Note: This page contains sample records for the topic negative chemical ionization from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Pulsed Positive Negative Ion Chemical Ionization Mass Spectrometry.  

National Technical Information Service (NTIS)

Simultaneous recording of positive and negative chemical ionization (CI) mass spectra is described. The capability of this technique, and negative ion CI mass spectrometry in general, to provide a hundred- to a thousand-fold increase in sample ion current...

D. F. Hunt G. C. Stafford F. W. Crow J. W. Russell

1976-01-01

2

Negative Chemical Ionization Studies of Human and Food Chain Contamination with Xenobiotic Chemicals.  

National Technical Information Service (NTIS)

Negative chemical ionization mass spectrometry with a mixture of isobutane, methylene chloride, and oxygen as the reagent gas has been used to explore contamination of environmental substrates with xenobiotic chemicals. The substrates in question, fish ti...

R. C. Dougherty M. J. Whitaker L. M. Smith D. L. Stalling D. W. Kuehl

1980-01-01

3

NEGATIVE CHEMICAL IONIZATION STUDIES OF HUMAN AND FOOD CHAIN CONTAMINATION WITH XENOBIOTIC CHEMICALS  

EPA Science Inventory

Negative chemical ionization mass spectrometry with a mixture of isobutane, methylene chloride, and oxygen as the reagent gas has been used to explore contamination of environmental substrates with xenobiotic chemicals. The substrates in question, fish tissue, human seminal plasm...

4

Negative (CCl sub 4 ) and Positive (NH Sub 3 ) Chemical Ionization of the Explosive Hexanitrostilbene.  

National Technical Information Service (NTIS)

The use of mass spectrometry in the analysis and characterization of explosives and explosive residues has steadily been increasing over the last decade; as a result, positive and negative ion electron impact and chemical ionization mass spectra of many c...

R. O. Yelton

1982-01-01

5

Negative chemical ionization studied of human and food chain contamination with xenobiotic chemicals.  

PubMed Central

Negative chemical ionization mass spectrometry with a mixture of isobutane, methylene chloride, and oxygen as the reagent gas has been used to explore contamination of environmental substrates with xenobiotic chemicals. The substrates in question, fish tissue, human seminal plasma, and human adipose tissue, were cleaned up by one of the following three cleanup procedures: (1) continuous liquid-liquid extraction steam distillation; (2) gel-permeation chromatography; and (3) adsorption on activated carbon followed by elution with toluene. The third procedure was used only for the examination of planar polychlorinated aromatic hydrocarbons in environmental samples. Using these techniques, we have found evidence for contamination of fish samples with polychloronaphthalenes, polychlorostyrenes, polychlorobiphenyls, polychlorodibenzofurans, and polychlorodibenzodioxins among other chemicals. The polychlorodibenzodioxins appeared only in the spectra of extracts of fish obtained from the Tittabawassee River at Midland Michigan. The polychlorodibenzofuran ions appeared in NCI mass spectra of fish that were significantly contaminated (above 2 ppm) with polychlorobiphenyls. Toxic substances occurring in human seminal plasma included pentachlorophenol, hexachlorobenzene, DDT metabolites, and polychlorobiphenyls. We have investigated toxic substances in human seminal plasma because of the apparent decrease in sperm density in U.S. males over the last 30 years. Results of screening human adipose tissue for contamination with xenobiotic chemicals have been largely coincident with result of the EPA human monitoring program. Polychlorobiphenyls, DDT metabolites, nonachlor, and chlordane have appeared in most samples examined. Detection limits for all of these chemicals were of the order of 1 ppb.

Dougherty, R C; Whitaker, M J; Smith, L M; Stalling, D L; Kuehl, D W

1980-01-01

6

ELECTRON AFFINITIES OF POLYNUCLEAR AROMATIC HYDROCARBONS AND NEGATIVE ION CHEMICAL IONIZATION SENSITIVITIES  

EPA Science Inventory

Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...

7

Positive and electron capture negative ion methane chemical ionization mass spectrometry of pyrrolizidine alkaloids.  

PubMed

Pulsed positive and negative ion methane chemical ionization mass spectrometry of pyrrolizidine alkaloids is reported. Positive ion spectra are characterized by a high relative abundance of [MH]+ ions while the negative ion spectra exhibit ion peaks due to dissociative electron capture. Fragmentation in both positive and negative ion spectra primarily occurs at the ester groups with the positive charge residing with the pyrrolizidine ring system while the negative charge in contrast tends to reside with the necic acid moiety. Esterification at C-9 v. C-7 can be distinguished for non-cyclic esters of retronecine in the positive ion spectra. PMID:6509154

Karchesy, J; Deinzer, M; Griffin, D; Rohrer, D C

1984-09-01

8

Pentachlorophenol in the Environment: Evidence for Its Origin from Commercial Pentachlorophenol by Negative Chemical Ionization Mass Spectrometry.  

National Technical Information Service (NTIS)

Commercial pentachlorophenol (PCP) contains significant quantities of tetrachlorophenol (TCP). The occurrence of TCP in environmental samples provides a chemical marker for PCP originating from commercial formulations. Negative chemical ionization mass sp...

D. W. Kuehl R. C. Dougherty

1980-01-01

9

PENTACHLOROPHENOL IN THE ENVIRONMENT. EVIDENCE FOR ITS ORIGIN FROM COMMERCIAL PENTACHLOROPHENOL BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY  

EPA Science Inventory

Commercial pentachlorophenol (PCP) contains significant quantities of tetrachlorophenol (TCP). The occurrence of TCP in environmental samples provides a chemical marker for PCP originating from commercial formulations. Negative chemical ionization mass spectrometry has been used ...

10

PENTACHLOROPHENOL IN THE ENVIRONMENT: EVIDENCE FOR ITS ORIGIN FROM COMMERCIAL PENTACHLOROPHENOL BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY  

EPA Science Inventory

Commercial pentachlorophenol (PCP) contains significant quantities of tetrachlorophenol (TCP). The occurrence of TCP in environmental samples provides a chemical marker for PCP originating from commercial formulations. Negative chemical ionization mass spectrometry has been used ...

11

Electron capture negative ion chemical ionization mass spectrometry of derivatized chlorophenols and chloroanilines  

SciTech Connect

The electron capture negative ion chemical ionization mass spectra of electrophoric derivatives (perfluoroacyl, pentafluorbenzyl, pentafluorobenzoyl, 3,5-bis(trifluoromethyl)-benzoyl, and (pentafluorophenyl)methanimine) of chloro-substituted phenols and anilines have been investigated. The formation of analyte-specific anions in the spectra of the derivatives is strongly influenced by the nature of the electrophoric group and the summed electron-donating or -with-drawing properties of the aromatic ring substituents. Hammett linear free energy relationships can be used to predict the stability of molecular anions, the direction of fragmentation pathways, and the usefulness of a given derivative for analytical purposes by using selective-ion monitoring. The influence of ion source temperature on the ionically induced dissociation of the derivatives was examined. The relative molar responses of different derivatives under conditions of GC-negative ion chemical ionization mass spectrometry and GC-electron capture detection were comparable.

Trainor, T.M.; Vouros, P.

1987-02-15

12

The quantification of synthetic corticosteroids using isotope dilution gas chromatography negative chemical ionization mass spectrometry.  

PubMed

Prednisolone, dexamethasone and betamethasone were labelled with deuterium via a simple synthetic procedure and used as internal standards in the gas chromatographic/mass spectrometric analysis of the corresponding undeuterated compounds. The mass spectrometer was used in the negative chemical ionization mode, which gave fragmentation of the methoxime trimethylsilyl ether derivatives favourable for their quantification. The method was applicable to the quantification of synthetic corticosteroids contained in human aqueous humour in the 0.1-10-ng range. PMID:3382802

Midgley, J M; Watson, D G; Healey, T; Noble, M

1988-05-01

13

Applications of a versatile technique for trace analysis: atmospheric pressure negative chemical ionization.  

PubMed Central

The ability to use ambient air as a carrier and reagent gas in an atmospheric pressure chemical ionization source allows instantaneous air analysis to be combined with hypersensitivity toward a wide variety of compounds. The TAGA (Trace Atmospheric Gas Analyser) is an instrument which is designed to use both positive and negative atmospheric pressure chemical ionization (APCI) for trace gas analysis; this paper describes several applications of negative APCI which demonstrates that the technique is not limited to environmental monitoring. Examples are described which suggest that the TAGA can be used for the detection of illicit drugs and explosives, and for the analysis of breath or skin emissions, as well as for air pollution measurements. The applications are not restricted by the use of ambient air as a reagent gas; addition to the air carrier of various gases allows specific reagent ions such as Cl- or Br- to be generated. Furthermore, in certain situations pure gas carriers can be used to provide even more flexibility in the ion chemistry, with a short term absorber-desorber system used to transfer the sample from the ambient air into the ion source region. The potential uses for APCI are expanding continuously as the understanding of the complex ion-molecule chemistry grows. This paper underlines the complementary relation between the development of new negative chemical ionization (NCI) techniques and practical applications using the TAGA system.

Thomson, B A; Davidson, W R; Lovett, A M

1980-01-01

14

Profiling Neurosteroids in Cerebrospinal Fluids and Plasma by Gas Chromatography\\/Electron Capture Negative Chemical Ionization Mass Spectrometry  

Microsoft Academic Search

A quantitative method for the determination of allopregnanolone (5?,3?-THP) and related neurosteroids in CSF and plasma was established using gas chromatography\\/electron capture negative chemical ionization mass spectrometry (GC\\/ECNCI\\/MS). Neurosteroids were converted to carboxymethoxime, pentafluorobenzyl and trimethylsilyl derivatives and detected as intense (M-181)? fragment ions generated under the negative ion chemical ionization process. The response curves constructed using d4-dihydrotestosterone (DHT) and

Yang-Suk Kim; Hongjian Zhang; Hee-Yong Kim

2000-01-01

15

Use of negative chemical ionization mass spectrometry for the trace analysis of metals.  

PubMed Central

The synthesis of various volatile and thermally stable derivatives of metals ions has permitted the use of conventional mass spectrometry for trace metal analysis. This paper reviews the development of the field using electron impact and chemical ionization mass spectrometry. This latter methodology produces simple mass spectra that enable complex mixtures to be analyzed. In addition the use of negative ion detection has produced selective ionization since many metal chelates contain heteroatoms which are electronegative. A discussion of the use of this general methodology for trace metal analysis is included, together with its applications to the analysis of ruthenium in automobile exhaust emissions and iron in red blood cells from laboratory rats. The future use of this methodology is expected to be for the monitoring of stable metal isotopes. This procedure could be used to follow these tracers in clinical and environmental studies and it is expected that their use will replace radioactive isotopes in most studies.

Risby, T H

1980-01-01

16

Electron affinities of polynuclear aromatic hydrocarbons and negative-ion chemical-ionization sensitivities  

NASA Astrophysics Data System (ADS)

Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On the other hand, positive-ion signals are largely comparable under the same source conditions. An extensive set of newly re-evaluated experimental electron affinities (EAs), or free energies of electron attachment, are now available, as well as reliable predicted electron affinities from quantum theoretical calculations or from solution reduction potentials and theoretically predicted solvation energies. In order to show a high negative-ion sensitivity, a PAH must have an EA that exceeds a threshold of approximately of 0.5 eV. Comparisons between the negative-ion to positive-ion sensitivities (N/P ratios) and these new electron affinities show a rough correlation between the two, but naphthacene and perylene are exceptions to this relationship with much lower sensitivities than expected from their high EA values. By calculating the EA for a PAH, one can predict whether a sensitivity enhancement under NICI MS conditions is to be expected. Since aliphatic hydrocarbons and many other substances have negative or very low EAs, NICI MS is expected to be a good technique for detecting PAHs in samples contaminated with other hydrocarbons or compounds with low EAs.

Betowski, L. D.; Enlow, Mark; Aue, Donald H.

2006-09-01

17

Correlation between electron capture negative chemical ionization mass spectrometric fragmentation and calculated internal energies for polychlorinated biphenyls  

Microsoft Academic Search

Correlationbse tween molecular structure and fragmentation observed in electron capture negative chemical ionization mass\\u000a spectra (moderator gas = methane) of 49 selected tetrachlorinated, pentachlorinated, and hexachlorinated biphenyls have been\\u000a investigated by using molecular modeling. The semiempirical general molecular orbital program MOPAC was used to calculate\\u000a molecular properties for biphenyl and the 209 polychlorinated biphenyls. The mass spectrometric ionization and fragmentation

John Greaves; Ellen Harvey; William G. MacIntyre

1994-01-01

18

Quantification of cholesterol tracers by gas chromatography--negative ion chemical ionization mass spectrometry.  

PubMed

Because of its high sensitivity, gas chromatography negative ion chemical ionization mass spectrometry (GC-NCI-MS) is a potentially valuable analytical tool for the study of cholesterol metabolism. Of several derivatives prepared for potential use in tracer studies pentafluorobenzoyl cholesterol was selected because it formed rapidly at ambient temperature and was stable for long periods, could be detected at a level of 1 fmol, and yielded a mass spectrum in which the molecular ion was the principal component. Hexadeuterated cholesterol tracer ([26,26,26,27,27,27-2H6]cholesterol) could be detected in dilutions up to 2700 in unlabeled cholesterol by selected ion monitoring with a coefficient of variation averaging 3.2%. In seven normal subjects tracer cholesterol was infused intravenously and plasma cholesterol enrichment was determined after 4 h. The measured rapidly miscible cholesterol pool was 391.0 +/- 38.6 mg cholesterol/kg. Negative ion mass spectrometry of pentafluorobenzyol cholesterol will facilitate analysis of both small amounts of natural cholesterol and labeled cholesterol in applications where sensitivity is critical. PMID:8946736

Ostlund, R E; Hsu, F F; Bosner, M S; Stenson, W F; Hachey, D L

1996-11-01

19

Determination of BROMATE AT PARTS-PER-TRILLION LEVELS BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH NEGATIVE CHEMICAL IONIZATION  

EPA Science Inventory

The ozonation of bromide-containing source waters produces bromate as a class 2B carcinogenic disinfection by-product. The present work describes the determination of bromate by gas chromatography-negative chemical ionization mass spectrometry (GC-NCIMS) following a bromate react...

20

[Determination of difenoconazole residue in foods by gas chromatography-negative chemical ionization mass spectrometry].  

PubMed

A method is presented for the determination of difenoconazole residue in all kinds of foods by solid phase extraction-gas chromatography-negative chemical ionization mass spectrometry (SPE-GC-MS/NCI). Difenoconazole residue was extracted with ethyl acetate from different samples, such as perilla leaves, carrots, spinach powder, rice, gram, jasmine flower tea, oolong tea, strawberries, sauce, bee honey, beef, chicken and eels, etc. The extracts were cleaned-up by active carbon SPE column connected to alumina neutral SPE column or Florisil SPE column only. Analytical screening was determined by the technique of GC-MS/NCI on selected ion monitoring mode. The recoveries of difenoconazole in most samples were in the range from 70% to 120% at three spiked levels, 0.01 mg/kg, 0.04 mg/kg and 0.10 mg/kg, and the relative standard deviations (RSDs) were below 9.5%. The linearity of the method is good from 0.02 to 1.00 mg/L, and limit of detection (LOD) was 0.000 5 or 0.001 mg/kg for different type samples. The method is selective without interference and is suitable for determination and conformation of difenoconazole residue in all kinds of foods. PMID:17679443

Shen, Weijian; Yang, Wenquan; Shen, Chongyu; Zhao, Zengyun; Xu, Jinzhong; Ding, Tao

2007-05-01

21

Detection of trace levels of triclopyr using capillary gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry.  

PubMed

Triclopyr, after esterification, is shown to be a suitable candidate for detection by gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry forming a characteristic carboxylate anion which offers a high detection sensitivity. A detection limit of 70 fg reaching the ionizer is indicated. Low backgrounds and an absence of chemical interferences are shown for vegetation extracts, using a simple method of extraction and derivatisation. A similar behaviour is demonstrated for 2,4-D and 2,4,5-T. PMID:3379116

Begley, P; Foulger, B E

1988-04-01

22

Methane negative chemical ionization analysis of 1,3-dihydro-5-phenyl-1,4-benzodiazepin-2-ones.  

PubMed Central

The methane negative chemical ionization (NCI) mass spectra of the medically important 1,3-dihydro-5-phenyl-1,4-benzodiazepin-2-ones generally consisted solely of M- and (M-H)- ions. Attempts to find the location of the H lost in the generation of the (M-H)- ion were unsuccessful, although many possibilities were eliminated. A Hammett correlation analysis of the relative sensitivities of a series of 7-substituted benzodiazepines suggested that the initial ionization takes place at the 4,5-imine bond. For certain benzodiazepines, the (M-H)- ion generated by methane NCI was 20 times more intense than the MH+ ion generated by methane positive chemical ionization (PCI). By using NCI, a sensitive and simple GC-MS assay for nordiazepam was developed that can quantitate this important metabolite of many of the clinically used benzodiazepines in the blood and brain of rats.

Garland, W A; Miwa, B J

1980-01-01

23

Determination of organophosphorus pesticide residues in human tissues by capillary gas chromatography–negative chemical ionization mass spectrometry analysis  

Microsoft Academic Search

We describe an analytical method that allows the determination of organophosphorus pesticides (OPs) in different human tissues. It involves an extraction procedure with ethanol–ethyl acetate, followed by gel permeation chromatography clean-up step and analysis by capillary gas chromatography–negative chemical ionization mass spectrometry in the selected ion monitoring mode. The method was tested for 37 OPs and the recoveries obtained vary

Mario Vincenzo Russo; Luigi Campanella; Pasquale Avino

2002-01-01

24

Fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry for forensic analysis of cannabinoids in whole blood  

Microsoft Academic Search

The present work describes a fast gas chromatography\\/negative-ion chemical ionization tandem mass spectrometric assay (Fast GC\\/NICI-MS\\/MS) for analysis of tetrahydrocannabinol (THC), 11-hydroxy-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in whole blood. The cannabinoids were extracted from 500?L of whole blood by a simple liquid–liquid extraction (LLE) and then derivatized by using trifluoroacetic anhydride (TFAA) and hexafluoro-2-propanol (HFIP) as fluorinated agents. Mass spectrometric

Aurélien Thomas; Christèle Widmer; Gérard Hopfgartner; Christian Staub

2007-01-01

25

MICROMETHODS FOR TOXIC RESIDUE SCREENING BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY  

EPA Science Inventory

Methods were developed for the analysis of polychlorinated chemical residues found in milligram quantities of biological samples. Sample preparation by micro-continuous liquid-liquid extraction steam distillation or by micro gel-permeation chromatography gave sufficiently clean r...

26

[Determination of 17 pyrethroid pesticide residues in vegetables by gas chromatography-mass spectrometry with negative chemical ionization].  

PubMed

A method was established for the determination of 17 pyrethroid pesticide residues in vegetables using QuEChERS (quick, easy, cheap, effective, rugged and safe) clean-up method and gas chromatography-mass spectrometry (GC-MS) with negative chemical ionization (NCI). The pyrethroid pesticides in the sample were extracted with acetonitrile. After QuEChERS clean-up with a mixture of primary secondary amine and graphitized carbon black packings, the extract was analyzed by GC-NCI-MS in selected ion monitoring (SIM) mode. An isotope internal standard of cypermethrin was employed to the quantification. The limits of quantification ranged from 0.02 to 5 microg/kg. The recoveries of the pyrethroid pesticides spiked in three different matrixes (peas, broccoli and Chinese onion green) at four spiked levels of 10, 20, 30 and 100 microg/kg were from 71.0% to 139.0%, and the relative standard deviations were less than 12.8%. This method can be used as a conclusive evidence method of the 17 pyrethroid pesticide residues in vegetables. PMID:23451521

Shen, Weijian; Cao, Xiaowen; Liu, Yijun; Zhang, Rui; Fan, Xin; Zhao, Zengyun; Shen, Chongyu; Wu, Bin

2012-11-01

27

Determination of 17 pyrethroid residues in troublesome matrices by gas chromatography/mass spectrometry with negative chemical ionization.  

PubMed

An analytical method with the technique of QuEChERS (quick, easy, cheap, effective, rugged and safe) and gas chromatography (GC)/mass spectrometry (MS) in negative chemical ionization (NCI) has been developed for the determination of 17 pyrethroid pesticide residues in troublesome matrices, including garlic, onion, spring onion and chili. Pyrethroid residues were extracted with acidified acetonitrile saturated by hexane. After a modified QuEChERS clean-up step, the extract was analyzed by GC-NCI/MS in selected ion monitoring (SIM) mode. An isotope internal standard of trans-cypermethrin-D(6) was employed for quantitation. Chromatograms of pyrethroids obtained in all these matrices were relatively clean and without obvious interference. The limits of detection (LODs) ranged from 0.02 to 6 ?g kg(-1) and recovery yields were from 54.0% to 129.8% at three spiked levels (20, 40 and 60 ?g kg(-1) for chili, and 10, 20 and 30 ?g kg(-1) for others) in four different matrices depending on the compounds determined. The relative standard deviations (RSDs) were all below 14%. Isomerization enhancement of pyrethroids in chili extract was observed and preliminarily explained, especially for acrinathrin and deltamethrin. PMID:21315911

Shen, Chong-yu; Cao, Xiao-wen; Shen, Wei-jian; Jiang, Yuan; Zhao, Zeng-yun; Wu, Bin; Yu, Ke-yao; Liu, Han; Lian, Hong-zhen

2011-03-15

28

Negative chemical ionization GC\\/MS determination of nitrite and nitrate in seawater using exact matching double spike isotope dilution and derivatization with triethyloxonium tetrafluoroborate  

Microsoft Academic Search

The alkylation of nitrite and nitrate by triethyloxonium tetrafluoroborate allows determination of their ethyl esters by headspace gas chromatography\\/mass spectrometry (GC\\/MS). In the present study, significant improvement in analytical performance is achieved using negative chemical ionization providing detection limits of 150 ng\\/L for NO 2 - and 600 ng\\/L for NO 3 -, an order of magnitude better than those

E. a b Pagliano; J. b Meija; R. E. b Sturgeon; Z.b Mester; A. c Dulivo

2012-01-01

29

Confirmatory method for sulfonamide residues in animal tissues by gas chromatography and pulsed positive ion-negative ion-chemical ionization mass spectrometry.  

PubMed

A confirmatory method has been developed for determination of 13 sulfonamides in edible tissues. The assay involves extraction from a solution resulting from a screening procedure by liquid chromatography and subsequent derivatization. Sulfachloropyridazine (SCP), sulfadiazine (SDA), sulfadimethoxine (SDM), sulfamethazine (SMZ), sulfamerazine (SME), sulfamethoxazole (SMX), sulfamethoxypyridazine (SMP), sulfapyridine (SPR), sulfaquinoxaline (SQX), and sulfathiazole (STA) were detected as the N1-methyl-N4-trifluoroacetyl derivatives, sulfaguanidine (SGU) as the same derivative after cyclization by hexafluoroacetylacetone, and sulfacetamide (SAC) as the methyl derivative. These sulfonamides were detected by gas chromatography and pulsed positive ion-negative ion-chemical ionization mass spectrometry with methane as the reactant gas, whereas sulfanilamide (SAA) was determined as the methyl derivative by electron-impact ionization. PMID:8241826

Mooser, A E; Koch, H

1993-01-01

30

Determination of deltamethrin in rat plasma and brain using gas chromatography-negative chemical ionization mass spectrometry.  

PubMed

Quantification of the pyrethroid deltamethrin (DLM) in small (100?L) biological samples from rodents is essential for toxicokinetic studies of trace levels of the insecticide in foods. Such empirical kinetic data are necessary for construction of valid physiologically-based toxicokinetic models. There are no validated methods in the literature for determining deltamethrin in 100?L plasma and brain samples. Plasma and brain samples were stabilized using sodium fluoride as an esterase inhibitor, and the DLM was extracted by protein precipitation using acetonitrile and phosphoric acid. The samples were vortexed, centrifuged, evaporated to dryness, and reconstituted in toluene prior to injection into a gas chromatograph equipped with a quadrupole mass analyzer. Samples were ionized via electron capture in the negative ion mode using methane, and the molecular ion and fragment ions of DLM were monitored using Selected-Ion Monitoring (SIM) for quantitation and verification of the analyte. Cis-permethrin was used as the internal standard for the method, which was validated according to current US FDA guidelines. Linearity was determined between 0.3 and 1000ng/mL, with a limit of detection of 150pg/mL. The intra- and inter-batch variation for precision (as % relative standard deviation, RSD) and accuracy (as % bias) of the method were better than 20% at the limit of quantitation and better than 15% across the remaining linear range (n=18), with recoveries of 113% and 68% for plasma and brain respectively. Benchtop stability, autosampler stability, and freeze/thaw stability studies of the method (over a 3-day freeze/thaw cycle) were found to be within the acceptance criteria of 20% RSD and bias. This optimized method was applied to the quantitation of DLM in plasma and brain homogenate samples obtained up to 12h after oral dosing of Sprague-Dawley rats with 1mg DLM/kg body weight. PMID:24814001

Gullick, Darren; Popovici, Andrew; Young, Holly C; Bruckner, James V; Cummings, Brian S; Li, Pei; Bartlett, Michael G

2014-06-01

31

Negative surface ionization of hyperthermal halogen atoms  

SciTech Connect

Negative surface ionization of hyperthermal halogen atoms was studied as a function of their kinetic energy on thoriated tungsten and on niobium wires. The transition from a thermal equilibrium process to direct reflection causes the ionization to increase drastically above thermal energies: efficiencies up to 40% were found for 30 eV Cl atoms impinging on thoriated tungsten. (auth)

Koennen, G.P.; Grosser, J.; Haring, A.; De Vries, A.E.

1973-09-01

32

Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency.  

PubMed

Electrospray ionization (ESI) in the negative ion mode has received less attention in fundamental studies than the positive ion electrospray ionization. In this paper, we study the efficiency of negative ion formation in the ESI source via deprotonation of substituted phenols and benzoic acids and explore correlations of the obtained ionization efficiency values (logIE) with different molecular properties. It is observed that stronger acids (i.e., fully deprotonated in the droplets) yielding anions with highly delocalized charge [quantified by the weighted average positive sigma (WAPS) parameter rooted in the COSMO theory] have higher ionization efficiency and give higher signals in the negative-ion ESI/MS. A linear model was obtained, which equally well describes the logIE of both phenols and benzoic acids (R(2) = 0.83, S = 0.40 log units) and contains only an ionization degree in solution (?) and WAPS as molecular parameters. Both parameters can easily be calculated with the COSMO-RS method. The model was successfully validated using a test set of acids belonging neither to phenols nor to benzoic acids, thereby demonstrating its broad applicability and the universality of the above-described relationships between IE and molecular properties. PMID:24731109

Kruve, Anneli; Kaupmees, Karl; Liigand, Jaanus; Leito, Ivo

2014-05-20

33

Determination of microbial fatty acid profiles at femtomolar levels in human urine and the initial marine microfouling community by capillary gas chromatography-chemical ionization mass spectrometry with negative ion detection  

Microsoft Academic Search

Summary Room temperature esterification with the electron capturing pentafluorobenzyl bromide in glass capillaries, with analysis by capillary gas-liquid chromatography coupled with chemical ionization mass spectrometry and negative ion detection in the selected ion mode, allowed detection and identification of fatty acids from micro- bial biofilms at the femtomolar level. This sensitivity was achieved without loss of specificity of the mass

Goran Odham; Anders Tunlid; Gunilla Westerdahl; Lennart Larsson; James B. Guckert; David C. White

1985-01-01

34

Negative Ion Chemical Ionization Mass Spectrometry for the Analysis of 3,5,6-trichloro-2-pyridinol in Saliva of Rats Exposed to Chlorpyrifos  

SciTech Connect

Organophosphorus (OP) insecticides (e.g. chlorpyrifos) are widely used in a variety of applications, and the potential exists for significant occupational and environmental exposures. They have been associated with more occupational poisoning cases than any other class of insecticides. One of the best approaches for accurately assessing human dosimetry and determining risk from both occupational and environmental exposure is biomonitoring. Biological matrices such as blood and urine have been routinely used for biomonitoring; however, other matrices such as saliva represent a simple and readily obtainable fluid. As a result, saliva has been suggested as an alternative biological matrix for the evaluation of a broad range of biomarkers such as environmental contaminants, drugs of abuse, hormones, chemotherapeutics, heavy metals, and pesticides. Chlorpyrifos (CPF), and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCP), have been quantified in urine and blood as a biomarker for exposure to OP insecticides. The purpose of this study was to develop an analytical approach for detecting and quantitating the levels of TCP in saliva obtained from rats exposed to CPF and to evaluate the potential of saliva as a non-invasive biomonitoring matrix. Adult male rats were administered CPF, and blood and saliva were humanely collected for analysis of TCP and CPF. TCP was detected and quantitated in saliva using negative ion chemical ionization mass spectrometry with selected ion monitoring. Initial results indicate that saliva may be potentially utilized as a non-invasive biomonitoring matrix to determine exposure to organophosphate insecticides.

Campbell, James A.; Timchalk, Chuck; Kousba, Ahmed A.; Wu, Hong; Valenzuela, Blandina R.; Hoppe, Eric W.

2005-05-01

35

An Examination of Pentafluorobenzoyl Derivatization Strategies for the Analysis of Fatty Alcohols using Gas Chromatography/Electron Capture Negative Ion Chemical Ionization-Mass Spectrometry  

PubMed Central

Gas chromatography/electron capture negative ion chemical ionization-mass spectrometry (GC/ECNICI-MS) combined with pentafluorobenzoyl derivatization (PFBoyl) is frequently used for the sensitive detection of fatty alcohols (FOH). However, this derivatization technique suffers from a lack of established reaction protocols, time-consuming reactions, and the presence of reagent artifacts or unwanted derivatization byproducts which can hinder analyte detection. Here, strategies are presented to reduce the problems associated with PFBoyl-derivatization, including 1) the optimization of reaction conditions (derivatization time and temperature) for a variety of PFBoyl-derivatized FOH, 2) an investigation of microwave-accelerated derivatization (MAD) as a rapid alternative heating mechanism for the PFBoyl-derivatization of FOH, and 3) an analysis of an alternative strategy employing a solvent extraction procedure post-derivatization to reduce the detrimental effects commonly associated with PFBoyl derivatization reagents. The optimal reaction conditions for the PFBoyl-derivatization of FOH was determined to be 60 °C for 45 min. The investigation in MAD demonstrated the potential of obtaining comparable PFBoyl-derivatizations to those obtained using traditional heating methods, albeit in a reaction time of 3 min. An examination of several solvents for post-derivatization extraction revealed improved relative response factors in comparison to those obtained without solvent extraction. The best solvents for the PFBoyl-FOH extraction, dichloromethane and tert-butyl methyl ether, were also compared to the no solvent extraction samples with standard response curves and PFBoyl-derivatized FOH in Bligh-Dyer extracted rat plasma.

Bowden, John A.; Ford, David A.

2010-01-01

36

Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry  

NASA Astrophysics Data System (ADS)

Emissions from 34 laboratory biomass fires were investigated at the combustion facility of the U.S. Department of Agriculture Fire Sciences Laboratory in Missoula, Montana. Gas-phase organic and inorganic acids were quantified using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), open-path Fourier transform infrared spectroscopy (OP-FTIR), and proton-transfer-reaction mass spectrometry (PTR-MS). NI-PT-CIMS is a novel technique that measures the mass-to-charge ratio (m/z) of ions generated from reactions of acetate (CH3C(O)O-) ions with inorganic and organic acids. The emission ratios for various important reactive acids with respect to CO were determined. Emission ratios for isocyanic acid (HNCO), 1,2 and 1,3-benzenediols (catechol, resorcinol), nitrous acid (HONO), acrylic acid, methacrylic acid, propionic acid, formic acid, pyruvic acid, and glycolic acid were measured from biomass burning. Our measurements show that there is a significant amount of HONO in fresh smoke. The NI-PT-CIMS measurements were validated by comparison with OP-FTIR measurements of HONO and formic acid (HCOOH) and with PTR-MS measurements of HCOOH.

Veres, Patrick; Roberts, James M.; Burling, Ian R.; Warneke, Carsten; de Gouw, Joost; Yokelson, Robert J.

2010-12-01

37

Ionization phenomena and sources of negative ions  

SciTech Connect

Negative ion source technology has rapidly advanced during the past several years as a direct consequence of the discovery of Krohn that negative ion yields can be greatly enhanced by sputtering in the presence of Group IA elements. Today, most negative ion sources use this discovery directly or the principles implied to effect negative ion formation through surface ionization. As a consequence, the more traditional direct extraction plasma and charge exchange sources are being used less frequently. However, the charge exchange generation mechanism appears to be as universal, is very competitive in terms of efficiency and has the advantage in terms of metastable ion formation. In this review, an attempt has been made to briefly describe the principal processes involved in negative ion formation and sources which are representative of a particular principle. The reader is referred to the literature for specific details concerning the operational characteristics, emittances, brightnesses, species and intensity capabilities of particular sources. 100 references.

Alton, G.D.

1983-01-01

38

Ionization fronts in negative corona discharges.  

PubMed

We use a hydrodynamic minimal streamer model to study negative corona discharge. By reformulating the model in terms of a quantity called a shielding factor, we deduce laws for the evolution in time of both the radius and intensity of the ionization fronts. We also compute the evolution of the front thickness under the conditions for which it diffuses due to the geometry of the problem and show its self-similar character. PMID:15903643

Arrayás, Manuel; Fontelos, Marco A; Trueba, José L

2005-03-01

39

Analysis of low erucic acid turnip rapeseed oil ( Brassica campestris ) by negative ion chemical ionization tandem mass spectrometry. A method giving information on the fatty acid composition in positions sn -2 and sn -1\\/3 of triacylglycerols  

Microsoft Academic Search

A tandem mass spectrometric method is described for the rapid analysis of fatty acid combinations in mixtures of triacylglycerols.\\u000a Triacylglycerols were introduced into a triple quadrupole mass spectrometervia a direct exposure probe and deprotonated using ammonia negative ion chemical ionization. Collisionally activated spectra\\u000a were obtained and the resulting fragments used to identify the fatty acid constituents, and the fatty acids

Heikki Kallio; Graeme Currie

1993-01-01

40

Development and validation of a gas chromatography–negative chemical ionization tandem mass spectrometry method for the determination of ethyl glucuronide in hair and its application to forensic toxicology  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography–negative chemical ionization tandem mass spectrometry (GC–NCI-MS\\/MS) for the quantification of EtG in hair. EtG was extracted from about 30mg

Hicham Kharbouche; Frank Sporkert; Stéphanie Troxler; Marc Augsburger; Patrice Mangin; Christian Staub

2009-01-01

41

Ion Drift-Chemical Ionization Mass Spectrometry.  

National Technical Information Service (NTIS)

A method and apparatus for conducting mass spectrometry. The mass spectrometry may be accomplished by ion drift-chemical ionization mass spectrometry. One embodiment includes a chemical ionization mass spectrometer comprising an ion drift zone having an i...

R. Zhang

2005-01-01

42

A multi-residue method for pesticides analysis in green coffee beans using gas chromatography-negative chemical ionization mass spectrometry in selective ion monitoring mode.  

PubMed

In this study, a new gas chromatography-mass spectrometry (GC-MS) method, using the very selective negative chemical ionization (NCI) mode, was developed and applied in combination with a modified acetonitrile-based extraction method (QuEChERS) for the analysis of a large number of pesticide residues (51 pesticides, including isomers and degradation products) in green coffee beans. A previously developed integrated sample homogenization and extraction method for both pesticides and mycotoxins analysis was used. An homogeneous slurry of green milled coffee beans and water (ratio 1:4, w/w) was prepared and extracted with acetonitrile/acetic acid (1%), followed by magnesium sulfate addition for phase separation. Aliquots from this extract could be used directly for LC-MS/MS analysis of mycotoxins and LC-amenable pesticides. For GC-MS analysis, a further clean-up was necessary. C18- and PSA-bonded silica were tested as dispersive solid-phase extraction (d-SPE) sorbents, separate and as a mixture, and the best results were obtained using C18-bonded silica. For the optimal sensitivity and selectivity, GC-MS detection in the NCI-selected ion monitoring (SIM) mode had to be used to allow the fast analysis of the difficult coffee bean matrix. The validation was performed by analyzing recovery samples at three different spike concentrations, 10, 20 and 50 ?g kg(-1), with 6 replicates (n=6) at each concentration. Linearity (r(2)) of calibration curves, estimated instrument and method limits of detection and limits of quantification (LOD(i), LOD(m), LOQ(i) and LOQ(m), respectively), accuracy (as recovery %), precision (as RSD%) and matrix effects (%) were determined for each individual pesticide. From the 51 analytes (42 parent pesticides, 4 isomers and 5 degradation products) determined by GC-MS (NCI-SIM), approximately 76% showed average recoveries between 70-120% and 75% and RSD ? 20% at the lowest spike concentration of 10 ?g kg(-1), the target method LOQ. For the spike concentrations of 20 and 50 ?g kg(-1), the recoveries and RSDs were even better. The validated LOQ(m) was 10, 20 and 50 ?g kg(-1) for respectively 33, 3 and 6 of the analytes studied. For five compounds, the European Union method performance requirements for the validation of a quantitative method (average recoveries between 70-120% and repeatability RSD ? 20%) were not achieved and 4 problematic pesticides (captan, captafol, folpet and dicofol) could not be detected as their parent compound, but only via their degradation products. Although the matrix effect (matrix-enhanced detector response) was high for all pesticides studied, the matrix interference was minimal, due to the high selectivity obtained with the GC-NCI-MS detection. Matrix-matched calibration for applying the method in routine analysis is recommended for reliable quantitative results. PMID:22771261

Pizzutti, Ionara R; de Kok, Andre; Dickow Cardoso, Carmem; Reichert, Bárbara; de Kroon, Marijke; Wind, Wouter; Weber Righi, Laís; Caiel da Silva, Rosselei

2012-08-17

43

Development and validation of an analytical method for determination of 3-chloropropane-1,2-diol in rat blood and urine by gas chromatography-mass spectrometry in negative chemical ionization mode.  

PubMed

We have developed a highly selective and sensitive method using gas chromatography-mass spectrometry with negative chemical ionization for measuring 3-chloropropane-1,2-diol (3-MCPD) in rat blood and urine. Samples were adsorbed on silica gel, extracted with ethyl acetate, and derivatized by chemical derivatization with heptafluorobutyric acid anhydride. For quantification, matrix-based calibration curves and 3-MCPD-d (5), as an isotope-labeled internal standard, were used. The relative recoveries of 3-MCPD were between 80 and 110% in most cases and the relative standard deviations were typically less than 10%, with some exceptions. The limit of quantification of the method was found to be about 2 ng/mL. In conclusion, a valuable, robust, and sensitive method for detection of 3-MCPD is now available for biokinetics studies. PMID:20640896

Berger-Preiss, Edith; Gerling, Susanne; Apel, Elisabeth; Lampen, Alfonso; Creutzenberg, Otto

2010-09-01

44

New Automated and High-Throughput Quantitative Analysis of Urinary Ketones by Multifiber Exchange-Solid Phase Microextraction Coupled to Fast Gas Chromatography/Negative Chemical-Electron Ionization/Mass Spectrometry  

PubMed Central

The present research is focused on automation, miniaturization, and system interaction with high throughput for multiple and specific Direct Immersion-Solid Phase Microextraction/Fast Gas Chromatography analysis of the urinary ketones. The specific Mass Spectrometry instrumentation, capable of supporting such the automated changeover from Negative Chemical to Electron Ionization mode, as well as the automation of the preparation procedure by new device called MultiFiber Exchange, through change of the fibers, allowed a friendly use of mass spectrometry apparatus with a number of advantages including reduced analyst time and greater reproducibility (2.01–5.32%). The detection limits for the seven ketones were less than 0.004?mg/L. For an innovative powerful meaning in high-throughput routine, the generality of the structurally informative Mass Spectrometry fragmentation patterns together with the chromatographic separation and software automation are also investigated.

Pacenti, Marco; Dugheri, Stefano; Traldi, Pietro; Degli Esposti, Filippo; Perchiazzi, Nicola; Franchi, Elena; Calamante, Massimo; Kikic, Ireneo; Alessi, Paolo; Bonacchi, Alice; Salvadori, Edoardo; Arcangeli, Giulio; Cupelli, Vincenzo

2010-01-01

45

Negative radiation in partially ionized gas  

NASA Technical Reports Server (NTRS)

A stationary, nonlinear collisional-radiative model for high-temperature atomic oxygen is presented. Populations of negative ions, electrons, positive ions and excited atoms and intensities of spectral, continuum and dielectronic recombination radiation are calculated in a wide range of conditions. Calculated total continuum emission is in good agreement with existing measurements. The contribution of the negative ion emission to the total continuum emission is found to be significant.

Soon, W. H.; Kunc, J. A.

1990-01-01

46

An efficient negative surface ionization source for RIB generation  

NASA Astrophysics Data System (ADS)

A high-efficiency, negative surface ionization source, equipped with spherical-sector LaB 6 ionizer, has been developed for generating radioactive beams of highly electronegative species for accelerator-based nuclear physics and nuclear astrophysics research. The source utilizes direct-surface ionization to form negative-ion beams resulting from interactions between highly electronegative atoms or molecules and a hot (˜1722 °C) LaB 6 surface. Even though this type of ionizer has a widely publicized propensity for being easily poisoned, no evidence of this effect was experienced during testing of the source. The source has been extensively evaluated off-line in terms of ionization efficiency for generating beams of Cl - and Br - by feeding AlCl 3 and AlBr 3 vapors at low-feed rates into the source. The geometry of the ionization volume is designed to minimize direct losses of neutral particles through the extraction aperture and to enhance the probability for striking the LaB 6 ionizer. The source is reliable, stable and easy to operate, and ionizes Cl - and Br - with efficiencies for formation and extraction of 30% and 20%, respectively. The design features, principles of operation, off-line performance, operational-parameter and beam-quality (emittance) data for the source are presented in this article.

Alton, G. D.; Liu, Y.; Zaim, H.; Murray, S. N.

2003-11-01

47

High sensitivity technetium analysis using negative thermal ionization mass spectrometry  

SciTech Connect

Determination of the reaction products of solar neutrinos with /sup 98/Mo and /sup 97/Mo to produce /approximately/10/sup 8/ atoms of /sup 98/Tc and /sup 97/Tc in 10/sup 4/ tons of ore for the last several million years have prompted the development of highly sensitive isotopic analytical technique for technetium. Secular equilibrium /sup 99/Tc, present in the ore at 10/sup 8/ to 10/sup 9/ atom levels will be used for an internal tracer to fix absolute atom amounts. Previous work has suggested that negative thermal ionization can produce high ionization efficiency for certain selected elements, including technetium. Negative thermal ionization has several advantages over the positive ion approach. Technetium forms the pertechnetate ion while the most common and abundant isobaric impurity, molybdenum, forms MoO/sub 3//sup /minus//. In addition, technetium forms negative ions very efficiently; efficiencies of >2% have been measured. Positive ion techniques are much less efficient. Organic impurities also are much less troublesome in the negative ionization mode. 6 refs.

Rokop, D.J.; Schroeder, N.C.; Wolfsberg, K.

1988-01-01

48

Production of negative osmium ions by laser desorption and ionization  

NASA Astrophysics Data System (ADS)

The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs+ ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionization with pulsed lasers and identification of the ions by time-of-flight mass spectrometry. First investigations of negative osmium ion production using a pulsed laser for desorption and ionization and a commercial matrix-assisted laser desorption/ionization time-of-flight system for identification has demonstrated the suitability of this technique. More than 103 negative osmium ions per shot were registered after bombarding pure osmium powder with a 5 ns pulse width Nd:yttrium aluminum garnet laser. The limitation in the ion number was imposed by the detection limit of the microchannel plate detector.

Rodríguez, D.; Sonnenschein, V.; Blaum, K.; Block, M.; Kluge, H.-J.; Lallena, A. M.; Raeder, S.; Wendt, K.

2010-01-01

49

Production of negative osmium ions by laser desorption and ionization.  

PubMed

The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionization with pulsed lasers and identification of the ions by time-of-flight mass spectrometry. First investigations of negative osmium ion production using a pulsed laser for desorption and ionization and a commercial matrix-assisted laser desorption/ionization time-of-flight system for identification has demonstrated the suitability of this technique. More than 10(3) negative osmium ions per shot were registered after bombarding pure osmium powder with a 5 ns pulse width Nd:yttrium aluminum garnet laser. The limitation in the ion number was imposed by the detection limit of the microchannel plate detector. PMID:20113087

Rodríguez, D; Sonnenschein, V; Blaum, K; Block, M; Kluge, H-J; Lallena, A M; Raeder, S; Wendt, K

2010-01-01

50

Determination of r-7,t-8,9,c-10-tetrahydroxy-7,8,9, 10-tetrahydrobenzo[a]pyrene in human urine by gas chromatography/negative ion chemical ionization/mass spectrometry.  

PubMed

r-7,t-8,9,c-10-Tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (trans-anti-BaP-tetraol) is the major hydrolysis product of r-7, t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE), the principal ultimate carcinogen of the environmental pollutant benzo[a]pyrene (BaP). As part of a program to establish activation/detoxification profiles of urinary metabolites of BaP in humans, we developed a method for quantifying trans-anti-BaP-tetraol. Urine was collected from three groups of individuals exposed to BaP: psoriasis patients treated with a coal tar-containing ointment, steel workers, and smokers. [(2)H(12)]-trans-anti-BaP-tetraol was added to the urine as an internal standard. The urine was treated with beta-glucuronidase and sulfatase, and then the BaP-tetraols were enriched by reverse-phase and phenylboronic acid solid-phase extraction. The resulting fraction was treated with sodium hydride and methylmethane sulfonate to convert BaP-tetraols to the corresponding tetramethyl ethers (BaP-TME). The mixture was purified by normal-phase HPLC and analyzed by gas chromatography/negative ion chemical ionization/mass spectrometry with selected ion monitoring. [(13)CH(3)](4)-trans-anti-BaP-TME was used as an external standard. Ions at m/z 376, 380, and 388 were monitored for quantitation of trans-anti-BaP-TME, [(13)CH(3)](4)-trans-anti-BaP-TME, and [(2)H(12)]-trans-anti-BaP-TME, respectively. The instrumental detection limit was approximately 1 fmol of trans-anti-BaP-TME. trans-anti-BaP-tetraol (as trans-anti-BaP-TME) was detected in 20 of 20 individuals receiving coal tar therapy (mean, 16 fmol/mL of urine), 13 of 13 exposed steel workers (mean, 4.1 fmol/mL of urine), and nine of 21 cigarette smokers (mean, 0.5 fmol/mL of urine). The means in these groups were significantly different (P < 0.0001). The urine of steel workers was also analyzed for cis-anti-BaP-tetraol and cys-syn-BaP-tetraol, but neither was found. The results of this study provide a quantitative method for determination of parts per trillion levels of trans-anti-BaP-tetraol in human urine. Ultimately, this method can be employed as part of a phenotyping approach for assessing BaP metabolites in human urine. PMID:10775327

Simpson, C D; Wu, M T; Christiani, D C; Santella, R M; Carmella, S G; Hecht, S S

2000-04-01

51

Chemical ionization pathways of polyfluorinated chemicals—A connection to environmental atmospheric processes  

Microsoft Academic Search

A systematic mass spectrometry study of an industrially prolific class of polyfluorinated compounds known as telomers was\\u000a conducted. The study specifically focused upon polyfluorinated alcohols along with corresponding saturated and ?,?-unsaturated fluoroacids. Within each class differing fluoroalkyl chain length homologues were investigated, using negative\\u000a and positive chemical ionization mass spectrometry (NCI and PCI). In the case of the fluoroalcohols, NCI

David A. Ellis; Scott A. Mabury

2003-01-01

52

Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry of Carotenoids  

PubMed Central

Carotenoids are natural pigments synthesized by plants and photosynthetic microorganisms, some of which, like ?-carotene, are precursors of vitamin A, and others such as lutein and lycopene might function in the prevention of age-related macular degeneration and prostate cancer, respectively. Mass spectrometry provides high sensitivity and selectivity for the identification and quantitative analysis of carotenoids in biological samples, and previous studies have described how atmospheric pressure chemical ionization (APCI) offers distinct advantages over electrospray and fast atom bombardment for the analysis of specific carotenoids. Since APCI product ion tandem mass spectra have been reported for only a few carotenoids, a detailed investigation of twelve carotenes and xanthophylls was carried out using both positive ion and negative ion APCI tandem mass spectrometry with collision-induced dissociation. Using protonated molecules as precursor ions in positive ion mode and radical anions in negative ion mode, characteristic fragment ions were identified that may be used to distinguish between carotenoids.

van Breemen, Richard B.; Dong, Linlin; Pajkovic, Natasa D.

