromagnetic semiconductors.

  5. Band alignment of ultra-thin hetero-structure ZnO/TiO{sub 2} junction

    SciTech Connect

    Shen, Kai; Wu, Kunjie; Wang, Deliang

    2014-03-01

    Graphical abstract: - Highlights: • Band alignment at the ZnO/TiO{sub 2} hetero-structural interface with different ZnO coating thickness was studied. • The valence band offset was decreased with increased ZnO coating layer thickness. • The interface dipole was responsible for the decreased band offset. - Abstract: The band alignment at the ZnO/TiO{sub 2} hetero-structure interface was measured by high resolution X-ray photoelectron spectroscopy. The valence band offset (E{sub ZnO}−E{sub TiO{sub 2}}){sub Valence} was linearly changed from 0.27 to 0.01 eV at the interface with increased ZnO coating thickness from 0.7 to 7 nm. The interface dipole presented at the ZnO/TiO{sub 2} interface was responsible for the decreased band offset. The band alignment of the ZnO/TiO{sub 2} heterojunction is a type II alignment.

  6. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations

    NASA Astrophysics Data System (ADS)

    Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M.

    2016-03-01

    In this paper, we consider the optimum coordinate of the penta-graphene. Penta-graphene is a new stable carbon allotrope which is stronger than graphene. Here, we compare the band gap of penta-graphene with various density functional theory (DFT) methods. We plot the band structure of penta-graphene which calculated with the generalized gradient approximation functional HTCH407, about Fermi energy. Then, one-shot GW (G0W0) correction for precise computations of band structure is applied. Quasi-direct band gap of penta-graphene is obtained around 4.1-4.3 eV by G0W0 correction. Penta-graphene is an insulator and can be expected to have broad applications in future, especially in nanoelectronics and nanomechanics.

  7. Unoccupied-electronic-band structure of graphite studied by angle-resolved secondary-electron emission and inverse photoemission

    NASA Astrophysics Data System (ADS)

    Maeda, F.; Takahashi, T.; Ohsawa, H.; Suzuki, S.; Suematsu, H.

    1988-03-01

    Angle-resolved inverse photoemission spectroscopy (ARIPES) and angle-resolved secondary-electron emission spectroscopy (ARSEES) have been performed for graphite to establish experimentally the unoccupied-electronic-band structure as well as to study the difference between the two techniques. Remarkable differences have been found in the experimental two-dimensional band structures obtained by the two methods. The experimental results have been compared with the two different band calculations by R. C. Tatar and S. Rabii [Phys. Rev. B 25, 4126 (1982)] and by N. A. W. Holzwarth, S. G. Louie, and S. Rabii [Phys. Rev. B 26, 5382 (1982)] with special attention to the energy position of the three-dimensional interlayer band. The possible origin of the difference between ARIPES and ARSEES has also been discussed.

  8. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  9. Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ma, Fu Sheng; Lim, Hock Siah; Zhang, Vanessa Li; Ng, Ser Choon; Kuok, Meng Hau

    2012-09-01

    The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides.

  10. Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides

    PubMed Central

    2012-01-01

    The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides. PMID:22943207

  11. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    SciTech Connect

    Sahdan, Muhammad Fauzi; Darma, Yudi

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  12. Unconventional band structure for a periodically gated surface of a three dimensional Topological Insulator

    NASA Astrophysics Data System (ADS)

    Ghosh, Sankalpa; Mondal, Puja

    The surface states of the three dimensional (3D) Topological Insulators are described by two-dimensional (2D) massless dirac equation. A gate voltage induced one dimensional potential barrier on such surface creates a discrete bound state in the forbidden region outside the dirac cone. Even for a single barrier it is shown such bound state can create electrostatic analogue of Shubnikov de Haas oscillation which can be experimentally observed for relatively smaller size samples. However when these surface states are exposed to a periodic arrangement of such gate voltage induced potential barriers, the band structure of the same got nontrivially modified. This is expected to significantly alters the properties of macroscopic system. We also suggest that in suitable limit the system may offer ways to control electron spin electrostatically which may be practically useful Supported by UGC Fellowship (PM) and a UKIERI-UGC Thematic Partnership.

  13. Unconventional band structure for a periodically gated surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Mondal, Puja; Ghosh, Sankalpa

    2015-12-01

    The surface states of the three-dimensional (3D) topological insulators are described by a two-dimensional (2D) massless dirac equation. A gate-voltage-induced one-dimensional potential barrier on such surfaces creates a discrete bound state in the forbidden region outside the dirac cone. Even for a single barrier it is shown that such a bound state can create an electrostatic analogue of Shubnikov de Haas oscillation which can be experimentally observed for relatively smaller size samples. However, when these surface states are exposed to a periodic arrangement of such gate-voltage-induced potential barriers, the band structure of the same was significantly modified. This is expected to significantly alter the properties of the macroscopic system. We also suggest that, within suitable limits, the system may offer ways to control electron spin electrostatically, which may be practically useful.

  14. Dual-band bandpass terahertz wave filter based on microstrip resonant structure

    NASA Astrophysics Data System (ADS)

    Liu, Yu-hang; Li, Jiu-sheng

    2011-11-01

    The terahertz (THz) band, which refers to the spectral region between 0.1 and 10THz, covers the fingerprints of many chemical and biological materials. Within the past few years, there are increasing demands for experiments in terahertz frequencies, in different areas such as biotechnology, nanotechnology, space science, security, chemical and biological sensing, terahertz wave communications, and medical diagnostics. For potential applications, the functional devices, such as beam polarizers, switchs and filters, are crucial components for a terahertz system. Terahertz wave filter based on two kinds of microstrip resonant structures, has been characterized by terahertz time-domain spectroscopy in the region from 0.1 to 3THz. The experimental results for the frequency dependence of the transmittance of the terahertz wave filter show that the terahertz wave transmittance peak is of 79.5% at 0.5THz and 82.5% at 0.81THz.

  15. Dual-band bandpass terahertz wave filter based on microstrip resonant structure

    NASA Astrophysics Data System (ADS)

    Liu, Yu-hang; Li, Jiu-sheng

    2012-03-01

    The terahertz (THz) band, which refers to the spectral region between 0.1 and 10THz, covers the fingerprints of many chemical and biological materials. Within the past few years, there are increasing demands for experiments in terahertz frequencies, in different areas such as biotechnology, nanotechnology, space science, security, chemical and biological sensing, terahertz wave communications, and medical diagnostics. For potential applications, the functional devices, such as beam polarizers, switchs and filters, are crucial components for a terahertz system. Terahertz wave filter based on two kinds of microstrip resonant structures, has been characterized by terahertz time-domain spectroscopy in the region from 0.1 to 3THz. The experimental results for the frequency dependence of the transmittance of the terahertz wave filter show that the terahertz wave transmittance peak is of 79.5% at 0.5THz and 82.5% at 0.81THz.

  16. Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides.

    PubMed

    Ma, Fu Sheng; Lim, Hock Siah; Zhang, Vanessa Li; Ng, Ser Choon; Kuok, Meng Hau

    2012-01-01

    The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides. PMID:22943207

  17. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates

    SciTech Connect

    Li, Wei-Dong; Liang, J.-Q.; Zhang, Yunbo

    2003-06-01

    The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose-Josephson junction (BJJ) were investigated in terms of energy splitting. For E{sub C}/E{sub J}<<1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, E{sub C}/E{sub J}>>1, the energy splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the coherence phenomena of BJJ in proper condition such as E{sub C}/E{sub J}{approx}1.

  18. Band structure engineering of graphene by a local gate defined periodic potential

    NASA Astrophysics Data System (ADS)

    Forsythe, Carlos; Maher, Patrick; Scarabelli, Diego; Dean, Cory; Kim, Philip

    Recent improvements in 2-dimensional (2D) material layering have resulted in enhanced device quality and created pathways for new device architectures. We fabricate periodic arrays from a patterned local back gate and a uniform top gate on hBN encapsulated graphene channels. The symmetry and lattice size of the periodic potential can be determined by state-of-art electron beam lithography and etching, achieving a lattice constant of 35 nm. The strength of the electric potential modulation can be controlled through applied voltage on the patterned gate. We observe signatures of superlattice modulation near the main Dirac peak in the density dependent resistance measurement at zero magnetic field. Current studies focus on the exploration of Hofstadter fractal band structures under magnetic fields. Our nano-patterned engineered superlattices on graphene hold great promise for wider applications.

