Science.gov

Sample records for negative chemical ionization

  1. NEGATIVE CHEMICAL IONIZATION STUDIES OF HUMAN AND FOOD CHAIN CONTAMINATION WITH XENOBIOTIC CHEMICALS

    EPA Science Inventory

    Negative chemical ionization mass spectrometry with a mixture of isobutane, methylene chloride, and oxygen as the reagent gas has been used to explore contamination of environmental substrates with xenobiotic chemicals. The substrates in question, fish tissue, human seminal plasm...

  2. PULSED POSITIVE ION NEGATIVE ION CHEMICAL IONIZATION MASS SPECTROMETRIC APPLICATONS TO ENVIRONMENTAL AND HAZARDOUS WASTE ANALYSIS

    EPA Science Inventory

    The simultaneous acquisition of both positive ion and negative ion data under chemical ionization mass spectrometric conditions can aid in the confirmation of assignments made by electron impact gas chromatography mass spectrometry or electron capture gas chromatography. Pulsed p...

  3. ELECTRON AFFINITIES OF POLYNUCLEAR AROMATIC HYDROCARBONS AND NEGATIVE ION CHEMICAL IONIZATION SENSITIVITIES

    EPA Science Inventory

    Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...

  4. Quantitative lipoxygenase product profiling by gas chromatography negative-ion chemical ionization mass spectrometry.

    PubMed

    Lehmann, W D; Metzger, K; Stephan, M; Wittig, U; Zalán, I; Habenicht, A J; Fürstenberger, G

    1995-01-01

    An assay for the quantitative determination of the hydroxylation profile of long-chain fatty acids is described for gas chromatography negative-ion chemical ionization mass spectrometry and stable isotope dilution using [carboxyl-18O2]-labeled internal standards. The assay has been applied to the study of fatty acids isolated from body fluids, tissue, and cultured cells. Examples for the analyses of biological systems expressing 5-, 8-, 12-, or 15-lipoxygenase activity are given and the most important sources of analytical errors are addressed. Increased specificity compared to analysis by negative-ion chemical ionization, at the cost of sensitivity, can be achieved by the use of positive-ion electron impact ionization for the investigation of hydrogenated pentafluorobenzylester/trimethylsilylether derivatives. The method described provides complete, specific, and quantitative profiles of hydroxylated fatty acids originally present in biological samples or generated in vitro by incubation with polyunsaturated fatty acid substrates such as linoleic or arachidonic acid. PMID:7710076

  5. PENTACHLOROPHENOL IN THE ENVIRONMENT. EVIDENCE FOR ITS ORIGIN FROM COMMERCIAL PENTACHLOROPHENOL BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    Commercial pentachlorophenol (PCP) contains significant quantities of tetrachlorophenol (TCP). The occurrence of TCP in environmental samples provides a chemical marker for PCP originating from commercial formulations. Negative chemical ionization mass spectrometry has been used ...

  6. PENTACHLOROPHENOL IN THE ENVIRONMENT: EVIDENCE FOR ITS ORIGIN FROM COMMERCIAL PENTACHLOROPHENOL BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    Commercial pentachlorophenol (PCP) contains significant quantities of tetrachlorophenol (TCP). The occurrence of TCP in environmental samples provides a chemical marker for PCP originating from commercial formulations. Negative chemical ionization mass spectrometry has been used ...

  7. Electron capture negative ion chemical ionization mass spectrometry of derivatized chlorophenols and chloroanilines

    SciTech Connect

    Trainor, T.M.; Vouros, P.

    1987-02-15

    The electron capture negative ion chemical ionization mass spectra of electrophoric derivatives (perfluoroacyl, pentafluorbenzyl, pentafluorobenzoyl, 3,5-bis(trifluoromethyl)-benzoyl, and (pentafluorophenyl)methanimine) of chloro-substituted phenols and anilines have been investigated. The formation of analyte-specific anions in the spectra of the derivatives is strongly influenced by the nature of the electrophoric group and the summed electron-donating or -with-drawing properties of the aromatic ring substituents. Hammett linear free energy relationships can be used to predict the stability of molecular anions, the direction of fragmentation pathways, and the usefulness of a given derivative for analytical purposes by using selective-ion monitoring. The influence of ion source temperature on the ionically induced dissociation of the derivatives was examined. The relative molar responses of different derivatives under conditions of GC-negative ion chemical ionization mass spectrometry and GC-electron capture detection were comparable.

  8. Applications of a versatile technique for trace analysis: atmospheric pressure negative chemical ionization.

    PubMed Central

    Thomson, B A; Davidson, W R; Lovett, A M

    1980-01-01

    The ability to use ambient air as a carrier and reagent gas in an atmospheric pressure chemical ionization source allows instantaneous air analysis to be combined with hypersensitivity toward a wide variety of compounds. The TAGA (Trace Atmospheric Gas Analyser) is an instrument which is designed to use both positive and negative atmospheric pressure chemical ionization (APCI) for trace gas analysis; this paper describes several applications of negative APCI which demonstrates that the technique is not limited to environmental monitoring. Examples are described which suggest that the TAGA can be used for the detection of illicit drugs and explosives, and for the analysis of breath or skin emissions, as well as for air pollution measurements. The applications are not restricted by the use of ambient air as a reagent gas; addition to the air carrier of various gases allows specific reagent ions such as Cl- or Br- to be generated. Furthermore, in certain situations pure gas carriers can be used to provide even more flexibility in the ion chemistry, with a short term absorber-desorber system used to transfer the sample from the ambient air into the ion source region. The potential uses for APCI are expanding continuously as the understanding of the complex ion-molecule chemistry grows. This paper underlines the complementary relation between the development of new negative chemical ionization (NCI) techniques and practical applications using the TAGA system. PMID:6775945

  9. Use of negative chemical ionization mass spectrometry for the trace analysis of metals.

    PubMed Central

    Risby, T H

    1980-01-01

    The synthesis of various volatile and thermally stable derivatives of metals ions has permitted the use of conventional mass spectrometry for trace metal analysis. This paper reviews the development of the field using electron impact and chemical ionization mass spectrometry. This latter methodology produces simple mass spectra that enable complex mixtures to be analyzed. In addition the use of negative ion detection has produced selective ionization since many metal chelates contain heteroatoms which are electronegative. A discussion of the use of this general methodology for trace metal analysis is included, together with its applications to the analysis of ruthenium in automobile exhaust emissions and iron in red blood cells from laboratory rats. The future use of this methodology is expected to be for the monitoring of stable metal isotopes. This procedure could be used to follow these tracers in clinical and environmental studies and it is expected that their use will replace radioactive isotopes in most studies. PMID:7000514

  10. Analysis of pesticide residues by fast gas chromatography in combination with negative chemical ionization mass spectrometry.

    PubMed

    Hskov, Renta; Matisov, Eva; Hrouzkov, Svetlana; Svorc, Lubomr

    2009-08-28

    A combination of fast GC with narrow-bore column and bench top quadrupole mass spectrometer (MS) detector in negative chemical ionization (NCI) mode (with methane as reagent gas) is set up and utilized for the ultratrace analysis of 25 selected pesticides. The observed pesticides, belonging to the endocrine disrupting chemicals (EDCs), were from different chemical classes. A comparative study with electron impact (EI) ionization was also carried out (both techniques in selected ion monitoring (SIM) mode). The programmed temperature vaporizer (PTV) injector in solvent vent mode and narrow-bore column (15mx0.15mm I.D.x0.15microm film of 5% diphenyl 95% dimethylsiloxane stationary phase) were used for effective and fast separation. Heptachlor (HPT) as internal standard (I.S.) was applied for the comparison of results obtained from absolute and normalized peak areas. Non-fatty food matrices were investigated. Fruit (apple - matrix-matched standards; orange, strawberry, plum - real samples) and vegetable (lettuce - real sample) extracts were prepared by a quick and effective QuEChERS sample preparation technique. Very good results were obtained for the characterization of fast GC-NCI-MS method analysing EDCs pesticides. Analyte response was linear from 0.01 to 150microgkg(-1) with the R(2) values in the range from 0.9936 to 1.0000 (calculated from absolute peak areas) and from 0.9956 to 1.0000 (calculated from peak areas normalized to HPT). Instrument limits of detection (LODs) and quantification (LOQs) were found at pgmL(-1) level and for the majority of analytes were up to three orders of magnitude lower for NCI compared to EI mode. In both ionization modes, repeatability of measurements expressed as relative standard deviation (RSDs) was less than 10% which is in very good agreement with the criterion of European Union. PMID:19643423

  11. Congener group patterns of chloroparaffins in marine sediments obtained by chloride attachment chemical ionization and electron capture negative ionization.

    PubMed

    Httig, Jana; Oehme, Michael

    2006-08-01

    Congener group patterns of technical short chain and medium chain chloroparaffins (SCCP and MCCP) were determined by electron capture negative ionization (ECNI) and chloride attachment chemical ionization (CACI) mass spectrometry (MS). In contrast to CACI-MS, congener patterns obtained by ECNI showed always a shift to the next higher chlorinated congener and carbon chain length group. Consequently, the calculated molecular masses and chlorine contents were higher for ECNI (factor 1.10+/-0.03 and 1.09+/-0.03, respectively). ECNI/CACI ratios in sediment samples from the North and Baltic Sea were also slightly higher. However, a more pronounced shift of the congener pattern for a given carbon chain length to congeners with 2-3 more chlorine atoms was observed. SCCP and MCCP concentrations obtained by ECNI-MS were in the range of 8-63ngg(-1) (North Sea) and 22-149ngg(-1) dry weight (Baltic Sea). MCCP levels were highest in all samples (MCCP/SCCP factor 1.1-3.2). PMID:16412495

  12. Quantification of diacylglycerols by capillary gas chromatography-negative ion chemical ionization-mass spectrometry.

    PubMed

    Falardeau, P; Robillard, M; Hui, R

    1993-02-01

    We describe a method for quantifying diacylglycerols as their 1-pentafluorobenzoyl-2-acyl-3-acetyl-glycerol derivatives by capillary gas chromatography-negative ion chemical ionization-mass spectrometry. The basis of the method resides in the sequential treatment of diacylglycerols with acetic anhydride, pancreatic lipase, and pentafluorobenzoyl chloride. Cultured rat mesenteric artery vascular smooth muscle cells (VSMC) were incubated for 20 min in the presence of vehicle or vasopressin (10(-7) M). The incubations were stopped by aspirating the medium and adding 2 ml of methanol containing 790 pmol of internal standard 1-stearoyl-2-(10,13)-nonadecadienoyl- glycerol. After extraction, diacylglycerols were isolated by thin-layer chromatography, acetylated, and treated with pancreatic lipase. The resulting 2-acyl-3-acetylglycerols were then purified by thin-layer chromatography, transformed into their 1-pentafluorobenzoyl-derivatives, and monitored by capillary gas chromatography-negative ion chemical ionization-mass spectrometry on the selected ion-monitoring mode (m/z 614 and 604 for 2-arachidonoyl and 2-nonadecadienoyl species, respectively). The levels of diacylglycerols bearing an arachidonoyl moiety were 128 +/- 26 pmol/100 nmol lipid phosphorus in resting cells and 333 +/- 28 in stimulated cells (mean +/- SD, n = 3, P < 0.01). The presence of diacylglycerol species bearing an oleoyl or a linoleoyl group at the second position could also be detected in VSMC preparations by this approach. This new method can be applied to quantitate various diacylglycerol species bearing distinct acyl moieties at the second position of the glycerol molecule. PMID:8452226

  13. Methane negative chemical ionization analysis of 1,3-dihydro-5-phenyl-1,4-benzodiazepin-2-ones.

    PubMed Central

    Garland, W A; Miwa, B J

    1980-01-01

    The methane negative chemical ionization (NCI) mass spectra of the medically important 1,3-dihydro-5-phenyl-1,4-benzodiazepin-2-ones generally consisted solely of M- and (M-H)- ions. Attempts to find the location of the H lost in the generation of the (M-H)- ion were unsuccessful, although many possibilities were eliminated. A Hammett correlation analysis of the relative sensitivities of a series of 7-substituted benzodiazepines suggested that the initial ionization takes place at the 4,5-imine bond. For certain benzodiazepines, the (M-H)- ion generated by methane NCI was 20 times more intense than the MH+ ion generated by methane positive chemical ionization (PCI). By using NCI, a sensitive and simple GC-MS assay for nordiazepam was developed that can quantitate this important metabolite of many of the clinically used benzodiazepines in the blood and brain of rats. PMID:6775944

  14. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. PMID:25452581

  15. Comparative study of organic matter chemical characterization using negative and positive mode electrospray ionization ultrahigh-resolution mass spectrometry.

    PubMed

    Ohno, Tsutomu; Sleighter, Rachel L; Hatcher, Patrick G

    2016-04-01

    The chemical characterization of dissolved organic matter (DOM) is critical for understanding carbon sequestration processes in soils. This work evaluated the use of electrospray ionization in both negative ion mode (ESI-) and positive ion mode (ESI+) for the characterization of DOM extracted from nine terrestrial sources using Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS). The compositing of the peaks from ESI- to ESI+ modes increased the total assigned formulas from 23 to 63 % as compared to the traditional use of ESI- alone for DOM characterization. In general, there was a preferential increase in the number of assignments for the aliphatic and carbohydrate-like DOM components in the ESI+ mode. The soil-extracted DOM specifically exhibited greater increases in the aliphatic and carbohydrate-like DOM components with the combined use of ESI- and ESI+ modes likely due to the greater presence of aromatic DOM molecules that suppressed the ionization of these entities in ESI- mode. On the basis of these findings, we show that improved characterization of DOM is possible through the combined use of ESI- and ESI+ modes for FT-ICR-MS analysis, especially for samples rich in condensed aromatic and aromatic molecules. PMID:26869345

  16. MICROMETHODS FOR TOXIC RESIDUE SCREENING BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    Methods were developed for the analysis of polychlorinated chemical residues found in milligram quantities of biological samples. Sample preparation by micro-continuous liquid-liquid extraction steam distillation or by micro gel-permeation chromatography gave sufficiently clean r...

  17. QUANTITATION OF MONOSACCHARIDE ISOTOPIC ENRICHMENT IN PHYSIOLOGIC FLUIDS BY ELECTRON IONIZATION OR NEGATIVE CHEMICAL IONIZATION GC/MS USING DI-O-ISOPROPYLIDENE DERIVATIVES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aldonitrile pentaacetate and other derivatives lack ions in the electron ionization (EI) spectra possessing an intact hexose structure and thus must be analyzed by chemical ionization GC/MS in order to study multiple isotopomers. We report methods for quantitation of hexose di-O-isopropylidene a...

  18. [Determination of 16 polychlorinated biphenyls in fish oil by gas chromatography-negative ion chemical ionization-mass spectrometry].

    PubMed

    Wang, Li; Li, Shushu; Zhang, Zhan; Wang, Shoulin; Li, Lei

    2015-08-01

    An analytical method for the simultaneous determination of 16 polychlorinated biphenyls (PCBs) in fish oil was developed. PCBs were extracted from fish oil with n-hexane, purified by sulfuric acid and determined by using gas chromatography-negative ion chemical ionization-mass spectrometry (GC-NCI-MS) in selected ion-monitoring (SIM) mode. A good linear relationship (r > 0.99) was observed with the PCBs concentrations from 0.01 µg/L to 10 µg/L, and the limits of quantification (LOQ, S/N = 10) were between 3 pg/g and 67 pg/g for different kinds of PCBs. The average recoveries ranged from 62.3% to 121.8% with the relative standard deviations ( RSDs, n = 3) smaller than 12%. Compared with the traditional pre-treatment of multiple material solid phase extraction, this new method is simple, rapid and less organic solvent usage. Meanwhile the method has good selectivity and sensitivity, and it is suitable for the determination of multiple trace PCBs in fish oil. PMID:26749866

  19. Residue determination of captan and folpet in vegetable samples by gas chromatography/negative chemical ionization-mass spectrometry.

    PubMed

    Barreda, Mercedes; Lpez, Francisco J; Villarroya, Mercedes; Beltran, Joaquim; Garca-Baudn, Jose Mara; Hernndez, Felix

    2006-01-01

    A gas chromatography/negative chemical ionization-mass spectrometry (GC/NCI-MS) method has been developed for the simultaneous determination of the fungicides captan and folpet in khaki (persimmon; flesh and peel) and cauliflower. Samples were extracted with acetone in the presence of 0.1 M zinc acetate solution in order to avoid degradation of fungicides and were purified using solid-phase extraction with divinylbenzene polymeric cartridges. Purified extracts were evaporated and dissolved in hexane prior to injection into the GC/NCI-MS system. Isotope-labeled captan and folpet were used as surrogate/internal standards, and quantification was performed using matrix-matched calibration. The method showed linear response in the concentration range tested (50-2500 ng/mL). The method was fully validated with untreated blank samples of khaki (flesh and peel) and cauliflower spiked at 0.05 and 0.5 mg/kg. Satisfactory recoveries between 82 and 106% and relative standard deviations lower than 11% in all cases (n = 5) were obtained. The limit of detection for both compounds were estimated to be 0.01 mg/kg. The developed method has been applied to treated and untreated samples collected from residue trials. PMID:16915849

  20. Determination of 17 pyrethroid residues in troublesome matrices by gas chromatography/mass spectrometry with negative chemical ionization.

    PubMed

    Shen, Chong-yu; Cao, Xiao-wen; Shen, Wei-jian; Jiang, Yuan; Zhao, Zeng-yun; Wu, Bin; Yu, Ke-yao; Liu, Han; Lian, Hong-zhen

    2011-03-15

    An analytical method with the technique of QuEChERS (quick, easy, cheap, effective, rugged and safe) and gas chromatography (GC)/mass spectrometry (MS) in negative chemical ionization (NCI) has been developed for the determination of 17 pyrethroid pesticide residues in troublesome matrices, including garlic, onion, spring onion and chili. Pyrethroid residues were extracted with acidified acetonitrile saturated by hexane. After a modified QuEChERS clean-up step, the extract was analyzed by GC-NCI/MS in selected ion monitoring (SIM) mode. An isotope internal standard of trans-cypermethrin-D(6) was employed for quantitation. Chromatograms of pyrethroids obtained in all these matrices were relatively clean and without obvious interference. The limits of detection (LODs) ranged from 0.02 to 6 ?g kg(-1) and recovery yields were from 54.0% to 129.8% at three spiked levels (20, 40 and 60 ?g kg(-1) for chili, and 10, 20 and 30 ?g kg(-1) for others) in four different matrices depending on the compounds determined. The relative standard deviations (RSDs) were all below 14%. Isomerization enhancement of pyrethroids in chili extract was observed and preliminarily explained, especially for acrinathrin and deltamethrin. PMID:21315911

  1. [Determination of 17 pyrethroid pesticide residues in vegetables by gas chromatography-mass spectrometry with negative chemical ionization].

    PubMed

    Shen, Weijian; Cao, Xiaowen; Liu, Yijun; Zhang, Rui; Fan, Xin; Zhao, Zengyun; Shen, Chongyu; Wu, Bin

    2012-11-01

    A method was established for the determination of 17 pyrethroid pesticide residues in vegetables using QuEChERS (quick, easy, cheap, effective, rugged and safe) clean-up method and gas chromatography-mass spectrometry (GC-MS) with negative chemical ionization (NCI). The pyrethroid pesticides in the sample were extracted with acetonitrile. After QuEChERS clean-up with a mixture of primary secondary amine and graphitized carbon black packings, the extract was analyzed by GC-NCI-MS in selected ion monitoring (SIM) mode. An isotope internal standard of cypermethrin was employed to the quantification. The limits of quantification ranged from 0.02 to 5 microg/kg. The recoveries of the pyrethroid pesticides spiked in three different matrixes (peas, broccoli and Chinese onion green) at four spiked levels of 10, 20, 30 and 100 microg/kg were from 71.0% to 139.0%, and the relative standard deviations were less than 12.8%. This method can be used as a conclusive evidence method of the 17 pyrethroid pesticide residues in vegetables. PMID:23451521

  2. Determination of deltamethrin in rat plasma and brain using gas chromatography-negative chemical ionization mass spectrometry.

    PubMed

    Gullick, Darren; Popovici, Andrew; Young, Holly C; Bruckner, James V; Cummings, Brian S; Li, Pei; Bartlett, Michael G

    2014-06-01

    Quantification of the pyrethroid deltamethrin (DLM) in small (100 μL) biological samples from rodents is essential for toxicokinetic studies of trace levels of the insecticide in foods. Such empirical kinetic data are necessary for construction of valid physiologically-based toxicokinetic models. There are no validated methods in the literature for determining deltamethrin in 100 μL plasma and brain samples. Plasma and brain samples were stabilized using sodium fluoride as an esterase inhibitor, and the DLM was extracted by protein precipitation using acetonitrile and phosphoric acid. The samples were vortexed, centrifuged, evaporated to dryness, and reconstituted in toluene prior to injection into a gas chromatograph equipped with a quadrupole mass analyzer. Samples were ionized via electron capture in the negative ion mode using methane, and the molecular ion and fragment ions of DLM were monitored using Selected-Ion Monitoring (SIM) for quantitation and verification of the analyte. Cis-permethrin was used as the internal standard for the method, which was validated according to current US FDA guidelines. Linearity was determined between 0.3 and 1,000 ng/mL, with a limit of detection of 150 pg/mL. The intra- and inter-batch variation for precision (as % relative standard deviation, RSD) and accuracy (as % bias) of the method were better than 20% at the limit of quantitation and better than 15% across the remaining linear range (n=18), with recoveries of 113% and 68% for plasma and brain respectively. Benchtop stability, autosampler stability, and freeze/thaw stability studies of the method (over a 3-day freeze/thaw cycle) were found to be within the acceptance criteria of 20% RSD and bias. This optimized method was applied to the quantitation of DLM in plasma and brain homogenate samples obtained up to 12h after oral dosing of Sprague-Dawley rats with 1mg DLM/kg body weight. PMID:24814001

  3. Gas chromatographic-mass spectrometric analysis of the tripeptide glutathione in the electron-capture negative-ion chemical ionization mode.

    PubMed

    Tsikas, Dimitrios; Hanff, Erik; Kayacelebi, Arslan Arinc; Bhmer, Anke

    2016-02-01

    The dicarboxylic tripeptide glutathione (GSH) is the most abundant intracellular thiol. GSH analysis by liquid chromatography is routine. Yet, GSH analysis by gas chromatography is challenged due to thermal instability and lacking volatility. We report a high-yield laboratory method for the preparation of (2)H-labeled GSH dimethyl ester ((d3Me)2-GSH) for use as internal standard (IS) which was characterized by LC-MS/MS. For GC-MS analysis, the dimethyl esters of GSH and the IS were derivatized with pentafluoropropionic (PFP) anhydride. Electron-capture negative-ion chemical ionization of the (Me)2-(PFP)3-GSH provided high sensitivity. We encourage increasing use of GC-MS in the analysis of amino acids as their Me-PFP derivatives in the ECNICI mode. PMID:26602568

  4. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to 9.7 NCPS pptv-1), but because of a much lower and more stable background (3 4 compared to a range of 2 103 to 6 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  5. Ground based organic and inorganic acids measurements using negative-ion proton-transfer chemical-ionization mass spectrometry in Pasadena, CA during CalNex 2010

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Roberts, J. M.; Cochran, A. K.; Warneke, C.; de Gouw, J. A.

    2010-12-01

    Measurements of a variety of organic acids (e.g. formic acid, pyruvic acid, glycolic acid) and inorganic acids (HNCO, HONO, HCl, HBr, HNO3) were made using a novel negative-ion proton-transfer chemical ionization mass spectrometer (NI-PT-CIMS) deployed at a ground site in Pasadena, CA during May and June 2010 as part of CalNex 2010. In this presentation, a summary of the observations will be given. Organic acids exhibited strong diurnal trends peaking shortly after solar maximum. Mixing ratios of HNO3 peaked at 14 parts-per-billion by volume (ppbv) with HCl reaching as high as 8 ppbv during the measurement period. HNO3 and HCl were strongly correlated throughout the measurement period; however, slopes of the correlation plots widely varied both diurnally as well as within a given day. HONO was measured with nighttime levels often reaching as high as 3 ppbv. We also report data for isocyanic acid (HNCO) that is among the first quantitative measurements of this species in the ambient atmosphere.

  6. Negative Ion Chemical Ionization Mass Spectrometry for the Analysis of 3,5,6-trichloro-2-pyridinol in Saliva of Rats Exposed to Chlorpyrifos

    SciTech Connect

    Campbell, James A.; Timchalk, Chuck; Kousba, Ahmed A.; Wu, Hong; Valenzuela, Blandina R.; Hoppe, Eric W.

    2005-05-01

    Organophosphorus (OP) insecticides (e.g. chlorpyrifos) are widely used in a variety of applications, and the potential exists for significant occupational and environmental exposures. They have been associated with more occupational poisoning cases than any other class of insecticides. One of the best approaches for accurately assessing human dosimetry and determining risk from both occupational and environmental exposure is biomonitoring. Biological matrices such as blood and urine have been routinely used for biomonitoring; however, other matrices such as saliva represent a simple and readily obtainable fluid. As a result, saliva has been suggested as an alternative biological matrix for the evaluation of a broad range of biomarkers such as environmental contaminants, drugs of abuse, hormones, chemotherapeutics, heavy metals, and pesticides. Chlorpyrifos (CPF), and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCP), have been quantified in urine and blood as a biomarker for exposure to OP insecticides. The purpose of this study was to develop an analytical approach for detecting and quantitating the levels of TCP in saliva obtained from rats exposed to CPF and to evaluate the potential of saliva as a non-invasive biomonitoring matrix. Adult male rats were administered CPF, and blood and saliva were humanely collected for analysis of TCP and CPF. TCP was detected and quantitated in saliva using negative ion chemical ionization mass spectrometry with selected ion monitoring. Initial results indicate that saliva may be potentially utilized as a non-invasive biomonitoring matrix to determine exposure to organophosphate insecticides.

  7. Pentafluorobenzyl esterification of haloacetic acids in tap water for simple and sensitive analysis by gas chromatography/mass spectrometry with negative chemical ionization.

    PubMed

    Zhao, Can; Fujii, Yukiko; Yan, Junxia; Harada, Kouji H; Koizumi, Akio

    2015-01-01

    Chlorine is the most widely used disinfectant for control of waterborne diseases in drinking water treatment. It can react with natural organic matter in water and form haloacetic acids (HAAs). For analysis of HAA levels, derivatization with diazomethane is commonly recommended as the standard methodology in Japan. However, diazomethane is a carcinogenic alkylating agent. Therefore, in this study, a safe, simple, and sensitive quantification method was developed to monitor HAAs in drinking water. Pentafluorobenzyl esterification was used for pretreatment. The pentafluorobenzyl-ester derivative was detected by gas chromatography-negative ion chemical ionization-mass spectrometry analysis with very high sensitivity for HAAs analysis. The method has low detection limits (8-94 ng L(-1)) and good recovery rates (89-99%) for HAAs. The method was applied to 30 tap water samples from 15 cities in the Kansai region of Japan. The levels of HAAs detected were in the range 0.54-7.83 μg L(-1). Dichloroacetic acid, trichloroacetic acid, and bromochloroacetic acid were the major HAAs detected in most of the tap water, and accounted for 29%, 20% and 19% of the total HAAs, respectively. This method could be used for routine monitoring of HAAs in drinking water without exposure of workers to occupational hazards. PMID:25180822

  8. Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veres, Patrick; Roberts, James M.; Burling, Ian R.; Warneke, Carsten; de Gouw, Joost; Yokelson, Robert J.

    2010-12-01

    Emissions from 34 laboratory biomass fires were investigated at the combustion facility of the U.S. Department of Agriculture Fire Sciences Laboratory in Missoula, Montana. Gas-phase organic and inorganic acids were quantified using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), open-path Fourier transform infrared spectroscopy (OP-FTIR), and proton-transfer-reaction mass spectrometry (PTR-MS). NI-PT-CIMS is a novel technique that measures the mass-to-charge ratio (m/z) of ions generated from reactions of acetate (CH3C(O)O-) ions with inorganic and organic acids. The emission ratios for various important reactive acids with respect to CO were determined. Emission ratios for isocyanic acid (HNCO), 1,2 and 1,3-benzenediols (catechol, resorcinol), nitrous acid (HONO), acrylic acid, methacrylic acid, propionic acid, formic acid, pyruvic acid, and glycolic acid were measured from biomass burning. Our measurements show that there is a significant amount of HONO in fresh smoke. The NI-PT-CIMS measurements were validated by comparison with OP-FTIR measurements of HONO and formic acid (HCOOH) and with PTR-MS measurements of HCOOH.

  9. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    PubMed Central

    Raina, Renata; Hall, Patricia

    2008-01-01

    A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) with gas chromatography-tandem mass spectrometry (GC-MS/MS) in selected reaction monitoring (SRM) mode with both electron ionization (EI) and negative-ion chemical ionization (NCI) are presented for over 50 pesticides ranging from organochlorines (OCs), organophosphorus pesticides (OPs) and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin). The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg ?L?1 (<100 pg m?3 in air). No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.510 pg ?L?1) along with best confirmation (<25% RSD of ion ratio), while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion). GC-EI/SRM at concentration <100 pg ?L?1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 110 pg ?L?1) for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT). PMID:19609395

  10. Ionization phenomena and sources of negative ions

    SciTech Connect

    Alton, G.D.

    1983-01-01

    Negative ion source technology has rapidly advanced during the past several years as a direct consequence of the discovery of Krohn that negative ion yields can be greatly enhanced by sputtering in the presence of Group IA elements. Today, most negative ion sources use this discovery directly or the principles implied to effect negative ion formation through surface ionization. As a consequence, the more traditional direct extraction plasma and charge exchange sources are being used less frequently. However, the charge exchange generation mechanism appears to be as universal, is very competitive in terms of efficiency and has the advantage in terms of metastable ion formation. In this review, an attempt has been made to briefly describe the principal processes involved in negative ion formation and sources which are representative of a particular principle. The reader is referred to the literature for specific details concerning the operational characteristics, emittances, brightnesses, species and intensity capabilities of particular sources. 100 references.

  11. Ionization fronts in negative corona discharges.

    PubMed

    Arrays, Manuel; Fontelos, Marco A; Trueba, Jos L

    2005-03-01

    We use a hydrodynamic minimal streamer model to study negative corona discharge. By reformulating the model in terms of a quantity called a shielding factor, we deduce laws for the evolution in time of both the radius and intensity of the ionization fronts. We also compute the evolution of the front thickness under the conditions for which it diffuses due to the geometry of the problem and show its self-similar character. PMID:15903643

  12. Software (MSPECTRA) for automatic interpretation of triacylglycerol molecular mass distribution spectra and collision induced dissociation product ion spectra obtained by ammonia negative ion chemical ionization mass spectrometry.

    PubMed

    Kurvinen, J P; Rua, P; Sjvall, O; Kallio, H

    2001-01-01

    Rapid analysis of molecular mass distributions of triacylglycerol (TAG) mixtures and regioisomeric structures of selected molecular mass species is possible using ammonia negative ion chemical ionization mass spectrometry utilizing sample introduction by direct exposure probe. However, interpretation of spectra and calculation of results is time consuming, thus lengthening the total analysis time. To facilitate result calculation a software package (MSPECTRA 1.3) was developed and applied to automatic processing of triacylglycerol molecular mass distribution spectra and collision induced dissociation (CID) product ion spectra. The program is capable of identifying triacylglycerol molecular mass species possessing different ACN:DB (acyl carbon number:number of double bonds) ratios on the basis of m/z values of [M - H](-) ions. In addition to such identification the program also corrects spectra for abundances of naturally occurring (13)C isotopes and calculates relative proportions of triacylglycerol molecular species in the analyzed samples. If several replicate spectra are processed simultaneously the program automatically calculates an average and standard deviation of relative proportions of molecular species. In the case of CID spectra the program identifies fatty acid fragment ions [RCO(2)](-) and the corresponding [M - H - RCO(2)H - 100](-) ions, and calculates the relative proportions of ions in both groups. These proportions are then used automatically to calculate the fatty acid combinations comprising the parent triacylglycerol molecule and the regiospecific positions of fatty acids. Processing of several replicate product ion spectra simultaneously produces averaged proportions of regioisomers comprising the parent triacylglycerol molecular species and the standard deviation of the analysis. The performance of the program was tested by analyzing triacylglycerol samples of human milk, human milk substitutes, human chylomicron and cocoa butter, and by comparing results obtained by automated processing of the data with manually calculated results. PMID:11404845

  13. [Determination of polybrominated diphenyl ethers in human serum using solid-phase extraction and gas chromatography coupled with negative chemical ionization mass spectrometry].

    PubMed

    Huang, Feifei; Zhao, Yunfeng; Li, Jingguang; Wu, Yongning

    2011-08-01

    A simplified analytical method comprised of solid-phase extraction (SPE) and gas chromatography coupled with negative chemical ionization mass spectrometry (GC-NCI/MS) has been developed for the determination of 10 polybrominated diphenyl ethers (PBDEs) congeners in human serum. After the extraction by Oasis HLB custom-made SPE cartridges, the lipids in serum were decomposed by concentrated sulfuric acid directly added on the SPE column. The solvent for protein cleanup and the SPE conditions, such as elution solvent and its volume were optimized. The recoveries of the PBDEs spiked in fetal bovine serum relative to internal standards were in the range of 78.5% - 109.7% at five spiked levels (three spiked levels for BDE-209). The intra-day relative standard deviations (RSDs) were between 0.3% and 7.4%, while the inter-day RSDs were between 1.42% and 14.1%. The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQ, S/N = 10) were in the range of 0.10 - 0.27 ng/L and 0.35 -0.91 ng/L respectively for all PBDEs, except BDE-209. The LOQ (blank concentration value x 3) for BDE-209 was 7.91 ng/L. The method was verified by accurate analysis of organic contaminant standard reference materials (SRM) 1957 and 1958. The results indicated that the proposed method is sensitive, accurate, fast, simple, low solvent consumption and suitable for the determination of tri- to deca-BDE in human serum. PMID:22128737

  14. A multi-residue method for pesticides analysis in green coffee beans using gas chromatography-negative chemical ionization mass spectrometry in selective ion monitoring mode.

    PubMed

    Pizzutti, Ionara R; de Kok, Andre; Dickow Cardoso, Carmem; Reichert, Brbara; de Kroon, Marijke; Wind, Wouter; Weber Righi, Las; Caiel da Silva, Rosselei

    2012-08-17

    In this study, a new gas chromatography-mass spectrometry (GC-MS) method, using the very selective negative chemical ionization (NCI) mode, was developed and applied in combination with a modified acetonitrile-based extraction method (QuEChERS) for the analysis of a large number of pesticide residues (51 pesticides, including isomers and degradation products) in green coffee beans. A previously developed integrated sample homogenization and extraction method for both pesticides and mycotoxins analysis was used. An homogeneous slurry of green milled coffee beans and water (ratio 1:4, w/w) was prepared and extracted with acetonitrile/acetic acid (1%), followed by magnesium sulfate addition for phase separation. Aliquots from this extract could be used directly for LC-MS/MS analysis of mycotoxins and LC-amenable pesticides. For GC-MS analysis, a further clean-up was necessary. C18- and PSA-bonded silica were tested as dispersive solid-phase extraction (d-SPE) sorbents, separate and as a mixture, and the best results were obtained using C18-bonded silica. For the optimal sensitivity and selectivity, GC-MS detection in the NCI-selected ion monitoring (SIM) mode had to be used to allow the fast analysis of the difficult coffee bean matrix. The validation was performed by analyzing recovery samples at three different spike concentrations, 10, 20 and 50 ?g kg(-1), with 6 replicates (n=6) at each concentration. Linearity (r(2)) of calibration curves, estimated instrument and method limits of detection and limits of quantification (LOD(i), LOD(m), LOQ(i) and LOQ(m), respectively), accuracy (as recovery %), precision (as RSD%) and matrix effects (%) were determined for each individual pesticide. From the 51 analytes (42 parent pesticides, 4 isomers and 5 degradation products) determined by GC-MS (NCI-SIM), approximately 76% showed average recoveries between 70-120% and 75% and RSD ? 20% at the lowest spike concentration of 10 ?g kg(-1), the target method LOQ. For the spike concentrations of 20 and 50 ?g kg(-1), the recoveries and RSDs were even better. The validated LOQ(m) was 10, 20 and 50 ?g kg(-1) for respectively 33, 3 and 6 of the analytes studied. For five compounds, the European Union method performance requirements for the validation of a quantitative method (average recoveries between 70-120% and repeatability RSD ? 20%) were not achieved and 4 problematic pesticides (captan, captafol, folpet and dicofol) could not be detected as their parent compound, but only via their degradation products. Although the matrix effect (matrix-enhanced detector response) was high for all pesticides studied, the matrix interference was minimal, due to the high selectivity obtained with the GC-NCI-MS detection. Matrix-matched calibration for applying the method in routine analysis is recommended for reliable quantitative results. PMID:22771261

  15. Mass-spectral investigations on toxins. 3. Accurate analysis and quantitation of macrocyclic trichothecenes in environmental, fungal, fermentation, and Brazilian plant samples by gas-chromatographic/negative ion chemical ionization-mass spectrometric techniques. Technical report, January 1983-October 1984

    SciTech Connect

    Krishnamurthy, T.; Sarver, E.W.; Greene, S.L.; Jarvis, B.B.

    1987-03-01

    A general, sensitive Gas Chromatographic Negative Ion Chemical Ionization-Mass Spectrometric method of analysis was developed for accurately detecting and measuring several polar, thermally labile,toxic macrocyclic trichothecenes. The procedure involves the conversion of the molecules into their corresponding alcohols (Verrucarols) by alkaline hydrolysis, followed by the derivatization of the hydrolysates with heptafluorobutyrylimidazole and analysis by the gas chromatographic/mass spectrometric techniques under negative ion chemical inoization conditions. Using this procedure, trace quantities (0.25-2 micrograms) of several macrocyclic trichothecenes with different verrucarol and ester moieties were analyzed successfully with good precision. The method developed was applicable for the accurate analysis of at least low part-per-billion levels of these macrocyclic trichothecenes in real-life samples such as fungal products, fermentation broths, and plant samples. This is the first report describing the well-developed, sensitive, and applicable method for detecting and measuring these compounds in true samples.

  16. New Automated and High-Throughput Quantitative Analysis of Urinary Ketones by Multifiber Exchange-Solid Phase Microextraction Coupled to Fast Gas Chromatography/Negative Chemical-Electron Ionization/Mass Spectrometry

    PubMed Central

    Pacenti, Marco; Dugheri, Stefano; Traldi, Pietro; Degli Esposti, Filippo; Perchiazzi, Nicola; Franchi, Elena; Calamante, Massimo; Kikic, Ireneo; Alessi, Paolo; Bonacchi, Alice; Salvadori, Edoardo; Arcangeli, Giulio; Cupelli, Vincenzo

    2010-01-01

    The present research is focused on automation, miniaturization, and system interaction with high throughput for multiple and specific Direct Immersion-Solid Phase Microextraction/Fast Gas Chromatography analysis of the urinary ketones. The specific Mass Spectrometry instrumentation, capable of supporting such the automated changeover from Negative Chemical to Electron Ionization mode, as well as the automation of the preparation procedure by new device called MultiFiber Exchange, through change of the fibers, allowed a friendly use of mass spectrometry apparatus with a number of advantages including reduced analyst time and greater reproducibility (2.015.32%). The detection limits for the seven ketones were less than 0.004?mg/L. For an innovative powerful meaning in high-throughput routine, the generality of the structurally informative Mass Spectrometry fragmentation patterns together with the chromatographic separation and software automation are also investigated. PMID:20628512

  17. USE OF NEGATIVE ARI IONIZATION FOR REDUCING BACTERIAL PATHOGENS AND SPORES ON STAINLESS STEEL SURFACES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of chemicals in food plant sanitation for removing and killing microorganisms could be reduced by the use of alternative non-chemical interventions. Negative air ionization is a new technology that has shown potential to effectively reduce airborne and surface microorganisms. Current studies...

  18. Synthesis of trans-4,5-epoxy-(E)-2-decenal and its deuterated analog used for the development of a sensitive and selective quantification method based on isotope dilution assay with negative chemical ionization.

    PubMed

    Lin, J; Fay, L B; Welti, D H; Blank, I

    1999-10-01

    The volatile compound trans-4,5-epoxy-(E)-2-decenal (1) was synthesized in two steps with good overall yields. The newly developed method is based on trans-epoxidation of (E)-2-octenal with alkaline hydrogen peroxide followed by a Wittig-type chain elongation with the ylide formylmethylene triphenylphosphorane. For the synthesis of [4,5-2H2]-trans-4,5-epoxy-(E)-2-decenal (d-1), [2,3-2H2]-(E)-2-octenal was prepared by reduction of 2-octyn-1-ol with lithium aluminum deuteride and subsequent oxidation of [2,3-2H2]-(E)-2-octen-1-ol with manganese oxide. Compound d1 was used as internal standard for the quantification of 1 by isotope dilution assay. Among various mass spectrometry (MS) ionization techniques tested, negative chemical ionization with ammonia as reagent gas gave best results with respect to both sensitivity and selectivity. The detection limit was found to be at about 1 pg of the analyte introduced into the gas chromatography-MS system. PMID:10580339

  19. Measurement of HONO, HNCO, and Other Inorganic Acids by Negative-ion Proton-Transfer Chemical-Ionization Mass Spectrometry (NI-PT-CIMS):Application to Biomass Burning Emissions.

    SciTech Connect

    Roberts, James M.; Veres, Patrick; Warneke, Carsten; Neuman, Andrew; Washenfelder, Rebecca; Brown, Steven; Baasandroj, Munkhbayar; Burkholder, James; Burling, Ian; Johnson, Timothy J.; Yokelson, Robert L.; de Gouw, Joost A.

    2010-07-23

    A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO) nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 seconds, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (>_1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume). The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, and suggest both as products of biomass burning.

  20. Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Veres, P.; Warneke, C.; Neuman, J. A.; Washenfelder, R. A.; Brown, S. S.; Baasandorj, M.; Burkholder, J. B.; Burling, I. R.; Johnson, T. J.; Yokelson, R. J.; de Gouw, J.

    2010-07-01

    A negative-ion proton-transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 s, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (?1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume) for a 1 min average. The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, in which both acids were seen to be important products.