2011-01-01

53

Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.  

PubMed

Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

Albert, Anastasia; Engelhard, Carsten

2012-12-18

54

ELECTRON-CAPTURE NEGATIVE IONIZATION CALIBRANTS FOR MAGNETIC SECTOR MASS SPECTROMETERS  

EPA Science Inventory

Fomblin poly(perfluoropropylene oxide). FK (perfluorokerosene) and FC-43 (perflurotributylamine) are investigated as mass calibrants in electron-capture negative ionization mass spectrometry on a magnetic sector hybrid mass spectrometer. This work provides exact negative ion mass...

55

Simulation of the Partially Ionized Reacting Plasma Flow in a Negative Hydrogen Ion Source  

NASA Astrophysics Data System (ADS)

A High Pressure Discharge Negative Ion Source (HPDNIS) operating on hydrogen is been under investigation. The Negative Ion Production (NIP) section of the HPDNIS attaches to the 10-100 Torr RF-discharge chamber with a micronozzle and ends with a grid that extracts the negative ion beam. The partially ionized and reacting plasma flow in the NIP section is simulated using an unstructured three-dimensional Direct Simulation Monte Carlo (U3DSMC) code. The NIP section contains a low-pressure plasma that includes H2, vibrationally-rotationally excited H2^*, negative hydrogen atoms H^-, and electrons. Primary reactions in the NIP section are dissociate attachment, H2^*+e->H^0+H^-and electron collisional detachment, e+H^-->H+2e. The U3DSMC computational domain includes the entrance to the NIP nozzle and the extraction grid at the exit. The flow parameters at the entrance are based on conditions in the RF-discharge chamber and are implemented in U3DSMC using a Kinetic-Moment subsonic boundary conditions method. The rotational and vibrational degrees of freedom in U3DSMC are implemented using the Larsen-Borgnakke model. Chemical reactions are implemented in U3DSMC using the Quantum-Kinetic model. Simulations cover the regime of operation of the HPDNIS and examine the flow characteristics inside the NIP section.

Gatsonis, Nikolaos; Averkin, Sergey; Olson, Lynn

2012-10-01

56

Comparison of metastable atom bombardment and electron capture negative ionization for the analysis of polychloroalkanes  

Microsoft Academic Search

A new method for quantifying C10–C13 polychloroalkanes (PCAs or chloroparaffins, CPs) in environmental samples using metastable atom bombardment ionization (MAB) and high resolution mass spectrometry is presented. Contrary to electron capture negative ionization (ECNI), MAB can produce spectra for molecules having a low number of chlorine atoms. These molecules are present in commercial PCAs and are responsible for a large

Serge Moore; Louis Vromet; Bernard Rondeau

2004-01-01

57

Ionization equilibrium and equation of state of partially ionized hydrogen plasmas: Pseudopotential approach in chemical picture  

SciTech Connect

Starting from the Bogolyubov hierarchy for the equilibrium distribution functions, a novel approach to the chemical model of partially ionized plasmas is proposed. Unlike the ordinary chemical picture it allows one to determine, in a self-consistent manner, both the ionization equilibrium and correlation functions as well. It is shown that the charged and neutral components of the plasma are closely interrelated and, as a consequence, the short-range order formation turns possible. The equation of state of partially ionized hydrogen plasmas is studied and detailed comparison with an exact quantum-mechanical expansion is made. The approach developed is quite analogous to the Debye-Hueckel theory of weakly coupled fully ionized plasmas and includes it as a limiting case.

Arkhipov, Yu.V.; Baimbetov, F.B.; Davletov, A.E. [Department of Physics, Kazakh National University, Tole Bi 96, 480012 Almaty (Kazakhstan)

2005-08-15

58

Chemical probes of metal cluster ionization potentials  

SciTech Connect

A procedure is described for the determination of metal cluster ionization potentials (IPs) using available excimer laser lines that gives error limits substantially smaller than traditional bracketing experiments. It is based on the observation that the adsorption of ammonia on cluster surfaces lowers cluster IPs, and that the IP lowering is linear in the number of adsorbed NH{sub 3} molecules. By determining the minimum number of NH{sub 3} molecules needed for ionization by the various excimer lasers, an approximation to the dependence of IP on coverage can be deduced. Extrapolation of this dependence to zero coverage gives the bare cluster IPs. Results are presented for clusters of iron, cobalt, and nickel having from 4 to 100 atoms. The effect of molecular adsorption on cluster IPs is analyzed theoretically, and the comparison with experimental results used to estimate the effective dipole moment of NH{sub 3} molecules adsorbed on these clusters. Comparison of the bare cluster IPs with the simple spherical drop model suggests that for transition metal clusters the Fermi level can be a significant function of cluster size.

Parks, E.K.; Klots, T.D.; Riley, S.J. (Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (US))

1990-03-15

59

Stability of negative ionization fronts: Regularization by electric screening?  

PubMed

We recently have proposed that a reduced interfacial model for streamer propagation is able to explain spontaneous branching. Such models require regularization. In the present paper we investigate how transversal Fourier modes of a planar ionization front are regularized by the electric screening length. For a fixed value of the electric field ahead of the front we calculate the dispersion relation numerically. These results guide the derivation of analytical asymptotes for arbitrary fields: for small wave-vector k, the growth rate s(k) grows linearly with k, for large k, it saturates at some positive plateau value. We give a physical interpretation of these results. PMID:15089399

Arrayás, Manuel; Ebert, Ute

2004-03-01

60

Peroxy radical observations using chemical ionization mass spectrometry during TOPSE  

Microsoft Academic Search

Peroxy radicals (HO2 + RO2) were measured by chemical conversion-chemical ionization mass spectroscopy in the TOPSE (Tropospheric Ozone Production about the Spring Equinox) campaign that took place February through May 2000. Instrumentation for these measurements was deployed on the NCAR\\/NSF C-130 aircraft that flew at latitudes from 40 to 85°N, and altitudes from the surface to 7.5 km over the

Christopher A. Cantrell; G. D. Edwards; S. Stephens; L. Mauldin; E. Kosciuch; M. Zondlo; F. Eisele

2003-01-01

61

A source of polarized negative hydrogen ions with deuterium plasma ionizer  

NASA Astrophysics Data System (ADS)

An atomic beam-type source of polarized negative hydrogen ions with deuterium plasma ionizer has been developed. A charge-exchange reaction between thermal polarized hydrogen atoms and negative deuterium ions is used for production of polarized hydrogen negative ions. A polarized beam with peak current up to 150 ?A and pulse duration 100 ?s has been obtained from the source at repetition rate 5 Hz. The results of experimental test of the source developed and polarized beam emittance measurement are presented.

Belov, A. S.; Kuzik, V. E.; Nechaeva, L. P.; Vasil'Ev, G. A.; Plokhinski, Yu. V.; Yakushev, V. P.; Dudnikov, V. G.

1993-12-01

62

A source of polarized negative hydrogen ions with deuterium plasma ionizer  

NASA Astrophysics Data System (ADS)

An atomic beam-type source of polarized negative hydrogen ions with deuterium plasma ionizer has been developed. A charge-exchange reaction between thermal polarized hydrogen atoms and negative deuterium ions is used for production of polarized hydrogen negative ions. A polarized beam with a peak current up to 150 ?A and a pulse duration 100 ?s has been obtained from the source at repetition rate 5 Hz. The results of experimental test of the source developed are presented.

Belov, A. S.; Dudnikov, V. G.; Kuzik, V. E.; Plokhinsky, Yu. V.; Yakushev, V. P.

1993-09-01

63

UPTAKE OF IONIZABLE ORGANIC CHEMICALS AT FISH GILLS  

EPA Science Inventory

Uptake of organic acids by fish, and their toxicity, generally decrease with increasing pH above the pK, presumably due to neutral forms of such chemicals being more readily adsorbed than their ionized forms. However, uptake usually exceeds that expected based just on the concent...

64

Diffuse ionized gas and chemical abundances in IC 1727  

NASA Astrophysics Data System (ADS)

Long-slit spectroscopy results of the dwarf spiral galaxy IC 1727, which is interacting with NGC 672, are presented. The extinction, excitation, density and shocks throughout the galaxy are studied, as well as the oxygen abundances of a total of 22 H II regions. The interstellar medium of this galaxy is very perturbed, with high values of the [S II]/H? ratio and high excitation values throughout the galaxy (inside the H II regions and in the diffuse ionized gas). Such values might be an indication of strong perturbations resulting from the interaction between IC 1727 and NGC 672. Shocks are the second source of ionization of the diffuse ionized gas, after leaking photons from H II regions. The chemical abundance of this galaxy is well below solar and closer to the values of the Large Magellanic Cloud. The abundances differ between the various H II regions of the galaxy, as observed in other spiral galaxies.

Ramirez-Ballinas, I.; Hidalgo-Gámez, A. M.

2014-08-01

65

Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals.  

PubMed

In this work, the combined use of desorption by a continuous wave near-infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of nonvolatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, ease of use, and small size. To achieve an efficient desorption, the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, cyclo-1,3,5,7-tetramethylene tetranitrate (HMX), and cyclo-1,3,5-trimethylene trinitramine (RDX)). A comparative evaluation revealed that the use of the laser is advantageous, compared to just heating the substrate surface. PMID:23419061

Gilbert-López, Bienvenida; Schilling, Michael; Ahlmann, Norman; Michels, Antje; Hayen, Heiko; Molina-Díaz, Antonio; García-Reyes, Juan F; Franzke, Joachim

2013-03-19

66

Terahertz Spectroscopy of Water Vapors, Chemical Vapors and Ionized Air  

NASA Astrophysics Data System (ADS)

In the past, a few research groups have demonstrated that terahertz spectroscopy could be a useful tool for the identification of chemicals. However most of those demonstrations have been done with solid-phase or liquid-phase chemicals. There are little demonstrations for the detection and identification of chemicals in the gas-phase, as it is very difficult in part due to the presence of water-absorption lines in the terahertz frequency range. As the water absorption lines predominate in the 0.1 - 2THz spectral range, and can interfere with already weak terahertz signatures generated by chemical vapors, it is often very hard to obtain meaningful terahertz spectrum of chemical vapor. Regardless we recently have been able to obtain some terahertz spectra of chemical vapors and ionized air produced by several different ionization sources, including corona discharge and nuclear isotopes. Throughout data analysis we learned that water molecules, nitrogen and oxygen molecules play very important roles in these terahertz spectra. In this presentation we will discuss our experiments and the roles of these molecules.

Graber, Benjamin; Tao, Rongjia; Wu, Dong Ho

2013-03-01

67

An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure.  

PubMed

A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed also with reference to available thermochemical data and relevant literature reports. The effects on both positive and negative APCI spectra due to ion activation via increasing V(cone) are also reported and discussed: several interesting endothermic processes are observed under these conditions. The results provide important information on the role of ionic reactions in non-thermal plasma processes. PMID:15282758

Marotta, Ester; Paradisi, Cristina; Scorrano, Gianfranco

2004-07-01

68

Self-consistent chemical model of partially ionized plasmas  

SciTech Connect

A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E. [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 050012 (Kazakhstan)

2011-01-15

69

Determination of S-1 (combined drug of tegafur, 5-chloro-2,4-dihydroxypyridine and potassium oxonate) and 5-fluorouracil in human plasma and urine using high-performance liquid chromatography and gas chromatography-negative ion chemical ionization mass spectrometry.  

PubMed

A high-performance liquid chromatography (HPLC) and gas chromatography-negative ion chemical ionization mass spectrometry (GC-NICI-MS) method was developed for the analysis of the combined antitumor drug S-1 (tegafur, 5-chloro-2,4-dihydroxypyridine and potassium oxonate) and active metabolite 5-fluorouracil in human plasma and urine. Tegafur was fractionated from biological fluids by extraction with dichloromethane and analyzed by HPLC. 5-Fluorouracil and 5-chloro-2,4-dihydroxypyridine were extracted with ethyl acetate from the residual layer after extraction of tegafur, and converted to pentafluorobenzyl (PFB) derivatives. Potassium oxonate was cleaned up with an anion-exchange column (Bond Elut NH2). The extracted potassium oxonate was degraded to 5-azauracil and converted to PFB derivatives. The PFB derivatives were analyzed by GC-NICI-MS. A stable isotope was employed as the internal standard in the GC-NICI-MS analysis. The limits of quantitation of tegafur, 5-fluorouracil, 5-chloro-2,4-dihydroxypyridine and potassium oxonate in plasma were 10, 1, 2 and 1 ng/ml, respectively. The reproducibility of the analytical method according to the statistical coefficients is approximately 10%. The accuracy of the method is good; that is, the relative error is < 10%. The methods were applied to pharmacokinetic studies of S-1 in patients. PMID:9140762

Matsushima, E; Yoshida, K; Kitamura, R; Yoshida, K

1997-03-28

70

Chemical ionization Fourier transform mass spectrometry of chemical warfare agent simulants using laser produced metal ions  

Microsoft Academic Search

In an initial investigation of the potential utility of chemical ionization (CI) mass spectrometry of selected analogs of chemical warfare agents using metal ions, the reactions of manganese ions with chloroalkyl sulfides and organophosphonates have been followed in a Fourier transform mass spectrometer. Mn{sup +} ions, produced by UV laser radiation focused on a stainless steel target, react rapidly with

Chih-Cong Chou; S. Randolph Long

1990-01-01

71

Chemical Ionization Mass Spectrometric Measurements of Atmospheric Trace Gases  

NASA Astrophysics Data System (ADS)

Chemical Ionization Mass Spectrometry (CIMS) is a versatile, fast and sensitive method for the detection of atmospheric trace gases, which play key roles in atmospheric chemistry and climate. A combination of different types of mass spectrometers, ion sources and inlet configurations are deployed by IPA. Sophisticated calibration techniques and in-flight calibration systems are developed to ensure high data quality. The CIMS instruments are employed preferably on research aircraft; in addition, observations are performed on ships, ground based sites and in laboratory scenarios including atmospheric chambers.

Aufmhoff, Heinfried; Schäuble, Dominik; Roiger, Anke; Arnold, Frank; Jurkat, Tina; Voigt, Christiane; Schlager, Hans

72

A Thermal Desorption Chemical Ionization Ion Trap Mass Spectrometer for the Chemical Characterization of Ultrafine Aerosol Particles  

Microsoft Academic Search

The development of a thermal desorption chemical ionization ion trap mass spectrometer for the chemical characterization of ultrafine aerosol particles is reported and first experimental results are presented. Atmospheric particles are size-classified and collected using a unipolar charger, a radial differential mobility analyzer and an electrostatic precipitator, and analyzed after thermal desorption and chemical ionization using an ion trap mass

Andreas Held; G. Jeffrey Rathbone; James N. Smith

2009-01-01

73

Negative ion electrospray mass spectrometry of nucleotides: ionization from water solution with SF 6 discharge suppression  

Microsoft Academic Search

The total current and selected ion currents from the electrospray ionization (ES1) of 10?5 M solutions of cocaine hydrochloride and deoxycytidine monophosphate (dCMP) monosodium salt in methanol and water solvents\\u000a were compared in positive and negative ion modes, respectively, without and with SF6, gas as a discharge suppressant. The ESI onset voltages (Von), were the same for the positive and

Francis M. Wampler; Arthur T. Blades; Paul Kebarle

1993-01-01

74

Negative ion mass spectral fragmentation of N-alkoxycarbonyl-1-aminoarylmethylphosphonic monoesters under electrospray ionization conditions  

Microsoft Academic Search

The negative ion mass spectrometry of N-benzyloxycarbonyl and N-ethoxycarbonyl 1-aminoarylmethylphosphonic methyl, ethyl, and phenyl monoesters was investigated under electrospray ionization conditions. Their fragmentation pathways are proposed and supported by collisional activated dissociation product-ion spectrometry. All of the deprotonated molecules preferentially eliminate a molecule of benzyl alcohol or ethanol first to yield isocyanato-alkylphosphonate anions, which further generate phosphonate ions by the

Xueguang Lv; Jiaxi Xu

2012-01-01

75

Isolation and chemical characterization of lipid A from gram-negative bacteria.  

PubMed

Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds. PMID:24084191

Henderson, Jeremy C; O'Brien, John P; Brodbelt, Jennifer S; Trent, M Stephen

2013-01-01

76

A new concept positive (negative) surface ionization source for RIB applications  

SciTech Connect

A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed. fabricated, and tests completed which can operate in either positive- or negative-ion beam generation modes without mechanical changes to the source. The highly permeable, composite Ir/C has an intrinsic work function of 0 = 5.29 eV and can be used directly for the generation of positive-ion beams of highly electropositive elements. For negative-surface ionization, the work function is lowered by dynamic flow of a highly electropositive adsorbate such as Cs through the ionizer matrix. The results of initial testing indicate that the source is reliable, stable and easy to operate, with efficiencies for Cs{sup +} estimated to exceed 60% and as high as {approximately}50% for F{sup -} generation. The design features, operational principles, and initial performance of the source for generating Cs{sup +} and F{sup -}, when operated with Cs, are discussed in this article.

Alton, G.D. [Oak Ridge National Lab., TN (United States); Welton, R.F. [Oak Ridge Institute of Science and Engineering, TN (United States); Cui, B. [China Institute of Atomic Energy, Beijing (China)] [and others

1996-12-31

77

LC-MS analysis of estradiol in human serum and endometrial tissue: Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization.  

PubMed

Accurate measurement of estradiol (E2) is important in clinical diagnostics and research. High sensitivity methods are critical for specimens with E2 concentrations at low picomolar levels, such as serum of men, postmenopausal women and children. Achieving the required assay performance with LC-MS is challenging due to the non-polar structure and low proton affinity of E2. Previous studies suggest that ionization has a major role for the performance of E2 measurement, but comparisons of different ionization techniques for the analysis of clinical samples are not available. In this study, female serum and endometrium tissue samples were used to compare electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) in both polarities. APPI was found to have the most potential for E2 analysis, with a quantification limit of 1 fmol on-column. APCI and ESI could be employed in negative polarity, although being slightly less sensitive than APPI. In the presence of biological background, ESI was found to be highly susceptible to ion suppression, while APCI and APPI were largely unaffected by the sample matrix. Irrespective of the ionization technique, background interferences were observed when using the multiple reaction monitoring transitions commonly employed for E2 (m/z 271?>?159; m/z 255?>?145). These unidentified interferences were most severe in serum samples, varied in intensity between ionization techniques and required efficient chromatographic separation in order to achieve specificity for E2. PMID:24078246

Keski-Rahkonen, Pekka; Huhtinen, Kaisa; Desai, Reena; Harwood, D Tim; Handelsman, David J; Poutanen, Matti; Auriola, Seppo

2013-09-01

78

Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes  

NASA Technical Reports Server (NTRS)

Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

1995-01-01

79

Microchip atmospheric pressure chemical ionization source for mass spectrometry.  

PubMed

A novel microchip heated nebulizer for atmospheric pressure chemical ionization mass spectrometry is presented. Anisotropic wet etching is used to fabricate the flow channels, inlet, and nozzle on a silicon wafer. An integrated heater of aluminum is sputtered on a glass wafer. The two wafers are jointed by anodic bonding, creating a two-dimensional version of an APCI source with a sample channel in the middle and gas channels symmetrically on both sides. The ionization is initiated with an external corona-discharge needle positioned 2 mm in front of the microchip heated nebulizer. The microchip APCI source provides flow rates down to 50 nL/min, stable long-term analysis with chip lifetime of weeks, good quantitative repeatability (RSD < 10%) and linearity (r(2) > 0.995) with linear dynamic rage of at least 4 orders of magnitude, and cost-efficient manufacturing. The limit of detection (LOD) for acridine measured with microchip APCI at flow rate of 6.2 muL/min was 5 nM, corresponding to a mass flow of 0.52 fmol/s. The LOD with commercial macro-APCI at a flow rate of 1 mL/min for acridine was the same, 5 nM, corresponding to a significantly worse mass flow sensitivity (83 fmol/s) than measured with microchip APCI. The advantages of microchip APCI makes it a very attractive new microfluidic detector. PMID:15538790

Ostman, Pekka; Marttila, Seppo J; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

2004-11-15

80

Ion chemistry of VX surrogates and ion energetics properties of VX: new suggestions for VX chemical ionization mass spectrometry detection.  

PubMed

Room temperature rate constants and product ion branching ratios have been measured for the reactions of numerous positive and negative ions with VX chemical warfare agent surrogates representing the amine (triethylamine) and organophosphonate (diethyl methythiomethylphosphonate (DEMTMP)) portions of VX. The measurements have been supplemented by theoretical calculations of the proton affinity, fluoride affinity, and ionization potential of VX and the simulants. The results show that many proton transfer reactions are rapid and that the proton affinity of VX is near the top of the scale. Many proton transfer agents should detect VX selectively and sensitively in chemical ionization mass spectrometers. Charge transfer with NO(+) should also be sensitive and selective since the ionization potential of VX is small. The surrogate studies confirm these trends. Limits of detection for commercial and research grade CIMS instruments are estimated at 80 pptv and 5 ppqv, respectively. PMID:20384284

Midey, Anthony J; Miller, Thomas M; Viggiano, A A; Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji

2010-05-01

81

Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates  

Microsoft Academic Search

The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M +

B. R. DeMark; P. D. Klein

1981-01-01

82

Isotopomer differentiation using metal ion chemical ionization reagents  

SciTech Connect

In this paper we demonstrate that transition metal ion chemical ionization used in conjunction with Fourier transform mass spectrometry holds promise as a simple, qualitative, and potentially quantitative method for determining isotopolog and isotopomer distributions in partially deuterated cyclic hydrocarbons. The isotopolog distribution is obtained by generating the pseudomolecular ions, ML[sup +] (M = transition metal; L = cyclic hydrocarbon). A particular isotopolog can then be isolated followed by collision-induced dissociation resulting in dehydrogenation. The dehydrogenation process is regio- and stereoselective, permitting information to be obtained on the isotopomer composition within the particular isotopolog. The samples analyzed are the end products from the metal-catalyzed hydrogenation of perdeuterated naphthalene and benzene. The isotope effects observed in the dehydrogenation reactions are studied. Compared to high-resolution NMR, this method requires far less sample, easily detects components of low concentration which might be obscured by the major species in NMR, and is far less difficult to interpret. 12 refs., 11 figs.

Huang, Y.; Profilet, R.D.; Ng, J.H.; Ranasinghe, Y.A.; Rothwell, I.P.; Freiser, B.S. (Purdue Univ., West Lafayette, IN (United States))

1994-04-01

83

Analysis of Genetically Modified Canola Varieties by Atmospheric Pressure Chemical Ionization Mass Spectrometric and Flame Ionization Detection  

Microsoft Academic Search

Canola oil triacylglycerols from genetically modified canola lines were conclusively identified by reverse phase HPLC coupled with atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection. APCI-MS is a soft ionization technique, which gave simple spectra for triacylglycerols. Spectral identification of the triacylglycerols was based on the diacylglycerol fragments and on the protonated molecular ion [M+H], except trisaturates which gave no

William C. Byrdwell; William E. Neff

1996-01-01

84

Peroxy radical observations using chemical ionization mass spectrometry during TOPSE  

NASA Astrophysics Data System (ADS)

Peroxy radicals (HO2 + RO2) were measured by chemical conversion-chemical ionization mass spectroscopy in the TOPSE (Tropospheric Ozone Production about the Spring Equinox) campaign that took place February through May 2000. Instrumentation for these measurements was deployed on the NCAR/NSF C-130 aircraft that flew at latitudes from 40 to 85°N, and altitudes from the surface to 7.5 km over the North American continent. The measurements demonstrate the evolution of photochemical activity as time progresses through the study period due to increases in free radical source rates. The increase in average peroxy radical concentration moves northward as the maximum solar elevation and length of sunlit days increase. HOxROx (HO2 + RO2) concentrations are distributed lognormally with means of 11.5 and 7.8 pptv for the middle-latitude band (MLB) and high-latitude band (HLB), respectively. The observations agree well on average with steady state derived concentrations; measurement-model concentration ratios are 1.04 (MLB) and 0.94 (HLB). Concentrations within a given latitude band and altitude region sometimes appear to increase with NOx concentrations, but this correlation nearly disappears at low and moderate NOx levels when the data are parsed by radical production rate; lower radical levels are observed at the highest NOx levels measured (near 1 ppbv). These data are compared with results from other recent observations utilizing a variety of platforms.

Cantrell, Christopher A.; Edwards, G. D.; Stephens, S.; Mauldin, L.; Kosciuch, E.; Zondlo, M.; Eisele, F.

2003-03-01

85

Liquid Chromatography Electrospray Ionization Mass Spectrometric (LC- ESI-MS) and Desorption Electrospray Ionization Mass Spectrometric (DESI-MS) Identification of Chemical Warfare Agents in Consumer Products.  

National Technical Information Service (NTIS)

Terrorist use of chemical warfare agents could involve contamination of consumer products with chemical warfare agents or other toxic chemicals. Liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and desorption electrospray ioniza...

C. L. Chenier P. A. D'Agostino

2007-01-01

86

Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry  

NASA Astrophysics Data System (ADS)

Chemical ionization mass spectrometry (CIMS) enables online, rapid, in situ detection and quantification of hydroxyacetone and glycolaldehyde. Two different CIMS approaches are demonstrated employing the strengths of single quadrupole mass spectrometry and triple quadrupole (tandem) mass spectrometry. Both methods are generally capable of the measurement of hydroxyacetone, an analyte with known but minimal isobaric interferences. Tandem mass spectrometry provides direct separation of the isobaric compounds glycolaldehyde and acetic acid using distinct, collision-induced dissociation daughter ions. The single quadrupole CIMS measurement of glycolaldehyde was demonstrated during the ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites - California Air Resources Board) 2008 campaign, while triple quadrupole CIMS measurements of glycolaldehyde and hydroxyacetone were demonstrated during the BEARPEX (Biosphere Effects on Aerosols and Photochemistry Experiment) 2009 campaign. Enhancement ratios of glycolaldehyde in ambient biomass-burning plumes are reported for the ARCTAS-CARB campaign. BEARPEX observations are compared to simple photochemical box model predictions of biogenic volatile organic compound oxidation at the site.

St. Clair, J. M.; Spencer, K. M.; Beaver, M. R.; Crounse, J. D.; Paulot, F.; Wennberg, P. O.

2014-04-01

87

Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS  

Microsoft Academic Search

The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass\\u000a spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined.\\u000a Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified\\u000a reference materials (CRM) of CWA degradation products for the detection

Wes E. Steiner; Charles S. Harden; Feng Hong; Steve J. Klopsch; Vincent M. McHugh

2006-01-01

88

Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.  

PubMed

A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 ?g/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 ?g/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring. PMID:23339735

Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

2013-03-01

89

Direct Laser Ablation and Ionization of Solids for Chemical Analysis by Mass Spectrometry.  

National Technical Information Service (NTIS)

A laser ablation/ionization mass spectrometer system is described for the direct chemical analysis of solids. An Nd:YAG laser is used for ablation and ionization of the sample in a quadrupole ion trap operated in an ion-storage (IS) mode that is coupled w...

J. K. Holt E. J. Nelson G. L. Klunder

2005-01-01

90

Chemical Ionization Mass Spectrometry. Vii. Reactions of Benzene Ions with Benzene.  

National Technical Information Service (NTIS)

In the electron impact mass spectrum of benzene measured at pressures between 1 and 1000 microns, the predominant C6H6(+) ion does not react rapidly with benzene. Ionization of benzene by electron transfer to rare gas ions under chemical ionization condit...

F. H. Field P. Hamlet W. F. Libby

1967-01-01

91

Measurement of phospholipid fatty acids at picomolar concentrations in biofilms and deep subsurface sediments using gas chromatography and chemical ionization mass spectrometry  

Microsoft Academic Search

Summary Examination of ester-linked phospholipid fatty acids (PLFA) have provided a means to characterize the community structure of microbial assemblies. Attempts to analyze such acids at low picomolar levels in environmental samples by gas chromatography and chemical ionization mass spectrometry (CIMS) using positive or negative ion detection, showed that the limit of detection (LOD) was mainly dependent on the background

A. Tunlid; D. Ringelberg; T. J. Phelps; C LOW; D WHITE

1989-01-01

92

Tropospheric Airborne and Ground-based Peroxy Radical Observations using Chemical Ionization Mass Spectroscopy  

Microsoft Academic Search

We report on recent instrumental improvements to our Peroxy Radical Chemical Ionization Mass Spectrometer (PerCIMS) that allow us to nearly simultaneously measure HO2 + RO2 and HO2 only. This is accomplished through a technique we call \\

C. A. Cantrell; R. S. Anderson; R. L. Mauldin; E. Kosciuch; F. L. Eisele

2005-01-01

93

Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.  

PubMed

A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

2014-05-01

94

CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)  

EPA Science Inventory

A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

95

Atmospheric pressure chemical ionization of alkanes, alkenes, and cycloalkanes  

Microsoft Academic Search

Normal and cyclic alkanes and alkenes form stable gas-phase ions in air at atmospheric pressure from 40 to 200°C when moisture\\u000a is below 1 ppm. Ionization of alkanes in a 63Ni source favored charge transfer over proton transfer through pathways involving [M?1]+ and [M?3]+ ions. Ion mobility spectra for alkanes showed sharp and symmetrical profiles while spectra for alkenes suggested

Suzanne Ehart Bell; Robert G. Ewing; Gary A. Eicernan; Zeev Karpas

1994-01-01

96

Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry  

Microsoft Academic Search

There is an increasing need to be able to conduct quantitative lipidomics analyses as a complement to proteomics studies. The highest specificity for proteomics analysis can be obtained using meth- odology based on electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) coupled with liquid chromatography\\/tandem mass spectrometry (LC\\/MS\\/MS). For lipidomics ana- lysis it is often necessary to be able

Seon Hwa Lee; Michelle V. Williams; Raymond N. DuBois; Ian A. Blair

2003-01-01

97

Mass spectrometric behavior of anabolic androgenic steroids using gas chromatography coupled to atmospheric pressure chemical ionization source. Part I: Ionization.  

PubMed

The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC-MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time-of-flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)-derivatized compounds have been investigated. The use of GC-APCI-MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H](+) ), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H](+) , [M+H-H2 O](+) and [M+H-2·H2 O](+) for underivatized AAS and [M+H](+) , [M+H-TMSOH](+) and [M+H-2·TMSOH](+) for TMS-derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS-based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24913403

Raro, M; Portolés, T; Sancho, J V; Pitarch, E; Hernández, F; Marcos, J; Ventura, R; Gómez, C; Segura, J; Pozo, O J

2014-06-01

98

Unfolding of proteins monitored by electrospray ionization mass spectrometry: a comparison of positive and negative ion modes  

Microsoft Academic Search

Electrospray ionization (ESI) mass spectrometry (MS) in both the positive and negative ion mode has been used to study protein\\u000a unfolding transitions of lysozyme, cytochrome c (cyt c), and ubiquitin in solution. As expected, ESI of unfolded lysozyme leads to the formation of substantially higher charge\\u000a states than the tightly folded protein in both modes of operation. Surprisingly, the acid-induced

Lars Konermann; D. J. Douglas

1998-01-01

99

Identification of ground water contaminations by landfills using precise boron isotope ratio measurements with negative thermal ionization mass spectrometry  

Microsoft Academic Search

Precise boron isotope ratio measurements with negative thermal ionization mass spectrometry were used for the identification\\u000a of ground water contaminations by leakages of landfills. BO-\\u000a 2thermal ions were produced to determine the 11B\\/10B isotope ratio, which was expressed as ?11B value in ‰ normalized to the standard reference material NIST SRM 951. For example, household waste influences the boron\\u000a isotope

S. Eisenhut; K. G. Heumann

1997-01-01

100

Negative Ion Mass Spectral Fragmentation of N-Alkoxycarbonyl-1-Aminoarylmethyl Phosphonic Monoesters under Electrospray Ionization Conditions  

Microsoft Academic Search

The negative ion mass spectrometry of N-benzyloxycarbonyl and N-ethoxycarbonyl 1-aminoarylmethylphosphonic methyl, ethyl, and phenyl monoesters was investigated under electrospray ionization conditions. Their fragmentation pathways are proposed and supported by collisional activated dissociation product-ion spectrometry. All of the deprotonated molecules preferentially eliminate a molecule of benzyl alcohol or ethanol first to yield isocyanato-alkylphosphonate anions, which further generate phosphonate ions by the

Xueguang Lv; Jiaxi Xu

2012-01-01

101

Iline negative resist (INR): a negative-tone Iline chemically amplified photoresist  

Microsoft Academic Search

INR, an I-line negative photoresist, is described. Acid catalyzed cross-linking of phenolic resins using a non-metallic photoacid generator, 2,6-bishydroxymethyl-p-cresol as a cross- linker, and 9-anthracene methanol as an I-line sensitizer results in a very high photospeed aqueous TMAH developable photoresist. Poly(p-hydroxystyrene) was found to have advantages over novolac resins for formulation of high performance negative I-line photoresist. Advantages obtained by

Leo L. Linehan; Gary T. Spinillo; Randolph S. Smith; Wayne M. Moreau; Barry C. McCormick; Robert L. Wood; Erik A. Puttlitz; James P. Collins; William J. Miller

1994-01-01

102

Role of gas dynamics in negative ion formation in an atmospheric sampling glow discharge ionization source  

SciTech Connect

A version of the atmospheric sampling glow discharge ionization (ASGDI) source was developed to study the role of gas dynamics on anion formation. This source, which is used in conjunction with mass spectrometry for direct air monitoring, was designed so several key instrumental dimensions as well as operating parameters could be readily changed. Such flexibility permitted the study of ionization processes in ASGDI and the parameters that can be controlled to favor a particular ion product. One aspect of ASGDI that was found to influence ionization yield was the hydrodynamic properties of the sample inlet free-jet expansion. From these investigations, it was found that mean molecular flow of species expanding toward the skimmer could be manipulated to favor kinetically fast reactions over more thermodynamically preferred reactions. In the case of 2,4-dinitrotoluene, observation of the M[sup [minus

Chambers, D.M.; McLuckey, S.A.; Glish, G.L. (Oak Ridge National Lab., TN (United States))

1993-03-15

103

Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids  

Microsoft Academic Search

Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated

Steven B. Hawthorne; David J. Miller

1986-01-01

104

Kinetics and continuum emission of negative atomic ions in partially ionized plasmas  

NASA Technical Reports Server (NTRS)

Kinetics and continuum emission of negative ions are studied in stationary atomic hydrogen, nitrogen, and oxygen plasmas. The intensity of the negative-ion emission was found to be neglibible when compared to those of bound-bound and free-bound emission at low and medium particle densities. However, the negative-ion continuum emission can contribute significantly in certain parts of the emission spectrum at high particle densities.

Soon, W. H.; Kunc, J. A.

1991-01-01

105

[Development of a membrane inlet-single photon ionization/chemical ionization-mass spectrometer for online analysis of VOCs in water].  

PubMed

A home-made membrane inlet- single photon ionization/chemical ionization- time-of-flight mass spectrometer has been described. A vacuum ultraviolet (VUV) lamp with photon energy of 10.6 eV was used as the light source for single photon ionization (SPI). Chemical ionization (CI) was achieved through ion-molecule reactions with O2- reactant ions generated by photoelectron ionization. The two ionization modes could be rapidly switched by adjusting electric field in the ionization region within 2 s. Membrane inlet system used for rapid enrichment of volatile organic compounds (VOCs) in water was constructed by using a polydimethylsiloxane (PDMS) membrane with a thickness of 50 microm. A purge gas was added to accelerate desorption of analytes from the membrane surface. The purge gas could also help to prevent the pump oil back-streaming into the ionization region from the analyzer chamber and improve the signal to noise ratio (S/N). Achieved detection limits were 2 microg x L(-1) for methyl tert-butyl ether (MTBE) in SPI mode and 1 microg x L(-1) for chloroform in SPI-CI mode within 10 s analysis time, respectively. The instrument has been successfully applied to the rapid analysis of MTBE in simulated underground water nearby petrol station and VOCs in disinfected drinking water. The results indicate that the instrument has a great application prospect for online analysis of VOCs in water. PMID:22468530

Hua, Lei; Wu, Qing-Hao; Hou, Ke-Yong; Cui, Hua-Peng; Chen, Ping; Zhao, Wu-Duo; Xie, Yuan-Yuan; Li, Hai-Yang

2011-12-01

106

A mass spectral library based on chemical ionization and collision-induced dissociation  

Microsoft Academic Search

A so-called CI–CID mass spectral library based on GC–CI-MS–MS, LC–TSP-MS–MS, LC–ESI-MS–MS and LC–APCI-MS–MS data has been created and evaluated. The main advantage of the CI–CID spectral library is the independence of the chemical ionization and\\/or collision-induced dissociation procedure and the system apparatus used. Comparison of MS–MS spectra from different ionization methods indicate that fragment ions most often have the same

P. G. M Kienhuis; R. B Geerdink

2002-01-01

107

Fragmentation of allylmethylsulfide by chemical ionization: dependence on humidity and inhibiting role of water.  

PubMed

We report on a previously unknown reaction mechanism involving water in the fragmentation reaction following chemical ionization. This result stems from a study presented here on the humidity-dependent and energy-dependent endoergic fragmentation of allyl methyl sulfide (AMS) upon protonation in a proton transfer reaction-mass spectrometer (PTR-MS). The fragmentation pathways were studied with experimental (PTR-MS) and quantum chemical methods (polarizable continuum model (PCM), microhydration, studied at the MP2/6-311+G(3df,2p)//MP2/6-31G(d,p) level of theory). We report in detail on the energy profiles, reaction mechanisms, and proton affinities (G4MP2 calculations). In the discovered reaction mechanism, water reduces the fragmentation of protonated species in chemical ionization. It does so by direct interaction with the protonated species via covalent binding (C3H5(+)) or via association (AMS·H(+)). This stabilizes intermediate complexes and thus overall increases the activation energy for fragmentation. Water thereby acts as a reusable inhibitor (anticatalyst) in chemical ionization. Moreover, according to the quantum chemical (QC) results, when water is present in abundance it has the opposite effect and enhances fragmentation. The underlying reason is a concentration-dependent change in the reaction principle from active inhibition of fragmentation to solvation, which then enhances fragmentation. This amphoteric behavior of water is found for the fragmentation of C3H5(+) to C3H3(+), and similarly for the fragmentation of AMS·H(+) to C3H5(+). The results support humidity-dependent quantification efforts for PTR-MS and chemical ionization mass spectrometry (CIMS). Moreover, the results should allow for a better understanding of ion-chemistry in the presence of water. PMID:23682687

Maihom, Thana; Schuhfried, Erna; Probst, Michael; Limtrakul, Jumras; Märk, Tilmann D; Biasioli, Franco

2013-06-20

108

Fragmentation of Allylmethylsulfide by Chemical Ionization: Dependence on Humidity and Inhibiting Role of Water  

PubMed Central

We report on a previously unknown reaction mechanism involving water in the fragmentation reaction following chemical ionization. This result stems from a study presented here on the humidity-dependent and energy-dependent endoergic fragmentation of allyl methyl sulfide (AMS) upon protonation in a proton transfer reaction-mass spectrometer (PTR-MS). The fragmentation pathways were studied with experimental (PTR-MS) and quantum chemical methods (polarizable continuum model (PCM), microhydration, studied at the MP2/6-311+G(3df,2p)//MP2/6-31G(d,p) level of theory). We report in detail on the energy profiles, reaction mechanisms, and proton affinities (G4MP2 calculations). In the discovered reaction mechanism, water reduces the fragmentation of protonated species in chemical ionization. It does so by direct interaction with the protonated species via covalent binding (C3H5+) or via association (AMS·H+). This stabilizes intermediate complexes and thus overall increases the activation energy for fragmentation. Water thereby acts as a reusable inhibitor (anticatalyst) in chemical ionization. Moreover, according to the quantum chemical (QC) results, when water is present in abundance it has the opposite effect and enhances fragmentation. The underlying reason is a concentration-dependent change in the reaction principle from active inhibition of fragmentation to solvation, which then enhances fragmentation. This amphoteric behavior of water is found for the fragmentation of C3H5+ to C3H3+, and similarly for the fragmentation of AMS·H+ to C3H5+. The results support humidity-dependent quantification efforts for PTR-MS and chemical ionization mass spectrometry (CIMS). Moreover, the results should allow for a better understanding of ion-chemistry in the presence of water.

2013-01-01

109

Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates  

SciTech Connect

The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of these studies for the detection and quantitation of bile acids is discussed. 2 tables.

DeMark, B.R.; Klein, P.D.

1981-01-01

110

Evaluating the Utility of an Atmospheric Pressure Chemical Ionization Mass Spectrometer for Analyzing Organic Peroxides  

NASA Astrophysics Data System (ADS)

Secondary organic aerosols (SOA) are known to affect the earth's radiation budget through its ability to scatter and absorb radiation. Consequently, the mechanisms and factors that influence SOA composition and formation are poorly understood. However, recent modeling studies coupled with smog chamber experiments suggest that organic peroxides (organic hydroperoxides and peroxyhemiacetals) might be a major component of SOA composition under low NOx conditions. This study utilized an atmospheric pressure chemical ionization mass spectrometer (APCI-MS) in the positive mode to detect organic peroxides. Mass spectra of organic peroxides analyzed in this study show excessive fragmentation during ionization with protonated water clusters. It was believed that intact ions were not found due to decomposition in the ion source. Future work will explore new reagents for ionization to reduce fragmentation during analysis.

Jameer, A.; Hastie, D. R.

2013-12-01

111

I-line negative resist (INR): a negative-tone I-line chemically amplified photoresist  

NASA Astrophysics Data System (ADS)

INR, an I-line negative photoresist, is described. Acid catalyzed cross-linking of phenolic resins using a non-metallic photoacid generator, 2,6-bishydroxymethyl-p-cresol as a cross- linker, and 9-anthracene methanol as an I-line sensitizer results in a very high photospeed aqueous TMAH developable photoresist. Poly(p-hydroxystyrene) was found to have advantages over novolac resins for formulation of high performance negative I-line photoresist. Advantages obtained by using PHS rather than novolac include higher thermal stability, elimination of undercut on nuleophilic surfaces and compatibility with 2.38 percent TMAH puddle develop processes. A high resolution version, INR-X, is described. Resolution to 0.30 micrometers and linearity to 0.35 micrometers was obtained using a 0.54NA ASML I-line stepper. 0.35 micrometers line-spaces arrays had 1.2 micrometers depth of focus and 0.40 micrometers line-space arrays had a depth of focus greater than 1.6 micrometers . An unusual characteristic found in INR-X is a very low sensitivity to variation in PEB temperature. A 3nm/ degree(s)C line-width dependency was found.

Linehan, Leo L.; Spinillo, Gary T.; Smith, Randolph S.; Moreau, Wayne M.; McCormick, Barry C.; Wood, Robert L.; Puttlitz, Erik A.; Collins, James P.; Miller, William J.

1994-05-01

112

Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.  

PubMed

For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

2003-11-15

113

Use of Negative Air Ionization for Reducing Microbial Contamination on Stainless Steel Surfaces  

Microsoft Academic Search

SUMMARY Microbiological concerns in food plant sanitation that relies heavily on physical and chemical methods for removing and killing bacteria could be reduced by the use of non-chemical intervention methods. This initial work on the effects of electrostatic space charge on biofilms shows promise as a viable intervention option for reducing bacterial contamination on surfaces. Natural bacterial populations from a

J. W. Arnold; B. W. Mitchell

2002-01-01

114

Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization  

SciTech Connect

The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240. The reduced mobility value of this ion was constant at 1.36 cm{sup 2}V{sup -1}s{sup -1} across the temperature range from 60 to 140 C. The stability of this ion was temperature dependent and did not exist at temperatures above 140 C, where only fragment ions were observed. The introduction of ammonia vapors with TATP resulted in the formation of m/z 58 ion. As the concentration of ammonia increased, this smaller ion appeared to dominate the spectra and the TATP-ammonium adduct decreased in intensity. The ion at m/z 58 has been noted by several research groups upon using ammonia reagents in chemical ionization, but the identity was unknown. Evidence presented here supports the formation of protonated 2-propanimine. A proposed mechanism involves the addition of ammonia to the TATP-ammonium adduct followed by an elimination reaction. A similar mechanism involving the chemical ionization of acetone with excess ammonia also showed the formation of m/z 58 ion. TATP vapors from a solid sample were detected with a hand-held ion mobility spectrometer operated at room temperature. The TATP-ammonium molecular adduct was observed in the presence of ammonia and TATP vapors with this spectrometer.

Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.

2011-04-28

115

Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques  

NASA Technical Reports Server (NTRS)

The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

2002-01-01

116

Self-consistent solution of cosmological radiation-hydrodynamics and chemical ionization  

SciTech Connect

We consider a PDE system comprising compressible hydrodynamics, flux-limited diffusion radiation transport and chemical ionization kinetics in a cosmologically-expanding universe. Under an operator-split framework, the cosmological hydrodynamics equations are solved through the piecewise parabolic method, as implemented in the Enzo community hydrodynamics code. The remainder of the model, including radiation transport, chemical ionization kinetics, and gas energy feedback, form a stiff coupled PDE system, which we solve using a fully-implicit inexact Newton approach, and which forms the crux of this paper. The inner linear Newton systems are solved using a Schur complement formulation, and employ a multigrid-preconditioned conjugate gradient solver for the inner Schur systems. We describe this approach and provide results on a suite of test problems, demonstrating its accuracy, robustness, and scalability to very large problems.

Reynolds, Daniel R. [Mathematics, Southern Methodist University, Dallas, TX 75275-0156 (United States)], E-mail: reynolds@smu.edu; Hayes, John C. [Lawrence Livermore National Lab, P.O. Box 808, L-551, Livermore, CA 94551 (United States)], E-mail: jchayes@llnl.gov; Paschos, Pascal [Ctr. for Astrophysics and Space Sciences, U.C. San Diego, La Jolla, CA 92093 (United States)], E-mail: ppaschos@minbari.ucsd.edu; Norman, Michael L. [Ctr. for Astrophysics and Space Sciences, U.C. San Diego, La Jolla, CA 92093 (United States); Physics Department, U.C. San Diego, La Jolla, CA 92093 (United States)], E-mail: mlnorman@ucsd.edu

2009-10-01

117

Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani.  