  19. Photonic band structures of one-dimensional photonic crystals doped with plasma

    NASA Astrophysics Data System (ADS)

    Guo, B.; Xie, M. Q.; Peng, L.

    2012-07-01

    The photonic band structures (PBSs) of oblique incidence propagation in one-dimensional plasma-doped photonic crystals (PCs) are investigated carefully. When the lattice constant of plasma-doped PCs is less than the incident wavelength, the PC becomes anisotropic. Therefore, the dielectric constant of PC is converted into a complex tensor dielectric constant. This determines the PBSs of PCs. In the present paper, one-dimensional PCs are taken as an example to study both normal and absorption PBSs. Using both the effective medium approximation and the transfer matrix method, we can derive the dispersion relation for PCs. The dependence of the plasma filling factor on the effective dielectric constant and PBSs is calculated and discussed.

  20. Electrically tunable negative refraction in core/shell-structured nanorod fluids.

    PubMed

    Su, Zhaoxian; Yin, Jianbo; Guan, Yanqing; Zhao, Xiaopeng

    2014-10-21

    We theoretically investigate optical refraction behavior in a fluid system which contains silica-coated gold nanorods dispersed in silicone oil under an external electric field. Because of the formation of a chain-like or lattice-like structure of dispersed nanorods along the electric field, the fluid shows a hyperbolic equifrequency contour characteristic and, as a result, all-angle broadband optical negative refraction for transverse magnetic wave propagation can be realized. We calculate the effective permittivity tensor of the fluid and verify the analysis using finite element simulations. We also find that the negative refractive index can vary with the electric field strength and external field distribution. Under a non-uniform external field, the gradient refraction behavior can be realized. PMID:25087913

  1. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack. PMID:27620192

  2. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    NASA Astrophysics Data System (ADS)

    Hund, Zachary M.; Nihill, Kevin J.; Campi, Davide; Wong, Keith T.; Lewis, Nathan S.; Bernasconi, M.; Benedek, G.; Sibener, S. J.

    2015-09-01

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD3-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH3-Ge(111) and CH3-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  3. Vibrational dynamics and band structure of methyl-terminated Ge(111).

    PubMed

    Hund, Zachary M; Nihill, Kevin J; Campi, Davide; Wong, Keith T; Lewis, Nathan S; Bernasconi, M; Benedek, G; Sibener, S J

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD3-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH3-Ge(111) and CH3-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers. PMID:26429030

  4. Vibrational dynamics and band structure of methyl-terminated Ge(111)

    SciTech Connect

    Hund, Zachary M.; Nihill, Kevin J.; Sibener, S. J.; Campi, Davide; Bernasconi, M.; Wong, Keith T.; Lewis, Nathan S.; Benedek, G.

    2015-09-28

    A combined synthesis, experiment, and theory approach, using elastic and inelastic helium atom scattering along with ab initio density functional perturbation theory, has been used to investigate the vibrational dynamics and band structure of a recently synthesized organic-functionalized semiconductor interface. Specifically, the thermal properties and lattice dynamics of the underlying Ge(111) semiconductor crystal in the presence of a commensurate (1 × 1) methyl adlayer were defined for atomically flat methylated Ge(111) surfaces. The mean-square atomic displacements were evaluated by analysis of the thermal attenuation of the elastic He diffraction intensities using the Debye-Waller model, revealing an interface with hybrid characteristics. The methyl adlayer vibrational modes are coupled with the Ge(111) substrate, resulting in significantly softer in-plane motion relative to rigid motion in the surface normal. Inelastic helium time-of-flight measurements revealed the excitations of the Rayleigh wave across the surface Brillouin zone, and such measurements were in agreement with the dispersion curves that were produced using density functional perturbation theory. The dispersion relations for H-Ge(111) indicated that a deviation in energy and lineshape for the Rayleigh wave was present along the nearest-neighbor direction. The effects of mass loading, as determined by calculations for CD{sub 3}-Ge(111), as well as by force constants, were less significant than the hybridization between the Rayleigh wave and methyl adlayer librations. The presence of mutually similar hybridization effects for CH{sub 3}-Ge(111) and CH{sub 3}-Si(111) surfaces extends the understanding of the relationship between the vibrational dynamics and the band structure of various semiconductor surfaces that have been functionalized with organic overlayers.

  5. Probing the graphite band structure with resonant soft-x-ray fluorescence

    SciTech Connect

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A.

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  6. An elastic analysis of a honeycomb structure with negative Poisson’s ratio

    NASA Astrophysics Data System (ADS)

    Zhang, Z. K.; Hu, H.; Xu, B. G.

    2013-08-01

    This paper presents a novel honeycomb structure that exhibits a negative Poisson’s ratio (NPR). In contrast to other NPR honeycomb structures studied in the past, the new structure can be easily fabricated using conventional technology and materials on a large scale of production with a low cost. The geometry of the structure is first described, and then an elastic analysis based on standard beam theory is carried out to establish the relation of its Young’s modulus with relevant geometrical parameters and material properties. The effects of the geometrical parameters in non-dimensional forms on the Young’s modulus of the structure are discussed. The compressive tests were performed on samples of the structure made with the same aluminum alloy but with different geometrical parameters to verify the theoretical analysis. The results obtained from both the theoretical calculations and experiments show that the proposed NPR honeycomb structure has a very obvious NPR behavior. Moreover, its elastic modulus is significantly affected by its geometrical parameters, and can be optimized for specific applications through the design and control of honeycomb geometry parameters.

  7. Negative refraction in visible region using nano-structured metallo-dielectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Rajput, Monika; Sinha, R. K.; Rawal, Swati

    2009-08-01

    An artificial engineered structure of nano-inclusion made of metallic nano-rods embedded in a dielectric (ɛ=12.96) matrix with hexagonal arrangement is proposed. New improved designed structure exhibits Negative Refraction (NR) in visible region by using surface plasmon wave in metallo-dielectric photonic crystal operating in a dispersion regime with anti-parallel refracted wave vector and Poynting vector. Finite Difference Time Domain (FDTD) simulations are carried out to study the reflection and transmission properties and obtained Far-field pattern. Designed structure gives NR with high transmission and act as a filter with a quality factor ~ 102 with strong application potential in nano-optics and nano-technology.

  8. Gram-Negative Marine Bacteria: Structural Features of Lipopolysaccharides and Their Relevance for Economically Important Diseases

    PubMed Central

    Anwar, Muhammad Ayaz; Choi, Sangdun

    2014-01-01

    Gram-negative marine bacteria can thrive in harsh oceanic conditions, partly because of the structural diversity of the cell wall and its components, particularly lipopolysaccharide (LPS). LPS is composed of three main parts, an O-antigen, lipid A, and a core region, all of which display immense structural variations among different bacterial species. These components not only provide cell integrity but also elicit an immune response in the host, which ranges from other marine organisms to humans. Toll-like receptor 4 and its homologs are the dedicated receptors that detect LPS and trigger the immune system to respond, often causing a wide variety of inflammatory diseases and even death. This review describes the structural organization of selected LPSes and their association with economically important diseases in marine organisms. In addition, the potential therapeutic use of LPS as an immune adjuvant in different diseases is highlighted. PMID:24796306

  9. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    PubMed Central

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  10. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson's Ratio.

    PubMed

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson's ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  11. Giant magnetoelectric effect in negative magnetostrictive/piezoelectric/positive magnetostrictive semiring structure

    NASA Astrophysics Data System (ADS)

    Zeng, Lingyu; Zhou, Minhong; Bi, Ke; Lei, Ming

    2016-01-01

    Magnetoelectric (ME) Ni/PZT/TbFe2 and TbFe2/PZT composites with two semiring structures are prepared. The dependence between ME coupling and magnetostrictive property of the composite is discussed. Because Ni possesses negative magnetostrictive property and TbFe2 shows positive magnetostrictive property, the ME voltage coefficient of Ni/PZT/TbFe2 semiring structure is much larger than that of TbFe2/PZT. In these composites, the ME voltage coefficient increases and the resonance frequency gradually decreases with the increase of the semiring radius, showing that structural parameters are key factors to the composite properties. Due to the strong ME coupling effect, a giant ME voltage coefficient αE = 44.8 V cm-1 Oe-1 is obtained. This approach opens a way for the design of ME composites with giant ME voltage coefficient.