  1. Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Veres, P.; Warneke, C.; Neuman, J. A.; Washenfelder, R. A.; Brown, S. S.; Baasandorj, M.; Burkholder, J. B.; Burling, I. R.; Johnson, T. J.; Yokelson, R. J.; de Gouw, J.

    2010-01-01

    A negative-ion proton transfer chemical ionization mass spectrometric technique (NI-PT-CIMS), using acetate as the reagent ion, was applied to the measurement of volatile inorganic acids of atmospheric interest: hydrochloric (HCl), nitrous (HONO), nitric (HNO3), and isocyanic (HNCO) acids. Gas phase calibrations through the sampling inlet showed the method to be intrinsically sensitive (6-16 cts/pptv), but prone to inlet effects for HNO3 and HCl. The ion chemistry was found to be insensitive to water vapor concentrations, in agreement with previous studies of carboxylic acids. The inlet equilibration times for HNCO and HONO were 2 to 4 s, allowing for measurement in biomass burning studies. Several potential interferences in HONO measurements were examined: decomposition of HNO3NO3- clusters within the CIMS, and NO2-water production on inlet surfaces, and were quite minor (?1%, 3.3%, respectively). The detection limits of the method were limited by the instrument backgrounds in the ion source and flow tube, and were estimated to range between 16 and 50 pptv (parts per trillion by volume) for a 1 min average. The comparison of HONO measured by CIMS and by in situ FTIR showed good correlation and agreement to within 17%. The method provided rapid and accurate measurements of HNCO and HONO in controlled biomass burning studies, in which both acids were seen to be important products.

  2. Automated analysis of 2-methyl-3-furanthiol and 3-mercaptohexyl acetate at ng L(-1) level by headspace solid-phase microextracion with on-fibre derivatisation and gas chromatography-negative chemical ionization mass spectrometric determination.

    PubMed

    Mateo-Vivaracho, Laura; Ferreira, Vicente; Cacho, Juan

    2006-07-14

    A fast and automated method for the analysis at ng L(-1) level of aroma-powerful polyfunctional thiols has been developed and applied to wine. The sample is just poured in a 20 mL vial and its vapour extracted with a poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) solid-phase microextraction fibre (65 microm thickness) previously exposed to vapours of the reactive (pentafluorobenzyl bromide) and of an alkali (tributylamine). The derivatised compounds are subsequently desorbed in the GC system and determined by negative chemical ionization mass spectrometry. The method is fully automated by using a Combi-Pal autosampler conveniently programmed. The analysis takes 50 min, which contrasts to the long and tedious methods previously proposed. The development of an optimal procedure is constrained by the aggressive character of the reagent (towards the fibre and the chromatographic column), its volatility and the quality of the blanks that can be obtained. Therefore, a critical step was fixing in the fibre a "safe" and repetitive amount of reagent. This was achieved by exposing the fibre (5 min) to the vapours of a water:acetone (9:1) solution containing 200mg L(-1) of reagent. Under these conditions, the extraction-derivatisation of analytes improves with time and temperature, and the best working conditions are dictated by a compromise between sensitivity, speed and chromatographic performance. Although analytes studied were 2-methyl-3-furanthiol, 4-mercapto-4-methyl-2-pentanone, 3-mercaptohexanol, 2-furanmethanethiol and 3-mercaptohexyl acetate, a good analytical performance could be achieved only for these two last compounds. Both of them can be repetitively (10%

  3. Ultrasound-assisted dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry in negative chemical ionization mode for the determination of polybrominated diphenyl ethers in water.

    PubMed

    Zhang, Qian; Liang, Tao; Guan, Lili

    2013-04-01

    A simple and economical method for the determination of eight polybrominated diphenyl ethers (BDE-28, 47, 99, 100,153,154,183, and 209) in water was developed. This method involves the use of ultrasound-assisted dispersive liquid-liquid microextraction combined with GC-MS in negative chemical ionization mode. Various parameters affecting the extraction efficiency, including the type and volume of extraction and dispersive solvents, salt concentration, extraction time, and ultrasonic time, were investigated. A volume of 1.0 mL of acetone (dispersive solvent) containing 10 ?L tetrachloroethylene (extraction solvent) was injected into 5.0 mL of water samples and then emulsified by ultrasound for 2.0 min to produce the cloudy solution. Under the optimal condition, the enrichment factors for the eight PBDEs were varied from 845- to 1050-folds. Good linearity was observed in the range of 1.0-200 ng L(-1) for BDE-28, 47, 99, and 100; 5.0-200 ng L(-1) for BDE-153, 154, and 183; and 5.0-500 ng L(-1) for BDE-209. The RSD values were in the range of 2.5-8.4% (n = 5) and the LODs ranged from 0.40 to 2.15 ng L(-1) (S/N = 3). The developed method was applied for the determination of eight BPDEs in the river and lake water samples, and the mean recoveries at spiking levels of 5.0 and 50.0 ng L(-1) were in the range of 70.6-105.1%. PMID:23483741

  4. Development and validation of a gas chromatography-negative chemical ionization tandem mass spectrometry method for the determination of ethyl glucuronide in hair and its application to forensic toxicology.

    PubMed

    Kharbouche, Hicham; Sporkert, Frank; Troxler, Stphanie; Augsburger, Marc; Mangin, Patrice; Staub, Christian

    2009-08-01

    Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS/MS) for the quantification of EtG in hair. EtG was extracted from about 30 mg of hair by aqueous incubation and purified by solid-phase extraction (SPE) using mixed mode extraction cartridges followed by derivation with perfluoropentanoic anhydride (PFPA). The analysis was performed in the selected reaction monitoring (SRM) mode using the transitions m/z 347-->163 (for the quantification) and m/z 347-->119 (for the identification) for EtG, and m/z 352-->163 for EtG-d(5) used as internal standard. For validation, we prepared quality controls (QC) using hair samples taken post mortem from 2 subjects with a known history of alcoholism. These samples were confirmed by a proficiency test with 7 participating laboratories. The assay linearity of EtG was confirmed over the range from 8.4 to 259.4 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The limit of detection (LOD) was estimated with 3.0 pg/mg. The lower limit of quantification (LLOQ) of the method was fixed at 8.4 pg/mg. Repeatability and intermediate precision (relative standard deviation, RSD%), tested at 4 QC levels, were less than 13.2%. The analytical method was applied to several hair samples obtained from autopsy cases with a history of alcoholism and/or lesions caused by alcohol. EtG concentrations in hair ranged from 60 to 820 pg/mg hair. PMID:19109074

  5. Rapid quantification of 11 prostanoids by combined capillary column gas chromatography and negative ion chemical ionization mass spectrometry: application to prostanoids released from normal human embryonic lung fibroblasts WI38 in a culture medium.

    PubMed

    Shindo, N; Saito, T; Murayama, K

    1988-01-01

    The rapid and simultaneous quantification of 11 prostanoids has been carried out with a short-capillary gas chromatograph and negative ion chemical ionization (ammonia) mass spectrometer. The methoxime-trimethylsilyl ether-pentafluorobenzyl esters (MO-TMS-PFB) of nine prostanoids, PGA1, PGA2, PGB1, PGB2, PGD2, PGE1, PGE2, 6-oxo-PGF1 alpha and TXB2 and the TMS-PFB of two prostanoids, PGF1 alpha and PGF2 alpha, were separated in less than 5.5 min on a bonded OV-1 capillary column 0.25 mm i.d. x 6 m (0.15 micron thickness) using hydrogen as a carrier gas. PGD2, PGE2, PGF2 alpha, 6-oxo-PGF1 alpha and TXB2 were quantified up to 2.5 fmol injected (0.1 pmol derivatized) and both PGA2 and PGB2 up to 25 fmol injected (1 pmol derivatized). In order to maintain the stability of the prostanoids containing a carbonyl group, such as TXB2 during the purification and derivatization steps of biological materials, methyl acetate was used in place of methyl formate as an eluant for Sep-Pak C18 purification. Normal human embryonic lung fibroblasts W138 (5.63 x 10(5) cells in a log phase) produced: PGA2 15.28, PGB2 13.48, PGD2 7.95, PGE1 2.62, PGE2 177.76, PGF2 alpha 25.14, 6-oxo-PGF1 alpha 27.33 and TXB2 61.00 pmol in 10 ml of Eagle minimal essential medium. PMID:3349205

  6. Negative chemical ionization gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry and automated accurate mass data processing for determination of pesticides in fruit and vegetables.

    PubMed

    Besil, Natalia; Ucls, Samanta; Mezca, Milagros; Heinzen, Horacio; Fernndez-Alba, Amadeo R

    2015-08-01

    Gas chromatography coupled to high resolution hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS), operating in negative chemical ionization (NCI) mode and combining full scan with MSMS experiments using accurate mass analysis, has been explored for the automated determination of pesticide residues in fruit and vegetables. Seventy compounds were included in this approach where 50% of them are not approved by the EU legislation. A global 76% of the analytes could be identified at 1?gkg(-1). Recovery studies were developed at three concentration levels (1, 5, and 10?gkg(-1)). Seventy-seven percent of the detected pesticides at the lowest level yielded recoveries within the 70%-120% range, whereas 94% could be quantified at 5?gkg(-1), and the 100% were determined at 10?gkg(-1). Good repeatability, expressed as relative standard deviation (RSD <20%), was obtained for all compounds. The main drawback of the method was the limited dynamic range that was observed for some analytes that can be overcome either diluting the sample or lowering the injection volume. A home-made database was developed and applied to an automatic accurate mass data processing. Measured mass accuracies of the generated ions were mainly less than 5ppm for at least one diagnostic ion. When only one ion was obtained in the single-stage NCI-MS, a representative product ion from MSMS experiments was used as identification criterion. A total of 30 real samples were analyzed and 67% of the samples were positive for 12 different pesticides in the range 1.0-1321.3?gkg(-1). PMID:25694145

  7. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  8. Ionization mechanism of negative ion-direct analysis in real time: a comparative study with negative ion-atmospheric pressure photoionization.

    PubMed

    Song, Liguo; Dykstra, Andrew B; Yao, Huifang; Bartmess, John E

    2009-01-01

    The ionization mechanism of negative ion-direct analysis in real time (NI-DART) has been investigated using over 42 compounds, including fullerenes, perfluorocarbons (PFC), organic explosives, phenols, pentafluorobenzyl (PFB) derivatized phenols, anilines, and carboxylic acids, which were previously studied by negative ion-atmospheric pressure photoionization (NI-APPI). NI-DART generated ionization products similar to NI-APPI, which led to four ionization mechanisms, including electron capture (EC), dissociative EC, proton transfer, and anion attachment. These four ionization mechanisms make both NI-DART and NI-APPI capable of ionizing a wider range of compounds than negative ion-atmospheric pressure chemical ionization (APCI) or negative ion-electrospray ionization (ESI). As the operation of NI-DART is much easier than that of NI-APPI and the gas-phase ion chemistry of NI-DART is more easily manipulated than that of NI-APPI, NI-DART can be therefore used to study in detail the ionization mechanism of LC/NI-APPI-MS, which would be a powerful methodology for the quantification of low-polarity compounds. Herein, one such application has been further demonstrated in the detection and identification of background ions from LC solvents and APPI dopants, including water, acetonitrile, chloroform, methylene chloride, methanol, 2-propanol, hexanes, heptane, cyclohexane, acetone, tetrahydrofuran (THF), 1,4-dioxane, toluene, and anisole. Possible reaction pathways leading to the formation of these background ions were further inferred. One of the conclusions from these experiments is that THF and 1,4-dioxane are inappropriate to be used as solvents and/or dopants for LC/NI-APPI-MS due to their high reactivity with source basic ions, leading to many reactant ions in the background. PMID:18926719

  9. Charge state reduction of oligonucleotide negative ions from electrospray ionization

    SciTech Connect

    Cheng, X.; Gale, D.C.; Udseth, H.R.; Smith, R.D. )

    1995-02-01

    We have investigated the feasibility of simplifying the electrospray ionization (ESI) mass spectra for mixture analyses through charge state reduction. Two methods for charge state reduction of gas phase oligonucleotide negative ions were evaluated: (1) the addition of acids to the oligonucleotide solution and (2) the formation of diamine adducts followed by dissociation in the interface region. In the first method, the efficiency of charge state reduction depends on the pK[sub a], the concentration, and the nature of the acids. Acetic and formic acids were found to be better reagents than HCl, CF[sub 3]CO[sub 2]H, and H[sub 3]PO[sub 4]. The second method has the advantage that the stability of oligonucleotides is not affected but requires the optimization of the interface dissociation conditions and the amounts of diamine added to the oligonucleotide solution. Both methods show promise for charge state reduction, and results are presented for two oligonucleotides: d(pT)[sub 12] and d(AGCT). Substantial reduction in spectral complexity upon charge state reduction was also observed for a four-component mixture of oligonucleotides. 54 refs., 8 figs.

  10. ELECTRON-CAPTURE NEGATIVE IONIZATION CALIBRANTS FOR MAGNETIC SECTOR MASS SPECTROMETERS

    EPA Science Inventory

    Fomblin poly(perfluoropropylene oxide). FK (perfluorokerosene) and FC-43 (perflurotributylamine) are investigated as mass calibrants in electron-capture negative ionization mass spectrometry on a magnetic sector hybrid mass spectrometer. This work provides exact negative ion mass...

  11. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Barcelo, D.

    2001-01-01

    An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.

  12. Surface desorption atmospheric pressure chemical ionization mass spectrometry for direct ambient sample analysis without toxic chemical contamination.

    PubMed

    Chen, Huanwen; Zheng, Jian; Zhang, Xie; Luo, Mingbiao; Wang, Zhichang; Qiao, Xiaolin

    2007-08-01

    Ambient mass spectrometry, pioneered with desorption electrospray ionization (DESI) technique, is of increasing interest in recent years. In this study, a corona discharge ionization source is adapted for direct surface desorption chemical ionization of compounds on various surfaces at atmospheric pressure. Ambient air, with about 60% relative humidity, is used as a reagent to generate primary ions such as H(3)O(+), which is then directed to impact the sample surface for desorption and ionization. Under experimental conditions, protonated or deprotonated molecules of analytes present on various samples are observed using positive or negative corona discharge. Fast detection of trace amounts of analytes present in pharmaceutical preparations, viz foods, skins and clothes has been demonstrated without any sample pretreatment. Taking the advantage of the gasless setup, powder samples such as amino acids and mixtures of pharmaceutical preparations are rapidly analyzed. Impurities such as sudan dyes in tomato sauce are detected semiquantitatively. Molecular markers (e.g. putrescine) for meat spoilage are successfully identified from an artificially spoiled fish sample. Chemical warfare agent stimulants, explosives and herbicides are directly detected from the skin samples and clothing exposed to these compounds. This provides a detection limit of sub-pg (S/N > or = 3) range in MS2. Metabolites and consumed chemicals such as glucose are detected successfully from human skins. Conclusively, surface desorption atmospheric pressure chemical ionization (DAPCI) mass spectrometry, without toxic chemical contamination, detects various compounds in complex matrices, showing promising applications for analyses of human related samples. PMID:17605144

  13. Chemical probes of metal cluster ionization potentials

    SciTech Connect

    Parks, E.K.; Klots, T.D.; Riley, S.J. )

    1990-03-15

    A procedure is described for the determination of metal cluster ionization potentials (IPs) using available excimer laser lines that gives error limits substantially smaller than traditional bracketing experiments. It is based on the observation that the adsorption of ammonia on cluster surfaces lowers cluster IPs, and that the IP lowering is linear in the number of adsorbed NH{sub 3} molecules. By determining the minimum number of NH{sub 3} molecules needed for ionization by the various excimer lasers, an approximation to the dependence of IP on coverage can be deduced. Extrapolation of this dependence to zero coverage gives the bare cluster IPs. Results are presented for clusters of iron, cobalt, and nickel having from 4 to 100 atoms. The effect of molecular adsorption on cluster IPs is analyzed theoretically, and the comparison with experimental results used to estimate the effective dipole moment of NH{sub 3} molecules adsorbed on these clusters. Comparison of the bare cluster IPs with the simple spherical drop model suggests that for transition metal clusters the Fermi level can be a significant function of cluster size.

  14. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase.

    PubMed

    Andrade, Francisco J; Shelley, Jacob T; Wetzel, William C; Webb, Michael R; Gamez, Gerardo; Ray, Steven J; Hieftje, Gary M

    2008-04-15

    A novel chemical ionization source for organic mass spectrometry is introduced. This new source uses a glow discharge in the flowing afterglow mode for the generation of excited species and ions. The direct-current gas discharge is operated in helium at atmospheric pressure; typical operating voltages and currents are around 500 V and 25 mA, respectively. The species generated by this atmospheric pressure glow discharge are mixed with ambient air to generate reagent ions (mostly ionized water clusters and NO+), which are then used for the ionization of gaseous organic compounds. A wide variety of substances, both polar and nonpolar, can be ionized. The resulting mass spectra generally show the parent molecular ion (M+ or MH+) with little or no fragmentation. Proton transfer from ionized water clusters has been identified as the main ionization pathway. However, the presence of radical molecular ions (M+) for some compounds indicates that other ionization mechanisms are also involved. The analytical capabilities of this source were evaluated with a time-of-flight mass spectrometer, and preliminary characterization shows very good stability, linearity, and sensitivity. Limits of detection in the single to tens of femtomole range are reported for selected compounds. PMID:18345693

  15. Identification of nitrate ester explosives by liquid chromatography-electrospray ionization and atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Zhao, Xiaoming; Yinon, Jehuda

    2002-11-15

    Liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), in the negative-ion mode, was investigated for the analyses of three widely used nitrate ester explosives, pentaerythritol tetranitrate, nitroglycerin and ethylene glycol dinitrate, as well as six additional nitrate esters, using post-column additives. In ESI, ammonium nitrate, sodium nitrite, propionic acid and ammonium chloride promoted formation of characteristic adduct ions of the respective nitrate esters. In APCI, chlorinated agents, dichloromethane, chloroform, carbon tetrachloride and ammonium chloride, were employed, fanning chloride attachment adduct ions. Three forensic samples, Booster DYNO, Semtex and Smokeless Powder, were analyzed to demonstrate the validity of the developed LC-MS methods. PMID:12456095

  16. UPTAKE OF IONIZABLE ORGANIC CHEMICALS AT FISH GILLS

    EPA Science Inventory

    Uptake of organic acids by fish, and their toxicity, generally decrease with increasing pH above the pK, presumably due to neutral forms of such chemicals being more readily adsorbed than their ionized forms. However, uptake usually exceeds that expected based just on the concent...

  17. Gasification and Ionization of Chemically Complex Liquids for FRC Injection

    NASA Astrophysics Data System (ADS)

    Holmes, Michael; Hill, Carrie

    2014-10-01

    Ion thrusters provide reliable and efficient spacecraft propulsion but are limited to noble gas propellants to limit chemical attack of components. However, thrusters based on Field Reversed Configuration (FRC) plasmas are becoming a reality. High beta compact-toroids are generated within an FRC thruster and then expelled to provide thrust. The closed field lines restrict the plasma from attacking thruster components. More convenient propellants such as water are therefore possible. The FRC thruster would generate a series of compact-toroids (plasmoids) to develop continuous spacecraft thrust. Each plasmoid ejection would empty the discharge region. The feed system would then refill the discharge region with partially ionized gas for the next discharge. The ionization part of this feed system is the subject of this paper. The question is how to produce a uniform, chemically complex, ionized gas within the discharge region that optimizes compact-toroid formation? We will be measuring chemical state, ionization state, and uniformity as the propellant enters the discharge region.

  18. Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals.

    PubMed

    Gilbert-López, Bienvenida; Schilling, Michael; Ahlmann, Norman; Michels, Antje; Hayen, Heiko; Molina-Díaz, Antonio; García-Reyes, Juan F; Franzke, Joachim

    2013-03-19

    In this work, the combined use of desorption by a continuous wave near-infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of nonvolatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, ease of use, and small size. To achieve an efficient desorption, the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, cyclo-1,3,5,7-tetramethylene tetranitrate (HMX), and cyclo-1,3,5-trimethylene trinitramine (RDX)). A comparative evaluation revealed that the use of the laser is advantageous, compared to just heating the substrate surface. PMID:23419061

  19. Effect of sample compositions on chemical analysis using matrix-assisted laser desorption ionization mass spectrometry

    SciTech Connect

    Schriemer, D.; Dai, Y.; Li, L.

    1996-12-31

    Matrix-assisted laser desorption ionization (MALDI) is an effective ionization technique for mass spectrometry. It takes advantages of some unique properties of certain organic chemicals to provide entrapment, isolation, vaporization, and ionization of the analyte of interest. While the main application of the MALDI technique is currently in the area of biological molecule analysis, it is possible to use this technique for monitoring polymer chemistry such as degradation processes. This is potentially important for studying and developing environmentally degradable polymers. Direct analysis of the analyte in real-world samples is possible with MALDI. However, there is a significant effect of the overall composition of a sample on the detectability and performance of MALDI. Two examples are given to illustrate the positive and negative effects of buffers, salts, and additives on the MALDI sample preparation.

  20. Characterization of Nonpolar Lipids and Selected Steroids by Using Laser-Induced Acoustic Desorption/Chemical Ionization, Atmospheric Pressure Chemical Ionization, and Electrospray Ionization Mass Spectrometry

    PubMed Central

    Jin, Zhicheng; Daiya, Shivani; Kenttmaa, Hilkka I.

    2011-01-01

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5?-cholestane, cholesta-3,5-diene, squalene, and ?-carotene, were found to solely form the desired water replacement product (adduct-H2O) with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids. PMID:21528012

  1. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    Negative electrospray ionization/MS enabled rapid, specific, and selective screening for unique polar components at parts per million concentrations in commercial hydrocarbon products without extensive sample preparation, separation, chromatography, or quantitation. Commercial fuel types were analyzed with this method, including kerosene, jet fuel, white gas, charcoal lighter fluid, on-road and off-road diesel fuels, and various grades and brands of gasolines. The different types of fuels produced unique and relatively simple spectra. These analyses were then applied to hydrocarbon samples from a large, long-term fuel spill. Although the alkane, isoprenoid, and alkylcyclohexane portions began to biodegrade or weather, the polar components in these samples remained relatively unchanged. The type of fuel involved was readily identified by negative electrospray ionization/MS. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).

  2. Electron and Negative Ion Production Rates in Air Plasmas with Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Romero-Talamas, C. A.; Young, W. C.; Nusinovich, G. S.; Elton, R. C.

    2012-10-01

    Electron and negative ion production rates during atmospheric discharges in the presence of ionizing radiation are investigated. Ionizing radiation creates free electrons and negative ions with number densities that may be orders of magnitude higher than background conditions. These high densities not only facilitate air breakdown between high-voltage electrodes or at the focal point of high-power electromagnetic beams, but also change the breakdown evolution and the neutrals recombination history after the power source is turned off. Time dependencies of breakdown and recombination rates on radiation levels and aerosol concentrations, are modeled and compared to measurements of breakdown between electrodes. This research is part of a wider effort to investigate the feasibility of a remote detection scheme for radioactive materials, utilizing sub-THz beams to produce air breakdown [G. S. Nusinovich, et al. J. Appl. Phys. 109, 083303 (2011)].

  3. The influence of negative ionization of the air on motor activity in Syrian hamsters ( Masocricetus auratus Waterhouse) in light conditions

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Zofia; Dabrowska, Barbara; Schiffer, Zofia

    1989-12-01

    The motor activity of Syrian hamsters ( Mesocricetus auratus Waterhouse) under the influence of negative ionization of the atmosphere applied for 10, 20 or 30 min per day was investigated. An ionizer with output of 14000 light negative ions per 1 cm3 of air was used. Studies carried out in the light phase of a 12?12 h light/dark regime revealed a relation between the reaction of the animal and the time of day at which ionization was applied. Ionization for 20 or 30 min in the light phase decreased motor activity, while 10 min of ionization increased it compared to control animals. Ionization in the dark phase gave a more distinct rise in activity than that applied in the light phase for all three durations of ionization.

  4. Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes

    NASA Technical Reports Server (NTRS)

    Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

    1995-01-01

    Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

  5. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    PubMed Central

    Escombe, A. Roderick; Moore, David A. J; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Mitchell, Bailey; Noakes, Catherine; Martínez, Carlos; Sheen, Patricia; Ramirez, Rocio; Quino, Willi; Gonzalez, Armando; Friedland, Jon S; Evans, Carlton A

    2009-01-01

    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of TB infection and 51% of TB disease, and that UV lights prevented 70% of TB infection and 54% of TB disease. In all analysis strategies, UV lights tended to be more protective than ionizers. Conclusions Upper-room UV lights and negative air ionization each prevented most airborne TB transmission detectable by guinea pig air sampling. Provided there is adequate mixing of room air, upper-room UV light is an effective, low-cost intervention for use in TB infection control in high-risk clinical settings. PMID:19296717

  6. A Negative-Surface Ionization for Generation of Halogen Radioactive Ion Beams

    SciTech Connect

    Zaim, H.

    2001-04-16

    A simple and efficient negative surface ionization source has been designed, fabricated and initially tested for on-line generation of radioactive ion beams of the halogens (Cl, Br, I, and At) for use in the nuclear-structure and nuclear-astrophysics research programs at the Holifield Radioactive Ion Beam Facility. The source utilizes a solid, spherical geometry LaB{sub 6} surface ionizer for forming highly electronegative atoms and molecules. Despite its widely publicized propensity for being easily poisoned, no evidences of this effect were experienced during testing of the source. Nominal efficiencies of 15% for Br{sup {minus}} beam generation were obtained during off-line evaluation of the source with AlBr3 feed material when account is taken of the fractional dissociation of the molecule. Principles of operation, design features, operational parameter data, initial performance results, and beam quality data (emittance) are presented in this article.

  7. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  8. Is ionized oxygen negatively or positively charged more effective for carboxyhemoglobin reduction compare to medical oxygen at atmospheric pressure?

    PubMed

    Pere?insk, S; Kron, I; Engler, I; Murnov, L; Doni?, V; Varga, M; Marossy, A; Legth, ?

    2015-12-29

    Carbon monoxide (CO) reversibly binds to hemoglobin forming carboxyhemoglobin (COHb). CO competes with O(2) for binding place in hemoglobin leading to tissue hypoxia. Already 30 % saturation of COHb can be deadly. Medical oxygen at atmospheric pressure as a therapy is not enough effective. Therefore hyperbaric oxygen O(2) inhalation is recommended. There was a question if partially ionized oxygen can be a better treatment at atmospheric pressure. In present study we evaluated effect of partially ionized oxygen produced by device Oxygen Ion 3000 by Dr. Engler in elimination of COHb in vitro experiments and in smokers. Diluted blood with different content of CO was purged with 5 l/min of either medicinal oxygen O(2), negatively ionized O(2) or positively ionized O(2) for 15 min, then the COHb content was checked. In vivo study, 15 smokers inhaled of either medicinal oxygen O(2) or negatively ionized O(2), than we compared CO levels in expired air before and after inhalation. In both studies we found the highest elimination of CO when we used negatively ionized O(2). These results confirmed the benefit of short inhalation of negatively ionized O(2), in frame of Ionized Oxygen Therapy (I O(2)Th/Engler) which could be used in smokers for decreasing of COHb in blood. PMID:26047377

  9. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    An application of electrospray ionization/mass spectrometry for identification of various commercially refined fuels using the unique signature of polar components, was investigated. The samples were analyzed by mass spectrometry using negative electrospray on an Agilent Series 1100 liquid chromatograph/mass spectrometer. These analysis were applied to hydrocarbon samples from a large, long-term fuel spill which were taken from the subsurface and different extent of biodegradation or weathering. The technique provided rapid identification of hydrocarbons released into the environment because these polar compounds are unique in different fuels.

  10. Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization.

    PubMed

    Iyer, Siddharth; Lopez-Hilfiker, Felipe; Lee, Ben H; Thornton, Joel A; Kurtn, Theo

    2016-02-01

    Iodide-based chemical ionization mass spectrometry (CIMS) has been used to detect and measure concentrations of several atmospherically relevant organic and inorganic compounds. The significant electronegativity of iodide and the strong acidity of hydroiodic acid makes electron transfer and proton abstraction essentially negligible, and the soft nature of the adduct formation ionization technique reduces the chances of sample fragmentation. In addition, iodide has a large negative mass defect, which, when combined with the high resolving power of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), provides good selectivity. In this work, we use quantum chemical methods to calculate the binding energies, enthalpies and free energies for clusters of an iodide ion with a number of atmospherically relevant organic and inorganic compounds. Systematic configurational sampling of the free molecules and clusters was carried out at the B3LYP/6-31G* level, followed by subsequent calculations at the PBE/SDD and DLPNO-CCSD(T)/def2-QZVPP//PBE/aug-cc-pVTZ-PP levels. The binding energies, enthalpies, and free energies thus obtained were then compared to the iodide-based University of Washington HR-ToF-CIMS (UW-CIMS) instrument sensitivities for these molecules. We observed a reasonably linear relationship between the cluster binding enthalpies and logarithmic instrument sensitivities already at the PBE/SDD level, which indicates that relatively simple quantum chemical methods can predict the sensitivity of an iodide-based CIMS instrument toward most molecules. However, higher level calculations were needed to treat some outlier molecules, most notably oxalic acid and methylerythritol. Our calculations also corroborated the recent experimental findings that the molecules that the UW-CIMS detects at maximum sensitivity usually have binding enthalpies to iodide which are higher than about 26 kcal/mol, depending slightly on the level of theory. PMID:26736021

  11. Chemical Abundances and Properties of the Ionized Gas in NGC 1705

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Pasquali, A.; Aloisi, A.; Mignoli, M.; Romano, D.

    2015-11-01

    We obtained [O iii] narrow-band imaging and multi-slit MXU spectroscopy of the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical abundances of planetary nebulae and H ii regions and, more in general, to characterize the properties of the ionized gas. The auroral [O iii]λ 4363 line was detected in all but 1 of the 11 analyzed regions, allowing for a direct estimate of their electron temperature. The only object for which the [O iii]λ 4363 line was not detected is a possible low-ionization PN, the only one detected in our data. For all the other regions, we derived the abundances of nitrogen, oxygen, neon, sulfur, and argon out to ˜1 kpc from the galaxy center. We detect for the first time in NGC 1705 a negative radial gradient in the oxygen metallicity of -0.24+/- 0.08 dex kpc-1. The element abundances are all consistent with values reported in the literature for other samples of dwarf irregular and BCD galaxies. However, the average (central) oxygen abundance, 12+{log}({{O}}/{{H}})=7.96+/- 0.04, is ˜0.26 dex lower than previous literature estimates for NGC 1705 based on the [O iii]λ 4363 line. From classical emission line diagnostic diagrams, we exclude a major contribution from shock excitation. On the other hand, the radial behavior of the emission line ratios is consistent with the progressive dilution of radiation with increasing distance from the center of NGC 1705. This suggests that the strongest starburst located within the central ˜150 pc is responsible for the ionization of the gas out to at least ˜1 kpc. The gradual dilution of the radiation with increasing distance from the center reflects the gradual and continuous transition from the highly ionized H ii regions in the proximity of the major starburst into the diffuse ionized gas.

  12. Positive and negative analyte ion yield in matrix-assisted laser desorption/ionization

    NASA Astrophysics Data System (ADS)

    Dashtiev, Maxim; Wfler, Esther; Rhling, Ulrich; Gorshkov, Michael; Hillenkamp, Franz; Zenobi, Renato

    2007-12-01

    The ratios of positive to negative analyte ion yields for matrix-assisted laser desorption ionization were studied for fibrinopeptide A, angiotensin I and bradykinin in combination with six matrices (CHCA, DHB, 4-NA, ATT, ANP, 5-AQ). The selection of these particular compounds was based on their acid/base properties. The measurements were carried out on two different time-of-flight instruments, one of which was equipped with a charge collection detector. The findings are: (i) for a desorption from a non-metallic substrate the total positive/negative ion yield ratio is [approximate]1. (ii) The analyte positive/negative ion yield is strongly dependent on many factors, and generally scatters a lot. More acidic matrices were found to produce a positive/negative analyte ion yield ratio >1, whereas for basic matrices, the ratio was negative analyte ion yield ratio follows the acid/base properties of the analyte. (iv) Clear indications for a significant contribution of clusters as carriers of the total charge in MALDI were obtained from the data.

  13. Gas chromatography plasma-assisted reaction chemical ionization mass spectrometry for quantitative detection of bromine in organic compounds.

    PubMed

    Lin, Ninghang; Wang, Haopeng; Kahen, Kaveh; Badiei, Hamid; Jorabchi, Kaveh

    2014-08-01

    We have recently introduced plasma-assisted reaction chemical ionization mass spectrometry (PARCI-MS) for elemental analysis of halogens in organic compounds. Here, we utilize gas chromatography (GC) coupled to PARCI-MS to investigate the mechanism of Br(-) ion generation from organobromines and to evaluate analytical performance of PARCI for organobromine analysis. Bromine atoms in compounds eluting from GC are converted to HBr in a low-pressure microwave induced helium plasma with trace amounts of hydrogen added as a reaction gas. Ionization is achieved by introducing nitrogen into the afterglow region of the plasma, liberating electrons via penning ionization and leading to formation of negative ions. We demonstrate that N2 largely affects the ionization process, whereas H2 affects both the ionization process and in-plasma reactions. Our investigations also suggest that dissociative electron capture is the main ionization route for formation of Br(-) ions. Importantly, GC-PARCI-MS shows a uniform response factor for bromine across brominated compounds of drastically different chemical structures, confirming PARCI's ability to quantify organobromines in the absence of compound-specific standards. Over 3 orders of magnitude linear dynamic range is demonstrated for bromine quantification. We report a detection limit of 29 fg of bromine on-column, ~4-fold better than inductively coupled plasma-MS. PMID:25003497

  14. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode

    NASA Technical Reports Server (NTRS)

    Kim, H. I.; Johnson, P. V.; Beegle, L. W.; Kanik, I.

    2004-01-01

    The continued search for organics on Mars will require the development of simplified procedures for handling and processing of soil or rock core samples prior to analysis by onboard instrumentation. Extraction of certain organic molecules such as amino acids from rock and soil samples using a liquid solvent (H2O) has been shown to be more efficient (by approximately an order of magnitude) than heat extraction methods. As such, liquid extraction (using H2O) of amino acid molecules from rock cores or regolith material is a prime candidate for the required processing. In this scenario, electrospray ionization (ESI) of the liquid extract would be a natural choice for ionization of the analyte prior to interrogation by one of a variety of potential analytical separation techniques (mass spectroscopy, ion mobility spectroscopy, etc.). Aside from the obvious compatibility of ESI and liquid samples, ESI offers simplicity and a soft ionization capability. In order to demonstrate that liquid extraction and ESI can work as part of an in situ instrument on Mars, we must better understand and quantify the effect salts have on the ESI process. In the current work, we have endeavored to investigate the feasibility and limitations of negative mode ESI of Martian surface samples in the context of sample salt content using ion mobility spectroscopy (IMS).

  15. Negative ionization micro electrospray mass spectrometry of oligonucleotides and their complexes.

    PubMed

    Greig, M J; Gaus, H J; Griffey, R H

    1996-01-01

    The utility of negative ionization micro electrospray (microspray) mass spectrometry is demonstrated for detection of oligonucleotides and their non-covalent complexes. A simple microspray ionization source is fabricated from an outer stainless-steel needle and an inner fused-silica capillary. Under these conditions, the liquid flow rate can be reduced 15-fold from 7.5 microL/min to 0.5 microL/min. Studies of a 14-mer DNA oligonucleotide show no change in the charge-state distribution and quantity of adducted salt ions during the microspray process compared to pneumatically assisted electrospray mass spectrometry. The microspray ion source is less sensitive to the presence of solution buffers, and an 11-fold increase in integrated ion abundance from oligonucleotide analyte is observed with a 10 mM concentration of ammonium acetate, compared to pneumatically assisted nebulization (PAN). A > 100-fold increase in the duplex:single strand ratio for a 14-mer oligodeoxynucleotide and its complementary strand is observed using the microspray ion source relative to experiments performed with PAN. Studies of duplexes between DNA and a peptide nucleic acid suggest that this effect may be related to the degree of adduction of counterions to the DNA during ionization. PMID:8563016

  16. Mass spectral characterization of oxygen-containing aromatics with methanol chemical ionization

    SciTech Connect

    Buchanan, M.V.

    1984-03-01

    Chemical ionization mass spectrometry with methanol and deuterated methanol as ionization reagents is used to differentiate oxygen-containing aromatics, including phenols, aromatic ethers, and aromatic substituted alcohols, as well as compounds containing more than one oxygen atom. The analogous sulfur-containing aromatics may be similarly differentiated. Methanol chemical ionization is used to characterize a neutral aromatic polar subfraction of a coal-derived liquid by combined gas chromatography/mass spectrometry. 16 references, 2 tables, 1 figure.

  17. Evidence of Negative-Index Refraction in Nonlinear Chemical Waves

    NASA Astrophysics Data System (ADS)

    Yuan, Xujin; Wang, Hongli; Ouyang, Qi

    2011-05-01

    The negative index of refraction of nonlinear chemical waves has become a recent focus in nonlinear dynamics researches. Theoretical analysis and computer simulations have predicted that the negative index of refraction can occur on the interface between antiwaves and normal waves in a reaction-diffusion (RD) system. However, no experimental evidence has been found so far. In this Letter, we report our experimental design in searching for such a phenomenon in a chlorite-iodide-malonic acid (CIMA) reaction. Our experimental results demonstrate that competition between waves and antiwaves at their interface determines the fate of the wave interaction. The negative index of refraction was only observed when the oscillation frequency of a normal wave is significantly smaller than that of the antiwave. All experimental results were supported by simulations using the Lengyel-Epstein RD model which describes the CIMA reaction-diffusion system.

  18. Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    St. Clair, J. M.; Spencer, K. M.; Beaver, M. R.; Crounse, J. D.; Paulot, F.; Wennberg, P. O.

    2014-04-01

    Chemical ionization mass spectrometry (CIMS) enables online, rapid, in situ detection and quantification of hydroxyacetone and glycolaldehyde. Two different CIMS approaches are demonstrated employing the strengths of single quadrupole mass spectrometry and triple quadrupole (tandem) mass spectrometry. Both methods are generally capable of the measurement of hydroxyacetone, an analyte with known but minimal isobaric interferences. Tandem mass spectrometry provides direct separation of the isobaric compounds glycolaldehyde and acetic acid using distinct, collision-induced dissociation daughter ions. The single quadrupole CIMS measurement of glycolaldehyde was demonstrated during the ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites - California Air Resources Board) 2008 campaign, while triple quadrupole CIMS measurements of glycolaldehyde and hydroxyacetone were demonstrated during the BEARPEX (Biosphere Effects on Aerosols and Photochemistry Experiment) 2009 campaign. Enhancement ratios of glycolaldehyde in ambient biomass-burning plumes are reported for the ARCTAS-CARB campaign. BEARPEX observations are compared to simple photochemical box model predictions of biogenic volatile organic compound oxidation at the site.

  19. Chemical-ionization mass spectrometry of beta-lactam antibiotics.

    PubMed

    Mitscher, L A; Showalter, H D; Shirahata, K; Foltz, R L

    1975-09-01

    Chemical-ionization (CI) mass spectra are described for methyl esters of eight clinically significant penicillins and their breakdown products. The substances give spectra with very few fragment ions and contain easily discernible protonated molecule ions. The main cleavage reaction is postulated to involve a retro 2+2 Diels-Alder-type fragmentation of the beta-lactam ring liberating one fragment (m/e=174) that is characteristic of the penicillin nucleus and a second fragment that is molecule specific, as it contains the elements of the side chain. The other fragment ions, though interesting, are of minor intensity. The free acids, on the other hand, fragment more extensively because of their relative instability and lack of volatility. These spectra resemble electron impact spectra more closely and, though they encode more structural information, are less reproducible from run to run. The ease with which the esters can be made and the relative simplicity of their CI mass spectra make this method significant for the identification and characterization of beta-lactam antibiotics. PMID:810468

  20. Super-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. PMID:23494797

  1. Ionization of Samarium by Chemical Releases in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Holmes, J. M.; Pedersen, T. R.; Caton, R.; Miller, D.; Groves, K. M.

    2014-12-01

    The release of Samarium vapor into the upper atmosphere was studied using during the Air Force Research Laboratory sponsored Metal Oxide Space Cloud (MOSC) rocket launches in May 2009. The Naval Research Laboratory supported these experiments with 3-D photochemical modeling of the artificial plasma cloud including (1) reactions with atomic oxygen, (2) photo excitation, (3) photoionization, (4) dissociative recombination, and (5) ion and neutral diffusion. NRL provided the experimental diagnostic instrument on the rocket which was a dual frequency radio beacon on the rocket to measure changes in total electron content. The AFRL provided ground based diagnostics of incoherent scatter radar and optical spectroscopy and imagery. The NRL Chemical Release Model (CRM) has over 600 excited states of atomic Samarium neutrals, atomic ions, along with Samarium Oxide Ions and electrons. Diffusive transport of neutrals in cylindrical geometry and ions along magnetic field lines is computed along with the reactive flow to predict the concentrations of Sm, Sm-Ion, Sm0, and SmO Ion. Comparison of the CRM with observations demonstrates that Sm release into the upper atmosphere initially produces enhanced electron densities and SmO-Ions. The diatomic ions recombine with electrons to yield neutral Sm and O. Only the photo ionization of Sm yields a stable atomic ion that does not substantially recombine. The MOSC releases in sunlight yielded long duration ion clouds that can be replicated with the CRM. The CRM predicts that Sm releases in darkness would not produce long duration plasma clouds because of the lack of photo excitation and photoionization.

  2. Positive and negative analyte ion yield in matrix-assisted laser desorption/ionization revisited

    NASA Astrophysics Data System (ADS)

    Hillenkamp, F.; Wfler, E.; Jecklin, M. C.; Zenobi, R.