PubMed

A comparison of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) for the analysis of a wide range of lipids has been performed on standard mixtures and extracts of Leishmania donovani promastigotes resistant to Amphotericin B (AmB). Calibration model, precision, limits of detection and quantification (LOD and LOQ) were assessed for each source. APPI provided the highest signal, signal-to-noise (S/N), and sensitivity for non-polar and low-polarity lipids, while ESI and APCI gave better results for the most polar ones. The linear model was valid for all lipids, except for one class with APPI, six classes with ESI, and eleven classes with APCI. LODs ranged from 0.2 to 20 ?g mL(-1) for ESI, from 0.1 to 10 ?g mL(-1) for APCI, and from 0.02 to 9.5 ?g mL(-1) for APPI. LOQs ranged from 0.2 to 61 ?g mL(-1) for ESI, from 0.4 to 31 ?g mL(-1) for APCI, and from 0.1 to 29 ?g mL(-1) for APPI. Each source provided similar lipid composition and variations in a comparison of three different L. donovani samples: miltefosine-treated, miltefosine-resistant and treated miltefosine-resistant parasites. A treated miltefosine-resistant sample was finally analyzed with each ion source in order to verify that the same lipid molecular species are detected. PMID:22560453

Imbert, Laurent; Gaudin, Mathieu; Libong, Danielle; Touboul, David; Abreu, Sonia; Loiseau, Philippe M; Laprévote, Olivier; Chaminade, Pierre

2012-06-15

118

A chemical ionization mass spectrometry technique for airborne measurements of ammonia  

Microsoft Academic Search

A chemical ionization mass spectrometer (CIMS) utilizing protonated acetone dimer ion chemistry to measure gas-phase ammonia (NH3) from the NOAA WP-3D aircraft is described. The average sensitivity determined from in-flight standard addition calibrations ranged from 2.6 to 5 ion counts s?1 pptv?1, depending on flow conditions, for 1 MHz of reagent ion signal. The instrument time response was determined to

J. B. Nowak; J. A. Neuman; K. Kozai; L. G. Huey; D. J. Tanner; J. S. Holloway; T. B. Ryerson; G. J. Frost; S. A. McKeen; F. C. Fehsenfeld

2007-01-01

119

Atmospheric pressure chemical ionization (APcI) liquid chromatography-mass spectrometry: characterization of natural antioxidants  

Microsoft Academic Search

The combination of liquid chromatography with mass spectrometry (LC-MS) allows non-volatile and thermally sensitive compounds to be handled. The key feature, regarding LC flowrate and MS vacuum requirements, is the LC-MS interface system. Atmospheric pressure chemical ionization (APcI) is a sensitive and widely applicable method which gives primarily molecular weight information with the ability to provide structural information if required.

M.-N. Maillard; P. Giampaoli; M.-E. Cuvelier

1996-01-01

120

Analysis of Urushiols by Liquid Chromatography\\/Atmospheric Pressure Chemical Ionization?Ion Trap Mass Spectrometry  

Microsoft Academic Search

Urushiol derivatives in a natural polymeric paint (urushi), obtained from Korean tapping lacquer trees were separated by reverse phase liquid chromatography and analyzed by on?line atmospheric pressure chemical ionization ion trap mass spectrometry (LC\\/APCI?ITMS). The molecular weight and molecular structure information for each peak were obtained from full scan spectrum and collision induced dissociation (CID) spectrum, respectively. Each urushiol isomer

Jong Oh Choi; Jeong Soo Yang; Dai Woon Lee

2003-01-01

121

Modifying the charge state distribution of proteins in electrospray ionization mass spectrometry by chemical derivatization  

Microsoft Academic Search

Electrospray ionization (ESI) of denatured proteins produces a broad distribution of multiply-charged ions leading to multiple\\u000a peaks in the mass spectrum. We investigated changes in the positive-mode ESI charge state distribution produced by several\\u000a chemical modifications of denatured proteins. Capping carboxylic acid groups with neutral functional groups yields little\\u000a change in charge state distribution compared with unmodified proteins. The results

Casey J. Krusemark; Brian L. Frey; Peter J. Belshaw; Lloyd M. Smith

2009-01-01

122

Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry  

DOEpatents

A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

1999-01-01

123

Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry.  

PubMed

Desorption electro-flow focusing ionization (DEFFI) mass spectrometry was used to image chemical distributions of endogenous, e.g., fatty acids, and trace exogenous compounds, e.g., explosives, narcotics and lotions, in deposited and lifted artificial fingerprints, directly from forensic lift tape. An artificial fingerprint mold and synthetic fingerprint material were incorporated for the controlled deposition of material for technique demonstration and evaluation. PMID:24566545

Forbes, Thomas P; Sisco, Edward

2014-06-21

124

Radioimmunoassay and chemical ionization/mass spectrometry compared for plasma cortisol determination  

SciTech Connect

A method is described for determination of cortisol in plasma and urine, based on chemical ionization/mass spectrometry with deuterium-labeled cortisol as the internal standard. The within-run precision (CV) was 2.5-5.7%, the between-run precision 4.6%. Results by this method were compared with those by a radioimmunological method (RIANEN Cortisol, New England Nuclear) for 395 plasma samples. The latter method gave significantly higher (approx. 25%) cortisol values.

Lindberg, C. (AB Draco, Lund, Sweden); Johnson, S.; Hedner, P.; Gustafsson, A.

1982-01-01

125

Supersonic jet/multiphoton ionization spectrometry of chemical species resulting from thermal decomposition and laser ablation of polymers  

SciTech Connect

The chemical species resulting from thermal decomposition and laser ablation of polymers are measured by excitation/fluorescence and multiphoton ionization/mass spectrometries after supersonic jet expansion for rotational cooling to simply the optical spectrum. The signal of minor chemical species occurred is strongly enhanced by resonant excitation and multiphoton ionization, and even the isomer can be clearly differentiated. For example, p-cresol occurred by thermal decomposition of polycarbonate is detected selectively by mass-selected resonant multiphoton ionization spectrometry. Various chemical species occurred by laser ablation of even a polystyrene foam are also measured by this technique.

Hozumi, Masami; Murata, Yoshiaki; Cheng-Huang Lin; Imasaka, Totaro [Department of Chemical Science and Technology, Faculty of Engineering, Hakozaki, Higashi-Ku, Fukuoka 812 (Japan)

1995-04-01

126

Quantification of flavonoids in black rice by liquid chromatography-negative electrospray ionization tandem mass spectrometry.  

PubMed

Systematic identification and structural characterization of flavonoids and their glycosides in bran extracts of seven Thai black rice varieties were performed by sequential uses of reversed-phase HPLC with a photodiode array detector and a combined electrospray ionization tandem mass spectrometer. Eleven flavonoids were detected, and six of these were found for the first time in rice bran. These were taxifolin-7-O-glucoside, myricetin-7-O-glucoside, isorhamnetin-3-O-acetylglucoside, isorhamnetin-7-O-rutinoside, 5,6,3',4',5'-pentahydroxyflavone-7-O-glucoside, and 5,3',4',5'-tetrahydroxyflavanone-7-O-glucoside. The quantitative results revealed that different rice varieties possessed flavonoids in different concentrations. The most abundant glycoside derivative of flavonoids widely distributed among the rice varieties was monoglucoside, such as quercetin-3-O-glucoside, isorhamnetin-3-O-glucoside, and isorhamnetin-3-O-glucoside. PMID:23121250

Sriseadka, Tinakorn; Wongpornchai, Sugunya; Rayanakorn, Mongkon

2012-11-28

127

Determination of fungicide residues in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.  

PubMed

A liquid chromatography (LC) method for the quantitative determination of five fungicide residues (dichloran, flutriafol, o-phenylphenol, prochloraz and tolclofos methyl) in oranges, lemons, bananas, peppers, chards and onions is described. The residues were extracted by matrix solid-phase dispersion (MSPD) using C8. Quantitative analysis was performed by isocratic LC coupled to quadrupole mass spectrometer using atmospheric pressure chemical ionization in the negative ionization mode. The limit of quantification was 0.01 mg kgmicro for flutriafol, o-phenylphenol and dichloran, and 0.1 mg kg(-1) for prochloraz and tolclofos methyl. The MSPD method is also suitable for LC-UV analysis but higher limits of quantification (between 1 and 5 mg kg(-1)) were obtained. Validation of the method was performed between 0.01 and 25 mg kg(-1). Recoveries for fungicides ranged from 52.5 to 91.1% with relative standard deviations between 6.1 and 11.9%. The method was applied to the determination of residues in samples taken from agricultural cooperatives. The fungicides most often detected were o-phenylphenol and prochloraz. PMID:11883656

Blasco, C; Picó, Y; Mañes, J; Font, G

2002-02-22

128

Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry  

NASA Astrophysics Data System (ADS)

Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a commercial linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. From the four APCI reagent systems tested, neat carbon disulfide provided the best results. The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar but minor amount of fragmentation was observed for these two reagents. When the experiment was performed without a liquid reagent (nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to predominantly form stable molecular ions.

Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

2011-03-01

129

Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques  

NASA Astrophysics Data System (ADS)

The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

2005-11-01

130

High intensity source of polarized negative hydrogen ions with resonant charge-exchange plasma ionizer  

NASA Astrophysics Data System (ADS)

The Moscow INR atomic-beam type source of polarized negative hydrogen ions is described. The production of H- ions is based on resonant charge exchange between polarized thermal hydrogen atoms and D- ions in a deuterium plasma. Improvements in the D- plasma source are outlined. The polarized source produces a pulsed H- beam with the peak current up to 1 mA and pulse duration of 180 ?s at repetition rate 10 Hz. The normalized emittance for 90% of the beam particles is 1.8 ? mm mrad. The polarization of low energy H- ions was measured to be 0.87+/-0.02.

Belov, A. S.; Esin, S. K.; Netchaeva, L. P.; Plokhinski, Yu. V.; Vasil'Ev, G. A.; Klenov, V. S.; Turbabin, A. V.; Yakushev, V. P.; Dudnikov, V. G.

1996-07-01

131

Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons.  

PubMed

We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+•) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products. PMID:22881221

Nyadong, Leonard; Quinn, John P; Hsu, Chang S; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

2012-08-21

132

Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry  

NASA Technical Reports Server (NTRS)

Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

1999-01-01

133

Detection of chemical warfare agent degradation products in foods using liquid chromatography coupled to inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry  

Microsoft Academic Search

The following work presents the exploration of three chromatographic separations in combination with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of chemical warfare agent degradation products (CWADPs). The robust ionization of ICP is virtually matrix independent thus enabling the examination of sample matrices generally considered too complicated for analysis by electrospray ionization (ESI) or atmospheric pressure chemical ionization

Kevin M. Kubachka; Douglas D. Richardson; Douglas T. Heitkemper; Joseph A. Caruso

2008-01-01

134

Typing of Blood-Group Antigens on Neutral Oligosaccharides by Negative-Ion Electrospray Ionization Tandem Mass Spectrometry  

PubMed Central

Blood-group antigens, such as those containing fucose and bearing the ABO(H)- and Lewis-type determinants expressed on the carbohydrate chains of glycoproteins and glycolipids, and also on unconjugated free oligosaccharides in human milk and other secretions, are associated with various biological functions. We have previously shown the utility of negative-ion electrospay ionization tandem mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) for typing of Lewis (Le) determinants, e.g. Lea, Lex, Leb, and Ley on neutral and sialylated oligosaccharide chains. In the present report we extended the strategy to characterization of blood-group A-, B- and H-determinants on type 1 and type 2, and also on type 4 globoside chains to provide a high sensitivity method for typing of all the major blood-group antigens, including the A, B, H, Lea, Lex, Leb, and Ley determinants, present in oligosaccharides. Using the principles established we identified two minor unknown oligosaccharide components present in the products of enzymatic synthesis by bacterial fermentation. We also demonstrated that the unique fragmentations derived from the D- and 0,2A-type cleavages observed in ESI-CID-MS/MS, which are important for assigning blood-group and chain types, only occur under the negative-ion conditions for reducing sugars but not for reduced alditols or under positive-ion conditions.

Zhang, Hongtao; Zhang, Shuang; Tao, Guanjun; Zhang, Yibing; Mulloy, Barbara; Zhan, Xiaobei; Chai, Wengang

2013-01-01

135

Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry.  

PubMed

We have achieved enhanced lipid imaging to a ~10 ?m spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix, and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to 5-fold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution. PMID:22243218

Angel, Peggi M; Spraggins, Jeffrey M; Baldwin, H Scott; Caprioli, Richard

2012-02-01

136

Collision-Induced Dissociation Analysis of Negative Atmospheric Ion Adducts in Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry  

NASA Astrophysics Data System (ADS)

Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R]- formed between various types of organic compounds M and atmospheric negative ions R- [such as O2 -, HCO3 -, COO-(COOH), NO2 -, NO3 -, and NO3 -(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R]- adducts were fragmented to form deprotonated analytes [M - H]- and/or atmospheric ions R-, whose intensities in the CID spectra were dependent on the proton affinities of the [M - H]- and R- fragments. Precursor ions [M + R]- for which R- have higher proton affinities than [M - H]- formed [M - H]- as the dominant product. Furthermore, the CID of the adducts with HCO3 - and NO3 -(HNO3) led to other product ions such as [M + HO]- and NO3 -, respectively. The fragmentation behavior of [M + R]- for each R- observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).

Sekimoto, Kanako; Takayama, Mitsuo

2013-05-01

137

Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report  

SciTech Connect

Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A. [Sandia National Labs., Albuquerque, NM (United States). Gas Analysis Lab.; Owen, T. [Intel Corp., Rio Rancho, NM (United States)

1997-04-01

138

Negative Electron Affinity Effect on the Surface of Chemical Vapor Deposited Diamond Polycrystalline Films  

NASA Technical Reports Server (NTRS)

Strong negative electron affinity effects have been observed on the surface of as-grown chemical vapor deposited diamond using Secondary Electron Emission. The test samples were randomly oriented and the surface was terminated with hydrogen. The effect appears as an intensive peak in the low energy part of the spectrum of the electron energy distribution and may be described in the model of effective negative electron affinity.

Krainsky, I. L.; Asnin, V. M.; Mearini, G. T.; Dayton, J. A., Jr.

1996-01-01

139

Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines  

SciTech Connect

Derivatization strategies and specific derivatization reactions for conversion of simple alkyl halides, alcohols, phenols, thiols, and amines to ionic or solution-ionizable derivatives, that is [open quotes]electrospray active[close quotes] (ES-active) forms of the analyte, are presented. Use of these reactions allows detection of analytes among those listed that are not normally amenable to analysis by electrospray ionization mass spectrometry (ES-MS). In addition, these reactions provide for analysis specificity and flexibility through functional group specific derivatization and through the formation of derivatives that can be detected in positive ion or in negative ion mode. For a few of the functional groups, amphoteric derivatives are formed that can be analyzed in either positive or negative ion modes. General synthetic strategies for transformation of members of these five compound classes to ES-active species are presented along with illustrative examples of suitable derivatives. Selected derivatives were prepared using model compounds and the ES mass spectra obtained for these derivatives are discussed. The analytical utility of derivatization for ES-MS analysis is illustrated in three experiments: (1) specific detection of the major secondary alcohol in oil of peppermint, (2) selective detection of phenols within a synthetic mixture of phenols, and (3) identification of the medicinal amines within a commercially available cold medication as primary, secondary or tertiary. 65 refs., 3 figs., 3 tabs.

Quirke, J.M.E.; Adams, C.L.; Van Berkel, G.J. (Oak Ridge National Lab., TN (United States))

1994-04-15

140

Effects of ionizing radiations on mammalian oogenesis: a model for chemical effects  

PubMed Central

A synopsis of the available data on the radiosensitivity of female germ cells is provided, the reader being referred to recent comprehensive reviews for detailed information. The effects of ionizing radiations are considered in terms of age; germ cell stage and follicular development; type, quality, and physical factors of the exposure; and criterion chosen to assess the effect (cell killing, reproductive capacity, genetic effects, etc.). A number of conclusions are drawn which might have a bearing on studies in which the effects of chemicals and drugs on mammalian species are assessed.

Baker, T. G.

1978-01-01

141

A simplified chemical kinetic model for slightly ionized, atmospheric pressure nitrogen plasmas  

NASA Astrophysics Data System (ADS)

Nitrogen plasmas at atmospheric pressure produced by 2.45 GHz microwaves at a power density of approximately 10 MW m-3 have a degree of ionization less than about 10-7. Nevertheless they have interesting and potentially important effects on polymer and metal surfaces exposed to them. An experimental programme is underway to identify the active species in the plasma and its afterglow. This paper describes a simplified model of the chemical kinetics in the plasma that allows species concentrations to be estimated in a range of conditions, for comparison with experimental data. It predicts a high degree of dissociation combined with low gas temperature in microwave-generated plasmas.

Hugill, J.; Saktioto, T.

2001-02-01

142

Picoelectrospray Ionization Mass Spectrometry Using Narrow-Bore Chemically Etched Emitters  

NASA Astrophysics Data System (ADS)

Electrospray ionization mass spectrometry (ESI-MS) at flow rates below ~10 nL/min has been only sporadically explored because of difficulty in reproducibly fabricating emitters that can operate at lower flow rates. Here we demonstrate narrow orifice chemically etched emitters for stable electrospray at flow rates as low as 400 pL/min. Depending on the analyte concentration, we observe two types of MS signal response as a function of flow rate. At low concentrations, an optimum flow rate is observed slightly above 1 nL/min, whereas the signal decreases monotonically with decreasing flow rates at higher concentrations. For example, consumption of 500 zmol of sample yielded signal-to-noise ratios ~10 for some peptides. In spite of lower MS signal, the ion utilization efficiency increases exponentially with decreasing flow rate in all cases. Significant variations in ionization efficiency were observed within this flow rate range for an equimolar mixture of peptide, indicating that ionization efficiency is an analyte-dependent characteristic for the present experimental conditions. Mass-limited samples benefit strongly from the use of low flow rates and avoiding unnecessary sample dilution. These findings have important implications for the analysis of trace biological samples.

Marginean, Ioan; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

2014-01-01

143

Waterborne chemical compounds in tropical macroalgae: positive and negative cues for larval settlement  

Microsoft Academic Search

Settlement sites of marine invertebrate larvae are frequently influenced by positive or negative cues, many of which are chemical in nature. Following from the observation that many shallow-water, Hawai'ian marine macroalgae are free of fouling by sessile invertebrates, we predicted that the algae are chemically protected and dependent on either surface-bound or continuously released soluble compounds to deter settling invertebrate

L. J. Walters; M. G. Hadfield; C. M. Smith

1996-01-01

144

Quantifying Tropospheric Peroxy Radicals using Chemical Ionization Mass Spectroscopy with Chemical Conversion  

Microsoft Academic Search

We report the development of a mass spectrometric technique for the measurement of tropospheric peroxy radicals, particularly from aircraft platforms. This method makes use of chemical reactions involving added nitric oxide and sulfur dioxide reagent gases and dilution with nitrogen or oxygen (oxygen dilution modulation). This chemistry specifically converts HO2 radicals to gas-phase sulfuric acid in one mode (high reagent

R. S. Anderson; C. A. Cantrell

2007-01-01

145

The Level of Ionization and Chemical Composition of QSO BAL Region Gas - Repeat for Hopr 230  

NASA Astrophysics Data System (ADS)

FROM PROGRAM 5455: About 10% of all radio quiet QSOs exhibit broad absorption lines (BALs) in their spectra. The BALs come from a mostly highly ionized region outflowing from the central source at speeds up to many tens of thousands of km/s. Observational constraints on models require that the covering factor of the BAL region be small (e.g., normally < 0.2), therefore many QSOs must have BAL regions which do not lie along our lines-of-sight. For assumptions which should reasonably apply to BAL regions, accurate (algorithm independent) ionic column densities can be derived as a function of outflow velocity for BAL gas. This is unlike the case for broad emission lines in QSOs, which at any observed velocity originates in various components with a range of ionizations. Based on column density analyses, evidence suggests that the chemical composition of the BAL region gas is enhanced by factors of 10 to 100 or more times solar values. Since this conclusion is remarkable, we propose to carefully checked it. One possible problem is that our assumptions about the ability of BAL gas to cover the central source are not universally correct. Another problem with past analyses is that different ionic species of the same element in an object have not been studied. We will remedy these problems by observing the UV spectrum of three specially selected BAL QSOs which currently show the best evidence for enhanced abundances. Constraints on the ionization and chemical composition of the BAL region gas will be derived using Ferland's

Turnshek, David

1994-07-01

146

Atmospheric pressure chemical ionization mass spectrometry of pyridine and isoprene: potential breath exposure and disease biomarkers.  

PubMed

Volatile organic compounds (VOCs) in exhaled human breath can serve as potential disease-specific and exposure biomarkers and therefore can reveal information about a subject's health and environment. Pyridine, a VOC marker for exposure to tobacco smoke, and isoprene, a liver disease biomarker, were studied using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). While both molecules could be detected in low-ppb levels, interactions of the ionized analytes with their neutral forms and ambient air led to unusual ion/molecule chemistry. The result was a highly dynamic system and a nonlinear response to changes in analyte concentration. Increased presence of ambient water was found to greatly enhance the detection limit of pyridine and only slightly decrease that of isoprene. APCI-MS is shown to be a promising analytical tool in breath analysis with good detection limits, but its application requires a better understanding of the ion/molecule chemistry that may affect VOC quantification from a chemically complex system such as human breath. PMID:23579200

Kapishon, Vitaliy; Koyanagi, Gregory K; Blagojevic, Voislav; Bohme, Diethard K

2013-06-01

147

Molecular Surface Sampling and Chemical Imaging using Proximal Probe Thermal Desorption/Secondary Ionization Mass Spectrometry  

SciTech Connect

Proximal probe thermal desorption/secondary ionization mass spectrometry was studied and applied to molecular surface sampling and chemical imaging using printed patterns on photopaper as test substrates. With the use of a circular cross section proximal probe with a tip diameter of 50 m and fixed temperature (350 C), the influence of probe-to-surface distance, lane scan spacing, and surface scan speed on signal quality and spatial resolution were studied and optimized. As a compromise between signal amplitude, signal reproducibility, and data acquisition time, a surface scan speed of 100 m/s, probe-to-paper surface distance of 5 m, and lane spacing of 10 m were used for imaging. Under those conditions the proximal probe thermal desorption/secondary ionization mass spectrometry method was able to achieve a spatial resolution of about 50 m as determined by the ability to distinguish surface patterns of known dimensions that were printed on the paper substrate. It is expected that spatial resolution and chemical image quality could be further improved by using probes of smaller cross section size and by incorporating a means to maintain a fixed optimal probe-to-surface distance real time, continuously adapting to the changing topography of the surface during a lane scan.

Ovchinnikova, Olga S [ORNL; Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

2011-01-01

148

Novel non-chemically amplified (n-CARs) negative resists for EUVL  

NASA Astrophysics Data System (ADS)

We report the lithography performance of novel non chemical amplified (n-CARS) negative photoresist materials which are accomplished by homopolymers and copolymers that are prepared from monomers containing sulfonium groups. The latter have long been found to be sensitive to UV radiation and undergo polarity change on exposure. For this reason, these groups were chosen as radiation sensitive groups in non- CARs that are discussed herein. Novel n-CAR negative resists were synthesized and characterized for EUVL applications, as they are directly sensitive to radiation without utilizing the concept of chemical amplification. The n-CARs achieved 20 and 16 nm L/2S, L/S patterns to meet the ITRS requirements. We will also discuss the sensitivity and LER of these negative n-CARS to e-beam irradiation which will provide a basis for EUVL down to the 16 nm node and below. These new negative tone resist provide a viable path forward for designing non- chemically amplified resists that can obtain higher resolutions than current chemically amplified resists at competitive sensitivities.

Singh, Vikram; Satyanarayana, V. S. V.; Sharma, Satinder K.; Ghosh, Subrata; Gonsalves, Kenneth E.

2014-03-01

149

Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components  

SciTech Connect

We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190?5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100–250, with some compounds being analyzable by gas chromatography–mass spectrometry (GC–MS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GC–MS. This unveiled a much more complex nature of bio-oils than typically shown by GC–MS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call “sugaric” compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.

Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin

2012-05-16

150

Molecular characterization of microgram amounts of oceanic colloidal organic matter by direct temperature-resolved ammonia chemical ionization mass spectrometry  

Microsoft Academic Search

Marine colloidal organic matter in coastal waters off the coast of the eastern United States (from Georges Bank and the Mid-Atlantic Bight) is characterized by means of direct temperature-resolved mass spectrometry (DT-MS). Chemical ionization (NH3) appears to be a very appropriate ionization method for this material. The analytical data confirm the presence of a significant polysaccharide fraction consisting of neutral

Jaap J Boon; Vincent A Klap; Timothy I Eglinton

1998-01-01

151

Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions  

NASA Astrophysics Data System (ADS)

The effects of heating, ionization, high electronic excitation and chemical reactions on the operation of diode pumped alkali lasers (DPALs) with a static, non-flowing gain medium are calculated using a semi-analytical model. Unlike other models, assuming a three-level scheme of the laser and neglecting influence of the temperature on the lasing power, it takes into account the temperature rise and losses of neutral alkali atoms due to ionization and chemical reactions, resulting in decrease of the pump absorption and slope efficiency. Good agreement with measurements in a static DPAL [B.V. Zhdanov, J. Sell, R.J. Knize, Electron. Lett. 44 (2008) 582] is obtained. It is found that the ionization processes have a small effect on the laser operation, whereas the chemical reactions of alkali atoms with hydrocarbons strongly affect the lasing power.

Barmashenko, B. D.; Rosenwaks, S.; Heaven, M. C.

2013-04-01

152

Differeniation of Aroclors in environmental samples using negative ion chemical ionization (NICI) mass spectrometry  

SciTech Connect

Environmental samples suspected of containing polychlorinated biphenyls (PCB) and analyzed by EPA Method 8080 frequently contain non-PCB components, such as phthalates, PAH's, or organochlorine pesticides. The presence of these interferences can often obscure the GC/ECD patterns and cause problems in differentiating the Aroclor types by visual inspection. Since Method 8080 requires the identification of Aroclor types in order to trace the sources of PCB occurrences, NICI detection was used to provide additional parameters for discriminating PCB congeners from interferences. In this study, a pattern recognition method has been developed to classify the types of Aroclors for environmental samples. A computer program written in BASIC has been implemented to facilitate Aroclor classification using the NICI ion abundance measurement for PCB congeners. NICI measurements on Aroclor standards were used as training data set to develop classification methods for environmental samples. PCB contaminated oil or soil samples were either extracted of diluted with hexane and analyzed in the same manner as the standards. This sequential classification method classified all Aroclors in the training set correctly. A set of 15 environmental samples with known Aroclor types were also correctly classified.

Ma, C.Y.; Bayne, C.K.; Maskarinec, M.P.

1991-01-01

153

Kinetic and Thermodynamic Control of Protonation in Atmospheric Pressure Chemical Ionization  

NASA Astrophysics Data System (ADS)

For p-(dimethylamino)chalcone ( p-DMAC), the N atom is the most basic site in the liquid phase, whereas the O atom possesses the highest proton affinity in the gas phase. A novel and interesting observation is reported that the N- and O-protonated p-DMAC can be competitively produced in atmospheric pressure chemical ionization (APCI) with the change of solvents and ionization conditions. In neat methanol or acetonitrile, the protonation is always under thermodynamic control to form the O-protonated ion. When methanol/water or acetonitrile/water was used as the solvent, the protonation is kinetically controlled to form the N-protonated ion under conditions of relatively high infusion rate and high concentration of water in the mixed solvent. The regioselectivity of protonation of p-DMAC in APCI is probably attributed to the bulky solvent cluster reagent ions (SnH+) and the analyte having different preferred protonation sites in the liquid phase and gas phase.

Chai, Yunfeng; Hu, Nan; Pan, Yuanjiang

2013-07-01

154

Picoelectrospray Ionization Mass Spectrometry Using Narrow-bore Chemically Etched Emitters  

SciTech Connect

Electrospray ionization mass spectrometry (ESI-MS) at flow rates below ~10 nL/min has been only sporadically explored due to difficulty in reproducibly fabricating emitters that can operate at lower flow rates. Here we demonstrate narrow orifice chemically etched emitters for stable electrospray at flow rates as low as 400 pL/min. Depending on the analyte concentration, we observe two types of MS signal response as a function of flow rate. At low concentrations, an optimum flow rate is observed slightly above 1 nL/min, while the signal decreases monotonically with decreasing flow rates at higher concentrations. In spite of lower MS signal, the ion utilization efficiency increases exponentially with decreasing flow rate in all cases. No unimolecular response was observed within this flow rate range during the analysis of an equimolar mixture of peptides, indicating that ionization efficiency is an analyte-dependent characteristic in given experimental conditions. While little to no gain in signal-to-noise was achieved at ultralow flow rates for concentration-limited analyses, experiments consuming the same amount of analyte suggest that mass-limited analyses will benefit strongly from the use of low flow rates and avoiding unnecessary sample dilution. By operating under optimal conditions, consumption of just 500 zmol of sample yielded signal-to-noise ratios ~10 for some peptides. These findings have important implications for the analysis of trace biological samples.

Marginean, Ioan; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

2014-01-01

155

Chemical rescue, multiple ionizable groups, and general acid-base catalysis in the HDV genomic ribozyme.  

PubMed

In the ribozyme from the hepatitis delta virus (HDV) genomic strand RNA, a cytosine side chain is proposed to facilitate proton transfer in the transition state of the reaction and, thus, act as a general acid-base catalyst. Mutation of this active-site cytosine (C75) reduced RNA cleavage rates by as much as one million-fold, but addition of exogenous cytosine and certain nucleobase or imidazole analogs can partially rescue activity in these mutants. However, pH-rate profiles for the rescued reactions were bell shaped, and only one leg of the pH-rate curve could be attributed to ionization of the exogenous nucleobase or buffer. When a second potential ionizable nucleobase (C41) was removed, one leg of the bell-shaped curve was eliminated in the chemical-rescue reaction. With this construct, the apparent pK(a) determined from the pH-rate profile correlated with the solution pK(a) of the buffer, and the contribution of the buffer to the rate enhancement could be directly evaluated in a free-energy or Brønsted plot. The free-energy relationship between the acid dissociation constant of the buffer and the rate constant for cleavage (Brønsted value, beta, = approximately 0.5) was consistent with a mechanism in which the buffer acted as a general acid-base catalyst. These data support the hypothesis that cytosine 75, in the intact ribozyme, acts as a general acid-base catalyst. PMID:16690998

Perrotta, Anne T; Wadkins, Timothy S; Been, Michael D

2006-07-01

156

Airborne observations of formic acid using a chemical ionization mass spectrometer  

NASA Astrophysics Data System (ADS)

The first airborne measurements of formic acid mixing ratios over the United Kingdom were measured on the FAAM BAe-146 research aircraft on 16 March 2010 with a chemical ionization mass spectrometer using I- reagent ions. The I- ionization scheme was able to measure formic acid mixing ratios at 1 Hz in the boundary layer. In-flight standard addition calibrations from a formic acid source were used to determine the instrument sensitivity of 35 ± 6 ion counts pptv-1 s-1 and a limit of detection of 25 pptv. Routine measurements were made through a scrubbed inlet to determine the instrumental background. Three plumes of formic acid were observed over the UK, originating from London, Humberside and Tyneside. The London plume had the highest formic acid mixing ratio throughout the flight, peaking at 358 pptv. No significant correlations of formic acid with NOx and ozone were found, but a positive correlation was observed between CO and HCOOH within the two plumes where coincident data were recorded. A trajectory model was employed to determine the sources of the plumes and compare modelled mixing ratios with measured values. The model underestimated formic acid concentrations by up to a factor of 2. This is explained by missing sources in the model, which were considered to be both primary emissions of formic acid of mainly anthropogenic origin and a lack of precursor emissions, such as isoprene, from biogenic sources, whose oxidation in situ would lead to formic acid formation.

Le Breton, M.; McGillen, M. R.; Muller, J. B. A.; Bacak, A.; Shallcross, D. E.; Xiao, P.; Huey, L. G.; Tanner, D.; Coe, H.; Percival, C. J.

2012-12-01

157

Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass.  

PubMed

Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5× lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality. PMID:24666343

Jain, Shashank; Zahardis, James; Petrucci, Giuseppe A

2014-05-01

158

Qualitative Gas Chromatography-Mass Spectrometry Analyses Using Amines as Chemical Ionization Reagent Gases  

NASA Astrophysics Data System (ADS)

Ammonia is a very useful chemical ionization (CI) reagent gas for the qualitative analyses of compounds by positive ion gas chromatography-mass spectrometry (GCMS). The gas is readily available, inexpensive, and leaves no carbon contamination in the MS source. Compounds of interest to our laboratory typically yield abundant protonated or ammoniated species, which are indicative of a compound's molecular weight. Nevertheless, some labile compounds fragment extensively by substitution and elimination reactions and yield no molecular weight information. In these cases, a CI reagent gas mixture of methylamine in methane prepared dynamically was found to be very useful in obtaining molecular weight data. Likewise, deuterated ammonia and deuterated methylamine are useful CI reagent gases for determining the exchangeable protons in organic compounds. Deuterated methylamine CI reagent gas is conveniently prepared by dynamically mixing small amounts of methylamine with excess deuterated ammonia.

Little, James L.; Howard, Adam S.

2013-12-01

159

Chemical ionization discharge of N sub 2 O for matrix infrared spectroscopic study of isolated anions  

SciTech Connect

A Townsend discharge chemical ionization source has been used for matrix infrared studies of anions in the argon-N{sub 2}O system. In addition to neutral products, the NO{sup {minus}}, NO{sub 2}{sup {minus}}, (NO){sub 2}{sup {minus}}, and O{sub 3}{sup {minus}} anions have also been isolated. Filtered visible photolysis shows different behaviors for these anions. The two isomers NNO{sub 2}{sup {minus}} and (NO){sub 2}{sup {minus}} have been identified by isotopic substitution and characterized by different {sup 15}N and {sup 18}O isotopic shifts and different structures. These matrix isolation experiments provide structural information on two different N{sub 2}O{sub 2}{sup {minus}} stoichiometry anions observed in mass spectroscopy experiments.

Hacaloglu, J.; Suzer, S.; Andrews, L. (Univ. of Virginia, Charlottesville (USA))

1990-03-08

160

Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study  

NASA Astrophysics Data System (ADS)

The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (?-pinene and ?3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

2012-08-01

161

Rapid determination of chloramphenicol and its glucuronide in food products by liquid chromatography-electrospray negative ionization tandem mass spectrometry.  

PubMed

Chloramphenicol (CAP) is subjected to monitoring in food products, with a minimum required performance level set at 0.3 ng/g. CAP was isolated from chicken meat and seafood by very simple solvent extraction procedure. For honey, a fast SPE procedure was applied. CAP-D5 was used as internal standard. HPLC separation was done on RP18 123 mm x 3 mm column in acetonitrile-ammonium formate 10 mM, pH 3.0 (40:60) at flow rate of 0.3 ml/min. A TSQ Quantum instrument with ESI source has been used in negative ionization mode. A MRM procedure has been applied and following transitions were monitored: m/z 321 > 152 (quantifier), 321 > 194, 321 > 257(qualifiers), 326 > 157 (IS). CAP peak was eluted at around 5 min; the total run time was 7 min. LOD was around 0.1 ng/g meat or 0.05 ng/g honey. Matrix effects were studied for all materials used, involving injection of blank extracts with post-column infusion of CAP, as well as checking the influence of the co-injected blank extracts on the signal intensity of CAP. No influence of matrix on the results of CAP determination were observed. The method allows analyzing up to 30 duplicate samples per day, including all calibration standards. Additionally, the method for determination of CAP glucuronide (CAP-G) was established, using urine from rats that were given this drug as a source of the metabolite. Full validation of the metabolite was not possible, due to the unavailability of reference standard. PMID:15203049

Bogusz, Maciej J; Hassan, Huda; Al-Enazi, Eid; Ibrahim, Zuhour; Al-Tufail, Mohammed

2004-08-01

162

Kinetics of ion-molecule reactions with dimethyl methylphosphonate at 298 K for chemical ionization mass spectrometry detection of GX.  

PubMed

Kinetics studies of a variety of positive and negative ions reacting with the GX surrogate, dimethyl methylphosphonate (DMMP), were performed. All protonated species reacted rapidly, that is, at the collision limit. The protonated reactant ions created from neutrals with proton affinities (PAs) less than or equal to the PA for ammonia reacted exclusively by nondissociative proton transfer. Hydrated H(3)O(+) ions also reacted rapidly by proton transfer, with 25% of the products from the second hydrate, H(3)O(+)(H(2)O)(2), forming the hydrated form of protonated DMMP. Both methylamine and triethylamine reacted exclusively by clustering. NO(+) also clustered with DMMP at about 70% of the collision rate constant. O(+) and O(2)(+) formed a variety of products in reactions with DMMP, with O(2)(+) forming the nondissociative charge transfer product about 50% of the time. On the other hand, many negative ions were less reactive, particularly, SF(5)(-), SF(6)(-), CO(3)(-), and NO(3)(-). However, F(-), O(-), and O(2)(-) all reacted rapidly to generate m/z = 109 amu anions (PO(3)C(2)H(6)(-)). In addition, product ions with m/z = 122 amu from H(2)(+) loss to form H(2)O were the dominant ions produced in the O(-) reaction. NO(2)(-) underwent a slow association reaction with DMMP at 0.4 Torr. G3(MP2) calculations of the ion energetics properties of DMMP, sarin, and soman were also performed. The calculated ionization potentials, proton affinities, and fluoride affinities were consistent with the trends in the measured kinetics and product ion branching ratios. The experimental results coupled with the calculated ion energetics helped to predict which ion chemistry would be most useful for trace detection of the actual chemical agents. PMID:19385679

Midey, Anthony J; Miller, Thomas M; Viggiano, A A

2009-04-30

163

[Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].  

PubMed

A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical. PMID:25055654

Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

2014-05-01

164

UPTAKE AND ELIMINATION OF IONIZABLE ORGANIC CHEMICALS AT FISH GILLS: PART I. MODEL FORMULATION, PARAMETERIZATION, AND BEHAVIOR  

EPA Science Inventory

Effects of pH and alkalinity on uptake and elimination of ionizable organic chemicals at the gills of large rainbow trout were studied. Increased pH reduced uptake rates of weakly-acidic chlorinated phenols and increased that of weakly-basic 3,4-dichlorobenzylamine, indicating gr...

165

Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere  

Microsoft Academic Search

This paper presents a detailed laboratory characterization of a thermal dissociation chemical ionization mass spectrometer (TD-CIMS) for the atmospheric measurement of Peroxyacetyl nitrate (PAN) and its homologues (PANs). PANs are efficiently dissociated in a heated inlet and the resulting peroxy acyl radicals are reacted with I- ions in a flow tube. The mass spectrometer detects the corresponding carboxylate ions. PAN,

W. Zheng; F. M. Flocke; G. S. Tyndall; A. Swanson; J. J. Orlando; J. M. Roberts; L. G. Huey; D. J. Tanner

2011-01-01

166

Accurate mass measurements and ultrahigh-resolution: evaluation of different mass spectrometers for daily routine analysis of small molecules in negative electrospray ionization mode  

Microsoft Academic Search

Six mass spectrometers based on different mass analyzer technologies, such as time-of-flight (TOF), hybrid quadrupole-TOF\\u000a (Q-TOF), orbitrap, Fourier transform ion cyclotron resonance (FT-ICR), and triple quadrupole (QqQ), installed at independent\\u000a laboratories have been tested during a single day of work for the analysis of small molecules in negative electrospray ionization\\u000a (ESI) mode. The uncertainty in the mass measurements obtained from

Nuria Cortés-Francisco; Cintia Flores; Encarnación Moyano; Josep Caixach

167

Enhancing the response of alkyl methylphosphonic acids in negative electrospray ionization liquid chromatography tandem mass spectrometry by post-column addition of organic solvents  

Microsoft Academic Search

A method to enhance the signal intensity and signal-to-noise of several alkyl methylphosphonic acids in negative electrospray\\u000a ionization liquid chromatography tandem mass spectrometry (ESI LC-MS\\/MS) is presented. This class of compound represents the\\u000a initial metabolites and environmental degradants of the nerve agents: VX, rVX (Russian VX), GB (Sarin), GF (Cyclosarin), and\\u000a GD (Soman). Compared with the post-column addition of the

Douglas B. Mawhinney; Rayman D. Stanelle; Elizabeth I. Hamelin; Robert J. Kobelski

2007-01-01

168

Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed  

PubMed Central

Organism surfaces represent signaling sites for attraction of allies and defense against enemies. However, our understanding of these signals has been impeded by methodological limitations that have precluded direct fine-scale evaluation of compounds on native surfaces. Here, we asked whether natural products from the red macroalga Callophycus serratus act in surface-mediated defense against pathogenic microbes. Bromophycolides and callophycoic acids from algal extracts inhibited growth of Lindra thalassiae, a marine fungal pathogen, and represent the largest group of algal antifungal chemical defenses reported to date. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging revealed that surface-associated bromophycolides were found exclusively in association with distinct surface patches at concentrations sufficient for fungal inhibition; DESI-MS also indicated the presence of bromophycolides within internal algal tissue. This is among the first examples of natural product imaging on biological surfaces, suggesting the importance of secondary metabolites in localized ecological interactions, and illustrating the potential of DESI-MS in understanding chemically-mediated biological processes.

Lane, Amy L.; Nyadong, Leonard; Galhena, Asiri S.; Shearer, Tonya L.; Stout, E. Paige; Parry, R. Mitchell; Kwasnik, Mark; Wang, May D.; Hay, Mark E.; Fernandez, Facundo M.; Kubanek, Julia

2009-01-01

169

Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry  

NASA Astrophysics Data System (ADS)

Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]?•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

Cody, Robert B.; Dane, A. John

2013-03-01

170

An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds.  

PubMed

A high-resolution time-of-flight chemical-ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adducts has been characterized and deployed in several laboratory and field studies to measure a suite of organic and inorganic atmospheric species. The large negative mass defect of Iodide, combined with soft ionization and the high mass-accuracy (<20 ppm) and mass-resolving power (R>5500) of the time-of-flight mass spectrometer, provides an additional degree of separation and allows for the determination of elemental compositions for the vast majority of detected ions. Laboratory characterization reveals Iodide-adduct ionization generally exhibits increasing sensitivity toward more polar or acidic volatile organic compounds. Simultaneous retrieval of a wide range of mass-to-charge ratios (m/Q from 25 to 625 Th) at a high frequency (>1 Hz) provides a comprehensive view of atmospheric oxidative chemistry, particularly when sampling rapidly evolving plumes from fast moving platforms like an aircraft. We present the sampling protocol, detection limits and observations from the first aircraft deployment for an instrument of this type, which took place aboard the NOAA WP-3D aircraft during the Southeast Nexus (SENEX) 2013 field campaign. PMID:24800638

Lee, Ben H; Lopez-Hilfiker, Felipe D; Mohr, Claudia; Kurtén, Theo; Worsnop, Douglas R; Thornton, Joel A

2014-06-01

171

Deep high spectral resolution spectroscopy and chemical composition of ionized nebulae  

NASA Astrophysics Data System (ADS)

High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2-3 times higher than those derived from CELs - in H II regions - for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star-forming dwarf and spiral galaxies at different redshifts. Additionally, high-resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s-elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E-ELT will be of paramount interest to: (a) extend the studies of heavy-element recombination lines to low metallicity objects, (b) to extend abundance determinations of s-elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions.

Esteban, C.; García-Rojas, J.; Mesa-Delgado, A.; Toribio San Cipriano, L.

2014-01-01

172

Production and Utilization of CO3- Produced by a Corona Discharge in Air for Atmospheric Pressure Chemical Ionization  

SciTech Connect

Atmospheric pressure chemical ionization is a multistep ionization process used in mass spectrometry and ion mobility spectrometry. The formation of product ions depends upon interactions with the analyte and the reactant ion species formed in the ionization source. The predominant reactant ion observed in a point-to-plane corona discharge in air occurs at m/z 60. There have been multiple references in the literature to the identity of this ion with some disagreement. It was postulated to be either CO3- or N2O2-. The identity of this ion is important as it is a key to the ionization of analytes. It was determined here to be CO3- through the use of 18O labeled oxygen. Further confirmation was provided through MS/MS studies. The ionization of nitroglycerine (NG) with CO3- produced the adduct NG•CO3-. This was compared to ionization with NO3- and Cl- reactant ions that also formed adducts with NG. The fragmentation patterns of these three adducts provides insight into the charge distribution and indicates that CO3- has a relatively high electron affinity similar to that of nitrate.

Ewing, Robert G.; Waltman, Melanie J.

2010-12-14

173

Thermospray ionization liquid chromatography-mass spectrometry and chemical ionization gas chromatography-mass spectrometry of hexazinone metabolites in soil and vegetation extracts  

Microsoft Academic Search

We have used thermospray LC-MS to confirm three highly polar metabolites (A, B, and G) of the herbicide hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione], and chemical ionization GC-MS to confirm two other metabolites (D and E) in extracts of soil and vegetation from a forest in the Central Alabama Piedmont. Selected-ion monitoring (SIM) of the protonated molecular ions of metabolite A [3-(4-hydroxycyclohexyl)-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] at mass-to-charge

Joseph B. Fischer; Jerry L. Michael

1995-01-01

174

Chemical imaging of trichome specialized metabolites using contact printing and laser desorption/ionization mass spectrometry.  

PubMed

Cell transfer by contact printing coupled with carbon-substrate-assisted laser desorption/ionization was used to directly profile and image secondary metabolites in trichomes on leaves of the wild tomato Solanum habrochaites. Major specialized metabolites, including acyl sugars, alkaloids, flavonoids, and terpenoid acids, were successfully detected in positive ion mode or negative ion mode, and in some cases in both modes. This simple solvent-free and matrix-free sample preparation for mass spectrometry imaging avoids tedious sample preparation steps, and high-spatial-resolution images were obtained. Metabolite profiles were generated for individual glandular trichomes from a single Solanum habrochaites leaf at a spatial resolution of around 50 ?m. Relative quantitative data from imaging experiments were validated by independent liquid chromatography-mass spectrometry analysis of subsamples from fresh plant material. The spatially resolved metabolite profiles of individual glands provided new information about the complexity of biosynthesis of specialized metabolites at the cellular-resolution scale. In addition, this technique offers a scheme capable of high-throughput profiling of metabolites in trichomes and irregularly shaped tissues and spatially discontinuous cells of a given cell type. PMID:24220760

Li, Chao; Wang, Zhenzhen; Jones, A Daniel

2014-01-01

175

Herbert P. Broida Prize Lecture: Probing chemical dynamics with negative ion photodetachment  

NASA Astrophysics Data System (ADS)

Photoelectron spectroscopy and its variants have been used in our laboratory to study diverse phenomena in chemical dynamics, including transition state spectroscopy, the electronic and vibrational spectroscopy of clusters, the photodissociation of reactive free radicals, hydrated electron dynamics in clusters and liquid jets, and the ultrafast dynamics of helium nanodroplets. This talk will focus on two examples of this type of work: slow electron velocity map imaging (SEVI) of trapped and cooled negative ions, and time-resolved photoelectron spectroscopy (TRPES) of negative ions. SEVI of cold ions represents a powerful means of performing high resolution photoelectron spectroscopy on complex species. Time-resolved radiation chemistry in nucleobases will be carried out with TRPES. In this work, starting with iodide-nucleobase complexes, we inject electrons into low-lying unoccupied orbitals of the nucleobase and follow the ensuing dynamics.