  12. Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice.

    PubMed

    Martinez, Luis Javier; Alija, Alfonso Rodriguez; Postigo, Pablo Aitor; Galisteo-López, J F; Galli, Matteo; Andreani, Lucio Claudio; Seassal, Christian; Viktorovitch, Pierre

    2008-06-01

    We investigate the change of the photonic band structure of the Suzuki-phase photonic crystal lattice when the horizontal mirror symmetry is broken by an underlying Bragg reflector. The structure consists of an InP photonic crystal slab including four InAsP quantum wells, a SiO(2) bonding layer, and a bottom high index contrast Si/SiO(2) Bragg mirror deposited on a Si wafer. Angle- and polarization-resolved photoluminescence spectroscopy has been used for measuring the photonic band structure and for investigating the coupling to a polarized plane wave in the far field. A drastic change in the k-space photonic dispersion between the structure with and without Bragg reflector is measured. An important enhancement on the photoluminescence emission up to seven times has been obtained for a nearly flat photonic band, which is characteristic of the Suzuki-phase lattice. PMID:18545565

  13. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface.

    PubMed

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-07-20

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. PMID:27228462

  14. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  15. Structure and Evolution of Band-shaped Convective Rainbands in Typhoon Marokot (2009)

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2012-12-01

    Typhoon Morakot struck Taiwan on the night of Friday 7 August 2009 as a Category 1 storm (with sustained winds of 80 knots). Although the center made landfall in Hualien county along the central east coast of Taiwan, it was southern Taiwan that received the heaviest rainfall (2878 mm of rain in three days), resulting in the worst flooding over Taiwan in 50 years. This record-breaking rainfall is produced by the continuous impingement of typhoon rainbands with the steep terrain along the southern Central Mountain Range (CMR). In this study, rainband structures of Typhoon Morakot (2009) are analyzed and compared with the observations using outputs from the cloud-resolving WRF model with high spatial resolution (1-km horizontal grid spacing). The characteristics of the unique band-shaped convective rainband in TC Morakot are explained with respect to the following details: (i) horizontal shape, (ii) structure, and (iii) development and evolution process. The kinematic and precipitation structures of convective-scale elements in the Morakot rainbands are analyzed and compared with those of Hurricanes Katrina and Rita (2005).

  16. Parallel variable-band Choleski solvers for computational structural analysis applications on vector multiprocessor supercomputers

    NASA Technical Reports Server (NTRS)

    Poole, E. L.; Overman, A. L.

    1991-01-01

    A Choleski method used to solve linear systems of equations that arise in large scale structural analyses is described. The method uses a novel variable-band storage scheme and is structured to exploit fast local memory caches while minimizing data access delays between main memory and vector registers. Several parallel implementations of this method are described for the CRAY-2 and CRAY Y-MP computers demonstrating the use of microtasking and autotasking directives. A portable parallel language, FORCE, is also used for two different parallel implementations, demonstrating the use of CRAY macrotasking. Results are presented comparing the matrix factorization times for three representative structural analysis problems from runs made in both dedicated and multi-user modes on both the CRAY-2 and CRAY Y-MP computers. CPU and wall clock timings are given for the various parallel methods and are compared to single processor timings of the same algorithm. Computation rates over 1 GIGAFLOP (1 billion floating point operations per second) on a four processor CRAY-2 and over 2 GIGAFLOPS on an eight processor CRAY Y-MP are demonstrated as measured by wall clock time in a dedicated environment. Reduced wall clock times for the parallel methods relative to the single processor implementation of the same Choleski algorithm are also demonstrated for runs made in multi-user mode.

  17. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye; Sun, Yiyang; Zhang, Shengbai; Zhang, Peihong

    The quasiparticle band gaps of organic-inorganic hybrid perovskites are often determined (and can be controlled) by various factors, complicating predictive materials optimization. Here we report a comprehensive investigation on the band gap formation mechanism in CH3NH3PbI3 by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Four major factors, namely, quasiparticle self-energy, spin-orbit coupling, volume (lattice constant) effects, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organometal hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap through a lattice distortion mechanism and by controlling the overall lattice constants (thus the chemical bonding of the optically active PbI3-). The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies. This work is supported by the National Natural Science Foundation of China (Grant No. 11328401), NSF (Grant No. DMR-0946404 and DMR-1506669), and the SUNY Networks of Excellence.

  18. Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar

    Investigation of the vertical structure of clouds over the Western Ghats, India using X-band and Ka-band Doppler radar observations Subrata Kumar Das*, S. M. Deshpande, K. Chakravarty and M. C. R. Kalapureddy Indian Institute of Tropical Meteorology, Pune, India ABSTRACT The Western Ghats (WGs) located parallel to the west coast of India receives a huge amount of rainfall during the Indian summer monsoon (ISM) in which topography plays a huge role in it. To understand the dynamics and microphysics of monsoon precipitating clouds over the WGs, a High Altitude Cloud Physics Laboratory (HACPL) has been setup at Mahabaleshwar (17.92 oN, 73.6 oE, ~1.4 km AMSL) in 2012. As part of this laboratory, a mobile X-band (9.5 GHz) and Ka-band (35.29 GHz) dual-polarization Doppler weather radar system is installed at Mandhardev (18.04 oN, 73.87 oE, ~1.3 km AMSL, at 26 km radial distance from the HACPL). The X-band radar shows the dominant cloud movement is from the western side of the WGs to the eastern side, crossing the HACPL and the radar site. The cloud occurrence statistics show a sudden reduction within a distance of ~30 km on the eastern side of WGs indicates the possibility of a rain shadow area. Further, we investigate the vertical structure of cloud over the HACPL, and identified four cloud modes viz., shallow cumulus mode, congestus mode, deep convective mode, and overshooting convection mode. The frequency distribution of cloud-cell base height (CBH) and cloud-cell top height (CTH) shows most of the clouds with base below 2.5 km and tops usually not exceeding 9 km. This indicates the dominance of warm-rain process in the WGs region. The positive relationships between surface rainfall rates and CTH and 0oC isotherm level have observed. Details will be presented in the upcoming symposium.

  19. A Spectroscopic Study of Hydra I: The Possible Progenitor of the Eastern Banded Structure

    NASA Astrophysics Data System (ADS)

    Kimmig, Brian; Hargis, Jonathan R.; Willman, Beth; Caldwell, Nelson; Strader, Jay; Walker, Matthew G.

    2015-01-01

    We present initial results of an MMT/Hectochelle spectroscopic study of the Hydra I spatial overdensity located along the Eastern Banded Structure (EBS) stellar stream. The extended double-lobed structure and strength of the overdensity suggest that Hydra I may be the stream's progenitor and undergoing active disruption. With its distance of only ~10 kpc, Hydra I presents a unique opportunity to study the disruption of a star cluster or dwarf galaxy. In past work, SDSS/SEGUE velocities revealed Hydra I to be a kinematically cold structure. However, the small number of candidate members and the significant SEGUE velocity uncertainties (~10 - 15 km/s) precludes testing the nature of Hydra I. To better understand its chemo-dynamic properties, we have begun a spectroscopic survey of the Hydra I/EBS region in order to (i) obtain a robust, velocity-based selection of candidate member stars, (ii) use precise velocities to measure the velocity dispersion, (iii) study the spatial distribution of spectroscopic members, and (iv) measure its proper motion. At present, we have surveyed a ~3 deg x ~3 deg region, which encompasses the entire ~4 sq. deg spatial extent of Hydra I. We have obtained a total of 1354 spectra in this region, with RV uncertainties smaller than ~5 km/s at magnitudes brighter than g~21.6. This work presents our confirmation of Hydra I as a cold halo structure, as well as a more detailed analysis of the membership and spatial/velocity structure of Hydra I.