    2009-08-01

    The most commonly accepted model for the formation of analyte ions in MALDI-MS assumes a primary ionization of the matrix e.g., by photoionization, leading among others to stable protonated and deprotonated matrix ions, respectively. Peptide and protein ions are then formed by secondary proton transfer reactions in the expanding plume. This model had been checked experimentally by comparing the yield of positive to negative ions of three peptides (Bradykinin, Angiotensin I and Fibrinopeptide A) and six matrices ([alpha]-cyano-4-hydroxycinnamicacid (CHCA), 2,5-dihydroxybenzoicacid (DHB), 6-aza-2-thiothymine (ATT), 4-nitroaniline (4-NA), 2-amino-5-nitro-4-picoline (ANP), 5-aminoquinolione (5-AQ)), differing in gas-phase basicity by about 100 kJ/mole [M. Dashtiev, E. Wfler, U. Rhling, M. Gorshkov, F. Hillenkamp, R. Zenobi, Int. J. Mass Spetrom. 268 (2007) 122]. The data have been revisited for a more general and in-depth analysis. Model predictions are presented for a wide range of experimental parameters, in particular for ranges of the gas-phase basicity and acidity of analyte and matrix and for different molar ratios of analyte to matrix as well as the yield of primary matrix ions. It is shown that the observed ion yields cannot be explained by any single and consistent set of parameters. It is concluded that the existing simple model needs be modified to fully explain the experimental findings. Such modifications should primarily address the formation of negative matrix and analyte ions.

  3. LETTER TO THE EDITOR: Acceptor ionization energies in gallium nitride: chemical trends and electronegativities

    NASA Astrophysics Data System (ADS)

    Pdr, B.

    1996-05-01

    The chemical trends of the acceptor ionization energies of column II acceptors in GaN, a wide-bandgap semiconductor recently in the forefront of research, are examined. Consideration of the electronegativity differences between the acceptor atoms and the host atom they substitute allows us to establish a correlation between the acceptor ionization energies and the chemical nature of the acceptor atoms, similar to the already known cases of GaAs and GaP. Based on this, the effective mass acceptor ionization energy in GaN is estimated to be 85 +/- 8 meV, about half of the value recently proposed in the literature.

  4. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  5. CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)

    EPA Science Inventory

    A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

  6. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry.

    PubMed

    Reth, Margot; Zencak, Zdenek; Oehme, Michael

    2005-07-22

    An improved quantification procedure for the analysis of chlorinated paraffins (CPs) is presented based on electron capture negative ionization mass spectrometry. It compensates differences in response factors between reference CP mixtures and the CP pattern present in environmental samples. The use of a CP standard with a matching degree of chlorination is no longer necessary. It could be shown that the response factors of C10-, C11-, C12- and C13-CP mixtures of both 50 and 60% chlorine content were only slightly influenced by the carbon chain length. A linear correlation (R2 = 0.965) between the total response factor of a CP mixture and its chlorine content was obtained for seven short chain chlorinated paraffin mixtures (SCCP, C10-C13) with different composition and chlorine content (51-69%). Maximum single deviations were <7% for this reference set. It allowed to determine the correct total response factor of the CP composition present in a sample. The deviations were not more than 7-33% for five independent SCCP control samples compared to up to 373% for the conventional procedure. The procedure was tested by quantifying the SCCP and MCCP levels in 10 fish liver samples. The proposed method allowed to compensate the influence of the degree of chlorination of the applied reference standard on the total response factor. PMID:16038213

  7. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    PubMed

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Krten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Trstl, Jasmin; Jokinen, Tuija; Sipil, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petj, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tom, Antnio; Virtanen, Annele; Viisanen, Yrj; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-01

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision. PMID:25406110

  8. Plasma-chemical simulation of negative corona near the inception voltage

    NASA Astrophysics Data System (ADS)

    Pontiga, Francisco; Duran-Olivencia, Francisco J.; Castellanos, Antonio

    2013-09-01

    The spatiotemporal development of Trichel pulses in oxygen between a spherical electrode and a grounded plane has been simulated using a fluid approximation that incorporates the plasma chemistry of the electrical discharge. Elementary plasma processes, such as ionization, electron attachment, electron detachment, recombination between ions and chemical reactions between neutral species, are all included in a chemical model consisting of 55 reactions between 8 different species (electrons, O2+,O2-,O3-,O-, O2, O, O3). Secondary emission at the cathode by the impact of positive ions and photons is also considered. The spatial distribution of species is computed in three dimensions (2D-axysimmetrical) by solving Poisson's equation for the electric field and the continuity equations for the species, with the inclusion of the chemical gain/loss rate due to the particle interaction. The results of the simulation reveal the interplay between the different negative ions during the development of every Trichel pulse, and the rate of production of atomic oxygen and ozone by the corona discharge. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  9. Mass spectrometric behavior of anabolic androgenic steroids using gas chromatography coupled to atmospheric pressure chemical ionization source. Part I: ionization.

    PubMed

    Raro, M; Portols, T; Sancho, J V; Pitarch, E; Hernndez, F; Marcos, J; Ventura, R; Gmez, C; Segura, J; Pozo, O J

    2014-06-01

    The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC-MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time-of-flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)-derivatized compounds have been investigated. The use of GC-APCI-MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H](+)), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H](+), [M+H-H2O](+) and [M+H-2H2O](+) for underivatized AAS and [M+H](+), [M+H-TMSOH](+) and [M+H-2TMSOH](+) for TMS-derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS-based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites. PMID:24913403

  10. Precise impurity analysis of Cu films by GDMS: relation between negative substrate bias voltage and impurity ionization potentials

    NASA Astrophysics Data System (ADS)

    Lim, J. W.; Mimura, K.; Isshiki, M.

    2005-02-01

    Cu films were deposited on Si(100) substrates by applying a negative substrate bias voltage using the non-mass-separated ion beam deposition method. Glow-discharge mass spectrometry was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. It was found that the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage, although both the Cu films were contaminated during the deposition. The purification effect might result from the following reasons: (i) the Penning ionization and an ionization mechanism proposed in the present study, (ii) a difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.

  11. Calculation of ionization potential and chemical hardness: A comparative study of different methods

    NASA Astrophysics Data System (ADS)

    Shankar, R.; Senthilkumar, K.; Kolandaivel, P.

    The suitability of ab initio and density functional theory (DFT) methods for an accurate determination of ionization potential and chemical hardness is the subject of systematic analysis for a panel of molecules. Comparison of experimental ionization potential values with theoretical results indicates that using orbital energies obtained from the so-called statistical average of orbital potential (SAOP) model exchange correlation potential in Koopman's theorem is an efficient method to evaluate the correct ionization potentials. Experimental ionization potential and electron affinity values have been used to calculate the absolute chemical hardness. Comparative results show that the chemical hardness values calculated by using Hartree-Fock orbital energies in Koopman's theorem are sufficiently good rather than Mller-Plesset second order perturbation method and DFT-generalized gradient approximation (GGA) exchange correlation functional orbital energies. A new method given by Tozer et al. (J Phys Chem A 2005, 109, 8923) to calculate the chemical hardness works well with the orbital energies of DFT-GGA functionals together with the ionization potential values calculated from SAOP orbital energies.

  12. Gas chromatography-chemical ionization mass spectrometry of cocaine and its metabolites in biological fluids.

    PubMed

    Chinn, D M; Crouch, D J; Peat, M A; Finkle, B S; Jennison, T A

    1980-01-01

    A gas chromatographic-chemical ionization mass spectrometric (GC-CIMS) method is described for the determination of cocaine, benzoylecgonine, and norcocaine. The procedure uses stable isotopes as internal standards and a mixture of methane-ammonia as chemical ionization reagent gas. Run-to-run and within-run coefficients of variation (%) are less than 10% and the method has a sensitivity of less than 5 ng/mL from 1 mL or 1 gram of sample. The procedure has been applied to a number of cases involving cocaine intoxication and analytical data from these are described. PMID:6927050

  13. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ?. PMID:26133527

  14. Approaching chemical accuracy using full configuration-interaction quantum Monte Carlo: a study of ionization potentials.

    PubMed

    Booth, George H; Alavi, Ali

    2010-05-01

    A new quantum Monte Carlo (QMC) method is used to calculate exact, full configuration-interaction (FCI) energies of the neutral and cationic elements from Li to Mg, in a family of commonly used basis sets. Annihilation processes between positive and negative walkers enable the exact N-electron wave function to emerge as a linear superposition of the (factorially large) space of Slater determinants, with individual determinants being stochastically sampled. As a result, extremely large spaces (exceeding 10(15) determinants) become accessible for FCI calculations. No fixed-node approximation is necessary, and the only remaining source of error is the one-electron basis set, which can be systematically reduced by enlargement of the basis set. We have investigated the family of aug-cc-pVXZ Dunning basis sets up to X=5. The resulting ionization potentials are--with one exception (Na)--consistently accurate to within chemical accuracy. The anomalous case of Na suggests that its basis set may be improvable. Extrapolation schemes are examined as a way of further improving the values obtained, and although an improvement is seen in the mean-absolute error, the results of extrapolation are not uniformly better than the largest basis set calculations reported. More generally, these results demonstrate the utility of the QMC method to provide FCI energies for realistic systems and basis sets. PMID:20459153

  15. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  16. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Zoerb, M. C.; Campbell, N. R.; Zimmermann, K. J.; Blomquist, B. W.; Huebert, B. J.; Bertram, T. H.

    2015-10-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer. Measurements from the two instruments were highly correlated (R2=0.80) over a wide range of sampling conditions.

  17. Role of gas dynamics in negative ion formation in an atmospheric sampling glow discharge ionization source

    SciTech Connect

    Chambers, D.M.; McLuckey, S.A.; Glish, G.L. )

    1993-03-15

    A version of the atmospheric sampling glow discharge ionization (ASGDI) source was developed to study the role of gas dynamics on anion formation. This source, which is used in conjunction with mass spectrometry for direct air monitoring, was designed so several key instrumental dimensions as well as operating parameters could be readily changed. Such flexibility permitted the study of ionization processes in ASGDI and the parameters that can be controlled to favor a particular ion product. One aspect of ASGDI that was found to influence ionization yield was the hydrodynamic properties of the sample inlet free-jet expansion. From these investigations, it was found that mean molecular flow of species expanding toward the skimmer could be manipulated to favor kinetically fast reactions over more thermodynamically preferred reactions. In the case of 2,4-dinitrotoluene, observation of the M[sup [minus

  18. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in Chapter 1. Chapter 2 presents the first investigations into the atmospheric pressure ion transport phenomena during DART analysis. Chapter 3 provides a comparison on the internal energy deposition processes during DART and pneumatically assisted-ESI. Chapter 4 investigates the complex spatially-dependent sampling sensitivity, dynamic range and ion suppression effects present in most DART experiments. New implementations and applications with DART are shown in Chapters 5 and 6. In Chapter 5, DART is coupled to multiplexed drift tube ion mobility spectrometry as a potential fieldable platform for the detection of toxic industrial chemicals and chemical warfare agents simulants. In Chapter 6, transmission-mode DART is shown to be an effective method for reproducible sampling from materials which allow for gas to flow through it. Also, Chapter 6 provides a description of a MS imaging platform coupling infrared laser ablation and DART-like phenomena. Finally, in Chapter 7 I will provide perspective on the work completed with DART and the tasks and goals that future studies should focus on.

  19. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  20. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization.

    PubMed

    Cotte-Rodrguez, Ismael; Hernandez-Soto, Heriberto; Chen, Hao; Cooks, R Graham

    2008-03-01

    Desorption electrospray ionization (DESI) mass spectrometry is used for the rapid (<5 s), selective, and sensitive detection of trace amounts of the peroxide-based explosives, hexamethylene triperoxide diamine (HMTD), tetracetone tetraperoxide (TrATrP), and triacetone triperoxide (TATP), directly from ambient surfaces without any sample preparation. The analytes are observed as the alkali metal ion complexes. Remarkably, collision-induced dissociation (CID) of the HMTD, TATP, and TrATrP complexes with Na(+), K(+), and Li(+) occurs with retention of the metal, a process triggered by an unusual homolytic cleavage of the peroxide bond, forming a distonic ion. This is followed by elimination of a fragment of 30 mass units, shown to be the expected neutral molecule, formaldehyde, in the case of HMTD, but shown by isotopic labeling experiments to be ethane in the cases of TATP and TrATrP. Density functional theory (DFT) calculations support the suggested fragmentation mechanisms for the complexes. Binding energies of Na+ of 40.2 and 33.1 kcal/mol were calculated for TATP-Na(+) and HMTD-Na(+) complexes, suggesting a strong interaction between the peroxide groups and the sodium ion. Increased selectivity is obtained either by MS/MS or by doping the spray solvent with additives that produce the lithium and potassium complexes of TATP, HMTD, and TrATrP. Addition of dopants into the solvent spray increased the signal intensity by an order of magnitude. When pure alcohol or aqueous hydrogen peroxide was used as the spray solvent, the (HMTD + Na)+ complex was able to bind a molecule of alcohol (methanol or ethanol) or hydrogen peroxide, providing additional characteristic ions to increase the selectivity of analysis. DESI also allowed the rapid detection of peroxide explosives in complex matrixes such as diesel fuel and lubricants using single or multiple cation additives (Na(+), K(+), and Li(+), and NH4(+)) in the spray solvent. Low-nanogram detection limits were achieved for HMTD, TrATrP, and TATP in these complex matrixes. The DESI response was linear over 3 orders of magnitude for HMTD and TATP on paper surfaces (1-5000 ng), and quantification of both peroxide explosives from paper gave precisions (RSD) of less than 3%. The use of pure water and compressed air as the DESI spray solution and nebulizing gas, respectively, showed similar ionization efficiencies to those obtained using methanol/water mixtures and nitrogen gas (the typical choices). An alternative ambient method, desorption atmospheric pressure chemical ionization (DAPCI), was also used to detect trace amounts of HMTD and TATP in air by complexation with gas-phase ammonium ions (NH4(+)) generated by atmospheric pressure ammonia ionization. PMID:18247583

  1. Characterization of Nitrogen-Containing Species in Coal and Petroleum-Derived Products by Ammonia Chemical Ionization-High Resolution Mass Spectrometry

    SciTech Connect

    Veloski, Garret A.; Lynn, Ronald J.; Sprecher, Richard F.

    1997-01-01

    A coal-derived light distillate and a petroleum-derived residuum have been studied by high resolution mass spectrometry using both low-pressure ammonia chemical ionization and low-voltage electron impact ionization. A mass calibration mixture for use with ammonia chemical ionization has been developed. Selective ionization of the basic nitrogen-containing compounds by ammonia chemical ionization and compound type characterization of the resulting quasi-molecular species has been demonstrated. Several homologous series of nitrogen-containing compounds were identified in a basic extract by electron impact ionization and compared with quasimolecular analogs identified by ammonia chemical ionization.

  2. Gaseous composition measured by a chemical ionization mass spectrometer in fresh and aged ship plumes

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Psichoudaki, Magda; Kuuluvainen, Heino; Hallquist, sa; Thomson, Erik; Pettersson, Jan; Hallquist, Mattias

    2015-04-01

    The port of Gothenburg is the largest port of the Nordic countries with numerous ships calling the port daily. The ship exhausts contain numerous pollutants including gases such as SO2 and NOx as well as particulate matter and soot. The exhaust also contains numerous organic compounds, a large fraction of which are unidentified. These organics are oxidized in the atmosphere producing more oxygenated and potentially less volatile compounds that may contribute to the secondary organic aerosol (SOA). This work focuses on the characterization of fresh gaseous species present in the exhaust plumes of the passing ships and also on their photochemical aging. Between 26 September and 12 November 2014 measurements were conducted at a sampling site located on a small peninsula at the entrance of Gothenburg's port. The campaign was divided in two periods. During the first period, the fresh plumes of the passing ships were measured through a main inlet. During the second period, the sample passed through the same inlet and was then introduced into a Potential Aerosol Mass (PAM) reactor. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the plumes. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in the current camping corresponded to 3.4 days in the atmosphere. A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged plumes. Water (positive) and iodide (negative) ionization methods were employed were water was primarily used for fresh plumes (large fraction of non-polar compounds) while iodide was used for the aged plumes (primarily oxidised products). The H2O, O3 and SO2 concentrations inside the PAM chamber were monitored, and an organic tracer for OH exposure determination was also continuously measured. The dominant species concentrations of both fresh and aged ship plumes are presented and their emission factors are estimated from concurrent CO2 measurements.

  3. A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry.

    PubMed

    Shen, Jason Jiun-San; You, Chen-Feng

    2003-05-01

    Boron isotopes are potentially very important to cosmochemistry, geochemistry, and paleoceanography. However, the application has been hampered by the large sample required for positive thermal ionization mass spectrometry (PTIMS), and high mass fractionation for negative-TIMS (NTIMS). Running as BO(2)(-), NTIMS is very sensitive and requires only nanogram sized samples, but it has rather poor precision (approximately 0.7-2.0 per thousand) as a result of the larger mass fractionation associated with the relatively light ion. In contrast, running as the much heavier molecule of Cs(2)BO(2)(+), PTIMS usually achieves better precision around 0.1-0.4 per thousand. Moreover, there is a consistent 10 per thousand offset in the (11)B/(10)B ratio for NIST SRM 951 standard boric acid between the NTIMS and the certified value, but the cause of this offset is unclear. In this paper, we have adapted a technique we developed earlier to measure the (138)La/(139)La using LaO(+) (1) to improve the NTIMS technique for BO(2). We were able to correct for instrumental fractionation by measuring BO(2)(-) species not only at masses of 42 and 43, but also at 45, which enabled us to normalize (45)BO(2)/(43)BO(2) to an empirical (18)O/(16)O value. We found that both I(45)/I(42) = ((11)B(16)O(18)O/(10)B(16)O(16)O) and (I(43)/I(42))(C) = ((11)B(16)O(16)O/(10)B(16)O(16)O) vary linearly with (I(45)/I(43))(C) x 0.5 = ((11)B(16)O(18)O/(11)B(16)O(16)O) x 0.5 = (18)O/(16)O. In addition, different activators and different chemical forms of B yield different slopes for the fractionation lines. After normalizing (11)B(16)O(18)O/(11)B(16)O(16)O x 0.5 to a fixed (18)O/(16)O value, we obtained a mean (11)B/(10)B value of NIST SRM 951 that matches the NIST certified value at 4.0430 +/- 0.0015 (+/-0.36 per thousand, n = 11). As a result, our technique can achieve precision and accuracy comparable to that of PTIMS with only 1 per thousand of the sample required. This new NTIMS technique for B isotopes is critical to the studies of early solids in the solar system and individual foraminifera in sediments that require both high sensitivity and precision. PMID:12720329

  4. Comparison of Electrospray Ionization and Atmospheric Chemical Ionization Coupled with the Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Cholesteryl Esters

    PubMed Central

    Lee, Hae-Rim; Kochhar, Sunil; Shim, Soon-Mi

    2015-01-01

    The approach of two different ionization techniques including electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was tested for the analysis of cholesteryl esters (CEs). The retention time (RT), signal intensity, protonated ion, and product ion of CEs were compared between ESI and APCI. RT of CEs from both ionizations decreased with increasing double bonds, while it increased with longer carbon chain length. The ESI process generated strong signal intensity of precursor ions corresponding to [M+Na]+ and [M+NH4]+ regardless of the number of carbon chains and double bonds in CEs. On the other hand, the APCI process produced a protonated ion of CEs [M+H]+ with a weak signal intensity, and it is selectively sensitive to detect precursor ions of CEs with unsaturated fatty acids. The ESI technique proved to be effective in ionizing more kinds of CEs than the APCI technique. PMID:25873970

  5. Mass spectral behavior of the hydrolysis products of sesqui- and oxy-mustard type chemical warfare agents in atmospheric pressure chemical ionization.

    PubMed

    Lemire, Sharon W; Ash, Doris H; Johnson, Rudolph C; Barr, John R

    2007-08-01

    Bis(2-hydroxyethylthio)alkanes and bis(2-hydroxyethylthioalkyl)ethers are important biological and environmental degradation products of sulfur mustard analogs known as sesqui- and oxy-mustards. We used atmospheric pressure chemical ionization mass spectrometry (APCI MS) to acquire characteristic spectra of these compounds in positive and negative ionization modes. Positive APCI mass spectra exhibited [M + H](+); negative APCI MS generated [M + O(2)](-), [M - H](-), and [M - 3H](-); and both positive and negative APCI mass spectra contained fragment ions due to in-source collision-induced dissociation. Product ion scans confirmed the origin of fragment ions observed in single-stage MS. Although the spectra of these compounds were very similar, positive and negative APCI mass spectra of the oxy-mustard hydrolysis product, bis(2-hydroxyethylthiomethyl)ether, differed from the spectra of the other compounds in a manner that suggested a rearrangement to the sesqui-mustard hydrolysis product, bis(2-hydroxyethylthio)methane. We evaluated the [M + O(2)](-) adduct ion for quantification via liquid chromatography-MS/MS in the multiple-reaction monitoring (MRM) mode by constructing calibration curves from three precursor/product ion transitions for all the analytes. Analytical figures of merit generated from the calibration curves indicated the stability and suitability of these transitions for quantification at concentrations in the low ng/mL range. Thus, we are the first to propose a quantitative method predicated on the measurement of product ions generated from the superoxide adduct anion of the sesqui-and oxy-mustard hydrolysis products. PMID:17533136

  6. Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.

    2011-04-28

    The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240. The reduced mobility value of this ion was constant at 1.36 cm{sup 2}V{sup -1}s{sup -1} across the temperature range from 60 to 140 C. The stability of this ion was temperature dependent and did not exist at temperatures above 140 C, where only fragment ions were observed. The introduction of ammonia vapors with TATP resulted in the formation of m/z 58 ion. As the concentration of ammonia increased, this smaller ion appeared to dominate the spectra and the TATP-ammonium adduct decreased in intensity. The ion at m/z 58 has been noted by several research groups upon using ammonia reagents in chemical ionization, but the identity was unknown. Evidence presented here supports the formation of protonated 2-propanimine. A proposed mechanism involves the addition of ammonia to the TATP-ammonium adduct followed by an elimination reaction. A similar mechanism involving the chemical ionization of acetone with excess ammonia also showed the formation of m/z 58 ion. TATP vapors from a solid sample were detected with a hand-held ion mobility spectrometer operated at room temperature. The TATP-ammonium molecular adduct was observed in the presence of ammonia and TATP vapors with this spectrometer.

  7. In vivo interactions between ionizing radiation, inflammation and chemical carcinogens identified by increased DNA damage responses.

    PubMed

    McAllister, K A; Lorimore, S A; Wright, E G; Coates, P J

    2012-05-01

    Exposure to ionizing radiation or a variety of chemical agents is known to increase the risk of developing malignancy and many tumors have been linked to inflammatory processes. In most studies, the potentially harmful effects of ionizing radiation or other agents are considered in isolation, mainly due to the large number of experiments required to assess the effects of mixed exposures with different doses and different schedules, and the length of time and expense of studies using disease as the measure of outcome. Here, we have used short-term DNA damage responses to identify interactive effects of mixed exposures. The data demonstrate that exposure to ionizing radiation on two separate occasions ten days apart leads to an increase in the percentage of cells with a sub-G(0) DNA content compared to cells exposed only once, and this is a greater than additive effect. Short-term measurements of p53 stabilization, induction of p21/Cdkn1a and of apoptosis also identify these interactive effects. We also demonstrate similar interactive effects of radiation with the mutagenic chemical methyl-nitrosourea and with a nonspecific pro-inflammatory agent, lipopolysaccharide. The magnitude of the interactive effects is greater in cells taken from mice first exposed as juveniles compared to adults. These data indicate that short-term measurements of DNA damage and response to damage are useful for the identification of interactions between ionizing radiation and other agents. PMID:22463680

  8. Alternative Methodology for Boron Isotopic Analysis of CaCO3 by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2012-12-01

    Negative thermal ionization mass spectrometry (NTIMS) has been a common tool for investigating boron isotopes in CaCO3 and other environmental samples, the high sensitivity of BO2- ionization enabling measurements of ng levels of boron. However, B isotope measurement by this technique suffers from a number of problems, including: (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; (2) CNO- interference on mass 42 ([10BO2]-) that may be present in some filament load solutions (such as B-free seawater processed through ion-exchange resin), and (3) potential matrix effects due to widely differing chemistry of samples and standards. Here we examine a potentially improved NTIMS methodology that incudes removal of sample-related calcium (and other cations) by ion exchange and uses an alternative filament loading solution prepared from high-purity single-element solutions of Ca, Mg, Na, and K. Initial results suggest that this new method may offer significant improvement over the more traditional NTIMS approach in which digested CaCO3 samples are directly loaded onto filaments in B-free seawater. Replicate analyses of standards and samples yield a typical standard deviation of approximately 0.3 ?11B and boron isotopic compositions comparable to reported or consensus values. Fractionation during analysis has thus far typically been less than 0.5 ?11B. The method delivers boron ionization efficiency similar to directly-loaded seawater, and negligible signal at mass 26 (CN-), a proxy for the possible interfering molecular CNO- ion. Standards and samples behave similarly and predictably during filament heating and analysis, thus allowing for fully automated data acquisition, which in turn may increase sample throughput and reduce potential analytical inconsistencies associated with operator-controlled heating and analysis.

  9. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  10. Chemical ionization tandem mass spectrometer for the in situ measurement of methyl hydrogen peroxide

    SciTech Connect

    St Clair, Jason M.; McCabe, David C.; Crounse, John D.; Steiner, Urs; Wennberg, Paul O.

    2010-09-15

    A new approach for measuring gas-phase methyl hydrogen peroxide [(MHP) CH{sub 3}OOH] utilizing chemical ionization mass spectrometry is presented. Tandem mass spectrometry is used to avoid mass interferences that hindered previous attempts to measure atmospheric CH{sub 3}OOH with CF{sub 3}O{sup -} clustering chemistry. CH{sub 3}OOH has been successfully measured in situ using this technique during both airborne and ground-based campaigns. The accuracy and precision for the MHP measurement are a function of water vapor mixing ratio. Typical precision at 500 pptv MHP and 100 ppmv H{sub 2}O is {+-}80 pptv (2 sigma) for a 1 s integration period. The accuracy at 100 ppmv H{sub 2}O is estimated to be better than {+-}40%. Chemical ionization tandem mass spectrometry shows considerable promise for the determination of in situ atmospheric trace gas mixing ratios where isobaric compounds or mass interferences impede accurate measurements.

  11. Liquid chromatographic-atmospheric pressure chemical ionization mass spectrometric analysis of glycine conjugates and urinary isovalerylglycine in isovaleric acidemia.

    PubMed

    Ito, T; Kidouchi, K; Sugiyama, N; Kajita, M; Chiba, T; Niwa, T; Wada, Y

    1995-08-18

    n-Acetylglycine, n-propionylglycine, n-butyrylglycine, isobutyrylglycine, n-valerylglycine, isovalerylglycine, heptanoylglycine, phenylacetylglycine and isovalerylglucuronide were identified based on their liquid chromatographic-atmospheric pressure chemical ionization mass spectra (LC-APCI-MS). We were able to detect the presence of urinary isovalerylglycine in two cases of isovaleric acidemia using LC-APCI-MS. Membrane-filtered urine samples were injected into the LC-APCI-MS system in the negative-ion mode without any further pretreatment, and large amounts of isovalerylglycine were detected as the [M-H]- ion. The urinary excretion of isovalerylglycine appeared to increase after L-carnitine therapy. This analytical method is quick and easy and it may be a useful tool in understanding dysfunctional conditions in isovaleric acidemia. PMID:8548022

  12. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOEpatents

    Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  13. Radioimmunoassay and chemical ionization/mass spectrometry compared for plasma cortisol determination

    SciTech Connect

    Lindberg, C.; Johnson, S.; Hedner, P.; Gustafsson, A.

    1982-01-01

    A method is described for determination of cortisol in plasma and urine, based on chemical ionization/mass spectrometry with deuterium-labeled cortisol as the internal standard. The within-run precision (CV) was 2.5-5.7%, the between-run precision 4.6%. Results by this method were compared with those by a radioimmunological method (RIANEN Cortisol, New England Nuclear) for 395 plasma samples. The latter method gave significantly higher (approx. 25%) cortisol values.

  14. Electron impact and chemical ionization mass spectral analysis of a volatile uranyl derivative

    SciTech Connect

    Reutter, D.J.; Hardy, D.R.

    1981-01-01

    Quadrupole mass spectral analysis of the volatile uranium ligand complex bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) dioxouranium-di-n-butyl sulfoxide is described utilizing electron impact (EI) and methane chemical ionization (CI) ion sources. All major ions are tentatively identified and the potential usefulness of this complex for determining uranium isotope /sup 235/U//sup 238/U abundance is demonstrated.

  15. Differentiation of commercial fuels based on polar components using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.

    2006-01-01

    Polar components in fuels may enable differentiation between fuel types or commercial fuel sources. A range of commercial fuels from numerous sources were analyzed by flow injection analysis/electrospray ionization/mass spectrometry without extensive sample preparation, separation, or chromatography. This technique enabled screening for unique polar components at parts per million levels in commercial hydrocarbon products, including a range of products from a variety of commercial sources and locations. Because these polar compounds are unique in different fuels, their presence may provide source information on hydrocarbons released into the environment. This analysis was then applied to mixtures of various products, as might be found in accidental releases into the environment. Copyright ?? Taylor & Francis Group, LLC.

  16. Conditional discrimination learning and negative patterning in rats with neonatal hippocampal lesion induced by ionizing radiation.

    PubMed

    Moreira, Rita de Cássia Margarido; Bueno, José Lino Oliveira

    2003-01-01

    This study was undertaken to investigate the associative process underlying serial feature positive conditional discrimination learning (X-->A+/A-) and the role of the hippocampus in the solution of tasks demanding a configural association strategy such as the negative patterning discrimination (XA-/X+/A+). It has been suggested that the hippocampus is essential for the learning of complex tasks, so, it is expected that hippocampal lesions would prove equally detrimental to performance in both tasks, but would not interfere with simple discrimination learning. Hippocampal lesions were made with X-radiation exposure to neonate rats after completion of a parametric study 'J. Neurosci. Methods 75 (1997) 41' that established the best radiation parameters to selectively lesion the hippocampal dentate gyrus. When adults, rats were submitted to a serial feature positive conditional discrimination task with the trials 'House light/Tone: water (H-->T+)', 'Tone: no water (T-)', and two simple discrimination with the trials 'Clicker: water (C+)' and 'Noise: no water (N-)' in Experiment I. In Experiment II, adult rats, irradiated and control, were submitted to the negative patterning task with the trials 'House light/Tone: no water (HT-)', 'House light: water (H+)', 'Tone: water (T+)', and to the non-conditional discrimination with the trial Noise: no water (N-)'. In contrast to the expectation of impaired performance in these tasks by lesioned rats, animals with damage to the hippocampal dentate gyrus learned the complex and the simple tasks as well as control subjects. These results suggest that the dentate gyrus does not participate directly in the modulation of acquisition of tasks demanding a complex strategy of occasion setting in procedures of serial conditional discrimination or a configural strategy, important for the negative patterning discrimination solution. PMID:12493628

  17. Electron impact and electron capture negative ionization mass spectra of polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers.

    PubMed

    Hites, Ronald A

    2008-04-01

    This review presents the electron impact (EI) and electron capture negative ionization (ECNI) mass spectra of the polybrominated diphenyl ether (PBDE) flame retardants and of their methoxy derivatives. Data from the literature are reviewed, and full spectra from our laboratory are reported to correct some of the errors that have crept into some previously published data. The EI spectra of the PBDEs are dominated by molecular ions and by singly and doubly charged ions due to the loss of Br2 from the molecular ion. The ECNI spectra of PBDEs with seven or less bromines are dominated by Br(-) and by HBr2(-); the spectra of those with eight or more bromines are dominated bytetra- or pentabromophenoxide ions due to cleavage of the phenyl-ether linkage. The EI mass spectra of methoxy-PBDEs can easily distinguish the position of the methoxy group relative to the phenyl-ether linkage. The ECNI spectra of these compounds are also dominated by Br(-) and HBr2(-). In both ionization modes and for both compound groups, there are some subtle features, which often allow one to rule in or out substitution at one or more of the ortho-ring positions. PMID:18504949

  18. Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons.

    PubMed

    Nyadong, Leonard; Quinn, John P; Hsu, Chang S; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2012-08-21

    We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+) species dominate the mass spectrum at lower capillary temperature (<100 C) and [M - H](+) at higher temperature (>200 C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products. PMID:22881221

  19. Negative electrospray ionization mass spectrometry: a method for sequencing and determining linkage position in oligosaccharides from branched hemicelluloses.

    PubMed

    Quéméner, Bernard; Vigouroux, Jacqueline; Rathahao, Estelle; Tabet, Jean Claude; Dimitrijevic, Aleksandra; Lahaye, Marc

    2015-01-01

    Xyloglucans of apple, tomato, bilberry and tamarind were hydrolyzed by commercial endo β-1-4-D-endoglucanase. The xylo-gluco-oligosaccharides (XylGos) released were separated on CarboPac PA 200 column in less than 15 min, and, after purification, they were structurally characterized by negative electrospray ionization mass spectrometry using a quadrupole time-of-flight (ESI-Q-TOF), a hybrid linear ion trap (LTQ)/Orbitrap and a hybrid quadrupole Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. In order to corroborate the fragmentation routes observed on XylGos, some commercial galacto-manno-oligosaccharides (GalMOs) and glucurono-xylo-oligosaccharides were also studied. The fragmentation pathways of the ionized GalMos were similar to those of XylGos ones. The product ion spectra were mainly characterized by prominent double cleavage (D) ions corresponding to the entire inner side chains. The directed fragmentation from the reducing end to the other end was observed for the main glycosylated backbone but also for the side-chains, allowing their complete sequencing. Relevant cross-ring cleavage ions from (0,2)X(j)-type revealed to be diagnostic of the 1-2-linked- glycosyl units from XylGos together with the 1-2-linked glucuronic acid unit from glucuronoxylans. Resonant activation in the LTQ Orbitrap allowed not only determining the type of all linkages but also the O-acetyl group location on fucosylated side-chains. Moreover, the fragmentation of the different side chains using the MS(n) capabilities of the LTQ/Orbitrap analyzer also allowed differentiating terminal arabinosyl and xylosyl substituents inside S and U side-chains of XylGos, respectively. The CID spectra obtained were very informative for distinction of isomeric structures differing only in their substitution pattern. These features together makes the fragmentation in negative ionization mode a relevant and powerful technique useful to highlight the subtle structural changes generally observed during the development of plant organs such as during fruit ripening and for the screening of cell wall mutants with altered hemicellulose structure. PMID:25601700

  20. Screening of steroids in horse urine and plasma by using electron impact and chemical ionization gas chromatography-mass spectrometry.

    PubMed

    Singh, A K; Gordon, B; Hewetson, D; Granley, K; Ashraf, M; Mishra, U; Dombrovskis, D

    1989-10-01

    Gas chromatography with chemical ionization mass spectrometry and selected-ion monitoring provided a sensitive method for the screening and confirmation of steroids in horse urine and plasma. Chemical ionization mass spectrometry was more sensitive than the electron impact ionization mass spectrometry for most of the steroids except for testosterone, prednisone-metabolite-2 and prednisolone-metabolite-2. The chromatographic conditions used in this study provided clean separation of different natural and synthetic steroids. Approximately 75-85% of the steroids added to plasma and approximately 65-70% of the steroids added to urine were recovered by the extraction procedure used in this study. PMID:2808600

  1. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  2. Chemical analysis of positive and negative plates, a survey. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Halpert, G.

    1978-01-01

    Regular arrays of 1 inch discs cut from chemically impregnated positive and negative plates were sent to various contractors and government organizations for chemical analysis in order to determine whether there is consistency in analysis. Techniques used included NASA procedures as specified, variations, wet chemical techniques, and atomic absorption. The weight, thickness of disc, and active material quantity as measured by four respondents are discussed.

  3. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    SciTech Connect

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A.; Owen, T.

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  4. Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines

    SciTech Connect

    Quirke, J.M.E.; Adams, C.L.; Van Berkel, G.J. )

    1994-04-15

    Derivatization strategies and specific derivatization reactions for conversion of simple alkyl halides, alcohols, phenols, thiols, and amines to ionic or solution-ionizable derivatives, that is [open quotes]electrospray active[close quotes] (ES-active) forms of the analyte, are presented. Use of these reactions allows detection of analytes among those listed that are not normally amenable to analysis by electrospray ionization mass spectrometry (ES-MS). In addition, these reactions provide for analysis specificity and flexibility through functional group specific derivatization and through the formation of derivatives that can be detected in positive ion or in negative ion mode. For a few of the functional groups, amphoteric derivatives are formed that can be analyzed in either positive or negative ion modes. General synthetic strategies for transformation of members of these five compound classes to ES-active species are presented along with illustrative examples of suitable derivatives. Selected derivatives were prepared using model compounds and the ES mass spectra obtained for these derivatives are discussed. The analytical utility of derivatization for ES-MS analysis is illustrated in three experiments: (1) specific detection of the major secondary alcohol in oil of peppermint, (2) selective detection of phenols within a synthetic mixture of phenols, and (3) identification of the medicinal amines within a commercially available cold medication as primary, secondary or tertiary. 65 refs., 3 figs., 3 tabs.

  5. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to solar radiation causes significant chemical aging in SOA species.

  6. The Level of Ionization and Chemical Composition of QSO BAL Region Gas - Repeat for Hopr 230

    NASA Astrophysics Data System (ADS)

    Turnshek, David

    1994-01-01

    FROM PROGRAM 5455: About 10% of all radio quiet QSOs exhibit broad absorption lines (BALs) in their spectra. The BALs come from a mostly highly ionized region outflowing from the central source at speeds up to many tens of thousands of km/s. Observational constraints on models require that the covering factor of the BAL region be small (e.g., normally < 0.2), therefore many QSOs must have BAL regions which do not lie along our lines-of-sight. For assumptions which should reasonably apply to BAL regions, accurate (algorithm independent) ionic column densities can be derived as a function of outflow velocity for BAL gas. This is unlike the case for broad emission lines in QSOs, which at any observed velocity originates in various components with a range of ionizations. Based on column density analyses, evidence suggests that the chemical composition of the BAL region gas is enhanced by factors of 10 to 100 or more times solar values. Since this conclusion is remarkable, we propose to carefully checked it. One possible problem is that our assumptions about the ability of BAL gas to cover the central source are not universally correct. Another problem with past analyses is that different ionic species of the same element in an object have not been studied. We will remedy these problems by observing the UV spectrum of three specially selected BAL QSOs which currently show the best evidence for enhanced abundances. Constraints on the ionization and chemical composition of the BAL region gas will be derived using Ferland's

  7. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  8. Fine structure and ionization energy of the 1s2s2p 4P state of the helium negative ion He-.

    PubMed

    Wang, Liming; Li, Chun; Yan, Zong-Chao; Drake, G W F

    2014-12-31

    The fine structure and ionization energy of the 1s2s2p (4)P state of the helium negative ion He(-) are calculated in Hylleraas coordinates, including relativistic and QED corrections up to O(?(4)mc(2)), O((?/M)?(4)mc(2)), O(?(5)mc(2)), and O((?/M)?(5)mc(2)). Higher order corrections are estimated for the ionization energy. A comparison is made with other calculations and experiments. We find that the present results for the fine structure splittings agree with experiment very well. However, the calculated ionization energy deviates from the experimental result by about 1 standard deviation. The estimated theoretical uncertainty in the ionization energy is much less than the experimental accuracy. PMID:25615325

  9. Negative Electron Affinity Effect on the Surface of Chemical Vapor Deposited Diamond Polycrystalline Films

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.; Mearini, G. T.; Dayton, J. A., Jr.

    1996-01-01

    Strong negative electron affinity effects have been observed on the surface of as-grown chemical vapor deposited diamond using Secondary Electron Emission. The test samples were randomly oriented and the surface was terminated with hydrogen. The effect appears as an intensive peak in the low energy part of the spectrum of the electron energy distribution and may be described in the model of effective negative electron affinity.

  10. Study of the mass spectrometric behaviors of anthocyanins in negative ionization mode and its applications for characterization of anthocyanins and non-anthocyanin polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study of the mass spectroscopic behaviors of anthocyanins in the negative ionization mode was reported and it can be used for differentiation anthocyanins from other non-anthocyanin polyphenols. For the study, an ultra-high performance liquid chromatography with high resolution mass spectrometry (...

  11. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-02-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  12. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    NASA Astrophysics Data System (ADS)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  13. Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components

    SciTech Connect

    Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin

    2012-05-16

    We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190?5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100250, with some compounds being analyzable by gas chromatographymass spectrometry (GCMS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GCMS. This unveiled a much more complex nature of bio-oils than typically shown by GCMS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call sugaric compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.

  14. Selective reaction monitoring of negative electrospray ionization acetate adduct ions for the bioanalysis of dapagliflozin in clinical studies.

    PubMed

    Ji, Qin C; Xu, Xiaohui; Ma, Eric; Liu, Jane; Basdeo, Shenita; Liu, Guowen; Mylott, William; Boulton, David W; Shen, Jim X; Stouffer, Bruce; Aubry, Anne-Franoise; Arnold, Mark E

    2015-03-17

    Dapagliflozin (Farxiga), alone, or in the fixed dose combination with metformin (Xigduo), is an orally active, highly selective, reversible inhibitor of sodium-glucose cotransporter type 2 (SGLT2) that is marketed in United States, Europe, and many other countries for the treatment of type 2 diabetes mellitus. Here we report a liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalytical assay of dapagliflozin in human plasma. A lower limit of quantitation (LLOQ) at 0.2 ng/mL with 50 ?L of plasma was obtained, which reflects a 5-fold improvement of the overall assay sensitivity in comparison to the previous most sensitive assay using the same mass spectrometry instrumentation. In this new assay, acetate adduct ions in negative electrospray ionization mode were used as the precursor ions for selective reaction monitoring (SRM) detection. Sample preparation procedures and LC conditions were further developed to enhance the column life span and achieve the separation of dapagliflozin from potential interferences, especially its epimers. The assay also quantifies dapagliflozin's major systemic circulating glucuronide metabolite, BMS-801576, concentrations in human plasma. The assay was successfully transferred to contract research organizations (CROs), validated, and implemented for the sample analysis of pediatric and other critical clinical studies. This assay can be widely used for bioanalytical support of future clinical studies for the newly approved drug Farxiga or any combination therapy containing dapagliflozin. PMID:25671589

  15. Quantifying Tropospheric Peroxy Radicals using Chemical Ionization Mass Spectroscopy with Chemical Conversion

    NASA Astrophysics Data System (ADS)

    Anderson, R. S.; Cantrell, C. A.