Neumark, Daniel

2013-03-01

176

Analysis of cyanoacrylate ultraviolet absorbers using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry: influence of fragmentor voltage and solvent on ionization and fragmentation behaviors.  

PubMed

Ionization efficiencies and fragmentation patterns of cyanoacrylate ultraviolet (UV) absorbers, Uvinul 3035 and Uvinul 3039, were studied using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS). Solvent effect on the ionization efficiencies was investigated using methanol, ethanol, acetone, and chloroform. The fragmentation patterns were also investigated by varying the fragmentor voltage. Solvated ions, the [M+H + solvent](+) of methanol, ethanol, and acetone were detected, but the [M+H + chloroform](+) ion was not observed. For Uvinul 3039 in chloroform, the [M+CHCl(2)](+) ion was detected instead of the solvated ion. Relative abundance of the solvated ion was decreased by increasing the fragmentor voltage. Fragment ions of m/z 250, 232, and 204 were detected and their abundance increased with an increase in the fragmentor voltage. The m/z 250 ion can be accounted for by a McLafferty rearrangement. The fragment ions of m/z 232 and 204 were formed not only by subsequent fragmentations of the m/z 250 ion, but also by ion-molecule reactions of solvent ion and neutral analyte. PMID:18646250

Choi, Sung-Seen; Song, Min Ju

2008-08-01

177

Alternately Pulsed Nano-electrospray Ionization/Atmospheric Pressure Chemical Ionization for Ion/Ion Reactions in an Electrodynamic Ion Trap  

PubMed Central

The alternate operation of nano-electrospray ionization (nano-ESI) and atmospheric pressure chemical ionization (APCI), using a common atmosphere/vacuum interface and ion path, has been implemented to facilitate ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The ion sources are operated in opposite polarity modes whereby one of the ion sources is used to form analyte ions while the other is used to form reagent ions of opposite polarity. This combination of ion sources is well-suited to implementation of experiments involving multiply charged ions in reaction with singly charged ions of opposite polarity. Three analytically useful ion/ion reactions types are illustrated: the partial deprotonation of a multiply protonated protein, the partial protonation of a multiply deprotonated oligonucleotide, and electron transfer to a multiply protonated peptide. The approach described herein is attractive in that it enables both single proton transfer and single electron transfer ion/ion reaction experiments to be implemented without requiring major modifications to the tandem mass spectrometer hardware. Furthermore, a wide range of reactant ions can be formed with these ionization methods and the pulsed nature of operation appears to lead to no significant compromise in the performance of either ion source.

Liang, Xiaorong; Xia, Yu; McLuckey, Scott A.

2008-01-01

178

Evaluation of ELISA kits followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the determination of organic pollutants in industrial effluents  

SciTech Connect

Contaminated industrial effluents often contain a variety of organic pollutants which are difficult to analyze by standard GC-MS methods since they often miss the more polar or nonvolatile of these organic compounds. The identification of highly polar analytes by chemical or rapid biological techniques is needed for characterization of the effluents. The present work evaluates the use of enzyme linked immunosorbent assays (ELISA) kits for determining pentachlorophenol, carcinogenic PAHs and BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) among the organic analytes present in various industrial effluents from Europe. The analytical protocol applied for the evaluation of the kits was based on the use of ELISA followed by solid-phase extraction (SPE) for the preconcentration of a variety of organic pollutants such as pentachlorophenol, phthalates, and nonylphenol and final determination with LC-MS characterization using an atmospheric pressure chemical ionization (APCI) interface in the positive and negative ionization modes. The developed protocol permitted the unequivocal identification of target analytes such as pentachlorophenol, nonylphenol, dibutylphthalate, dimethylphthalate, bis(2-ethylhexyl)phthalate 2-methylbenzenesulfonamide, and 2,2-dimethylbenzene-sulfonamide present in industrial effluents. The advantages and limitations of the three RaPID-magnetic particle-based ELISA kits applied to the characterization of industrial effluents are also reported.

Castillo, M.; Oubina, A.; Barcelo, D. [CID-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry] [CID-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry

1998-07-15

179

A rapid novel derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography electron ionization and chemical ionization mass spectrometric analysis.  

PubMed

Amphetamine and methamphetamine are commonly abused central nervous system stimulants. We describe a rapid new derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography-mass spectrometric analysis. Amphetamine and methamphetamine, along with N-propyl amphetamine (internal standard), were extracted from urine using 1-chlorobutane. The derivatization with 2,2,2-trichloroethyl chloroformate can be achieved at room temperature in 10 minutes. The electron ionization mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed two weak molecular ions at m/z 309 and 311, but showed diagnostic strong peaks at m/z 218, 220, and 222. In contrast, chemical ionization of the mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed strong (M + 1) ions at m/z 310 and 312 and other strong diagnostic peaks at m/z 274 and 276. The major advantages of this derivative are the presence of a diagnostic cluster of peaks due to the isotopic effect of three chlorine atoms (isotopes 35 and 37) in the derivatized molecule and the relative ease of its preparation. We also observed strong molecular ions for derivatized methamphetamine in the chemical ionization mass spectrum, but the molecular ions were very weak in the electron ionization mass spectrum. We used the scan mode of mass spectrometry in all analyses. When using a urine standard containing 1,000 ng/mL of amphetamine (a 7.4-micromol/L concentration) and methamphetamine (a 6.7-micromol/L concentration), the within-run precisions were 4.8% for amphetamine and 3.6% for methamphetamine. The corresponding between-run precisions were 5.3% for amphetamine and 6.7% for methamphetamine. The assay was linear for amphetamine and methamphetamine concentrations of 250 to 5,000 ng/mL (amphetamine, 1.9-37.0 micromol/L; methamphetamine, 1.7-33.6 micromol/L). The detection limit was 100 ng/mL (amphetamine, 0.74 micromol/L; methamphetamine, 0.67 micromol/L) using the scan mode of electron ionization mass spectrometry. We observed good a correlation between the concentrations of amphetamine and methamphetamine in five urine specimens positive for amphetamines using the more conventional pentafluoropropionyl derivative and our new derivative using 2,2,2-trichloroethyl chloroformate. PMID:9576569

Dasgupta, A; Spies, J

1998-05-01

180

Bake condition effect on hybrid lithography process for negative-tone chemically amplified resists  

NASA Astrophysics Data System (ADS)

This paper presents the process optimization study of negative tone Chemically Amplified Resists (CAR) under E-Beam exposure. The importance of post apply bake temperature choice on resolution is underlined. The process study determines the process window in which optimal conditions of both post apply and post exposure bake steps are defined and present a method to define more precisely the thermal cross-linking onset. Finally lithographic performances of CARs are studied and we show that resolution can be pushed down to 40 nm.

Pain, Laurent; Sala, F.; Higgins, C.; Dal'zotto, B.; Tedesco, Serge V.

2000-06-01

181

Document authentication at molecular levels using desorption atmospheric pressure chemical ionization mass spectrometry imaging.  

PubMed

Molecular images of documents were obtained by sequentially scanning the surface of the document using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS), which was operated in either a gasless, solvent-free or methanol vapor-assisted mode. The decay process of the ink used for handwriting was monitored by following the signal intensities recorded by DAPCI-MS. Handwritings made using four types of inks on four kinds of paper surfaces were tested. By studying the dynamic decay of the inks, DAPCI-MS imaging differentiated a 10-min old from two 4 h old samples. Non-destructive forensic analysis of forged signatures either handwritten or computer-assisted was achieved according to the difference of the contour in DAPCI images, which was attributed to the strength personalized by different writers. Distinction of the order of writing/stamping on documents and detection of illegal printings were accomplished with a spatial resolution of about 140 µm. A Matlab® written program was developed to facilitate the visualization of the similarity between signature images obtained by DAPCI-MS. The experimental results show that DAPCI-MS imaging provides rich information at the molecular level and thus can be used for the reliable document analysis in forensic applications. PMID:24078245

Li, Ming; Jia, Bin; Ding, Liying; Hong, Feng; Ouyang, Yongzhong; Chen, Rui; Zhou, Shumin; Chen, Huanwen; Fang, Xiang

2013-09-01

182

Analysis of herbicide Krovar I by liquid chromatography with atmospheric pressure chemical ionization mass spectrometry.  

PubMed

A simple, very efficient method is presented for routine analysis of herbicide Krovar I (active components bromacil and diuron) in water and soil samples. Water samples were extracted by liquid-liquid extraction with dichloromethane (DCM) as extraction solvent. For soil samples two different extraction techniques were compared: microwave-assisted solvent extraction and a shaking technique using a platform shaker. Extracts were analyzed by high performance liquid chromatography using a water:methanol gradient. Liquid chromatography was coupled with atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) for quantification of bromacil and diuron. Optimization of the APCI-MS was done by using standards in the flow injection analysis mode (FIA). Method detection limit for liquid samples for bromacil is 0.04 microg L(-1) and for diuron 0.03 microg L(-1). Method detection limit for soil samples is 0.01 microg g(-1) dry weight for both compounds. Results of analysis of field samples of water and soil are also presented. PMID:15132332

Furtula, Vesna; Kuo, Jen-ni

2004-03-01

183

A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.  

PubMed

We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization. PMID:24081306

Sabo, Martin; Matej?ík, Štefan

2013-11-21

184

Gas-phase halo alkylation of C60-fullerene by ion-molecule reaction under chemical ionization.  

PubMed

Chemical ionization (CI) mass spectra of C60-fullerene were studied using 1,2-dibromoethane and 1,2-dichloroethane as CI reagents. The ion-molecule reaction between C60 and C2H4X(+) (X=Br and Cl) leads to the formation of (C60+C2H4X)(+) adducts. The collision-induced dissociation of the adducts reveal gas phase halo alkylation of C60-fullerence involving the C-C bond formation. PMID:24227533

Srinivas, R; Vairamani, M; Mathews, C K

1993-11-01

185

Detection performance of a portable ion mobility spectrometer with 63 Ni radioactive ionization for chemical warfare agents  

Microsoft Academic Search

The detection performance of a portable ion mobility spectrometer (IMS) (SABRE 4000, Smiths Detection) with 63Ni ionization, air purification, and reduced ion mobility measurements using calibrants was investigated for vapors of chemical\\u000a warfare agents. In a matter of several seconds, the SABRE 4000 enabled tentative identification of sarin, soman, cyclohexylsarin,\\u000a tabun, and nitrogen mustard 3, each with a limit of

Shintaro Yamaguchi; Ryuji Asada; Shintaro Kishi; Ryoji Sekioka; Nobuyoshi Kitagawa; Kenichi Tokita; Soichiro Yamamoto; Yasuo Seto

2010-01-01

186

Resonance enhanced multiphoton ionization probing of H atoms and CH 3 radicals in a hot filament chemical vapour deposition reactor  

Microsoft Academic Search

Resonance enhanced multiphoton ionization spectroscopy has been used to provide spatially resolved in situ measurements of H atom and CH3 radical relative number densities and the local gas temperature in a hot filament reactor used for diamond chemical vapour deposition (CVD). Parameters varied include the hydrocarbon (CH4 and C2H2), the hydrocarbon\\/H2 process gas mixing ratio, the total pressure and flow

James A. Smith; Moray A. Cook; Stephen R. Langford; Stephen A. Redman; Michael N. R. Ashfold

2000-01-01

187

Detection of amphetamines in urine using head space-solid phase microextraction and chemical ionization selected ion monitoring  

Microsoft Academic Search

An accurate, simple and rapid method for qualitative and quantitative analysis of amphetamine and methamphetamine in urine was developed using head space-solid phase microextraction and gas chromatography-mass spectrometry\\/chemical ionization selected ion monitoring. A vial containing a urine sample potassium carbonate and pentadeuterated methamphetamine which was used as an internal standard was heated at 80 °C for 20 min. The needle

Mikio Yashiki; Tohru Kojima; Tetsuji Miyazaki; Nobuyuki Nagasawa; Yasumasa Iwasaki; Kenji Hara

1995-01-01

188

Pulsed large volume injection gas chromatography coupled with electron-capture negative ionization quadrupole mass spectrometry for simultaneous determination of typical halogenated persistent organic pollutants  

Microsoft Academic Search

A pulsed large-volume injection gas chromatography coupled with electron-capture negative ionization quadrupole mass spectrometry\\u000a (pLVI-GC\\/ECNI-qMS) was developed for the simultaneous determination of typical halogenated persistent organic pollutants (H-POPs).\\u000a By monitoring the characteristic ions of large mass-to-charge ratio (m\\/z) for each of the H-POPs rather than the chlorine and\\/or bromine ions, this method avoided the possible interferences arising\\u000a from the H-POPs

Yuli Zhao; Limin Yang; Qiuquan Wang

2007-01-01

189

Atmospheric amines and ammonia measured with a Chemical Ionization Mass Spectrometer (CIMS)  

NASA Astrophysics Data System (ADS)

We report ambient measurements of amines and ammonia with a~fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest in Alabama and a~moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast US. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.

You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, A. B.; Madronich, S.; Sierra-Hernández, M. R.; Lawler, M.; Smith, J. N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, E. S.; Porcelli, L.; Brune, W. H.; Goldstein, A. H.; Lee, S.-H.

2014-06-01

190

Effect of protein stabilization on charge state distribution in positive- and negative-ion electrospray ionization mass spectra  

Microsoft Academic Search

Changes in protein conformation are thought to alter charge state distributions observed in electrospray ionization mass spectra\\u000a (ESI-MS) of proteins. In most cases, this has been demonstrated by unfolding proteins through acidification of the solution.\\u000a This methodology changes the properties of the solvent so that changes in the ESI-MS charge envelopes from conformational\\u000a changes are difficult to separate from the

Stephen J. Watt; Margaret M. Sheil; Jennifer L. Beck; Pavel Prosselkov; Gottfried Otting; Nicholas E. Dixon

2007-01-01

191

Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry  

SciTech Connect

Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

2012-02-07

192

The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf-Rayet stars  

NASA Astrophysics Data System (ADS)

We present results from integral field spectroscopy with the Potsdam Multi-Aperture Spectrograph at the 3.5-m telescope at Calar Alto Observatory of the intense star-forming region [HL90] 111 at the centre of the starburst galaxy IC 10. We have obtained maps with a spatial sampling of 1 × 1 arcsec2= 3.9× 3.9 pc2 of different emission lines and analysed the extinction, physical conditions, nature of the ionization and chemical abundances of the ionized gas, as well determined locally the age of the most recent star formation event. By defining several apertures, we study the main integrated properties of some regions within [HL90] 111. Two contiguous spaxels show an unambiguous detection of the broad He II?4686 emission line, this feature seems to be produced by a single late-type WN star. We also report a probable N and He enrichment in the precise spaxels where the Wolf-Rayet (WR) features are detected. The enrichment pattern is roughly consistent with that expected for the pollution of the ejecta of a single or a very small number of WR stars. Furthermore, this chemical pollution is very localized (˜2 arcsec ˜7.8 pc) and it should be difficult to detect in star-forming galaxies beyond the Local Volume. We also discuss the use of the most common empirical calibrations to estimate the oxygen abundances of the ionized gas in nearby galaxies from 2D spectroscopic data. The ionization degree of the gas plays an important role when applying these empirical methods, as they tend to give lower oxygen abundances with increasing ionization degree. Based on observations collected at the Centro Astrónomico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Plank Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Visiting Astronomer at the Instituto de Astrofísica de Canarias.

López-Sánchez, Á. R.; Mesa-Delgado, A.; López-Martín, L.; Esteban, C.

2011-03-01

193

Investigation of e-beam sensitive negative-tone chemically amplified resists for binary mask making  

NASA Astrophysics Data System (ADS)

Negative-tone chemically amplified resists MES-EN1G (JSR), FEN-270 (Fujifilm ARCH), EN-024M (TOK) and NEB-22 (Sumitomo) were evaluated for binary mask making. The investigations were performed on an advanced tool set comprising a 50kV e-beam writer Leica SB350, a Steag Hamatech hot/cool plate module APB5000, a Steag Hamatech developer ASP5000, an UNAXIS MASK ETCHER III and a SEM LEO1560 with integrated CD measurement option. We investigated and compared the evaluated resists in terms of resolution, e-beam sensitivity, resist profile, post exposure bake sensitivity, CD-uniformity, line edge roughness, pattern fidelity and etch resistance. Furthermore, the influence of post coating delay and post exposure delay in vacuum and air was determined.

Irmscher, Mathias; Berger, Lothar; Beyer, Dirk; Butschke, Joerg; Dress, Peter; Hoffmann, Thomas; Hudek, Peter; Koepernik, Corinna; Tschinkl, Martin; Voehringer, Peter

2003-08-01

194

Optimization of fullerene-based negative tone chemically amplified fullerene resist for extreme ultraviolet lithography  

NASA Astrophysics Data System (ADS)

While the technological progress of Next Generation Lithography (NGL) steadily continues, further progress is required before successful insertion in high volume manufacturing is possible. A key issue is the development of new resists suitable to achieve higher lithographic resolution with acceptable sensitivity and line edge roughness. Molecular resists have been a primary focus of interest for NGL because they promise high resolution and small line edge roughness (LER), but no suitable resist candidate has emerged yet that fulfills all of the industry's criteria. We have previously shown first extreme ultraviolet lithography (EUVL) exposures for a new fullerene derivative based three-component negative tone chemically amplified resist with suitable properties close to or within the target range of the resist metrics as set out in the International Technology Roadmap for Semiconductors for 2016. Here we present the results of our efforts to optimize the EUVL performance of our resist system especially with regards to LER.

Frommhold, A.; Yang, D. X.; McClelland, A.; Xue, X.; Ekinci, Y.; Palmer, R. E.; Robinson, A. P. G.

2014-03-01

195

Plasma chemical and electrical modelling of a negative DC corona in pure oxygen  

NASA Astrophysics Data System (ADS)

A complex plasma chemical and electrical model of a negative stationary wire-to-cylinder corona discharge in pure oxygen is presented. The corona discharge is assumed to have axial and azimuthal symmetry. The experimental current-voltage characteristic is required as input data, but there are no other adjustable or empirical parameters. The experimental validation of the results of the model comes from its prediction of the ozone concentration. The role played by different reactions and species is analysed in detail using the results of the simulation. The effect of the gas temperature and of the decomposition of ozone at the electrodes is also investigated. The agreement between the model and the experiments is excellent when the effect of ozone decomposition at the electrodes is taken into account.

Soria, C.; Pontiga, F.; Castellanos, A.

2004-02-01

196

Chemical shrink materials and process for negative tone development (NTD) resist  

NASA Astrophysics Data System (ADS)

Negative tone shrink materials (NSM) suitable for resolution enhancement of negative tone development (NTD) 193nm immersion resists have been developed. While this technology is being applied to integrated circuits (IC) manufacturing, reduction of shrink differences between isolated and dense (ID) CDs also called as shrink ID bias is the challenge to meet wide-spread applications. In this paper, we present the effects of resist thermal flow, proximity effects of DUV exposure, flood exposure of after developed image (ADI) on the NSM shrink. High mixing bake (MB) temperature (example 170°C) during the shrink process resulted in increased resist thermal flow leading to worse shrink ID bias of 3.5 nm. As different pitch pattern has different proximity effect and matching with illumination condition, uneven dose is expected on them. These differences in dose required to obtain same through pitch (1:X, X-1, 1.5, 2, 3, 5) CD was assigned as the cause for shrink ID bias as the de-protection chemistry is related to dose which affects the shrink amount. This was further confirmed by flood exposure of after developed image (ADI) which reduced shrink ID bias from 3.5 nm to 1.8 nm. We concluded that the flood exposure makes the ADIs of the resist chemically uniform thereby minimizing shrink ID bias. Based on these studies, a mechanism for shrink ID bias is proposed. A modified NSM with 1.2 nm shrink ID bias has been developed without the need for the flood exposure.

Miyamoto, Yoshihiro; Sagan, John; Padmanaban, Munirathna; Pawlowski, Georg; Nagahara, Tatsuro

2014-03-01

197

Negative Magnetoresistance of Indium Tin Oxide Nanoparticle Thin Films Grown by Chemical Thermolysis  

NASA Astrophysics Data System (ADS)

To clarify the electrical transport properties of nanostructured thin films, tin-doped indium oxide (ITO) nanoparticle (NP) solution-processed films were fabricated. An air-atmosphere, simple chemical thermolysis method was used to grow the ITO NPs, and the structural and electrical properties of spin-coated granular ITO NP films were investigated. X-ray diffraction measurements showed clear observation of the cubic indium oxide (222) diffraction peak, and films with a smaller Sn concentration were shown to have a better crystalline quality. We further explored the physical origin of the sign of the magnetoresistance (MR) in the variable-range hopping (VRH) region. A negative MR under a magnetic field perpendicular to the film surface increases with decreasing Sn concentration, and these results can be explained by the forward interference model in the VRH region. A larger negative MR is attributed to longer localization and hopping lengths, and better crystallinity. Thus, ITO NP thin films produced by this method are attractive candidates for oxide-based diluted magnetic semiconductors and other electronic devices.

Fujimoto, Akira; Yoshida, Kota; Higaki, Tomohiro; Kimura, Yuta; Nakamoto, Masami; Kashiwagi, Yukiyasu; Yamamoto, Mari; Saitoh, Masashi; Ohno, Toshinobu; Furuta, Shinya

2013-02-01

198

Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study  

NASA Astrophysics Data System (ADS)

The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (?-pinene and ?3-carene) cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a different oxidant mixture of the ambient air compared to the chamber ozonolysis.

Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

2013-02-01

199

Cyclic acyloxonium ions as diagnostic aids in the characterization of chloropropanol esters under electron impact (EI), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) conditions.  

PubMed

During mass spectrometric analysis of various lipids and lipid derivatives such as the chlorinated counterparts of triacylglycerols, the detailed structure of the characteristic and common ions formed under electron impact (EI), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) conditions by the loss of a single fatty acid remains ambiguous. These ions are designated in the literature as "diacylglyceride ions" and are frequently depicted with a molecular formula without showing any structural features and sometimes represented as cyclic acyloxonium ions. Characterization of these ions is of considerable importance due to their utility in structural identification of lipid derivatives. This study provides complementary evidence on the cyclic nature of "diacylglyceride ions" through the use of the simplest 3-monochloropropanediol diester as a model and the use of isotope labeling technique. Tandem MS/MS studies have indicated that the ion at m/z 135.6 generated from 1,2-bis(acetoyl)-3-chloropropane through the loss of an acetyl group was identical to the ion at m/z 135.6 generated from 4-chloromethyl-2,2-dimethyl-1,3-dioxolane, the latter being generated from a cyclic precursor through the loss of a methyl radical, keeping the dioxolane ring structure intact, thus confirming the cyclic nature of these ions. The corresponding cyclic oxonium ions generated from longer chain chloropropanol diesters, such as the ion at m/z 331.2 originating from 3-monochloropropanediol (3-MCPD) diesters containing palmitic acid(s), could serve as chemical markers for the presence chloropropanol esters. PMID:23734847

Rahn, Anja K K; Yaylayan, Varoujan A

2013-06-26

200

Single-Photon Multiple Detachment in Fullerene Negative Ions: Absolute Ionization Cross Sections and the Role of the Extra Electron  

NASA Astrophysics Data System (ADS)

We have obtained experimental photo-double- and photo-triple-detachment cross sections for the fullerene negative ion using Advanced Light Source photons of 17-90 eV. The cross sections are 2 and 2.5 times larger than those for C60 and appear to be compressed and shifted in photon energy as compared to C60. Our analysis reveals that the additional electron in C60- primarily produces screening which is responsible for the modification of the spectrum. Both screening effects, the shift and the compression, can be quantitatively accounted for by a linear transformation of the energy axis. Applying the transformation allows us to map the neutral and negative ion cross sections onto each other, pointing out the close relationship of correlated few-electron dynamics in neutral and negatively charged extended systems. In contrast, dynamics of neutral and negatively charged atoms or small molecules are typically not closely related.

Bilodeau, R. C.; Gibson, N. D.; Walter, C. W.; Esteves-Macaluso, D. A.; Schippers, S.; Müller, A.; Phaneuf, R. A.; Aguilar, A.; Hoener, M.; Rost, J. M.; Berrah, N.

2013-07-01

201

Single-photon multiple detachment in fullerene negative ions: absolute ionization cross sections and the role of the extra electron.  

PubMed

We have obtained experimental photo-double- and photo-triple-detachment cross sections for the fullerene negative ion using Advanced Light Source photons of 17-90 eV. The cross sections are 2 and 2.5 times larger than those for C60 and appear to be compressed and shifted in photon energy as compared to C60. Our analysis reveals that the additional electron in C60- primarily produces screening which is responsible for the modification of the spectrum. Both screening effects, the shift and the compression, can be quantitatively accounted for by a linear transformation of the energy axis. Applying the transformation allows us to map the neutral and negative ion cross sections onto each other, pointing out the close relationship of correlated few-electron dynamics in neutral and negatively charged extended systems. In contrast, dynamics of neutral and negatively charged atoms or small molecules are typically not closely related. PMID:23931363

Bilodeau, R C; Gibson, N D; Walter, C W; Esteves-Macaluso, D A; Schippers, S; Müller, A; Phaneuf, R A; Aguilar, A; Hoener, M; Rost, J M; Berrah, N

2013-07-26

202

High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products.  

PubMed

In the search for a replacement for fossil fuel and the valuable chemicals currently obtained from crude oil, lignocellulosic biomass has become a promising candidate as an alternative biorenewable source for crude oil. Hence, many research efforts focus on the extraction, degradation, and catalytic transformation of lignin, hemicellulose, and cellulose. Unfortunately, these processes result in the production of very complex mixtures. Further, while methods have been developed for the analysis of mixtures of oligosaccharides, this is not true for the complex mixtures generated upon degradation of lignin. For example, high-performance liquid chromatography/multiple stage tandem mass spectrometry (HPLC/MS(n)), a tool proven to be invaluable in the analysis of complex mixtures derived from many other biopolymers, such as proteins and DNA, has not been implemented for lignin degradation products. In this study, we have developed an HPLC separation method for lignin degradation products that is amenable to negative-ion-mode electrospray ionization (ESI doped with NaOH), the best method identified thus far for ionization of lignin-related model compounds without fragmentation. The separated and ionized compounds are then analyzed by MS(3) experiments to obtain detailed structural information while simultaneously performing high-resolution measurements to determine their elemental compositions in the two parts of a commercial linear quadrupole ion trap/Fourier-transform ion cyclotron resonance mass spectrometer. A lignin degradation product mixture was analyzed using this method, and molecular structures were proposed for some components. This methodology significantly improves the ability to analyze complex product mixtures that result from degraded lignin. PMID:22746183

Owen, Benjamin C; Haupert, Laura J; Jarrell, Tiffany M; Marcum, Christopher L; Parsell, Trenton H; Abu-Omar, Mahdi M; Bozell, Joseph J; Black, Stuart K; Kenttämaa, Hilkka I

2012-07-17

203

Continuous determination of dimethylsulfide at part-per-trillion concentrations in air by atmospheric pressure chemical ionization mass spectrometry  

NASA Astrophysics Data System (ADS)

Highly sensitive and specific continuous measurement of dimethylsulfide (DMS) in air has been demonstrated using triple quadrupole mass spectrometry with atmospheric pressure chemical ionization. Detection limits of 2 parts per trillion and 4 parts per trillion by volume in air are achieved for DMS using positive ion detection with benzene charge exchange and hot wire excitation, respectively. Either of these ionization modes provides sensitivity sufficient for continuous direct monitoring of dimethylsulfide in the atmosphere, with time response of approximately 1 s. This capability may be applicable to study the effect of oceanic DMS emissions on global climate. Detection limits in continuous monitoring were also determined for hydrogen sulfide (1 ppbv) and for methyl mercaptan, carbonyl sulfide, and carbon disulfide (? 10 ppbv).

Kelly, Thomas J.; Kenny, Donald V.

204

Determination of Low Specific Activity Iodine-129 off-Gas Concentrations by GC Separation and Negative Ionization Mass Spectrometry.  

National Technical Information Service (NTIS)

This document is the final report of the laboratory development of a method for determining the specific activity of the exp 129 I emitted from a nuclear fuel reprocessing plant. The technique includes cryogenic sample collection, chemical form separation...

S. J. Fernandez R. A. Rankin G. J. McManus R. A. Nielsen J. E. Delmore

1983-01-01

205

Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium  

Microsoft Academic Search

The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier

M. S. Sodha; S. K. Mishra

2011-01-01

206

Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants.  

PubMed

Here we report the chemical induction of the twist-bend nematic phase in a nematic mixture of ether-linked liquid crystal dimers by the addition of a dimer with methylene links; all dimers have an odd number of groups in the spacer connecting the two mesogenic groups. The twist-bend phase has been identified from its optical texture and x-ray scattering pattern as well as NMR spectroscopy, which demonstrates the phase chirality. Theory predicts that the key macroscopic property required for the stability of this chiral phase formed from achiral molecules is for the bend elastic constant to tend to be negative; in addition the twist elastic constant should be smaller than half the splay elastic constant. To test these important aspects of the prediction we have measured the bend and splay elastic constants in the nematic phase preceding the twist-bend nematic using the classic Frederiks methodology and all three elastic constants employing the dynamic light scattering approach. Our results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition. PMID:24032852

Adlem, K; ?opi?, M; Luckhurst, G R; Mertelj, A; Parri, O; Richardson, R M; Snow, B D; Timimi, B A; Tuffin, R P; Wilkes, D

2013-08-01

207

Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants  

NASA Astrophysics Data System (ADS)

Here we report the chemical induction of the twist-bend nematic phase in a nematic mixture of ether-linked liquid crystal dimers by the addition of a dimer with methylene links; all dimers have an odd number of groups in the spacer connecting the two mesogenic groups. The twist-bend phase has been identified from its optical texture and x-ray scattering pattern as well as NMR spectroscopy, which demonstrates the phase chirality. Theory predicts that the key macroscopic property required for the stability of this chiral phase formed from achiral molecules is for the bend elastic constant to tend to be negative; in addition the twist elastic constant should be smaller than half the splay elastic constant. To test these important aspects of the prediction we have measured the bend and splay elastic constants in the nematic phase preceding the twist-bend nematic using the classic Frederiks methodology and all three elastic constants employing the dynamic light scattering approach. Our results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition.

Adlem, K.; ?opi?, M.; Luckhurst, G. R.; Mertelj, A.; Parri, O.; Richardson, R. M.; Snow, B. D.; Timimi, B. A.; Tuffin, R. P.; Wilkes, D.

2013-08-01

208

Identification of hydroxy fatty acids by liquid chromatography-atmospheric pressure chemical ionization mass spectroscopy in Euglena gracilis.  

PubMed

Hydroxy fatty acids from Euglena gracilis were identified by reverse-phase high performance liquid chromatography coupled to a mass spectrometer run in atmospheric pressure chemical ionization positive ion mode. These metabolites were converted to methyl esters to improve stability and chromatographic properties. A detection limit of 20 pg/microl per injection was determined for 5-HETE methyl ester based on the signal to noise ratio of the m/z 317 ion which corresponds to the loss of a hydroxyl group (M-17) and the major fragment in all HETE methyl esters studied. This is the first report for these metabolites in E. gracilis. PMID:15063330

Santiago-Vázquez, Lory Z; Mydlarz, Laura D; Pavlovich, James G; Jacobs, Robert S

2004-04-25

209

Probing the mechanism of the Petasis olefination reaction by atmospheric pressure chemical ionization mass and tandem mass spectrometry.  

PubMed

Atmospheric pressure chemical ionization mass (APCI-MS) and tandem mass spectrometry (APCI-MS/MS) is used to probe the mechanism of the Petasis olefination reaction. Oxatitanacycle intermediates 4 were transferred from solution to the gas phase, detected as 4H+ by APCI-MS with characteristic Ti-isotopic patterns, and structurally characterized by APCI-MS/MS. Detection of 4H+, which upon collision activation dissociates to both 3H+ and Cp(2)TiOH+, fully supports the Hughes mechanism as depicted above. [reaction: see text] PMID:12713281

Meurer, Eduardo Cesar; Santos, Leonardo Silva; Pilli, Ronaldo Aloise; Eberlin, Marcos N

2003-05-01

210

Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography-tandem mass spectrometry.  

PubMed

This paper describes the development of a multi-residue method for the determination of 36 emerging organic pollutants (26 biocides, 5 UV-filters and 5 benzothiazoles) in raw and treated wastewater, activated sludge and surface water using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The target analytes were enriched from water samples adjusted to pH 6 by solid-phase extraction (SPE) on Oasis HLB 200mg cartridges and eluted with a mixture of methanol and acetone (60/40, v/v). Extraction of freeze-dried sludge samples was accomplished by pressurized liquid extraction (PLE) using a mixture of methanol and water (50/50, v/v) as extraction solvent followed by SPE. LC-tandem MS detection was compared using electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in positive and negative ionization mode. ESI exhibited strong ion suppression for most target analytes, while APCI was generally less susceptible to ion suppression but partially leading to ion enhancement of up to a factor of 10. In general, matrix effects could be compensated using stable isotope-labeled surrogate standards, indicated by relative recoveries ranging from 70% to 130%. In wastewater, activated sludge and surface water up to 33 analytes were detected. Maximum concentrations up to 5.1 and 3.9mugL(-1) were found in raw wastewater for the water-soluble UV-filters benzophenone-4 (BZP-4) and phenylbenz-imidazole sulfonic acid (PBSA), respectively. For the first time, the anti-dandruff climbazole was detected in raw wastewater and in activated sludge with concentrations as high as 1.4 microg L(-1) and 1.2 microg gTSS(-1), respectively. Activated sludge is obviously a sink for four benzothiazoles and two isothiazolones, as concentrations were detected in activated sludge between 120 ng gTSS(-1) (2-n-octyl-4-isothiazolin-3-one, OIT) to 330 ng gTSS(-1) (benzothiazole-2-sulfonic acid, BTSA). PMID:20202641

Wick, Arne; Fink, Guido; Ternes, Thomas A

2010-04-01

211

Determination of emerging and priority industrial pollutants in surface water and wastewater by liquid chromatography-negative electrospray ionization tandem mass spectrometry.  

PubMed

A method for the simultaneous determination of six perfluoroalkyl compounds (perfluorooctanesulfonic acid (PFOS) and five perfluoroalkyl carboxylic acids), five phenolic compounds (nonylphenol (NP), bisphenol A (BPA), and methyl-, ethyl- and propylparabens), and the brominated flame retardant hexabromocyclododecane (HBCDD) in surface water and effluent wastewater has been developed. The selected pollutants include eight of the industrial pollutants (PFOS and derivatives, NP, and HBCDD) that could be regulated in surface water according to an European Union Directive proposal and four compounds of great concern because their estrogenicity (BPA and parabens). The method is based on solid-phase extraction and determination by high-performance liquid chromatography-triple quadrupole mass spectrometry in negative electrospray ionization mode. Method quantitation limits of NP, PFOS and derivatives, and HBCDD allow its application for routinely control of surface water according to the EU proposal of directive. PMID:24633504

Martín, Julia; Camacho-Muñoz, Dolores; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

2014-06-01

212

Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium  

NASA Astrophysics Data System (ADS)

The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

Sodha, M. S.; Mishra, S. K.

2011-04-01

213

Advantages of atmospheric pressure chemical ionization in gas chromatography tandem mass spectrometry: pyrethroid insecticides as a case study.  

PubMed

Gas chromatography coupled to mass spectrometry (GC/MS) has been extensively applied for determination of volatile, nonpolar, compounds in many applied fields like food safety, environment, or toxicology. The wide majority of methods reported use electron ionization (EI), which may result in extensive fragmentation of analytes compromising selectivity and sensitivity. This might also complicate the application of tandem MS due to lack of specific/abundant precursor ions. Pyrethroids are examples of compounds with this behavior. In this work, the potential of atmospheric pressure chemical ionization (APCI), a softer form of ionization, combined with GC and a triple quadrupole mass analyzer was investigated, taking pyrethroids as a case study and their determination in fruit and vegetables as example application. Ionization and fragmentation behavior of eight pyrethroids (bifenthrin, cyfluthrin, cypermethrin, permethrin, ?-cyhalothrin, fluvalinate, fenvalerate, and deltamethrin) by APCI were studied. The formation of a highly abundant (quasi) molecular ion was the main goal because of the enhanced selectivity when used as precursor ion in tandem MS. The addition of water as a modifier was tested to promote the generation of protonated molecules, resulting in notable improvement of sensitivity and selectivity for most compounds. The excellent detectability (low detection limits (LODs) <20 fg achieved) when using APCI combined with state-of-the-art tandem MS was demonstrated for real samples. Additionally, matrix effects were evaluated in terms of signal enhancement/suppression. Depending on the matrix, different degrees of suppression were observed, on average reducing the signal in matrix to 55% of that in solvent. The results presented in this paper demonstrate the potential of APCI as new source for GC/MS that could be applied to other analytical problems apart from those illustrated in this work. PMID:23006011

Portolés, T; Mol, J G J; Sancho, J V; Hernández, F

2012-11-20

214

Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: avocado fruit as example.  

PubMed

Although GC-APCI-MS was developed more than 40 years ago this coupling is still far from being a routine technique. One of the reasons explaining the limited use of GC-APCI so far is the lack of spectral database which facilitates the identification of the compounds under study. The first application of a very recently developed GC-APCI database to identify as many compounds as possible in a complex matrix such as avocado fruit is presented here. The results achieved by using this database has been checked against those obtained using traditional GC-EI-MS and a comparison of the MS signals observed in both ionization sources has been carried out. 100 compounds belonging to different chemical families were identified in the matrix under study. Considering the results of this study, the wide range of application (in terms of polarity and size of analytes) and the robustness of APCI as interface, the high quality of TOF spectra, and our library as a publicly available resource, GC-APCI-TOF MS is definitively a valuable addition to the "metabolomics toolbox". PMID:24054422

Hurtado-Fernández, Elena; Pacchiarotta, Tiziana; Longueira-Suárez, Enrique; Mayboroda, Oleg A; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría

2013-10-25

215

Scanning Diode Laser Desorption Thin-Layer Chromatography Coupled with Atmospheric Pressure Chemical Ionization Mass Spectrometry  

NASA Astrophysics Data System (ADS)

Continuous wave diode laser is applied for desorption of an analyte from a porous surface of a thin-layer plate covered with a graphite suspension. The thermally desorbed analyte molecules are ionized in the gas phase by a corona discharge at atmospheric pressure. Therefore, both essential processes - the desorption and the ionization of analyte molecules, which are often performed in one step - are separated. Reserpine was chosen as model analyte, which is often used for specification of mass spectrometers. No fragmentation was observed because of efficient collisional cooling under atmospheric pressure. The influence of diode laser power and the composition of the graphite suspension were investigated, and a primary optimization was performed. An interface to allow online qualitative and quantitative full plate detection and analysis of compounds separated by thin-layer chromatography is presented.

Peng, Song; Ahlmann, Norman; Edler, Michael; Franzke, Joachim

216

Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry.  

PubMed

A gas chromatography/mass spectrometry (GC/MS) method for determination of nine N-nitrosamines (NAs) in water is described. Two ionization modes, electron impact (EI) and chemical ionization (CI) with methanol, as well as different ion analysis techniques, i.e. full scan, selected ion storage (SIS) and tandem mass spectrometry (MS/MS) were tested. Chemical ionization followed by SIS resulted the mass spectrometric method of choice, with detection limits in the range of 1-2ng/L. Solid Phase Extraction (SPE) with coconut charcoal cartridges was applied to extract NAs from real samples, according EPA Method 521. Drinking water samples were collected from seven surface- and two groundwater treatment plants. Three surface water treatment plants were sampled before and after addition of O(3)/ClO(2) to observe the effect of disinfection on NAs' formation. N-nitrosodiethylamine (NDEA), n-nitrosodipropylamine (NDPA), n-nitrosomorpholine (NMOR) and n-nitrosodibutylamine (NDBA) were found up to concentrations exceeding three times the risk level of 10ng/L set by the California Department of Public Health. Because dermal adsorption has been recently indicated as a new contamination route of exposure to NAs for people who practice swimming activity, water samples from five swimming pools in the Bologna (Italy) area were collected. N-nitrosopyrrolidine (NPYR) was detected in all samples at concentrations larger than 50ng/L, likely as a disinfection by-product from the amino acid precursor proline, a main constituent of skin collagen. PMID:21377686

Pozzi, Romina; Bocchini, Paola; Pinelli, Francesca; Galletti, Guido C

2011-04-01

217

Simultaneous determination of hair cortisol, cortisone and DHEAS with liquid chromatography-electrospray ionization-tandem mass spectrometry in negative mode.  

PubMed

The present study aimed to develop a novel method for simultaneous assay of cortisol, cortisone and dehydroepiandrosterone sulfate (DHEAS) in human hair. The method was based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS/MS) in negative mode. Analytes were extracted from 20-mg hair incubated in 1ml of methanol for 5 days. 100?l non-SPE supernatant of the incubation solution was utilized in LC-MS/MS analysis. The liquid chromatography separation was performed on a reversed-phase C18 column with a mobile phase of 80:20 (v:v) methanol and deionized water containing 0.1% formic acid. The use of ESI in negative mode and the use of a small volume of the incubation solution significantly improved assay sensitivity. The linear range was 5-250pg/mg for cortisol and cortisone, and 5-500pg/mg for DHEAS. The limit of detection was 2pg/mg for the three analytes in hair. The coefficients of variation for intra-day and inter-day assay were less than 10%. The method was applied to determine the three analytes mentioned above of hair samples from 103 participants. The results indicated that there was no significant effect of age and education level on the hair cortisol, cortisone and DHEAS levels. The simple treatment procedure developed in the present study may facilitate simultaneous measurement of more steroids in hair. PMID:23685429

Chen, Zheng; Li, Jifeng; Zhang, Jing; Xing, Xue; Gao, Wei; Lu, Zuhong; Deng, Huihua

2013-06-15

218

Chemical composition insect tidal activity ..of essential oil form Citrus aurantium (rates) fruit peels against two greenhouse insects: Spodoptera literals (negated) ..Tutt absolute (Galchutt)  

EPA Pesticide Factsheets

Did you mean Chemical composition insect tidal activity ..of essential oil form Citrus aurantium (rates) fruit peels against two greenhouse insects: Spodoptera literals (negated) ..Tutt absolute (Galchutt) ?

219

Characterization of a New Cleaning Method Using Electrolytic Ionized Water for Polysilicon Chemical Mechanical Polishing Process  

Microsoft Academic Search

In trench isolation technology, the surface layers of poly-Si buried in the trench are contaminated with silica particles and chemical impurities by the conventional chemical-mechanical polishing (CMP) method. These contaminations produce some unexpected patterns and crystal defects in the wafer surface layer after oxidation. Furthermore, it is difficult to remove them by the conventional wet cleaning techniques. In this work,

Naoto Miyashita; Shin-ichiro Uekusa; Hiroshi Katumata

2002-01-01

220

Characterization of profile dependency on nitride substrate thickness for a chemically amplified I-line negative resist  

NASA Astrophysics Data System (ADS)

During implementation of a chemically amplified I-line negative resist (INR) into the eight- inch-wafer manufacturing line at IBM's facility in Essex Junction, Vermont we found that the resist profiles were being undercut during development on silicon-nitride surfaces. The undercut was attributed to a `poisoning' of the photoacid generated in the resist during exposure by the nucleophilic characteristics of the silicon-nitride surface. A second-generation negative resist has since been formulated by IBM, which greatly reduces these undercut effects but does not eliminate them. This newer version of INR is referred to as INR2. To further understand the effects of silicon nitride on the I-line negative-resist profiles, we used Prolith/2 (v3.05)3 to model the underlying stack and evaluate the performance of INR2. Silicon monitors with oxide and different nitride thicknesses were patterned with INR2 using 4-Mb DRAM manufacturing ion-implant block masks and associated photo processing. The results indicated that the undercut observed by this chemically amplified negative resist on silicon nitride was not only chemical in nature, but related to the optical properties of the nitride substrate. Simulation results obtained using Prolith/2 are give and compared with resist profiles obtained from wafers processed with INR2; the accuracy of the Prolith/2 model to predict slope profiles for INR2 is also discussed.

Puttlitz, Erik A.; Collins, James P.; Glynn, Thomas M.; Linehan, Leo L.

1995-06-01

221

Use of a hand-portable gas chromatograph–toroidal ion trap mass spectrometer for self-chemical ionization identification of degradation products related to O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX)  

Microsoft Academic Search

The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]+) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group.

Philip A. Smith; Carmela R. Jackson Lepage; Paul B. Savage; Christopher R. Bowerbank; Edgar D. Lee; Michael J. Lukacs

2011-01-01

222

Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients.  

PubMed

The identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis (CF) patients is usually achieved by using phenotype-based techniques and eventually molecular tools. These techniques remain time-consuming, expensive, and technically demanding. We used a method based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) for the identification of these bacteria. A set of reference strains belonging to 58 species of clinically relevant nonfermenting gram-negative bacilli was used. To identify peaks discriminating between these various species, the profile of 10 isolated colonies obtained from 10 different passages was analyzed for each referenced strain. Conserved peaks with a relative intensity greater than 0.1 were retained. The spectra of 559 clinical isolates were then compared to that of each of the 58 reference strains as follows: 400 Pseudomonas aeruginosa, 54 Achromobacter xylosoxidans, 32 Stenotrophomonas maltophilia, 52 Burkholderia cepacia complex (BCC), 1 Burkholderia gladioli, 14 Ralstonia mannitolilytica, 2 Ralstonia pickettii, 1 Bordetella hinzii, 1 Inquilinus limosus, 1 Cupriavidus respiraculi, and 1 Burkholderia thailandensis. Using this database, 549 strains were correctly identified. Nine BCC strains and one R. mannnitolilytica strain were identified as belonging to the appropriate genus but not the correct species. We subsequently engineered BCC- and Ralstonia-specific databases using additional reference strains. Using these databases, correct identification for these species increased from 83 to 98% and from 94 to 100% of cases, respectively. Altogether, these data demonstrate that, in CF patients, MALDI-TOF-MS is a powerful tool for rapid identification of nonfermenting gram-negative bacilli. PMID:18685005

Degand, Nicolas; Carbonnelle, Etienne; Dauphin, Brunhilde; Beretti, Jean-Luc; Le Bourgeois, Muriel; Sermet-Gaudelus, Isabelle; Segonds, Christine; Berche, Patrick; Nassif, Xavier; Ferroni, Agnès

2008-10-01

223

Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nonfermenting Gram-Negative Bacilli Isolated from Cystic Fibrosis Patients?  