  20. Negative differential gain in quantum dot systems: Interplay of structural properties and many-body effects

    SciTech Connect

    Goldmann, E. Jahnke, F.; Lorke, M.; Frauenheim, T.

    2014-06-16

    The saturation behaviour of optical gain with increasing excitation density is an important factor for laser device performance. For active materials based on self-organized InGaAs/GaAs quantum dots, we study the interplay between structural properties of the quantum dots and many-body effects of excited carriers in the optical properties via a combination of tight-binding and quantum-kinetic calculations. We identify regimes where either phase-space filling or excitation-induced dephasing dominates the saturation behavior of the optical gain. The latter can lead to the emergence of a negative differential material gain.

  1. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective. PMID:27509764

  2. Bayesian statistical treatment of the fluorescence of AFLP bands leads to accurate genetic structure inference.

    PubMed

    Gaggiotti, Oscar E

    2010-11-01

    Ever since the introduction of allozymes in the 1960s, evolutionary biologists and ecologists have continued to search for more powerful molecular markers to estimate important parameters such as effective population size and migration rates and to make inferences about the demographic history of populations, the relationships between individuals and the genetic architecture of phenotypic variation (Bensch & Akesson 2005; Bonin et al. 2007). Choosing a marker requires a thorough consideration of the trade-offs associated with the different techniques and the type of data obtained from them. Some markers can be very informative but require substantial amounts of start-up time (e.g. microsatellites), while others require very little time but are much less polymorphic. Amplified fragment length polymorphism (AFLP) is a firmly established molecular marker technique that falls in this latter category. AFLPs are widely distributed throughout the genome and can be used on organisms for which there is no a priori sequence information (Meudt & Clarke 2007). These properties together with their moderate cost and short start-up time have made them the method of choice for many molecular ecology studies of wild species (Bensch & Akesson 2005). However, they have a major disadvantage, they are dominant. This represents a very important limitation because many statistical genetics methods appropriate for molecular ecology studies require the use of codominant markers. In this issue, Foll et al. (2010) present an innovative hierarchical Bayesian method that overcomes this limitation. The proposed approach represents a comprehensive statistical treatment of the fluorescence of AFLP bands and leads to accurate inferences about the genetic structure of natural populations. Besides allowing a quasi-codominant treatment of AFLPs, this new method also solves the difficult problems posed by subjectivity in the scoring of AFLP bands. PMID:20958811

  3. Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide

    SciTech Connect

    Liu, Guang-Ning; Zhu, Wen-Juan; Zhang, Ming-Jian; Xu, Bo; Liu, Qi-Sheng; Zhang, Zhen-Wei; Li, Cuncheng

    2014-10-15

    A new selenidoantimonate (CH{sub 3}NH{sub 4})[Mn(phen){sub 2}](SbSe{sub 4})·phen (1, phen=1,10-phenanthroline) and an iron polyselenide [Fe(phen){sub 2}](Se{sub 4}) (2) were obtained under hydro(solvo)thermal conditions. Compound 1 represents the first example of a selenidoantimonate anion as a ligand to a transition-metal π-conjugated ligand complex cation. Compound 2 containing a κ{sup 2}Se{sup 1},Se{sup 4} chelating tetraselenide ligand, represents the only example of a tetraselenide ligand to a Fe complex cation. Compounds 1 and 2 exhibit optical gaps of 1.71 and 1.20 eV, respectively and their thermal stabilities have been investigated by thermogravimetric analyses. The electronic band structure along with the density of states calculated by the DFT method indicate that the optical absorptions mainly originate from the charge transitions from the Se 4p and Mn 3d states to the phen p–π{sup ⁎} orbital for 1 and the Se 4p and Fe 3d states to the phen p–π{sup ⁎} orbital for 2. - Graphical abstract: Two metal–Se complexes, representing the only example of a selenidoantimonate ligand to a TM π-conjugated ligand complex, and a tetraselenide ligand to a Fe complex cation, were synthesized. - Highlights: • The first π-conjugated ligand complex containing selenidoantimonate was isolated. • The first example of a tetraselenide ligand to a Fe complex cation was reported. • We found that phen can adjust the optical band gaps of metal–Se complexes.

  4. Insight into the band structure engineering of single-layer SnS2 with in-plane biaxial strain.

    PubMed

    Zhou, Wei; Umezawa, Naoto

    2016-03-21

    The effects of in-plane biaxial strain on the electronic structure of a photofunctional material, single-layer SnS2, were systematically investigated using hybrid density functional calculations. The bonding diagram for the band gap was firstly proposed based on the crystal orbital overlap population analysis. The conduction band-edge of single-layer SnS2 is determined by the anti-bonding interaction between Sn-5s and S-3p orbitals, while the valence band-edge comes from the anti-bonding between the neighboring S atoms. It is found that the compressive strain not only decreases the indirect band gap of single-layer SnS2, but also effectively promotes the band-edges of the conduction band to realize the overall water splitting. Besides, the dispersion of the valence band of single-layer SnS2 becomes weaker with increasing tensile strain which is beneficial for the photo-excitation through direct transitions. PMID:26912413

  5. Electrical conduction and band offsets in Si/HfxTi1-xO2/metal structures

    NASA Astrophysics Data System (ADS)

    Afanas'ev, V. V.; Stesmans, A.; Chen, F.; Li, M.; Campbell, S. A.

    2004-06-01

    The electron energy band alignment in the Si/HfxTi1-xO2/metal (Au,Al) structures is determined as a function of oxide composition using internal photoemission of electrons and photoconductivity measurements. For x⩽0.5 the electron excitations with thresholds corresponding to the band-gap width of amorphous TiO2 (4.4 eV) and HfO2 (5.6 and 5.9 eV) are observed at the same time, suggesting formation of TiO2- and HfO2-like subnetworks. With respect to the Fermi level of Au the conduction band of TiO2 appears to be 1.4 eV below the conduction band of HfO2 which indicates that the valence bands of the two oxides are nearly aligned. This significant downshift of the conduction band due to Ti incorporation leads to low barriers for electrons at the interfaces of HfxTi1-xO2 with Si and Al (˜1 eV or less) strongly impairing insulating properties of the oxide. Crystallization of TiO2 upon high-temperature annealing further enhances leakage currents because of a significantly lower band-gap width of crystallized TiO2 (3.1-3.4 eV).

  6. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor

    NASA Astrophysics Data System (ADS)

    Sahakyan, M.; Tran, V. H.

    2016-05-01

    The physical properties of the noncentrosymmetric superconductor Th7Co3 have been investigated by means of ac-magnetic susceptibility, magnetization, specific heat, electrical resistivity, magnetoresistance and Hall effect measurements. From these data it is established that Th7Co3 is a dirty type-II superconductor with {{T}\\text{c}}=1.8+/- 0.02 K, Hc2\\text{orb}<{{H}c2}(0)∼ 10~\\text{kOe}c2p and moderate electron–phonon coupling {λ\\text{el-\\text{ph}}}=0.56 . Some evidences for anisotropic superconducting gap are found, including e.g. reduced specific heat jump (Δ {{C}p}/γ {{T}\\text{c}}=1.01 ) at T c, diminished superconducting energy gap ({{Δ }0}/{{k}\\text{B}}{{T}\\text{c}}=2.17 ) as compared to the BCS values, power law field dependence of the Sommerfeld coefficient at 0.4 K ({{C}p}/T\\propto {{H}0.6} ), and a concave curvature of the {{H}c2}≤ft({{T}\\text{c}}\\right) line. The magnitudes of the thermodynamic critical field and the energy gap are consistent with mean-squared anisotropy parameter < {{a}2}> ∼ 0.23 . The electronic specific heat in the superconducting state is reasonably fitted to an oblate spheroidal gap model. Calculations of scalar relativistic and fully relativistic electronic band structures reveal considerable differences in the degenerate structure, resulting from asymmetric spin–orbit coupling (ASOC). A large splitting energy of spin-up spin-down bands at the Fermi level E F, Δ {{E}\\text{ASOC}}∼ 100 meV is observed and a sizeable ratio Δ {{E}\\text{ASOC}}/{{k}\\text{B}}{{T}\\text{c}}∼ 640 could classify the studied compound into the class of noncentrosymmetric superconductors with strong ASOC. The noncentrosymmetry of the crystal structure and the atomic relativistic effects are both responsible for an importance of ASOC in Th7Co3. The calculated results for the density of states show a Van Hove singularity just below E F and dominant role of the 6d electrons of Th to the superconductivity.