    2007-12-01

    We report the development of a mass spectrometric technique for the measurement of tropospheric peroxy radicals, particularly from aircraft platforms. This method makes use of chemical reactions involving added nitric oxide and sulfur dioxide reagent gases and dilution with nitrogen or oxygen (oxygen dilution modulation). This chemistry specifically converts HO2 radicals to gas-phase sulfuric acid in one mode (high reagent concentrations and dilution with nitrogen) and converts HO2 and most RO2 radicals in the other mode (low reagent concentrations and dilution with oxygen). We have performed extensive laboratory assessments of the instrument response over a range of environmental conditions to a wide variety of radical species. This instrument has been deployed in several recent campaigns (MIRAGE, INTEX-B, PASE). Data from those campaigns will be used to illustrate the performance of the instrument.

  16. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry.

    PubMed

    Chen, Ping; Hou, Keyong; Hua, Lei; Xie, Yuanyuan; Zhao, Wuduo; Chen, Wendong; Chen, Chuang; Li, Haiyang

    2014-02-01

    The application of VUV lamp-based single photon ionization (SPI) was limited due to low photon energy and poor photon flux density. In this work, we designed a quasi-trapping chemical ionization (QT-CI) source with a commercial VUV 10.6 eV krypton lamp for time-of-flight mass spectrometry. The three electrode configuration ion source with RF voltage on the second electrode constitutes a quasi-trapping region, which has two features: accelerating the photoelectrons originated from the photoelectric effect with VUV light to trigger the chemical ionization through ion-molecule reaction and increasing the collisions between reactant ion O2(+) and analyte molecules to enhance the efficiency of chemical ionization. Compared to single SPI based on VUV krypton lamp, the QT-CI ion source not only apparently improved the sensitivity (e.g., 12-118 fold enhancement were achieved for 13 molecules, including aromatic hydrocarbon, chlorinated hydrocarbon, hydrogen sulfide, etc.) but also extended the range of ionizable molecules with ionization potential (IP) higher than 10.6 eV, such as propane, dichloroethane, and trichloromethane. PMID:24428693

  17. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives.

    PubMed

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham

    2015-10-01

    A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to 5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns. PMID:26329926

  18. Novel non-chemically amplified (n-CARs) negative resists for EUVL

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Satyanarayana, V. S. V.; Sharma, Satinder K.; Ghosh, Subrata; Gonsalves, Kenneth E.

    2014-03-01

    We report the lithography performance of novel non chemical amplified (n-CARS) negative photoresist materials which are accomplished by homopolymers and copolymers that are prepared from monomers containing sulfonium groups. The latter have long been found to be sensitive to UV radiation and undergo polarity change on exposure. For this reason, these groups were chosen as radiation sensitive groups in non- CARs that are discussed herein. Novel n-CAR negative resists were synthesized and characterized for EUVL applications, as they are directly sensitive to radiation without utilizing the concept of chemical amplification. The n-CARs achieved 20 and 16 nm L/2S, L/S patterns to meet the ITRS requirements. We will also discuss the sensitivity and LER of these negative n-CARS to e-beam irradiation which will provide a basis for EUVL down to the 16 nm node and below. These new negative tone resist provide a viable path forward for designing non- chemically amplified resists that can obtain higher resolutions than current chemically amplified resists at competitive sensitivities.

  19. Differeniation of Aroclors in environmental samples using negative ion chemical ionization (NICI) mass spectrometry

    SciTech Connect

    Ma, C.Y.; Bayne, C.K.; Maskarinec, M.P.

    1991-01-01

    Environmental samples suspected of containing polychlorinated biphenyls (PCB) and analyzed by EPA Method 8080 frequently contain non-PCB components, such as phthalates, PAH's, or organochlorine pesticides. The presence of these interferences can often obscure the GC/ECD patterns and cause problems in differentiating the Aroclor types by visual inspection. Since Method 8080 requires the identification of Aroclor types in order to trace the sources of PCB occurrences, NICI detection was used to provide additional parameters for discriminating PCB congeners from interferences. In this study, a pattern recognition method has been developed to classify the types of Aroclors for environmental samples. A computer program written in BASIC has been implemented to facilitate Aroclor classification using the NICI ion abundance measurement for PCB congeners. NICI measurements on Aroclor standards were used as training data set to develop classification methods for environmental samples. PCB contaminated oil or soil samples were either extracted of diluted with hexane and analyzed in the same manner as the standards. This sequential classification method classified all Aroclors in the training set correctly. A set of 15 environmental samples with known Aroclor types were also correctly classified.

  20. An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Headley, John V

    2014-08-19

    The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the Ox and OxS compound classes predominated, with OxS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics. PMID:25036898

  1. Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions

    NASA Astrophysics Data System (ADS)

    Barmashenko, B. D.; Rosenwaks, S.; Heaven, M. C.

    2013-04-01

    The effects of heating, ionization, high electronic excitation and chemical reactions on the operation of diode pumped alkali lasers (DPALs) with a static, non-flowing gain medium are calculated using a semi-analytical model. Unlike other models, assuming a three-level scheme of the laser and neglecting influence of the temperature on the lasing power, it takes into account the temperature rise and losses of neutral alkali atoms due to ionization and chemical reactions, resulting in decrease of the pump absorption and slope efficiency. Good agreement with measurements in a static DPAL [B.V. Zhdanov, J. Sell, R.J. Knize, Electron. Lett. 44 (2008) 582] is obtained. It is found that the ionization processes have a small effect on the laser operation, whereas the chemical reactions of alkali atoms with hydrocarbons strongly affect the lasing power.

  2. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect

    Dana, Saswati; Raha, Soumyendu

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  3. Desorption chemical ionization and fast atom bombardment mass spectrometric studies of the glucuronide metabolites of doxylamine.

    PubMed

    Lay, J O; Korfmacher, W A; Miller, D W; Siitonen, P; Holder, C L; Gosnell, A B

    1986-11-01

    Three glucuronide metabolites of doxylamine succinate were collected in a single fraction using high-performance liquid chromatography (HPLC) from the urine of dosed male Fischer 344 rats. The metabolites were then separated using an additional HPLC step into fractions containing predominantly a single glucuronide metabolite. Analysis of the metabolites by methane and ammonia desorption chemical ionization, with and without derivatization, revealed fragment ions suggestive of a hydroxylated doxylamine moiety. Identification of the metabolites as glucuronides of doxylamine, desmethyldoxylamine and didesmethyldoxylamine was accomplished, based on determination of the molecular weight and exact mass of each metabolite using fast atom bombardment (FAB) ionization. This assignment was confirmed by the fragmentation observed in FAB mass spectrometric and tandem mass spectrometric experiments. Para-substitution of the glucuronide on the phenyl moiety was observed by 500-MHz nuclear magnetic resonance (NMR) spectrometry. A fraction containing all three glucuronide metabolites, after a single stage of HPLC separation, was also analysed by FAB mass spectrometry, and the proton- and potassium-containing quasimolecular ions for all three metabolites were observed. PMID:2948588

  4. Tropospheric Airborne and Ground-based Peroxy Radical Observations using Chemical Ionization Mass Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cantrell, C. A.; Anderson, R. S.; Mauldin, R. L.; Kosciuch, E.; Eisele, F. L.

    2005-12-01

    We report on recent instrumental improvements to our Peroxy Radical Chemical Ionization Mass Spectrometer (PerCIMS) that allow us to nearly simultaneously measure HO2 + RO2 and HO2 only. This is accomplished through a technique we call "oxygen dilution modulation", in which an air sample is diluted from 1:3 to 1:5 with either oxygen or nitrogen. At the same time, the NO and SO2 reagent gases are also adjusted. Peroxy radicals are selectively converted to gas phase sulfuric acid molecules, which are chemi-ionized by reaction with gas phase nitrate ions, and quantified by mass spectroscopy. With oxygen dilution and low reagent concentrations, HO2 and a large fraction of RO2 (>90%) are measured, while with nitrogen dilution and higher reagent concentrations, HO2 and a small fraction of RO2 (<20%) are measured. An instrument with a single inlet can be rapidly switched between these two modes of operation (within 2 minutes), allowing better estimates of HO2/RO2 ratios for comparison with photochemical models. We will deploy this new instrument during the upcoming MIRAGE and INTEX-B missions in 2006.

  5. Picoelectrospray Ionization Mass Spectrometry Using Narrow-bore Chemically Etched Emitters

    SciTech Connect

    Marginean, Ioan; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) at flow rates below ~10 nL/min has been only sporadically explored due to difficulty in reproducibly fabricating emitters that can operate at lower flow rates. Here we demonstrate narrow orifice chemically etched emitters for stable electrospray at flow rates as low as 400 pL/min. Depending on the analyte concentration, we observe two types of MS signal response as a function of flow rate. At low concentrations, an optimum flow rate is observed slightly above 1 nL/min, while the signal decreases monotonically with decreasing flow rates at higher concentrations. In spite of lower MS signal, the ion utilization efficiency increases exponentially with decreasing flow rate in all cases. No unimolecular response was observed within this flow rate range during the analysis of an equimolar mixture of peptides, indicating that ionization efficiency is an analyte-dependent characteristic in given experimental conditions. While little to no gain in signal-to-noise was achieved at ultralow flow rates for concentration-limited analyses, experiments consuming the same amount of analyte suggest that mass-limited analyses will benefit strongly from the use of low flow rates and avoiding unnecessary sample dilution. By operating under optimal conditions, consumption of just 500 zmol of sample yielded signal-to-noise ratios ~10 for some peptides. These findings have important implications for the analysis of trace biological samples.

  6. Rapid detection of drugs in biofluids using atmospheric pressure chemi/chemical ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Hashimoto, Yutaka; Furuya, Hiroko; Takekawa, Kenichi; Kubota, Takeo; Hiraoka, Kenzo

    2009-02-01

    We have demonstrated that, with simple pH adjustment, volatile drugs such as methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), ketamine, and valproic acid could be analyzed rapidly from raw biofluid samples (e.g. urine and serum) without dilution, or extraction, using atmospheric pressure ionization. The ion source was a variant type of atmospheric pressure chemical ionization (APCI) that used a dielectric barrier discharge (DBD) to generate the metastable helium gas and reagent ions. The sample solution was loaded in a disposable glass pipette, and the volatile compounds were purged by nitrogen gas to be reacted with the metastable helium gas. The electrodes of the DBD were arranged in such a way that the generated glow discharge was confined within the discharge tube and was not exposed to the analytes. A needle held at 100-500 V was placed between the ion-sampling orifice and the discharge tube to guide the analyte ions into the mass spectrometer. After pH adjustment of the biofluid sample, the amphiphilic drugs were in the form of a water-insoluble oil, which could be concentrated on the liquid surface. By gentle heating of the sample to increase the evaporation rate, rapid and sensitive detection of these drugs in raw urine and serum samples could be achieved in less than 2 min for each sample. PMID:19125420

  7. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals.

    PubMed

    Polesel, Fabio; Plósz, Benedek Gy; Trapp, Stefan

    2015-11-01

    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation with freshwater or reclaimed wastewater. Recent research has shown the tendency for these substances to accumulate in food crops. In this study, we developed and applied a simulation tool to predict the fate of three ionizable trace chemicals (triclosan-TCS, furosemide-FUR, ciprofloxacin-CIP) from human consumption/excretion up to the accumulation in soil and plant, following field amendment with sewage sludge or irrigation with river water (assuming dilution of WWTP effluent). The simulation tool combines the SimpleTreat model modified for fate prediction of ionizable chemicals in a generic WWTP and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model parameters. Results obtained in this study suggest significant accumulation of TCS and CIP in sewage sludge (1.4-2.8 mg kgDW(-1)) as compared to FUR (0.02-0.11 mg kgDW(-1)). For the latter substance, more than half of the influent load (60.1%-72.5%) was estimated to be discharged via WWTP effluent. Specific emission rates (g ha(-1) a(-1)) of FUR to soil via either sludge application or irrigation were up to 300 times lower than for TCS and CIP. Nevertheless, high translocation potential to wheat was predicted for FUR, reaching concentrations up to 4.3 μg kgDW(-1) in grain. Irrigation was found to enhance the relative translocation of FUR to plant (45.3%-48.9% of emission to soil), as compared to sludge application (21.9%-27.6%). A comparison with peer-reviewed literature showed that model predictions were close to experimental data for elimination in WWTP, concentrations in sewage and sludge and bioconcentration factors (BCFs) in plant tissues, which showed however a large variability. The simulation tool presented here can thus be useful for priority setting and for the estimation of human exposure to trace chemicals via intake of food crops. PMID:26210033

  8. Fast Differential Analysis of Propolis Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Huang, Xue-yong; Guo, Xia-li; Luo, Huo-lin; Fang, Xiao-wei; Zhu, Teng-gao; Zhang, Xing-lei; Chen, Huan-wen; Luo, Li-ping

    2015-01-01

    Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis. PMID:26339245

  9. Demonstration of real-time monitoring of a photolithographic exposure process using chemical ionization mass spectrometry

    SciTech Connect

    Mowry, C.D.

    1998-02-01

    Silicon wafers are coated with photoresist and exposed to ultraviolet (UV) light in a laboratory to simulate typical conditions expected in an actual semiconductor manufacturing process tool. Air is drawn through the exposure chamber and analyzed using chemical ionization mass spectrometry (CI/MS). Species that evaporate or outgas from the wafer are thus detected. The purpose of such analyses is to determine the potential of CI/MS as a real-time process monitoring tool. Results demonstrate that CI/MS can remotely detect the products evolved before, during, and after wafer UV exposure; and that the quantity and type of products vary with the photoresist coated on the wafer. Such monitoring could provide semiconductor manufacturers benefits in quality control and process analysis. Tool and photoresist manufacturers could also realize benefits from this measurement technique with respect to new tool, method, or photoresist development. The benefits realized can lead to improved device yields and reduced product and development costs.

  10. Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1986-11-01

    Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated parent. Water CI provides for an approximately 200:1 selectivity of carbonyl species over alkanes. No reagent ions are detected above 55 amu, allowing species as small as acetone, propanal, acetic acid, and methyl formate to be identified. When deuterate water was used as the reagent, only the carboxylic acids and ..beta..-diketones showed significant H/D exchange. The use of water CI to identify carbonyl compounds in a wastewater from the supercritical water extraction of lignite coal, in lemon oil, and in whiskey volatiles is discussed.

  11. Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass.

    PubMed

    Jain, Shashank; Zahardis, James; Petrucci, Giuseppe A

    2014-05-01

    Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5 lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality. PMID:24666343

  12. Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS)

    NASA Astrophysics Data System (ADS)

    You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, A. B.; Madronich, S.; Sierra-Hernández, M. R.; Lawler, M.; Smith, J. N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, E. S.; Porcelli, L.; Brune, W. H.; Goldstein, A. H.; Lee, S.-H.

    2014-11-01

    We report measurements of ambient amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest and a moderately polluted midwestern site during the summer. At the forest site, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected, and they both showed temperature dependencies. Aerosol-phase amines measured thermal-desorption chemical ionization mass spectrometer (TDCIMS) showed a higher mass fraction in the evening with cooler temperatures and lower in the afternoon with warmer temperatures, a trend opposite to the gas-phase amines. Concentrations of aerosol-phase primary amines measured with Fourier transform infrared spectroscopy (FTIR) from micron and submicron particles were 2 orders of magnitude higher than the gas-phase amines. These results indicate that gas to particle conversion is one of the major processes that control the ambient amine concentrations at this forest site. Temperature dependencies of C3-amines and ammonia also imply reversible processes of evaporation of these nitrogen-containing compounds from soil surfaces in daytime and deposition to soil surfaces at nighttime. During the transported biomass burning plume events, various amines (C1-C6) appeared at the pptv level, indicating that biomass burning is a substantial source of amines in the southeastern US. At the moderately polluted Kent site, there were higher concentrations of C1- to C6-amines (pptv to tens of pptv) and ammonia (up to 6 ppbv). C1- to C3-amines and ammonia were well correlated with the ambient temperature. C4- to C6-amines showed frequent spikes during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Higher amine concentrations measured at the polluted site than at the rural forested site highlight the importance of constraining anthropogenic emission sources of amines.

  13. Kinetics of ion-molecule reactions with dimethyl methylphosphonate at 298 K for chemical ionization mass spectrometry detection of GX.

    PubMed

    Midey, Anthony J; Miller, Thomas M; Viggiano, A A

    2009-04-30

    Kinetics studies of a variety of positive and negative ions reacting with the GX surrogate, dimethyl methylphosphonate (DMMP), were performed. All protonated species reacted rapidly, that is, at the collision limit. The protonated reactant ions created from neutrals with proton affinities (PAs) less than or equal to the PA for ammonia reacted exclusively by nondissociative proton transfer. Hydrated H(3)O(+) ions also reacted rapidly by proton transfer, with 25% of the products from the second hydrate, H(3)O(+)(H(2)O)(2), forming the hydrated form of protonated DMMP. Both methylamine and triethylamine reacted exclusively by clustering. NO(+) also clustered with DMMP at about 70% of the collision rate constant. O(+) and O(2)(+) formed a variety of products in reactions with DMMP, with O(2)(+) forming the nondissociative charge transfer product about 50% of the time. On the other hand, many negative ions were less reactive, particularly, SF(5)(-), SF(6)(-), CO(3)(-), and NO(3)(-). However, F(-), O(-), and O(2)(-) all reacted rapidly to generate m/z = 109 amu anions (PO(3)C(2)H(6)(-)). In addition, product ions with m/z = 122 amu from H(2)(+) loss to form H(2)O were the dominant ions produced in the O(-) reaction. NO(2)(-) underwent a slow association reaction with DMMP at 0.4 Torr. G3(MP2) calculations of the ion energetics properties of DMMP, sarin, and soman were also performed. The calculated ionization potentials, proton affinities, and fluoride affinities were consistent with the trends in the measured kinetics and product ion branching ratios. The experimental results coupled with the calculated ion energetics helped to predict which ion chemistry would be most useful for trace detection of the actual chemical agents. PMID:19385679

  14. High-Resolution Hybrid Lithography with Negative Tone Chemically Amplified Resists

    NASA Astrophysics Data System (ADS)

    Landis, S.; Pauliac, S.; Saint-Pol, J.; Gourgon, C.; Akita, M.; Hanawa, R.; Suetsugu, M.

    2004-06-01

    We present in this paper the development of a hybrid lithographic process using negative tone chemically amplified resists. Starting with the Sumitomo commercial negative-tone chemically amplified resist NEB-33, experimental formulations have been developed to extend resolution below 30 nm in electron beam lithography. Thermal and infrared spectroscopy measurements were carried out to determine the macroscopic properties of samples. Electron beam lithography at 50 kV and 100 kV was performed to determine the ultimate resolution. Although they were first designed for electron beam lithography, deep ultra-violet exposures were carried out to develop a hybrid process. Post exposure bake effects on resist line widths and cross-sectional profiles were examined. As a result of process optimization, 20 nm isolated lines have been resolved using these new resists.

  15. UPTAKE AND ELIMINATION OF IONIZABLE ORGANIC CHEMICALS AT FISH GILLS: PART I. MODEL FORMULATION, PARAMETERIZATION, AND BEHAVIOR

    EPA Science Inventory

    Effects of pH and alkalinity on uptake and elimination of ionizable organic chemicals at the gills of large rainbow trout were studied. Increased pH reduced uptake rates of weakly-acidic chlorinated phenols and increased that of weakly-basic 3,4-dichlorobenzylamine, indicating gr...

  16. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    PubMed

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species. PMID:25765149

  17. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cody, Robert B.; Dane, A. John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  18. Chemical imaging of trichome specialized metabolites using contact printing and laser desorption/ionization mass spectrometry.

    PubMed

    Li, Chao; Wang, Zhenzhen; Jones, A Daniel

    2014-01-01

    Cell transfer by contact printing coupled with carbon-substrate-assisted laser desorption/ionization was used to directly profile and image secondary metabolites in trichomes on leaves of the wild tomato Solanum habrochaites. Major specialized metabolites, including acyl sugars, alkaloids, flavonoids, and terpenoid acids, were successfully detected in positive ion mode or negative ion mode, and in some cases in both modes. This simple solvent-free and matrix-free sample preparation for mass spectrometry imaging avoids tedious sample preparation steps, and high-spatial-resolution images were obtained. Metabolite profiles were generated for individual glandular trichomes from a single Solanum habrochaites leaf at a spatial resolution of around 50?m. Relative quantitative data from imaging experiments were validated by independent liquid chromatography-mass spectrometry analysis of subsamples from fresh plant material. The spatially resolved metabolite profiles of individual glands provided new information about the complexity of biosynthesis of specialized metabolites at the cellular-resolution scale. In addition, this technique offers a scheme capable of high-throughput profiling of metabolites in trichomes and irregularly shaped tissues and spatially discontinuous cells of a given cell type. PMID:24220760

  19. Alternately Pulsed Nano-electrospray Ionization/Atmospheric Pressure Chemical Ionization for Ion/Ion Reactions in an Electrodynamic Ion Trap

    PubMed Central

    Liang, Xiaorong; Xia, Yu; McLuckey, Scott A.

    2008-01-01

    The alternate operation of nano-electrospray ionization (nano-ESI) and atmospheric pressure chemical ionization (APCI), using a common atmosphere/vacuum interface and ion path, has been implemented to facilitate ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The ion sources are operated in opposite polarity modes whereby one of the ion sources is used to form analyte ions while the other is used to form reagent ions of opposite polarity. This combination of ion sources is well-suited to implementation of experiments involving multiply charged ions in reaction with singly charged ions of opposite polarity. Three analytically useful ion/ion reactions types are illustrated: the partial deprotonation of a multiply protonated protein, the partial protonation of a multiply deprotonated oligonucleotide, and electron transfer to a multiply protonated peptide. The approach described herein is attractive in that it enables both single proton transfer and single electron transfer ion/ion reaction experiments to be implemented without requiring major modifications to the tandem mass spectrometer hardware. Furthermore, a wide range of reactant ions can be formed with these ionization methods and the pulsed nature of operation appears to lead to no significant compromise in the performance of either ion source. PMID:16643016

  20. Ionization controls for biomineralization-inspired CO2 chemical looping at constant room temperature.

    PubMed

    Liu, Zhaoming; Hu, Yadong; Zhao, Hongqing; Wang, Yang; Xu, Xurong; Pan, Haihua; Tang, Ruikang

    2015-04-21

    Living organisms such as corals can carry out CO2 looping efficiently via biomineralization under ambient conditions. Inspired by this natural process, we establish a solution system of calcium acetate-ethanol-water (Ca(Ac)2-C2H5OH-H2O) for CO2 chemical looping at constant room temperature. The CO2 capture is achieved by its reaction with Ca(Ac)2 to form calcium carbonate (CaCO3) mineral and HAc in the binary solvent with a high C2H5OH content. However, an increase in the H2O content in the system triggers acetic acid (HAc)-induced CaCO3 dissolution to release CO2. The system can be recovered for CO2 capture readily by the replenishment of C2H5OH. This biomimetic mineralization-based CO2 capture/release is controlled by the ionization states of the electrolytes, and is precisely regulated in the C2H5OH-H2O binary solvent. Our attempt highlights the fundamental principle of solution chemistry in reaction control and provides a bioinspired strategy for CO2 capture/release with very low cost and easy availability. PMID:25787086

  1. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    PubMed

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115?m inner diameter and 12?mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41?ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1?mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5?l methanol were injected to the ion source. The limits of detection for five explosives with 50?pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x?=?2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT?-?H](-) (m/z 226), [TNT?-?NO](-) (m/z 197) and [TNT?-?NO?+?HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright 2015 John Wiley & Sons, Ltd. PMID:26149109

  2. Unusual atmospheric pressure chemical ionization conditions for detection of organic peroxides.

    PubMed

    Rondeau, David; Vogel, Ren; Tabet, Jean-Claude

    2003-09-01

    Organic peroxides such as the cumene hydroperoxide I (M(r) = 152 u), the di-tert-butyl peroxide II (M(r) = 146 u) and the tert-butyl peroxybenzoate III (M(r) = 194 u) were analyzed by atmospheric pressure chemical ionization mass spectrometry using a water-methanol mixture as solvent with a low flow-rate of mobile phase and unusual conditions of the source temperature (< or =50 degrees C) and probe temperature (70-200 degrees C). The mass spectra of these compounds show the formation of (i) an [M + H](+) ion (m/z 153) for the hydroperoxide I, (ii) a stable adduct [M + CH(3)OH(2)](+) ion (m/z 179) for the dialkyl peroxide II and (iii) several protonated adduct species such as protonated molecules (m/z 195) and different protonated adduct ions (m/z 227, 389 and 421) for the peroxyester III. Tandem mass spectrometric experiments, exact mass measurements and theoretical calculations were performed for characterize these gas-phase ionic species. Using the double-well energy potential model illustrating a gas-phase bimolecular reaction, three important factors are taken into account to propose a qualitative interpretation of peroxide behavior toward the CH(3)OH(2) (+), i.e. thermochemical parameters (DeltaHdegrees(reaction)) and two kinetic factors such as the capture constant of the initial stable ion-dipole and the magnitude of the rate constant of proton transfer reaction into the loose proton bond cluster. PMID:14505320

  3. Document authentication at molecular levels using desorption atmospheric pressure chemical ionization mass spectrometry imaging.

    PubMed

    Li, Ming; Jia, Bin; Ding, Liying; Hong, Feng; Ouyang, Yongzhong; Chen, Rui; Zhou, Shumin; Chen, Huanwen; Fang, Xiang

    2013-09-01

    Molecular images of documents were obtained by sequentially scanning the surface of the document using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS), which was operated in either a gasless, solvent-free or methanol vapor-assisted mode. The decay process of the ink used for handwriting was monitored by following the signal intensities recorded by DAPCI-MS. Handwritings made using four types of inks on four kinds of paper surfaces were tested. By studying the dynamic decay of the inks, DAPCI-MS imaging differentiated a 10-min old from two 4 h old samples. Non-destructive forensic analysis of forged signatures either handwritten or computer-assisted was achieved according to the difference of the contour in DAPCI images, which was attributed to the strength personalized by different writers. Distinction of the order of writing/stamping on documents and detection of illegal printings were accomplished with a spatial resolution of about 140 m. A Matlab written program was developed to facilitate the visualization of the similarity between signature images obtained by DAPCI-MS. The experimental results show that DAPCI-MS imaging provides rich information at the molecular level and thus can be used for the reliable document analysis in forensic applications. PMID:24078245

  4. Modeling the Charging of Highly Oxidized Cyclohexene Ozonolysis Products Using Nitrate-Based Chemical Ionization.

    PubMed

    Hyttinen, Noora; Kupiainen-Mtt, Oona; Rissanen, Matti P; Muuronen, Mikko; Ehn, Mikael; Kurtn, Theo

    2015-06-18

    Several extremely low volatility organic compounds (ELVOCs) formed in the ozonolysis of endocyclic alkenes have recently been detected in laboratory and field studies. These experiments have been carried out with chemical ionization atmospheric pressure interface time-of-flight mass spectrometers (CI-APi-TOF) with nitrate ions as reagent ions. The nitrate ion binds to the detected species through hydrogen bonds, but it also binds very strongly to one or two neutral nitric acid molecules. This makes the measurement highly selective when there is an excess amount of neutral nitric acid in the instrument. In this work, we used quantum-chemical methods to calculate the binding energies between a nitrate ion and several highly oxidized ozonolysis products of cyclohexene. These were then compared with the binding energies of nitrate ion-nitric acid clusters. Systematic configurational sampling of the molecules and clusters was carried out at the B3LYP/6-31+G* and ?B97xD/aug-cc-pVTZ levels, and the final single-point energies were calculated with DLPNO-CCSD(T)/def2-QZVPP. The binding energies were used in a kinetic simulation of the measurement system to determine the relative ratios of the detected signals. Our results indicate that at least two hydrogen bond donor functional groups (in this case, hydroperoxide, OOH) are needed for an ELVOC molecule to be detected in a nitrate ion CI-APi-TOF. Also, a double bond in the carbon backbone makes the nitrate cluster formation less favorable. PMID:26023711

  5. Determination of coplanar and non-coplanar polychlorinated biphenyls in human serum by gas chromatography with mass spectrometric detection: electron impact or electron-capture negative ionization?

    PubMed

    Turci, Roberta; Bruno, Franco; Minoia, Claudio

    2003-01-01

    A time- and cost-saving method for the congener-specific analysis of polychlorinated biphenyls (PCBs) in human serum has been developed and validated. After two fast extraction and clean-up steps, analyses were performed using gas chromatography coupled with mass spectrometry with single ion monitoring (GC/SIM-MS), either in electron impact (EI) or electron-capture negative ionization (ECNI) mode. For the determination of dioxin-like congeners, an improvement in EI-MS sensitivity is desirable and use of NI is thus preferred. The procedure was validated for 12 dioxin-like congeners by analyzing spiked samples on three different days and using (13)C(12)-labelled analogues as internal standards. When using an NCI source, the limit of quantification was assessed at 0.01 microg/L, except for PCBs #77 and #81, which cannot be reliably detected below 0.05 microg/L. For the lower chlorinated non-dioxin-like congeners, NI offers less selectivity because of limited fragmentation. Electron impact ionization and electron-capture negative ionization mode can therefore be considered to be complementary for the determination of PCB congeners in the general population. PMID:12876689

  6. Herbert P. Broida Prize Lecture: Probing chemical dynamics with negative ion photodetachment

    NASA Astrophysics Data System (ADS)

    Neumark, Daniel

    2013-03-01

    Photoelectron spectroscopy and its variants have been used in our laboratory to study diverse phenomena in chemical dynamics, including transition state spectroscopy, the electronic and vibrational spectroscopy of clusters, the photodissociation of reactive free radicals, hydrated electron dynamics in clusters and liquid jets, and the ultrafast dynamics of helium nanodroplets. This talk will focus on two examples of this type of work: slow electron velocity map imaging (SEVI) of trapped and cooled negative ions, and time-resolved photoelectron spectroscopy (TRPES) of negative ions. SEVI of cold ions represents a powerful means of performing high resolution photoelectron spectroscopy on complex species. Time-resolved radiation chemistry in nucleobases will be carried out with TRPES. In this work, starting with iodide-nucleobase complexes, we inject electrons into low-lying unoccupied orbitals of the nucleobase and follow the ensuing dynamics.

  7. Bake condition effect on hybrid lithography process for negative-tone chemically amplified resists

    NASA Astrophysics Data System (ADS)

    Pain, Laurent; Sala, F.; Higgins, C.; Dal'zotto, B.; Tedesco, Serge V.

    2000-06-01

    This paper presents the process optimization study of negative tone Chemically Amplified Resists (CAR) under E-Beam exposure. The importance of post apply bake temperature choice on resolution is underlined. The process study determines the process window in which optimal conditions of both post apply and post exposure bake steps are defined and present a method to define more precisely the thermal cross-linking onset. Finally lithographic performances of CARs are studied and we show that resolution can be pushed down to 40 nm.

  8. Negative-tone block copolymer lithography by in situ surface chemical modification.

    PubMed

    Kim, Bong Hoon; Byeon, Kyeong-Jae; Kim, Ju Young; Kim, Jinseung; Jin, Hyeong Min; Cho, Joong-Yeon; Jeong, Seong-Jun; Shin, Jonghwa; Lee, Heon; Kim, Sang Ouk

    2014-10-29

    Negative-tone block copolymer (BCP) lithography based on in situ surface chemical modification is introduced as a highly efficient, versatile self-assembled nanopatterning. BCP blends films consisting of end-functionalized low molecular weight poly(styrene-ran-methyl methacrylate) and polystyrene-block-Poly(methyl methacylate) can produce surface vertical BCP nanodomains on various substrates without prior surface chemical treatment. Simple oxygen plasma treatment is employed to activate surface functional group formation at various substrates, where the end-functionalized polymers can be covalently bonded during the thermal annealing of BCP thin films. The covalently bonded brush layer mediates neutral interfacial condition for vertical BCP nanodomain alignment. This straightforward approach for high aspect ratio, vertical self-assembled nanodomain formation facilitates single step, site-specific BCP nanopatterning widely useful for various substrates. Moreover, this approach is compatible with directed self-assembly approaches to produce device oriented laterally ordered nanopatterns. PMID:24912807

  9. Estrogen mimics induce genes encoding chemical efflux proteins in gram-negative bacteria.

    PubMed

    Li, Xinhua; Teske, Sondra; Conroy-Ben, Otakuye

    2015-06-01

    Escherichia coli and Pseudomonas aeruginosa are gram-negative bacteria found in wastewater and biosolids. Spanning the inner and outer membrane are resistance-nodulation-cell division superfamily (RND) efflux pumps responsible for detoxification of the cell, typically in response to antibiotics and other toxicity inducing substrates. Here, we show that estrogenic endocrine disruptors, common wastewater pollutants, induce genes encoding chemical efflux proteins. Bacteria were exposed to environmental concentrations of the synthetic estrogen 17?-ethynylestradiol, the surfactant nonylphenol, and the plasticizer bisphenol-A, and analyzed for RND gene expression via q-PCR. Results showed that the genes acrB and yhiV were over-expressed in response to the three chemicals in E. coli, and support previous findings that these two transporters export hormones. P. aeruginosa contains 12 RND efflux pumps, which were differentially expressed in response to the three chemicals: 17?-ethynylestradiol, bisphenol-A, and nonylphenol up-regulated mexD and mexF, while nonylphenol and bisphenol-A positively affected transcription of mexK, mexW, and triC. Gene expression via q-PCR of RND genes may be used to predict the interaction of estrogen mimics with RND genes. One bacterial response to estrogen mimic exposure is to induce gene expression of chemical efflux proteins, which leads to the expulsion of the contaminant from the cell. PMID:25754012

  10. Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Lin, Guo; Tang, Zhi; Yang, Xueqing; Cai, Zongwei

    2015-08-01

    Ultrathin graphitic carbon nitride (g-C3N4) nanosheets served as a novel matrix for the detection of small molecules by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was described for the first time. In comparison with conventional organic matrices and graphene matrix, the use of g-C3N4 nanosheet matrix showed free matrix background interference and increased signal intensity in the analysis of amino acids, nucleobases, peptides, bisphenols (BPs), and nitropolycyclic aromatic hydrocarbons (nitro-PAHs). A systematic comparison of g-C3N4 nanosheets with positive and negative ion modes revealed that mass spectra produced by g-C3N4 nanosheets in negative ion mode were featured by singly deprotonated ion without matrix interference, which was rather different from the complicated alkali metal complexes in positive ion mode. Good salt tolerance and reproducibility allowed the determination of 1-nitropyrene (1-NP) in sewage, and its corresponding detection limit was lowered to 1 pmol. In addition, the ionization mechanism of the g-C3N4 nanosheets as matrix was also discussed. The work expands its application scope of g-C3N4 nanosheets and provides an alternative approach for small molecules. PMID:26171593

  11. Atmospheric amines and ammonia measured with a Chemical Ionization Mass Spectrometer (CIMS)

    NASA Astrophysics Data System (ADS)

    You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, A. B.; Madronich, S.; Sierra-Hernández, M. R.; Lawler, M.; Smith, J. N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, E. S.; Porcelli, L.; Brune, W. H.; Goldstein, A. H.; Lee, S.-H.

    2014-06-01

    We report ambient measurements of amines and ammonia with a~fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest in Alabama and a~moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast US. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.

  12. Miniature chemical ionization mass spectrometer for light aircraft measurements of tropospheric ammonia

    NASA Astrophysics Data System (ADS)

    Silver, J. A.; Bomse, D. S.; Massick, S. M.; Zondlo, M. A.

    2003-12-01

    Tropospheric ammonia plays important roles in the nucleation, growth, composition, and chemistry of aerosol particles. Unfortunately, high frequency and sensitive measurements of gas phase ammonia are lacking in most airborne-based field campaigns. Chemical ionization mass spectrometers (CIMS) have shown great promise for ammonia measurements, but CIMS instruments typically consume large amounts of power, are highly labor intensive, and are very heavy for most airborne platforms. These characteristics of CIMS instruments severely limit their potential deployment on smaller and lighter aircraft, despite the strong desire for ammonia measurements in atmospheric chemistry field campaigns. To this end, a CIMS ammonia instrument for light aircraft is being developed using a double-focusing, miniature mass spectrometer. The size of the mass spectrometer, comparable to a small apple, allows for higher operating pressures (0.1 mTorr) and lower pumping requirements. Power usage, including pumps and electronics, is estimated to be around 300 W, and the overall instrument including pumps, electronics, and permeation cells is expected to be about the size of a small monitor. The ion source uses americium-241 to generate protonated water ions which proton transfer to form ammonium ions. The ion source is made with commercially available ion optics to minimize machining costs. Mass spectra over its working range (~ 5-120 amu) are well represented by Gaussian shaped peaks. By examining the peak widths as a function of mass location, the resolution of the instrument was determined experimentally to be around 110 (m/delta m). The sensitivity, selectivity, power requirements, size, and performance characteristics of the miniature mass spectrometer will be described along with the possibilities for CIMS measurements on light aircraft.

  13. Atmospheric Amines and Ammonia Measured with a Chemical Ionization Mass Spectrometer (CIMS)

    SciTech Connect

    You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, Alex B.; Madronich, Sasha; Sierra-Hernandez, M. R.; Lawler, M.; Smith, James N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, Eric S.; Porcelli, L.; Brune, W. H.; Goldstein, Allen H.; Lee, S.-H

    2014-11-19

    We report ambient measurements of amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a Southeastern U.S. forest in Alabama and a moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast U.S. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.

  14. Identification and Characterization of the Major Chemical Constituents in Fructus Akebiae by High-Performance Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight Mass Spectrometry.

    PubMed

    Ling, Yun; Zhang, Qing; Zhu, Dan-Dan; Chen, Fei; Kong, Xiu-Hua; Liao, Liang

    2016-02-01

    Fructus Akebiae (FA), the dry fruit of Akebia quinata (THUNB.) DECNE., possesses potent antidepressant properties. Owing to the structural complexity, high polarity and thermal lability in plants, it is difficult and time-consuming to analyze the major chemical constituents by traditional strategies that involve extraction, isolation, purification and identification by chemical manipulations and spectroscopic methods. In this study, a high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS-MS) method was established for quickly identifying the chemical constituents in the extract of Fructus Akebiae. The main saponin components in the extract of Fructus Akebiae were detected with the HPLC-ESI-Q-TOF-MS-MS in negative-ion mode. These components were further analyzed by MS(2) spectra, and compared with the corresponding reference substances and literature data. Nineteen saponins in the extract of Fructus Akebiae were well separated in one run. The new method is accurate and rapid. It can be used to identify the main chemical constituents in the extract of Fructus Akebiae and can be suitable for the quality control of Fructus Akebiae. PMID:26311648

  15. Hydrogen radical removal causes complex overlapping isotope patterns of aromatic carboxylic acids in negative-ion matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Yamagaki, Tohru; Watanabe, Takehiro

    2012-01-01

    We studied the ionization process of aromatic carboxylic acids, including ones with or without hydroxy groups in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), because many natural products, metabolites, and drags contain those structural units. In the actual experimental data, benzoic acid was ionized as only deprotonated molecule [M-H](-). In contrast, both of negative molecular ion M(-) and deprotonated molecule [M-H](-) were generated from 2-naphthoic acid and 2-anthracenecarboxylic acid, and the ratio of negative molecular ion to deprotonated molecule M(-)/[M-H](-) was increased in 2-anthracenecarboxylic acid. In addition, the ratio of 2-anthracenecarboxylic acid was much higher than those of 1- and 9-anthracenecarboxylic acids among the three isomers. Therefore, 2-substitution induced the generation of the negative molecular ion M(-), which can made us prediction of the substituted positions from their overlapping peak isotope patterns. 2,5-Dihydroxybenzoic acid (2,5-DHBA) showed two deprotonated molecules, [M-H](-) and [M-H*-H](-), which was generated from a neutral hydrogen radical (H*) removal from a phenolic hydroxy group. The deprotonated molecule [M-H*-H](-) of 2,5-DHBA was the most abundant among six DHBAs and three hydroxybenzoic acids (hBAs). This observation raises the possibility that such a property of 2,5-DHBA could be a clue to explain its highest efficiency as a MALDI matrix. The order of the hydrogen radical removal from the phenolic hydroxy groups was the 3-<4-?5-positions in the DHBAs, and the 3-<4-positions in hBAs. We can distinguish among six DHBA isomers and three hBA isomers from their spectral pattern around the deprotonated molecules [M-H*-H](-) and [M-H](-). The intra-molecular hydrogen bonding between 1-carboxy and 2-hydroxy groups was an important factor in hydrogen radical removal in the hydroxylbenzoic acids and dihydroxybenzoic acids. PMID:24349906

  16. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  17. The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Lpez-Snchez, . R.; Mesa-Delgado, A.; Lpez-Martn, L.; Esteban, C.

    2011-03-01

    We present results from integral field spectroscopy with the Potsdam Multi-Aperture Spectrograph at the 3.5-m telescope at Calar Alto Observatory of the intense star-forming region [HL90] 111 at the centre of the starburst galaxy IC 10. We have obtained maps with a spatial sampling of 1 1 arcsec2= 3.9 3.9 pc2 of different emission lines and analysed the extinction, physical conditions, nature of the ionization and chemical abundances of the ionized gas, as well determined locally the age of the most recent star formation event. By defining several apertures, we study the main integrated properties of some regions within [HL90] 111. Two contiguous spaxels show an unambiguous detection of the broad He II?4686 emission line, this feature seems to be produced by a single late-type WN star. We also report a probable N and He enrichment in the precise spaxels where the Wolf-Rayet (WR) features are detected. The enrichment pattern is roughly consistent with that expected for the pollution of the ejecta of a single or a very small number of WR stars. Furthermore, this chemical pollution is very localized (2 arcsec 7.8 pc) and it should be difficult to detect in star-forming galaxies beyond the Local Volume. We also discuss the use of the most common empirical calibrations to estimate the oxygen abundances of the ionized gas in nearby galaxies from 2D spectroscopic data. The ionization degree of the gas plays an important role when applying these empirical methods, as they tend to give lower oxygen abundances with increasing ionization degree. Based on observations collected at the Centro Astrnomico Hispano Alemn (CAHA) at Calar Alto, operated jointly by the Max-Plank Institut fr Astronomie and the Instituto de Astrofsica de Andaluca (CSIC).Visiting Astronomer at the Instituto de Astrofsica de Canarias.