PubMed Central

The identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis (CF) patients is usually achieved by using phenotype-based techniques and eventually molecular tools. These techniques remain time-consuming, expensive, and technically demanding. We used a method based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) for the identification of these bacteria. A set of reference strains belonging to 58 species of clinically relevant nonfermenting gram-negative bacilli was used. To identify peaks discriminating between these various species, the profile of 10 isolated colonies obtained from 10 different passages was analyzed for each referenced strain. Conserved peaks with a relative intensity greater than 0.1 were retained. The spectra of 559 clinical isolates were then compared to that of each of the 58 reference strains as follows: 400 Pseudomonas aeruginosa, 54 Achromobacter xylosoxidans, 32 Stenotrophomonas maltophilia, 52 Burkholderia cepacia complex (BCC), 1 Burkholderia gladioli, 14 Ralstonia mannitolilytica, 2 Ralstonia pickettii, 1 Bordetella hinzii, 1 Inquilinus limosus, 1 Cupriavidus respiraculi, and 1 Burkholderia thailandensis. Using this database, 549 strains were correctly identified. Nine BCC strains and one R. mannnitolilytica strain were identified as belonging to the appropriate genus but not the correct species. We subsequently engineered BCC- and Ralstonia-specific databases using additional reference strains. Using these databases, correct identification for these species increased from 83 to 98% and from 94 to 100% of cases, respectively. Altogether, these data demonstrate that, in CF patients, MALDI-TOF-MS is a powerful tool for rapid identification of nonfermenting gram-negative bacilli.

Degand, Nicolas; Carbonnelle, Etienne; Dauphin, Brunhilde; Beretti, Jean-Luc; Le Bourgeois, Muriel; Sermet-Gaudelus, Isabelle; Segonds, Christine; Berche, Patrick; Nassif, Xavier; Ferroni, Agnes

2008-01-01

224

Mapping the response of a chemically amplified negative photoresist for x-ray lithography  

NASA Astrophysics Data System (ADS)

A variety of techniques have been developed to assess the performance and mechanism of image formation in chemically-amplified resists. The system chosen for this study was the negative tone, SAL 605 from the Shipley Co., under exposure to 1 nm X-rays. This resist system utilizes a novolac resin, the crosslinker molecule hexamethoxymethylmelamine (HMMM), and a photoacid acid generator (PAG). Under exposure to X-rays, the amount of acid generated within the film was approximately 5 × 10sp{-06} moles/cmsp3 under conditions sufficient to print 0.215 mum lines, and was found to catalyze approximately 26 reactions during the post-exposure bake. Only 1.27 reactions per HMMM molecule occur, about 2% of the phenolic entities are protected, and the resist does not crosslink. The molar absorptivity of the ether peak corresponding to the reaction between the HMMM and novolac was measured within the matrix of the film to be 3.1 × 10sp{05} cmsp2/mol. Using real-time FTIR, a full kinetic model was proposed for this system, with all measurements made within the matrix of the film. At lithographic temperatures, the reaction proceeded until approximately one reaction had occurred on all of the HMMM and then slowed down for subsequent reactions on the remaining available sites on the HMMM molecules. A technique to measure the acid distribution within the photoresist film was developed, using a pH-dependent fluorescent molecule included within the film and detected with high spatial-resolution optical microscopy, in collaboration with Yale University. The reactive ion etch resistance of polymer films utilized in lithography with the inclusion of Csb{60} Fullerene additives, was studied. Csb{60} molecules are shown to be more etch resistant than other common additives. A photoresist adhesion monitoring technique, indentation debonding, was utilized to study the response of PMMA to silicon wafers treated with different surface treatments. The application of silane coupling agents markedly affected the mechanical adhesion, with potential to simultaneously improve lithographic adhesion.

Dentinger, Paul M.

225

High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing  

NASA Astrophysics Data System (ADS)

This paper demonstrates the capabilities of chemical ionization mass spectrometry (CIMS) to study secondary organic aerosol (SOA) composition with a high-resolution (HR) time-of-flight mass analyzer (aerosol-ToF-CIMS). In particular, by studying aqueous oxidation of water-soluble organic compounds (WSOC) extracted from ?-pinene ozonolysis SOA, we assess the capabilities of three common CIMS reagent ions: (a) protonated water clusters (H2O)nH+, (b) acetate CH3C(O)O- and (c) iodide water clusters I(H2O)n- to monitor SOA composition. Furthermore, we report the relative sensitivity of these reagent ions to a wide range of common organic aerosol constituents. We find that (H2O)nH+ is more selective to the detection of less oxidized species, so that the range of O / C and OSC (carbon oxidation state) in the SOA spectra is considerably lower than those measured using CH3C(O)O- and I(H2O)n-. Specifically, (H2O)nH+ ionizes organic compounds with OSC ? 1.3, whereas CH3C(O)O- and I(H2O)n- both ionize highly oxygenated organics with OSC up to 4 with I(H2O)n- being more selective towards multi-functional organic compounds. In the bulk O / C and H / C space (in a Van Krevelen plot), there is a remarkable agreement in both absolute magnitude and oxidation trajectory between ToF-CIMS data and those from a high-resolution aerosol mass spectrometer (HR-AMS). Despite not using a sensitivity-weighted response for the ToF-CIMS data, the CIMS approach appears to capture much of the chemical change occurring. As demonstrated by the calibration experiments with standards, this is likely because there is not a large variability in sensitivities from one highly oxygenated species to another, particularly for the CH3C(O)O- and I(H2O)n- reagent ions. Finally, the data illustrate the capability of aerosol-ToF-CIMS to monitor specific chemical change, including the fragmentation and functionalization reactions that occur during organic oxidation, and the oxidative conversion of dimeric SOA species into monomers. Overall, aerosol-ToF-CIMS is a valuable, selective complement to some common SOA characterization methods, such as AMS and spectroscopic techniques. Both laboratory and ambient SOA samples can be analyzed using the techniques illustrated in the paper.

Aljawhary, D.; Lee, A. K. Y.; Abbatt, J. P. D.

2013-11-01

226

Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments  

NASA Technical Reports Server (NTRS)

Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

1994-01-01

227

Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments  

SciTech Connect

Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogeneous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E [times] B and [triangledown]N [times] B drifts that result from electron density gradients and this inhomogeneous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity. 19 refs., 10 figs.

Scales, W.A. (Virginia Tech, Blacksburg, VA (United States)); Bernhardt, P.A.; Ganguli, G. (Naval Research Lab., Washington, DC (United States))

1994-01-01

228

Extracting chemical potentials of quarks from ratios of negatively/positively charged particles in high-energy collisions  

NASA Astrophysics Data System (ADS)

The transverse momentum spectrums of ? -, ? +, K -, K +, , and p produced in p-Pb collisions at TeV measured by the CMS Collaboration and in Pb-Pb collisions at TeV measured by the ALICE Collaboration are described by the Tsallis distribution. Then, the ratios of negatively/positively charged particles are obtained. The chemical potentials of u-quark, d-quark, s-quark, baryon number, isospin, and strangeness are obtained by using different configurations of the ratios. Comparing with the masses of final-state particles, all the six types of chemical potentials are small.

Liu, Fu-Hu; Tian, Tian; Zhao, Hong; Li, Bao-Chun

2014-03-01

229

Mass spectral analysis of N-oxides of Chemical Weapons Convention related aminoethanols under electrospray ionization conditions.  

PubMed

N,N'-Dialkylaminoethanols are the hydrolyzed products or precursors of chemical warfare agents such as V-agents and nitrogen mustards, and they are prone to undergo oxidation in environmental matrices or during decontamination processes. Consequently, screening of the oxidized products of aminoethanols in aqueous samples is an important task in the verification of chemical weapons convention-related chemicals. Here we report the successful characterization of the N-oxides of N,N'-dialkylaminoethanols, alkyl diethanolamines, and triethanolamine using positive ion electrospray ionization mass spectrometry. The collision-induced dissociation (CID) spectra of the [M+H](+) and [M+Na](+) ions show diagnostic product ions that enable the unambiguous identification of the studied N-oxides, including those of isomeric compounds. The proposed fragmentation pathways are supported by high-resolution mass spectrometry data and product/precursor ion spectra. The CID spectra of [M+H](+) ions included [MH-CH(4)O(2)](+) as the key product ion, in addition to a distinctive alkene loss that allowed us to recognize the alkyl group attached to the nitrogen. The [M+Na](+) ions show characteristic product ions due to the loss of groups (R) attached to nitrogen either as a radical (R) or as a molecule [R+H or (R-H)] after hydrogen migration. PMID:21259362

Sridhar, L; Karthikraj, R; Murty, M R V S; Raju, N Prasada; Vairamani, M; Prabhakar, S

2011-02-28

230

Investigation of the unusual behavior of metolachlor under chemical ionization in a hybrid 3D ion trap mass spectrometer.  

PubMed

This article describes the strange behavior of the widely used herbicide metolachlor under chemical ionization conditions in a hybrid source ion trap mass spectrometer in gas chromatography/mass spectrometry (GC/MS) coupling. With the use of ammonia as the reagent gas, metolachlor provides a chlorinated ion at m/z 295/297, almost as abundant as the protonated molecule at m/z 284/286, which cannot be isolated to perform tandem mass spectrometry (MS(n)) experiments. Curiously, this ion at m/z = M + 12 is not observed for the herbicides acetochlor and alachlor, which present very similar chemical structures. The chemical structure of the m/z 295/297 ions and the explanation of the observed phenomenon based on the metastable behavior of these ions were elucidated on the basis of experiments including isotopic labeling and modifications of the operating conditions of the ion trap mass spectrometer. This work allows one to give new recommendations for an optimized use of hybrid source ion trap mass spectrometers. PMID:21923170

Goulden, Pierre Henri; Coffinet, Sarah; Genty, Christophe; Bourcier, Sophie; Sablier, Michel; Bouchonnet, Stéphane

2011-10-15

231

Deriving model-based Te-consistent chemical abundances in ionized gaseous nebulae  

NASA Astrophysics Data System (ADS)

The derivation of abundances in gaseous nebulae ionized by massive stars using optical collisionally excited emission lines is studied in this work, comparing the direct or Te method with updated grids of photoionization models covering a wide range of input conditions of O/H and N/O abundances and ionization parameter. The abundances in a large sample of compiled objects with at least one auroral line are re-derived and later compared with the ?2-weighted-mean abundances from the models. The agreement between the abundances using the two methods both for O/H and N/O is excellent with no additional assumptions about the geometry or physics governing the H II regions. Although very inaccurate model-based O/H are obtained when no auroral lines are considered, this can be overcome assuming empirical laws between O/H, log U, and N/O to constrain the considered models. In this way, for 12+log(O/H) > 8.0, a precision better than 0.1 dex consistent with the direct method is attained. For very low Z, models give higher O/H values and a high dispersion, possibly owing to the contamination of the low-excitation emission lines. However, in this regime, the auroral lines are usually well detected. The use of this procedure, in a publicly available script, HII-CHI-MISTRY, leads to the derivation of abundances in faint-/high-redshift objects consistent with the direct method based on collisionally excited lines.

Pérez-Montero, E.

2014-07-01

232

The study of hydrodenitrification by the use of ammonia chemical ionization gas chromatography/tandem mass spectrometry  

SciTech Connect

Ammonia chemical ionization gas chromatography tandem mass spectrometry NH{sub 3}/CI GC/MS/MS was used to differentiate the partially hydrogenated intermediates formed during the catalytic hydrodenitrification (HDN) of model compounds, 2,6-dimethylquinoline and acridine. It was found that the initial hydrogenation proceeds by two competing pathways involving the heterocyclic as well as the adjacent aromatic rings. Several alkyl pyridines and four methylcarbazoles were also used to examine the effect of steric hindrance on HDN. The concentration of 1-methylcarbazole relative to the other methylcarbazole isomers was found to be higher in the HDN product than the cat cracker feed, indicating that the steric hindrance retards the HDN of this relative to the other methylcarbazoles. The similar effect of HDN was observed when alkyl groups were substituted at positions 1 and 5 of the pyridine ring.

Dzidic, I.; Petersen, H.A.; Nowlin, J.G.; Evans, W.E.; Siegel, H.; Hart, H.V. (Shell Development Co., Houston, TX (United States))

1990-08-01

233

Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry.  

PubMed

Rapid characterization of thermally stable chemical compounds in solid or liquid states is achieved through thermal desorption electrospray ionization mass spectrometry (TD-ESI/MS). A feature of this technique is that sampling, desorption, ionization, and mass spectrometric detection are four separate events with respect to time and location. A metal probe was used to sample analytes in their solid or liquid states. The probe was then inserted in a preheated oven to thermally desorb the analytes on the probe. The desorbed analytes were carried by a nitrogen gas stream into an ESI plume, where analyte ions were formed via interactions with charged solvent species generated in the ESI plume. The analyte ions were subsequently detected by a mass analyzer attached to the TD-ESI source. Quantification of acetaminophen in aqueous solutions using TD-ESI/MS was also performed in which a linear response for acetaminophen was obtained between 25 and 500 ppb (R(2) = 0.9978). The standard deviation for a reproducibility test for ten liquid samples was 9.6%. Since sample preparation for TD-ESI/MS is unnecessary, a typical analysis can be completed in less than 10 s. Analytes such as the active ingredients in over-the-counter drugs were rapidly characterized regardless of the different physical properties of said drugs, which included liquid eye drops, viscous cold syrup solution, ointment cream, and a drug tablet. This approach was also used to detect trace chemical compounds in illicit drugs and explosives, in which samples were obtained from the surfaces of a cell phone, piece of luggage made from hard plastic, business card, and wooden desk. PMID:24050317

Huang, Min-Zong; Zhou, Chi-Chang; Liu, De-Lin; Jhang, Siou-Sian; Cheng, Sy-Chyi; Shiea, Jentaie

2013-10-01

234

Block microstructural characterization of copolymers formed from fluorinated and non-fluorinated alkyl polyisocyanates using desorption chemical ionization mass spectrometry  

NASA Astrophysics Data System (ADS)

Homopolymers and copolymers of 1-isocyanato-4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononane (monomer F) and n-hexylisocyanate (monomer H) were examined by desorption chemical ionization mass spectrometry (DCI-MS) to obtain information on the monomer distribution in the copolymers. Tandem mass spectrometry (MS/MS) was used to characterize ions generated by DCI in the mass spectrometer ion source; ammonia and isobutane were selected as chemical ionization (CI) reagent gases. The major peaks in the ammonia DCI mass spectrum of poly(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyl)isocyanate (poly (F)) are protonated and ammoniated trimers. This result suggests that on pyrolytic degradation poly (F) forms cyclic trimers as do alkyl isocyanate polymers. The isobutane DCI mass spectra display the characteristic alkene elimination sequence characteristic of poly(n-hexyl)isocyanate and poly(2,6-dimethylheptyl)isocyanate but with additional extensive fragmentation. The major fragment ion is the protonated monomer. The monomer distributions in copolymers comprised of monomer F and monomer H were deduced from the abundances of various protonated and ammoniated trimers in the ammonia DCI mass spectra using Markovian statistics. Both soluble and insoluble copolymer samples were isolated and found to have non-random monomer distributions. The soluble fraction is dominated by monomer H blocks while the insoluble fraction also contains a majority of monomer H blocks but relatively more monomer F blocks. This forms an example in the polyisocyanates, which hitherto exhibited only random copolymerization, of a non-living method of polymerization yielding a block microstructure for a mixture of two monomers with virtually identical polymerizable functions. Mass spectrometry offers information on chain microstructure which would be unavailable by other means.

Chen, Guodong; Cooks, R. Graham; Jha, Salil K.; Oupicky, David; Green, Mark M.

1997-11-01

235

Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization.  

PubMed

Many metabolomic applications use gas chromatography/mass spectrometry (GC/MS) under standard 70 eV electron ionization (EI) parameters. However, the abundance of molecular ions is often extremely low, impeding the calculation of elemental compositions for the identification of unknown compounds. On changing the beam-steering voltage of the ion source, the relative abundances of molecular ions at 70 eV EI were increased up to ten-fold for alkanes, fatty acid methyl esters and trimethylsilylated metabolites, concomitant with 2-fold absolute increases in ion intensities. We have compared the abundance, mass accuracy and isotope ratio accuracy of molecular species in EI with those in chemical ionization (CI) with methane as reagent gas under high-mass tuning. Thirty-three peaks of a diverse set of trimethylsilylated metabolites were analyzed in triplicate, resulting in 342 ion species ([M+H](+), [M-CH(3)](+) for CI and [M](+.), [M-CH(3)](+.) for EI). On average, CI yielded 8-fold more intense molecular species than EI. Using internal recalibration, average mass errors of 1.8 +/- 1.6 mm/z units and isotope ratio errors of 2.3 +/- 2.0% (A+1/A ratio) and 1.7 +/- 1.8% (A+2/A ratio) were obtained. When constraining lists of calculated elemental compositions by chemical and heuristic rules using the Seven Golden Rules algorithm and PubChem queries, the correct formula was retrieved as top hit in 60% of the cases and within the top-3 hits in 80% of the cases. PMID:20301109

Abate, Salvatore; Ahn, Yun Gyong; Kind, Tobias; Cataldi, Tommaso R I; Fiehn, Oliver

2010-04-30

236

Liquid chromatography/negative electrospray ionization ion trap MS(2) mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs.  

PubMed

Microcystins (MCs) are toxins produced by cyanobacteria which are common organisms in the phytoplankton of eutrophic lakes, rivers and freshwater reservoirs. In the present work, a novel method of liquid chromatography-electrospray ion trap tandem mass spectrometry (LC/ESI/Ion trap-MS/MS), operated in the negative ionization mode, was developed for the analysis of these cyanotoxins. The method was applied to determine the amounts of total microcystins-LR, -YR and -RR in two water reservoirs in Southern Portugal, namely Alqueva and Beliche. A total of 30 water samples were analysed along 2011. Solid phase extraction (SPE) was used for sample cleaning-up and analyte enrichment. The extracted toxins were separated on a C18 column with a gradient of acetonitrile/water with 0.1% formic acid. Detection of microcystins was carried out using multiple reaction monitoring (MRM) in the negative polarity mode, as this method gave a higher selectivity. The MC-RR, YR and LR quantification limits were 17.9, 31.7 and 15.8 ng/L, respectively; quite below the limits recommended by WHO guidelines for drinking water (1 ?g/L). Total MC highest concentrations were found in the warm months of June, July and September in Alqueva sampling sites, with concentrations of MC LR and RR ranging 17-344 and 25-212 ng/L, respectively, showing comparable results for MC-RR and LR and slightly lower concentration of MC-YR. Detected values for Beliche reservoir were below quantification limits. PMID:23896533

Rodrigues, M A; Reis, M P; Mateus, M C

2013-11-01

237

Desulfurization of phosphorothioate oligonucleotides via the sulfur-by-oxygen replacement induced by the hydroxyl radical during negative electrospray ionization mass spectrometry.  

PubMed

While the occurrence of desulfurization of phosphorothioate oligonucleotides in solution is well established, this study represents the first attempt to investigate the basis of the unexpected desulfurization via the net sulfur-by-oxygen (S-O) replacement during negative electrospray ionization (ESI). The current work, facilitated by quantitative mass deconvolution, demonstrates that considerable desulfurization can take place even under common negative ESI operating conditions. The extent of desulfurization is dependent on the molar phosphorothioate oligonucleotide-to-hydroxyl radical ratio, which is consistent with the corona discharge-induced origin of the hydroxyl radical leading to the S-O replacement. This hypothesis is supported by the fact that an increase of the high-performance liquid chromatography (HPLC) flow rate and the on-column concentration of a phosphorothioate oligonucleotide, as well as a decrease of the electrospray voltage reduce the degree of desulfurization. Comparative LC-tandem mass spectrometry (MS/MS) sequencing of a phosphorothioate oligonucleotide and its corresponding desulfurization product revealed evidence that the S-O replacement occurs at multiple phosphorothioate internucleotide linkage sites. In practice, the most convenient and effective strategy for minimizing this P?=?O artifact is to increase the LC flow rate and the on-column concentration of phosphorothioate oligonucleotides. Another approach to mitigate possible detrimental effects of the undesired desulfurization is to operate the ESI source at a very low electrospray voltage to diminish the corona discharge; however this will significantly compromise sensitivity when analyzing the low-level P?=?O impurities in phosphorothioate oligonucleotides. PMID:22791250

Wu, Lianming; White, David E; Ye, Connie; Vogt, Frederick G; Terfloth, Gerald J; Matsuhashi, Hayao

2012-07-01

238

Negative air ions as a source of superoxide  

NASA Astrophysics Data System (ADS)

The physico-chemical characteristics and possible formation mechanisms of negative air ions are considered. It was found that the products of oxygen and nitrogen negative ionization reduce ferricytochrome c and nitroblue tetrazolium, and that these reactions were inhibited by superoxide dismutase. The interaction of negatively ionized oxygen with water led to hydrogen peroxide accumulation, which was inhibited by tetranitromethane or catalase. Nitrogen ionization under these conditions caused the formation of the hydrated electron e{aq/—} and the superoxide anion O{2/—}. The data obtained indicate that the biological activity of negative air ions may be dependent on superoxide. The generation of reactive oxygen ions in the gas phase and also at a gas/water interface is described. A scheme for superoxide production under oxygen and nitrogen ionization is proposed.

Goldstein, Naum I.; Goldstein, Roman N.; Merzlyak, Mark N.

1992-06-01

239

Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters.  

PubMed

A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI)QTOF MS). The soft ionization promoted by the APCI source allows effective and wide-scope screening based on the investigation of the molecular ion and/or protonated molecule. This is in contrast to electron ionization (EI) where ionization typically results in extensive fragmentation, and diagnostic ions and/or spectra need to be known a priori to facilitate detection of the analytes in the raw data. Around 170 organic contaminants from different chemical families were initially investigated by both approaches, i.e. GC-(EI)TOF and GC-(APCI)QTOF, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and a notable number of pesticides and relevant metabolites. The new GC-(APCI)QTOF MS approach easily allowed widening the number of compounds investigated (85 additional compounds), with more pesticides, personal care products (UV filters, musks), polychloronaphthalenes (PCNs), antimicrobials, insect repellents, etc., most of them considered as emerging contaminants. Both GC-(EI)TOF and GC-(APCI)QTOF methodologies have been applied, evaluating their potential for a wide-scope screening in the environmental field. PMID:24674644

Portolés, Tania; Mol, Johannes G J; Sancho, Juan V; Hernández, Félix

2014-04-25

240

Novel electrolysis-ionized-water cleaning technique for the chemical-mechanical polishing (CMP) process  

Microsoft Academic Search

Recently, chemical-mechanical-polishing (CMP) technology has become more and more important as device packing-density has increased. This is because the CMP of interlayer dielectrics realizes global planarization resulting in multi-level interconnections with finer pitches. However, effective wafer surface cleaning for particles and contamination is needed because slurries with colloidal silica particles are used during the CMP processing. Though wafer cleaning by

H. Aoki; T. Nakajima; K. Kikuta; Y. Hayashi

1994-01-01

241

Chemical effects of ionizing radiation on the individual amino acids within intact and pure protein molecules. Final report. [Gamma radiation, uv radiation  

Microsoft Academic Search

Progress is reported on the following research projects: gamma radiation induced chemical and molecular weight changes in proteins; the free radical pattern for the irradiated protein; similarities in the mechanism of action of ionizing and of uv radiation; and spin trapping in the study of gamma radiolysis. (HLW)

Freidberg

1977-01-01

242

Rapid characterization of artemether and its in vitro metabolites on incubation with bovine hemoglobin, rat blood and dog blood by capillary gas chromatography–chemical ionization mass spectrometry  

Microsoft Academic Search

A fast and sensitive analytical method was developed to characterize artemether and its metabolites in small amounts in body fluids. The extracts were derivatized with N-methyl-N-trimethylsilyltrifluoroacetamide, separated on an optimized capillary gas chromatographic system and identified by chemical ionization mass spectrometry by using ammonia as reagent gas. The analytical assay is demonstrated on samples extracted from bovine hemoglobin, rat blood

Wolfgang Blum; Ulrike Pfaar; Jürgen Kühnöl

1998-01-01

243

Atmospheric pressure chemical ionization mass spectrometry for the detection of tropospheric trace gases: the influence of clustering on sensitivity and precision  

Microsoft Academic Search

An atmospheric pressure chemical ionization mass spectrometer (AP-CIMS) was set up for the detection of the atmospheric trace gases acetonitrile, acetone, and sulfur dioxide. This instrument, which was successfully employed in several, mainly airborne, field campaigns, is described in detail. The ion source makes use of a corona discharge at near ambient pressure. Acetonitrile and acetone are detected as protonated

C Jost; D Sprung; T Kenntner; T Reiner

2003-01-01

244

Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC 6888 with integral field spectroscopy  

NASA Astrophysics Data System (ADS)

n this work we search for the observational footprints of the interactions between the interstellar medium and stellar winds in the Wolf-Rayet nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. We collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the north-east part of the nebula, we generated maps of the extinction structure and electron density. We produced diagnostic diagrams and statistical frequency distributions of the radial velocity. Nine integrated spectra were generated over the whole nebula. We measured line intensities to obtain physical parameters and chemical abundances. We inferred that nearly all the zones present an oxygen abundance slightly below the solar values. The derived N/H appears enhanced up to a factor of 6. Helium presents an enrichment in most of the integrated zones, too. Finally, we proposed a scheme of irregular and/or broken shells for NGC 6888 to explain the features observed.

Fernández-Martín, A.; Vílchez, J. M.; Pérez Montero, E.

2013-05-01

245

Determination of hydroxylated metabolites of polycyclic aromatic hydrocarbons in human hair by gas chromatography–negative chemical ionization mass spectrometry  

Microsoft Academic Search

The study describes the determination of mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs), metabolites of PAHs, in human hair. Twelve selected OH-PAHs from two to four rings, generally determined in urine analysis, were investigated as markers of human exposure to PAHs. Following hydrolysis of hair specimens of 50–300mg with 1M NaOH, OH-PAHs were extracted using dichloromethane and submitted to an optimized derivatization

Claude Schummer; Brice M. R. Appenzeller; Maurice Millet; Robert Wennig

2009-01-01

246

Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization.  

PubMed

Detection of N-nitrosamines in water supplies is an environmental and public health issue because many N-nitrosamines are classified as probable human carcinogens. Some analytical methods are inadequate for detecting N-nitrosodimethylamine (NDMA) at low ng/L concentrations in water due to poor extraction efficiencies and nonselective and nondistinctive GC/MS electron ionization techniques. Development of a selective, sensitive, and affordable benchtop analytical method for eight N-nitrosamines, at relevant drinking water concentrations was the primary objective of this project. A solid-phase extraction method using Ambersorb 572 and LiChrolut EN was developed in conjunction with GC/MS ammonia positive chemical ionization (PCI). Ammonia PCI shows excellent sensitivity and selectivity for N-nitrosamines, which were quantified using both isotope dilution/surrogate standard and internal standard procedures. Method detection limits for all investigated N-nitrosamines ranged from 0.4 to 1.6 ng/L. Applying our extraction method to authentic drinking water samples with dissolved organic carbon concentrations of 9 mg/L, we were able to detect N-nitrosodimethylamine (2-180 ng/L) as well as N-nitrosopyrrolidine (2-4 ng/L) and N-nitrosomorpholine (1 ng/L), two N-nitrosamines that have not been reported in drinking water to date. With high recoveries of standards and analytes, the described internal standard method offers a valuable new approach for investigating several N-nitroso compounds at ultratrace levels in drinking water. PMID:15487793

Charrois, Jeffrey W A; Arend, Markus W; Froese, Kenneth L; Hrudey, Steve E

2004-09-15

247

Measurements of Nitrous Acid (HONO) Using Ion Drift - Chemical Ionization Mass Spectrometry during the 2009 SHARP Field Campaign  

NASA Astrophysics Data System (ADS)

During the 2009 SHARP Field Campaign in Houston, TX, measurements of HONO were continuously conducted from May 1 to June 1 at a site located on the campus of the University of Houston. We have developed a novel approach for ambient measurements of nitrous acid (HONO) using ion drift - chemical ionization mass spectrometry (ID-CIMS). In our innovative method, HONO is ionized using the sulfur hexafluoride anion, representing the first application of this reagent ion under humid tropospheric conditions. In this presentation, we will discuss the temporal trends and sources of HONO, as well as, as the involvement of HONO in the formation of key atmospheric constituents, such as ozone. Diurnally, HONO concentration accumulates in the late afternoon, reaches a nighttime maximum, and declines rapidly after sunrise; the averaged daytime and nighttime concentrations are 0.15 × 0.05 and 0.26 × 0.04, respectively. The nighttime measured HONO peaks show strong correlations with the NO2 concentration, particle surface area, and soot mass concentration, indicating that the aerosol-phase chemistry represents a significant contributor to the HONO yield. A higher nighttime HONO peak concentration consistently precedes a higher and earlier ozone peak concentration of the following day, by about 20 ppb higher and four hours earlier than those with a lower preceding HONO peak concentration do. Using a kinetic approach, we estimate an uptake coefficient in the range of 6 x 10-4 to 2 x 10-3 for the heterogeneous conversion of NO2 to HONO on aerosol surfaces, which is necessary to account for the measured nighttime HONO peaks. Our results underscore the importance of aerosol heterogeneous chemistry in HONO production and the contributions of this non-photolytic HONO source to the radical budget and the photochemical ozone production in this region. Furthermore, because of its high detection sensitivity and fast-responding time, the ID-CIMS method described in this work may greatly facilitate HONO detection under typical tropospheric conditions.

Levy, M. E.; Zhang, R.

2013-12-01

248

Enhancement of atmospheric pressure chemical ionization for the determination of free and glycine-conjugated bile acids in human serum.  

PubMed

A highly sensitive and accurate method based on the precolumn derivatization of bile acids (BA) with a high ionization efficiency labeling reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-benzenesulfonate (BDEBS) coupled with LC/MS has been developed. After derivatization, BA molecules introduced a weak basic nitrogen atom into the molecular core structure that was readily ionized in commonly used acidic HPLC mobile phases. Derivatives were sufficiently stable to be efficiently analyzed by atmospheric pressure chemical ionization (APCI)-MS/MS in positive-ion mode. The MS/MS spectra of BA derivatives showed an intense protonated molecular ion at m/z [M + H]+. The collision-induced dissociation of the molecular ion produced fragment ions at [MH-H2O]+, [MH-2H2O]+, [MH-3H2O]+. The characteristic fragment ions were at m/z 320.8, 262.8, and 243.7 corresponding to a cleavage of N-CO, O-CO, and C-OCO, respectively, and bonds of derivatized molecules. The selected reaction monitoring, based on the m/z [M+H]+ --> [MH-H2O]+, [MH-2H2O]+, [MH-3H2O]+, 320.8, 262.8, and 243.7 transitions, was highly specific for the BA derivatives. The LODs for APCI in a positive-ion mode, at an S/N of 5, were 44.36-153.6 fmol. The validation results showed high accuracy in the range of 93-107% and the mean interday precision for all standards was <15% at broad linear dynamic ranges (0.0244-25 nmol/mL). Good linear responses were observed with coefficients of > 0.9935 in APCI/MS detection. Therefore, the facile BDEBS derivatization coupled with mass spectrometric analysis allowed the development of a highly sensitive and specific method for the quantitation of trace levels of the free and glycine-conjugated BA from human serum samples. PMID:17305246

You, Jinmao; Shi, Yunwei; Zhao, Xianen; Zhang, Haifeng; Suo, Yourui; Yulin, L; Wang, Honglun; Sun, Jing

2006-12-01

249

Application of electrospray ionization ion trap/time-of-flight mass spectrometry for chemically-synthesized small RNAs.  

PubMed

In this study, we have demonstrated an accurate and rapid small RNA analytical method with both sequence determination and detailed modification analysis by electrospray ionization-ion trap/time-of-flight mass spectrometry (ESI-IT/TOFMS). To develop this ideal method, we have examined the performance of ESI-IT/TOFMS using various chemically-synthesized model sequences of modified or unmodified microRNAs (miRNAs). The deconvoluted mass of a 22-nucleotide (nt) miRNA was obtained from a multiply charged precursor ion (MS(1)). The ion exhibited high mass accuracy (< 7 ppm) and high mass resolution (a value of m/?m=10,000) and was therefore very useful in RNA composition assignment. The optimized MS(2) method using ion trap collision-induced dissociation, as well as automatic annotation analysis of product ions based on the accurate mass information, enabled the precise sequencing determination of intact miRNAs. Further, the detailed structural analysis of 3'-terminal modified nucleic acid in intact methylated miRNA was carried out using the MS(3) capability of the hybrid IT/TOFMS. The direct infusion method also provided a high throughput and good sensitivity because the analytical time and sample concentration needed in a series of experiments with reliable data were only 3 min and 100 nM, respectively. This study provides a novel approach for characterizing the intact chemically-synthesized small RNA without chemical and enzymatic digestions and would be widely applicable for the structural analysis of complicated modified small RNAs. PMID:22153845

Izumi, Yoshihiro; Takimura, Shin; Yamaguchi, Shinichi; Iida, Junko; Bamba, Takeshi; Fukusaki, Eiichiro

2012-03-01

250

Evaluation of BDE-47 Hydroxylation Metabolic Pathways Based on a Strong Electron-Withdrawing Pentafluorobenzoyl Derivatization Gas Chromatography/Electron Capture Negative Ionization Quadrupole Mass Spectrometry.  

PubMed

Understanding the metabolic pathways of polybrominated diphenyl ethers (PBDEs) is a key issue in the evaluation of their cytotoxicity after they enter the biota. In order to obtain more information concerning the metabolic pathways of PBDEs, we developed a strong electron-withdrawing pentafluorobenzoyl (PFBoyl) derivatization capillary gas chromatography/electron capture negative ionization quadrupole mass spectrometry (GC/ECNI-qMS). PFBoyl esterification greatly improves separation of the metabolites of PBDEs such as hydroxylated PBDEs (OH-PBDEs) and bromophenols (BPs) metabolites in rat liver microsomes (RLMs). On the other hand, the strong electron-withdrawing property of PFBoyl derivatized on OH-PBDEs and/or BPs makes cleavage of the ester bond on ECNI easier resulting in higher abundance of the structure-informative characteristic fragment ions at a high m/z region, which facilitate the identification of OH-PBDEs metabolites. Subsequent quantification can be performed by monitoring not only (79)Br(-) (or (81)Br(-)) but also their characteristic fragment ions, achieving more accurate isotope dilution quantification using GC/ECNI-qMS. These merits allow us to identify totally 12 metabolites of BDE-47, a typical example of PBDEs, in the RLMs in vitro incubation systems. In addition to the already known metabolites of BDE-47, one dihydroxylated 3,6-di-OH-BDE-47 and one dihydroxylated 3,5-di-OH-tetrabrominated dioxin were found. Moreover, the second hydroxylation took place on the same bromophenyl ring, where the first hydroxyl group was located, and was further confirmed via the identification of the dihydroxylated 2',6'-di-OH-BDE-28 of an asymmetric 2'-OH-BDE-28. This methodological development and its subsequent findings of the metabolic pathways of BDE-47 provided experimental evidence for understanding its dioxin-like behavior and endocrine disrupting risk. PMID:24925108

Zhai, Chao; Peng, Shunv; Yang, Limin; Wang, Qiuquan

2014-07-15

251

Airborne intercomparison of HOx measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS  

NASA Astrophysics Data System (ADS)

The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by UV light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2?) for the LIF instrument, ±65% (2?) for the SI-CIMS instrument, and ±50% (2?) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 105 cm-3 with a correlation coefficient, r2 = 0.72 for OH and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol-1) with a correlation coefficient, r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both the CIMS and LIF measurements. First, the observed-to-modeled HO2 ratio increases greatly for higher NO mixing ratios, indicating that the model may not properly account for HOx sources that correlate with NO. Second, the observed-to-modeled OH ratio increases with increasing isoprene mixing ratios, suggesting either incomplete understanding of isoprene chemistry in the model or interferences in the measurements in environments where biogenic emissions dominate ambient volatile organic compounds.

Ren, X.; Mao, J.; Brune, W. H.; Cantrell, C. A.; Mauldin, R. L., III; Hornbrook, R. S.; Kosciuch, E.; Olson, J. R.; Crawford, J. H.; Chen, G.; Singh, H. B.

2012-03-01

252

Airborne intercomparison of HOx measurements using laser-induced fluorescence and chemical ionization mass spectrometry during ARCTAS  

NASA Astrophysics Data System (ADS)

The hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively called HOx, play central roles in tropospheric chemistry. Accurate measurements of OH and HO2 are critical to examine our understanding of atmospheric chemistry. Intercomparisons of different techniques for detecting OH and HO2 are vital to evaluate their measurement capabilities. Three instruments that measured OH and/or HO2 radicals were deployed on the NASA DC-8 aircraft throughout Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) in the spring and summer of 2008. One instrument was the Penn State Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) for OH and HO2 measurements based on Laser-Induced Fluorescence (LIF) spectroscopy. A second instrument was the NCAR Selected-Ion Chemical Ionization Mass Spectrometer (SI-CIMS) for OH measurement. A third instrument was the NCAR Peroxy Radical Chemical Ionization Mass Spectrometer (PeRCIMS) for HO2 measurement. Formal intercomparison of LIF and CIMS was conducted for the first time on a same aircraft platform. The three instruments were calibrated by quantitative photolysis of water vapor by ultraviolet (UV) light at 184.9 nm with three different calibration systems. The absolute accuracies were ±32% (2?) for the LIF instrument, ±65% (2?) for the SI-CIMS instrument, and ±50% (2?) for the PeRCIMS instrument. In general, good agreement was obtained between the CIMS and LIF measurements of both OH and HO2 measurements. Linear regression of the entire data set yields [OH]CIMS = 0.89 × [OH]LIF + 2.8 × 104 cm-3 with a correlation coefficient r2 = 0.72 for OH, and [HO2]CIMS = 0.86 × [HO2]LIF + 3.9 parts per trillion by volume (pptv, equivalent to pmol mol-1) with a correlation coefficient r2 = 0.72 for HO2. In general, the difference between CIMS and LIF instruments for OH and HO2 measurements can be explained by their combined measurement uncertainties. Comparison with box model results shows some similarities for both the CIMS and LIF measurements. First, the observed-to-modeled HO2 ratio increases greatly for higher NO mixing ratios, indicating that the model may not properly account for HOx sources that correlate with NO. Second, the observed-to-modeled OH ratio increases with increasing isoprene mixing ratios, suggesting either incomplete understanding of isoprene chemistry in the model or interferences in the measurements in environments where biogenic emissions dominate ambient volatile organic compounds.

Ren, X.; Mao, J.; Brune, W. H.; Cantrell, C. A.; Mauldin, R. L., III; Hornbrook, R. S.; Kosciuch, E.; Olson, J. R.; Crawford, J. H.; Chen, G.; Singh, H. B.

2012-08-01

253

Influence of ionizing radiation on physical properties of native and chemically modified starches  

NASA Astrophysics Data System (ADS)

Cationic and anionic starches (chemically modified) and native starch (non-modified) were exposed to electron-beam irradiation at doses of 25, 75 and 150 kGy. The increasing solubility in water, due to chain scission and creation of polar groups as already mentioned in the literature, has been confirmed using several physical methodologies. Impedance Spectroscopy (IS) on water solutions was carried out in order to calculate the relaxation parameters of the Cole-Cole model and ? and ? parameters of the Jones-Dole equation, which show the influence of radiation dose on increasing polarity, decreasing of molecular mass and increasing of electrostatic attraction between chains. Infra-red spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) confirm the formation of polar groups that retain water. The aim of this work was to confirm that the control of chain scission and functionalization of starches with irradiation could then be used in a future work to create nanoparticles by complex coacervation in an aqueous base.

Henry, F.; Costa, L. C.; Aymes-Chodur, C.

2010-01-01

254

Determination of total nitrofuran metabolites in shrimp muscle using liquid chromatography/tandem mass spectrometry in the atmospheric pressure chemical ionization mode.  

PubMed

The method of MacMahon and Lohne for analysis of nitrofuran metabolites in shrimp was optimized to streamline the extraction processes and the LC analysis. This revised method includes 16 h of mild acid hydrolysis/derivatization followed by ethyl acetate extraction and analysis by LC/MS/MS in the atmospheric pressure chemical ionization mode. This revised method was validated in shrimp for concentrations of 0.25 to 2.0 ng/g. The LOQ was 0.25 ng/g for all metabolites. The LOD was 0.052 nglg for 1-aminohydantoin (AHD), 0.206 ng/g for 3-amino-2-oxazolidinone (AOZ), 0.108 ng/g for semicarbazide (SC), and 0.062 ng/g for 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ). The spike recoveries with RSD into negative matrix at 1 ng/g were 100.2% (3.2%) for AHD, 102.5% (1.0%) for AOZ, 103.7% (2.3%) for SC, and 104.0% (3.3%) for AMOZ. The spike recoveries at 1 ng/g into unknown samples (n=108) containing varied levels of nitrofuran metabolites were 112.6% (25.7%) for AHD, 108.1% (12.1%) for AOZ, 103.0% (12.0%) for SC, and 100.3% (6.9%) for AMOZ. Interday precision with samples containing incurred AOZ concentrations of 0.92 to 17.8 ppb performed over a year was 10.4% RSD. The method is accurate and precise for determining nitrofuran concentrations in the edible tissue of shrimp. PMID:22970594

An, Haejung; Henry, Mark; Cain, Teresa; Tran, Bichsa; Paek, Han Chol; Farley, Dennis

2012-01-01

255

Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry.  

PubMed

Flow injection high field asymmetric waveform ion mobility spectrometry (FAIMS)-mass spectrometry (MS) methodology was developed for the detection and identification of chemical warfare (CW) agents in spiked food products. The CW agents, soman (GD), sarin (GB), tabun (GA), cyclohexyl sarin (GF), and four hydrolysis products, ethylphosphonic acid (EPA), methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (Pin MPA), and isopropyl methylphosphonic acid (IMPA) were separated and detected by positive ion and negative ion atmospheric pressure ionization-FAIMS-MS. Under optimized conditions, the compensation voltages were 7.2 V for GD, 8.0 V for GA, 7.2 V for GF, 7.6 V for GB, 18.2 V for EPA, 25.9 V for MPA, -1.9 V for PinMPA, and +6.8 V for IMPA. Sample preparation was kept to a minimum, resulting in analysis times of 3 min or less per sample. The developed methodology was evaluated by spiking bottled water, canola oil, cornmeal, and honey samples at low microgram per gram (or microg/mL) levels with the CW agents or CW agent hydrolysis products. The detection limits observed for the CW agents in the spiked food samples ranged from 3 to 15 ng/mL in bottled water, 1-33 ng/mL in canola oil, 1-34 ng/g in cornmeal, and 13-18 ng/g in honey. Detection limits were much higher for the CW agent hydrolysis products, with only MPA being detected in spiked honey samples. PMID:17896827

Kolakowski, Beata M; D'Agostino, Paul A; Chenier, Claude; Mester, Zoltán

2007-11-01

256

Plasma amino acid quantitation using gas chromatography chemical ionization mass spectrometry and 13C amino acids as internal standards.  

PubMed

A specific and sensitive method for the quantitation of 16 alpha amino acids has been developed. The technique employed uses methane chemical ionization gas chromatography mass spectrometry of the carboxy-n-butyl, N-trifluoroacetyl amino acid derivatives. A commercial 13C amino acid mixture provided individual internal standards for 14 alpha amino acids. A computer controlled quadrupole mass spectrometer was used for selected ion monitoring of those ions characteristic of each N-trifluoroacetyl amino acid/13C amino acid pair. A BASIC computer program located peak maxima and background intensities in each selected ion recording. Standard curves for each amino acid/13C amino acid pair were utilized by the program to calculate the plasma concentration of each detected amino acid. The total instrumental analysis occupied 30 min with sample preparation and derivatization accounting for an additional 2 h. Based on the detection of known amounts of standard amino acids the method will quantitate at the 1-5 nanogram level of detection. PMID:749957

Kingston, E E; Duffield, A M

1978-11-01

257

Differentiation of dried sea cucumber products from different geographical areas by surface desorption atmospheric pressure chemical ionization mass spectrometry.  

PubMed

Without any sample pretreatment, mass spectral fingerprints of 486 dried sea cucumber slices were rapidly recorded in the mass range of m/z 50-800 by using surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). A set of 162 individual sea cucumbers (Apostichopus japonicus Selenka) grown up in 3 different geographical regions (Weihai: 59 individuals, 177 slices; Yantai: 53 individuals, 159 slices; Dalian: 50 individuals, 150 slices;) in north China sea were successfully differentiated according to their habitats both by Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) of the mass spectral raw data, demonstrating that DAPCI-MS is a practically convenient tool for high-throughput differentiation of sea cucumber products. It has been found that the difference between the body wall tissue and the epidermal tissue is heavily dependent on the habitats. The experimental data also show that the roughness of the sample surface contributes to the variance of the signal levels in a certain extent, but such variance does not fail the differentiation of the dried sea cucumber samples. PMID:19788186

Wu, Zhongchen; Chen, Huanwen; Wang, Weiling; Jia, Bin; Yang, Tianlin; Zhao, Zhanfeng; Ding, Jianhua; Xiao, Xuxian

2009-10-28

258

Analyses of polycyclic aromatic hydrocarbons in seafood by capillary electrochromatography-atmospheric pressure chemical ionization/mass spectrometry.  

PubMed

In this work, an on-line preconcentration capillary electrochromatographic (CEC) separation coupled with atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) was used for 16 PAHs analyses, in which poly(stearyl methacrylate-divinylbenzene) (poly(SMA-DVB)) monolith was used as the separation column. With variations in the effective length of poly(SMA-DVB) monolith as well as the volume fraction of acetonitrile (ACN) in the mobile phase, both separation and resolution were improved. A poly(SMA-DVB) monolith of 50-cm effective length (i.e. 50-cm column length filled with polymer) and a two-step step-gradient elution (by changing the ACN levels of the mobile phase starting with an initial of 70% up to 80% with 30-min time interval), which provided baseline separation for PAHs solutes (except for chrysene and benzo[a]anthracene) within 50 min, were employed as the optimal chromatographic conditions. In contrast to the other mass spectrometer parameters (nebulizer gas pressure, vaporizer temperature, corona current) as well as on-line preconcentration parameter (the ACN level in the sample matrix), the sheath liquid composition (methanol/water in the ratio of 3:1) and the sample injection time (40 min) were found as the predominant factors that control the sensitivity of PAHs determination. Finally, this on-line preconcentration CEC-APCI-MS method determined PAH residues in seafood samples successfully with as low as 10 ng/g level. PMID:23992841

Cheng, Yi-Jie; Huang, Sing-Hao; Chiu, Ju-Yin; Liu, Wan-Ling; Huang, Hsi-Ya

2013-10-25

259

Determination of chlorantraniliprole residues in crops by liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry/mass spectrometry.  