  7. Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects.

    PubMed

    Becker, C; Lockau, D; Sontheimer, T; Schubert-Bischoff, P; Rudigier-Voigt, E; Bockmeyer, M; Schmidt, F; Rech, B

    2012-04-01

    Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm² exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically. PMID:22422473

  8. Age, phylogeography and population structure of the microendemic banded spring snail, Mexipyrgus churinceanus.

    PubMed

    Johnson, Steven G

    2005-07-01

    Recent theoretical and empirical studies of phylogeography and population structure indicate that many processes influence intraspecific evolutionary history. The present study represents the first examination of various forces influencing the spatial and temporal patterns of sequence variation in the freshwater Mexican banded spring snail, Mexipyrgus churinceanus. This snail occurs in one of the most critically endangered centres of freshwater endemism, the desert ecosystem of Cuatro Ciénegas. From cytochrome b mtDNA sequence variation, there is strong evidence of long-term isolation of three regions, suggesting that these regions represent evolutionarily distinct lineages. Molecular clock estimates of clade age indicate a time to most recent common ancestor of approximately 2.5 million years ago (Ma). The three regions differ considerably in the historical and demographic forces affecting population structure. The western populations have extremely low mtDNA diversity consistent with a severe bottleneck dating to 50,000 years before present (bp). The nearby Rio Mesquites drainage is characterized by fragmentation events, restricted gene flow with isolation by distance, and higher levels of mtDNA polymorphism. These patterns are consistent with the long-term stability of this drainage along with habitat heterogeneity and brooding contributing to population isolation and restricted gene flow. Southeastern populations show evidence of range expansion and a strong influence of genetic drift. Migration rates between drainages indicate very little gene flow between drainages except for asymmetric migration from the Rio Mesquites into both western and southeastern drainages. PMID:15969715

  9. Detecting forest structure and biomass with C-band multipolarization radar - Physical model and field tests

    NASA Technical Reports Server (NTRS)

    Westman, Walter E.; Paris, Jack F.

    1987-01-01

    The ability of C-band radar (4.75 GHz) to discriminate features of forest structure, including biomass, is tested using a truck-mounted scatterometer for field tests on a 1.5-3.0 m pygmy forest of cypress (Cupressus pygmaea) and pine (Pinus contorta ssp, Bolanderi) near Mendocino, CA. In all, 31 structural variables of the forest are quantified at seven sites. Also measured was the backscatter from a life-sized physical model of the pygmy forest, composed of nine wooden trees with 'leafy branches' of sponge-wrapped dowels. This model enabled independent testing of the effects of stem, branch, and leafy branch biomass, branch angle, and moisture content on radar backscatter. Field results suggested that surface area of leaves played a greater role in leaf scattering properties than leaf biomass per se. Tree leaf area index was strongly correlated with vertically polarized power backscatter (r = 0.94; P less than 0.01). Field results suggested that the scattering role of leaf water is enhanced as leaf surface area per unit leaf mass increases; i.e., as the moist scattering surfaces become more dispersed. Fog condensate caused a measurable rise in forest backscatter, both from surface and internal rises in water content. Tree branch mass per unit area was highly correlated with cross-polarized backscatter in the field (r = 0.93; P less than 0.01), a result also seen in the physical model.

  10. Effect of tree structure on X-band microwave signature of conifers

    NASA Technical Reports Server (NTRS)

    Mougin, Eric; Lopes, Armand; Karam, Mostafa A.; Fung, Adrian K.

    1993-01-01

    Experimental studies are performed on some coniferous trees (Austrian pine, Nordmann spruce, and Norway spruce) to investigate the relation between the tree architecture and radar signal at X-band. For a single tree, the RCS is measured as a function of the scatterer location at 90 deg incidence. It is found that the main scatterers are the leafy branches and the difference between sigma(vv) and sigma(hh) is significant at the upper portion of the tree. At the lower portion of the tree, sigma(vv) and sigma(hh) have almost the same level. For a group of trees the angular trends of sigma(vv) and sigma(hh) are measured. It is found that the levels of sigma(vv) and sigma(hh) are of the same order, but their angular trends vary from one tree species to the other depending on the tree species structure. The interpretation of these experimental results is carried out with the help of a theoretical model which accounts for the structure of the tree. According to this theoretical study, the major scattering trend is due to the leaves, while the perturbation to the angular trend and the level difference between sigma(vv) and sigma(hh) are due to the branch orientation distributions (i.e., the tree architecture).

  11. Structural, electronic, mechanical, and transport properties of phosphorene nanoribbons: Negative differential resistance behavior

    NASA Astrophysics Data System (ADS)

    Maity, Ajanta; Singh, Akansha; Sen, Prasenjit; Kibey, Aniruddha; Kshirsagar, Anjali; Kanhere, Dilip G.

    2016-08-01

    Structural, electronic, mechanical, and transport properties of two different types of phosphorene nanoribbons are calculated within the density functional theory and nonequilibrium Green's function formalisms. Armchair nanoribbons turn out to be semiconductors at all widths considered. Zigzag nanoribbons are metallic in their layer-terminated structure, but undergo Peierls-like transition at the edges. Armchair nanoribbons have smaller Young's modulus compared to a monolayer, while zigzag nanoribbons have larger Young's modulus. Edge reconstruction further increases the Young's modulus of zigzag nanoribbons. A two-terminal device made of zigzag nanoribbons show negative differential resistance behavior that is robust with respect to edge reconstruction. We have also calculated the I -V characteristics for two nonzero gate voltages. The results show that the zigzag nanoribbons display strong p -type character.

  12. Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens.

    PubMed

    Botos, Istvan; Majdalani, Nadim; Mayclin, Stephen J; McCarthy, Jennifer Gehret; Lundquist, Karl; Wojtowicz, Damian; Barnard, Travis J; Gumbart, James C; Buchanan, Susan K

    2016-06-01

    Incorporation of lipopolysaccharide (LPS) into the outer membrane of Gram-negative bacteria is essential for viability, and is accomplished by a two-protein complex called LptDE. We solved crystal structures of the core LptDE complexes from Yersinia pestis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and a full-length structure of the K. pneumoniae LptDE complex. Our structures adopt the same plug and 26-strand β-barrel architecture found recently for the Shigella flexneri and Salmonella typhimurium LptDE structures, illustrating a conserved fold across the family. A comparison of the only two full-length structures, SfLptDE and our KpLptDE, reveals a 21° rotation of the LptD N-terminal domain that may impart flexibility on the trans-envelope LptCAD scaffold. Utilizing mutagenesis coupled to an in vivo functional assay and molecular dynamics simulations, we demonstrate the critical role of Pro231 and Pro246 in the function of the LptD lateral gate that allows partitioning of LPS into the outer membrane. PMID:27161977

  13. Effects of impurity size and heavy doping on energy-band-structure parameters of various impurity-Si systems

    NASA Astrophysics Data System (ADS)

    Van Cong, H.

    2016-04-01

    The effects of impurity size and heavy doping on energy-band-structure parameters of various donor (or acceptor)-Si systems were investigated. A satisfactory description was obtained for intrinsic properties such as: the effective dielectric constant, effective impurity ionization energy, effective intrinsic band gap, being doping-independent, and critical impurity density, Ncn(cp) GMM, which is derived from our simple generalized Mott model (GMM), as well as for extrinsic properties such as: the Fermi energy, reduced band gap, optical band gap, being doping-dependent, and critical impurity density, Ncn(cp) SSS, which is determined by our complicated spin-susceptibility-singularity (SSS) method. That gives: Ncn(cp) SSS ≡ Ncn(cp) GMM for all the studied donor (or acceptor)-Si systems.