  18. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    PubMed

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples. PMID:24492411

  19. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman, tabun and nitrogen mustards were higher. Some CWA simulants and organic solvents gave the ion peaks eluting at the similar positions of the CWAs, resulting in false positive alarms. PMID:25732583

  20. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    PubMed

    Sales, Carlos; Portols, Tania; Sancho, Juan Vicente; Abad, Esteban; balos, Manuela; Saul, Jordi; Fiedler, Heidelore; Gmara, Beln; Beltrn, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1pg/?L to 100pg/?L for the total HBCD concentration; instrumental detection limit was estimated to be 0.10pg/?L; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. PMID:26554601

  1. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    PubMed

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ?. PMID:26438128

  2. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Shuman, Nicholas S; Pedder, Randall E; Taormina, Christopher R; Viggiano, Albert A

    2015-08-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H3O(+), but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re(+) with O2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re2(2+) is found to charge transfer with O2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba(+), which is reacted with N2O to create BaO(+), and we find a rate constant that agrees with the literature. PMID:26329209

  3. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    NASA Astrophysics Data System (ADS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Pedder, Randall E.; Taormina, Christopher R.; Viggiano, Albert A.

    2015-08-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H3O+, but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re+ with O2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re22+ is found to charge transfer with O2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba+, which is reacted with N2O to create BaO+, and we find a rate constant that agrees with the literature.

  4. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Stephens, Edward R.; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A.

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques.

  5. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Stephens, Edward R.; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A.

    2015-10-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques.

  6. Sub-20nm lithography negative tone chemically amplified resists using cross-linker additives

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Prashant K.; Maruyama, Ken; Kiani, Sara; Dhuey, Scott; Perera, Pradeep; Blackwell, James; Olynick, Deirdre; Ashby, Paul D.

    2013-03-01

    Here, we report the highest recorded resolution for a negative-tone, carbon-based, chemically amplified (CA) resist of 20 nm half-pitch (HP) using both E-beam and EUV exposure systems. The new chemistry incorporates variable amounts of oxetane (0, 5, 10 and 20%) cross-linker into a base of Noria-MAd (methyl-admantane) molecular resist. Cross-linkable resists showed simultaneous improvements in surface energy, structural integrity, and swelling to ensure collapse free 20nm HP patterns and line-edge roughness (LER) down to 2.3 nm. EUV exposed Noria-Ox (5%) cross-linked resist patterns demonstrated 5 times improvement in Z-factor (for 24 nm HP) over Noria-MAd alone.

  7. Optimization of fullerene-based negative tone chemically amplified fullerene resist for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Frommhold, A.; Yang, D. X.; McClelland, A.; Xue, X.; Ekinci, Y.; Palmer, R. E.; Robinson, A. P. G.

    2014-03-01

    While the technological progress of Next Generation Lithography (NGL) steadily continues, further progress is required before successful insertion in high volume manufacturing is possible. A key issue is the development of new resists suitable to achieve higher lithographic resolution with acceptable sensitivity and line edge roughness. Molecular resists have been a primary focus of interest for NGL because they promise high resolution and small line edge roughness (LER), but no suitable resist candidate has emerged yet that fulfills all of the industry's criteria. We have previously shown first extreme ultraviolet lithography (EUVL) exposures for a new fullerene derivative based three-component negative tone chemically amplified resist with suitable properties close to or within the target range of the resist metrics as set out in the International Technology Roadmap for Semiconductors for 2016. Here we present the results of our efforts to optimize the EUVL performance of our resist system especially with regards to LER.

  8. Negative Magnetoresistance of Indium Tin Oxide Nanoparticle Thin Films Grown by Chemical Thermolysis

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Yoshida, Kota; Higaki, Tomohiro; Kimura, Yuta; Nakamoto, Masami; Kashiwagi, Yukiyasu; Yamamoto, Mari; Saitoh, Masashi; Ohno, Toshinobu; Furuta, Shinya

    2013-02-01

    To clarify the electrical transport properties of nanostructured thin films, tin-doped indium oxide (ITO) nanoparticle (NP) solution-processed films were fabricated. An air-atmosphere, simple chemical thermolysis method was used to grow the ITO NPs, and the structural and electrical properties of spin-coated granular ITO NP films were investigated. X-ray diffraction measurements showed clear observation of the cubic indium oxide (222) diffraction peak, and films with a smaller Sn concentration were shown to have a better crystalline quality. We further explored the physical origin of the sign of the magnetoresistance (MR) in the variable-range hopping (VRH) region. A negative MR under a magnetic field perpendicular to the film surface increases with decreasing Sn concentration, and these results can be explained by the forward interference model in the VRH region. A larger negative MR is attributed to longer localization and hopping lengths, and better crystallinity. Thus, ITO NP thin films produced by this method are attractive candidates for oxide-based diluted magnetic semiconductors and other electronic devices.

  9. High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer.

    PubMed

    Grimaudo, Valentine; Moreno-Garca, Pavel; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-02-17

    High-resolution chemical depth profiling measurements of copper films are presented. The 10 ?m thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (? ? 190 fs, ? = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ?10 ppb, high dynamic range ?10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research. PMID:25642789

  10. Ion Yields in the Coupled Chemical and Physical Dynamics Model of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Knochenmuss, Richard

    2015-08-01

    The Coupled Chemical and Physical Dynamics (CPCD) model of matrix assisted laser desorption ionization has been restricted to relative rather than absolute yield comparisons because the rate constant for one step in the model was not accurately known. Recent measurements are used to constrain this constant, leading to good agreement with experimental yield versus fluence data for 2,5-dihydroxybenzoic acid. Parameters for alpha-cyano-4-hydroxycinnamic acid are also estimated, including contributions from a possible triplet state. The results are compared with the polar fluid model, the CPCD is found to give better agreement with the data.

  11. Chemical shrink materials and process for negative tone development (NTD) resist

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshihiro; Sagan, John; Padmanaban, Munirathna; Pawlowski, Georg; Nagahara, Tatsuro

    2014-03-01

    Negative tone shrink materials (NSM) suitable for resolution enhancement of negative tone development (NTD) 193nm immersion resists have been developed. While this technology is being applied to integrated circuits (IC) manufacturing, reduction of shrink differences between isolated and dense (ID) CDs also called as shrink ID bias is the challenge to meet wide-spread applications. In this paper, we present the effects of resist thermal flow, proximity effects of DUV exposure, flood exposure of after developed image (ADI) on the NSM shrink. High mixing bake (MB) temperature (example 170°C) during the shrink process resulted in increased resist thermal flow leading to worse shrink ID bias of 3.5 nm. As different pitch pattern has different proximity effect and matching with illumination condition, uneven dose is expected on them. These differences in dose required to obtain same through pitch (1:X, X-1, 1.5, 2, 3, 5) CD was assigned as the cause for shrink ID bias as the de-protection chemistry is related to dose which affects the shrink amount. This was further confirmed by flood exposure of after developed image (ADI) which reduced shrink ID bias from 3.5 nm to 1.8 nm. We concluded that the flood exposure makes the ADIs of the resist chemically uniform thereby minimizing shrink ID bias. Based on these studies, a mechanism for shrink ID bias is proposed. A modified NSM with 1.2 nm shrink ID bias has been developed without the need for the flood exposure.

  12. No-discharge atmospheric pressure chemical ionization: evaluation and application to the analysis of animal drug residues in complex matrices.

    PubMed

    Turnipseed, Sherri B; Andersen, Wendy C; Karbiwnyk, Christine M; Roybal, José E; Miller, Keith E

    2006-01-01

    Alternative ionization methods are increasingly being utilized to increase the versatility and selectivity of liquid chromatography/mass spectrometry (LC/MS). One such technique is the practice of using commercially available atmospheric pressure chemical ionization (APCI) sources with the corona discharge turned off, a process termed no-discharge APCI (ND-APCI). The relative LC/MS responses for several different classes of veterinary drugs were obtained by using ND-APCI, electrospray ionization (ESI), and APCI. While the ND-APCI-MS and -MSn spectra for these compounds were comparable with ESI, ND-APCI provided advantages in sensitivity and selectivity for some compounds. Drugs that were charged in solution as cations or sodium adducts responded particularly well with this technique. Instrumental parameters such as temperatures, gas and liquid flow rates, and source design were investigated to determine their effect on the process of ND-APCI. This paper explores advantages of using ND-APCI for the determination and confirmation of drug residues that might be found in food matrices, including malachite green residues in fish tissue and avermectin residues in milk. PMID:16541409

  13. Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography-tandem mass spectrometry.

    PubMed

    Wick, Arne; Fink, Guido; Ternes, Thomas A

    2010-04-01

    This paper describes the development of a multi-residue method for the determination of 36 emerging organic pollutants (26 biocides, 5 UV-filters and 5 benzothiazoles) in raw and treated wastewater, activated sludge and surface water using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The target analytes were enriched from water samples adjusted to pH 6 by solid-phase extraction (SPE) on Oasis HLB 200mg cartridges and eluted with a mixture of methanol and acetone (60/40, v/v). Extraction of freeze-dried sludge samples was accomplished by pressurized liquid extraction (PLE) using a mixture of methanol and water (50/50, v/v) as extraction solvent followed by SPE. LC-tandem MS detection was compared using electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in positive and negative ionization mode. ESI exhibited strong ion suppression for most target analytes, while APCI was generally less susceptible to ion suppression but partially leading to ion enhancement of up to a factor of 10. In general, matrix effects could be compensated using stable isotope-labeled surrogate standards, indicated by relative recoveries ranging from 70% to 130%. In wastewater, activated sludge and surface water up to 33 analytes were detected. Maximum concentrations up to 5.1 and 3.9mugL(-1) were found in raw wastewater for the water-soluble UV-filters benzophenone-4 (BZP-4) and phenylbenz-imidazole sulfonic acid (PBSA), respectively. For the first time, the anti-dandruff climbazole was detected in raw wastewater and in activated sludge with concentrations as high as 1.4 microg L(-1) and 1.2 microg gTSS(-1), respectively. Activated sludge is obviously a sink for four benzothiazoles and two isothiazolones, as concentrations were detected in activated sludge between 120 ng gTSS(-1) (2-n-octyl-4-isothiazolin-3-one, OIT) to 330 ng gTSS(-1) (benzothiazole-2-sulfonic acid, BTSA). PMID:20202641

  14. Experts workshop on the ecotoxicological risk assessment of ionizable organic chemicals: Towards a science-based framework for chemical assessment

    EPA Science Inventory

    There is a growing need to develop analytical methods and tools that can be applied to assess the environmental risks associated with charged, polar, and ionisable organic chemicals, such as those used as active pharmaceutical ingredients, biocides, and surface active chemicals. ...

  15. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    SciTech Connect

    Sodha, M. S.; Mishra, S. K.

    2011-04-15

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  16. Oligonucleotide covalent modifications by estrogen quinones evidenced by use of liquid chromatography coupled to negative electrospray ionization tandem mass spectrometry.

    PubMed

    Debrauwer, L; Rathahao, E; Couve, C; Poulain, S; Pouyet, C; Jouanin, I; Paris, A

    2002-11-01

    Liquid chromatography coupled to tandem mass spectrometry has been used for the detection and the structural characterization of T-rich model oligonucleotides covalently modified by estradiol-2,3-quinone. After separation by gradient elution, adducts were analyzed by negative electrospray mass spectrometry, enabling to evidence and localize the modifications in the oligonucleotide sequence. Modifications by one molecule of estrogen were evidenced on purines (A, G) whereas no reaction was observed on pyrimidic bases (T). Isomeric adducts were differentiated using tandem mass spectrometry, and energy resolved mass spectrometry allowed to underline differences in the behavior of the adducts towards collisional excitation into an ion trap device. PMID:12462603

  17. Scanning Diode Laser Desorption Thin-Layer Chromatography Coupled with Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Song; Ahlmann, Norman; Edler, Michael; Franzke, Joachim

    Continuous wave diode laser is applied for desorption of an analyte from a porous surface of a thin-layer plate covered with a graphite suspension. The thermally desorbed analyte molecules are ionized in the gas phase by a corona discharge at atmospheric pressure. Therefore, both essential processes - the desorption and the ionization of analyte molecules, which are often performed in one step - are separated. Reserpine was chosen as model analyte, which is often used for specification of mass spectrometers. No fragmentation was observed because of efficient collisional cooling under atmospheric pressure. The influence of diode laser power and the composition of the graphite suspension were investigated, and a primary optimization was performed. An interface to allow online qualitative and quantitative full plate detection and analysis of compounds separated by thin-layer chromatography is presented.

  18. Synergistic effect of ionizing radiation on chemical disinfectant treatments for reduction of natural microflora on seafood

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjoo; Ha, Ji-Hyoung; Lee, Ju-Woon; Jo, Cheorun; Ha, Sang-Do

    2012-08-01

    The purpose of this study was to determine whether combined treatments would produce synergistic disinfection effects on seafood products such as mussel and squid compared with single treatments. We investigated the bactericidal effects of chlorine and ionizing radiation on the natural microflora of mussel and squid. Total aerobic bacteria initially ranged from 102 to 104 Log CFU/g. More than 100 ppm of chlorine and irradiation at 1 kGy were sufficient to reduce the total aerobic bacteria on mussel and squid to a level lower than detection limit (10 CFU/g). Synergistic effects against natural microflora were observed for all combined treatment. These results suggest that a significant synergistic benefit results from combine chlorine-ionizing radiation treatment against natural microflora on mussel and squid.

  19. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  20. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.

    PubMed

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons' law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models. PMID:23064494

  1. Acid diffusion in a chemically amplified negative i-line photoresist

    NASA Astrophysics Data System (ADS)

    Connolly, Judy; Chen, K. Rex; Kwong, Ranee W.; Lawson, Margaret C.; Linehan, Leo L.; Moreau, Wayne M.

    1998-06-01

    One of the major factors which determines the success of resist photochemistry is acid diffusion. Inadequate or excess diffusion can cause undesirable resist profiles, limit resolution and adversely impact process windows. Both formulation and process parameters effect acid diffusion. Formulation factors include such things as intrinsic properties of the acid, resin, and solvent. The process parameters which effect acid diffusion are mainly exposure dose, post-apply (PAB) and post-exposure bake (PEB). A practical study has been conducted which investigates the effect of PAB and PEB times and temperatures on acid diffusion in a chemically amplified negative i-line photoresist. Acid diffusion was measured by determining the change in linewidth of an isolated resist line. The goal of the study was to maximize acid diffusion through PAB and PEB conditions with minimal impact on profile quality and process windows. Maximum acid diffusion was required to combat a minimum light intensity at the surface of oxide wafers. Data on quantifying acid diffusion through linewidth change, maximizing acid diffusion at low light intensities as well as the role of the resist formulation will be discussed.

  2. Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants

    NASA Astrophysics Data System (ADS)

    Adlem, K.; ?opi?, M.; Luckhurst, G. R.; Mertelj, A.; Parri, O.; Richardson, R. M.; Snow, B. D.; Timimi, B. A.; Tuffin, R. P.; Wilkes, D.

    2013-08-01

    Here we report the chemical induction of the twist-bend nematic phase in a nematic mixture of ether-linked liquid crystal dimers by the addition of a dimer with methylene links; all dimers have an odd number of groups in the spacer connecting the two mesogenic groups. The twist-bend phase has been identified from its optical texture and x-ray scattering pattern as well as NMR spectroscopy, which demonstrates the phase chirality. Theory predicts that the key macroscopic property required for the stability of this chiral phase formed from achiral molecules is for the bend elastic constant to tend to be negative; in addition the twist elastic constant should be smaller than half the splay elastic constant. To test these important aspects of the prediction we have measured the bend and splay elastic constants in the nematic phase preceding the twist-bend nematic using the classic Frederiks methodology and all three elastic constants employing the dynamic light scattering approach. Our results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition.

  3. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    PubMed

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-01

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials. PMID:25864730

  4. Chemical abundances and ionization in sub-Damped Lyman-alpha absorbers at z < 1.5

    NASA Astrophysics Data System (ADS)

    Meiring, Joseph D.

    2008-06-01

    The chemical composition of galaxies provide important clues into galaxy formation and evolution. Quasar (QSO) absorption line systems offer a unique window into the high redshift Universe and the properties of normal galaxies at high redshift. QSO absorbers have long been used to study distant galaxies and the intergalactic medium (IGM). The Damped Lyman-a systems (DLAs), with neutral Hydrogen column densities of log N H I > 20.3, and sub-Damped Lyman-a systems (sub-DLAs) with 19.0 < log N H I < 20.3 contain the majority of the neutral gas in the Universe at high redshift, probe metallicities over ~90% of the cosmic history, and are believed to be the progenitors of modern day galaxies. Models of the chemical evolution of galaxies predict that the mean metallicity of galaxies should reach a solar value by z ~ 0 due to the ongoing cycles of star formation which enrich the galaxy with heavy elements. The DLA systems which have been the preferred class of absorbers for these investigations however appear to be metal poor at all redshifts, and show little evolution in their metallicity, contradicting the models of chemical evolution, the "missing metals problem". We have amassed a sample of 32 sub-DLAs and 3 DLAS at z abs < 1.5 using the 6.5m Magellan II telescope with the MIKE spectrograph, and the 8.2m VLT-Kueyen telescope with the UVES spectrograph to study the properties of these systems and determine their metal content. We have measured the absorption lines of multiple lines in these systems and determined column densities and abundances. We have also created grids of photoionization models using CLOUDY to determine the effects of ionization in these systems. Although the gas is largely ionized, the abundances appear not to require significant ionization corrections. We find that the sub-DLAs, especially at low z are more metal rich than the DLA systems, with [Zn/H] subDLA = -0.30 0.15 and [Zn/H] DLA = -0.94 0.11. These systems appear to contain ~ 40 - 75% of the comoving mass density of metals that is seen in DLAs, [Special characters omitted.] ~ (4 - 11) 10^-7 , dependent on the ionization. Kinematically, the sub-DLAs from this sample have larger velocity widths than the DLAs, perhaps implying that they arise in more massive galaxies with deeper potential wells. We also investigate the relative abundances of [Cr/Zn], [Fe/Zn], [Mn/Fe], and [Si/Fe] in these systems to study dust depletion and nucleosynthetic effects.

  5. The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Vlchez, J. M.

    2012-08-01

    Context. Blue compact dwarf (BCD) galaxies constitute the ideal laboratories to test the interplay between massive star formation and the surrounding gas. As one of the nearest BCD galaxies, NGC 5253 was previously studied with the aim to elucidate in detail the starburst interaction processes. Some open issues regarding the properties of its ionized gas still remain to be addressed. Aims: The 2D structure of the main physical and chemical properties of the ionized gas in the core of NGC 5253 has been studied. Methods: Optical integral field spectroscopy (IFS) data has been obtained with FLAMES Argus and lower resolution gratings of the Giraffe spectrograph. Results: We derived 2D maps for different tracers of electron density (ne), electron temperature (Te) and ionization degree. The maps for ne as traced by [O ii], [S ii], [Fe iii], and [Ar iv] line ratios are compatible with a 3D stratified view of the nebula with the highest ne in the innermost layers and a decrease of ne outwards. 2D maps of Te were measured from [O iii] and [S ii] line ratios; to our knowledge, this is the first time that a Te map based on [S ii] lines for an extragalactic object has been presented. The joint interpretation of the Te([S ii]) and Te([O iii]) maps is consistent with a Te structure in 3D with higher temperatures close to the main ionizing source surrounded by a colder and more diffuse component. The highest ionization degree is found at the peak of emission for the gas with relatively high ionization in the main Giant H ii Region and lower ionization degree delineating the more extended diffuse component. We derived abundances of oxygen, neon, argon, and nitrogen. Abundances for O, Ne and Ar are constant over the mapped area within ?0.1 dex. The mean 12 + log (O/H) is 8.26 0.04 while the relative abundances of log (N/O), log (Ne/O) and log (Ar/O) were ~-1.32 0.05, -0.65 0.03 and -2.33 0.06, respectively. There are two locations with enhanced N/O. The first (log (N/O) ~ -0.95) occupies an area of about 80 pc 35 pc and is associated to two super star clusters. The second (log (N/O) ~ -1.17), reported here for the first time, is associated to two moderately massive (2-4 104 M?) and relatively old (~10 Myr) clusters. A comparison of the N/O map with those produced by strong line methods supports the use of N2O2 over N2S2 in the search for chemical inhomogeneities within a galaxy. The results on the localized nitrogen enhancement were used to compile and discuss the factors that affect the complex relationship between Wolf-Rayet stars and N/O excess. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 078.B-0043 and 383.B-0043).

  6. The computation of hypersonic ionized flows in chemical and thermal nonequlibrium

    NASA Technical Reports Server (NTRS)

    Maccormack, Robert W.; Candler, Graham V.

    1988-01-01

    A numerical method to compute a two-dimensional hypersonic flowfield that is ionized and in thermochemical nonequilibrium has been developed. Such a flowfield is described by coupled time-dependent partial differential equations for the conservation of species mass, mass-average momentum, vibrational energy of each diatomic species, electron energy, and total mass-averaged energy. The steady-state solution to these fully coupled equations is obtained using an implicit Gauss-Seidel line relaxation technique. The computed electron densities in the flowfield compare well with experimental results.

  7. Real-Time Chemical Analysis of E-Cigarette Aerosols By Means Of Secondary Electrospray Ionization Mass Spectrometry.

    PubMed

    García-Gómez, Diego; Gaisl, Thomas; Barrios-Collado, César; Vidal-de-Miguel, Guillermo; Kohler, Malcolm; Zenobi, Renato

    2016-02-01

    Chemical analysis of aerosols collected from electronic cigarettes (ECs) has shown that these devices produce vapors that contain harmful and potentially harmful compounds. Conventional analytical methods used for the analysis of electronic cigarettes do not reflect the actual composition of the aerosols generated because they usually neglect the changes in the chemical composition that occur during the aerosol generation process and after collection. The aim of this work was to develop and apply a method for the real-time analysis of electronic cigarette aerosols, based on the secondary electrospray ionization technique coupled to high-resolution mass spectrometry, by mimicking the "vaping" process. Electronic cigarette aerosols were successfully analyzed and quantitative differences were found between the liquids and aerosols. Thanks to the high sensitivity shown by this method, more than 250 chemical substances were detected in the aerosols, some of them showing a high correlation with the operating power of the electronic cigarettes. The method also allows proper quantification of several chemical components such as alkaloids and flavor compounds. PMID:26773448

  8. Chemical Composition of Micrometer-Sized Filaments in an Aragonite Host by a Miniature Laser Ablation/Ionization Mass Spectrometer.

    PubMed

    Tulej, Marek; Neubeck, Anna; Ivarsson, Magnus; Riedo, Andreas; Neuland, Maike B; Meyer, Stefan; Wurz, Peter

    2015-08-01

    Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (?15??m) and vertical (?20-200?nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR). PMID:26247475

  9. Non-aqueous capillary electrophoresis for the analysis of acidic compounds using negative electrospray ionization mass spectrometry.

    PubMed

    Bonvin, Grgoire; Schappler, Julie; Rudaz, Serge

    2014-01-01

    Non-aqueous capillary electrophoresis (NACE) is an attractive CE mode, in which water solvent of the background electrolyte (BGE) is replaced by organic solvent or by a mixture of organic solvents. This substitution alters several parameters, such as the pKa, permittivity, viscosity, zeta potential, and conductivity, resulting in a modification of CE separation performance (i.e., selectivity and/or efficiency). In addition, the use of NACE is particularly well adapted to ESI-MS due to the high volatility of solvents and the low currents that are generated. Organic solvents reduce the number of side electrochemical reactions at the ESI tip, thereby allowing the stabilization of the ESI current and a decrease in background noise. All these features make NACE an interesting alternative to the aqueous capillary zone electrophoresis (CZE) mode, especially in combination with mass spectrometry (MS) detection. The aim of this work was to evaluate the use of NACE coupled to negative ESI-MS for the analysis of acidic compounds with two available CE-MS interfaces (sheath liquid and sheathless). First, NACE was compared to aqueous CZE for the analysis of several pharmaceutical acidic compounds (non-steroidal anti-inflammatory drugs, NSAIDs). Then, the separation performance and the sensitivity achieved by both interfaces were evaluated, as were the impact of the BGE and the sample composition. Finally, analyses of glucuronides in urine samples subjected to a minimal sample pre-treatment ("dilute-and-shoot") were performed by NACE-ESI-MS, and the matrix effect was evaluated. A 20- to 100-fold improvement in sensitivity was achieved using the NACE mode in combination with the sheathless interface and no matrix effect was observed regardless of the interfaces. PMID:24315358

  10. Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-01

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using negative ion mode Nanospray Desorption Electrospray Ionization High-Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day (6 h each) were collected in Bakersfield, CA on 20-24 June. Four characteristic groups were identified: molecules composed of carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen- (CHON), and both nitrogen- and sulfur-containing organics (CHONS). The chemical formula and elemental ratios were consistent with the presence of organonitrates, organosulfate, and nitroxy organosulfates in the negative ion mode mass spectra. The number of observed CHO compounds increased in the afternoon samples, suggesting photochemical processing as a source. The average number of CHOS compounds had the smallest changes during the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHONS and CHON) had greater numbers of compounds in the early morning (midnight to 6 A.M.) and night (6 P.M. to midnight) samples, respectively, consistent with nitrate radical chemistry as a likely source for those compounds. Most of the compounds were found in submicron particles. The size distribution of the number of CHON compounds was bimodal, potentially indicating two types of sources. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources. These data are complementary to previous results from positive ion mode nano-DESI/MS analysis of a subset of the same samples providing a more complete view of aerosol chemical composition at Bakersfield.

  11. Investigating the Chemical Evolution of the Universe via Numerical Simulations: Supernova Dust Destruction and Non-Equilibrium Ionization Chemistry

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.

    2013-12-01

    The chemical evolution of the Universe is a complicated process with countless facets that define its properties over the course of time. In the early Universe, the metal-free first stars were responsible for originally introducing metals into the pristine gas left over from the Big Bang. Once these metals became prevalent, they forever altered the thermodynamics of the Universe. Understanding precisely where these metals originated, where they end up, and the conditions they experience along the way is of great interest in the astrophysical community. In this work, I have used numerical simulations as a means of understanding two separate phenomena related to the chemical evolution the Universe. The first topic focuses on the question as to whether or not core-collapse supernovae in the high-redshift universe are capable of being "dust factories" for the production of galactic dust. To achieve this, I carried out idealized simulations of supernova ejecta clouds being impacted by reverse-shock blast waves. By post-processing the results of these simulations, I was able to estimate the amount of dust destruction that would occur due to thermal sputtering. In the most extreme scenarios, simulated with high relative velocities between the shock and the ejecta cloud and high gas metallicities, I find complete destruction for some grains species and only 44% dust mass survival for even the most robust species. This raises the question as to whether or not high-redshift supernova can produce dust masses in sufficient excess of the ˜1 Msun per event required to match observations of high-z galaxies. The second investigation was driven by the desire to find an answer to the missing baryon problem and a curiosity as to the impact that including a full non-equilibrium treatment of ionization chemistry has on simulations of the intergalactic medium. To address these questions, I have helped to develop Dengo, a new software package for solving complex chemical networks. Once this new package was integrated into Enzo, I carried out a set of cosmological simulations that served as both a test of the new solver and a confirmation that non-equilibrium ionization chemistry produces results that are drastically different from those that assume collisional ionization equilibrium. Although my analysis of these simulations is in its early stages, I find that the observable properties of the intergalactic medium change considerably. Continued efforts to run state-of-the-art simulations of the intergalactic medium using Dengo are warranted.

  12. Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and quantification of compounds possessing these groups in complex mixtures.

  13. Accurate quantitation of pentaerythritol tetranitrate and its degradation products using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Brust, Hanneke; van Asten, Arian; Koeberg, Mattijs; Dalmolen, Jan; van der Heijden, Antoine; Schoenmakers, Peter

    2014-04-18

    After an explosion of pentaerythritol tetranitrate (PETN), its degradation products pentaerythritol trinitrate (PETriN), dinitrate (PEDiN) and mononitrate (PEMN) were detected using liquid chromatography-atmospheric-pressure chemical-ionization-mass spectrometry (LC-APCI-MS). Discrimination between post-explosion and naturally degraded PETN could be achieved based on the relative amounts of the degradation products. This information can be used as evidence when investigating a possible relationship between a suspect and a post-explosion crime scene. The present work focuses on accurate quantitation of PETN and its degradation products, using PETriN, PEDiN and PEMN standards specifically synthesized for this purpose. With the use of these standards, the ionization behavior of these compounds was studied, and a quantitative method was developed. Quantitation of PETN and trace levels of its degradation products was shown to be possible with accuracy between 85.7% and 103.7% and a precision ranging from 1.3% to 11.5%. The custom-made standards resulted in a more robust and reliable method to discriminate between post-explosion and naturally-degraded PETN. PMID:24656542

  14. Isotopologue analysis of sugar phosphates in yeast cell extracts by gas chromatography chemical ionization time-of-flight mass spectrometry.

    PubMed

    Chu, Dinh Binh; Troyer, Christina; Mairinger, Teresa; Ortmayr, Karin; Neubauer, Stefan; Koellensperger, Gunda; Hann, Stephan

    2015-04-01

    Metabolic flux analysis is based on the measurement of isotopologue ratios. In this work, a new GC-MS-based method was introduced enabling accurate determination of isotopologue distributions of sugar phosphates in cell extracts. A GC-TOFMS procedure was developed involving a two-step online derivatization (ethoximation followed by trimethylsilylation) offering high mass resolution, high mass accuracy and the potential of retrospective data analysis typical for TOFMS. The information loss due to fragmentation intrinsic for isotopologue analysis by electron ionization could be overcome by chemical ionization with methane. A thorough optimization regarding pressure of the reaction gas, emission current, electron energy and temperature of the ion source was carried out. For a substantial panel of sugar phosphates both of the glycolysis and the pentose phosphate pathway, sensitive determination of the protonated intact molecular ions together with low abundance fragment ions was successfully achieved. The developed method was evaluated for analysis of Pichia pastoris cell extracts. The measured isotopologue ratios were in the range of 55:1-2:1. The comparison of the experimental isotopologue fractions with the theoretical fractions was excellent, revealing a maximum bias of 4.6% and an average bias of 1.4%. PMID:25673246

  15. Determination of carbon number distributions of complex phthalates by gas chromatography-mass spectrometry with ammonia chemical ionization.

    PubMed

    Di Sanzo, Frank P; Lim, Peniel J; Han, Wenning W

    2015-01-01

    An assay method for phthalate esters with a complex mixture of isomer of varying carbon numbers, such as di-isononyl phthalate (DINP) and di-isodecyl phthalate (DIDP), using gas chromatography-mass spectrometry (GC-MS) positive chemical ionization (PCI) with 5% ammonia in methane is described. GC-MS-PCI-NH3, unlike GC-MS electron ionization (EI) (GC-MS-EI) that produces generally m/z 149 ion as the main base peak and low intensity M(+) peaks, produces higher intensity (M + 1) ions that allow the determination of total (R + R') carbon number distributions based on the various R and R' alkyl groups of the di-esters moiety. The technique allows distinguishing among the various commercial DINP and DIDP plasticizers. The carbon number distributions are determined in the acceptable range of <0.1 mole percent to >85 mole percent (m/m). Several examples of analysis made on commercial DINP and DIDP are presented. The use of only 5% instead of 100% ammonia simplifies use of GC-MS-PCI-NH3 but still produces sufficient M + 1 ion intensities that are appropriate for the assay. In addition, use of low concentrations of ammonia mitigates potential safety aspects related to use of ammonia and provides less corrosion for the instrument hardware. PMID:26240191

  16. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    PubMed

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information. PMID:26560682

  17. Measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry during the 2009 SHARP field campaign

    NASA Astrophysics Data System (ADS)

    Levy, Misti; Zhang, Renyi; Zheng, Jun; Zhang, Annie L.; Xu, Wen; Gomez-Hernandez, Mario; Wang, Yuan; Olaguer, Eduardo

    2014-09-01

    We have developed a novel approach for ambient measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry (ID-CIMS). HONO is ionized using the sulfur hexafluoride anion, representing the first application of this reagent ion under humid tropospheric conditions. During the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) Field Campaign, HONO measurements were continuously conducted from 1 May to 1 June at a site located on the campus of the University of Houston. Diurnally, HONO concentration accumulates in the late afternoon, reaches a nighttime maximum, and declines rapidly after sunrise. The nighttime HONO peaks show close correlations with the NO2 concentration, particle surface area, and soot mass concentration, indicating that the aerosol-phase chemistry likely contributes to HONO formation. A higher nighttime HONO peak concentration typically precedes a higher and earlier ozone peak concentration of the following day, by about 20 ppb higher and four hours earlier than those with a lower preceding HONO peak concentration. Because of its high detection sensitivity and fast-responding time, the ID-CIMS method described in this work may greatly facilitate HONO detection under typical tropospheric conditions.

  18. Comparative analysis of different plant oils by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Jakab, Annamaria; Héberger, Károly; Forgács, Esther

    2002-11-01

    Different vegetable oil samples (almond, avocado, corngerm, grapeseed, linseed, olive, peanut, pumpkin seed, soybean, sunflower, walnut, wheatgerm) were analyzed using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. A gradient elution technique was applied using acetone-acetonitrile eluent systems on an ODS column (Purospher, RP-18e, 125 x 4 mm, 5 microm). Identification of triacylglycerols (TAGs) was based on the pseudomolecular ion [M+1]+ and the diacylglycerol fragments. The positional isomers of triacylglycerol were identified from the relative intensities of the [M-RCO2]+ fragments. Linear discriminant analysis (LDA) as a common multivariate mathematical-statistical calculation was successfully used to distinguish the oils based on their TAG composition. LDA showed that 97.6% of the samples were classified correctly. PMID:12462617

  19. Control of chemical reaction pathways by femtosecond ponderomotive forces: Time-resolved multiphoton ionization spectroscopic study of OCIO photodissociation

    NASA Astrophysics Data System (ADS)

    Blackwell, M.; Ludowise, P.; Chen, Y.

    1997-07-01

    Femtosecond time-resolved multiphoton ionization spectroscopy is applied to the study of the photodissociation of OClO. The observed ratio of O2+/ClO+ signal increases 12-fold with a 3-fold increase of the pump laser intensity. They are attributed to the change in the branching ratio between the two independent reaction channels leading to Cl+O2 and ClO+O, respectively. We believe this is the first experimental demonstration of laser controlled chemical reactions by femtosecond ponderomotive forces. At low pump power, the photodissociation dynamics at 386 nm is shown to be a two-step process, with the OClO slowly approaching (time constant 4.6 ps) a transition state that falls apart rapidly (time constant 250 fs).

  20. Primary Ion Depletion Kinetics (PIDK) Studies as a New Tool for Investigating Chemical Ionization Fragmentation Reactions with PTR-MS

    PubMed Central

    Schuhfried, Erna; Mrk, Tilmann D.; Biasioli, Franco

    2013-01-01

    We report on a new approach for studying fragmentation channels in Proton Transfer Reaction-Mass Spectrometry (PTR-MS), which we name primary ion depletion kinetics (PIDK). PTR-MS is a chemical ionization mass spectrometric (CIMS) technique deploying hydronium ions for the chemical ionization. Induced by extremely high concentrations of analyte M, depletion of the primary ions in the drift tube occurs. This is observed as quasi zero concentration of the primary ion H3O+, and constant MH+. Under these non-standard conditions, we find an overall changed fragmentation. We offer two explanations. Either the changed fragmentation pattern is the result of secondary proton transfer reactions. Or, alternatively, the fast depletion of H3O+ leads to reduced heating of H3O+ in the drift field, and consequently changed fragmentation following protonation of the analyte M. In any case, we use the observed changes in fragmentation as a successful new approach to fragmentation studies, and term it primary ion depletion kinetics, PIDK. PIDK easily yields an abundance of continuous data points with little deviation, because they are obtained in one experimental run, even for low abundant fragments. This is an advantage over traditional internal kinetic energy variation studies (electric field per number density (E/N) variation studies). Also, some interpretation on the underlying fragmentation reaction mechanisms can be gleamed. We measure low occurring fragmentation (<2% of MH+) of the compounds dimethyl sulfide, DMS, a compound that reportedly does not fragment, diethyl sulfide DES, and dipropyl sulfide DPS. And we confirm and complement the results with traditional E/N studies. Summing up, the new approach of primary ion depletion kinetics allows for the identification of dehydrogenation [MH+ -H2] and adduct formation (RMH+) as low abundant fragmentation channels in monosulfides. PMID:23840555

  1. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS).

    PubMed

    Mendona, Juliana C F; Franca, Adriana S; Oliveira, Leandro S; Nunes, Marcella

    2008-11-15

    The coffee roasted in Brazil is considered to be of low quality, due to the presence of defective coffee beans that depreciate the beverage quality. These beans, although being separated from the non-defective ones prior to roasting, are still commercialized in the coffee trading market. Thus, it was the aim of this work to verify the feasibility of employing ESI-MS to identify chemical characteristics that will allow the discrimination of Arabica and Robusta species and also of defective and non-defective coffees. Aqueous extracts of green (raw) defective and non-defective coffee beans were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS) and this technique provided characteristic fingerprinting mass spectra that not only allowed for discrimination of species but also between defective and non-defective coffee beans. ESI-MS profiles in the positive mode (ESI(+)-MS) provided separation between defective and non-defective coffees within a given species, whereas ESI-MS profiles in the negative mode (ESI(-)-MS) provided separation between Arabica and Robusta coffees. PMID:26047455

  2. Experts Workshop on the Ecotoxicological Risk Assessment of Ionizable Organic Chemicals: Bioaccumulation/ADME

    EPA Science Inventory

    The bioaccumulation potential of neutral organic chemicals (e.g., PCBs, DDT, brominated flame retardants) has received a great deal of attention from scientists in the field of environment toxicology and chemistry over the past four decades. Regulations based on our understanding...

  3. Chemical cardiomyopathies: the negative effects of medications and nonprescribed drugs on the heart.

    PubMed

    Figueredo, Vincent M

    2011-06-01

    The heart is a target of injury for many chemical compounds, both medically prescribed and not medically prescribed. Pathophysiologic mechanisms underlying the development of chemical-induced cardiomyopathies vary depending on the inciting agent, including direct toxic effects, neurohormonal activation, altered calcium homeostasis, and oxidative stress. Numerous chemicals and drugs are implicated in cardiomyopathy. This article discusses examples of medication and nonprescribed drug-induced cardiomyopathies and reviews their pathophysiologic mechanisms. PMID:21605722

  4. Chemical Analysis of Organic Aerosols Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Laskin, J.; Nizkorodov, S.

    2013-12-01

    Nanospray Desorption Electrospray Ionization (nano-DESI) technique integrated with high resolution mass spectrometry (HR-MS) enables molecular level analysis of organic aerosol (OA) samples. In nano-DESI, analyte is desorbed into a small volume solvent bridge formed between two capillaries positioned in contact with analyte and enables fast and efficient characterization of OA collected on substrates without sample preparation. We report applications of the nano-DESI/HR-MS approach in a number of our recent studies focused on molecular identification of organic compounds in laboratory and in field collected OA samples. Reactive nano-DESI approach where selected reagent is added to the solvent is used for examining the presence of individual species containing specific functional groups and for their quantification within complex mixtures of OA. Specifically, we use the Girard's reagent T (GT) to probe and quantify carbonyl compounds in the SOA mixtures. We estimate for the first time the amounts of dimers and trimers in the SOA mixtures. We found that the most abundant dimer in limonene/O3 SOA was detected at the 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was 11 pg. Understanding of the OA composition at the molecular level allowed us to identify key aging reactions, including the transformation of carbonyls to imines and carbonyl-imine oligomerization, that may contribute to the formation of brown carbon in the atmosphere.

  5. Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion

    NASA Astrophysics Data System (ADS)

    Vacher, Morgane; Mendive-Tapia, David; Bearpark, Michael J.; Robb, Michael A.

    2015-03-01

    Photoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case. However, if we add methyl substituents that break symmetry but do not radically alter the electronic structure, we see charge migration: oscillations in the spin density that we can correlate with particular localized electronic structures, with a period depending on the gap between the states initially populated. We have also investigated the effect of nuclear motion on electron dynamics using a complete active space self-consistent field (CASSCF) implementation of the Ehrenfest method, most previous theoretical studies of electron dynamics having been carried out with fixed nuclei. In toluene cation for instance, simulations where the nuclei are allowed to move show significant differences in the electron dynamics after 3 fs, compared to simulations with fixed nuclei.

  6. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  7. Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion

    SciTech Connect

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.; Mendive-Tapia, David

    2015-03-07

    Photoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case. However, if we add methyl substituents that break symmetry but do not radically alter the electronic structure, we see charge migration: oscillations in the spin density that we can correlate with particular localized electronic structures, with a period depending on the gap between the states initially populated. We have also investigated the effect of nuclear motion on electron dynamics using a complete active space self-consistent field (CASSCF) implementation of the Ehrenfest method, most previous theoretical studies of electron dynamics having been carried out with fixed nuclei. In toluene cation for instance, simulations where the nuclei are allowed to move show significant differences in the electron dynamics after 3 fs, compared to simulations with fixed nuclei.

  8. Rapid determination of canagliflozin in rat plasma by UHPLC-MS/MS using negative ionization mode to avoid adduct-ions formation.

    PubMed

    Iqbal, Muzaffar; Ezzeldin, Essam; Al-Rashood, Khalid A; Asiri, Yousif A; Rezk, Naser L

    2015-01-01

    Canagliflozin is the first sodium-glucose co-transporter-2 inhibitor, approved by the US Food and Drug Administration for the treatment of type 2 diabetes mellitus. In this study, a sensitive UHPLC-MS/MS assay for rapid determination of canagliflozin in rat plasma was developed and validated for the first time. Chromatographic separation of canagliflozin and zafirlukast (IS) was carried out on Acquity BEH C18 column (100×2.1 mm, i.d. 1.7 µm) using acetonitrile-water (80:20, v/v) as mobile phase at a flow rate of 0.3 mL min(-1). Canagliflozin and IS were extracted from plasma by protein precipitation method using acetonitrile. The mass spectrometric detection was performed using electrospray ionization source in negative mode to avoid canagliflozin adduct ions formation. Multiple reaction monitoring were used for quantitation of precursor to product ion at m/z 443.16 >364.96 for canagliflozin and m/z 574.11>462.07 for IS, respectively. The assay was fully validated in terms of selectivity, linearity, accuracy, precision, recovery, matrix effects and stability. The validated method was successfully applied to the characterization of oral pharmacokinetic profiles of canagliflozin in rats. The mean maximum plasma concentration of canagliflozin of 1616.79 ng mL(-1) was achieved in 1.5 h after oral administration of 20 mg kg(-1) in rats. PMID:25476275

  9. Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners.