PubMed

An analytical method is presented for the determination of chlorantraniliprole residues in crops. Chlorantraniliprole residues were extracted from crop matrixes with acetonitrile after a water soak. The extracts were passed through a strong anion-exchange (SAX) SPE cartridge stacked on top of a reversed-phase (RP) polymer cartridge. After both cartridges were rinsed and vacuum-dried, the SAX cartridge was removed, and chlorantraniliprole was eluted from the RP polymer cartridge with acetonitrile. The acetonitrile eluate was evaporated to dryness, reconstituted, and analyzed using an LC/MS/MS instrument equipped with an atmospheric pressure chemical ionization source. The method was successfully validated at 0.010, 0.10, and 10 mg/kg for the following crop matrixes: potatoes, sugar beets (tops), lettuce, broccoli, soybeans, soybean forage, tomatoes, cucumbers, oranges, apples, pears, peaches, almonds (nutmeat), rice grain, wheat grain, wheat hay, corn stover, alfalfa forage, cottonseed, grapes, and corn grain. The average recoveries from all crop samples fortified at the method LOQ ranged from 91 to 108%, with an overall average recovery of 97%. The average recoveries from all crop samples fortified at 10 times the method LOQ ranged from 89 to 115%, with an overall average recovery of 101%. For all of the fortified control samples analyzed in this study, the overall average recovery was 99%. PMID:20922964

Grant, Joann; Rodgers, Carol A; Chickering, Clark D; Hill, Sidney J; Stry, James J

2010-01-01

260

An aircraft-borne chemical ionization - ion trap mass spectrometer (CI-ITMS) for fast PAN and PPN measurements  

NASA Astrophysics Data System (ADS)

An airborne chemical ionization ion trap mass spectrometer instrument (CI-ITMS) has been developed for tropospheric and stratospheric fast in-situ measurements of PAN (peroxyacetyl nitrate) and PPN (peroxypropionyl nitrate). The first scientific deployment of the FASTPEX instrument (FASTPEX = Fast Measurement of Peroxyacyl nitrates) took place in the Arctic during 18 missions aboard the DLR research aircraft Falcon, within the framework of the POLARCAT-GRACE campaign in the summer of 2008. The FASTPEX instrument is described and characteristic properties of the employed ion trap mass spectrometer are discussed. Atmospheric data obtained at altitudes of up to ~12 km are presented, from the boundary layer to the lowermost stratosphere. Data were sampled with a time resolution of 2 s and a 2? detection limit of 25 pmol mol-1. An isotopically labelled standard was used for a permanent on-line calibration. For this reason the accuracy of the PAN measurements is better than ±10% for mixing ratios greater than 200 pmol mol-1. PAN mixing ratios in the summer Arctic troposphere were in the order of a few hundred pmol mol-1 and generally correlated well with CO. In the Arctic boundary layer and lowermost stratosphere smaller PAN mixing ratios were observed due to a combination of missing local sources of PAN precursor gases and efficient removal processes (thermolysis/photolysis). PPN, the second most abundant PAN homologue, was measured simultaneously. Observed PPN/PAN ratios range between ~0.03 and 0.3.

Roiger, A.; Aufmhoff, H.; Stock, P.; Arnold, F.; Schlager, H.

2011-02-01

261

An aircraft-borne chemical ionization - ion trap mass spectrometer (CI-ITMS) for fast PAN and PPN measurements  

NASA Astrophysics Data System (ADS)

An airborne chemical ionization ion trap mass spectrometer instrument (CI-ITMS) has been developed for tropospheric and stratospheric fast in-situ measurements of PAN (peroxyacetyl nitrate) and PPN (peroxypropionyl nitrate). The first scientific deployment of the FASTPEX instrument (FASTPEX = Fast Measurement of Peroxyacyl nitrates) took place in the Arctic during 18 missions aboard the DLR research aircraft Falcon, within the framework of the POLARCAT-GRACE campaign in the summer of 2008. The FASTPEX instrument is described and characteristic properties of the employed ion trap mass spectrometer are discussed. Atmospheric data obtained at altitudes of up to ~12 km are presented, from the boundary layer to the lowermost stratosphere. Data were sampled with a time resolution of 2 s and a 2? detection limit of 25 pmol mol-1. An isotopically labelled standard was used for a permanent online calibration. For this reason the accuracy of the PAN measurements is better than ±10% for mixing ratios greater than 200 pmol mol-1. PAN mixing ratios in the summer Arctic troposphere were in the order of a few hundred pmol mol-1 and generally correlated well with CO. In the Arctic boundary layer and lowermost stratosphere smaller PAN mixing ratios were observed due to a combination of missing local sources of PAN precursor gases and efficient removal processes (thermolysis/photolysis). PPN, the second most abundant PAN homologue, was measured simultanously. Observed PPN/PAN ratios range between ~0.03 and 0.3.

Roiger, A.; Aufmhoff, H.; Stock, P.; Arnold, F.; Schlager, H.

2010-10-01

262

Determination of triacylglycerols in donkey milk by using high performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry.  

PubMed

The separation and determination of triacylglycerols (TAGs), which are the main components of naturally occurring fats and oils, in milk fat is a challenging task due to the very complex nature of this matrix. In the present study the TAG fraction of donkey milk lipids has been characterized by using high performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS). HPLC in reversed phase mode has been used for TAG separation and silver ion (Ag+) HPLC has been used as a second dimension to clarify and confirm the identification. The RP-HPLC eluate was fractionated and the fractions of interest were injected onto the Ag+-HPLC column. In both cases peak assignment was carried out by combining retention data with APCI-MS spectra information. In total, 55 TAGs in donkey milk fat were identified (without considering the positional isomers) and quantified on the basis of percentage peak areas in the RP-HPLC chromatogram (without the use of correction factors). Amongst the identified triacylglycerols, POLn, POO, PPO, CaPO, POL, and PPoO proved to be the main components of the TAG fraction of donkey milk. PMID:16013829

Dugo, Paola; Kumm, Tiina; Lo Presti, Maria; Chiofalo, Biagina; Salimei, Elisabetta; Fazio, Alessia; Cotroneo, Antonella; Mondello, Luigi

2005-06-01

263

Thermal desorption counter-flow introduction atmospheric pressure chemical ionization for direct mass spectrometry of ecstasy tablets.  

PubMed

A novel approach to the analysis of ecstasy tablets by direct mass spectrometry coupled with thermal desorption (TD) and counter-flow introduction atmospheric pressure chemical ionization (CFI-APCI) is described. Analytes were thermally desorbed with a metal block heater and introduced to a CFI-APCI source with ambient air by a diaphragm pump. Water in the air was sufficient to act as the reactive reagent responsible for the generation of ions in the positive corona discharge. TD-CFI-APCI required neither a nebulizing gas nor solvent flow and the accompanying laborious optimizations. Ions generated were sent in the direction opposite to the air flow by an electric field and introduced into an ion trap mass spectrometer. The major ions corresponding to the protonated molecules ([M + H](+)) were observed with several fragment ions in full scan mass spectrometry (MS) mode. Collision-induced dissociation of protonated molecules gave characteristic product-ion mass spectra and provided identification of the analytes within 5 s. The method required neither sample pretreatment nor a chromatographic separation step. The effectiveness of the combination of TD and CFI-APCI was demonstrated by application to the direct mass spectrometric analysis of ecstasy tablets and legal pharmaceutical products. PMID:19565470

Inoue, Hiroyuki; Hashimoto, Hiroaki; Watanabe, Susumu; Iwata, Yuko T; Kanamori, Tatsuyuki; Miyaguchi, Hajime; Tsujikawa, Kenji; Kuwayama, Kenji; Tachi, Noriyuki; Uetake, Naohito

2009-09-01

264

Chemically amplified negative-tone photoresist for sub-half-micron device and mask fabrication  

NASA Astrophysics Data System (ADS)

In this paper we discuss a new alkaline soluble negative acting photoresist which incorporates a phenolic based resin, urea/formaldehyde prepolymer as a crosslinking agent and an organic acid-generating sensitizer. This system, dubbed 'EBX' (Electron Beam/X-ray) resist has demonstrated excellent lithographic properties in various exposure modes. Discussion will center on imaging characteristics in the deep and mid ultraviolet using Micrascan I and I-line (365 nm) steppers; electron-beam imaging with MEBES 10 kV mask maker and IBM's EL-4 50 kV electron beam exposure system; and XRAY imaging with point source soft x-ray and synchotron hard x-ray lithography.

Conley, Will; Dundatscheck, Robert; Gelorme, Jeffrey D.; Horvat, John; Martino, Ronald M.; Murphy, Elizabeth; Petrosky, Anne; Spinillo, Gary T.; Stewart, Kevin J.; Wilbarg, Robert; Wood, Robert L.

1991-06-01

265

Perceiving the chemical language of Gram-negative bacteria: listening by high-resolution mass spectrometry.  

PubMed

Gram-negative bacteria use N-acylhomoserine lactones (AHLs) as their command language to coordinate population behavior during invasion and colonization of higher organisms. Although many different bacterial bioreporters are available for AHLs monitoring, in which a phenotypic response, e.g. bioluminescence, violacin production, and ?-galactosidase activity, is exploited, mass spectrometry (MS) is the most versatile detector for rapid analysis of AHLs in complex microbial samples, with or without prior separation steps. In this paper we critically review recent advances in the application of high-resolution MS to analysis of the quorum sensing (QS) signaling molecules used by Gram-negative bacteria, with much emphasis on AHLs. A critical review of the use of bioreporters in the study of AHLs is followed by a short methodological survey of the capabilities of high-resolution mass spectrometry (HRMS), including Fourier-transform ion cyclotron resonance (FTICR) MS and quadrupole time-of-flight (qTOF) MS. Use of infusion electrospray ultrahigh-resolution FTICR MS (12 Tesla) enables accurate mass measurements for determination of the elemental formulas of AHLs in Acidovorax sp. N35 and Burkholderia ubonensis AB030584. Results obtained by coupling liquid chromatography with a hybrid quadrupole linear ion trap-FTICR mass spectrometer (LC-LTQ-FTICRMS, 7-T) for characterization of acylated homoserine lactones in the human pathogen Pseudomonas aeruginosa are presented. UPLC-ESI-qTOF MS has also proved to be suitable for identification of 3O-C(10)HSL in Pseudomonas putida IsoF cell culture supernatant. Aspects of sample preparation and the avoidance of analytical pitfalls are also emphasized. PMID:22986985

Cataldi, Tommaso R I; Bianco, Giuliana; Fonseca, Juliano; Schmitt-Kopplin, Philippe

2013-01-01

266

Structural elucidation of molecular species of pacific oyster ether amino phospholipids by normal-phase liquid chromatography/negative-ion electrospray ionization and quadrupole/multiple-stage linear ion-trap mass spectrometry  

PubMed Central

Although marine oysters contain abundant amounts of ether-linked aminophospholipids, the structural identification of the various molecular species has not been reported. We developed a normal-phase silica liquid chromatography/negative-ion electrospray ionization/quadrupole multiple-stage linear ion-trap mass spectrometric (NPLC-NI-ESI/Q-TRAP-MS3) method for the structural elucidation of ether molecular species of serine and ethanolamine phospholipids from marine oysters. The major advantages of the approach are (i) to avoid incorrect selection of isobaric precursor ions derived from different phospholipid classes in a lipid mixture, and to generate informative and clear MSn product ion mass spectra of the species for the identification of the sn-1 plasmanyl or plasmenyl linkages, and (ii) to increase precursor ion intensities by “concentrating” lipid molecules of each phospholipid class for further structural determination of minor molecular species. Employing a combination of NPLC-NI-ESI/MS3 and NPLC-NI-ESI/MS2, we elucidated, for the first time, the chemical structures of docosahexaenoyl and eicosapentaenoyl plasmenyl phosphatidylserine (PS) species and differentiated up to six isobaric species of diacyl/alkylacyl/alkenylacyl phosphatidylethanolamine (PE) in the US pacific oysters. The presence of a high content of both omega-3 plasmenyl PS/plasmenyl PE species and multiple isobaric molecular species isomers is the noteworthy characteristic of the marine oyster. The simple and robust NPLC-NI-ESI/MSn-based methodology should be particularly valuable in the detailed characterization of marine lipid dietary supplements with respect to omega-3 aminophospholipids.

Chen, Su; Belikova, Natalia A.; Subbaiah, Papasani V.

2012-01-01

267

CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE  

SciTech Connect

Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior of the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.

Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M. [LERMA, CNRS, Observatoire de Paris and ENS, F-75231 Paris Cedex 05 (France); Geballe, T. R. [Gemini Observatory, Hilo, HI 96720 (United States); Black, J. H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Menten, K. M. [MPI fuer Radioastronomie, D-53121 Bonn (Germany); Goicoechea, J. R. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC-INTA), E-28850 Madrid (Spain)

2012-10-20

268

Liquid chromatography electrospray tandem mass spectrometric and desorption electrospray ionization tandem mass spectrometric analysis of chemical warfare agents in office media typically collected during a forensic investigation.  

PubMed

Most prior analytical studies have dealt with the determination of chemical warfare agents in environmental or biological matrices that would typically be collected following battlefield use or in support of the Chemical Weapons Convention. These methods may be useful for some investigations, but may not be practical for indoor forensic investigations where chemical warfare agent use is suspected. There is a need for analytical methods for chemical warfare agent identification in office media, including flooring, wall surfaces, office fabrics and paper products, which would typically be collected in an office environment during forensic investigations. During this study, typical office environment media were spiked at the 4-20microg/g level with either a complex munitions grade sample of tabun (GA) or with a standard containing the three nerve agents, sarin (GB), cyclohexyl methylphosphonofluoridate (GF), soman (GD) and the nerve agent simulant, triethyl phosphate (TEP), to evaluate the potentials of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for forensic purposes. An emerging technique, desorption electrospray ionization (DESI-MS/MS), was also investigated for the direct determination of TEP, GB and GD sampled onto solid phase microextraction (SPME) fibers exposed to spiked office media. The spiked chemical warfare agents were recovered with varying efficiencies during this study, but in all cases sufficient chemical warfare agent was recovered for mass spectrometric identification purposes. Full high resolution mass spectra were acquired for all the chemical warfare agents in the continuum mode, which typically resulted in mass measurement errors of 0.001Da or less. PMID:16480731

D'Agostino, P A; Hancock, J R; Chenier, C L; Lepage, C R Jackson

2006-03-31

269

Ultratrace detection of chemical warfare agent simulants using supersonic-molecular-beam, resonance-enhanced multiphoton-ionization, time-of-flight mass spectroscopy. Final report  

SciTech Connect

An ultratrace detection method that offers exceptional selectivity has been developed based on the technique of supersonic molecular beam, resonance enhanced multiphoton ionization, time-of-flight mass spectroscopy (MB/REMPI/TOFMS). Single ion detection capability has given detection limits as low as 300 ppt (dimethyl sulfide). Single vibronic level REMPI of the supercooled molecules in conjunction with TOFMS provides selectivity of 10,000 against chemically similar compounds. Studies were carried out using moist air expansions for a variety of organophosphonate and sulfide chemical warfare agent (CWA) simulant molecules. The preparation of molecules in single vibronic levels by laser excitation in supersonic molecular beams has enabled us to record high resolution spectra of higher excited electronic states showing fully resolved vibrational structure for diisopropyl methylphosphonate (DIMP) and dimethyl sulfide (DMS). VUV absorption spectra have also been recorded for several CWA molecules at ambient temperature, revealing several new electronic states extending up to the ionization threshold.

Syage, J.A.; Pollard, J.E.; Cohen, R.B.

1988-02-15

270

Structural transformation with "negative volume expansion": chemical bonding and physical behavior of TiGePt.  

PubMed

The synthesis and a joint experimental and theoretical study of the crystal structure and physical properties of the new ternary intermetallic compound TiGePt are presented. Upon heating, TiGePt exhibits an unusual structural phase transition with a huge volume contraction of about 10?%. The transformation is characterized by a strong change in the physical properties, in particular, by an insulator-metal transition. At temperatures below 885?°C TiGePt crystallizes in the cubic MgAgAs (half-Heusler) type (LT phase, space group F43m, a = 5.9349(2)?Å). At elevated temperatures, the crystal structure of TiGePt transforms into the TiNiSi structure type (HT phase, space group Pnma, a = 6.38134(9)?Å, b = 3.89081(5)?Å, c = 7.5034(1)?Å). The reversible, temperature-dependent structural transition was investigated by in-situ neutron powder diffraction and dilatometry measurements. The insulator-metal transition, indicated by resistivity measurements, is in accord with band structure calculations yielding a gap of about 0.9?eV for the LT phase and a metallic HT phase. Detailed analysis of the chemical bonding in both modifications revealed an essential change of the Ti-Pt and Ti-Ge interactions as the origin of the dramatic changes in the physical properties. PMID:22461109

Ackerbauer, S-V; Senyshyn, A; Borrmann, H; Burkhardt, U; Ormeci, A; Rosner, H; Schnelle, W; Gam?a, M; Gumeniuk, R; Ramlau, R; Bischoff, E; Schuster, J C; Weitzer, F; Leithe-Jasper, A; Tjeng, L H; Grin, Yu

2012-05-14

271

Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway  

PubMed Central

Summary Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease resistance signaling [1–6]. Conversely, initial plant immune signaling may interrupt subsequent ABA signal transduction [7, 8]. However, the processes involved in cross talk between these signaling networks have not been determined. By screening a 9,600 compound chemical library, we identified a small molecule DFPM that rapidly down-regulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM- and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16 and NPR1 are not necessary. While DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA-activation of SnRK2 kinases, it disrupts cytosolic Ca2+ signaling and downstream anion channel activation in a pad4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and this occurs at the level of Ca2+ signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Bohmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-ha; Lee, Stephen; Robert, Nadia; Parker, Jane E.; Schroeder, Julian I.

2011-01-01

272

Determination of imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry  

Microsoft Academic Search

Imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole have been simultaneously determined in strawberries, oranges, potatoes, pears, and melons by matrix solid-phase dispersion (MSPD) followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) in positive-ion mode. The samples were homogenized with C8 bonded silica as MSPD sorbent, placed in a glass column, and eluted with dichloromethane. Chromatographic separation of the compounds was

Ximo Pous; Yolanda Picó

2001-01-01

273

Chemical ionization of phenyl n -propyl ether and methyl substituted analogs: Propene loss initiated by competing proton transfer to the oxygen atom and the aromatic ring  

Microsoft Academic Search

The mechanism of propene loss from protonated phenyl n-propyl ether and a series of mono-, di-, and trimethylphenyl n-propyl ethers has been examined by chemical ionization (CI) mass spectrometry in combination with tandem mass spectrometry\\u000a experiments. The role of initial proton transfer to the oxygen atom and the aromatic ring, respectively, has been probed with\\u000a the use of deuterated CI

Bogdan Bogdanov; Henri E. K. Matimba; Steen Ingemann; Nico M. M. Nibbering

1996-01-01

274

Comparison of different sorbent materials for on-line solid-phase extraction with liquid chromatography–atmospheric pressure chemical ionization mass spectrometry of phenols  

Microsoft Academic Search

On-line solid-phase extraction (SPE) was interfaced to liquid chromatography with atmospheric pressure chemical ionization mass spectrometry (HPLC–APCI-MS) for the determination of US Environmental Protection Agency (EPA) phenols. The system, allowing fully automated operation, was used to evaluate different SPE cartridge materials and dimensions. Six different SPE materials (C18 HD, Polymer Labs PLRP-s, Hamilton PRP-1, Hysphere GP, Hysphere SH and Waters

R Wissiack; E Rosenberg; M Grasserbauer

2000-01-01

275

Determination of alkyltrimethylammonium surfactants in hair conditioners and fabric softeners by gas chromatography–mass spectrometry with electron-impact and chemical ionization  

Microsoft Academic Search

The commercial hair conditioners and fabric softeners were analyzed for the content of alkyltrimethylammonium compounds (ATMACs) by gas chromatography–mass spectrometry (GC–MS) with electron impact (EI) and low-pressure positive-ion chemical ionization (PICI) modes. The method involves mixed diluted samples (adjust pH to 10.0) with potassium iodide to enhance the extraction of iodide–ATMA+ ion pairs by direct liquid–liquid extraction. The iodide–ATMA+ pairs

Pei-Chuan Tsai; Wang-Hsien Ding

2004-01-01

276

Determination of melamine and cyanuric acid in powdered milk using injection-port derivatization and gas chromatography–tandem mass spectrometry with furan chemical ionization  

Microsoft Academic Search

A reliable, sensitive and eco-friendly injection-port trimethylsilylated (TMS) derivatization and gas chromatography–tandem mass spectrometry (GC–MS\\/MS) with furan chemical ionization (furan-CI) method was developed to determine melamine and cyanuric acid in powdered milk samples. The effects of several parameters related to the TMS-derivatization process (i.e., injection-port temperature, residence time and volume of silylating agent) and of various CI agents were investigated.

Shin-Hwa Tzing; Wang-Hsien Ding

2010-01-01

277

Technical Note: Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds  

Microsoft Academic Search

The performance of a new chemical ionization re- action time-of-flight mass spectrometer (CIR-TOF-MS) util- ising the environment chamber SAPHIR (Simulation of At- mospheric Photochemistry In a large Reaction Chamber- Forschungzentrum Julich, Germany) is described. The work took place as part of the ACCENT (Atmospheric Composi- tion and Change the European NeTwork for excellence) sup- ported oxygenated volatile organic compound (OVOC)

K. P. Wyche; R. S. Blake; A. M. Ellis; P. S. Monks; T. Brauers; R. Koppmann; E. C. Apel

2007-01-01

278

Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds  

Microsoft Academic Search

The performance of a new chemical ionization reaction time-of-flight mass spectrometer (CIR-TOF-MS) utilising the environment chamber SAPHIR (Simulation of Atmospheric Photochemistry In a large Reaction Chamber - Forschungzentrum Jülich, Germany) is described. The work took place as part of the ACCENT (Atmospheric Composition and Change the European NeTwork for excellence) supported oxygenated volatile organic compound (OVOC) measurement intercomparison during January

K. P. Wyche; R. S. Blake; A. M. Ellis; P. S. Monks; T. Brauers; R. Koppmann; E. Apel

2006-01-01

279

Technical Note: Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds  

Microsoft Academic Search

The performance of a new chemical ionization reaction time-of-flight mass spectrometer (CIR-TOF-MS) utilising the environment chamber SAPHIR (Simulation of Atmospheric Photochemistry In a large Reaction Chamber- Forschungzentrum Jülich, Germany) is described. The work took place as part of the ACCENT (Atmospheric Composition and Change the European NeTwork for excellence) supported oxygenated volatile organic compound (OVOC) measurement intercomparison during January 2005.

K. P. Wyche; R. S. Blake; A. M. Ellis; P. S. Monks; T. Brauers; R. Koppmann; E. C. Apel

2007-01-01

280

Ultratrace detection of chemical warfare agent simulants using supersonic-molecular-beam, resonance-enhanced multiphoton-ionization, time-of-flight mass spectroscopy. Final report  

Microsoft Academic Search

An ultratrace detection method that offers exceptional selectivity has been developed based on the technique of supersonic molecular beam, resonance enhanced multiphoton ionization, time-of-flight mass spectroscopy (MB\\/REMPI\\/TOFMS). Single ion detection capability has given detection limits as low as 300 ppt (dimethyl sulfide). Single vibronic level REMPI of the supercooled molecules in conjunction with TOFMS provides selectivity of 10,000 against chemically

J. A. Syage; J. E. Pollard; R. B. Cohen

1988-01-01

281

Determination of morphine and its 3- and 6-glucuronides, codeine, codeine-glucuronide and 6-monoacetylmorphine in body fluids by liquid chromatography atmospheric pressure chemical ionization mass spectrometry  

Microsoft Academic Search

A selective assay of morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G), morphine, codeine, codeine-6-glucuronide (C6G) and 6-monoacetylmorphine (6-MAM) based on liquid chromatography atmospheric pressure chemical ionization mass spectrometry (LC–APCI–MS) is described. The drugs were extracted from serum, autopsy blood, urine, cerebrospinal fluid or vitreous humor using C18 solid-phase extraction cartridges and subjected to LC–APCI–MS analysis. The separation was performed on an ODS column

Maciej J Bogusz; Rolf-Dieter Maier; Manfred Erkens; Sarah Driessen

1997-01-01

282

Rapid and sensitive analysis of azadirachtin and related triterpenoids from Neem ( Azadirachta indica) by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry  

Microsoft Academic Search

Based on reversed-phase high-performance liquid chromatography (RP-HPLC) and atmospheric pressure chemical ionization (APCI) mass spectrometry, a HPLC–MS method was developed to permit the rapid qualitative and quantitative analysis of azadirachtin and related tetranortriterpenoids from seeds and tissue cultures of Neem (Azadirachta indica). APCI+ standard scanning mass spectra of the major Neem triterpenoids were recorded and utilized to select suitable ions

Otmar Schaaf; Andrew P Jarvis; S. Andrew van der Esch; Germina Giagnacovo; Neil J Oldham

2000-01-01

283

Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry  

Microsoft Academic Search

Phthalates are widely used as industrial solvents and plasticizers, with global use exceeding four million tons per year. We improved our previously developed high-performance liquid chromatography–atmospheric pressure chemical ionization-tandem mass spectrometric (HPLC–APCI-MS\\/MS) method to measure urinary phthalate metabolites by increasing the selectivity and the sensitivity by better resolving them from the solvent front, adding three more phthalate metabolites, monomethyl phthalate

Manori J Silva; Nicole A Malek; Carolyn C Hodge; John A Reidy; Kayoko Kato; Dana B Barr; Larry L Needham; John W Brock

2003-01-01

284

Quantitative analysis of Fusarium mycotoxins in maize using accelerated solvent extraction before liquid chromatography\\/atmospheric pressure chemical ionization tandem mass spectrometry  

Microsoft Academic Search

A method for the simultaneous quantitative determination of deoxynivalenol (DON), fumonisin B1 (FB1) and zearalenone (ZEN) in maize by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCIMS\\/MS), using stable isotopically labelled and structural analogues internal standards, is described. The procedure involves accelerated solvent extraction followed by two solid-phase clean-up steps on strong anion exchange resin and a Mycosep® column.

D. Royer; H.-U. Humpf; P. A. Guy

2004-01-01

285

High-performance liquid chromatography–atmospheric-pressure chemical ionization mass spectrometry as a new tool for the determination of the mycotoxin zearalenone in food and feed  

Microsoft Academic Search

A new method for the determination of the mycotoxin zearalenone (ZON) in food and feed, based on HPLC–MS with an atmospheric-pressure chemical ionization (APCI) interface after extraction from cereals and clean-up by either conventional solid-phase or immunoaffinity cartridges is presented. The APCI interface parameters are optimized to provide detection of ZON with maximum sensitivity after RP separation of ZON on

E Rosenberg; R Krska; R Wissiack; V Kmetov; R Josephs; E Razzazi; M Grasserbauer

1998-01-01

286

An improved reagent for determination of aliphatic amines with fluorescence and online atmospheric chemical ionization-mass spectrometry identification.  

PubMed

An improved reagent named 2-[2-(dibenzocarbazole)-ethoxy] ethyl chloroformate (DBCEC-Cl) for the determination of aliphatic amines by high-performance liquid chromatography (HPLC) with fluorescence detection and post-column online atmospheric chemical ionization-mass spectrometry (APCI-MS) identification has been developed. DBCEC-Cl could easily and quickly label aliphatic amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+H](+) under APCI-MS in positive-ion mode. The ratios for fluorescence responses were I(DBCEC-amine)/I(BCEC-amine)=1.02-1.60; I(DBCEC-amine)/I(BCEOC-amine)=1.30-2.57; and I(DBCEC-amine)/I(FMOC-amine)=2.20-4.12 (here, I was relative fluorescence intensity). The ratios for MS responses were IC(DBCEC-amine)/IC(BCEC-amine)=4.16-29.31 and IC(DBCEC-amine)/IC(BCEOC-amine)=1.23-2.47 (Here, IC: APCI-MS ion current intensity). Detection limits calculated from 0.0244 pmol injection, at a signal-to-noise ratio of 3, were 0.3-3.0 fmol. The relative standard deviations for within-day determination (n=6) were 0.045-0.081% for retention time and 0.86-1.03% for peak area for the tested aliphatic amines. The mean intra- and inter-assay precision for all amine levels were <3.64% and 4.67%, respectively. The mean recoveries ranged from 96.9% to 104.7% with their standard deviations in the range of 1.80-2.70 (RSDs%). Excellent linear responses were observed with coefficients of >0.9991. PMID:20082781

You, Jinmao; Song, Cuihua; Yan, Tao; Sun, Zhiwei; Li, Yulin; Suo, Yourui

2010-01-18

287

Total microcystins analysis in water using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.  

PubMed

A new approach for the analysis of the cyanobacterial microcystins (MCs) in environmental water matrices has been developed. It offers a cost efficient alternative method for the fast quantification of total MCs using mass spectrometry. This approach permits the quantification of total MCs concentrations without requiring any derivatization or the use of a suite of MCs standards. The oxidation product 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) was formed through a Lemieux oxidation and represented the total concentration of free and bound MCs in water samples. MMPB was analyzed using laser diode thermal desorption-atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). LDTD is a robust and reliable sample introduction method with ultra-fast analysis time (<15 s sample(-1)). Several oxidation and LDTD parameters were optimized to improve recoveries and signal intensity. MCs oxidation recovery yield was 103%, showing a complete reaction. Internal calibration with standard addition was achieved with the use of 4-phenylbutyric acid (4-PB) as internal standard and showed good linearity (R(2)>0.999). Limits of detection and quantification were 0.2 and 0.9 ?g L(-1), respectively. These values are comparable with the WHO (World Health Organization) guideline of 1 ?g L(-1) for total microcystin-LR congener in drinking water. Accuracy and interday/intraday variation coefficients were below 15%. Matrix effect was determined with a recovery of 91%, showing no significant signal suppression. This work demonstrates the use of the LDTD-APCI-MS/MS interface for the screening, detection and quantification of total MCs in complex environmental matrices. PMID:24745740

Roy-Lachapelle, Audrey; Fayad, Paul B; Sinotte, Marc; Deblois, Christian; Sauvé, Sébastien

2014-04-11

288

Array of Chemically Etched Fused Silica Emitters for Improving the Sensitivity and Quantitation of Electrospray Ionization Mass Spectrometry  

SciTech Connect

An array of emitters has been developed for increasing the sensitivity of electrospray ionization mass spectrometry (ESI-MS). The linear array consists of 19 chemically etched fused silica capillaries arranged with 500 µm (center-to-center) spacing. The multi-emitter device has a low dead volume to facilitate coupling to capillary liquid chromatography (LC) separations. The high aspect ratio of the emitters enables operation at flow rates as low as 20 nL/min/emitter, effectively extending the benefits of nanoelectrospray to higher flow rate analyses. To accommodate the larger ion current produced by the emitter array, a multi-capillary inlet to the mass spectrometer was also constructed. The inlet, which matched the dimensions of the emitter array, effectively preserved ion transmission efficiency. Standard reserpine solutions of varying concentration were electrosprayed at 1 µL/min using the multi-emitter/multi-inlet combination, and compared to a standard, single emitter configuration. A nine-fold sensitivity enhancement was observed for the multi-emitter relative to the single emitter. A bovine serum albumin tryptic digest was also analyzed and resulted in a sensitivity increase ranging from 2.4 to 12.3-fold for the detected tryptic peptides; the varying response was attributed to reduced ion suppression under the nano-ESI conditions afforded by the emitter array. An equimolar mixture of leucine enkephalin and maltopentaose was studied to verify that ion suppression is indeed reduced for the multi-ESI array relative to a single emitter over a range of flow rates.

Kelly, Ryan T.; Page, Jason S.; Tang, Keqi; Smith, Richard D.

2007-06-01

289

On-line derivatization gas chromatography with furan chemical ionization tandem mass spectrometry for screening of amphetamines in urine.  

PubMed

A simple alternative method with minimal sample pretreatment is investigated for screening of amphetamines in small volume (using only 20 microL) of urine sample. The method is sensitive and selective. The method uses gas chromatography (GC) direct sample introduction (DSI) for on-line derivatization (acylation) of amphetamines to improve sensitivity. Furan as chemical ionization (CI) reagent in conjunction with tandem mass spectrometry (MS/MS) is used to improve selectivity. Low background with sharp protonated molecular ion peaks of analytes is the evidence of improvement in sensitivity and selectivity. Blank urine samples spiked with known amounts of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyethylamphetamine is analyzed. Selected ion monitoring of the characteristic product ions (m/z 119+136+150+163) using furan CI-MS/MS in positive ion mode is used for quantification. Limits of detection (LOD) between 0.4 and 1.0 ng mL(-1) and limits of quantitation (LOQ) between 1.0 and 2.0 ng mL(-1) are established. Linear response over the range of 1-1000 ng mL(-1) (r(2)>0.997) is observed for all analytes, except for methamphetamine (2.0-1000 ng mL(-1)). Good accuracy between 86 and 113% and precision ranging from 4 to 18% is obtained. The method is also tested on real samples of urine from suspected drug abusers. This method could be used for screening and determination of amphetamines in urine samples, however needs additional work for full validation. PMID:17034801

Tzing, Shin-Hwa; Ghule, Anil; Liu, Jen-Yu; Ling, Yong-Chien

2006-12-22

290

Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.  

PubMed

The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves. PMID:22223371

Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan

2012-01-01

291

Observation of negative differential resistance and electrical bi-stability in chemically synthesized ZnO nanorods  

NASA Astrophysics Data System (ADS)

Zinc oxide nanorods/p-Si heterostructures have been fabricated by depositing the chemically synthesized ZnO nanorods on p-type silicon substrate. Heterostructure shows electrical bi-stability and negative differential resistance (NDR) only at the beginning of the forward bias region, and these phenomena have been explained with the help of energy band diagram. An explanation is proposed for the origin of electrical bi-stability in light of the electric field induced charge transfer across the junction, and the NDR phenomena could be attributed to interfacial traps and defect level that arises due to oxygen and zinc interstitial vacancies. Room temperature photoluminescence measurement of ZnO nanorods exhibits the emission peaks at about 466 nm and 566 nm which are attributed to oxygen vacancies and Zn interstitials. A correlation between NDR and blue emission phenomena in the ZnO nanorods due to defects states has been established.

Roy, Nandini; Chowdhury, Avijit; Roy, Asim

2014-06-01

292

Are Clusters Important in Understanding the Mechanisms in Atmospheric Pressure Ionization? Part 1: Reagent Ion Generation and Chemical Control of Ion Populations  

NASA Astrophysics Data System (ADS)

It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J.; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P.; Dousty, Faezeh; Kauppila, Tiina J.; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B.; Syage, Jack A.

2014-05-01

293

Mass Spectral Investigations on Toxins. 7. Detection and Accurate Quantitation of Picogram Quantities of Macrocyclic Trichothecenes in Brazilian Plant Samples by Direct Chemical Ionization-Mass Spectrometer/Mass Spectrometer Techniques.  

National Technical Information Service (NTIS)

Roridins and baccharinoids are macrocyclic trichothecenes. They formed (M+NH4)(+) adducts effectively with ammonia under chemical ionization conditions. The daughter spectra of these adducts were characteristic of the macrocyclic ester bridges and indicat...

T. Krishnamurthy E. W. Sarver

1987-01-01

294

Low-temperature plasma ionization ion mobility spectrometry.  

PubMed

In this research work, the capability of low-temperature plasma (LTP) as an ionization source for ion mobility spectrometry (IMS) has been investigated for the first time. This new ionization source enhances the potential of IMS as a portable analytical tool and allows direct analysis of various chemical compounds without having to evaporate the analyte or seek a solvent or reagent whatsoever. The effects of parameters such as the flow rate of the discharge gas, plasma voltage, and positioning of the LTP on the IMS signal were investigated. The positive reactant ions generated by the LTP ionization source were similar to those created in a corona discharge ionization source, where the proton clusters ((H(2)O)(n)H(+)) are the most abundant reactant ion, and in the negative mode, in addition to a saturated electron peak, several negative reactant ions (e.g., NO(x)(-)) were observed too. These reactant ions subsequently ionized the gaseous samples directly and liquids or solids after evaporation by plasma desorption. The ion mobility spectra of a few selected compounds, including explosives, drugs, and amines, were obtained to evaluate the new ionization source in positive and negative modes, and the reduced mobility values (K(0)) of the originated ions were calculated. Furthermore, the method has also been applied to obtain the figures of merit for acetaminophen as a test compound. The results obtained are promising enough to ensure the use of LTP as a desorption/ionization source in IMS for analytical applications. PMID:21192661

Jafari, Mohammad T

2011-02-01

295

Supercritical fluid extraction and quantification of aflatoxins in Zizyphi Fructus by liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry.  

PubMed

An integrated method combining supercritical fluid extraction (SFE) with liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (LC/APCI-MS/MS) was developed and successfully applied to quantify aflatoxins (AFs) in Zizyphi Fructus (fruits of Zizyphus jujube), a traditional Chinese medicine. To minimize the potential interferences caused by the complex matrix in Zizyphi Fructus, a SFE pretreatment was performed. In addition, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) spectra were also compared. The results showed that the calibration curves of AFB(1), AFB(2), AFG(1), and AFG(2) were all linear over the range of concentration from 1 to 50 ng/g, the squared correlation coefficients (r(2)) were over 0.995, and the detection limits of the method were between 0.17 and 0.32 ng/g. It showed high recovery and good precision in quantitating AFs in Zizyphi Fructus without further clean-up. Further, fragmentation pathways of protonated AFs in APCI-MS/MS were clearly proposed which could predict the existence of AFB or AFG series. To test the empirical validity of the proposed methodology in this paper, eight random samples of Zizyphi Fructus collected from supermarkets and traditional Chinese medicine stores in different geographical areas of Taiwan were analyzed. The results indicated that low levels of AFs were detected in only one of them. PMID:17279608

Liau, Bing-Chung; Jong, Ting-Ting; Lee, Maw-Rong; Chang, Chieh-Ming J

2007-01-01

296

Computational and Experimental Assessment of Benzene Cation Chemistry for the Measurement of Marine Derived Biogenic Volatile Organic Compounds with Chemical Ionization Mass Spectrometry  

NASA Astrophysics Data System (ADS)

Chemical ionization mass spectrometry (CIMS) is a highly selective and sensitive technique for the measurement of trace gases in the atmosphere. However, competing side reactions and dependence on relative humidity (RH) can make the transition from the laboratory to the field challenging. Effective implementation of chemical ionization requires a thorough knowledge of the elementary steps leading to ionization of the analyte. We have recently investigated benzene cations for the detection of marine derived biogenic volatile organic compounds (BVOCs), such isoprene and terpene compounds, from algal bloom events. Our experimental results indicate that benzene ion chemistry is an attractive candidate for field measurements, and the RH dependence is weak. To further understand the advantages and limitations of this approach, we have also used electronic structure theory calculations to compliment the experimental work. These theoretical methods can provide valuable insight into the physical chemistry of ion molecule reactions including thermodynamical information, the stability of ions to fragmentation, and potential sources of interference such as dehydration to form isobaric ions. The combined experimental and computational approach also allows validation of the theoretical methods and will provide useful information towards gaining predictive power for the selection of appropriate reagent ions for future experiments.

Zoerb, M.; Kim, M.; Zimmermann, K.; Bertram, T. H.

2013-12-01

297

Ambient Ionization Mass Spectrometry  

NASA Astrophysics Data System (ADS)

Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

2010-07-01

298

Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry  

NASA Astrophysics Data System (ADS)

The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around 875 cm -1 in Raman. HMTD and TMDD shared nu(O-O) vibration around 912 cm -1(HMTD: 910 cm-1; TMDD: 914 cm-1). Some of the vibrations identified were nu(CH){3000-2930 cm-1}, delta(C-O){1000-1100 cm-1}, nu(CH-C){1470-1400 cm-1}, nu(N-C){1370 cm-1}, and nu(N-H){3340 cm-1}. Both Raman microscopy and OACI-mass spectrometry represent excellent alternatives to be used sensitive checkpoints and forensic laboratories.

Pena-Quevedo, Alvaro Javier

299

Determination of benzoylurea insecticide residues in tomatoes by high-performance liquid chromatography with ultraviolet-diode array and atmospheric pressure chemical ionization-mass spectrometry detection.  

PubMed

A simple and sensitive method using high-performance liquid chromatography/ mass spectrometry (LC/MS) was developed and validated for simultaneous determination of 5 benzoylurea insecticides-diflubenzuron, triflumuron, teflubenzuron, lufenuron, and flufenoxuron-in tomatoes. Residues were successfully separated on a C18 column by methanol-water isocratic elution. Detection was carried out by an ultraviolet diode array detector (UV-DAD) coupled with a quadrupole mass spectrometer, using atmospheric pressure chemical ionization (APCI) in negative-ion mode. The main ions were the deprotonated molecules [M-H]- for triflumuron, and the anions formed by elimination of hydrofluoric acid [M-H-HF]- for diflubenzuron and flufenoxuron, and [M-2H-HF] for lufenuron and teflubenzuron. The calibration plots were linear for both detectors over the range 0.05 to 10 microg/mL, and the method presented good quality parameters. The limits of detection for standard solutions were 0.008-0.01 mg/L (equivalent to 0.08-0.1 ng injected) for both detectors, and the limits of quantification (LOQs) were approximately 10 times lower than national maximum residue levels (MRLs). Depending on the compound and the detector, the LOQ values ranged from 0.2 to 0.4 ng injected. The optimum LC-UV-DAD/APCI-MS conditions were applied to the analysis of benzoylureas in tomatoes. The obtained recoveries from fortified tomato samples (50 g), extracted with ethyl acetate and purified by solid-phase extraction on silica sorbent, were 88-100 and 92.9-105% for the UV-DAD and MS detectors, respectively, with precision values (relative standard deviations) of 2.9-11 and 3.7-14%, respectively. The method was applied to 12 tomato samples from local markets, and diflubenzuron and lufenuron were detected in only one sample at concentrations lower than the MRLs. The results indicate that the developed LC/MS method is accurate, precise, and sensitive for quantitative and qualitative analysis at low levels of benzoylureas required by legislation. PMID:17955985

Markoglou, Anastasios N; Bempelou, Eleftheria D; Liapis, Konstantinos S; Ziogas, Basil N

2007-01-01

300

Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer.  

PubMed

We present the development and characterization of a combination of a micro-orifice volatilization impactor (MOVI) and an ion trap mass spectrometer (IT/MS) with an atmospheric-pressure chemical ionization (APCI) source. The MOVI is a multi-jet impactor with 100 nozzles, allowing the collection of aerosol particles by inertial impaction on a deposition plate. The pressure drop behind the nozzles is approximately 5%, resulting in a pressure of 96kPa on the collection surface for ambient pressures of 101.3 kPa. The cut-point diameter (diameter of 50% collection efficiency) is at 0.13 microm for a sampling flow rate of 10 L min(-1). After the collection step, aerosol particles are evaporated by heating the impaction surface and transferred into the APCI-IT/MS for detection of the analytes. APCI was used in the negative ion mode to detect predominantly mono- and dicarboxylic acids, which are major oxidation products of biogenic terpenes. The MOVI-APCI-IT/MS instrument was used for the analysis of laboratory-generated secondary organic aerosol (SOA), which was generated by ozonolysis of alpha-pinene in a 100 L continuous-flow reactor under dark and dry conditions. The combination of the MOVI with an APCI-IT/MS improved the detection Limits for small dicarboxylic acids, such as pinic acid, compared to online measurements by APCI-IT/MS. The Limits of detection and quantification for pinic acid were determined by external calibration to 4.4 ng and 13.2 ng, respectively. During a field campaign in the southern Rocky Mountains (USA) in summer 2011 (BEACHON-RoMBAS), the MOVI-APCI-IT/MS was applied for the analysis of ambient organic aerosols and the quantification of individual biogenic SOA marker compounds. Based on a measurement frequency of approximately 5 h, a diurnal cycle for pinic acid in the sampled aerosol particles was found with maximum concentrations at night (median: 10.1 ngm(-3)) and minimum concentrations during the day (median: 8.2 ng m(-3)), which is likely due to the partitioning behavior of pinic acid and the changing phase state of the organic aerosol particles with changing relative humidity. PMID:24881453

Brüggemann, Martin; Vogel, Alexander Lucas; Hoffmann, Thorsten

2014-01-01

301

Differentiation of regioisomeric aromatic ketocarboxylic acids by positive mode atmospheric pressure chemical ionization collision-activated dissociation tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer.  

PubMed

Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS(n)) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations. PMID:21472606

Amundson, Lucas M; Owen, Benjamin C; Gallardo, Vanessa A; Habicht, Steven C; Fu, Mingkun; Shea, Ryan C; Mossman, Allen B; Kenttämaa, Hilkka I

2011-04-01

302

Differentiation of Regioisomeric Aromatic Ketocarboxylic Acids by Positive Mode Atmospheric Pressure Chemical Ionization Collision-Activated Dissociation Tandem Mass Spectrometry in a Linear Quadrupole Ion Trap Mass Spectrometer  

NASA Astrophysics Data System (ADS)

Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

Amundson, Lucas M.; Owen, Benjamin C.; Gallardo, Vanessa A.; Habicht, Steven C.; Fu, Mingkun; Shea, Ryan C.; Mossman, Allen B.; Kenttämaa, Hilkka I.

2011-04-01

303

Rare earth oxide catalyzed oxidation of rhenium to ReOâ⁻ and ReOâ⁻ as observed by negative surface ionization mass spectrometry  

Microsoft Academic Search

A surface ionization mass spectrometer was used to observe the in situ formation of ReOâ⁻ and ReOâ⁻ gas-phase ions resulting from the rare earth oxide catalyzed reaction of water with metallic rhenium. Water was found to be 6-10-fold more efficient than oxygen as an oxidizer at temperatures around 1100°C. Normal, oxygen-18 enriched, and deuteriated water were used to elucidate the

Delmore

1987-01-01

304

Characterization of a thermal decomposition chemical ionization mass spectrometer for the measurement of peroxy acyl nitrates (PANs) in the atmosphere  

Microsoft Academic Search

This paper presents a detailed laboratory characterization of a thermal dissociation ionization mass spectrometer (TD-CIMS) for the atmospheric measurement of Peroxyacetyl nitrate (PAN) and its homologues. PANs are efficiently dissociated in a heated inlet tube and the resulting peroxy acyl radicals are reacted with I- ions in a flow tube. The CIMS detects the corresponding carboxylate ions to give a

W. Zheng; F. M. Flocke; G. S. Tyndall; A. Swanson; J. J. Orlando; J. M. Roberts; L. G. Huey; D. J. Tanner

2011-01-01

305

Matrix Assisted Ionization: New Aromatic and Nonaromatic Matrix Compounds Producing Multiply Charged Lipid, Peptide, and Protein Ions in the Positive and Negative Mode Observed Directly from Surfaces  

NASA Astrophysics Data System (ADS)

Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH2 functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

Li, Jing; Inutan, Ellen D.; Wang, Beixi; Lietz, Christopher B.; Green, Daniel R.; Manly, Cory D.; Richards, Alicia L.; Marshall, Darrell D.; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

2012-10-01

306

Application of gas chromatography-(triple quadrupole) mass spectrometry with atmospheric pressure chemical ionization for the determination of multiclass pesticides in fruits and vegetables.  