  14. Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat

    NASA Astrophysics Data System (ADS)

    Danh, Le Thanh; Ahn, Kyoung Kwan

    2014-02-01

    In this paper, an active pneumatic vibration isolation system using negative stiffness structures (NSS) for a vehicle seat in low excitation frequencies is proposed, which is named as an active system with NSS. Here, the negative stiffness structures (NSS) are used to minimize the vibratory attraction of a vehicle seat. Owing to the time-varying and nonlinear behavior of the proposed system, it is not easy to build an accurate dynamic for model-based controller design. Thus, an adaptive intelligent backstepping controller (AIBC) is designed to manage the system operation for high-isolation effectiveness. In addition, an auxiliary control effort is also introduced to eliminate the effect of the unpredictable perturbations. Moreover, a radial basis function neural network (RBFNN) model is utilized to estimate the optimal gain of the auxiliary control effort. Final control input and the adaptive law for updating coefficients of the approximate series can be obtained step by step using a suitable Lyapunov function. Afterward, the isolation performance of the proposed system is assessed experimentally. In addition, the effectiveness of the designed controller for the proposed system is also compared with that of the traditional backstepping controller (BC). The experimental results show that the isolation effectiveness of the proposed system is better than that of the active system without NSS. Furthermore, the undesirable chattering phenomenon in control effort is quite reduced by the estimation mechanism. Finally, some concluding remarks are given at the end of the paper.

  15. Top-Down Strategies for the Structural Elucidation of Intact Gram-negative Bacterial Endotoxins

    PubMed Central

    O’Brien, John P.; Needham, Brittany D.; Brown, Dusty B.; Trent, M. Stephen

    2014-01-01

    Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C-C, C-N, C-O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance host innate immune defense. PMID:25386333

  16. Band structure of cavity-type hypersonic phononic crystals fabricated by femtosecond laser-induced two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Rakhymzhanov, A. M.; Gueddida, A.; Alonso-Redondo, E.; Utegulov, Z. N.; Perevoznik, D.; Kurselis, K.; Chichkov, B. N.; El Boudouti, E. H.; Djafari-Rouhani, B.; Fytas, G.

    2016-05-01

    The phononic band diagram of a periodic square structure fabricated by femtosecond laser pulse-induced two photon polymerization is recorded by Brillouin light scattering (BLS) at hypersonic (GHz) frequencies and computed by finite element method. The theoretical calculations along the two main symmetry directions quantitatively capture the band diagrams of the air- and liquid-filled structure and moreover represent the BLS intensities. The theory helps identify the observed modes, reveals the origin of the observed bandgaps at the Brillouin zone boundaries, and unravels direction dependent effective medium behavior.

  17. New method for computation of band structures in 1D photonic crystals based on the Fresnel equations

    NASA Astrophysics Data System (ADS)

    Roshan Entezar, S.

    2013-02-01

    In this paper, we present a new method for calculation of band structure in one-dimensional bilayer photonic crystals, based on the Fresnel equations. We derive a new relation to obtain the band structure without using the Floquet theorem. It is shown that this relation can be simplified under the assumption that the single-path phase-shift acquired through the individual layers of the photonic crystal be equal to ? . The results obtained by our method are compared with the ones obtained from the transfer matrix method to show that they are exactly identical.

  18. Structure-function relationships of the yeast fatty acid synthase: negative-stain, cryo-electron microscopy, and image analysis studies of the end views of the structure.

    PubMed

    Stoops, J K; Kolodziej, S J; Schroeter, J P; Bretaudiere, J P; Wakil, S J

    1992-07-15

    The yeast fatty acid synthase (M(r) = 2.5 x 10(6)) is organized in an alpha 6 beta 6 complex. In these studies, the synthase structure has been examined by negative-stain and cryo-electron microscopy. Side and end views of the structure indicate that the molecule, shaped similar to a prolate ellipsoid, has a high-density band of protein bisecting its major axis. Stained and frozen-hydrated average images of the end views show an excellent concordance and a hexagonal ring having three each alternating egg- and kidney-shaped features with low-protein-density protrusions extending outward from the egg-shaped features. Images also show that the barrel-like structure is not hollow but has a Y-shaped central core, which appears to make contact with the three egg-shaped features. Numerous side views of the structure give good evidence that the beta subunits have an archlike shape. We propose a model for the synthase that has point-group symmetry 32 and six equivalent sites of fatty acid synthesis. The protomeric unit is alpha 2 beta 2. The ends of each of the two archlike beta subunits interact with opposite sides of the two dichotomously arranged disclike alpha subunits. Three such protomeric units form the ring. We propose that the six fatty acid synthesizing centers are composed of two complementary half-alpha subunits and a beta subunit, an arrangement having all the partial activities of the multifunctional enzyme required for fatty acid synthesis. PMID:1631160

  19. Structural diversity of the 3-micron absorption band in Enceladus’ plume from Cassini VIMS: Insights into subsurface environmental conditions

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.

    2015-11-01

    Water ice particles in Enceladus’ plume display their diagnostic 3-micron absorption band in Cassini VIMS data. These near infrared measurements of the plume also exhibit noticeable variations in the character of this band. Mie theory calculations reveal that the shape and location of the 3-micron band are controlled by a number of environmental and structural parameters. Hence, this band provides important insights into the properties of the water ice grains and about the subsurface environmental conditions under which they formed. For example, the position of the 3-micron absorption band minimum can be used to distinguish between crystalline and amorphous forms of water ice and to constrain the formation temperature of the ice grains. VIMS data indicates that the water ice grains in the plume are dominantly crystalline which could indicate formation temperatures above 113 K [e.g. 1, 2]. However, there are slight (but observable) variations in the band minimum position and band shape that may hint at the possibility of varying abundance of amorphous ice particles within the plume. The modeling results further indicate that there are systematic shifts in band minimum position with temperature for any given form of ice but the crystalline and amorphous forms of water ice are still distinguishable at VIMS spectral resolution. Analysis of the eruptions from individual source fissures (tiger stripes) using selected VIMS observations reveal differences in the 3-micron band shape that may reflect differences in the size distributions of the water ice particles along individual fissures. Mie theory models suggest that big ice particles (>3 micron) may be an important component of the plume.[1] Kouchi, A., T. Yamamoto, T. Kozasa, T. Kuroda, and J. M. Greenberg (1994) A&A, 290, 1009-1018 [2] Mastrapa, R. M. E., W. M. Grundy, and M. S. Gudipati (2013) in M. S. Gudipati and J. Castillo-Rogez (Eds.), The Science of Solar System Ices, pp. 371.

  20. GaAs quantum structures: Comparison between direct pseudopotential and single-band truncated-crystal calculations

    NASA Astrophysics Data System (ADS)

    Franceschetti, Alberto; Zunger, Alex

    1996-04-01

    A single-band approach for semiconductor clusters which accounts for the nonparabolicity of the energy bands was recently used by Rama Krishna and Friesner [M.V. Rama Krishna and R.A. Friesner, Phys. Rev. Lett. 67, 629 (1991)]. We compare the results of this method (denoted here as single-band truncated-crystal, or SBTC, approximation) with a direct pseudopotential band-structure calculation for free-standing hydrogen-passivated GaAs quantum films, wires, and dots. The direct pseudopotential calculation, which includes coupling between all bands, shows that isolated GaAs quantum films, wires, and dots have an indirect band gap for thicknesses below 16, 28, and at least 30 Å (8, 14, and at least 15 ML), respectively; beyond these critical dimensions the transition becomes direct. A comparison of the SBTC approximation with the direct pseudopotential calculation shows that (i) the confinement energy of the valence-band maximum is overestimated by the SBTC method, because the zero-confinement character of this state is neglected; (ii) the confinement energy of the Γ-derived conduction state (direct band gap) is slightly overestimated by the SBTC approximation, mainly because of the assumption of infinite potential barriers at the boundaries; (iii) the confinement energy of the X-derived conduction state (indirect band gap) is severely underestimated by the SBTC method; (iv) while the SBTC approximation predicts ``quantum deconfinement'' (i.e., reduction of gap as size is reduced) for the direct gap of thin GaAs quantum wires, such effect is not present in the direct pseudopotential calculation.

  1. GaAs quantum structures: Comparison between direct pseudopotential and single-band truncated-crystal calculations

    SciTech Connect

    Franceschetti, A.; Zunger, A.