    PubMed

    Portols, Tania; Sales, Carlos; Gmara, Beln; Sancho, Juan Vicente; Beltrn, Joaquim; Herrero, Laura; Gonzlez, Mara Jos; Hernndez, Flix

    2015-10-01

    The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low concentration levels. PMID:26354040

  10. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    SciTech Connect

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin; Jeong, Jae-Hoon; Kang, Seongman; Lim, Young-Bin

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  11. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  12. Simultaneous detection of polar and nonpolar compounds by ambient mass spectrometry with a dual electrospray and atmospheric pressure chemical ionization source.

    PubMed

    Cheng, Sy-Chyi; Jhang, Siou-Sian; Huang, Min-Zong; Shiea, Jentaie

    2015-02-01

    A dual ionization source combining electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was developed to simultaneously ionize both polar and nonpolar compounds. The source was constructed by inserting a fused silica capillary into a stainless steel column enclosed in a glass tube. A high dc voltage was applied to a methanol solution flowing in the fused silica capillary to generate an ESI plume at the capillary tip. A high ac voltage was applied to a ring electrode attached to the glass tube to generate plasma from the nitrogen gas flowing between the glass tube and the stainless steel column. The concentric arrangement of the ESI plume and the APCI plasma in the source ensured that analytes entering the ionization region interacted with both ESI and APCI primary ion species generated in the source. Because the high voltages required for ESI and APCI were independently applied and controlled, the dual ion source could be operated in ESI-only, APCI-only, or ESI+APCI modes. Analytes were introduced into the ESI and/or APCI plumes by irradiating sample surfaces with a continuous-wavelength laser or a pulsed laser beam. Analyte ions could also be produced by directing the dual ESI+APCI source toward sample surfaces for desorption and ionization. The ionization mechanisms involved in the dual ion source include Penning ionization, ion molecule reactions, and fused-droplet electrospray ionization. Standards of polycyclic aromatic hydrocarbons, angiotensin I, lidocaine, ferrocene, diesel, and rosemary oils were used for testing. Protonated analyte ions were detected in ESI-only mode, radical cations were detected in APCI-only mode, and both types of ions were detected in ESI+APCI mode. PMID:25562530

  13. Evaluation of sensitivity for positive tone non-chemically and chemically amplified resists using ionized radiation: EUV, x-ray, electron and ion induced reactions

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Oyama, Tomoko Gowa; Washio, Masakazu; Tagawa, Seiichi

    2013-03-01

    The different exposure sources induce a different energy deposition in resist materials. Linear energy transfer (LET) effect for resist sensitivity is very important issue from the viewpoint of radiation induced chemical reactions for high-volume nanofabrication. The sensitivities of positive tone non-chemically (non-CA, ZEP) and chemically amplified (CA, UV-3) resist materials are evaluated using various ionized radiation such as EUV, soft X-rays, EB and various ion beams. Since the notations of sensitivity of resist vary with exposure sources, in order to evaluate systematically, the resist sensitivity were estimated in terms of absorbed dose in resist materials. Highly-monochromated EUV and soft X-rays (6.7 nm - 3.1 nm) from the BL27SU of the SPring-8, high energy ion beams (C6+, Ne10+, Mg12+, Si14+ , Ar18+, Kr36+ and Xe54+) with 6 MeV/u from MEXP of HIMAC, EB from low energy EB accelerator (Hamamatsu Photonics, EB-engine, 100 kV) and EB lithography system (30 keV and 75keV) were used for the exposure. For non-CA and CA resist materials, it was found that LET effects for sensitivity would be hardly observed except for heavier ion beams. Especially, in the case of the high energy ion beam less than Si14+ with 6 MeV/u, it is suggested that the radiation induced chemical reaction would be equivalent to EUV, soft X-ray and EB exposure. Hence, it indicates that the resist sensitivity could be systematically evaluated by absorbed dose in resist materials.

  14. Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC 6888 with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernndez-Martn, A.; Vlchez, J. M.; Prez Montero, E.

    2013-05-01

    n this work we search for the observational footprints of the interactions between the interstellar medium and stellar winds in the Wolf-Rayet nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. We collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the north-east part of the nebula, we generated maps of the extinction structure and electron density. We produced diagnostic diagrams and statistical frequency distributions of the radial velocity. Nine integrated spectra were generated over the whole nebula. We measured line intensities to obtain physical parameters and chemical abundances. We inferred that nearly all the zones present an oxygen abundance slightly below the solar values. The derived N/H appears enhanced up to a factor of 6. Helium presents an enrichment in most of the integrated zones, too. Finally, we proposed a scheme of irregular and/or broken shells for NGC 6888 to explain the features observed.

  15. Direct Analysis of Nonvolatile Chemical Compounds on Surfaces Using a Hand-Held Mass Spectrometer with Synchronized Discharge Ionization Function.

    PubMed

    Wang, Xiao; Zhou, Xiaoyu; Ouyang, Zheng

    2016-01-01

    Synchronized discharge ionization (SDI) was previously developed for hand-held mass spectrometers with discontinuous atmospheric pressure interfaces. The function of SDI has been demonstrated for analysis of volatile organic compounds in air at high sensitivity, which is attributed to the fact that ions were produced next to the ion trap mass analyzer inside the vacuum manifold. In this study, a simple sampling device was designed and fitted to a hand-held mass spectrometer to characterize its potential in direct analysis of low-volatility chemicals on surfaces. Nine chemicals of vapor pressures ranging from 10(-4) to 10(-8) Torr (at room temperature), including pesticides, illicit drugs, and explosives, were selected to evaluate and demonstrate the analytical capability of the designed system. Compounds of vapor pressures below 10(-7) Torr, such as tetryl, cocaine, and tetrahydrocannabinol (THC), have been successfully detected. Direct analysis of pesticides from fruit and explosives from a large surface area has also been demonstrated. Tandem mass analysis was performed, which helped to confirm the analyte identity as well as to improve the signal-to-noise ratio (S/N). PMID:26618852

  16. Multiresidue analysis of pesticides in traditional Chinese medicines using gas chromatography - negative chemical ionization tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a residue analysis method for the simultaneous determination of 107 pesticides in the traditional Chinese medicines (TCMs), Angelica sinensis, Angelica dahurica, Leonurus heterophyllus Sweet, Pogostemon cablin, and Lonicera japonica Thunb, was developed using gas chromatography couple...

  17. Measurements of Nitrous Acid (HONO) Using Ion Drift - Chemical Ionization Mass Spectrometry during the 2009 SHARP Field Campaign

    NASA Astrophysics Data System (ADS)

    Levy, M. E.; Zhang, R.

    2013-12-01

    During the 2009 SHARP Field Campaign in Houston, TX, measurements of HONO were continuously conducted from May 1 to June 1 at a site located on the campus of the University of Houston. We have developed a novel approach for ambient measurements of nitrous acid (HONO) using ion drift - chemical ionization mass spectrometry (ID-CIMS). In our innovative method, HONO is ionized using the sulfur hexafluoride anion, representing the first application of this reagent ion under humid tropospheric conditions. In this presentation, we will discuss the temporal trends and sources of HONO, as well as, as the involvement of HONO in the formation of key atmospheric constituents, such as ozone. Diurnally, HONO concentration accumulates in the late afternoon, reaches a nighttime maximum, and declines rapidly after sunrise; the averaged daytime and nighttime concentrations are 0.15 0.05 and 0.26 0.04, respectively. The nighttime measured HONO peaks show strong correlations with the NO2 concentration, particle surface area, and soot mass concentration, indicating that the aerosol-phase chemistry represents a significant contributor to the HONO yield. A higher nighttime HONO peak concentration consistently precedes a higher and earlier ozone peak concentration of the following day, by about 20 ppb higher and four hours earlier than those with a lower preceding HONO peak concentration do. Using a kinetic approach, we estimate an uptake coefficient in the range of 6 x 10-4 to 2 x 10-3 for the heterogeneous conversion of NO2 to HONO on aerosol surfaces, which is necessary to account for the measured nighttime HONO peaks. Our results underscore the importance of aerosol heterogeneous chemistry in HONO production and the contributions of this non-photolytic HONO source to the radical budget and the photochemical ozone production in this region. Furthermore, because of its high detection sensitivity and fast-responding time, the ID-CIMS method described in this work may greatly facilitate HONO detection under typical tropospheric conditions.

  18. Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Ross, John J

    2010-04-15

    It has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles. This observation has major implications for quantitative assays using deuterium-labelled internal standards and for the detection of deuterium-labelled products from isotopically labelled feeding experiments where there is a risk of back exchange to the protonated form during the analysis. PMID:20213724

  19. Negative air ions as a source of superoxide

    NASA Astrophysics Data System (ADS)

    Goldstein, Naum I.; Goldstein, Roman N.; Merzlyak, Mark N.

    1992-06-01

    The physico-chemical characteristics and possible formation mechanisms of negative air ions are considered. It was found that the products of oxygen and nitrogen negative ionization reduce ferricytochrome c and nitroblue tetrazolium, and that these reactions were inhibited by superoxide dismutase. The interaction of negatively ionized oxygen with water led to hydrogen peroxide accumulation, which was inhibited by tetranitromethane or catalase. Nitrogen ionization under these conditions caused the formation of the hydrated electron e{aq/} and the superoxide anion O{2/}. The data obtained indicate that the biological activity of negative air ions may be dependent on superoxide. The generation of reactive oxygen ions in the gas phase and also at a gas/water interface is described. A scheme for superoxide production under oxygen and nitrogen ionization is proposed.

  20. A validated UPLC-MS/MS assay using negative ionization mode for high-throughput determination of pomalidomide in rat plasma.

    PubMed

    Iqbal, Muzaffar; Ezzeldin, Essam; Al-Rashood, Khalid A; Shakeel, Faiyaz

    2015-03-01

    In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane was employed to extract pomalidomide and IS from 200?L of plasma. Chromatographic separation was carried on Acquity BEH C18 column (50mm2.1mm, 1.7?m) using an isocratic mobile phase of acetonitrile: 10mM ammonium acetate (80:20, v/v), at a flow rate of 0.250mL/min. Both pomalidomide and IS were eluted at 0.660.03 and 0.800.03min, respectively, with a total run time of 1.5min only. A triple quadruple tandem mass spectrometer using electrospray ionization in negative mode was employed for analyte detection. The precursor to product ion transitions of m/z 272.01?160.89 for pomalidomide and m/z 380.08?316.01 for IS were used to quantify them respectively, multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47-400ng/mL (r(2)?0.997). The intra and inter-day precision values were ?11.1% (RSD, %) whereas accuracy values ranged from -6.8 to 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats. PMID:25621435

  1. Evaluation of BDE-47 hydroxylation metabolic pathways based on a strong electron-withdrawing pentafluorobenzoyl derivatization gas chromatography/electron capture negative ionization quadrupole mass spectrometry.

    PubMed

    Zhai, Chao; Peng, Shunv; Yang, Limin; Wang, Qiuquan

    2014-07-15

    Understanding the metabolic pathways of polybrominated diphenyl ethers (PBDEs) is a key issue in the evaluation of their cytotoxicity after they enter the biota. In order to obtain more information concerning the metabolic pathways of PBDEs, we developed a strong electron-withdrawing pentafluorobenzoyl (PFBoyl) derivatization capillary gas chromatography/electron capture negative ionization quadrupole mass spectrometry (GC/ECNI-qMS). PFBoyl esterification greatly improves separation of the metabolites of PBDEs such as hydroxylated PBDEs (OH-PBDEs) and bromophenols (BPs) metabolites in rat liver microsomes (RLMs). On the other hand, the strong electron-withdrawing property of PFBoyl derivatized on OH-PBDEs and/or BPs makes cleavage of the ester bond on ECNI easier resulting in higher abundance of the structure-informative characteristic fragment ions at a high m/z region, which facilitate the identification of OH-PBDEs metabolites. Subsequent quantification can be performed by monitoring not only 79Br- (or 81Br-) but also their characteristic fragment ions, achieving more accurate isotope dilution quantification using GC/ECNI-qMS. These merits allow us to identify totally 12 metabolites of BDE-47, a typical example of PBDEs, in the RLMs in vitro incubation systems. In addition to the already known metabolites of BDE-47, one dihydroxylated 3,6-di-OH-BDE-47 and one dihydroxylated 3,5-di-OH-tetrabrominated dioxin were found. Moreover, the second hydroxylation took place on the same bromophenyl ring, where the first hydroxyl group was located, and was further confirmed via the identification of the dihydroxylated 2',6'-di-OH-BDE-28 of an asymmetric 2'-OH-BDE-28. This methodological development and its subsequent findings of the metabolic pathways of BDE-47 provided experimental evidence for understanding its dioxin-like behavior and endocrine disrupting risk. PMID:24925108

  2. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  3. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.

    PubMed

    Iwai, Takahiro; Kakegawa, Ken; Aida, Mari; Nagashima, Hisayuki; Nagoya, Tomoki; Kanamori-Kataoka, Mieko; Miyahara, Hidekazu; Seto, Yasuo; Okino, Akitoshi

    2015-06-01

    A gas-cylinder-free plasma desorption/ionization system was developed to realize a mobile on-site analytical device for detection of chemical warfare agents (CWAs). In this system, the plasma source was directly connected to the inlet of a mass spectrometer. The plasma can be generated with ambient air, which is drawn into the discharge region by negative pressure in the mass spectrometer. High-power density pulsed plasma of 100 kW could be generated by using a microhollow cathode and a laboratory-built high-intensity pulsed power supply (pulse width: 10-20 μs; repetition frequency: 50 Hz). CWAs were desorbed and protonated in the enclosed space adjacent to the plasma source. Protonated sample molecules were introduced to the mass spectrometer by airflow through the discharge region. To evaluate the analytical performance of this device, helium and air plasma were directly irradiated to CWAs in the gas-cylinder-free plasma desorption/ionization system and the protonated molecules were analyzed by using an ion-trap mass spectrometer. A blister agent (nitrogen mustard 3) and nerve gases [cyclohexylsarin (GF), tabun (GA), and O-ethyl S-2-N,N-diisopropylaminoethyl methylphosphonothiolate (VX)] in solution in n-hexane were applied to the Teflon rod and used as test samples, after solvent evaporation. As a result, protonated molecules of CWAs were successfully observed as the characteristic ion peaks at m/z 204, 181, 163, and 268, respectively. In air plasma, the limits of detection were estimated to be 22, 20, 4.8, and 1.0 pmol, respectively, which were lower than those obtained with helium plasma. To achieve quantitative analysis, calibration curves were made by using CWA stimulant dipinacolyl methylphosphonate as an internal standard; straight correlation lines (R(2) = 0.9998) of the peak intensity ratios (target per internal standard) were obtained. Remarkably, GA and GF gave protonated dimer ions, and the ratios of the protonated dimer ions to the protonated monomers increased with the amount of GA and GF applied. PMID:25958918

  4. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-06-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1-300 ppm) and D-limonene (0.02-3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  5. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-02-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1-300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  6. Post-Blast Analysis of Hexamethylene Triperoxide Diamine using Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry.

    PubMed

    Marsh, Christine M; Mothershead, Robert F; Miller, Mark L

    2015-09-01

    A qualitative method using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS) has been developed and validated for the identification of trace hexamethylene triperoxide diamine (HMTD) using three structurally-specific ions. Residues are extracted with deionized water (DI) and identified using a gradient mobile phase program and positive ion full scan mode on a Thermo Finnigan LCQ Ion Trap Mass Spectrometer. This method was validated according to several performance characteristics for the qualitative identification of an analyte using the characteristic ions, demonstrating the method's reliability for use on forensic applications. The method's limit of detection (LOD) can identify HMTD in an extract from a cotton matrix to which 20 μg of HMTD has been applied (equivalent to 10 ppm in extract). Previous scientific publications using LC/MS have not demonstrated post-blast HMTD residue analyses and suffer from a lack of chromatographic retention, sufficient number of mass spectral ions with validation, or require more complex/expensive instrumental methods (accurate mass or MS/MS). Post-blast analyses were successfully conducted with two syringe detonations that verified the efficacy of the method on the analysis of debris and residues following detonation. PMID:26385711

  7. A simplified chromatin dispersion (nuclear halo) assay for detecting DNA breakage induced by ionizing radiation and chemical agents.

    PubMed

    Galaz-Leiva, S; Pérez-Rodríguez, G; Blázquez-Castro, A; Stockert, J C

    2012-04-01

    Methods for visualizing DNA damage at the microscopic level are based on treatment of cell nuclei with saline or alkaline solutions. These procedures for achieving chromatin dispersion produce halos that surround the nuclear remnants. We improved the fast halo assay for visualizing DNA breakage in cultured cells to create a simplified method for detection and quantitative evaluation of DNA breakage. Nucleated erythrocytes from chicken blood were selected as a model test system to analyze the production of nuclear halos after treatment with X-rays or H(2)O(2). After staining with ethidium bromide or Wright's methylene blue-eosin solution, nuclear halos were easily observed by fluorescence or bright-field microscopy, respectively, which permits rapid visualization of DNA breakage in damaged cells. By using image processing and analysis with the public domain ImageJ software, X-ray dose and H(2)O(2) concentration could be correlated well with the size of nuclear halos and the halo:nucleus ratio. Our results indicate that this simplified nuclear halo assay can be used as a rapid, reliable and inexpensive procedure to detect and quantify DNA breakage induced by ionizing radiation and chemical agents. A mechanistic model to explain the differences between the formation of saline or alkaline halos also is suggested. PMID:21916782

  8. A new rapid micro-method for the molecular-chemical characterization of rhizodeposits by field-ionization mass spectrometry.

    PubMed

    Leinweber, Peter; Eckhardt, Kai-Uwe; Fischer, Holger; Kuzyakov, Yakov

    2008-04-01

    Time-consuming investigation of rhizodeposit composition by leaching, freeze-drying of leachate, and pyrolysis-field ionization mass spectrometry (Py-FIMS) of solid samples was replaced by direct Py-FIMS of a 5 microL liquid rhizodeposit sample which was evaporated overnight in the quartz tube of a mass spectrometer inlet system. Application of this new rapid technique to a set of 14 liquid rhizodeposit samples from maize (Zea mays L.), leached twice with a time lag of 80 min, unequivocally showed the effect of soil texture on the chemical composition of the rhizodeposits. Irrespective of leaching time, a partial least-squares analysis separated the Py-FI mass spectra of the maize rhizodeposits leached from a soil from those leached from a soil + quartz sand-mixture (prepared by addition of 50% w/w quartz sand to the original soil). The signals which had the strongest discrimination power and were significantly enriched in leachates from the soil + quartz sand were assigned to sugars, peptides and polyamines. Mass signals of putrescine and cadaverine, a priori not expected in the rhizodeposits, were indicators of modified root environment and rhizosphere processes in the soil + quartz sand. In conclusion, the new rapid mass spectrometric profiling method is suitable for rhizosphere research because it requires very small sample volumes, is fast and highly sensitive to detect and quantify a wide range of a priori expected and unexpected organic substances. PMID:18350563

  9. Analysis of Polycyclic Aromatic Hydrocarbons Using Desorption Atmospheric Pressure Chemical Ionization Coupled to a Portable Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Jjunju, Fred P. M.; Maher, Simon; Li, Anyin; Badu-Tawiah, Abraham K.; Taylor, Stephen; Graham Cooks, R.

    2015-02-01

    Desorption atmospheric pressure chemical ionization (DAPCI) is implemented on a portable mass spectrometer and applied to the direct detection of polycyclic aromatic hydrocarbons (PAHs) and alkyl substituted benzenes. The presence of these compounds in the environment poses a significant threat to the health of both humans and wildlife because of their carcinogenic, toxic, and mutagenic properties. As such, instant detection outside of the laboratory is of particular importance to allow in-situ measurement at the source. Using a rapid, high throughput, miniature, handheld mass spectrometer, several alkyl substituted benzenes and PAHs (i.e., 1,2,3,5-tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, fluoranthene, anthracene, benzo[ k]fluoranthene, dibenz[ a,h]anthracene, acenaphthene, indeno[1,2,3-c,d]pyrene, 9-ethylfluorene, and 1-benzyl-3-methyl-naphthalene) were identified and characterized using tandem mass spectrometry (MS/MS) from ambient surfaces, in the open air. This method can provide almost instantaneous information while minimizing sample preparation, which is advantageous in terms of both cost and simplicity of analysis. This MS-based technique is applicable to a wide range of environmental organic molecules.

  10. Analysis of underivatized amphetamines and related phenethylamines with high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Bogusz, M J; Krger, K D; Maier, R D

    2000-03-01

    Amphetamine, methamphetamine, illicit designer phenethylamines (MDA, MDEA, MDMA, MBDB, and BDMPEA), and other phenethylamines (benzyl-1-phenylethylamine, cathinone, ephedrine, fenfluramine, norfenfluramine, phentermine, 1-phenylethylamine, phenylpropanolamine, and propylhexedrine) were extracted from serum using a solid-phase extraction procedure. The extracts were examined with high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The drugs were separated on ODS column in acetonitrile/50 mM ammonium formate buffer (pH 3.0) (25:75) as a mobile phase. Full-scan mass spectra of drugs examined by means of APCI with collision-induced dissociation showed protonated molecular ions and fragments typical for particular drugs. LC-APCI-MS allowed an unequivocal differentiation of all drugs involved. The quantitation was performed using selected ion monitoring of protonated molecular ions and fragments of drugs involved and their deuterated analogues. The limits of detection ranged from 1 to 5 microg/L serum, and the recoveries ranged from 58 to 96%. A linear response was observed for all drugs in the range from 5 to 500 microg/L. The method was applied for routine determination of amphetamine, MDMA, MDA, and MDEA in one run. Solid-phase extraction used assured simultaneous isolation of various groups of basic drugs of forensic interest (opiates, cocaines, phenethylamines, and benzodiazepines) from biofluids. PMID:10732943

  11. Self-Aspirated Atmospheric Pressure Chemical Ionization Source for Direct Sampling of Analytes on Surfaces and in Liquid Solutions

    SciTech Connect

    Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.

  12. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.

    PubMed

    Cotte-Rodrguez, Ismael; Justes, Dina R; Nanita, Sergio C; Noll, Robert J; Mulligan, Christopher C; Sanders, Nathaniel L; Cooks, R Graham

    2006-04-01

    The suitability of atmospheric pressure chemical ionization mass spectrometry as sensing instrumentation for the real-time monitoring of low levels of toxic compounds is assessed, especially with respect to public safety applications. Gaseous samples of nine toxic industrial compounds, NH3, H2S, Cl2, CS2, SO2, C2H4O, HBr, C6H6 and AsH3, and two chemical warfare agent simulants, dimethyl methylphosphonate (DMMP) and methyl salicylate (MeS), were studied. API-MS proves highly suited to this application, with speedy analysis times (<30 seconds), high sensitivity, high selectivity towards analytes, good precision, dynamic range and accuracy. Tandem MS methods were implemented in selected cases for improved selectivity, sensitivity, and limits of detection. Limits of detection in the parts-per-billion and parts-per-trillion range were achieved for this set of analytes. In all cases detection limits were well below the compounds' permissible exposure limits (PELs), even in the presence of added complex mixtures of alkanes. Linear responses, up to several orders of magnitude, were obtained over the concentration ranges studied (sub-ppb to ppm), with relative standard deviations less than 3%, regardless of the presence of alkane interferents. Receiver operating characteristic (ROC) curves are presented to show the performance trade-off between sensitivity, probability of correct detection, and false positive rate. A dynamic sample preparation system for the production of gas phase analyte concentrations ranging from 100 pptr to 100 ppm and capable of admixing gaseous matrix compounds and control of relative humidity and temperature is also described. PMID:16568176

  13. Analysis of malachite green and metabolites in fish using liquid chromatography atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Doerge, D R; Churchwell, M I; Gehring, T A; Pu, Y M; Plakas, S M

    1998-01-01

    Malachite green (MG), a traditional agent used in aquaculture, is structurally related to other carcinogenic triphenylmethane dyes. Although MG is not approved for use in aquaculture, its low cost and high efficacy make illicit use likely. We developed sensitive and specific methods for determination of MG and its principal metabolite, leucoMG (LMG), in edible fish tissues using isotope dilution liquid chromatography atmosphere pressure chemical ionization mass spectrometry. MG and LMG concentrations were measured in filets from catfish treated with MG under putative use conditions (ca. 250 and 1000 ppb, respectively) and from commercial trout samples (0-3 and 0-96 ppb, respectively). Concentrations of LMG in edible fish tissues always exceeded those of MG. A rapid cone voltage switching acquisition procedure was used to simultaneously produce molecular ions for quantification and diagnostic fragment ions for confirmation of MG and metabolites. The accurate and precise agreement between diagnostic ion intensity ratios produced by LMG in authentic standards and incurred fish samples was used to unambiguously confirm the presence of LMG in edible fish tissue. This suggested the validity of using LMG as a marker residue for regulatory determination of MG misuse. Additional metabolites derived from oxidative metabolism of MG or LMG (demethylation and N-oxygenation) were identified in catfish and trout filets, including a primary arylamine which is structurally related to known carcinogens. The ability to simultaneously quantify residues of MG and LMG, and to confirm the chemical structure of a marker residue by using LC/MS, suggests that this procedure may be useful in monitoring the food supply for the unauthorized use of MG in aquaculture. PMID:9807836

  14. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry.

    PubMed

    D'Agostino, Paul A; Chenier, Claude L

    2010-06-15

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been applied to the direct analysis of sample media for target chemicals, including chemical warfare agents (CWA), without the need for additional sample handling. During the present study, solid-phase microextraction (SPME) fibers were used to sample the headspace above five organophosphorus CWA, O-isopropyl methylphosphonofluoridate (sarin, GB), O-pinacolyl methylphosphonofluoridate (soman, GD), O-ethyl N,N-dimethyl phosphoramidocyanidate (tabun, GA), O-cyclohexyl methylphosphonofluoridate (cyclohexyl sarin, GF) and O-ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (VX) spiked into glass headspace sampling vials. Following sampling, the SPME fibers were introduced directly into a modified ESI source, enabling rapid and safe DESI of the toxic compounds. A SYNAPT HDMS instrument was used to acquire time-aligned parallel (TAP) fragmentation data, which provided both ion mobility and MS(n) (n = 2 or 3) data useful for the confirmation of CWA. Unique ion mobility profiles were acquired for each compound and characteristic product ions of the ion mobility separated ions were produced in the Triwave transfer collision region. Up to six full scanning MS(n) spectra, containing the [M + H](+) ion and up to seven diagnostic product ions, were acquired for each CWA during SPME fiber analysis. A rapid screening approach, based on the developed methodology, was applied to several typical forensic media, including Dacron sampling swabs spiked with 5 microg of CWA. Background interference was minimal and the spiked CWA were readily identified within one minute on the basis of the acquired ion mobility and mass spectrometric data. PMID:20486257

  15. Composite Chemical Sensors Based on Carbon-Filled Patterned Negative Resists

    NASA Astrophysics Data System (ADS)

    Chatzandroulis, Stavros; Andreadis, Nikolaos; Goustouridis, Dimitrios; Quercia, Luigi; Raptis, Ioannis; Beltsios, Konstantinos

    2007-09-01

    Conductometric chemical sensors based on polymer composite films, synthesized by adding conductive fillers to the polymer solutions and deposited between two predefined electrodes, are well established. Deposition of the sensitive composites is usually applied to sensor devices by solvent casting methods such as spin coating, spray coating and drop casting. These methods lack in pattern precision and repeatability. In order to overcome pertinent problems the application of conventional patterning methods for the fabrication of the conductive sensing array is proposed. In this work, we present the deposition of two conductive polymer composites poly(dimethylsiloxane)/carbon black and epoxy polymer/carbon black on the same substrate. Each polymer composite is deposited onto two respective electrodes, effectively creating a conductive polymer chemical sensor pair. The two sensors performance is evaluated and considered as a first step towards the fabrication of a conductometric polymer composite array. Electrical vs dimensional sensitivity issues and the significance of electrode configuration are considered.

  16. The first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of 2012, and an investigation of the role of Cl atom oxidation

    NASA Astrophysics Data System (ADS)

    Bannan, Thomas J.; Booth, A. Murray; Bacak, Asan; Muller, Jennifer B. A.; Leather, Kimberley E.; Le Breton, Michael; Jones, Benjamin; Young, Dominique; Coe, Hugh; Allan, James; Visser, Suzanne; Slowik, Jay G.; Furger, Markus; Prvt, Andr S. H.; Lee, James; Dunmore, Rachel E.; Hopkins, James R.; Hamilton, Jacqueline F.; Lewis, Alastair C.; Whalley, Lisa K.; Sharp, Thomas; Stone, Daniel; Heard, Dwayne E.; Fleming, Zo L.; Leigh, Roland; Shallcross, Dudley E.; Percival, Carl J.

    2015-06-01

    The first nitryl chloride (ClNO2) measurements in the UK were made during the summer 2012 ClearfLo campaign with a chemical ionization mass spectrometer, utilizing an I- ionization scheme. Concentrations of ClNO2 exceeded detectable limits (11 ppt) every night with a maximum concentration of 724 ppt. A diurnal profile of ClNO2 peaking between 4 and 5 A.M., decreasing directly after sunrise, was observed. Concentrations of ClNO2 above the detection limit are generally observed between 8 P.M. and 11 A.M. Different ratios of the production of ClNO2:N2O5 were observed throughout with both positive and negative correlations between the two species being reported. The photolysis of ClNO2 and a box model utilizing the Master Chemical Mechanism modified to include chlorine chemistry was used to calculate Cl atom concentrations. Simultaneous measurements of hydroxyl radicals (OH) using low pressure laser-induced fluorescence and ozone enabled the relative importance of the oxidation of three groups of measured VOCs (alkanes, alkenes, and alkynes) by OH radicals, Cl atoms, and O3 to be compared. For the day with the maximum calculated Cl atom concentration, Cl atoms in the early morning were the dominant oxidant for alkanes and, over the entire day, contributed 15%, 3%, and 26% toward the oxidation of alkanes, alkenes, and alkynes, respectively.

  17. Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry.

    PubMed

    Kolakowski, Beata M; D'Agostino, Paul A; Chenier, Claude; Mester, Zoltn

    2007-11-01

    Flow injection high field asymmetric waveform ion mobility spectrometry (FAIMS)-mass spectrometry (MS) methodology was developed for the detection and identification of chemical warfare (CW) agents in spiked food products. The CW agents, soman (GD), sarin (GB), tabun (GA), cyclohexyl sarin (GF), and four hydrolysis products, ethylphosphonic acid (EPA), methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (Pin MPA), and isopropyl methylphosphonic acid (IMPA) were separated and detected by positive ion and negative ion atmospheric pressure ionization-FAIMS-MS. Under optimized conditions, the compensation voltages were 7.2 V for GD, 8.0 V for GA, 7.2 V for GF, 7.6 V for GB, 18.2 V for EPA, 25.9 V for MPA, -1.9 V for PinMPA, and +6.8 V for IMPA. Sample preparation was kept to a minimum, resulting in analysis times of 3 min or less per sample. The developed methodology was evaluated by spiking bottled water, canola oil, cornmeal, and honey samples at low microgram per gram (or microg/mL) levels with the CW agents or CW agent hydrolysis products. The detection limits observed for the CW agents in the spiked food samples ranged from 3 to 15 ng/mL in bottled water, 1-33 ng/mL in canola oil, 1-34 ng/g in cornmeal, and 13-18 ng/g in honey. Detection limits were much higher for the CW agent hydrolysis products, with only MPA being detected in spiked honey samples. PMID:17896827

  18. Ultra-trace analysis of plutonium by thermal ionization mass spectrometry with a continuous heating technique without chemical separation.

    PubMed

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Song, Kyuseok

    2015-08-15

    Thermal ionization mass spectrometry (TIMS) with a continuous heating technique is known as an effective method for measuring the isotope ratio in trace amounts of uranium. In this study, the analytical performance of thermal ionization mass spectrometry with a continuous heating technique was investigated using a standard plutonium solution (SRM 947). The influence of the heating rate of the evaporation filament on the precision and accuracy of the isotope ratios was examined using a plutonium solution sample at the fg level. Changing the heating rate of the evaporation filament on samples ranging from 0.1fg to 1000fg revealed that the influence of the heating rate on the precision and accuracy of the isotope ratios was slight around the heating rate range of 100-250mA/min. All of the isotope ratios of plutonium (SRM 947), (238)Pu/(239)Pu, (240)Pu/(239)Pu, (241)Pu/(239)Pu and (242)Pu/(239)Pu, were measured down to sample amounts of 70fg. The ratio of (240)Pu/(239)Pu was measured down to a sample amount of 0.1fg, which corresponds to a PuO2 particle with a diameter of 0.2μm. Moreover, the signals of (239)Pu could be detected with a sample amount of 0.03fg, which corresponds to the detection limit of (239)Pu of 0.006fg as estimated by the 3-sigma criterion. (238)Pu and (238)U were clearly distinguished owing to the difference in the evaporation temperature between (238)Pu and (238)U. In addition, (241)Pu and (241)Am formed by the decay of (241)Pu can be discriminated owing to the difference in the evaporation temperature. As a result, the ratios of (238)Pu/(239)Pu and (241)Pu/(239)Pu as well as (240)Pu/(239)Pu and (242)Pu/(239)Pu in plutonium samples could be measured by TIMS with a continuous heating technique and without any chemical separation processes. PMID:25966386

  19. Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.; Goyea, O.; Mauldin, R. L., III; Olson, J. S.; Cantrell, C. A.

    2011-04-01

    An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2, and frequent measurement capability with observations of both HO2 and HO2 + RO2 amounts each minute. These improvements allow for analyses of measured [HO2]/[HO2 + RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53 × 10-5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with low efficiency, approximately 15% (high [NO]/[O2] = 6.80 × 10-4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the new measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model indicates good agreement under tropospheric conditions where NOx (NO + NO2) concentrations are lower than 0.5 ppbV (parts per billion by volume).

  20. Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.; Goyea, O.; Mauldin, R. L., III; Olson, J. S.; Cantrell, C. A.

    2010-09-01

    An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2 and frequent measurement capability with observations of both HO2 and HO2 + RO2 amounts each minute. This allows for analyses of measured [HO2]/[HO2 + RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53 × 10-5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with approximately 15% efficiency (high [NO]/[O2] = 6.80 × 10-4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the current measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model confirms that the PeRCIMS is able to successfully separate and measure HO2 and RO2 under the majority of tropospheric conditions.

  1. Measurements of tropospheric HO2 and RO2 by oxygen dilution modulation and chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hornbrook, R. S.; Crawford, J. H.; Edwards, G. D.; Goyea, O.; Mauldin, R. L., III; Olson, J. S.; Cantrell, C. A.

    2011-01-01

    An improved method for the measurement of hydroperoxy radicals (HO2) and organic peroxy radicals (RO2, where R is any organic group) has been developed that combines two previous chemical conversion/chemical ionization mass spectrometry (CIMS) peroxy radical measurement techniques. Applicable to both ground-based and aircraft platforms, the method provides good separation between HO2 and RO2 and frequent measurement capability with observations of both HO2 and HO2+RO2 amounts each minute. This allows for analyses of measured [HO2]/[HO2+RO2] ratios on timescales relevant to tropospheric photochemistry. By varying both [NO] and [O2] simultaneously in the chemical conversion region of the PeRCIMS (Peroxy Radical CIMS) inlet, the method exploits the changing conversion efficiency of RO2 to HO2 under different inlet [NO]/[O2] to selectively observe either primarily HO2 or the sum of HO2 and RO2. Two modes of operation have been established for ambient measurements: in the first half of the minute, RO2 radicals are measured at close to 100% efficiency along with HO2 radicals (low [NO]/[O2] = 2.53×10-5) and in the second half of the minute, HO2 is detected while the majority of ambient RO2 radicals are measured with low efficiency, approximately 15% (high [NO]/[O2] = 6.80×10-4). The method has been tested extensively in the laboratory under various conditions and for a variety of organic peroxy radicals relevant to the atmosphere and the results of these tests are presented. The modified PeRCIMS instrument has been deployed successfully using the new measurement technique on a number of aircraft campaigns, including on the NSF/NCAR C-130 during the MIRAGE-Mex and NASA INTEX-B field campaigns in the spring of 2006. A brief comparison of the peroxy radical measurements during these campaigns to a photochemical box model indicates good agreement under tropospheric conditions where NOx (NO+NO2) concentrations are lower than 0.5 ppbV (parts per billion by volume).

  2. Structural elucidation of molecular species of pacific oyster ether amino phospholipids by normal-phase liquid chromatography/negative-ion electrospray ionization and quadrupole/multiple-stage linear ion-trap mass spectrometry.

    PubMed

    Chen, Su; Belikova, Natalia A; Subbaiah, Papasani V

    2012-07-20

    Although marine oysters contain abundant amounts of ether-linked aminophospholipids, the structural identification of the various molecular species has not been reported. We developed a normal-phase silica liquid chromatography/negative-ion electrospray ionization/quadrupole multiple-stage linear ion-trap mass spectrometric (NPLC-NI-ESI/Q-TRAP-MS(3)) method for the structural elucidation of ether molecular species of serine and ethanolamine phospholipids from marine oysters. The major advantages of the approach are (i) to avoid incorrect selection of isobaric precursor ions derived from different phospholipid classes in a lipid mixture, and to generate informative and clear MS(n) product ion mass spectra of the species for the identification of the sn-1 plasmanyl or plasmenyl linkages, and (ii) to increase precursor ion intensities by "concentrating" lipid molecules of each phospholipid class for further structural determination of minor molecular species. Employing a combination of NPLC-NI-ESI/MS(3) and NPLC-NI-ESI/MS(2), we elucidated, for the first time, the chemical structures of docosahexaenoyl and eicosapentaenoyl plasmenyl phosphatidylserine (PS) species and differentiated up to six isobaric species of diacyl/alkylacyl/alkenylacyl phosphatidylethanolamine (PE) in the US pacific oysters. The presence of a high content of both omega-3 plasmenyl PS/plasmenyl PE species and multiple isobaric molecular species isomers is the noteworthy characteristic of the marine oyster. The simple and robust NPLC-NI-ESI/MS(n)-based methodology should be particularly valuable in the detailed characterization of marine lipid dietary supplements with respect to omega-3 aminophospholipids. PMID:22713920

  3. Limitations of low resolution mass spectrometry in the electron capture negative ionization mode for the analysis of short- and medium-chain chlorinated paraffins.

    PubMed

    Reth, Margot; Oehme, Michael

    2004-04-01

    The analysis of complex mixtures of chlorinated paraffins (CPs) with short (SCCPs, C(10)-C(13)) and medium (MCCPs, C(14)-C(17)) chain lengths can be disturbed by mass overlap, if low resolution mass spectrometry (LRMS) in the electron capture negative ionization mode is employed. This is caused by CP congeners with the same nominal mass, but with five carbon atoms more and two chlorine atoms less; for example C(11)H(17)(37)Cl(35)Cl(6) ( m/ z 395.9) and C(16)H(29)(35)Cl(5) ( m/ z 396.1). This can lead to an overestimation of congener group quantity and/or of total CP concentration. The magnitude of this interference was studied by evaluating the change after mixing a SCCP standard and a MCCP standard 1+1 (S+MCCP mixture) and comparing it to the single standards. A quantification of the less abundant C(16) and C(17) congeners present in the MCCP standard was not possible due to interference from the major C(11) and C(12) congeners in the SCCPs. Also, signals for SCCPs (C(10)-C(12)) with nine and ten chlorine atoms were mimicked by MCCPs (C(15)-C(17)) with seven and eight chlorine atoms (for instance C(10)H(12)Cl(10) by C(15)H(24)Cl(8)). A similar observation was made for signals from C(15)-C(17) CPs with four and five chlorine atoms resulting from SCCPs (C(10)-C(12)) with six and seven chlorine atoms (such as C(15)H(28)Cl(4) by C(10)H(16)Cl(6)) in the S+MCCP mixture. It could be shown that the quantification of the most abundant congeners (C(11)-C(14)) is not affected by any interference. The determination of C(10) and C(15) congeners is partly disturbed, but this can be detected by investigating isotope ratios, retention time ranges and the shapes of the CP signals. Also, lower chlorinated compounds forming [M+Cl](-) as the most abundant ion instead of [M-Cl](-) are especially sensitive to systematic errors caused by superposition of ions of different composition and the same nominal mass. PMID:14997265

  4. Ultratrace detection of chemical warfare agent simulants using supersonic-molecular-beam, resonance-enhanced multiphoton-ionization, time-of-flight mass spectroscopy. Final report

    SciTech Connect

    Syage, J.A.; Pollard, J.E.; Cohen, R.B.

    1988-02-15

    An ultratrace detection method that offers exceptional selectivity has been developed based on the technique of supersonic molecular beam, resonance enhanced multiphoton ionization, time-of-flight mass spectroscopy (MB/REMPI/TOFMS). Single ion detection capability has given detection limits as low as 300 ppt (dimethyl sulfide). Single vibronic level REMPI of the supercooled molecules in conjunction with TOFMS provides selectivity of 10,000 against chemically similar compounds. Studies were carried out using moist air expansions for a variety of organophosphonate and sulfide chemical warfare agent (CWA) simulant molecules. The preparation of molecules in single vibronic levels by laser excitation in supersonic molecular beams has enabled us to record high resolution spectra of higher excited electronic states showing fully resolved vibrational structure for diisopropyl methylphosphonate (DIMP) and dimethyl sulfide (DMS). VUV absorption spectra have also been recorded for several CWA molecules at ambient temperature, revealing several new electronic states extending up to the ionization threshold.

  5. Sequential solid phase extraction protocol followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the trace determination of non ionic polyethoxylated surfactants in tannery wastewaters

    SciTech Connect

    Castillo, M.; Barcelo, D.; Ventura, F.

    1999-06-01

    Automated solid-phase extraction (SPE) with C18 and styrene-divinylbenzene cartridges in series was used for the preconcentration of non ionic polyethoxylated surfactants in tannery wastewater. Fractionated extracts were analyzed by LC-MS using Atmospheric Pressure Chemical Ionization (APCI) in the Positive and Negative Ion modes. Recoveries for nonionic surfactants were approximately of 72, 90 and 80% for polyethylene glycols, nonylphenol and alcohol ethoxylates in the polar, aromatic and medium polarity fractions, respectively. Data acquisition in the selected ion monitoring mode afforded limits of quantification from 0.1 to 0.8 {micro}g/l for tridecylic polyethoxylated alcohol and polyethoxylated glycol, respectively, in the complex tannery wastewaters. The tannery effluents investigated contained between 0.03 to 3.0 mg/l of polyethylene glycol and nonylphenol polyethoxylate, respectively.