PubMed

A multi-residue method for the determination of 142 pesticide residues in fruits and vegetables has been developed using a new atmospheric pressure chemical ionization (APCI) source for coupling gas chromatography (GC) to tandem mass spectrometry (MS). Selected reaction monitoring (SRM) mode has been applied, acquiring three transitions for each compound. In contrast to the extensive fragmentation typically obtained in classical electron ionization (EI), the soft APCI ionization allowed the selection of highly abundant protonated molecules ([M+H](+)) as precursor ions for most compounds. This was favorable for both sensitivity and selectivity. Validation of the method was performed in which both quantitative and qualitative parameters were assessed using orange, tomato and carrot samples spiked at two levels, 0.01 and 0.1mg/kg. The QuEChERS method was used for sample preparation, followed by a 10-fold dilution of the final acetonitrile extract with a mixture of hexane and acetone. Recovery and precision were satisfactory in the three matrices, at both concentration levels. Very low limits of detection (down 0.01?g/kg for the most sensitive compounds) were achieved. Ion ratios were consistent and identification according to EU criteria was possible in 80% (0.01mg/kg) to 96% (0.1mg/kg) of the pesticide/matrix combinations. The method was applied to the analysis of various fruits and vegetables from the Mediterranean region of Spain. PMID:24070626

Cherta, Laura; Portolés, Tania; Beltran, Joaquim; Pitarch, Elena; Mol, Johannes G J; Hernández, Félix

2013-11-01

307

Direct characterization of bitter acids in a crude hop extract by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry  

Microsoft Academic Search

The applicability of on-line coupling of reversed-phase high-performance liquid chromatography to atmospheric pressure ionization\\u000a tandem mass spectrometry for the separation and characterization of hop acids mixture from the crude extract of Humulus lupulus was investigated. The solvent system consisting of acetonitrile-aqueous formic acid was used to give proper separation of\\u000a the six main hop bitter acids within 30 min. Further

Xiaozhe Zhang; Xinmiao Liang; Hongbin Xiao; Qing Xu

2004-01-01

308

Molecular-level chemical characterization and bioavailability of dissolved organic matter in stream water using electrospray-ionization mass spectrometry  

Microsoft Academic Search

We used electrospray-ionization mass spectrometry (ESI-MS) to characterize, at the compound level, dissolved organic matter (DOM) composition and bioavailability in two streams. There was considerable consistency in the composition of the DOM between the two streams (unit mass resolution): .70% of the masses detected occurred in both streams. Approximately 40-50% of the bulk dissolved organic carbon in the stream water

S. P. Seitzinger; H. Hartnett; R. Lauck; M. Mazurek; T. Minegishi; G. Spyres; R. Styles

2005-01-01

309

Zero-Net-Charge Air Ionizer  

NASA Technical Reports Server (NTRS)

Instrument monitors air supplied by air ionizer and regulates ionizer to ensure net charge neutral. High-impedance electrometer and nulling control amplifier regulate output of air ionizer. Primarily intended to furnish ionized air having no net charge, instrument adaptable to generating air with positive or negative net charge is so desired. Useful where integrated circuit chips are manufactured, inspected, tested or assembled.

Woods, W. R., Jr.

1985-01-01

310

Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.  

PubMed

The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds. PMID:23248816

Liao, Wenta; Draper, William M

2013-02-21

311

Method validation for the analysis of 169 pesticides in soya grain, without clean up, by liquid chromatography–tandem mass spectrometry using positive and negative electrospray ionization  

Microsoft Academic Search

Part of a comprehensive study on the comparison of different extraction methods, GC–MS(\\/MS) and LC–MS\\/MS detection methods and modes, for the analysis of soya samples is described in this paper. The validation of an acetone-based extraction method for analysis of 169 pesticides in soya, using LC–MS\\/MS positive and negative electrospray ionisation (ESI) mode, is reported. Samples (5g) were soaked with

Ionara R. Pizzutti; André de Kok; Renato Zanella; Martha B. Adaime; Maurice Hiemstra; Cristine Wickert; Osmar D. Prestes

2007-01-01

312

Organic chemical analysis on a microscopic scale using two-step laser desorption/laser ionization mass spectrometry  

NASA Technical Reports Server (NTRS)

The distribution of PAHs in the Allende meteorite has been measured using two-step laser desorption and laser multiphoton-ionization mass spectrometry. This method enables in situ analysis (with a spatial resolution of 1 mm or better) of selected organic molecules. Results show that PAH concentrations are locally high compared to the average concentration found by analysis of pulverized samples, and are found primarily in the fine-grained matrix; no PAHs were detected in the interiors of individual chondrules at the detection limit (about 0.05 ppm).

Kovalenko, L. J.; Philippoz, J.-M.; Bucenell, J. R.; Zenobi, R.; Zare, R. N.

1991-01-01

313

Application of high resolution Chemical Ionization Mass Spectrometry (CI-ToFMS) to study SOA composition: focus on formation of oxygenated species via aqueous phase processing  

NASA Astrophysics Data System (ADS)

This paper demonstrates the capabilities of Chemical Ionization Mass Spectrometry (CIMS) to study secondary organic aerosol (SOA) composition with a high resolution (HR) time-of-flight mass analyzer (aerosol-CI-ToFMS). In particular, by studying aqueous oxidation of Water Soluble Organic Compounds (WSOC) extracted from ?-pinene ozonolysis SOA, we assess the capabilities of three common CIMS reagent ions: (a) protonated water clusters (H2O)nH+, (b) acetate CH3C(O)O- and (c) iodide water clusters I(H2O)n- to monitor SOA composition. As well, we report the relative sensitivity of these reagent ions to a wide range of common organic aerosol constituents. We find that (H2O)nH+ is more selective to the detection of less oxidized species, so that the range of O/C and OSC (carbon oxidation state) in the SOA spectra is considerably lower than those measured using CH3C(O)O- and I(H2O)n-. Specifically, (H2O)nH+ ionizes organic compounds with OSC ? 1.3, whereas CH3C(O)O- and I(H2O)n- both ionize highly oxygenated organics with OSC up to 4 with I(H2O)n- being more selective towards multi-functional organic compounds. In the bulk O/C and H/C space, i.e. in a Van Krevelen plot, there is a remarkable agreement in both absolute magnitude and oxidation trajectory between CI-ToFMS data and those from a high resolution aerosol mass spectrometer (HR-AMS). This indicates that the CI-ToFMS data captures much of the chemical change occurring in the particle and that gas phase species, which are not detected by the HR-AMS, do not dominate the overall ion signal. Finally, the data illustrate the capability of aerosol-CI-ToFMS to monitor specific chemical change, including the fragmentation and functionalization reactions that occur during organic oxidation, and the oxidative conversion of dimeric SOA species into monomers. Overall, aerosol-CI-ToFMS is a valuable, selective complement to some common SOA characterization methods, such as AMS and spectroscopic techniques. Both laboratory and ambient SOA samples can be analyzed using the techniques illustrated in the paper.

Aljawhary, D.; Lee, A. K. Y.; Abbatt, J. P. D.

2013-07-01

314

Comparison of the Rationale Used in Setting Occupational Exposure Standards for Ionizing Radiation and Hazardous Chemical Substances.  

National Technical Information Service (NTIS)

Ten chemicals which create significant occupational hazard are reviewed. They are toluene diisocyanate, hydrogen fluoride, n-hexane, carbon disulphide, cadmium, inorganic mercury, cobalt, nitroglycerol, silica and vinyl chloride. Each is discussed under t...

D. M. Halton

1986-01-01

315

Enhanced nicotine metabolism in HIV-1-positive smokers compared with HIV-negative smokers: simultaneous determination of nicotine and its four metabolites in their plasma using a simple and sensitive electrospray ionization liquid chromatography-tandem mass spectrometry technique.  

PubMed

Smoking is approximately three times more prevalent in HIV-1-positive than HIV-negative individuals in the United States. Nicotine, which is the major constituent of tobacco, is rapidly metabolized mainly by cytochrome P450 (CYP2A6) to many metabolites. In this study, we developed a simple, fast, and sensitive electrospray ionization liquid chromatography-tandem mass spectrometry method using a strong cation solid phase extraction, and determined the concentration of nicotine and its four major metabolites (cotinine, nornicotine, norcotinine, and trans-3'-hydroxycotinine) in the plasma of HIV-1-positive and HIV-negative smokers. The multiple reaction monitoring transitions for nicotine, cotinine, trans-3'-hydroxycotinine, nornicotine, norcotinine, nicotine-d4, and cotinine-d3 were selected at mass-to-charge ratios of 163.3/117.1, 177.5/80.3, 193.2/80.1, 149.5/132.3, 163.4/80.3, 167.3/121.4, and 180.3/101.2, respectively. The lower limit of quantitation for nicotine and its metabolites was 0.53 ng/ml, which is relatively more sensitive than those previously reported. The concentration of nicotine was detected 5-fold lower in HIV-1-positive smokers (7.17 ± 3.8 ng/ml) than that observed in HIV-negative smokers (33.29 ± 15.4 ng/ml), whereas the concentration of the metabolite nornicotine was 3-fold higher in HIV-1-positive smokers (6.8 ± 2.9 ng/ml) than in HIV-negative smokers (2.3 ± 1.2 ng/ml). Although it was statistically nonsignificant, the concentration of the metabolite cotinine was also higher in HIV-1-positive smokers (85.6 ± 60.5 ng/ml) than in HIV-negative smokers (74.9 ± 40.5 ng/ml). In conclusion, a decrease in the concentration of nicotine and an increase in the concentration of its metabolites in HIV-1-positive smokers compared with HIV-negative smokers support the hypothesis that nicotine metabolism is enhanced in HIV-1-positive smokers compared with HIV-negative smokers. PMID:24301609

Earla, Ravinder; Ande, Anusha; McArthur, Carole; Kumar, Anil; Kumar, Santosh

2014-02-01

316

Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria  

NASA Technical Reports Server (NTRS)

Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

2012-01-01

317

Potential of gas chromatography-atmospheric pressure chemical ionization-time-of-flight mass spectrometry for the determination of sterols in human plasma.  

PubMed

The application of Gas Chromatography (GC)-Atmospheric Pressure Chemical Ionization (APCI)-Time-of-Flight Mass Spectrometry (TOF-MS) is presented for sterol analysis in human plasma. A commercial APCI interface was modified to ensure a well-defined humidity which is essential for controlled ionization. In the first step, optimization regarding flow rates of auxiliary gases was performed by using a mixture of model analytes. Secondly, the qualitative and quantitative analysis of sterols including oxysterols, cholesterol precursors, and plant sterols as trimethylsilyl-derivatives was successfully carried out. The characteristics of APCI together with the very good mass accuracy of TOF-MS data enable the reliable identification of relevant sterols in complex matrices. Linear calibration lines and plausible results for healthy volunteers and patients could be obtained whereas all mass signals were extracted with an extraction width of 20 ppm from the full mass data set. One advantage of high mass accuracy can be seen in the fact that from one recorded run any search for m/z can be performed. PMID:24463103

Matysik, S; Schmitz, G; Bauer, S; Kiermaier, J; Matysik, F-M

2014-04-11

318

Fast determination of 3-ethenylpyridine as a marker of environmental tobacco smoke at trace level using direct atmospheric pressure chemical ionization tandem mass spectrometry  

NASA Astrophysics Data System (ADS)

A method with atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) was developed and applied to direct analysis of Environmental Tobacco Smoke (ETS), using 3-ethenylpyridine (3-EP) as a vapour-phase marker. In this study, the ion source of APCI-MS/MS was modified and direct analysis of gas sample was achieved by the modified instrument. ETS samples were directly introduced, via an atmospheric pressure inlet, into the APCI source. Ionization was carried out in positive-ion APCI mode and 3-EP was identified by both full scan mode and daughter scan mode. Quantification of 3-EP was performed by multiple reaction monitoring (MRM) mode. The calibration curve was obtained in the range of 1-250 ng L-1 with a satisfactory regression coefficient of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.5 ng L-1 and 1.6 ng L-1, respectively. The precision of the method, calculated as relative standard deviation (RSD), was characterized by repeatability (RSD 3.92%) and reproducibility (RSD 4.81%), respectively. In real-world ETS samples analysis, compared with the conventional GC-MS method, the direct APCI-MS/MS has shown better reliability and practicability in the determination of 3-EP at trace level. The developed method is simple, fast, sensitive and repeatable; furthermore, it could provide an alternative way for the determination of other volatile pollutants in ambient air at low levels.

Jiang, Cheng-Yong; Sun, Shi-Hao; Zhang, Qi-Dong; Liu, Jun-Hui; Zhang, Jian-Xun; Zong, Yong-Li; Xie, Jian-Ping

2013-03-01

319

[Isolation and purification of solanesol from potato leaves by high-speed counter-current chromatography and identification by atmospheric pressure chemical ionization mass spectrometry].  

PubMed

Preparative high-speed counter-current chromatography (HSCCC) was used for the isolation and purification of solanesol from potato leaves. Experimental conditions of the extraction of solanesol from potato leaves have been optimized. An ultrafine extraction method was applied in this study. The efficiency using an ultrafine extraction was found to be improved in the investigation, the yields of solanesol by different extraction methods were 0.083% by ultrafine extraction and 0.050% by ultrasonic extraction. Using n-hexane-methanol (10:7, v/v) as the two-phase solvent system, preparative HSCCC was successfully performed with the yield of 5 mg solanesol at 98.7% of purity from 60 mg of crude extract in the one-step separation. The mobile phase was the lower phase and operated at a flow rate of 1.5 mL/min, while the apparatus rotated at 800 r/min. The solanesol was identified by the atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The ionization and cleavage mechanisms of solanesol in APCI-MS and APCI-MS/MS are discussed. PMID:17970112

Hu, Jiangyong; Liang, Yong; Xie, Ya; Huang, Zhaofeng; Zhong, Hanzuo

2007-07-01

320

Dispersive liquid-liquid microextraction for the determination of macrocyclic lactones in milk by liquid chromatography with diode array detection and atmospheric pressure chemical ionization ion-trap tandem mass spectrometry.  

PubMed

Eprinomectin (EPRI), abamectin (ABA), doramectin (DOR), moxidectin (MOX) and ivermectin (IVM) were determined in milk samples using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography with diode array detection (LC-DAD) coupled to atmospheric pressure chemical ionization in negative ion mode ion-trap tandem mass spectrometry (APCI-IT-MS/MS). Milk proteins were removed by precipitation with trichloroacetic acid and the analytes were preconcentrated using 2mL of acetonitrile containing 200?L of chloroform as extraction mixture. The effect of several parameters for the liquid-liquid microextraction efficiency was evaluated. Standard additions method was used for quantification purposes, the correlation coefficients were better than 0.9970 in all cases and the quantification limits ranged from 1.0 to 4.7ngg(-1) and from 0.1 to 2.4ngg(-1) when using DAD and MS, respectively. The DLLME-LC-APCI-IT-MS/MS optimized method was successfully applied to different milk samples and none of the studied analytes was detected in the samples studied. The recoveries for milk samples spiked at concentration levels ranging between 0.5 and 50ngg(-1), depending on the compound, were between 89.5 and 105%, with relative standard deviations lower than 9% (n=135). Simplicity, rapidity and reliability are important advantages of the proposed method, while the sample preparation step can be regarded as environmentally friendly. PMID:23415139

Campillo, Natalia; Viñas, Pilar; Férez-Melgarejo, Gema; Hernández-Córdoba, Manuel

2013-03-22

321

Optimization of Routine Identification of Clinically Relevant Gram-Negative Bacteria by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and the Bruker Biotyper  

PubMed Central

Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) might complement and one day replace phenotypic identification of bacteria in the clinical microbiology laboratory, but there is no consensus standard regarding the requirements for its validation prior to clinical use in the United States. The objective of this study was to assess the preanalytical variables influencing Gram-negative identification by use of the Bruker Biotyper MALDI-TOF MS system, including density of organism spotting on a stainless steel target plate and the direct overlay of organisms with formic acid. A heavy smear with formic acid overlay was either superior or equivalent to alternative smear conditions. Microbiological preanalytical variables were also assayed, such as culture medium, growth temperature, and use of serial subculture. Postanalytical analysis included the application of modified species-level identification acceptance criteria. Biotyper identifications were compared with those using traditional phenotypic methods, and discrepancies were resolved with 16S rRNA gene sequencing. Compared to the recommended score cutoffs of the manufacturer, the application of optimized Biotyper score cutoffs for species-level identification increased the rate of identification by 6.75% for the enteric Gram-negative bacteria and 4.25% for the nonfermenting Gram-negative bacteria. Various incubation temperatures, growth medium types, and repeat subcultures did not result in misidentification. We conclude that the Bruker MALDI Biotyper is a robust system for the identification of Gram-negative organisms in the clinical laboratory and that meaningful performance improvements can be made by implementing simple pre- and postanalytical techniques.

Ford, Bradley A.

2013-01-01

322

Optimization of routine identification of clinically relevant Gram-negative bacteria by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the Bruker Biotyper.  

PubMed

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) might complement and one day replace phenotypic identification of bacteria in the clinical microbiology laboratory, but there is no consensus standard regarding the requirements for its validation prior to clinical use in the United States. The objective of this study was to assess the preanalytical variables influencing Gram-negative identification by use of the Bruker Biotyper MALDI-TOF MS system, including density of organism spotting on a stainless steel target plate and the direct overlay of organisms with formic acid. A heavy smear with formic acid overlay was either superior or equivalent to alternative smear conditions. Microbiological preanalytical variables were also assayed, such as culture medium, growth temperature, and use of serial subculture. Postanalytical analysis included the application of modified species-level identification acceptance criteria. Biotyper identifications were compared with those using traditional phenotypic methods, and discrepancies were resolved with 16S rRNA gene sequencing. Compared to the recommended score cutoffs of the manufacturer, the application of optimized Biotyper score cutoffs for species-level identification increased the rate of identification by 6.75% for the enteric Gram-negative bacteria and 4.25% for the nonfermenting Gram-negative bacteria. Various incubation temperatures, growth medium types, and repeat subcultures did not result in misidentification. We conclude that the Bruker MALDI Biotyper is a robust system for the identification of Gram-negative organisms in the clinical laboratory and that meaningful performance improvements can be made by implementing simple pre- and postanalytical techniques. PMID:23426923

Ford, Bradley A; Burnham, Carey-Ann D

2013-05-01

323

Hydrogen peroxide and methylhydroperoxide observations by chemical ionization mass spectrometry on the GV during the Deep Convective Clouds and Chemistry Experiment  

NASA Astrophysics Data System (ADS)

Airborne gas phase measurements of hydrogen peroxide and methylhydroperoxide were made on 22 research flights on the NCAR Gulfstream-V using chemical ionization mass spectroscopy (CIMS) during the Deep Convective Clouds and Chemistry Experiment (DC3) in May and June 2012. A multi-reagent ion CIMS method, using O2- and CO4- reagent ions, and standard additions of hydrogen peroxide and methylhydroperoxide was developed to identify and quantify hydrogen peroxide (H2O2) and methylhydroperoxide (CH3OOH) in ambient air. The DC3 field program characterized a number of active convective systems in three different regions, Colorado, Oklahoma, and Alabama with observations extending from the surface to 13 km. A few flights were also flown to characterize the photochemical aging of lofted chemicals and lightning generated oxides of nitrogen. Peroxide observations will be used to examine transport efficiency and removal in isolated convective storms and larger scale multiple convective systems. Differences in peroxide storm input and transport process will be compared across the three regions. Peroxide observations coupled with other in situ chemical species observations and meteorological parameters will be used to assess the contribution of convective transport to the photochemical budget of hydrogen peroxide and methylhydroperoxide in the upper troposphere over the United States.

O'Sullivan, D. W.; Silwal, I.; Treadaway, V.; McNeill, A.; Heikes, B.

2013-12-01

324

Differentiation of various kinds of Fructus schisandrae by surface desorption atmospheric pressure chemical ionization mass spectrometry combined with principal component analysis.  

PubMed

Various kinds of Fructus schisandrae were studied by surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS) without any sample pretreatment. The volatile components in F. schisandrae were detected in the ambient environment and the analytical time for each sample was only 30s. F. schisandrae are produced mainly in 5 different geographical regions (Elunchun, Mudanjiang, Tonghua, Tieling and Shangluo), and they could be successfully differentiated according to their chemical markers by Principal Component Analysis (PCA). A total of 8 components which gave more contribution for PCA analysis were unambiguously identified by comparison of the MS(2) data of chemical markers to the data of reference compounds as reported in the literature. Similarly, wild grown and cultivatable species of F. schisandrae were well separated by the above-mentioned method. In addition, raw and processed cultivatable F. schisandrae (steamed by water, alcohol, vinegar, or honey, and fried by honey) were found to be clustered at different location, respectively. Furthermore, the clustered degree of differently processed products was correlated with their clinical effects. Our results demonstrated that DAPCI-MS in combination with PCA was a feasible technique for high-throughput differentiation of various kinds of F. schisandrae. It is also possible that DAPCI-MS could become a powerful technology in the studies of traditional Chinese medicine studies and in situ analysis of Chinese herbs. PMID:22023863

Pi, Zifeng; Yue, Hao; Ma, Li; Ding, Liying; Liu, Zhiqiang; Liu, Shuying

2011-11-14

325

Computational tests of quantum chemical models for excited and ionized States of molecules with phosphorus and sulfur atoms.  

PubMed

Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-? quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV. PMID:24779512

Hahn, David K; RaghuVeer, Krishans; Ortiz, J V

2014-05-15

326

Determination of lincomycin and tylosin residues in honey using solid-phase extraction and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.  

PubMed

An analytical method for the determination of residues of the antibiotic drugs lincomycin and tylosin in honey was developed. The procedure employed a solid-phase extraction for the isolation of lincomycin and tylosin from diluted honey samples. The antibiotic residues were subsequently analyzed by reversed-phase HPLC with atmospheric pressure chemical ionization mass spectrometric detection. Average analyte recoveries for lincomycin and tylosin ranged from 84 to 107% in replicate sets of honey samples fortified with drug concentrations of 0.01, 0.5, and 10 microg/g. The method detection limits were determined to be 0.007 and 0.01 microg/g for lincomycin and tylosin, respectively. PMID:14661747

Thompson, Thomas S; Noot, Donald K; Calvert, Jane; Pernal, Stephen F

2003-12-12

327

Separation of triacylglycerols in a complex lipidic matrix by using comprehensive two-dimensional liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometric detection.  

PubMed

The present investigation describes the employment of a comprehensive 2-D HPLC system, based on the combination of a silver ion and an RP column, for the characterization of the triacylglycerol (TAG) fraction of a very complex lipidic sample: donkey milk fat. The TAGs were grouped on the resulting bidimensional contour plot according to their double bond numbers (aligned along vertical bands) and according to their partition numbers (aligned along horizontal bands). Peak assignment was supported by using atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection. The combination of the enhanced resolving power of comprehensive multidimensional LC, the formation of ordered 2-D patterns, and APCI-MS detection proved to be an effective tool for the characterization of the complex matrix, enabling the separation and identification of nearly 60 TAGs. PMID:16830730

Dugo, Paola; Kumm, Tiina; Chiofalo, Biagina; Cotroneo, Antonella; Mondello, Luigi

2006-05-01

328

Preparation of negative electrodes for lithium-ion rechargeable battery by pressure-pulsed chemical vapor infiltration of pyrolytic carbon into electro-conductive forms  

Microsoft Academic Search

The plate-type negative electrodes for lithium-ion rechargeable battery were prepared by pressure-pulsed chemical vapor infiltration of pyrolytic carbon (pyrocarbon) into two sorts of conductive porous forms, that is, the carbonized paper (A) and the TiN-coated paper (B), as the conductive fillers and\\/or current collectors. The electrodes had the three-dimensionally continuous current paths in the pyrocarbon-based anodes without the organic binders

Yoshimi Ohzawa; Masami Mitani; Takako Suzuki; Vinay Gupta; Tsuyoshi Nakajima

2003-01-01

329

Photochemical Dimerization of Dibenzylideneacetone: A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry  

ERIC Educational Resources Information Center

Chemical reactions induced by light have been utilized for synthesizing highly strained, thermodynamically unstable compounds, which are inaccessible through non-photochemical methods. Photochemical cycloaddition reactions, especially those leading to the formation of four-membered rings, constitute a convenient route to compounds that are…

Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish

2006-01-01

330

Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection.  

PubMed

Propolis is a glue material collected by honeybees which is used to seal cracks in beehives and to protect the bee population from infections. Propolis resins have a long history in medicinal use as a natural remedy. The multiple biological properties are related to variations in their chemical compositions. Geographical settings and availability of plant sources are important factors for the occurrence of specific natural products in propolis. A propolis ethylacetate extract (800mg) from Saudi Arabia (Al-Baha region) was separated by preparative scale high-speed countercurrent chromatography (HSCCC) using a non-aqueous solvent system n-hexane-ACN (1:1, v/v). For multiple metabolite detection, the resulting HSCCC-fractions were sequentially injected off-line into an atmospheric pressure chemical ionization mass-spectrometry (APCI-MS/MS) device, and a reconstituted mass spectrometry profile of the preparative run was visualized by selected ion traces. Best ion-intensities for detected compounds were obtained in the negative APCI mode and monitored occurring co-elution effects. HSCCC and successive purification steps resulted in the isolation and characterization of various bioactive natural products such as (12E)- and (12Z)-communic acid, sandaracopimaric acid, (+)-ferruginol, (+)-totarol, and 3?-acetoxy-19(29)-taraxasten-20a-ol using EI-, APCI-MS and 1D/2D-NMR. Cycloartenol-derivatives and triterpene acetates were isolated in mixtures and elucidated by EI-MS and 1D-NMR. Free fatty acids, and two labdane fatty acid esters were identified by APCI-MS/MS. In total 19 metabolites have been identified. The novel combination of HSCCC fractionation, and APCI-MS-target-guided molecular mass profiling improve efficiency of lead-structure identification. PMID:24831423

Jerz, Gerold; Elnakady, Yasser A; Braun, André; Jäckel, Kristin; Sasse, Florenz; Al Ghamdi, Ahmad A; Omar, Mohamed O M; Winterhalter, Peter

2014-06-20

331

Complex therapeutical effect of ionized air: stimulation of the immune system and decrease in excessive serotonin. H2O2 as a link between the two counterparts  

Microsoft Academic Search

We investigated the therapeutic effect of breathing ionized air in patients with chronic inflammation and decreased immune reactivity. Air ions were generated by an electroionizer, Tchijevsky Lustre. The air at the place of breathing contained 120 000 negative charges\\/cm3. By chemical nature, the negative air ions are superoxide at a concentration of less than 1 ?M, and hydrogen peroxide at

Vladimir P. Tikhonov; Andrei A. Temnov; Vladimir A. Kushnir; Tatyana V. Sirota; Elena G. Litvinova; Marina V. Zakharchenko; Marie N. Kondrashova

2004-01-01

332

Basic vapor exposure for tuning the charge state distribution of proteins in negative electrospray ionization: elucidation of mechanisms by fluorescence spectroscopy.  

PubMed

Manipulation for simplifying or increasing the observed charge state distributions of proteins can be highly desirable in mass spectrometry experiments. In the present work, we implemented a vapor introduction technique to an Agilent Jet Stream ESI (Agilent Technologies, Santa Clara, CA, USA) source. An apparatus was designed to allow for the enrichment of the nitrogen sheath gas with basic vapors. An optical setup, using laser-induced fluorescence and a pH-chromic dye, permits the pH profiling of the droplets as they evaporate in the electrospray plume. Mechanisms of pH droplet modification and its effect on the protein charging phenomenon are elucidated. An important finding is that the enrichment with basic vapors of the nitrogen sheath gas, which surrounds the nebulizer spray, leads to an increase in the spray current. This is attributed to an increase in the electrical conductivity of water-amine enriched solvent at the tip exit. Here, the increased current results in a generation of additional electrolytically produced OH(-) ions and a corresponding increase in the pH at the tip exit. Along the electrospray plume, the pH of the droplets increases due to both droplet evaporation and exposure to basic vapors from the seeded sheath gas. The pH evolution in the ESI plume obtained using pure and basic seeded sheath gas was correlated with the evolution of the charge state distribution observed in mass spectra of proteins, in the negative ion mode. Taking advantage of the Agilent Jet Stream source geometry, similar protein charge state distributions and ion intensities obtained with basic initial solutions, can be obtained using native solution conditions by seeding the heated sheath gas with basic vapors. PMID:22565506

Girod, Marion; Antoine, Rodolphe; Dugourd, Philippe; Love, Craig; Mordehai, Alex; Stafford, George

2012-07-01

333

Measuring Air-Ionizer Output  

NASA Technical Reports Server (NTRS)

Test apparatus checks ion content of airstream from commercial air ionizer. Apparatus ensures ion output is sufficient to neutralize static charges in electronic assembly areas and concentrations of positive and negative ions are balanced.

Lonborg, J. O.

1985-01-01

334

Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.  

PubMed

In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited. PMID:24493336

Ballesteros-Gómez, A; Brandsma, S H; de Boer, J; Leonards, P E G

2014-04-01

335

Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry  

NASA Astrophysics Data System (ADS)

A chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O) at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS). A low-pressure flow of sample air passes through an ionization volume containing an ?-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+) from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm, 10-6 mol mol-1) generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57F high-altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1 s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm-1 at 3 ppm with a signal to noise ratio (2 ?, 1 s) greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Voigt, C.; Hall, B.; Fahey, D. W.

2013-06-01

336

Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry  

NASA Astrophysics Data System (ADS)

A chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O) at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS). A low-pressure flow of sample air passes through an ionization volume containing an ?-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+) from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm) generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57 high altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1-s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm-1 at 3 ppm with a signal to noise ratio (2?, 1-s) greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Voigt, C.; Hall, B.; Fahey, D. W.

2013-01-01

337

Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol.  

PubMed

Many lipidomic approaches focus on investigating aspects of sphingolipid metabolism. Special emphasis is put on neutral sphingolipids and cholesterol and their interaction. Such an interest is attributed to the fact that those lipids are altered in a series of serious disorders including various sphingolipidoses. High performance thin-layer chromatography (HPTLC) has become a widely used technique for lipid analysis. However, mass spectrometric profiling is irreplaceable for gaining an overview about the various molecular species within a lipid class. In this work we have developed a sensitive method based on a gradient normal phase high performance liquid chromatography (HPLC) coupled to quadrupole time of flight (QTOF) atmospheric pressure chemical ionization mass spectrometry (APCI-MS) in positive mode, which for the first time enables separation, on-line detection, and mass spectrometric profiling of multiple neutral sphingolipids including ceramide, glucosylceramide, lactosylceramide, globotriaosylceramide, globotetraosylceramide, sphingomyelin as well as cholesterol within less than 15min. An important advantage of the presented HPLC/APCI-MS approach is that the separation pattern emulates the one obtained by an optimized HPTLC method with a multiple stage development. Thus, the lipid classes previously separated and quantified by HPTLC can be easily screened regarding their mass spectrometric profiles by HPLC/APCI-MS. In addition, the selected ionization conditions enable in-source fragmentation providing useful structural information. The methods (HPLC/APCI-MS and the optimized HPTLC) were applied for the analysis of the mentioned lipids in human fibroblasts. This approach is aimed basically at investigators who perform studies based on genetic modifications or treatment with pharmacological agents leading to changes in the biochemical pathways of neutral sphingolipids and cholesterol. In addition, it can be of interest for research on disorders related to impairments of sphingolipid metabolism. PMID:19646933

Farwanah, Hany; Wirtz, Jennifer; Kolter, Thomas; Raith, Klaus; Neubert, Reinhard H H; Sandhoff, Konrad

2009-10-01

338

Highly sensitive and selective analysis of urinary steroids by comprehensive two-dimensional gas chromatography combined with positive chemical ionization quadrupole mass spectrometry  

PubMed Central

Comprehensive two dimensional gas chromatography (GC×GC) provides greater separation space than conventional GC. Because of fast peak elution, a time of flight mass spectrometer (TOFMS) is the usual structure-specific detector of choice. The quantitative capabilities of a novel GC×GC fast quadrupole MS were investigated with electron ionization (EI), and CH4 or NH3 positive chemical ionization (PCI) for analysis of endogenous urinary steroids targeted in anti-doping tests. Average precisions for steroid quantitative analysis from replicate urine extractions were 6% (RSD) for EI and 8% for PCI-NH3. The average limits of detection (LOD) calculated by quantification ions for 12 target steroids spiked into steroid-free urine matrix (SFUM) were 2.6 ng mL?1 for EI, 1.3 ng mL?1 for PCI-CH4, and 0.3 ng mL?1 for PCI-NH3, all in mass scanning mode. The measured limits of quantification (LOQ) with full mass scan GC×GC-qMS were comparable with the LOQ values measured by one-dimensional GC-MS in single ion monitoring (SIM) mode. PCI-NH3 yields fewer fragments and greater (pseudo)molecular ion abundances than EI or PCI-CH4. These data show a benchtop GC×GC-qMS system has the sensitivity, specificity, and resolution to analyze urinary steroids at normal urine concentrations, and that PCI-NH3, not currently available on most GC×GC-TOFMS instruments, is of particular value for generation of structure-specific ions.

Zhang, Ying; Tobias, Herbert J.; Brenna, J. Thomas

2014-01-01

339

Chemical Ionization Mass Spectrometry-Based Measurements of HO2 and RO2 During TRACE-P  

NASA Technical Reports Server (NTRS)

The Transport and Chemical Evolution over the Pacific (TRACE-P) mission extends NASA's Global Tropospheric Experiment (GTE) series of campaigns. TRACE-P was an aircraft-based campaign that was part of a larger ground-based and aircraft-based program (APARE) under the auspices of the International Global Atmospheric Chemistry (IGAC) program. TRACE-P was designed to (1) determine the chemical composition of Asian outflow over the western Pacific, and to (2) determine the chemical evolution of the Asian outflow. These objectives were addressed through a variety of observations and numerical modeling exercises. In particular, the goals included sampling strategies that would improve understanding of the budgets of odd hydrogen species (OH and HO2), budgets of NOx (NO, NO2, and their reservoirs), and impacts of oxidants produced in the outflow on air quality in the United States. The NASA DC-8 and P-3B aircraft were deployed in the March and April, 2001 out of primary bases of operation in Hong Kong and Yokota Air Base in Japan. These two aircraft have complementary capabilities which allow high altitude and long range impacts, as well as low altitude, local impacts to be assessed. In order to quantify the composition and evolution of Asian outflow, it is important to quantify as many species as possible including photochemically active species (e.g. NO2, CH2O, O3, acetone, etc.), sources species (VOCs, CO, NOx, SO2, aerosols), reactive intermediates including free radicals (OH, HO2, RO2, and their reservoirs), and end products (nitric acid, sulfuric acid, secondary aerosols, etc.). The more complete the measurement suite, the more tightly constrained the numerical modeling can be (within the uncertainties of the measurements). The numerical models range in sophistication from simple steady state box models (as employed in this study) to multi-dimensional chemical transport models. Data were collected on approximately 20 flights of the DC-8 and 21 flights of the P-3B. Observations from both aircraft were used in the present analysis, but primarily focused on the P-3B flights since that was the platform on which the peroxy radical instrumentation was based.

Cantrell, Christopher A.; Eisele, Fred L.

2004-01-01

340

Positive and negative ion mass spectrometry of tricyclic antidepressants  

Microsoft Academic Search

Positive electron impact (EI), positive chemical ionization (CI), and negative CI mass spectra of eight tricyclic antidepressants are presented. In the positive EI mode, peak(s) at m\\/z 193 and\\/or 195, which corresponded to the tricyclic nucleus, appeared for five compounds; a peak at m\\/z 58 was common to compounds having a ?-dimethylaminopropyl group as their side chain. Molecular ions appeared

O. Suzuki; H. Hattori; M. Asano; H. Brandenberger

1986-01-01

341

Early life stress, negative paternal relationships, and chemical intolerance in middle-aged women: support for a neural sensitization model.  

PubMed

This study (ntotal = 35) compared early life stress ratings, parental relationships, and health status, notably orthostatic blood pressures, of middle-aged women with low-level chemical intolerance (CI group) and depression, depressives without CI (DEP group), and normals. Environmental chemical intolerance is a symptom of several controversial conditions in which women are overrepresented, that is, sick building syndrome, multiple chemical sensitivity, chronic fatigue syndrome, and fibromyalgia. Previous investigators have postulated that people with CI have variants of somatization disorder, depression, posttraumatic stress disorder (PTSD) initiated by childhood abuse or a toxic exposure event. One neurobehavioral model for CI, somatization disorder, recurrent depression, and PTSD is neural sensitization, that is, the progressive amplification of host responses (e.g., behavioral, neurochemical) to repeated intermittent stimuli (e.g., drugs, chemicals, endogenous mediators, stressors). Females are more vulnerable to sensitization than are males. Limbic and mesolimbic pathways mediate central nervous system sensitization. Although both CI and DEP groups had high levels of life stress and past abuse, the CI group had the most distant and weak paternal relationships and highest limbic somatic dysfunction subscale scores. Only the CI group showed sensitization of sitting blood pressures over sessions. Together with prior evidence, these data are consistent with a neural sensitization model for CI in certain women. The findings may have implications for poorer long-term medical as well as neuropsychiatric health outcomes of a subset of women with CI. Subsequent research should test this model in specific clinical diagnostic groups with CI. PMID:9861591

Bell, I R; Baldwin, C M; Russek, L G; Schwartz, G E; Hardin, E E

1998-11-01

342

Microprobe sampling--photo ionization-time-of-flight mass spectrometry for in situ chemical analysis of pyrolysis and combustion gases: examination of the thermo-chemical processes within a burning cigarette.  

PubMed

A microprobe sampling device (?-probe) has been developed for in situ on-line photo ionization mass spectrometric analysis of volatile chemical species formed within objects consisting of organic matter during thermal processing. With this approach the chemical signature occurring during heating, pyrolysis, combustion, roasting and charring of organic material within burning objects such as burning fuel particles (e.g., biomass or coal pieces), lit cigarettes or thermally processed food products (e.g., roasting of coffee beans) can be investigated. Due to its dynamic changes between combustion and pyrolysis phases the cigarette smoking process is particularly interesting and has been chosen as first application. For this investigation the tip of the ?-probe is inserted directly into the tobacco rod and volatile organic compounds from inside the burning cigarette are extracted and real-time analyzed as the glowing front (or coal) approaches and passes the ?-probe sampling position. The combination of micro-sampling with photo ionization time-of-flight mass spectrometry (PI-TOFMS) allows on-line intrapuff-resolved analysis of species formation inside a burning cigarette. Monitoring volatile smoke compounds during cigarette puffing and smoldering cycles in this way provides unparalleled insights into formation mechanisms and their time-dependent change. Using this technique the changes from pyrolysis conditions to combustion conditions inside the coal of a cigarette could be observed directly. A comparative analysis of species formation within a burning Kentucky 2R4F reference cigarette with ?-probe analysis reveals different patterns and behaviors for nicotine, and a range of semi-volatile aromatic and aliphatic species. PMID:22244143

Hertz, Romy; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin; Zimmermann, Ralf

2012-02-10

343

Kelvin spray ionization.  

PubMed

A novel self-powered dual spray ionization source has been developed for applications in mass spectrometry. This new source does not use any power supply and produces both positive and negative ions simultaneously. The idea behind this ionization source comes from the Kelvin water dropper. The source employs one or two syringes, two pneumatic sprays operated over a range of flow rates (0.15-15 ?L min(-1)) and gas pressures (0-150 psi), and two double layered metal screens for ion formation. A variable electrostatic potential from 0 to 4 kV can be produced depending on solvent and gas flow rates that allow gentle ionization of compounds. There are several parameters that affect the performance during ionization of molecules including the flow rate of solvent, gas pressure, solvent acidity, position of spray and metal screens with respect to each other and distance between metal screens and the counter electrode. This ionization method has been successfully applied to solutions of peptides, proteins and non-covalent complexes. In comparison with ESI, the charge number of the most populated state is lower than that from ESI. It indicates that this is a softer ionization technique and it produces more protein ions with folded structures. The unique features of Kelvin spray ionization (KeSI) are that the method is self-powered and ionization occurs at very low potentials by providing very low internal energy to the ions. This advantage can be used for the ionization of very fragile molecules and investigation of non-covalent interactions. PMID:24080942

Özdemir, Abdil; Lin, Jung-Lee; Gillig, Kent J; Chen, Chung-Hsuan

2013-11-21

344

Chemical composition of lipids present in cat and dog oocyte by matrix-assisted desorption ionization mass spectrometry (MALDI- MS).  

PubMed

The aim of the present study was to investigate the level of information on the chemical structures and relative abundances of lipids present in cat and dog oocytes by matrix-assisted laser desorption mass spectrometry (MALDI-MS). The MALDI-MS approach requires a simple analysis workflow (no lipid extraction) and few samples (two or three oocytes per analysis in this work) providing concomitant profiles of both intact phospholipids such as sphingomyelins (SM) and phosphatidylcholines (PC) as well as triacylglycerols (TAG). The lipids were detected in oocytes by MALDI using dihydroxybenzoic acid (DHB) as the matrix. The most abundant lipid present in the MS profiles of bitch and queen oocytes was a PC containing 34 carbons and one unsaturation [PC (34:1)]. Oocytes of these two species are characterized by differences in PC and TAG profiles detected qualitatively as well as by means of principal component analysis (PCA). Cat oocytes were mainly discriminated by more intense C52 and C54 TAG species and a higher number of unsaturations, indicating predominantly linoleic and oleic fatty acyl residues. Comparison of the lipid profile of bitch and queen oocytes with that of bovine oocytes revealed some similarities and also some species specificity: TAG species present in bovine oocytes were also present in bitches and queens; however, a more pronounced contribution of palmitic, stearic and oleic fatty acid residues was noticed in the lipid profile of bovine oocytes. MALDI-MS provides novel information on chemical lipid composition in canine and feline oocytes, offering a suitable tool to concomitantly monitor, in a nearly direct and simple fashion the composition of phospholipids and TAG. This detailed information is highly needed to the development of improved protocols for in vitro culture and cryopreservation of cat and dog oocytes. PMID:23279478

Apparicio, M; Ferreira, C R; Tata, A; Santos, V G; Alves, A E; Mostachio, G Q; Pires-Butler, E A; Motheo, T F; Padilha, L C; Pilau, E J; Gozzo, F C; Eberlin, M N; Lo Turco, E G; Luvoni, G C; Vicente, W R R

2012-12-01

345

Negative ion source  

DOEpatents

An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

Leung, K.N.; Ehlers, K.W.

1982-08-06

346

Negative ion source  

DOEpatents

An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01

347

Negative ion source  

DOEpatents

An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

Leung, K.N.; Ehlers, K.W.

1984-12-04

348

Negative resistance phenomenon in dual-frequency capacitively coupled plasma-enhanced chemical vapor deposition system for photovoltaic manufacturing process  

NASA Astrophysics Data System (ADS)

The validity of effective frequency concept is investigated for dual-frequency (DF) capacitively coupled plasma (CCP) discharges by using particle-in-cell/Monte Carlo collision simulations. This concept helps in analyzing DF CCP discharges in a fashion similar to single-frequency (SF) CCP discharges with effective parameters. Unlike the driving frequency of SF CCP discharges, the effective frequency in DF CCP is dependent on the ratio of the two driving currents (or voltages) and this characteristic makes it possible to control the ion flux and the ion bombardment energy independently. This separate control principally allows to increase the ion flux and plasma density for high deposition rates, while keeping the ion mean energy constant at low values to prevent the bombardment of highly energetic ions at the substrate surface to avoid unwanted damage in the solar cell manufacturing. The abrupt transition of the effective frequency leads to the phenomenon of negative resistance which is one of the several physical phenomena associated uniquely with DF CCP discharges. Using effective frequency concept, the plasma characteristics have been investigated in the negative resistance regime for solar cell manufacturing.

Kwon, H. C.; Aman-Ur-Rehman; Won, I. H.; Park, W. T.; Lee, J. K.

2012-01-01

349

Wafer Treatment Using Electrolysis-Ionized Water  

Microsoft Academic Search

Electrolysis-ionized water treatment is shown to be useful for removing polystyrene particles from contact holes, silicon surface cleaning and the removal of metal contamination such as copper. Electrolysis-ionized waterhas a controllable pH and a higher oxidation-reduction potential than chemicals. Moreover, this water does notcontain acid or alkaline chemicals, and can easily be neutralized without adding chemicals. Electrolysis-ionized water treatment has

Hidemitsu Aoki; Masaharu Nakamori; Nahomi Aoto; Eiji Ikawa

1994-01-01

350

Wafer Treatment Using Electrolysis-Ionized Water  

NASA Astrophysics Data System (ADS)

Electrolysis-ionized water treatment is shown to be useful for removing polystyrene particles from contact holes, silicon surface cleaning and the removal of metal contamination such as copper. Electrolysis-ionized waterhas a controllable pH and a higher oxidation-reduction potential than chemicals. Moreover, this water does notcontain acid or alkaline chemicals, and can easily be neutralized without adding chemicals. Electrolysis-ionized water treatment has great potential for ecologically safe and low cost semiconductor processing.

Aoki, Hidemitsu; Nakamori, Masaharu; Aoto, Nahomi; Ikawa, Eiji

1994-10-01

351

N2O5 measurement in Hong Kong by a chemical ionization mass spectrometry: Presence of high N2O5 and implications  

NASA Astrophysics Data System (ADS)

Dinitrogen pentoxide (N2O5) plays key roles in a number of nocturnal chemical processes within the troposphere, including the sink of nitrogen oxides (NOx). However, accurate measurement of this atmospheric trace compound remains as a challenging task, especially in polluted environment like China. We initially deploy a thermal dissociation chemical ionization mass spectrometry (TD-CIMS) for N2O5 field measurement in Hong Kong from 2010-2012. Unusual high N2O5 signal measured as NO3- (62 amu) were frequently observed. Various interference tests and correction were conducted to verify the data, but we caution the use of 62 amu for measuring ambient N2O5 in a high NOx environment like Hong Kong. Therefore, we optimized the CIMS to measure N2O5 as ion cluster of I(N2O5)- at 235 amu with some minor improvements and demonstrated to has the ability for simultaneous in situ measurements of N2O5 at an urban site. Then, the CIMS was deployed to another field study at a mountain-top site (Tai Mo Shan). A comparison of N2O5 measurement with a cavity ring-down spectrometry was performed and found to be in good correlation with the CIMS. High concentration of N2O5 was observed between the boundary layer and there are some occasions where N2O5 exceeds several ppb, which is among the highest values ever reported. These results provide deeper understanding on the chemistry of NOx in a polluted environment. Furthermore, our first observation of nitryl chloride (ClNO2) and its co-existence with N2O5 also implies an active heterogeneous reactivity between N2O5 and chloride particles in an Asian environment. Thus, N2O5 is an important nocturnal intermediate and has the potential in jump-starting the atmospheric photochemistry in this region

Jun, Tham Yee; Tao, Wang; Zhe, Wang; Xinfeng, Wang; Chao, Yan; Qiaozhi, Zha; Zheng, Xu; Likun, Xue

2014-05-01

352

The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.  

PubMed

Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24913399

Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

2014-06-01

353

A method for simultaneous analysis of phytosterols and phytosterol esters in tobacco leaves using non aqueous reversed phase chromatography and atmospheric pressure chemical ionization mass spectrometry detector.  

PubMed

While numerous analytical methods for phytosterols have been reported, the similar polarity and large molecules of phytosterol esters have made the methods lengthy and complicated. For this reason, an analytical method that could completely separate phytosterol esters including the higher fatty acids such as palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid in addition to phytosterols without preliminary separation was developed. The separation was accomplished by non-aqueous reversed phase chromatography technique using only acetone and acetonitrile. An atmospheric pressure chemical ionization/mass spectrometry detector configured at selected ion monitoring mode was hyphenated with the separation system to detect phytosterols and phytosterol esters. Twenty-four types of these were consequently separated and then identified with their authentic components. The calibration curve was drawn in the range of about 5 to 25,000 ng/mL with a regression coefficient over 0.999. The limit of detection and limit of quantification, respectively, ranged from 0.9 to 3.0 ng/mL and from 3.0 to 11.0 ng/mL. Recovery rates ranged from 80 to 120%. The quantification results were subjected to statistical analysis and hierarchical clustering analysis, and were used to determine the differences in the amounts of phytosterols and phytosterol esters across tobacco leaves. The newly developed method succeeded in clarifying the whole composition of phytosterols and phytosterol esters in tobacco leaves and in explaining compositional differences across the variety of tobacco leaves. PMID:24690307

Ishida, Naoyuki

2014-05-01

354

Broadband detection electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to reveal enzymatically and chemically induced deamidation reactions within peptides.  