    1996-04-01

    A single-band approach for semiconductor clusters which accounts for the nonparabolicity of the energy bands was recently used by Rama Krishna and Friesner [M.V. Rama Krishna and R.A. Friesner, Phys. Rev. Lett. {bold 67}, 629 (1991)]. We compare the results of this method (denoted here as single-band truncated-crystal, or SBTC, approximation) with a direct pseudopotential band-structure calculation for free-standing hydrogen-passivated GaAs quantum films, wires, and dots. The direct pseudopotential calculation, which includes coupling between all bands, shows that isolated GaAs quantum films, wires, and dots have an indirect band gap for thicknesses below 16, 28, and at least 30 A (8, 14, and at least 15 ML), respectively; beyond these critical dimensions the transition becomes direct. A comparison of the SBTC approximation with the direct pseudopotential calculation shows that (i) the confinement energy of the valence-band maximum is overestimated by the SBTC method, because the zero-confinement character of this state is neglected; (ii) the confinement energy of the {Gamma}-derived conduction state (direct band gap) is slightly overestimated by the SBTC approximation, mainly because of the assumption of infinite potential barriers at the boundaries; (iii) the confinement energy of the {ital X}-derived conduction state (indirect band gap) is severely underestimated by the SBTC method; (iv) while the SBTC approximation predicts {open_quote}{open_quote}quantum deconfinement{close_quote}{close_quote} (i.e., {ital reduction} of gap as size is reduced) for the direct gap of thin GaAs quantum wires, such effect is not present in the direct pseudopotential calculation. {copyright} {ital 1996 American Institute of Physics.}

  2. Dynamical and Collisional Evolution of Asteroidal Dust Particles and the Structure of the Solar System Dust Bands

    NASA Astrophysics Data System (ADS)

    Dermott, S. F.; Kehoe, T. J. J.; Mahoney-Hopping, L.

    2005-12-01

    Recent modeling of the solar system dust bands has shown a significant discrepancy between the mean proper inclinations of the "ten-degree" band and the Eos asteroid family, its putative source. This has led to the suggestion that the dust bands did not result from the gradual comminution of large, ancient asteroid families but were instead produced by recent catastrophic disruptions of asteroids, such as those that generated the Karin cluster and the Veritas family. The small particles produced in such collisional events spiral rapidly into the Sun under the effect of Poynting-Robertson (P-R) drag. Larger particles have correspondingly longer P-R drag lifetimes but are more likely to be fragmented by inter-particle collisions. It is these large particles and their collisional fragments that we observe today as the dust bands, the decaying remnant of a much larger influx of material. The structure of the dust bands is therefore determined by the combined dynamical and collisional behavior of a realistic size distribution of particles. We present the results of numerical simulations showing the evolution of asteroidal dust particles under the effects of radiation pressure, P-R drag, solar wind drag, planetary perturbations, and stochastic size changes due to particle fragmentation. These results reveal that: (i) the orientation of the mean plane of symmetry of the dust bands outside 2AU is dominated by the effect of Jupiter as it evolves through its secular cycle and it is for this reason that we are able to observe the bands; (ii) the effect of inter-particle collisions introduces dispersion in the distribution of the particle orbits; and (iii) the inner edge to the dust bands at 2AU is a consequence of the effect of secular resonances dispersing particle orbits to the extent that the dust band signal merges into the flux from the background zodiacal cloud.

  3. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    PubMed

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form. PMID:26698057

  4. Raman scattering from layered superconductors: Effects of charge ordering, two-band superconductivity, and structural disorder

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej

    Subject of this dissertation is the investigation with experimental means of how the Raman response of three structurally similar materials -- MgB2, NbSe2, and CaC6 -- is affected by superconductivity (all three), charge ordering (NbSe2), or crystalline order-to-disorder phase transitions (CaC6). Universal characteristics of spectral renormalization pertaining to the superconducting phase transition are observed in all three compounds. Yet, the crystalline and electronic structures are sufficiently distinct, such that specific for each compound characteristics are imposed on this superconductivity-induced renormalization. Consequently, the method of polarized Raman scattering has been used to establish a variety of physical concepts: (1) Multi-band superconductivity in the layered superconductor MgB2 and its primary mediation by the strongly coupled 640 cm--1 E2g phonon. Additionally, it is shown how a Josephson-like coupling of two SC condensates in the reciprocal space is responsible for an exotic collective mode, the Leggett's resonance. (2) Interplay between the superconducting and the incommensurate charge-density-wave order parameters in NbSe2, which has been found to be consistent with an isotropic multi-band superconductivity scenario. This scenario is proposed in the frame of a picture that involves a combined 'superconductivity plus charge-density-wave' order parameter. (3) The Fano-Breit-Wigner line-shape formalism to account for an anti-resonance interference in the low temperature Raman response from NbSe2, in the polarization geometry corresponding to the non-symmetric E 2g symmetry channel. (4) Validity of the double resonant Raman scattering picture in the presence of disorder in the graphite intercalation compound CaC6. Simultaneously, it is explored how disorder suppresses superconductivity. To that end, the CaC6 superconducting coherence peak, too, is presented. All these phenomena are manifestations of electron-phonon coupling in solids. It is

  5. Pressure, temperature and plasma frequency effects on the band structure of a 1D semiconductor photonic crystal

    NASA Astrophysics Data System (ADS)

    González, Luz E.; Porras-Montenegro, N.

    2012-01-01

    In this work using the transfer-matrix formalism we study pressure, temperature and plasma frequency effects on the band structure of a 1D semiconductor photonic crystal made of alternating layers of air and GaAs. We have found that the temperature dependence of the photonic band structure is negligible, however, its noticeable changes are due mainly to the variations of the width and the dielectric constant of the layers of GaAs, caused by the applied hydrostatic pressure. On the other hand, by using the Drude's model, we have studied the effects of the hydrostatic pressure by means of the variation of the effective mass and density of the carriers in n-doped GaAs, finding firstly that increasing the amount of n-dopants in GaAs, namely, increasing the plasma frequency, the photonic band structure is shifted to regions of higher frequencies, and secondly the appearance of two regimes of the photonic band structure: one above the plasma frequency with the presence of usual Bragg gaps, and the other, below this frequency, where there are no gaps regularly distributed, with their width diminishing with the increasing of the plasma frequency as well as with the appearance of more bands, but leaving a wide frequency range in the lowest part of the spectrum without accessible photon states. Also, we have found characteristic frequencies in which the dielectric constant equals for different applied pressures, and from which to higher or lower values the photonic band structure inverts its behavior, depending on the value of the applied hydrostatic pressure. We hope this work may be taken into account for the development of new perspectives in the design of new optical devices.

  6. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    PubMed Central

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe− using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm−1 or 153.236(34) meV. The fine structures of Fe− were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm−1 accuracy. PMID:27138292

  7. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions.

    PubMed

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-01-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe(-) using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm(-1) or 153.236(34) meV. The fine structures of Fe(-) were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm(-1) accuracy. PMID:27138292

  8. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-05-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe‑ using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm‑1 or 153.236(34) meV. The fine structures of Fe‑ were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm‑1 accuracy.

  9. Effects of Electrode Layer Band Structure on the Performance of Multilayer Graphene-hBN-Graphene Interlayer Tunnel Field Effect Transistors.

    PubMed

    Kang, Sangwoo; Prasad, Nitin; Movva, Hema C P; Rai, Amritesh; Kim, Kyounghwan; Mou, Xuehao; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard F; Tutuc, Emanuel; Banerjee, Sanjay K

    2016-08-10

    Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks. PMID:27416362

  10. Finding Imaging Patterns of Structural Covariance via Non-Negative Matrix Factorization

    PubMed Central

    Sotiras, Aristeidis; Resnick, Susan M.; Davatzikos, Christos

    2015-01-01

    In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA. PMID:25497684

  11. Varus malalignment negates the structure-modifying benefits of doxycycline in obese women with knee osteoarthritis

    PubMed Central

    Mazzuca, Steven A.; Brandt, Kenneth D.; Chakr, Rafael; Lane, Kathleen A.