  6. Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts.

    PubMed

    Cobo Molinos, Antonio; Abriouel, Hikmate; López, Rosario Lucas; Valdivia, Eva; Omar, Nabil Ben; Gálvez, Antonio

    2008-08-01

    Enterocin AS-48 was tested for decontamination of soybean sprouts against Gram-negative bacteria. Although treatment with bacteriocin alone had no effect on Salmonella enterica, a synergistic antimicrobial effect was detected at pH 9.0 and in combination with moderate heat treatment. Greatest inactivation was achieved for sprouts heated for 5 min at 65 degrees C in an alkaline (pH 9.0) enterocin AS-48 solution of 25 microg/ml. Bactericidal activity against S. enterica increased greatly when enterocin AS-48 was used in washing solutions in combination with several chemical compounds: EDTA, lactic acid, peracetic acid, polyphosphoric acid, sodium hypochlorite, hexadecylpyridinium chloride, propyl-p-hydroxybenzoate, and hydrocinnamic acid. The combined treatment of enterocin AS-48 and polyphosphoric acid was tested against several other Gram-negative bacteria inoculated on sprouts. The bacteria tested showed great differences in sensitivity to polyphosphoric acid, but synergism with enterocin AS-48 was confirmed in all cases. Combinations of enterocin AS-48 (25 microg/ml) and polyphosphoric acid in a concentration range of 0.1 to 2.0% significantly reduced or inhibited growth of the populations of S. enterica, Escherichia coli O157:H7, Shigella spp., Enterobacter aerogenes, Yersinia enterocolitica, Aeromonas hydrophila and Pseudomonas fluorescens in sprout samples stored at 6 degrees C and 15 degrees C. The combined treatment could therefore be applied to reduce the risks of Gram-negative pathogenic as well as spoilage bacteria on sprouts. PMID:18577412

  7. Acetonitrile covalent adduct chemical ionization tandem mass spectrometry of non-methylene-interrupted pentaene fatty acid methyl esters.

    PubMed

    Alves, Susana P; Tyburczy, Cynthia; Lawrence, Peter; Bessa, Rui J B; Brenna, J Thomas

    2011-07-30

    Acetonitrile covalent adduct chemical ionization tandem mass spectrometry (CACIMS/MS) has shown to be an efficient method for the identification of double-bond position in homoallylic, conjugated and several polyene non-methylene-interrupted (NMI) fatty acid methyl esters. However, it has not been thoroughly evaluated for NMI highly unsaturated fatty acids (HUFA) with more than four double bonds. Docosahexaenoic acid (DHA)-rich single cell oil (DHASCO(); Martek Biosciences, Corp.) was partially hydrogenated (partially hydrogenated DHASCO; PHDO) producing ten novel 22:5 and 22:6 HUFA isomers. In single-stage MS, the ratio of [M+54](+)/[M+54-32](+) for the 22:5 and 22:6 isomers indicated the presence of homoallylic or partially conjugated double-bond systems. The CACIMS/MS spectra revealed six 22:5 isomers with diagnostic ions corresponding to the homoallylic 22:5n-6 and 22:5n-3 isomers, and four distinct NMI 22:5 isomers. Diagnostic ions for four 22:6 isomers were identical to the native DHA illustrating that CACIMS/MS is sensitive to double-bond position but not geometry. Three gas chromatography (GC) peaks for partially conjugated 22:6 isomers were also detected and clearly distinguishable from homoallylic 22:6 isomers, but their CACIMS/MS spectra did not yield prominent ions indicative of double-bond position, possibly due to co-elution. Overall, CACIMS/MS was effective for determining double-bond position in NMI 22:5 isomers. Further investigations are warranted to evaluate and determine fragmentation patterns for partially conjugated and NMI 22:6 HUFA. PMID:21698676

  8. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system

    PubMed Central

    Mazzola, Priscila G; Martins, Alzira MS; Penna, Thereza CV

    2006-01-01

    Background Purified water for pharmaceutical purposes must be free of microbial contamination and pyrogens. Even with the additional sanitary and disinfecting treatments applied to the system (sequential operational stages), Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were isolated and identified from a thirteen-stage purification system. To evaluate the efficacy of the chemical agents used in the disinfecting process along with those used to adjust chemical characteristics of the system, over the identified bacteria, the kinetic parameter of killing time (D-value) necessary to inactivate 90% of the initial bioburden (decimal reduction time) was experimentally determined. Methods Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas alcaligenes, Pseudomonas picketti, Flavobacterium aureum, Acinetobacter lowffi and Pseudomonas diminuta were called in house (wild) bacteria. Pseudomonas diminuta ATCC 11568, Pseudomonas alcaligenes INCQS , Pseudomonas aeruginosa ATCC 15442, Pseudomonas fluorescens ATCC 3178, Pseudomonas picketti ATCC 5031, Bacillus subtilis ATCC 937 and Escherichia coli ATCC 25922 were used as 'standard' bacteria to evaluate resistance at 25C against either 0.5% citric acid, 0.5% hydrochloric acid, 70% ethanol, 0.5% sodium bisulfite, 0.4% sodium hydroxide, 0.5% sodium hypochlorite, or a mixture of 2.2% hydrogen peroxide (H2O2) and 0.45% peracetic acid. Results The efficacy of the sanitizers varied with concentration and contact time to reduce decimal logarithmic (log10) population (n cycles). To kill 90% of the initial population (or one log10 cycle), the necessary time (D-value) was for P. aeruginosa into: (i) 0.5% citric acid, D = 3.8 min; (ii) 0.5% hydrochloric acid, D = 6.9 min; (iii) 70% ethanol, D = 9.7 min; (iv) 0.5% sodium bisulfite, D = 5.3 min; (v) 0.4% sodium hydroxide, D = 14.2 min; (vi) 0.5% sodium hypochlorite, D = 7.9 min; (vii) mixture of hydrogen peroxide (2.2%) plus peracetic acid (0.45%), D = 5.5 min. Conclusion The contact time of 180 min of the system with the mixture of H2O2+ peracetic acid, a total theoretical reduction of 6 log10 cycles was attained in the water purified storage tank and distribution loop. The contact time between the water purification system (WPS) and the sanitary agents should be reviewed to reach sufficient bioburden reduction (over 6 log10). PMID:16914053

  9. Chemical compositions of black carbon particle cores and coatings via soot particle aerosol mass spectrometry with photoionization and electron ionization.

    PubMed

    Canagaratna, Manjula R; Massoli, Paola; Browne, Eleanor C; Franklin, Jonathan P; Wilson, Kevin R; Onasch, Timothy B; Kirchstetter, Thomas W; Fortner, Edward C; Kolb, Charles E; Jayne, John T; Kroll, Jesse H; Worsnop, Douglas R

    2015-05-14

    Black carbon is an important constituent of atmospheric aerosol particle matter (PM) with significant effects on the global radiation budget and on human health. The soot particle aerosol mass spectrometer (SP-AMS) has been developed and deployed for real-time ambient measurements of refractory carbon particles. In the SP-AMS, black carbon or metallic particles are vaporized through absorption of 1064 nm light from a CW Nd:YAG laser. This scheme allows for continuous "soft" vaporization of both core and coating materials. The main focus of this work is to characterize the extent to which this vaporization scheme provides enhanced chemical composition information about aerosol particles. This information is difficult to extract from standard SP-AMS mass spectra because they are complicated by extensive fragmentation from the harsh 70 eV EI ionization scheme that is typically used in these instruments. Thus, in this work synchotron-generated vacuum ultraviolet (VUV) light in the 8-14 eV range is used to measure VUV-SP-AMS spectra with minimal fragmentation. VUV-SP-AMS spectra of commercially available carbon black, fullerene black, and laboratory generated flame soots were obtained. Small carbon cluster cations (C(+)-C5(+)) were found to dominate the VUV-SP-AMS spectra of all the samples, indicating that the corresponding neutral clusters are key products of the SP vaporization process. Intercomparisons of carbon cluster ratios observed in VUV-SP-AMS and SP-AMS spectra are used to confirm spectral features that could be used to distinguish between different types of refractory carbon particles. VUV-SP-AMS spectra of oxidized organic species adsorbed on absorbing cores are also examined and found to display less thermally induced decomposition and fragmentation than spectra obtained with thermal vaporization at 200 C (the minimum temperature needed to quantitatively vaporize ambient oxidized organic aerosol with a continuously heated surface). The particle cores tested in these studies include black carbon, silver, gold, and platinum nanoparticles. These results demonstrate that SP vaporization is capable of providing enhanced organic chemical composition information for a wide range of organic coating materials and IR absorbing particle cores. The potential of using this technique to study organic species of interest in seeded laboratory chamber or flow reactor studies is discussed. PMID:25526741

  10. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  11. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    PubMed

    Klee, Sonja; Derpmann, Valerie; Widorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region. PMID:24850441

  12. Non-proximate detection of small and large molecules by desorption electrospray ionization and desorption atmospheric pressure chemical ionization mass spectrometry: instrumentation and applications in forensics, chemistry, and biology.

    PubMed

    Cotte-Rodríguez, Ismael; Mulligan, Christopher C; Cooks, R Graham

    2007-09-15

    Ambient surfaces are examined by mass spectrometry at distances of up to 3 m from the instrument without any prior sample preparation. Non-proximate versions of the desorption electrospray ionization (DESI) and desorption atmospheric pressure chemical ionization experiments are shown to allow rapid, sensitive, and selective detection of trace amounts of active ingredients in pharmaceutical drug formulations, illicit drugs (methamphetamine, cocaine, and diacetylmorphine), organic salts, peptides, chemical warfare agent simulants, and other small organic compounds. Utilizing an ion transport tube to transport analyte ions to the mass spectrometer, nonproximate DESI allows one to collect high-quality, largely interference-free spectra with signal-to-noise (S/N) ratios of more than 100. High selectivity is achieved by tandem mass spectrometry and by reactive DESI, a variant experiment in which reagents added into the solvent spray allow bond-forming reactions with the analyte. Ion/molecule reactions were found to selectively suppress the response of mixture components other than the analyte of interest in nonproximate-DESI. Flexible ion transport tubing is also investigated, allowing performance similar to stainless steel tubing in the transport of ions from the sample to the mass spectrometer. Transfer tube temperature effects are examined. A multiple sprayer DESI source capable of analyzing a larger sample area was evaluated to decrease the sampling time and increase sample throughput. Low nanogram detection limits were obtained for the compounds studied from a wide variety of surfaces, even those present in complex matrixes. PMID:17696318

  13. Computational and Experimental Assessment of Benzene Cation Chemistry for the Measurement of Marine Derived Biogenic Volatile Organic Compounds with Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zoerb, M.; Kim, M.; Zimmermann, K.; Bertram, T. H.

    2013-12-01

    Chemical ionization mass spectrometry (CIMS) is a highly selective and sensitive technique for the measurement of trace gases in the atmosphere. However, competing side reactions and dependence on relative humidity (RH) can make the transition from the laboratory to the field challenging. Effective implementation of chemical ionization requires a thorough knowledge of the elementary steps leading to ionization of the analyte. We have recently investigated benzene cations for the detection of marine derived biogenic volatile organic compounds (BVOCs), such isoprene and terpene compounds, from algal bloom events. Our experimental results indicate that benzene ion chemistry is an attractive candidate for field measurements, and the RH dependence is weak. To further understand the advantages and limitations of this approach, we have also used electronic structure theory calculations to compliment the experimental work. These theoretical methods can provide valuable insight into the physical chemistry of ion molecule reactions including thermodynamical information, the stability of ions to fragmentation, and potential sources of interference such as dehydration to form isobaric ions. The combined experimental and computational approach also allows validation of the theoretical methods and will provide useful information towards gaining predictive power for the selection of appropriate reagent ions for future experiments.

  14. Determination of selenium in human serum by liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry after acid digestion and derivatization using 2,3-diaminonaphthalene.

    PubMed

    Ando, Masayuki; Takizawa, Megumi; Suwabe, Sayuri; Yamato, Susumu; Shimada, Kenji

    2003-01-01

    Analysis of selenium in biological samples is very important and numerous analytical methods for the element have been developed. One of the most convenient and widely used methods for routine determination of serum selenium is a fluorometric method using 2,3-diaminonaphthalene (DAN); however, this method lacks specificity. We observed that 4,5-benzopiazselenol (BPS), a selenium derivative of DAN, is ionized with electron capture in an atmospheric pressure chemical ionization (APCI) interface, and subsequently established a method for determining total human serum selenium by means of liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. All pretreatment procedures were carried out in a single test tube to minimize selenium loss. The recovery of organic or inorganic selenium spiked to human serum was 97-103%. The detection limit of BPS was equivalent to 0.2 ng of selenium and the lower quantitative limit of serum selenium was 10 ng mL(-1). The coefficient of variation of standard concentrations in control serum samples was 4.5%. The purity of the observed peak obtained from serum samples was confirmed using the ion cluster technique. PMID:15100472

  15. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around 875 cm -1 in Raman. HMTD and TMDD shared nu(O-O) vibration around 912 cm -1(HMTD: 910 cm-1; TMDD: 914 cm-1). Some of the vibrations identified were nu(CH){3000-2930 cm-1}, delta(C-O){1000-1100 cm-1}, nu(CH-C){1470-1400 cm-1}, nu(N-C){1370 cm-1}, and nu(N-H){3340 cm-1}. Both Raman microscopy and OACI-mass spectrometry represent excellent alternatives to be used sensitive checkpoints and forensic laboratories.

  16. Chemical ionization mass spectrometric measurements of SO2 emissions from jet engines in flight and test chamber operations

    NASA Astrophysics Data System (ADS)

    Hunton, D. E.; Ballenthin, J. O.; Borghetti, J. F.; Federico, G. S.; Miller, T. M.; Thorn, W. F.; Viggiano, A. A.; Anderson, B. E.; Cofer, W. R.; McDougal, D. S.; Wey, C. C.

    2000-11-01

    We report the results of two measurements of the concentrations and emission indices of gas-phase sulfur dioxide (EI(SO2)) in the exhaust of an F100-200E turbofan engine. The broad goals of both experiments were to obtain exhaust sulfur speciation and aerosol properties as a function of fuel sulfur content. In the first campaign, an instrumented NASA T-39 Sabreliner aircraft flew in close formation behind several F-16 fighter aircraft to obtain near-field plume composition and aerosol properties. In the second, an F-100 engine of the same type was installed in an altitude test chamber at NASA Glenn Research Center where gas composition and nonvolatile aerosol concentrations and size distributions were obtained at the exit plane of the engine. In both experiments, SO2 concentrations were measured with the Air Force Research Laboratory chemical ionization mass spectrometer as a function of altitude, engine power, and fuel sulfur content. A significant aspect of the program was the use of the same fuels, the same engine type, and many of the same diagnostics in both campaigns. Several different fuels were purchased specifically for these experiments, including high-sulfur Jet A (˜1150 ppmm S), low-sulfur Jet A (˜10 ppmm S), medium-sulfur mixtures of these two fuels, and military JP-8+100 (˜170 and ˜300 ppmm S). The agreement between the flight and test cell measurements of SO2 concentrations was excellent, showing an overall precision of better than ±10% and an estimated absolute accuracy of ±20%. The EI(SO2) varied from 2.49 g SO2/kg fuel for the high-sulfur fuel in the test chamber to less than 0.01 g/kg for the lowest-sulfur fuel. No dependence of emission index on engine power, altitude or simulated altitude, separation distance or plume age, or the presence of contrails was observed. In all experiments the measured EI(SO2) was consistent with essentially all of the fuel sulfur appearing as gas-phase SO2 in the exhaust. However, accurate determination of S(IV) to S(VI) conversion was hampered by inconsistencies in the assays of total fuel sulfur content.

  17. Low-temperature plasma ionization ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T

    2011-02-01

    In this research work, the capability of low-temperature plasma (LTP) as an ionization source for ion mobility spectrometry (IMS) has been investigated for the first time. This new ionization source enhances the potential of IMS as a portable analytical tool and allows direct analysis of various chemical compounds without having to evaporate the analyte or seek a solvent or reagent whatsoever. The effects of parameters such as the flow rate of the discharge gas, plasma voltage, and positioning of the LTP on the IMS signal were investigated. The positive reactant ions generated by the LTP ionization source were similar to those created in a corona discharge ionization source, where the proton clusters ((H(2)O)(n)H(+)) are the most abundant reactant ion, and in the negative mode, in addition to a saturated electron peak, several negative reactant ions (e.g., NO(x)(-)) were observed too. These reactant ions subsequently ionized the gaseous samples directly and liquids or solids after evaporation by plasma desorption. The ion mobility spectra of a few selected compounds, including explosives, drugs, and amines, were obtained to evaluate the new ionization source in positive and negative modes, and the reduced mobility values (K(0)) of the originated ions were calculated. Furthermore, the method has also been applied to obtain the figures of merit for acetaminophen as a test compound. The results obtained are promising enough to ensure the use of LTP as a desorption/ionization source in IMS for analytical applications. PMID:21192661

  18. Differentiation of regioisomeric aromatic ketocarboxylic acids by atmospheric pressure chemical ionization CAD tandem mass spectrometry in a linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.; Habicht, S. C.; Fu, M.; Shea, R. C.; Mossman, A. B.; Kenttmaa, Hilkka I.

    2011-01-01

    Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at different collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.

  19. Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC 6888 with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernndez-Martn, A.; Martn-Gordn, D.; Vlchez, J. M.; Prez Montero, E.; Riera, A.; Snchez, S. F.

    2012-05-01

    Context. The study of nebulae around Wolf-Rayet (WR) stars gives us clues about the mass-loss history of massive stars, as well as about the chemical enrichment of the interstellar medium (ISM). Aims: This work aims to search for the observational footprints of the interactions between the ISM and stellar winds in the WR nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. Methods: We have collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the northeast part of NGC 6888, we have generated maps of the extinction structure and electron density. We produced statistical frequency distributions of the radial velocity and diagnostic diagrams. Furthermore, we performed a thorough study of integrated spectra in nine regions over the whole nebula. Results: The 2D study has revealed two main behaviours. We have found that the spectra of a localized region to the southwest of this pointing can be represented well by shock models assuming n = 1000 cm-3, twice solar abundances, and shock velocities from 250 to 400 km s-1. With the 1D analysis we derived electron densities ranging from <100 to 360 cm-3. The electron temperature varies from ~7700 K to ~10 200 K. A strong variation of up to a factor 10 between different regions in the nitrogen abundance has been found: N/H appears lower than the solar abundance in those positions observed at the edges and very enhanced in the observed inner parts. Oxygen appears slightly underabundant with respect to solar value, whereas the helium abundance is found to be above it. We propose a scenario for the evolution of NGC 6888 to explain the features observed. This scheme consists of a structure of multiple shells: i) an inner and broken shell with material from the interaction between the supergiant and WR shells, presenting an overabundance in N/H and a slight underabundance in O/H; ii) an outer shell very intense in [OIII]?5007 corresponding to the main sequence bubble broken up as a consequence of the collision between supergiant and WR shells. Nitrogen and oxygen do not appear enhanced here, but helium appears enriched; iii) and finally it includes an external and faint shell that surrounds the whole nebula like a thin skin representing the early interaction between the winds from the main sequence star with the ISM for which typical circumstellar abundances are derived. Based on observations collected at the Centro Astronmico Hispano Alemn (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut fr Astronomie and the Instituto de Astrofsica de Andaluca (CSIC).Table 3 is available in electronic form at http://www.aanda.org

  20. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Bian, Wei; Cai, Zongwei

    2015-08-01

    CuFe2O4 magnetic nanocrystal clusters (CuFe2O4 MNCs) were proposed as a new matrix for small molecule analysis by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the first time. We demonstrated its advantages over conventional organic matrices in the detection of small molecules such as amino acids, peptides, nucleobases, fatty acids, and steroid hormones. A systematic comparison of CuFe2O4 MNCs with different ionization modes revealed that MS spectra obtained for the CuFe2O4 MNC matrix in the negative ion mode was only featured by deprotonated ion peaks with a free matrix background, which was different from the complicated alkali metal adducts produced in the positive ion mode. The developed method was found relatively tolerant to salt contamination and exhibited good reproducibility. A detection limit down to the subpicomolar level was achieved when testosterone was analyzed. In addition, by comparison of the MS spectra obtained from bare Fe3O4 and MFe2O4 MNC (M = Co, Ni, Cu, Zn) matrices, two main factors of MFe2O4 MNC matrices were revealed to play a vital role in assisting the negative ion desorption/ionization (D/I) process: doping transition metals into ferrite nanocrystals favoring laser absorption and energy transfer and a good match between the UV absorption of MFe2O4 MNCs and the excitation of nitrogen laser source facilitating LDI efficiency. This work creates a new branch of application for MFe2O4 MNCs and provides an alternative solution for small molecule analysis. PMID:26086699

  1. A Micro-Orifice Volatilization Impactor coupled to a Chemical Ionization Mass Spectrometer for the detection of organic acids in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Yatavelli, R. L.; Thornton, J. A.

    2007-12-01

    Significant uncertainties related to sources and removal processes of particulate organic matter persist due, in part, to a poor understanding of the molecular-level composition. To address these issues, we are developing a novel technique that couples a micro-orifice volatilization impactor (MOVI) to a chemical ionization mass spectrometer (CIMS) for fast, in situ measurements of specific organic acids expected to be in atmospheric particles. The MOVI-CIMS process has three steps: 1) aerosol collection by inertial impaction, 2) volatilization and sample transfer, and 3) chemical ionization and detection using a quadrupole mass spectrometer. We present results from laboratory characterization of two MOVI designs, one operating at low pressure (60 Torr) and the other at near ambient pressure. The low-pressure impactor has a theoretical cut point of 40nm while the atmospheric pressure impactor (API) has a theoretical cut point of 280nm with a pressure drop of less than 5%. We compare the advantages and disadvantages of these two designs in terms of typical atmospheric particle size distributions. Experimental tests of their theoretical cut-points are used to assess the importance of jet-to- plate distance and particle bounce. In addition, we demonstrate the utility of the MOVI-CIMS technique by employing it in studies of heterogeneous oxidation of particle organics and of secondary organic aerosol formation from biogenic hydrocarbon oxidation. Based on typical signal-to-noise ratio, the MOVI-CIMS demonstrates a detection limit of ~50 ng for monocarboxylic acids when using the LPI version and the iodide ion as a chemical ionization reagent. Preliminary results suggest even lower detection limits are possible with other reagent ions.

  2. Analysis of Thermal and Chemical Effets on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

    SciTech Connect

    Ekoto, Dr Isaac; Peterson, Dr. Brian; Szybist, James P; Northrop, Dr. William

    2015-01-01

    A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate. Gas sampling at the end of the NVO period was performed via a custom dump-valve apparatus, with detailed sample speciation by in-house gas chromatography. The balance of NVO-period input and output energy flows was calculated in terms of fuel energy, work, heat loss, and change in sensible energy. Experiment results were complemented by detailed chemistry single-zone reactor simulations performed at relevant mixing and thermodynamic conditions, with results used to evaluate ignition behavior and expected energy recovery yields. For the intermediate bulk-gas temperatures present during the NVO period (900-1100 K), weak negative temperature coefficient behavior with iso-octane fueling significantly lengthened ignition delays relative to similar ethanol fueled conditions. Faster ethanol ignition chemistry led to lower recovered fuel intermediate yields relative to similar iso-octane fueled conditions due to more complete fuel oxidation. From the energy analysis it was found that increased NVO-period global equivalence ratio, either from lower NVOperiod oxygen concentrations or higher fueling rates, in general led to a greater fraction of net recovered fuel energy and work as heat losses were minimized. These observations were supported by complementary single-zone reactor model results, which further indicated that kinetic time-scales favor chemical energy-consuming exothermic oxidation over slower endothermic reformation. Nonetheless, fuel energy recovery close to the thermodynamic equilibrium solution was achieved for baseline conditions that featured 4% NVO-period oxygen concentration.

  3. Rapid differentiation of in vitro cellular responses to toxic chemicals by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Chiu, Norman H L; Jia, Zhenquan; Diaz, Reynaldo; Wright, Petra

    2015-01-01

    Changes in protein expression as a cellular response to chemical exposure have been well established. Current methods for monitoring cellular responses usually require the use of specific reagents and/or labor-intensive procedures. The present study demonstrates the concept of using mass spectral pattern to distinguish different cellular responses. The concept is based on the ability to acquire a unique mass spectral pattern directly from a specific cell culture by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The results demonstrate that distinguishable and reproducible spectral patterns can be obtained from different cellular responses. PMID:25319019

  4. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    PubMed

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups. PMID:22895857

  5. Comparison Of Quantum Mechanical And Classical Trajectory Calculations Of Cross Sections For Ion-Atom Impact Ionization of Negative - And Positive -Ions For Heavy Ion Fusion Applications

    SciTech Connect

    Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

    2003-05-15

    Stripping cross sections in nitrogen have been calculated using the classical trajectory approximation and the Born approximation of quantum mechanics for the outer shell electrons of 3.2GeV I{sup -} and Cs{sup +} ions. A large difference in cross section, up to a factor of six, calculated in quantum mechanics and classical mechanics, has been obtained. Because at such high velocities the Born approximation is well validated, the classical trajectory approach fails to correctly predict the stripping cross sections at high energies for electron orbitals with low ionization potential.

  6. Multi-residue analysis of pesticides in traditional Chinese medicines using gas chromatography-negative chemical ionisation tandem mass spectrometry.

    PubMed

    Nie, Jing; Miao, Shui; Lehotay, Steven J; Li, Wen-Ting; Zhou, Heng; Mao, Xiu-Hong; Lu, Ji-Wei; Lan, Lan; Ji, Shen

    2015-01-01

    In this study, a residue analysis method for the simultaneous determination of 107 pesticides in traditional Chinese medicines (TCMs), Angelica sinensis, A. dahurica, Leonurus heterophyllus Sweet, Pogostemon cablin and Lonicera japonica Thunb., was developed using gas chromatography coupled with tandem mass spectrometry in negative chemical ionisation mode (GC-NCI-MS/MS). NCI has advantages of high sensitivity and selectivity to chemicals with electron-withdrawing groups, and yields low background interference. For sample preparation, QuEChERS (quick, easy, cheap, effective, rugged and safe) was applied. Due to the unique characteristics of TCMs, the clean-up step was optimised by adjusting amounts of primary secondary amine, C18, graphitised carbon black and silica sorbents. Validation was mainly performed by determining analyte recoveries at four different spiking concentrations of 10, 50, 100 and 200 ng g(-1), with seven replicates at each concentration. Method trueness, precision, linearity of calibration curves, lowest calibrated levels (LCLs) and matrix effects were determined to demonstrate method and instrument performance. Among the 107 pesticides tested, approximately 80% gave recoveries from 80% to 110% and < 10% relative standard deviation (RSD). The LCLs for nearly all pesticides were 5 ng g(-1), and as low as 0.1 ng g(-1) for dichlofenthion, endosulfan sulphate, flumetralin, isofenphos-methyl, methyl-pentachlorophenyl sulphide and trifluralin. The results indicate that GC-NCI-MS/MS is an excellent technique for quantitative and qualitative analysis of targeted GC-amenable pesticides at ultra-trace levels, especially in complex matrices such as TCMs. PMID:26125677

  7. The analysis of alkyl-capped alcohol ethoxylates and alcohol ethoxycarboxylates from alcohol ethoxylates by atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Huang; Rood

    1999-06-01

    Alcohol ethoxylates (AEs) are nonionic surfactants. They are industrially important compounds that have historically been difficult to analyze, with the best results to date achieved through derivatization (e.g., silylation) followed by analysis by gas chromatography/mass spectrometry (GC/MS). Recently, mass spectrometric techniques such as field desorption (FD), time-of-flight secondary ion mass spectrometry (TOF-SIMS), fast atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) have been employed to analyze surfynol(R) 4xx. In an effort to produce low-cost alkyl-capped AEs and anionic detergents from AEs, a fast and reliable measure of the product yields and conversions from AEs is required in research. We found that the product yields and conversions from reactions of AEs, obtained by the employment of atmospheric pressure chemical ionization (APCI), were in good agreement with those obtained from proton nuclear magnetic resonance spectroscopy ((1)H-NMR). Therefore, APCI can be used as a validated tool for studying AE reactions. Mixtures that contain either silylated or unsilylated ethoxylates and/or carboxylates yield the same APCI mass spectra. Copyright -Copyright 1999 John Wiley & Sons, Ltd. PMID:10407291

  8. Selective determination of organophosphate flame retardants and plasticizers in indoor air by gas chromatography, positive-ion chemical ionization and collision-induced dissociation mass spectrometry.

    PubMed

    Bjrklund, Jonas; Isetun, Sindra; Nilsson, Ulrika

    2004-01-01

    Gas chromatography/ion trap mass spectrometry with in-source ionization and dissociation was used in positive-ion chemical ionization (PICI) mode for the determination of organophosphate triesters in indoor air. These compounds are widely used as additive flame retardants and plasticizers in different types of materials and have become ubiquitous pollutants in indoor environments. When using collision-induced dissociation in PICI mode the fragmentation of the organophosphate triesters can be performed in a more controllable way than in electron ionization (EI) mode. The developed selected-reaction monitoring method provided high selectivity for the investigated compounds. For 8-h air measurements (corresponding to 1.5 m3 of sampled air) the limit of detection of the method was determined to be in the range 0.1-1.4 ng m(-3), which is comparable with nitrogen-phosphorus detection and about 50-fold lower than when using EI in selected-ion monitoring mode. The presented method was applied to samples from three common indoor environments, in which a number of organophosphate triesters were identified and quantified. The dominating compound was found to be tris(2-chloropropyl) phosphate, which occurred at levels up to 0.8 microg m(-3). PMID:15543547

  9. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Grimaudo, V.; Mezger, K.; Moreno-García, P.; Riedo, A.; Tulej, M.; Wurz, P.

    2016-03-01

    A key interest of planetary space missions is the quantitative determination of the chemical composition of the planetary surface material. The chemical composition of surface material (minerals, rocks, soils) yields fundamental information that can be used to answer key scientific questions about the formation and evolution of the planetary body in particular and the Solar System in general. We present a miniature time-of-flight type laser ablation/ionization mass spectrometer (LMS) and demonstrate its capability in measuring the elemental and mineralogical composition of planetary surface samples quantitatively by using a femtosecond laser for ablation/ionization. The small size and weight of the LMS make it a remarkable tool for in situ chemical composition measurements in space research, convenient for operation on a lander or rover exploring a planetary surface. In the laboratory, we measured the chemical composition of four geological standard reference samples USGS AGV-2 Andesite, USGS SCo-l Cody Shale, NIST 97b Flint Clay and USGS QLO-1 Quartz Latite with LMS. These standard samples are used to determine the sensitivity factors of the instrument. One important result is that all sensitivity factors are close to 1. Additionally, it is observed that the sensitivity factor of an element depends on its electron configuration, hence on the electron work function and the elemental group in agreement with existing theory. Furthermore, the conformity of the sensitivity factors is supported by mineralogical analyses of the USGS SCo-l and the NIST 97b samples. With the four different reference samples, the consistency of the calibration factors can be demonstrated, which constitutes the fundamental basis for a standard-less measurement-technique for in situ quantitative chemical composition measurements on planetary surface.

  10. Atmospheric-pressure chemical ionization tandem mass spectrometry (APGC/MS/MS) an alternative to high-resolution mass spectrometry (HRGC/HRMS) for the determination of dioxins.

    PubMed

    van Bavel, Bert; Geng, Dawei; Cherta, Laura; Ncher-Mestre, Jaime; Portols, Tania; balos, Manuela; Saul, Jordi; Abad, Esteban; Dunstan, Jody; Jones, Rhys; Kotz, Alexander; Winterhalter, Helmut; Malisch, Rainer; Traag, Wim; Hagberg, Jessika; Ericson Jogsten, Ingrid; Beltran, Joaquim; Hernndez, Flix

    2015-09-01

    The use of a new atmospheric-pressure chemical ionization source for gas chromatography (APGC) coupled with a tandem quadrupole mass spectrometry (MS/MS) system, as an alternative to high-resolution mass spectrometry (HRMS), for the determination of PCDDs/PCDFs is described. The potential of using atmospheric-pressure chemical ionization (APCI) coupled to a tandem quadrupole analyzer has been validated for the identification and quantification of dioxins and furans in different complex matrices. The main advantage of using the APCI source is the soft ionization at atmospheric pressure, which results in very limited fragmentation. APCI mass spectra are dominated by the molecular ion cluster, in contrast with the high energy ionization process under electron ionization (EI). The use of the molecular ion as the precursor ion in MS/MS enhances selectivity and, consequently, sensitivity by increasing the signal-to-noise ratios (S/N). For standard solutions of 2,3,7,8-TCDD, injections of 10 fg in the splitless mode on 30- or 60-m-length, 0.25 mm inner diameter (id), and 25 ?m film thickness low-polarity capillary columns (DB5MS type), signal-to-noise (S/N) ratios of >10:1 were routinely obtained. Linearity was achieved in the region (correlation coefficient of r(2) > 0.998) for calibration curves ranging from 100 fg/?L to 1000 pg/?L. The results from a wide variety of complex samples, including certified and standard reference materials and samples from several QA/QC studies, which were previously analyzed by EI HRGC/HRMS, were compared with the results from the APGC/MS/MS system. Results between instruments showed good agreement both in individual congeners and toxic equivalence factors (TEQs). The data show that the use of APGC in combination with MS/MS for the analysis of dioxins has the same potential, in terms of sensitivity and selectivity, as the traditional HRMS instrumentation used for this analysis. However, the APCI/MS/MS system, as a benchtop system, is much easier to use. PMID:26267710

  11. Simultaneous determination of carboprost methylate and its active metabolite carboprost in dog plasma by liquid chromatography-tandem mass spectrometry with positive/negative ion-switching electrospray ionization and its application to a pharmacokinetic study.

    PubMed

    Yin, Lei; Meng, Xiangjun; Zhou, Xiaotong; Zhang, Tinglan; Sun, Heping; Yang, Zhichao; Yang, Bo; Xiao, Ning; Fawcett, J Paul; Yang, Yan; Gu, Jingkai

    2015-08-15

    A liquid chromatography-tandem mass spectrometric (LC-MS/MS) method using positive/negative electrospray ionization (ESI) switching for the simultaneous quantitation of carboprost methylate and carboprost in dog plasma has been developed and validated. After screening, the esterase inhibitor, dichlorvos was added to the whole blood at a ratio of 1:99 (v/v) to stabilize carboprost methylate during blood collection, sample storage and LLE. Indomethacin was added to plasma to inhibit prostaglandins synthesis after sampling. After liquid-liquid extraction of 500?L plasma with ethyl ether-dichloromethane (75:25, v/v), analytes and internal standard (IS), alprostadil-d4, were chromatographed on a CAPCELL PAK Phenyl column (1502.0mm, 5?m) using acetonitrile-5mM ammonium acetate as mobile phase. Carboprost methylate was detected by positive ion electrospray ionization followed by multiple reaction monitoring (MRM) of the transition at m/z 400.5?329.3; the carboprost and IS were detected by negative ion electrospray ionization followed by MRM of the transitions at m/z 367.2?323.2, and 357.1?321.2, respectively. The method was linear for both analytes in the concentration range 0.05-30ng/mL with intra- and inter-day precisions (as relative standard deviation) of ?6.75% and accuracy (as relative error) of ?7.21% and limit of detection (LOD) values were 10 and 20pg/mL, respectively. The method was successfully applied to a pharmacokinetic study of the analytes in beagle dogs after intravaginal administration of a suppository containing 0.5mg carboprost methylate. PMID:26149245

  12. Metal-organic chemical vapor-deposited cobalt oxide films as negative electrodes for thin film Li-ion battery

    NASA Astrophysics Data System (ADS)

    Jena, Anirudha; Munichandraiah, N.; Shivashankar, S. A.

    2015-03-01

    In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 C and 500 C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 C and 500 C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm-2 ?m-1 has been measured reproducibly for the film deposited at 500C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450C). Impedance measurements on the Co3O4 electrode grown at 500 C also carried out to study the kinetics of the electrode process.

  13. P-MaNGA Galaxies: emission-lines properties - gas ionization and chemical abundances from prototype observations

    NASA Astrophysics Data System (ADS)

    Belfiore, F.; Maiolino, R.; Bundy, K.; Thomas, D.; Maraston, C.; Wilkinson, D.; Sánchez, S. F.; Bershady, M.; Blanc, G. A.; Bothwell, M.; Cales, S. L.; Coccato, L.; Drory, N.; Emsellem, E.; Fu, H.; Gelfand, J.; Law, D.; Masters, K.; Parejko, J.; Tremonti, C.; Wake, D.; Weijmans, A.; Yan, R.; Xiao, T.; Zhang, K.; Zheng, T.; Bizyaev, D.; Kinemuchi, K.; Oravetz, D.; Simmons, A.

    2015-05-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-yr Sloan Digital Sky Survey (SDSS-IV) survey that will obtain spatially resolved spectroscopy from 3600 to 10 300 Å for a representative sample of over 10 000 nearby galaxies. In this paper, we present the analysis of nebular emission-line properties using observations of 14 galaxies obtained with P-MaNGA, a prototype of the MaNGA instrument. By using spatially resolved diagnostic diagrams, we find extended star formation in galaxies that are centrally dominated by Seyfert/LINER-like emission, which illustrates that galaxy characterizations based on single fibre spectra are necessarily incomplete. We observe extended low ionization nuclear emission-line regions (LINER)-like emission (up to 1Re) in the central regions of three galaxies. We make use of the Hα equivalent width [EW(Hα)] to argue that the observed emission is consistent with ionization from hot evolved stars. We derive stellar population indices and demonstrate a clear correlation between Dn(4000) and EW(HδA) and the position in the ionization diagnostic diagram: resolved galactic regions which are ionized by a Seyfert/LINER-like radiation field are also devoid of recent star formation and host older and/or more metal-rich stellar populations. We also detect extraplanar LINER-like emission in two highly inclined galaxies, and identify it with diffuse ionized gas. We investigate spatially resolved metallicities and find a positive correlation between metallicity and star formation rate surface density. We further study the relation between N/O versus O/H on resolved scales. We find that, at given N/O, regions within individual galaxies are spread towards lower metallicities, deviating from the sequence defined by galactic central regions as traced by Sloan 3-arcsec fibre spectra. We suggest that the observed dispersion can be a tracer for gas flows in galaxies: infalls of pristine gas and/or the effect of a galactic fountain.

  14. Comparison of electron and chemical ionization modes for the quantification of thiols and oxidative compounds in white wines by gas chromatography-tandem mass spectrometry.

    PubMed

    Thibon, Ccile; Pons, Alexandre; Mouakka, Nadia; Redon, Pascaline; Mreau, Raphal; Darriet, Philippe

    2015-10-01

    A rapid, sensitive method for assaying volatile impact compounds in white wine was developed using gas chromatography-tandem mass spectrometry (GC-MS/MS) technology, with a triple quadrupole analyzer operating in chemical ionization and electron impact mode. This GC-MS/MS method made it possible to assay volatile thiols (3SH: 3-sulfanylhexanol, formerly 3MH; 3SHA: 3-sulfanylhexyl acetate, formerly 3MHA; 4MSP: 4-methyl-4-sulfanylpentan-2-one, formerly 4MMP; BM: benzenemethanethiol; E2SA: ethyl 2-sulfanylacetate; and 2FM: 2-furanmethanethiol) and odoriferous oxidation markers (Sotolon: 4,5-dimethyl-3-hydroxy-2(5)H-furanone, methional, and phenylacetaldehyde) simultaneously in dry white wines, comparing electron impact (EI) and chemical ionization (CI) modes. More molecular ions were produced by CI than protonated molecules, despite the greater fragmentation caused by EI. So, even using the best reactant gas giving the highest signal for thiols, EI was the best ionization mode, with the lowest detection limits. For all compounds of interest, the limits of quantification (LOQ) obtained were well below their detection thresholds (ranging from 0.5 to 8.5ng/L for volatile thiols and 65-260ng/L for oxidation markers). Recovery rates ranged from 86% to 111%, reproducibility (in terms of relative standard deviation; RSD) was below 18% in all cases, with correlation coefficients above 0.991 for all analytes. The method was successfully applied to the analysis of compounds of interest in Sauvignon Blanc wines from a single estate and ten different vintages. PMID:26358562

  15. Trace determination of caffeine in surface water samples by liquid chromatography--atmospheric pressure chemical ionization--mass spectrometry (LC-APCI-MS).

    PubMed

    Gardinali, Piero R; Zhao, Xu

    2002-12-01

    A new method based on liquid-liquid extraction (LLE) coupled to reverse phase liquid chromatography and atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) has been applied to determine trace amounts of caffeine (1,3,7-trimethylxanthine) in surface water samples from a near coastal ecosystem such as Biscayne Bay, Florida. The rational behind the development of such method will be to evaluate the use of unmetabolized caffeine as a potential dissolved phase tracer of human waste contamination. The method allows for the determination of caffeine at levels as low as 4.0 ng/l (ppt) in both salt and freshwater by extracting and concentrating a 1-1 water sample to a final volume of 500 microl and using HPLC separation coupled to an atmospheric pressure chemical ionization mass spectrometry (APCI-MS) system operated in selected ion monitoring (SIM) for the protonated molecular ions (M + H(+)). Samples from different portions of Biscayne Bay and the Miami River, one of its major tributaries, were analyzed and caffeine was detected in those areas previously identified for consistently exceeding the water quality criteria for fecal coliform bacteria contamination. The caffeine concentration in the samples with positive detection was generally low at levels equal or lower than 41 ng/l. However, there is a marked difference between samples collected in open bay areas and those collected from the Miami River. PMID:12503918

  16. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, F. D.; Iyer, S.; Mohr, C.; Lee, B. H.; D'Ambro, E. L.; Kurtén, T.; Thornton, J. A.