PubMed

Among the numerous forms of chemical degradation of peptides or proteins, deamidation is one of the alterations observed most frequently. In this irreversible reaction, a glutamine or an asparagine side chain is hydrolyzed to glutamic acid or aspartic acid, respectively (conversion of NH2 to OH). Besides its influence in the deterioration of biotechnological and food products, deamidation represents a defined posttranslational modification reaction with respect to proteomics. Here mass spectrometric techniques play a leading role in determining posttranslational modifications. However, not all mass spectrometers are able to resolve signal differences of 0.0193 Da (mass difference of 12CO vs 13CNH) for singly charged molecules, the mass difference between the first isotopic signal of an asparagine/glutamine-containing peptide and the monoisotopic signal of the corresponding partially deamidated aspartate/glutamate derivative. To detect partial deamidation within peptides, advantage has been taken of the ability of Fourier transform ion cyclotron resonance mass spectrometry to perform very high mass resolution. In this work, we investigated up to triply charged ions produced by electrospray ionization using direct infusion. Although the special heterodyne detection mode enables higher mass resolution than the routinely used broadband detection, often only a small mass window can be investigated. Using broadband detection, we were able to resolve ions with a difference of m/z 0.0064 to detect partially deamidated peptides formed either enzymatically or under acidic and basic conditions. PMID:11791573

Schmid, D G; von der Mülbe, F D; Fleckenstein, B; Weinschenk, T; Jung, G

2001-12-15

355

Comparison of different sorbent materials for on-line solid-phase extraction with liquid chromatography-atmospheric pressure chemical ionization mass spectrometry of phenols.  

PubMed

On-line solid-phase extraction (SPE) was interfaced to liquid chromatography with atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) for the determination of US Environmental Protection Agency (EPA) phenols. The system, allowing fully automated operation, was used to evaluate different SPE cartridge materials and dimensions. Six different SPE materials (C18 HD, Polymer Labs PLRP-s, Hamilton PRP-1, Hysphere GP, Hysphere SH and Waters Oasis) were tested. Criteria for their comparison were first the recovery for the different phenols and its reproducibility, but also chromatographically relevant items like peakshape in the on-line elution mode. High recoveries and good relative standard deviations were obtained particularly for the newer, strongly retaining SPE materials that have become commercially available recently (the Hysphere materials and Waters Oasis) compared to the well known silica-based and weaker polymeric adsorbents like PLRP-s and PRP-1. These advantages are, however, traded in for good chromatographic peakshape, since the stronger adsorbents give rise to notable peak broadening in on-line elution. This is particularly true when using APCI-MS detection which on the one hand offers excellent selectivity and sensitivity, but imposes additional restrictions on the mobile phase composition in order not to suppress the response significantly. The influence of these parameters on the on-line-SPE-HPLC-MS determination of EPA phenols is discussed and present limitations are pointed out. PMID:11093651

Wissiack, R; Rosenberg, E; Grasserbauer, M

2000-10-27

356

The determination of cyclophosphamide and its metabolites in blood plasma as stable trifluoroacetyl derivatives by electron capture chemical ionization gas chromatography/mass spectrometry.  

PubMed

A method is described for the determination of the antitumour drug cyclophosphamide and six stable metabolites in plasma of cancer patients, namely dechloroethyl-cyclophosphamide, 4-keto-cyclophosphamide, carboxy-phosphamide, alcophosphamide, nor-nitrogen mustard and the N-chloroethyl-1,3-oxazolidine-2-one, as methyl and/or trifluoroacetyl derivatives by single ion monitoring gas chromatography/mass spectrometry, mostly in the electron capture chemical ionization mode. The isolation of most metabolites was performed by solid-phase C-18 extraction in weakly acidic medium. The phosphoramide mustard isolated under these conditions decomposes readily to the nor-nitrogen mustard during derivatization. The original nor-nitrogen mustard and the chloroethyl-1,3-oxazolidine-2-one were isolated by liquid extraction with ethyl acetate in alkaline medium. Recoveries of 75-99% were measured using spiked blank plasma samples. Quantitation of metabolites in patient plasma samples was performed using two sets of calibration curves for the concentration ranges of 1-100 ng and 0.1-10 micrograms of metabolite per millilitre of original plasma. PMID:8148406

Momerency, G; Van Cauwenberghe, K; Slee, P H; Van Oosterom, A T; De Bruijn, E A

1994-03-01

357

Acetate, propionate and butyrate in plasma: determination of the concentration and isotopic enrichment by gas chromatography/mass spectrometry with positive chemical ionization.  

PubMed

This study describes a rapid and simple method to determine short-chain fatty acid (SCFA) concentrations and their isotopic enrichments (M(0) + 1 and M(0) + 2) in human plasma. Sample preparation involves SCFA extraction and derivatization with 1-(tert-butyldimethylsilyl)imidazole. Gas chromatography/mass spectrometry was performed using chemical ionization with ammonia as the reagent gas. Outstanding resolution, excellent linearity and good detection limits were obtained. Inter-assay and intra-assay repeatability was below 10% and 3% respectively for SCFA concentration. Inter-assay repeatability was below 5%, 4%, 6%, and 14% for isotopic enrichment determination of [1-(13)C]acetate and [1,2-(13)C(2)]acetate, [1-(13)C]propionate and [1-(13)C]butyrate respectively, with intra-assay being below 6%. Such SCFA concentrations and isotopic enrichments were determined in the plasma of rats infused with a (13)C-labeled SCFA. The turnovers of acetate, propionate and butyrate in rats were 19 micromol kg(-1) min(-1), 2.6 micromol kg(-1) min(-1), 0.3 micromol kg(-1) min(-1) respectively. PMID:11473403

Pouteau, E; Meirim, I; Métairon, S; Fay, L B

2001-07-01

358

Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization.  

PubMed

This paper reports a wide-scope screening for detection and identification of pesticides and polycyclic aromatic hydrocarbons (PAHs) in feeds and fish tissues. QuEChERS sample treatment was applied, using freezing as an additional cleanup. Analysis was carried out by gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI) QTOF MS). The qualitative validation was performed for over 133 representative pesticides and 24 PAHs at 0.01 and 0.05 mg/kg. Subsequent application of the screening method to aquaculture samples made it possible to detect several compounds from the target list, such as chlorpyrifos-methyl, pirimiphos-methyl, and ethoxyquin, among others. Light PAHs (?4 rings) were found in both animal and vegetable samples. The reliable identification of the compounds was supported by accurate mass measurements and the presence of at least two representative m/z ions in the spectrum together with the retention time of the peak, in agreement with the reference standard. Additionally, the search was widened to include other pesticides for which standards were not available, thanks to the expected presence of the protonated molecule and/or molecular ion in the APCI spectra. This could allow the detection and tentative identification of other pesticides different from those included in the validated target list. PMID:24559176

Nácher-Mestre, Jaime; Serrano, Roque; Portolés, Tania; Berntssen, Marc H G; Pérez-Sánchez, Jaume; Hernández, Félix

2014-03-12

359

Determination of imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry.  

PubMed

Imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole have been simultaneously determined in strawberries, oranges, potatoes, pears, and melons by matrix solid-phase dispersion (MSPD) followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) in positive-ion mode. The samples were homogenized with C8 bonded silica as MSPD sorbent, placed in a glass column, and eluted with dichloromethane. Chromatographic separation of the compounds was achieved on a reversed-phase LC column using a methanol-ammonium formate (50 mmol L(-1)) gradient as a mobile phase. Samples were screened by monitoring the protonated molecular ion at m/z 256 for imidacloprid, 280 for metalaxyl, 289 for myclobutanil, and 202 for thiabendazole, and the main fragment at m/z 138 for propham. Positive samples were confirmed by multiple-ion monitoring. The repeatability (<20%) and recovery (>57%) of the method were good, and limits of detection (<0.05 mg kg(-1)) were adequate. PMID:11678189

Pous, X; Ruíz, M J; Picó, Y; Font, G

2001-09-01

360

Characterization of gamma-irradiated polyethylene terephthalate by liquid-chromatography mass-spectrometry (LC MS) with atmospheric-pressure chemical ionization (APCI)  

NASA Astrophysics Data System (ADS)

Low-molecular-weight (low-MW) constituents of polyethylene terephthalate (PET), irradiated with 60Co gamma rays at 25 and 50 kGy, were analyzed by HPLC-MS with atmospheric-pressure chemical ionization (APCI). Consistent with earlier results, the concentrations of the major compounds that are present in the non-irradiated PET do not change perceptibly. However, we find a small but significant increase in terephthalic acid ethylester, from less than 1 mg/kg in the non-irradiated control to ca. 2 mg/kg after 50 kGy, which has not been described before. The finding is important because it gives an impression of the sensitivity of the analytical method. Additionally, it shows that even very radiation-resistant polymers can form measurable amounts of low-MW radiolysis products. The potential and limitations of LC-MS for the analysis of radiolysis products and unidentified migrants are briefly discussed in the context of the question: How can we validate our analytical methods for unknown analytes?

Buchalla, Rainer; Begley, Timothy H.

2006-01-01

361

Laser diode thermal desorption-positive mode atmospheric pressure chemical ionization tandem mass spectrometry for the ultra-fast quantification of a pharmaceutical compound in human plasma.  

PubMed

An ultra-fast, reliable and sensitive analytical method enabling high-throughput quantitative analysis of pharmaceutical compounds in human plasma is described. The quantitative work was performed on one of our compound currently under clinical trial by employing a deuterated internal standard (IS). Plasma samples were treated on solid phase micro-extraction (SPME) plates prior their analysis by laser diode thermal desorption and atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD/APCI-MS/MS) in positive mode. The sample analysis run time was 10s as compared to the 7 min obtained for the validated LC-MS/MS method. The limit of quantification (LOQ) of the method was estimated at 1 ng/mL. The calibration graphs were linear with a regression coefficient R(2) > 0.997. The data of the partial validation show that LDTD/APCI-MS/MS assay was highly reproducible and selective. In addition, the deviations for intra and inter assay accuracy and precision data were within 15% at all quality control levels. The LDTD/APCI-MS/MS method was successfully applied to the analysis of clinical samples and the data obtained were consistent with those found with a validated LC-MS/MS assay. This work demonstrates that LDTD/APCI-MS/MS could be used for the ultra-fast and reliable quantitative analysis of pharmaceutical compounds in human plasma without using the separation step commonly associated with the LC-MS/MS assay. PMID:21156343

Heudi, Olivier; Barteau, Samuel; Picard, Pierre; Tremblay, Patrice; Picard, Franck; Kretz, Olivier

2011-04-01

362

Phenyl-modified reversed-phase liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry: a universal method for the analysis of partially oxidized aromatic hydrocarbons.  

PubMed

A new liquid chromatographic method for the efficient separation of aromatic compounds having a wide range of sizes, molecular structures, and polarities has been developed. Based on a phenyl-modified silica reversed stationary phase and a methanol-water solvent gradient, it allows the separation of mono- and polycyclic aromatic hydrocarbons (PAHs) having up to five condensed aromatic rings and partially oxidized derivatives within a single chromatographic run of 40-min duration. The applicability of the method is demonstrated using 81 reference substances (PAHs, phenols, quinones, acids, lactones, esters, etc.) and real samples of environmental, medical, and technical relevance (ozonized PAHs, lake water, human urine, diesel exhaust condensates). The retention times of the investigated aromatics exhibit a regular increase with molecular mass and a systematic decrease with increasing number and polarity of functional groups. In case of intramolecular hydrogen bonding, a positive shift of retention time provides additional structural information. The combination of chromatographic retention time with the molecular mass and structural information from mass spectrometric detection allows the tentative identification of unknown aromatic analytes at trace levels, even without specific reference substances. With atmospheric pressure chemical ionization (APCI), low detection limits and highly informative fragmentation patterns can be obtained by in-source collision-induced fragmentation in a single-quadrupole LC-APCI-MS system as applied in this study, and multidimensional MS experiments are expected to further enhance the potential of the presented method. PMID:11321321

Letzel, T; Pöschl, U; Wissiack, R; Rosenberg, E; Grasserbauer, M; Niessner, R

2001-04-01

363

Dispersive micro-solid phase extraction combined with gas chromatography-chemical ionization mass spectrometry for the determination of N-nitrosamines in swimming pool water samples.  

PubMed

A simple sample pretreatment technique, dispersive micro-solid phase extraction, was applied for the extraction of N-nitrosodimethylamine (NDMA) and other four N-nitrosamines (NAs) from samples of swimming pool water. The parameters affecting the extraction efficiency were systematically investigated. The best extraction conditions involved immersing 75 mg of carbon molecular sieve, Carboxen™ 1003 (as an adsorbent), in a 50-mL water sample (pH 7.0) containing 5% sodium chloride in a sample tube. After 20 min of extraction by vigorous shaking, the adsorbent was collected on a filter and the NAs desorbed by treatment with 150 ?L of dichloromethane. A 10-?L aliquot was then directly determined by large-volume injection gas chromatography with chemical ionization mass spectrometry using the selected ion storage mode. The limits of quantitation were <0.9 ng/L. The precision for these analytes, as indicated by relative standard deviations, were <8% for both intra- and inter-day analyses. Accuracy, expressed as the mean extraction recovery, was between 62% and 109%. A preliminary analysis of swimming pool water samples revealed that NDMA was present in the highest concentration, in the range from n.d. to 100 ng/L. PMID:22222914

Fu, Ssu-Chieh; Tzing, Shin-Hwa; Chen, Hsin-Chang; Wang, Yu-Chen; Ding, Wang-Hsien

2012-02-01

364

Secondary ion counting for surface-sensitive chemical analysis of organic compounds using time-of-flight secondary ion mass spectroscopy with cluster ion impact ionization  

NASA Astrophysics Data System (ADS)

We report suitable secondary ion (SI) counting for surface-sensitive chemical analysis of organic compounds using time-of-flight (TOF) SI mass spectroscopy, based on considerably higher emission yields of SIs induced by cluster ion impact ionization. A SI counting system for a TOF SI mass spectrometer was developed using a fast digital storage oscilloscope, which allows us to perform various types of analysis as all the signal pulses constituting TOF SI mass spectra can be recorded digitally in the system. Effects of the SI counting strategy on SI mass spectra were investigated for C8 and C60 cluster ion impacts on an organically contaminated silicon wafer and on polytetrafluoroethylene targets by comparing TOF SI mass spectra obtained from the same recorded signals with different SI counting procedures. Our results show that the use of a counting system, which can cope with high SI yields, is necessary for quantitative analysis of SI mass spectra obtained under high SI yield per impact conditions, including the case of cluster ion impacts on organic compounds.

Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Takahashi, Y.; Narumi, K.

2011-03-01

365

Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.  

PubMed

A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites. PMID:19886654

Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

2009-12-01

366

APPLICATION OF NEGATIVE ION CHEMICAL IONIZATION MASS SPECTROMETRY FOR THE ANALYSIS OF TRICHLOROPYRIDINOL IN SALIVA OF RATS EXPOSED TO CHLORPYRIFOS. (R828608)  

EPA Science Inventory

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

367

Harnessing entropic and enthalpic contributions to create a negative tone chemically amplified molecular resist for high-resolution lithography.  

PubMed

Here we present a new resist design concept. By adding dilute cross-linkers to a chemically amplified molecular resist, we synergize entropic and enthalpic contributions to dissolution by harnessing both changes to molecular weight and changes in intermolecular bonding to create a system that outperforms resists that emphasize one contribution over the other. We study patterning performance, resist modulus, solubility kinetics and material redistribution as a function of cross-linker concentration. Cross-linking varies from dilute oligomerization to creating a highly networked system. The addition of small amounts of cross-linker improves resist performance by reducing material diffusion and redistribution during development and stiffening the features to avoid pattern collapse. The new dilute cross-linking system achieves the highest resolution of a sensitive molecular glass resist at 20 nm half-pitch and line-edge roughness (LER) of 4.3 nm and can inform new resist design towards patterned feature control at the molecular level. PMID:25026410

Kulshreshtha, Prashant K; Maruyama, Ken; Kiani, Sara; Blackwell, James; Olynick, Deirdre L; Ashby, Paul D

2014-08-01

368

Separation and detection of compounds in Honeysuckle by integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption\\/ionization time-of-flight mass spectrometry analysis  

Microsoft Academic Search

A hyphenated method for the isolation and identification of components in a traditional Chinese medicine of Honeysuckle was developed. Ion-exchange chromatography (IEC) was chosen for the fractionation of Honeysuckle extract, and then followed by concentration of all the fractions with rotary vacuum evaporator. Each of the enriched fractions was then further analyzed by reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass

Xueguo Chen; Lianghai Hu; Xingye Su; Liang Kong; Mingliang Ye; Hanfa Zou

2006-01-01

369

Monitoring of priority pesticides and other organic pollutants in river water from Portugal by gas chromatography–mass spectrometry and liquid chromatography–atmospheric pressure chemical ionization mass spectrometry  

Microsoft Academic Search

Gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (LC–APCI-MS) were optimized and applied for the trace-level determination of 42 priority pesticides and 33 priority organic pollutants from European Union Directive EC 76\\/464. First, off-line solid-phase extraction of 200 ml of river water using an OASIS solid-phase extraction cartridge, followed by GC–MS was used. Next, selected samples

Débora de Almeida Azevedo; S??lvia Lacorte; Tereza Vinhas; Paula Viana; Damiá Barceló

2000-01-01

370

Simultaneous determination by ultra-performance liquid chromatography–atmospheric pressure chemical ionization time-of-flight mass spectrometry of nitrated and oxygenated PAHs found in air and soot particles  

Microsoft Academic Search

An ultra-performance liquid chromatographic-atmospheric pressure chemical ionization time-of-flight mass spectrometric (UPLC-APCIToFMS)\\u000a method for rapid analysis of twelve nitrated polycyclic aromatic hydrocarbons (NPAHs) and nine oxygenated polycyclic aromatic\\u000a hydrocarbons (OPAHs) in particle samples has been developed. The extraction step using pressurized liquid extraction was optimized\\u000a by experimental design methods and the concentrated extracts were analyzed without further clean-up. Matrix effects resulting

Giovanni Mirivel; Véronique Riffault; Jean-Claude Galloo

2010-01-01

371

Gridded electron reversal ionizer  

NASA Technical Reports Server (NTRS)

A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

Chutjian, Ara (Inventor)

1993-01-01

372

Enantioselective determination of cetirizine in human plasma by normal-phase liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.  

PubMed

A highly sensitive and enantioselective method has been developed and validated for the determination of levocetirizine [(R)-cetirizine] in human plasma by normal-phase liquid chromatography coupled to tandem mass spectrometry with an atmospheric pressure chemical ionization (APCI) interface in the positive ion mode. Enantioselective separation was achieved on a CHIRALPAK AD-H column using an isocratic mobile phase consisting of a mixture of n-hexane, ethyl alcohol, diethylamine, and acetic acid (60:40:0.1:0.1, v/v/v/v). Levocetirizine-D(8) was used as an internal standard (IS). Levocetirizine and the IS were detected by multiple-reaction monitoring (MRM). Mass transitions of analyte and IS were m/z 389.2?201.1 and 397.2?201.1, respectively. Under optimized analytical conditions, a baseline separation of two enantiomers and IS was obtained in less than 11 min. Samples were prepared by a simple two-step extraction by protein precipitation using acetonitrile followed by liquid-liquid extraction with a n-hexane-dichloromethane mixture (50:50, v/v). The standard curve for levocetirizine was linear (r(2)>0.995) in the concentration range 0.5-300 ng/mL. Recovery was between 97.0 and 102.2% at low, medium, and high concentration. The limit of quantification (LOQ) was 0.5 ng/mL. Other method validation parameters, such as precision, accuracy, and stability, were very satisfactory. Finally, the proposed method was successfully applied to the study of enantioselective oral pharmacokinetics of levocetirizine in healthy Korean volunteers. PMID:21081290

Kang, Seung Woo; Jang, Hae Jong; Moore, Victor S; Park, Ji-Young; Kim, Kyoung-Ah; Youm, Jeong-Rok; Han, Sang Beom

2010-12-15

373

Positive chemical ionization triple-quadrupole mass spectrometry and ab initio computational studies of the multi-pathway fragmentation of phthalates.  

PubMed

We report the first positive chemical ionization (PCI) fragmentation mechanisms of phthalates using triple-quadrupole mass spectrometry and ab initio computational studies using density functional theories (DFT). Methane PCI spectra showed abundant [M + H](+), together with [M + C(2)H(5)](+) and [M + C(3)H(5)](+). Fragmentation of [M + H](+), [M + C(2)H(5)](+) and [M + C(3)H(5)](+) involved characteristic ions at m/z 149, 177 and 189, assigned as protonated phthalic anhydride and an adduct of phthalic anhydride with C(2)H(5)(+) and C(3)H(5)(+), respectively. Fragmentation of these ions provided more structural information from the PCI spectra. A multi-pathway fragmentation was proposed for these ions leading to the protonated phthalic anhydride. DFT methods were used to calculate relative free energies and to determine structures of intermediate ions for these pathways. The first step of the fragmentation of [M + C(2)H(5)](+) and [M + C(3)H(5)](+) is the elimination of [R-H] from an ester group. The second ester group undergoes either a McLafferty rearrangement route or a neutral loss elimination of ROH. DFT calculations (B3LYP, B3PW91 and BPW91) using 6-311G(d,p) basis sets showed that McLafferty rearrangement of dibutyl, di(-n-octyl) and di(2-ethyl-n-hexyl) phthalates is an energetically more favorable pathway than loss of an alcohol moiety. Prominent ions in these pathways were confirmed with deuterium labeled phthalates. PMID:20527037

Jeilani, Yassin A; Cardelino, Beatriz H; Ibeanusi, Victor M

2010-06-01

374

Determination of eight nitrosamines in water at the ng L(-1) levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry.  

PubMed

In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD<20%). Limits of detection were found to be in the range of 1-8 ng L(-1). The described methodology has been applied to different types of water samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters. PMID:21819861

Ripollés, Cristina; Pitarch, Elena; Sancho, Juan V; López, Francisco J; Hernández, Félix

2011-09-19

375

A high-performance liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric method for determination of risperidone and 9-hydroxyrisperidone in human plasma.  

PubMed

Risperidone, a benzisoxazole derivative, is an antipsychotic agent used for the treatment of schizophrenia. We developed a liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric (LC-APCI-MS-MS) method with improved sensitivity, selectivity, and dynamic range for determination of risperidone and 9-hydroxyrisperidone in human plasma. A structural analogue of risperidone, RO68808 (5 ng/mL), is added as the internal standard to 1 mL of human plasma. Plasma is made basic, extracted with pentane/methylene chloride (3:1), the organic phase evaporated to dryness, and the residue is reconstituted in water with 0.1% formic acid/acetonitrile (20:1). For LC-MS-MS analysis, a Metachem Inertsel HPLC column (2.1 x 150 mm, 5-microm particle size) is connected to a Finnigan TSQ7000 tandem MS via the Finnigan API interface. Both electrospray (ESI) and APCI produced predominantly MH(+) ions for the two analytes and the internal standard. Ions detected by selected reaction monitoring correspond to the following transitions: m/z 411 to 191 for risperidone, m/z 427 to 207 for 9-hydroxyrisperidone, and m/z 421 to 201 for the internal standard. APCI provided a larger dynamic range (0.1 to 25 ng/mL) and better precision and accuracy than ESI. Intrarun accuracy and precision determined at 0.1, 0.25, 2.5, and 15 ng/mL were within 12% of target with %CVs not exceeding 10.9%. Interrun accuracy and precision determined at the same concentrations were within 9.6% of target with %CVs not exceeding 6.7%. Analytes were stable in plasma after 24 h at room temperature, 2 freeze-thaw cycles, and 490 days at -20 degrees C. PMID:15516302

Moody, David E; Laycock, John D; Huang, Wei; Foltz, Rodger L

2004-09-01

376

Use of liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry for identification of oleanolic acid and ursolic acid in Anoectochilus roxburghii (wall.) Lindl.  

PubMed

Oleanolic acid (OA) and ursolic acid (UA) are the two important bioactive compounds in Anoectochilus roxburghii (wall) Lindl (A. roxburghii), which has been used as a traditional Chinese medicine. So far, there has been no report to indicate that A. roxburghii contains these two bioactive compounds. It is necessary to develop an effective method to extract and analyze OA and UA in A. roxburghii. In this paper, a quantitative method, consisting of supercritical fluid extraction (SFE) followed by liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry (LC-APCI-IT-MS) analysis, was developed for identification of OA and UA in A. roxburghii. The extraction was carried out by using CO(2) as the supercritical fluid and ethanol as the modifier before LC separation. The mobile phase used for LC separation consisted of acetic acid (1%, v/v), water (15%, v/v) and methanol (84%, v/v), and the elution was performed at a flow rate of 0.8 ml/min. The mass spectrometer was operated in APCI(+) mode with selected ion monitoring (SIM) to quantify OA and UA at m/z 439.4. Under optimum conditions, the linear responses of OA and UA were obtained in the concentration range of 0.5-80 (r = 0.9992) and 0.5-50 microg/ml (r = 0.9989) with the detection limits of 0.125 and 0.085 microg/ml, respectively. The proposed method has been used for the identification and quantitation of OA and UA in a real A. roxburghii sample. PMID:17535010

Huang, Liying; Chen, Tianwen; Ye, Zhao; Chen, Guonan

2007-07-01

377

Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)  

NASA Astrophysics Data System (ADS)

Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient atmosphere.

Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

2014-04-01

378

Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.  

PubMed

A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3µgkg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28µgkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)?0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples. PMID:25059125

Solliec, Morgan; Massé, Daniel; Sauvé, Sébastien

2014-10-01

379

High performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry for sensitive determination of bioactive amines in donkey milk.  

PubMed

In the present study we report on the optimization and validation of a sensitive high performance liquid chromatography atmospheric pressure chemical ionization mass spectrometry (HPLC-APCI-MS) method for the determination of 8 bioactive amines (histamine, tyramine, tryptamine, 2-phenylethylamine, cadaverine, putrescine, spermidine and spermine) in donkey milk samples. The method involves donkey milk pre-treatment to remove proteins and pre-column dansylation of the amines. HPLC in reversed phase mode has been used for bioactive amines separation and the operating condition of the APCI-MS system proved to be powerful and very efficient for peak assignment. The separation was accomplished in a short time with an excellent resolution for all the amine peaks. Quantification was carried out by monitoring the characteristic [M+H](+) ion of each amine derivative. The method sensitivity, linearity and repeatability were assayed with satisfactory results. The detection limits of the analysed amines ranged from 0.5 microg L(-1) to 15 microg L(-1); the highest LOD was for spermine. Also remarkably good recovery values were obtained; at the lowest spiking level (1 microg L(-1)) the percent mean recoveries ranged from 77.7 to 109.7. Furthermore, as the investigations relate to a complex matrix as donkey milk, suitable studies on matrix effect were performed. Finally, the developed and validated method was applied to analyse 13 donkey milk samples. Among the identified bioactive amines, putrescine, spermine and spermidine proved to be the main amines in donkey milk. Their concentration levels in the present study were lower than the values determined in mature human, cow and sow milk. PMID:20598311

La Torre, Giovanna Loredana; Saitta, Marcello; Giorgia Potortì, Angela; Di Bella, Giuseppa; Dugo, Giacomo

2010-08-01

380

Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization.  

PubMed

A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS(E)). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20mgkg(-1). For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01mgkg(-1) level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01mgkg(-1) for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ?±5ppm and an ion-ratio deviation ?±30%, were investigated. At the 0.01mgkg(-1) level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20mgkg(-1) level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to identify detected pesticides, followed by deviations in mass accuracy and ion ratios. PMID:25064246

Portolés, T; Mol, J G J; Sancho, J V; López, Francisco J; Hernández, F

2014-08-01

381

Development of An Ion-Drift Time-of-Flight Chemical Ionization Mass Spectrometry Technique for Measurements of Aerosol Precursor Gases  

NASA Astrophysics Data System (ADS)

We have developed a new technique, i.e., ion-drift time-of-flight chemical ionization mass spectrometry (ID-ToF-CIMS) for measurements of aerosol precursor gases, including ammonia, amines, organic acids and oxygenated VOCs at pptv level with a response time less than 1 s. The ID-ToF-CIMS was modified from an Aerodyne high resolution ToF-CIMS with a custom-designed ion-drift tube, which can control the ion flight velocity and hence the ion-molecular reaction time. In addition, the tunable electric field generated by the drift tube can break up water clusters to select the major reagent ions. The advantages of the ID-ToF-CIMS over the traditional quadrupole-based ID-CIMS were the high mass-resolving power of the ToF mass analyzer and the capability of simultaneous measurement of the full mass range (typically up to 300 m/z) of product ions. Using hydronium ion based reagent ions, we demonstrated that the ID-ToF-CIMS can unambiguously measure ammonia (NH3) at 18.03 m/z, methyl amine (CH3NH2) at 32.05 m/z, formic acid (HCOOH) at 47.01 m/z and acetone (CH3COCH3) at 59.05 m/z. Calibrations were performed with both compressed commercial standard gases and permeation tubes and the results showed that the instrument detection limit can reach pptv level for 1 s average time or less. The ID-ToF-CIMS was also field tested in a mobile laboratory on the campus of Nanjing University of Information Science & Technology (NUIST). The preliminary results will be discussed.

Zheng, J.; Ma, Y.; Chen, M.

2012-12-01

382

Quantitation of benzo[a]pyrene metabolic profiles in human bronchoalveolar (H358) cells by stable isotope dilution liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.  

PubMed

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and are carcinogenic in multiple organs and species. Benzo[a]pyrene (B[a]P) is a representative PAH and has been studied extensively for its carcinogenicity and toxicity. B[a]P itself is chemically inert and requires metabolic activation to exhibit its toxicity and carcinogenicity. Three major metabolic pathways have been well documented. The signature metabolites generated from the radical cation (peroxidase or monooxygenase mediated) pathway are B[a]P-1,6-dione and B[a]P-3,6-dione, the signature metabolite generated from the diol-epoxide (P450 mediated) pathway is B[a]P-r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]P-tetrol-1), and the signature metabolite generated from the o-quinone (aldo-keto reductase mediated) pathway is B[a]P-7,8-dione. The contributions of these different metabolic pathways to cancer initiation and the exploitation of this information for cancer prevention are still under debate. With the availability of a library of [(13)C(4)]-labeled B[a]P metabolite internal standards, we developed a sensitive stable isotope dilution atmospheric pressure chemical ionization tandem mass spectrometry method to address this issue by quantitating B[a]P metabolites from each metabolic pathway in human lung cells. This analytical method represents a 500-fold increased sensitivity compared with that of a method using HPLC-radiometric detection. The limit of quantitation (LOQ) was determined to be 6 fmol on column for 3-hydroxybenzo[a]pyrene (3-OH-B[a]P), the generally accepted biomarker for B[a]P exposure. This high level of sensitivity and robustness of the method was demonstrated in a study of B[a]P metabolic profiles in human bronchoalveolar H358 cells induced or uninduced with the AhR ligand, 2,3,7,8-tetrachlorodibenzodioxin (TCDD). All the signature metabolites were detected and successfully quantitated. Our results suggest that all three metabolic pathways contribute equally in the overall metabolism of B[a]P in H358 cells with or without TCDD induction. The sensitivity of the method should permit the identification of cell-type differences in B[a]P activation and detoxication and could also be used for biomonitoring human exposure to PAH. PMID:21962213

Lu, Ding; Harvey, Ronald G; Blair, Ian A; Penning, Trevor M

2011-11-21

383

Quantitation of Benzo[a]pyrene Metabolic Profiles in Human Bronchoalveolar H358) Cells by Stable Isotope Dilution Liquid Chromatography-Atmospheric Chemical Ionization Mass Spectrometry  

PubMed Central

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and are carcinogenic in multiple organs and species. Benzo[a]pyrene (B[a]P) is a representative PAH and has been studied extensively for its carcinogenicity and toxicity. B[a]P itself is chemically inert and requires metabolic activation to exhibit its toxicity and carcinogenicity. Three major metabolic pathways have been well documented. The signature metabolites generated from the radical cation (peroxidase or monooxygenase mediated) pathway are B[a]P-1,6-dione and B[a]P-3,6-dione, the signature metabolite generated from the diol-epoxide (P450 mediated) pathway is B[a]P-r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]P-tetrol-1) and the signature metabolite generated from the o-quinone (aldo-keto reductase mediated) pathway is B[a]P-7,8-dione. The contributions of these different metabolic pathways to cancer initiation and the exploitation of this information for cancer prevention are still under debate. With the availability of a library of [13C4]-labeled B[a]P metabolite internal standards, we developed a sensitive stable isotope dilution atmospheric pressure chemical ionization tandem mass spectrometry method to address this issue by quantitating B[a]P metabolites from each metabolic pathway in human lung cells. This analytical method represents a 500 fold increased sensitivity compared with a method using HPLC-radiometric detection. The limit of quantitation (LOQ) was determined to be 6 fmol on column for 3-hydroxybenzo[a]pyrene (3-OH-B[a]P), the generally accepted biomarker for B[a]P exposure. This high level of sensitivity and robustness of the method was demonstrated in a study of B[a]P metabolic profiles in human bronchoalveolar H358 cells induced or uninduced with the AhR ligand, 2,3,7,8-tetrachlorodibenzodioxin (TCDD). All the signature metabolites were detected and successfully quantitated. Our results suggest that all three metabolic pathways contribute equally in the overall metabolism of B[a]P in H358 cells with or without TCDD induction. The sensitivity of the method should permit the identification of cell-type differences in B[a]P activation and detoxication and could also be used for biomonitoring human exposure to PAH.

Lu, Ding; Harvey, Ronald G.; Blair, Ian A.; Penning, Trevor M.

2013-01-01

384

Ionizing Radiation  

MedlinePLUS

... of Ionizing Radiation Sources Not Covered by Atomic Energy Act of 1954 . STD 01-04-001 [STD ... not the most current version. US Department of Energy (DOE) 10 CFR 835 , Occupational Radiation Protection Health ...

385

The Modulation of Endoplasmic Reticulum Stress by Chemical Chaperone Upregulates Immune Negative Cytokine IL-35 in Apolipoprotein E-Deficient Mice  

PubMed Central

Interleukin (IL)-35 is a newly identified immune negative molecule which is secreted by CD4+Foxp3+ T regulatory cells (Tregs) and contributes to their suppressive capacity. Early data have shown that IL-35 inhibits development of several autoimmune diseases. However, the role of IL-35 in atherosclerosis, a lipid-driven chronic inflammatory disease in arterial wall, remains to be investigated. Here, we found that IL-35 was involved in atherosclerosis in apolipoprotein E-deficient (ApoE?/?) mice. ApoE?/? mice with established atherosclerotic lesion displayed a lower level of IL-35 compared to age-matched wild type C57BL/6 mice without plaque. However, IL-35 expression increased significantly in ApoE?/? mice with attenuated plaque. More importantly, we found that modulation of ER stress treated by chemical chaperone, 4-Phenyl butyric acid (PBA) in vivo, mainly upregulated immune negative regulating molecule IL-35, as well as IL-10 and Foxp3, accompanied by increased Tregs. However, no obvious impact on pro-inflammatory molecules such as TNF-?, IFN-?, IL-17 and IL-23 was observed, which provides new insight into the benefit of ER stress recovery from attenuated plaque. Our results suggest that IL-35 might have a potential value for atherosclerotic therapy.

Wang, Bo; Dai, Shen; Dong, Zhaojing; Sun, Yue; Song, Xingguo; Guo, Chun; Zhu, Faliang; Wang, Qun; Zhang, Lining

2014-01-01

386

Imaging mass spectrometry of a mouse brain by tapping-mode scanning probe electrospray ionization.  

PubMed

Methods for ambient sampling and ionization enable chemical information to be obtained with minimal sample preparation. Also, imaging mass spectrometry (IMS) enables the spatial distribution of multiple components to be determined by a single measurement. Here, we report an improved method of tapping-mode scanning probe electrospray ionization (t-SPESI) for ambient sampling and ionization in which probe oscillation is stabilized by using a piezo actuator. We demonstrate negative-mode IMS of a mouse coronal brain section and show that, compared with desorption electrospray ionization, t-SPESI provides unique features in the mass spectra: signal enhancement of fatty acid and lipids, and formation of multivalent ions tentatively assigned to gangliosides. These results would indicate the capability for the generation of multiple types of ions with t-SPESI. PMID:24683596

Otsuka, Yoichi; Naito, Junpei; Satoh, Shuya; Kyogaku, Masafumi; Hashimoto, Hiroyuki; Arakawa, Ryuichi

2014-05-21

387

Shock tube study of ionization rates of NaCl-contaminated argon  

NASA Technical Reports Server (NTRS)

Electron density, electron temperature, and concentration of excited sodium atoms are measured in the weakly ionized regime behind a shock wave in impure argon in a shock tube using microwave techniques and spectrally resolved radiometry. Evidence is presented to show that an apparent increase in the rate of ionization is due to electron detachment of negative chlorine ions produced from sodium chloride vapor contained as an impurity. To be consistent with this chemical model, rate coefficients are found in the temperature range between 5500 and 8600 K for the dissociation of NaCl into an ion pair, dissociation of NaCl into a neutral pair, and electron detachment of a negative chlorine ion. Electron temperature is lower than heavy-particle temperature by roughly 1000 K. The electron-argon impact-ionization rate coefficient is a weak function of electron temperature in contradiction to expectation.

Schneider, K.-P.; Park, C.

1975-01-01

388

Three chamber negative ion source  

DOEpatents

A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA); Hiskes, John R. (Livermore, CA)

1985-01-01

389

Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.  

PubMed

A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn. PMID:10633229

Karas, M; Glückmann, M; Schäfer, J

2000-01-01

390

Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry.  

PubMed

A method for the comprehensive profiling of intact glucosinolates (GLSs), major and minor, occurring in leaves and seeds of rocket salad (Eruca sativa L.) is presented using optimized reversed-phase liquid chromatography (RP-LC) with electrospray ionization (ESI) ion trap mass spectrometry (ITMS). ESI-ITMS in the negative mode was confirmed to be very suitable to analyze these compounds in crude extracts. After extraction from the plant material with methanol/water (70:30 v/v) at 70 degrees C, the analytes of interest were separated on a C18 column using an eluent acidified with formic acid (0.1%) and modified with acetonitrile. All the GLSs found in leaves of rocket salad gave good signals corresponding to the deprotonated precursor ion, [M-H]-. Although the mass spectra also exhibited an analytically important non-covalent adduct ion at [2M-H]-, the structures of glucosinolates were confirmed by extensive sequential MS analysis, thereby substantially improving the identification of unknown compounds. The results obtained not only revealed in leaves of E. sativa at least twelve species of GLSs including seven aliphatic compounds (glucoraphanin with [M-H]- at m/z ratio of 436, glucoerucin at m/z 420, 4-mercaptobutyl-GLS at m/z 406, progoitrin/epiprogoitrin at m/z 388, sinigrin at m/z 358, 4-methylpentyl- and n-hexyl-GLS at m/z 402) and three indole glucosinolates (i.e., three N-heterocyclic compounds: 4-hydroxyglucobrassicin and 5-hydroxyglucobrassicin at m/z 463, and 4-methoxy-glucobrassicin at m/z 477), but also two structurally related compounds containing one intermolecular disulfide linkage (4-(beta-D-glucopyranosyldisulfanyl)butyl-GLS at m/z 600 and a dimeric 4-mercaptobutyl-GLS at m/z 811). This latter symmetric disulfide was previously considered as an artefact formed during extraction of GLSs from vegetative tissues. Glucosinolates were detected in the leaves with a wide range of contents (10-200 micromol/g) and a great variation in the composition. Only three GLSs were identified in seeds of rocket salad, namely glucoraphanin, glucoerucin and 4-methoxyglucobrassicin. As expected, the most abundant GLS in seeds is glucoerucin. The feasibility of the strategy was also demonstrated using a rapeseed extract of certified reference material (BCR367R). The results indicated the usefulness of this method for a rapid, sensitive and comprehensive profiling of the GLS family naturally occurring in extracts of crude plant matter. PMID:17590871

Cataldi, Tommaso R I; Rubino, Alessandra; Lelario, Filomena; Bufo, Sabino A

2007-01-01

391

Artifact-Free Quantification of Free 3-Chlorotyrosine, 3-Bromotyrosine, and 3-Nitrotyrosine in Human Plasma by Electron Capture–Negative Chemical Ionization Gas Chromatography Mass Spectrometry and Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry  

Microsoft Academic Search

Halogenation and nitration of biomolecules have been proposed as key mechanisms of host defense against bacteria, fungi, and viruses. Reactive oxidants also have the potential to damage host tissue, and they have been implicated in disease. In the current studies, we describe specific, sensitive, and quantitative methods for detecting three stable markers of oxidative damage: 3-chlorotyrosine, 3-bromotyrosine, and 3-nitrotyrosine. Our

Joseph P. Gaut; Jaeman Byun; Hung D. Tran; Jay W. Heinecke

2002-01-01

392

Online profiling of triacylglycerols in plant oils by two-dimensional liquid chromatography using a single column coupled with atmospheric pressure chemical ionization mass spectrometry.  

PubMed

The complexity of natural triacylglycerols (TAGs) in various edible oils is high because of the hundreds of TAG compositions, which makes the profiling of TAGs quite difficult. In this investigation, a rapid and high-throughput method for online profiling of TAGs in plant oils by two-dimensional (2D) liquid chromatography using a single column coupled with atmospheric pressure chemical ionization (APCI) mass spectrometry was reported. A novel mixed-mode 2D chromatographic column packed with silver-ion-modified octyl and sulfonic co-bonded silica was employed in this online 2D separation system. This novel 2D column combined the features of C8 column and silver-ion. In comparison with the traditional C18 column and silver-ion column, which are the two main columns used for the separation of complex TAGs in natural oil samples, this novel 2D column, could provide hydrophobic interactions as well as ?-complexation interactions. It exhibited much higher selectivity for the separation of TAGs, and the separation was rapid. This online 2D separation system was successful in the separation of a large number of TAG solutes, and the TAG structures were evaluated by analyzing their APCI mass spectra information. This system was applied for the profiling of TAGs in peanut oils, corn oils, and soybean oils. 30 TAGs in peanut oils, 18 TAGs in corn oils, and 21 TAGs in soybean oils were determined and quantified. The highest relative content of TAGs was LLL, which was found in corn oil with the relative content up to 45.43 (%, w/w), and the lowest relative content of TAGs was LLS and OSS, which was found in soybean oil and corn oil respectively, with the relative content only 0.01 (%, w/w). In addition, the TAG data were analyzed by principal component analysis (PCA). Results of PCA enabled a clear identification of different plant oils. This method provided an efficient and convenient chromatographic technology for the fast characterization and quantification of complex TAGs in plant oils at high selectivity. It has great potential as a routine analytical method for analysis of edible oil quality and authenticity control. PMID:24034135

Wei, Fang; Ji, Shu-Xian; Hu, Na; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

2013-10-18

393

Measurements of HNO3 and N2O5 using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign  

NASA Astrophysics Data System (ADS)

An ion drift-chemical ionization mass spectrometer (ID-CIMS) was deployed in Mexico City between 7 and 31 March to measure gas-phase nitric acid (HNO3) and dinitrogen pentoxide (N2O5 during the Mexico City Metropolitan Area (MCMA)-2006 field campaign. The observation site was located at the Instituto Mexicano del Petróleo in the northern part of Mexico City urban area with major emissions of pollutants from residential, vehicular and industrial sources. Diurnally, HNO3 was less than 200 parts per trillion (ppt) during the night and early morning. The concentration of HNO3 increased steadily from around 09:00 a.m. central standard time (CST), reached a peak value of 0.5 to 3 parts per billion (ppb) in the early afternoon, and then declined sharply to less than half of the peak value near 05:00 p.m. CST. An inter-comparison between the ID-CIMS and an ion chromatograph/mass spectrometer (ICMS) showed a good agreement between the two HNO3 measurements (R2=0.75). The HNO3 mixing ratio was found to anti-correlate with submicron-sized aerosol nitrate, suggesting that the gas-particle partitioning process was a major factor in determining the gaseous HNO3 concentration. Losses by irreversible reactions with mineral dust and via dry deposition also could be important at this site. Most of the times during the MCMA 2006 field campaign, N2O5 was found to be below the detection limit (about 30 ppt for a 10 s integration time) of the ID-CIMS, because of high NO mixing ratio at the surface (>100 ppb) during the night. An exception occurred on 26 March 2006, when about 40 ppt N2O5 was observed during the late afternoon and early evening hours under cloudy conditions before the build-up of NO at the surface site. The results revealed that during the MCMA-2006 field campaign HNO3 was primarily produced from the reaction of OH with NO2 and regulated by gas/particle transfer and dry deposition. The production of HNO3 from N2O5 hydrolysis during the nighttime was small because of high NO and low O3 concentrations near the surface.

Zheng, J.; Zhang, R.; Fortner, E. C.; Volkamer, R. M.; Molina, L.; Aiken, A. C.; Jimenez, J. L.; Gaeggeler, K.; Dommen, J.; Dusanter, S.; Stevens, P. S.; Tie, X.

2008-11-01

394

Measurements of HNO3 and N2O5 using Ion drift - Chemical Ionization Mass Spectrometry during the MCMA - 2006 Campaign  

NASA Astrophysics Data System (ADS)

An ion drift - chemical ionization mass spectrometry (ID-CIMS) was deployed in Mexico City between 5 and 31 March to measure HNO3 and N2O5 during the 2006 Mexico City Metropolitan Area (MCMA) field campaign. The observation site, T0, was located at the Instituto Mexicano del Petróleo at the center of the Mexico City Basin with major emissions of pollutants from both domestic and industrial sources. Diurnally, HNO3 was less than 200 parts per trillion (ppt) during the night and in the early morning, increased steadily from around 09:00 a.m. central standard time (CST), reached a peak value of 0.5 to 3 parts per billion (ppb) in the early afternoon, and declined sharply to less than half of the peak value near 05:00 p.m. CST. An inter-comparison between the ID-CIMS and an ion chromatograph/mass spectrometer (ICMS) showed a good correlation in the HNO3 measurements (R2=0.75). The HNO3 mixing ratio was found to anti-correlate with aerosol nitrate, suggesting that the gaseous HNO3 concentration was controlled by the gas-particle partitioning process. During most times of the MCMA 2006 field campaign, N2O5 was found to be under the detection limit (about 20 ppt for a 10 s integration time) of the ID-CIMS, because of high NO mixing ratio (>100 ppb) during the night. With one exception on 26 March 2006, about 40 ppt N2O5 was observed during the late afternoon and early evening hours under a cloudy condition, before NO built up at the surface site. The results revealed that during the 2006 MCMA field campaign HNO3 was primarily produced by the reaction of OH with NO2 and regulated by gas/particle partitioning, and HNO3 production from N2O5 hydrolysis during the nighttime was small because of high NO and low O3 concentrations near the surface.

Zheng, J.; Zhang, R.; Fortner, E. C.; Molina, L.; Aiken, A. C.; Jimenez, J. L.; Gäggeler, K.; Dommen, J.; Dusanter, S.; Stevens, P. S.; Tie, X.

2008-03-01

395

Ionization chamber  

DOEpatents

An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

Walenta, A