    2010-01-01

    Summary Objective To estimate the extent to which varus malalignment, a source of abnormal intra-articular stresses in the medial tibiofemoral compartment and risk factor for progression of knee osteoarthritis (OA), may have diminished the structure-modifying benefit of doxycycline in knee OA. Methods Post hoc treatment group comparisons from a randomized, placebo-controlled trial of the effect of doxycycline (100 mg, twice daily) on medial joint space narrowing (JSN) in subgroups of varus and non-varus OA knees. Subjects (N=379 with x-ray follow-up) were obese 45–64 year old women with unilateral knee OA at baseline. JSN was measured manually in semiflexed anteroposterior radiographs acquired with standardized fluoroscopic positioning. The anatomic-axis angle was measured in each baseline radiograph and transformed to an estimate of the mechanical-axis angle (MAAest) using a validated regression equation. Knees with MAAest <178° were classified as varus. Results In our original comparison with placebo, doxycycline slowed the rate of medial JSN in OA knees by 38% at 16 months and by 33% at 30 months. Among non-varus OA knees, 16-mo JSN in the doxycycline group was 44% slower than in the placebo group (0.09 vs. 0.16 mm/yr, P=0.080), and 39% slower at month 30 (0.10 vs. 0.17 mm/yr, P=0.026). JSN in varus knees (0.20–0.27 mm/yr) was more rapid than in non-varus knees (P=0.083) and unaffected by doxycycline. Conclusion Varus malalignment negated the slowing of structural progression of medial compartment OA by doxycycline. To our knowledge, this is the first report documenting that static varus angulation can negate a pharmacologic structure-modifying effect. PMID:20493957

  12. Self-Structures, Negative Events, and Adolescent Depression: Clarifying the Role of Self-Complexity in a Prospective, Multiwave Study

    ERIC Educational Resources Information Center

    Cohen, Joseph R.; Spiegler, Kevin M.; Young, Jami F.; Hankin, Benjamin L.; Abela, John R. Z.

    2014-01-01

    The purpose of this multiwave longitudinal study was to examine the structure of self-complexity and its relation to depressive symptoms in 276 adolescents (M = 12.55; SD = 1.04). Self-complexity, depressive symptoms, and negative events were assessed during a laboratory assessment at baseline, and then depressive symptoms and negative events were…

  13. Structural, vibrational, and quasiparticle band structure of 1,1-diamino-2,2-dinitroethelene from ab initio calculations

    SciTech Connect

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2014-01-07

    The effects of pressure on the structural and vibrational properties of the layered molecular crystal 1,1-diamino-2,2-dinitroethelene (FOX-7) are explored by first principles calculations. We observe significant changes in the calculated structural properties with different corrections for treating van der Waals interactions to Density Functional Theory (DFT), as compared with standard DFT functionals. In particular, the calculated ground state lattice parameters, volume and bulk modulus obtained with Grimme's scheme, are found to agree well with experiments. The calculated vibrational frequencies demonstrate the dependence of the intra and inter-molecular interactions on FOX-7 under pressure. In addition, we also found a significant increment in the N–H...O hydrogen bond strength under compression. This is explained by the change in bond lengths between nitrogen, hydrogen, and oxygen atoms, as well as calculated IR spectra under pressure. Finally, the computed band gap is about 2.3 eV with generalized gradient approximation, and is enhanced to 5.1 eV with the GW approximation, which reveals the importance of performing quasiparticle calculations in high energy density materials.

  14. Tuning the band structures of a one-dimensional width-modulated magnonic crystal by a transverse magnetic field

    SciTech Connect

    Di, K.; Lim, H. S. Zhang, V. L.; Ng, S. C.; Kuok, M. H.; Nguyen, H. T.; Cottam, M. G.

    2014-02-07

    Theoretical studies, based on three independent techniques, of the band structure of a one-dimensional width-modulated magnonic crystal under a transverse magnetic field are reported. The band diagram is found to display distinct behaviors when the transverse field is either larger or smaller than a critical value. The widths and center positions of bandgaps exhibit unusual non-monotonic and large field-tunability through tilting the direction of magnetization. Some bandgaps can be dynamically switched on and off by simply tuning the strength of such a static field. Finally, the impact of the lowered symmetry of the magnetic ground state on the spin-wave excitation efficiency of an oscillating magnetic field is discussed. Our finding reveals that the magnetization direction plays an important role in tailoring magnonic band structures and hence in the design of dynamic spin-wave switches.

  15. Brilliant Structurally Colored Films with Invariable Stop-Band and Enhanced Mechanical Robustness Inspired by the Cobbled Road.

    PubMed

    Zhang, Xin; Wang, Fen; Wang, Lei; Lin, Ying; Zhu, Jianfeng

    2016-08-31

    Recently, structural colors have attracted great concentrations because the coloration is free from chemical- or photobleaching. However, the color saturation and mechanical robustness are generally competitive properties in the fabrication of PCs (photonic crystals) films. Besides, the structure of PCs and their derivatives are easy to be invaded by liquids and lead to band gap shifts due to the change of refractive index or periodicity. To solve those problems, we infiltrate polydimethylsiloxane (PDMS) into the intervals between regularly arrayed hollow SiO2 nanospheres, inspired by the cobbled road prepared by embedding stone in the bulk cement matrix. Consequently, the as-prepared PCs films show brilliant colors, invariable stop-bands, and excellent mechanical robustness. Moreover, the water contact angle even reached 166° after a sandpaper abrasion test. The combination of brilliant colors, invariable stop-bands, and excellent robustness is significant for potential application in paint and external decoration of architectures. PMID:27509171

  16. On the influence of tetrahedral covalent-hybridization on electronic band structure of topological insulators from first principles

    SciTech Connect

    Zhang, X. M.; Xu, G. Z.; Liu, E. K.; Wang, W. H. Wu, G. H.; Liu, Z. Y.

    2015-01-28

    Based on first-principles calculations, we investigate the influence of tetrahedral covalent-hybridization between main-group and transition-metal atoms on the topological band structures of binary HgTe and ternary half-Heusler compounds, respectively. Results show that, for the binary HgTe, when its zinc-blend structure is artificially changed to rock-salt one, the tetrahedral covalent-hybridization will be removed and correspondingly the topologically insulating band character lost. While for the ternary half-Heusler system, the strength of covalent-hybridization can be tuned by varying both chemical compositions and atomic arrangements, and the competition between tetrahedral and octahedral covalent-hybridization has been discussed in details. As a result, we found that a proper strength of tetrahedral covalent-hybridization is probably in favor to realizing the topologically insulating state with band inversion occurring at the Γ point of the Brillouin zone.

  17. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    NASA Astrophysics Data System (ADS)

    Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-01

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.

  18. Experimental and theoretical investigations of the electronic band structure of metal-organic frameworks of HKUST-1 type

    SciTech Connect

    Gu, Zhi-Gang; Heinke, Lars Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.

    2015-11-02

    The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.

  19. Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ–bands

    NASA Astrophysics Data System (ADS)

    Sheikh, Javid A.; Bhat, Gowhar H.; Dar, Waheed A.; Jehangir, Sheikh; Ganai, Prince A.

    2016-06-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ-bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties.

  20. On the crystalline structure, stoichiometry and band gap of InN thin films

    SciTech Connect

    Yu, K.M.; Liliental-Weber, Z.; Walukiewicz, W.; Li, S.X.; Jones, R.E.; Shan, W.; Ager III, J.W.; Haller, E.E.; Lu, Hai; Schaff, William J.

    2004-09-23

    Detailed transmission electron microscopy (TEM), x-ray diffraction (XRD), and optical characterization of a variety of InN thin films grown by molecular beam epitaxy under both optimized and non-optimized conditions is reported. Optical characterization by absorption and photoluminescence confirms that the band gap of single crystalline and polycrystalline wurtzite InN is 0.70 {+-} 0.05 eV. Films grown under optimized conditions with a AlN nucleation layer and a GaN buffer layer are stoichiometric, single crystalline wurtzite structure with dislocation densities not exceeding mid-10{sup 10} cm{sup -2}. Non-optimal films can be poly-crystalline and display an XRD diffraction feature at 2{theta} {approx} 33{sup o}; this feature has been attributed by others to the presence of metallic In clusters. Careful indexing of wide angle XRD scans and selected area diffraction patterns shows that this peak is in fact due to the presence of polycrystalline InN grains; no evidence of metallic In clusters was found in any of the studied samples.