    2015-10-01

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analyte) is fundamentally limited by the collision frequency between reagent ions and analyte, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure, collision limit determination, and show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

  17. Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Wachsmuth, Christian J; Hahn, Thomas A; Oefner, Peter J; Dettmer, Katja

    2015-09-01

    An improved atmospheric pressure chemical ionization (APCI II) source for gas chromatography-high-resolution time-of-flight mass spectrometry (GC-HRTOFMS) was compared to its first-generation predecessor for the analysis of fatty acid methyl esters, methoxime-trimethylsilyl derivatives of metabolite standards, and cell culture supernatants. Reductions in gas turbulences and chemical background as well as optimized heating of the APCI II source resulted in narrower peaks and higher repeatability in particular for late-eluting compounds. Further, APCI II yielded a more than fourfold median decrease in lower limits of quantification to 0.002-3.91 μM along with an average 20 % increase in linear range to almost three orders of magnitude with R (2) values above 0.99 for all metabolite standards investigated. This renders the overall performance of GC-APCI-HRTOFMS comparable to that of comprehensive two-dimensional gas chromatography (GC × GC)-electron ionization (EI)-TOFMS. Finally, the number of peaks with signal-to-noise ratios greater than 20 that could be extracted from metabolite fingerprints of pancreatic cancer cell supernatants upon switching from the APCI I to the APCI II source was more than doubled. Concomitantly, the number of identified metabolites increased from 36 to 48. In conclusion, the improved APCI II source makes GC-APCI-HRTOFMS a great alternative to EI-based GC-MS techniques in metabolomics and other fields. PMID:26092404

  18. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 ?g/L and the limits of quantification ranged from 1.7 to 1550 ?g/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. PMID:25885756

  19. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270ngL(-1) (LOD) and 1000ngL(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6±7% recovery was effective over USE with 86±4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). PMID:26805597

  20. Potential of atmospheric pressure chemical ionization source in gas chromatography tandem mass spectrometry for the screening of urinary exogenous androgenic anabolic steroids.

    PubMed

    Raro, M; Portolés, T; Pitarch, E; Sancho, J V; Hernández, F; Garrostas, L; Marcos, J; Ventura, R; Segura, J; Pozo, O J

    2016-02-01

    The atmospheric pressure chemical ionization (APCI) source for gas chromatography-mass spectrometry analysis has been evaluated for the screening of 16 exogenous androgenic anabolic steroids (AAS) in urine. The sample treatment is based on the strategy currently applied in doping control laboratories i.e. enzymatic hydrolysis, liquid-liquid extraction (LLE) and derivatization to form the trimethylsilyl ether-trimethylsilyl enol ether (TMS) derivatives. These TMS derivatives are then analyzed by gas chromatography tandem mass spectrometry using a triple quadrupole instrument (GC-QqQ MS/MS) under selected reaction monitoring (SRM) mode. The APCI promotes soft ionization with very little fragmentation resulting, in most cases, in abundant [M + H](+) or [M + H-2TMSOH](+) ions, which can be chosen as precursor ions for the SRM transitions, improving in this way the selectivity and sensitivity of the method. Specificity of the transitions is also of great relevance, as the presence of endogenous compounds can affect the measurements when using the most abundant ions. The method has been qualitatively validated by spiking six different urine samples at two concentration levels each. Precision was generally satisfactory with RSD values below 25 and 15% at the low and high concentration level, respectively. Most the limits of detection (LOD) were below 0.5 ng mL(-1). Validation results were compared with the commonly used method based on the electron ionization (EI) source. EI analysis was found to be slightly more repeatable whereas lower LODs were found for APCI. In addition, the applicability of the developed method has been tested in samples collected after the administration of 4-chloromethandienone. The highest sensitivity of the APCI method for this compound, allowed to increase the period in which its administration can be detected. PMID:26772132

  1. Effects of ionizing radiation on the chemical structure, crystalline content and molecular weight distribution of various teflon resins

    SciTech Connect

    Fisher, W.K.

    1981-01-01

    The radiation used in this work was 0.8 MeV electrons. The effects of post-irradiation annealing on the chemical composition and crystalline content are also analyzed. Radiation-induced changes in the chemical composition and the role of oxygen and water vapor in these changes was determined by infrared spectroscopy of PTFE (polytetrafluoroethylene) irradiated in ambient air, wet and dry oxygen atmosphere and under vacuum.

  2. Calculation of aqueous solubility of crystalline un-ionized organic chemicals and drugs based on structural similarity and physicochemical descriptors.

    PubMed

    Raevsky, Oleg A; Grigor'ev, Veniamin Yu; Polianczyk, Daniel E; Raevskaja, Olga E; Dearden, John C

    2014-02-24

    Solubilities of crystalline organic compounds calculated according to AMP (arithmetic mean property) and LoReP (local one-parameter regression) models based on structural and physicochemical similarities are presented. We used data on water solubility of 2615 compounds in un-ionized form measured at 25±5 °C. The calculation results were compared with the equation based on the experimental data for lipophilicity and melting point. According to statistical criteria, the model based on structural and physicochemical similarities showed a better fit with the experimental data. An additional advantage of this model is that it uses only theoretical descriptors, and this provides means for calculating water solubility for both existing and not yet synthesized compounds. PMID:24456022

  3. Fast determination of 3-ethenylpyridine as a marker of environmental tobacco smoke at trace level using direct atmospheric pressure chemical ionization tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng-Yong; Sun, Shi-Hao; Zhang, Qi-Dong; Liu, Jun-Hui; Zhang, Jian-Xun; Zong, Yong-Li; Xie, Jian-Ping

    2013-03-01

    A method with atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) was developed and applied to direct analysis of Environmental Tobacco Smoke (ETS), using 3-ethenylpyridine (3-EP) as a vapour-phase marker. In this study, the ion source of APCI-MS/MS was modified and direct analysis of gas sample was achieved by the modified instrument. ETS samples were directly introduced, via an atmospheric pressure inlet, into the APCI source. Ionization was carried out in positive-ion APCI mode and 3-EP was identified by both full scan mode and daughter scan mode. Quantification of 3-EP was performed by multiple reaction monitoring (MRM) mode. The calibration curve was obtained in the range of 1-250 ng L-1 with a satisfactory regression coefficient of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.5 ng L-1 and 1.6 ng L-1, respectively. The precision of the method, calculated as relative standard deviation (RSD), was characterized by repeatability (RSD 3.92%) and reproducibility (RSD 4.81%), respectively. In real-world ETS samples analysis, compared with the conventional GC-MS method, the direct APCI-MS/MS has shown better reliability and practicability in the determination of 3-EP at trace level. The developed method is simple, fast, sensitive and repeatable; furthermore, it could provide an alternative way for the determination of other volatile pollutants in ambient air at low levels.

  4. Comprehensive chemical characterization of Rap tobacco products: Nicotine, un-ionized nicotine, tobacco-specific N'-nitrosamines, polycyclic aromatic hydrocarbons, and flavor constituents.

    PubMed

    Stanfill, Stephen B; Oliveira da Silva, Andr Luiz; Lisko, Joseph G; Lawler, Tameka S; Kuklenyik, Peter; Tyx, Robert E; Peuchen, Elizabeth H; Richter, Patricia; Watson, Clifford H

    2015-08-01

    Rap, a diverse group of smokeless tobacco products indigenous to South America, is generally used as a nasal snuff and contains substantial amount of plant material with or without tobacco. Previously uncharacterized, rap contains addictive and harmful chemicals that may have public health implications for users. Here we report % moisture, pH, and the levels of total nicotine, un-ionized nicotine, flavor-related compounds, tobacco-specific N-nitrosamines (TSNAs) and polycyclic aromatic hydrocarbons (PAHs) for manufactured and hand-made rap. Most rap products were mildly acidic (pH 5.17-6.23) with total nicotine ranging from 6.32 to 47.6 milligram per gram of sample (mg/g). Calculated un-ionized nicotine ranged from 0.03 to 18.5?mg/g with the highest values associated with hand-made raps (pH 9.75-10.2), which contain alkaline ashes. In tobacco-containing raps, minor alkaloid levels and Fourier transform infrared spectra were used to confirm the presence of Nicotiana rustica, a high nicotine tobacco species. There was a wide concentration range of TSNAs and PAHs among the raps analyzed. Several TSNAs and PAHs identified in the products are known or probable carcinogens according to the International Agency for Research on Cancer. Milligram quantities of some non-tobacco constituents, such as camphor, coumarin, and eugenol, warrant additional evaluation. PMID:25934468

  5. Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Holcapek, Michal; Jandera, Pavel; Zderadicka, Petr; Hrub, Lucie

    2003-08-29

    Triacylglycerols (TGs) and diacylglycerols (DGs) in 16 plant oil samples (hazelnut, pistachio, poppy-seed, almond, palm, Brazil-nut, rapeseed, macadamia, soyabean, sunflower, linseed, Dracocephalum moldavica, evening primrose, corn, amaranth, Silybum arianum) were analyzed by HPLC-MS with atmospheric pressure chemical ionization (APCI) and UV detection at 205 nm on two Nova-Pak C18 chromatographic columns connected in series. A single chromatographic column and non-aqueous ethanol-acetonitrile gradient system was used as a compromise between the analysis time and the resolution for the characterization of TG composition of five plant oils. APCI mass spectra were applied for the identification of all TGs and other acylglycerols. The isobaric positional isomers can be distinguished on the basis of different relative abundances of the fragment ions formed by preferred losses of the fatty acid from sn-1(3) positions compared to the sn-2 position. Excellent chromatographic resolution and broad retention window together with APCI mass spectra enabled positive identification of TGs containing fatty acids with odd numbers of carbon atoms such as margaric (C17:0) and heptadecanoic (C17:1) acids. The general fragmentation patterns of TGs in both APCI and electrospray ionization mass spectra were proposed on the basis of MSn spectra measured with an ion trap analyzer. The relative concentrations of particular TGs in the analyzed plant oils were estimated on the basis of relative peak areas measured with UV detection at 205 nm. PMID:12974290

  6. Technical note: Detection of dimethylamine in the low pptv range using nitrate Chemical Ionization-Atmospheric Pressure interface-Time Of Flight (CI-APi-TOF) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Simon, M.; Heinritzi, M.; Herzog, S.; Leiminger, M.; Bianchi, F.; Praplan, A.; Dommen, J.; Curtius, J.; Kürten, A.

    2015-12-01

    Amines are potentially important for atmospheric new particle formation and therefore the demand for highly sensitive gas phase amine measurements has emerged in the last several years. Nitrate Chemical Ionization Mass Spectrometry (CIMS) is routinely used for the measurement of gas phase-sulfuric acid in the sub-pptv range. Furthermore, Extremely Low Volatile Organic Compounds (ELVOCs) can be detected with a nitrate CIMS. In this study we demonstrate that a nitrate CIMS can also be used for the sensitive measurement of dimethylamine ((CH3)2NH, DMA) using the NO3-(HNO3)1-2(DMA) cluster ion signals. This observation was made at the CLOUD aerosol chamber, which was also used for calibration measurements. Good linearity between 0 and ~120 pptv of DMA as well as a sub-pptv detection limit of 0.7 pptv for a 10 min integration time are demonstrated at 278 K and 38 % RH.

  7. Analysis of plant sterol and stanol esters in cholesterol-lowering spreads and beverages using high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectroscopy.

    PubMed

    Mezine, Igor; Zhang, Huizhen; Macku, Carlos; Lijana, Robert

    2003-09-10

    Plant sterol and stanol esters were separated on a Luna hexyl-phenyl column using a gradient of acetonitrile (90-100%) in water. The eluted compounds were detected by atmospheric pressure chemical ionization (APCI)-mass spectroscopy (MS) in the positive mode. Sterol and stanol esters produced [M + H - HOOCR](+) ions. Application of the hyphenated technique-LC-MS-allowed differentiation between a number of esters of sitosterol, campesterol, stigmasterol, and (tentatively) avenasterol, as well as sitostanol and campestanol esters. With cholesteryl decanoate used as the internal standard, the method showed good linearity, precision, and reproducibility. The method required minimal sample pretreatment and can be applied to samples with high water content (juices) as well as samples with high oil content (margarine spreads). The method could be useful for the analysis of sterol and stanol esters in fortified food products. PMID:12952413

  8. Optimization of Routine Identification of Clinically Relevant Gram-Negative Bacteria by Use of Matrix-Assisted Laser Desorption IonizationTime of Flight Mass Spectrometry and the Bruker Biotyper

    PubMed Central

    Ford, Bradley A.

    2013-01-01

    Matrix-assisted laser desorption ionizationtime of flight mass spectrometry (MALDI-TOF MS) might complement and one day replace phenotypic identification of bacteria in the clinical microbiology laboratory, but there is no consensus standard regarding the requirements for its validation prior to clinical use in the United States. The objective of this study was to assess the preanalytical variables influencing Gram-negative identification by use of the Bruker Biotyper MALDI-TOF MS system, including density of organism spotting on a stainless steel target plate and the direct overlay of organisms with formic acid. A heavy smear with formic acid overlay was either superior or equivalent to alternative smear conditions. Microbiological preanalytical variables were also assayed, such as culture medium, growth temperature, and use of serial subculture. Postanalytical analysis included the application of modified species-level identification acceptance criteria. Biotyper identifications were compared with those using traditional phenotypic methods, and discrepancies were resolved with 16S rRNA gene sequencing. Compared to the recommended score cutoffs of the manufacturer, the application of optimized Biotyper score cutoffs for species-level identification increased the rate of identification by 6.75% for the enteric Gram-negative bacteria and 4.25% for the nonfermenting Gram-negative bacteria. Various incubation temperatures, growth medium types, and repeat subcultures did not result in misidentification. We conclude that the Bruker MALDI Biotyper is a robust system for the identification of Gram-negative organisms in the clinical laboratory and that meaningful performance improvements can be made by implementing simple pre- and postanalytical techniques. PMID:23426923

  9. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  10. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of ?-pinene and naphthalene oxidation products

    NASA Astrophysics Data System (ADS)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2015-01-01

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functional groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of ?-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 1011 to 9.7 1011 molec s cm-3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.

  11. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products

    DOE PAGESBeta

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2015-01-05

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore » groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm−3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  12. Dow and Kaw,eff vs. Kow and Kaw degrees: acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2010-10-01

    A set of 543 ionizable commercial organic compounds with various acid/base functionalities and experimental octanol-water partitioning coefficients (log Kow) were obtained from the Canadian Domestic Substances List. Corresponding pH-dependent octanol-water distribution coefficients (log Dow) and air-water partitioning coefficients (log Kaw,eff) were estimated using the SPARC software program, as were log Kow and log Kaw degrees values for the neutral forms of each chemical. Significant ionization dependent effects on chemical screening results at various pH values were obtained using established criteria for bioaccumulation potential (BAP) in aquatic organisms, terrestrial animals, and humans, as well as for atmospheric long range transport potential (LRTP). Future modelling efforts for environmental and toxicological screening of commercial chemicals should therefore explicitly include the influence of ionization for both weak and strong organic acids and bases on bioavailability and air-water mobility within the respective regulatory frameworks. Functional group specific sorption of both ionizable and neutral compounds to particulate and dissolved inorganic and organic matter will also affect chemical screening results for BAP and LRTP. More complex sorption related modelling in various types of representative aquatic systems also appears necessary to achieve reliable chemical screening results for commercial organic compounds. PMID:20721799

  13. Photochemical Dimerization of Dibenzylideneacetone: A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish

    2006-01-01

    Chemical reactions induced by light have been utilized for synthesizing highly strained, thermodynamically unstable compounds, which are inaccessible through non-photochemical methods. Photochemical cycloaddition reactions, especially those leading to the formation of four-membered rings, constitute a convenient route to compounds that are…

  14. Photochemical Dimerization of Dibenzylideneacetone: A Convenient Exercise in [2+2] Cycloaddition Using Chemical Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Rao, G. Nageswara; Janardhana, Chelli; Ramanathan, V.; Rajesh, T.; Kumar, P. Harish

    2006-01-01

    Chemical reactions induced by light have been utilized for synthesizing highly strained, thermodynamically unstable compounds, which are inaccessible through non-photochemical methods. Photochemical cycloaddition reactions, especially those leading to the formation of four-membered rings, constitute a convenient route to compounds that are

  15. Evidence for an N-methyl transfer reaction in phosphatidylcholines with a terminal aldehyde during negative electrospray ionization tandem mass spectrometry.

    PubMed

    Almstrand, Ann-Charlotte; Johnson, Christopher; Murphy, Robert C

    2015-07-01

    Lipidomic analysis of the complex mixture of lipids isolated from biological systems can be a challenging process that often involves tandem mass spectrometry and interpretation of both precursor ions and product ions relative to the molecular structure of the lipids. Therefore, detailed understanding of the gas-phase ion chemistry occurring for each class of phospholipids is critically important for an accurate assignment of lipid structure. Some oxidized phosphatidylcholines are known to be biologically active and responsible for pathological events, and are therefore important targets for detection in lipidomic studies. Modification of fatty acyl chains by oxidation may, however, change the behavior of ion formation and decomposition in the mass spectrometer. In this study, we report on the mass-spectrometric behavior of 1-palmitoyl-2-(9'-oxononanoyl)-sn-glycero-3-phosphocholine, a bioactive product of phosphatidylcholine oxidation. In addition to [M-15](-) and the acetate adduct [M+59](-), three additional adduct ions, including [M-H](-), were present in significant abundance in the negative ion electrospray mass spectrum. It was found that this unexpected [M-H](-) ion was formed by the transfer of a methyl group from the choline residue on the polar head group to the aldehyde functionality of the sn-2 substituent, resulting in a 14-Da increase in the mass of the resulting sn-2 carboxylate anion formed by collisional activation of this ion. These results suggest additional rules for understanding the gas-phase ion chemistry of aldehydic phosphatidylcholine molecular species. PMID:25736244

  16. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  17. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  18. Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry.

    PubMed

    Kaplan-Sandquist, Kimberly; LeBeau, Marc A; Miller, Mark L

    2014-02-01

    Chemical analysis of latent fingermarks, "touch chemistry," has the potential of providing intelligence or forensically relevant information. Matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF MS) was used as an analytical platform for obtaining mass spectra and chemical images of target drugs and explosives in fingermark residues following conventional fingerprint development methods and MALDI matrix processing. There were two main purposes of this research: (1) develop effective laboratory methods for detecting drugs and explosives in fingermark residues and (2) determine the feasibility of detecting drugs and explosives after casual contact with pills, powders, and residues. Further, synthetic latent print reference pads were evaluated as mimics of natural fingermark residue to determine if the pads could be used for method development and quality control. The results suggest that artificial amino acid and sebaceous oil residue pads are not suitable to adequately simulate natural fingermark chemistry for MALDI/TOF MS analysis. However, the pads were useful for designing experiments and setting instrumental parameters. Based on the natural fingermark residue experiments, handling whole or broken pills did not transfer sufficient quantities of drugs to allow for definitive detection. Transferring drugs or explosives in the form of powders and residues was successful for preparing analytes for detection after contact with fingers and deposition of fingermark residue. One downfall to handling powders was that the analyte particles were easily spread beyond the original fingermark during development. Analyte particles were confined in the original fingermark when using transfer residues. The MALDI/TOF MS was able to detect procaine, pseudoephedrine, TNT, and RDX from contact residue under laboratory conditions with the integration of conventional fingerprint development methods and MALDI matrix. MALDI/TOF MS is a nondestructive technique which provides chemical information in both the mass spectra and chemical images. PMID:24447453

  19. Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection.

    PubMed

    Jerz, Gerold; Elnakady, Yasser A; Braun, Andr; Jckel, Kristin; Sasse, Florenz; Al Ghamdi, Ahmad A; Omar, Mohamed O M; Winterhalter, Peter

    2014-06-20

    Propolis is a glue material collected by honeybees which is used to seal cracks in beehives and to protect the bee population from infections. Propolis resins have a long history in medicinal use as a natural remedy. The multiple biological properties are related to variations in their chemical compositions. Geographical settings and availability of plant sources are important factors for the occurrence of specific natural products in propolis. A propolis ethylacetate extract (800mg) from Saudi Arabia (Al-Baha region) was separated by preparative scale high-speed countercurrent chromatography (HSCCC) using a non-aqueous solvent system n-hexane-ACN (1:1, v/v). For multiple metabolite detection, the resulting HSCCC-fractions were sequentially injected off-line into an atmospheric pressure chemical ionization mass-spectrometry (APCI-MS/MS) device, and a reconstituted mass spectrometry profile of the preparative run was visualized by selected ion traces. Best ion-intensities for detected compounds were obtained in the negative APCI mode and monitored occurring co-elution effects. HSCCC and successive purification steps resulted in the isolation and characterization of various bioactive natural products such as (12E)- and (12Z)-communic acid, sandaracopimaric acid, (+)-ferruginol, (+)-totarol, and 3?-acetoxy-19(29)-taraxasten-20a-ol using EI-, APCI-MS and 1D/2D-NMR. Cycloartenol-derivatives and triterpene acetates were isolated in mixtures and elucidated by EI-MS and 1D-NMR. Free fatty acids, and two labdane fatty acid esters were identified by APCI-MS/MS. In total 19 metabolites have been identified. The novel combination of HSCCC fractionation, and APCI-MS-target-guided molecular mass profiling improve efficiency of lead-structure identification. PMID:24831423

  20. Chemical analysis of raw and processed Fructus arctii by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry

    PubMed Central

    Qin, Kunming; Liu, Qidi; Cai, Hao; Cao, Gang; Lu, Tulin; Shen, Baojia; Shu, Yachun; Cai, Baochang

    2014-01-01

    Background: In traditional Chinese medicine (TCM), raw and processed herbs are used to treat the different diseases. Fructus Arctii, the dried fruits of Arctium lappa l. (Compositae), is widely used in the TCM. Stir-frying is the most common processing method, which might modify the chemical compositions in Fructus Arctii. Materials and Methods: To test this hypothesis, we focused on analysis and identification of the main chemical constituents in raw and processed Fructus Arctii (PFA) by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. Results: The results indicated that there was less arctiin in stir-fried materials than in raw materials. however, there were higher levels of arctigenin in stir-fried materials than in raw materials. Conclusion: We suggest that arctiin reduced significantly following the thermal conversion of arctiin to arctigenin. In conclusion, this finding may shed some light on understanding the differences in the therapeutic values of raw versus PFA in TCM. PMID:25422559

  1. Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.

    TOXLINE Toxicology Bibliographic Information

    Ballesteros-Gómez A; Brandsma SH; de Boer J; Leonards PE

    2014-04-01

    In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited.

  2. Direct probe atmospheric pressure photoionization/atmospheric pressure chemical ionization high-resolution mass spectrometry for fast screening of flame retardants and plasticizers in products and waste.

    PubMed

    Ballesteros-Gómez, A; Brandsma, S H; de Boer, J; Leonards, P E G

    2014-04-01

    In this study, we develop fast screening methods for flame retardants and plasticizers in products and waste based on direct probe (DP) atmospheric pressure photoionization (APPI) and atmospheric pressure chemical ionization (APCI) coupled to a high-resolution (HR) time-of-flight mass spectrometer. DP-APPI is reported for the first time in this study, and DP-APCI that has been scarcely exploited is optimized for comparison. DP-APPI was more selective than DP-APCI and also more sensitive for the most hydrophobic compounds. No sample treatment was necessary, and only a minimal amount of sample (few milligrams) was used for analysis that was performed within a few minutes. Both methods were applied to the analysis of plastic products, electronic waste, and car interiors. Polybrominated diphenylethers, new brominated flame retardants, and organophosphorus flame retardants were present in most of the samples. The combination of DP with HR mass spectra and data processing based on mass accuracy and isotopic patterns allowed the unambiguous identification of chemicals at low levels of about 0.025 % (w/w). Under untargeted screening, resorcinol bis(biphenylphosphate) and bisphenol A bis(bisphenylphosphate) were identified in many of the consumer products of which literature data are still very limited. PMID:24493336

  3. Chemical Ionization Mass Spectrometry-Based Measurements of HO2 and RO2 During TRACE-P

    NASA Technical Reports Server (NTRS)

    Cantrell, Christopher A.; Eisele, Fred L.

    2004-01-01

    The Transport and Chemical Evolution over the Pacific (TRACE-P) mission extends NASA's Global Tropospheric Experiment (GTE) series of campaigns. TRACE-P was an aircraft-based campaign that was part of a larger ground-based and aircraft-based program (APARE) under the auspices of the International Global Atmospheric Chemistry (IGAC) program. TRACE-P was designed to (1) determine the chemical composition of Asian outflow over the western Pacific, and to (2) determine the chemical evolution of the Asian outflow. These objectives were addressed through a variety of observations and numerical modeling exercises. In particular, the goals included sampling strategies that would improve understanding of the budgets of odd hydrogen species (OH and HO2), budgets of NOx (NO, NO2, and their reservoirs), and impacts of oxidants produced in the outflow on air quality in the United States. The NASA DC-8 and P-3B aircraft were deployed in the March and April, 2001 out of primary bases of operation in Hong Kong and Yokota Air Base in Japan. These two aircraft have complementary capabilities which allow high altitude and long range impacts, as well as low altitude, local impacts to be assessed. In order to quantify the composition and evolution of Asian outflow, it is important to quantify as many species as possible including photochemically active species (e.g. NO2, CH2O, O3, acetone, etc.), sources species (VOCs, CO, NOx, SO2, aerosols), reactive intermediates including free radicals (OH, HO2, RO2, and their reservoirs), and end products (nitric acid, sulfuric acid, secondary aerosols, etc.). The more complete the measurement suite, the more tightly constrained the numerical modeling can be (within the uncertainties of the measurements). The numerical models range in sophistication from simple steady state box models (as employed in this study) to multi-dimensional chemical transport models. Data were collected on approximately 20 flights of the DC-8 and 21 flights of the P-3B. Observations from both aircraft were used in the present analysis, but primarily focused on the P-3B flights since that was the platform on which the peroxy radical instrumentation was based.

  4. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…

  5. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular

  6. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards.

    PubMed

    Mesaros, Clementina; Lee, Seon Hwa; Blair, Ian A

    2010-11-30

    The metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) is thought to be mediated primarily by the cytochromes P450 (P450s) from the 2 family (2C9, 2C19, 2D6, and 2J2). In contrast, P450s of the 4 family are primarily involved in omega oxidation of AA (4A11 and 4A22). The ability to determine enantioselective formation of the regioisomeric EETs is important in order to establish their potential biological activities and to asses which P450 isoforms are involved in their formation. It has been extremely difficult to analyze individual EET enantiomers in biological fluids because they are present in only trace amounts and they are extremely difficult to separate from each other. In addition, the deuterium-labeled internal standards that are commonly used for stable isotope dilution liquid chromatography/mass spectrometry (LC/MS) analyses have different LC retention times when compared with the corresponding protium forms. Therefore, quantification by LC/MS-based methodology can be compromised by differential suppression of ionization of the closely eluting isomers. We report the preparation of [(13)C(20)]-EET analog internal standards and the use of a validated high-sensitivity chiral LC/electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the trace analysis of endogenous EETs as their pentafluorobenzyl (PFB) ester derivatives. The assay was then used to show the exquisite enantioselectivity of P4502C19-, P4502D6-, P4501A1-, and P4501B1-mediated conversion of AA into EETs and to quantify the enantioselective formation of EETs produced by AA metabolism in a mouse epithelial hepatoma (Hepa) cell line. PMID:20972997

  7. Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Voigt, C.; Hall, B.; Fahey, D. W.

    2013-01-01

    A chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O) at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS). A low-pressure flow of sample air passes through an ionization volume containing an ?-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+) from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm) generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57 high altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1-s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm-1 at 3 ppm with a signal to noise ratio (2?, 1-s) greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

  8. Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Voigt, C.; Hall, B.; Fahey, D. W.

    2013-06-01

    A chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor (H2O) at low mixing ratios in the upper troposphere and lower stratosphere (UT/LS). A low-pressure flow of sample air passes through an ionization volume containing an ?-particle radiation source, resulting in a cascade of ion-molecule reactions that produce hydronium ions (H3O+) from ambient H2O. The production of H3O+ ions from ambient H2O depends on pressure and flow through the ion source, which were tightly controlled in order to maintain the measurement sensitivity independent of changes in the airborne sampling environment. The instrument was calibrated every 45 min in flight by introducing a series of H2O mixing ratios between 0.5 and 153 parts per million (ppm, 10-6 mol mol-1) generated by Pt-catalyzed oxidation of H2 standards while overflowing the inlet with dry synthetic air. The CIMS H2O instrument was deployed in an unpressurized payload area aboard the NASA WB-57F high-altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The instrument performed successfully during seven flights, measuring H2O mixing ratios below 5 ppm in the lower stratosphere at altitudes up to 17.7 km, and as low as 3.5 ppm near the tropopause. Data were acquired at 10 Hz and reported as 1 s averages. In-flight calibrations demonstrated a typical sensitivity of 2000 Hz ppm-1 at 3 ppm with a signal to noise ratio (2 ?, 1 s) greater than 32. The total measurement uncertainty was 9 to 11%, derived from the uncertainty in the in situ calibrations.

  9. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards

    PubMed Central

    Mesaros, Clementina; Lee, Seon Hwa; Blair, Ian A.

    2012-01-01

    The metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) is thought to be mediated primarily by the cytochromes P450 (P450s) from the 2 family (2C9, 2C19, 2D6, and 2J2). In contrast, P450s of the 4 family are primarily involved in omega oxidation of AA (4A11 and 4A22). The ability to determine enantioselective formation of the regioisomeric EETs is important in order to establish their potential biological activities and to asses which P450 isoforms are involved in their formation. It has been extremely difficult to analyze individual EET enantiomers in biological fluids because they are present in only trace amounts and they are extremely difficult to separate from each other. In addition, the deuterium-labeled internal standards that are commonly used for stable isotope dilution liquid chromatography/mass spectrometry (LC/MS) analyses have different LC retention times when compared with the corresponding protium forms. Therefore, quantification by LC/MS-based methodology can be compromised by differential suppression of ionization of the closely eluting isomers. We report the preparation of [13C20]-EET analog internal standards and the use of a validated high-sensitivity chiral LC/electron capture atmospheric pressure chemical ionization (ECAPCI)-MS method for the trace analysis of endogenous EETs as their pentafluorobenzyl (PFB) ester derivatives. The assay was then used to show the exquisite enantioselectivity of P4502C19-, P4502D6-, P4501A1-, and P4501B1-mediated conversion of AA into EETs and to quantify the enantioselective formation of EETs produced by AA metabolism in a mouse epithelial hepatoma (Hepa) cell line. PMID:20972997

  10. Improved sensitivity by use of gas chromatography-positive chemical ionization triple quadrupole mass spectrometry for the analysis of drug related substances.

    PubMed

    Van Gansbeke, Wim; Polet, Michael; Hooghe, Fiona; Devos, Christophe; Van Eenoo, Peter

    2015-09-15

    In 2013, the World Anti-Doping Agency (WADA) drastically lowered the minimum required performance levels (MRPLs) of most doping substances, demanding a substantial increase in sensitivity of the existing methods. For a number of compounds, conventional electron impact ionization gas chromatography tandem mass spectrometry (GC-EI-MS/MS) is often no longer sufficient to reach these MRPLs and new strategies are required. In this study, the capabilities of positive ion chemical ionization (PICI) GC-MS/MS are investigated for a wide range of drug related compounds of various classes by injection of silylated reference standards. Ammonia as PICI reagent gas had superior characteristics for GC-MS/MS purposes than methane. Compared to GC-EI-MS/MS, PICI (with ammonia as reagent gas) provided more selective ion transitions and consequently, increased sensitivity by an average factor of 50. The maximum increase (by factor of 500-1000) was observed in the analysis of stimulants, namely chlorprenaline, furfenorex and phentermine. In total, improved sensitivity was obtained for 113 out of 120 compounds. A new GC-PICI-MS/MS method has been developed and evaluated for the detection of a wide variety of exogenous doping substances and the quantification of endogenous steroids in urine in compliance with the required MRPLs established by WADA in 2013. The method consists of a hydrolysis and extraction step, followed by derivatization and subsequent 1μL pulsed splitless injection on GC-PICI-MS/MS (16min run). The increased sensitivity allows the set up of a balanced screening method that meets the requirements for both quantitative and qualitative compounds: sufficient capacity and resolution in combination with high sensitivity and short analysis time. This resulted in calibration curves with a wide linear range (e.g., 48-9600ng/mL for androsterone and etiochanolone; all r(2)>0.99) without compromising the requirements for the qualitative compounds. PMID:26296082

  11. Peroxynitric acid (HO2NO2) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Roberts, J. M.; Wild, R. J.; Edwards, P. M.; Brown, S. S.; Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Zamora, R. J.; de Gouw, J.

    2015-07-01

    In this paper laboratory work is documented establishing iodide ion chemical ionization mass spectrometry (I- CIMS) as a sensitive method for the unambiguous detection of peroxynitric acid (HO2NO2; PNA). A dynamic calibration source for HO2NO2, HO2, and HONO was developed and calibrated using a novel total NOy cavity ring-down spectroscopy (CaRDS) detector. Photochemical sources of these species were used for the calibration and validation of the I- CIMS instrument for detection of HO2NO2. Ambient observations of HO2NO2 using I- CIMS during the 2013 and 2014 Uintah Basin Wintertime Ozone Study (UBWOS) are presented. Strong inversions leading to a build-up of many primary and secondary pollutants as well as low temperatures drove daytime HO2NO2 as high as 1.5 ppbv during the 2013 study. A comparison of HO2NO2 observations to mixing ratios predicted using a chemical box model describing an ozone formation event observed during the 2013 wintertime shows agreement in the daily maxima HO2NO2 mixing ratio, but a differences of several hours in the timing of the observed maxima. Observations of vertical gradients suggest that the ground snow surface potentially serves as both a net sink and source of HO2NO2 depending on the time of day. Sensitivity tests using a chemical box model indicate that the lifetime of HO2NO2 with respect to deposition has a non-negligible impact on ozone production rates on the order of 10 %.

  12. Remote sensing of chemical and physical processes in the atmosphere caused by the presence of radioactive ionization source

    NASA Astrophysics Data System (ADS)

    Boyarchuk, Kirill; Tumanov, Mikhail; Karelin, Alexander

    During the years of the nuclear power industry, some large accidents occurred at the nuclear objects, and that caused enormous environmental contamination. The last accident at the Fucushima-1 power plant highlighted the need to review seriously the safety issues at the active power plants and to develop the new effective methods for remote detection and control over radioactive environmental contamination and over general geophysical situation in the areas. The main influence of the fission products on the environment is its ionisation, and therefore various detectable biological and physical processes that are caused by ions. Presence of an ionisation source within the area under study may cause significant changes of absolute humidity and, that is especially important, changes of the chemical potential of atmosphere vapours indicating presence of charged condensation centres. These effects may cause anomalies in the IR radiation emitted from the Earth surface and jumps in the chemical potentials of water vapours that may be observed by means of the satellite remote sensing by specialized equipment (works by Dimitar Ouzounov, Sergey Pulinets, e.a.). In the current study, the theoretical description is presented from positions of the molecular-kinetic condensation theory that shows significant changes of the absolute and relative humidity values in the near-earth air layer. The detailed calculations of the water vapours in atmosphere were carried out with use of detailed non-stationary kinetic model of moist atmosphere air. The processes of condensation and evaporation were effectively considered with use of reactions of neutral water molecules association under presence of a third particle, conversion of water molecules with an ion cluster to a more complicated cluster, and the relevant counter reactions splits of neutral and ion clusters.

  13. Microprobe sampling--photo ionization-time-of-flight mass spectrometry for in situ chemical analysis of pyrolysis and combustion gases: examination of the thermo-chemical processes within a burning cigarette.

    PubMed

    Hertz, Romy; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin; Zimmermann, Ralf

    2012-02-10

    A microprobe sampling device (?-probe) has been developed for in situ on-line photo ionization mass spectrometric analysis of volatile chemical species formed within objects consisting of organic matter during thermal processing. With this approach the chemical signature occurring during heating, pyrolysis, combustion, roasting and charring of organic material within burning objects such as burning fuel particles (e.g., biomass or coal pieces), lit cigarettes or thermally processed food products (e.g., roasting of coffee beans) can be investigated. Due to its dynamic changes between combustion and pyrolysis phases the cigarette smoking process is particularly interesting and has been chosen as first application. For this investigation the tip of the ?-probe is inserted directly into the tobacco rod and volatile organic compounds from inside the burning cigarette are extracted and real-time analyzed as the glowing front (or coal) approaches and passes the ?-probe sampling position. The combination of micro-sampling with photo ionization time-of-flight mass spectrometry (PI-TOFMS) allows on-line intrapuff-resolved analysis of species formation inside a burning cigarette. Monitoring volatile smoke compounds during cigarette puffing and smoldering cycles in this way provides unparalleled insights into formation mechanisms and their time-dependent change. Using this technique the changes from pyrolysis conditions to combustion conditions inside the coal of a cigarette could be observed directly. A comparative analysis of species formation within a burning Kentucky 2R4F reference cigarette with ?-probe analysis reveals different patterns and behaviors for nicotine, and a range of semi-volatile aromatic and aliphatic species. PMID:22244143

  14. Implementation of Matrix-Assisted Laser Desorption IonizationTime of Flight Mass Spectrometry in Routine Clinical Laboratories Improves Identification of Coagulase-Negative Staphylococci and Reveals the Pathogenic Role of Staphylococcus lugdunensis

    PubMed Central

    Riegel, Philippe; Lavigne, Thierry; Lefebvre, Nicolas; Grandpr, Nicolas; Hansmann, Yves; Jaulhac, Benoit; Prvost, Gilles; Schramm, Frdric

    2015-01-01

    The use of matrix-assisted laser desorption ionizationtime of flight mass spectrometry (MALDI-TOF MS) for staphylococcal identification is now considered routine in laboratories compared with the conventional phenotypical methods previously used. We verified its microbiological relevance for identifying the main species of coagulase-negative staphylococci (CoNS) by randomly selecting 50 isolates. From 1 January 2007 to 31 August 2008, 12,479 staphylococci were isolated with phenotypic methods, of which 4,594 were identified as Staphylococcus aureus and 7,885 were coagulase negative staphylococci. Using MALDI-TOF MS from 1 January 2011 to 31 August 2012, 14,913 staphylococci were identified, with 5,066 as S. aureus and 9,847 as CoNS. MALDI-TOF MS allowed the identification of approximately 85% of the CoNS strains, whereas only 14% of the CoNS strains were identified to the species level with phenotypic methods because they were often considered contaminants. Furthermore, the use of MALDI-TOF MS revealed the occurrence of recently characterized Staphylococcus species, such as S. pettenkoferi, S. condimenti, and S. piscifermentans. Microbiological relevance analysis further revealed that some species displayed a high rate of microbiological significance, i.e., 40% of the S. lugdunensis strains included in the analysis were associated with infection risk. This retrospective microbiological study confirms the role of MALDI-TOF MS in clinical settings for the identification of staphylococci with clinical consequences. The species distribution reveals the occurrence of the recently identified species S. pettenkoferi and putative virulent species, including S. lugdunensis. PMID:25878345

  15. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A. (Palo Alto, CA); Mendez, Victor P. (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  16. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  17. An integrated strategy for rapid and accurate determination of free and cell-bound microcystins and related peptides in natural blooms by liquid chromatography-electrospray-high resolution mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry using both positive and negative ionization modes.

    PubMed

    Flores, Cintia; Caixach, Josep

    2015-08-14

    An integrated high resolution mass spectrometry (HRMS) strategy has been developed for rapid and accurate determination of free and cell-bound microcystins (MCs) and related peptides in water blooms. The natural samples (water and algae) were filtered for independent analysis of aqueous and sestonic fractions. These fractions were analyzed by MALDI-TOF/TOF-MS and ESI-Orbitrap-HCD-MS. MALDI, ESI and the study of fragmentation sequences have been provided crucial structural information. The potential of combined positive and negative ionization modes, full scan and fragmentation acquisition modes (TOF/TOF and HCD) by HRMS and high resolution and accurate mass was investigated in order to allow unequivocal determination of MCs. Besides, a reliable quantitation has been possible by HRMS. This composition helped to decrease the probability of false positives and negatives, as alternative to commonly used LC-ESI-MS/MS methods. The analysis was non-target, therefore covered the possibility to analyze all MC analogs concurrently without any pre-selection of target MC. Furthermore, archived data was subjected to retrospective "post-targeted" analysis and a screening of other potential toxins and related peptides as anabaenopeptins in the samples was done. Finally, the MS protocol and identification tools suggested were applied to the analysis of characteristic water blooms from Spanish reservoirs. PMID:26141269

  18. Competitive Deprotonation and Superoxide [O2 (-•)] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions.

    PubMed

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2 (-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 (-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 (-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions. Graphical Abstract ᅟ. PMID:26545766

  19. Competitive Deprotonation and Superoxide [O2 -] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2015-11-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O) preferentially form superoxide radical-anion (O2 -) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 - adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  20. Competitive Deprotonation and Superoxide [O2 -•] Radical-Anion Adduct Formation Reactions of Carboxamides under Negative-Ion Atmospheric-Pressure Helium-Plasma Ionization (HePI) Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B.

    2016-03-01

    Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O•) preferentially form superoxide radical-anion (O2 -•) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2 -•) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2 -• adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O•) to generate the superoxide radical-anion ( m/z 32) or the deprotonated amide [ m/z (M - H)-], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.

  1. Reduction of internal stress in a SU-8-like negative tone photoresist for MEMS applications by chemical modification

    NASA Astrophysics Data System (ADS)

    Ruhmann, Ralf; Ahrens, Gisela; Schuetz, Antje; Voskuhl, Jeanine; Gruetzner, Gabi

    2001-08-01

    The occurrence of internal stress of ultrathick photoresists, like SU-8 is a well known problem in lithographic processes. We investigated chemically modified SU-8-like photoresists to extend the processing latitude by reducing the internal stress of the resist images. Firstly, the composition of the polymeric binder and secondly that of the photoacidgenerator (PAG) was changed. The influence of these two variations on the stress behavior, the process conditions and the lithographic performance was studied in resist layers of 250micrometers and of 65-140 micrometers thickness, respectively. The chemical modification resulted in a drastic reduction of the internal stress occurring during the post exposure bake and by an additional hardbake. In comparison to SU-8, stress values of the modified resists reduced by 70% were achieved. With optimized process conditions for each test resist the improvement of stress behavior was linked with a lithographic performance yielding high-quality patterns with high resolution and a good aspect ratio.

  2. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  3. The electron impact, chemical ionization and fast atom bombardment positive ion mass spectra of 1,2-bis(sulfonyl)methylhydrazines.

    PubMed

    Giordano, G; Peterson, G; McMurray, W J; Shyam, K; Sartorelli, A C

    1991-11-01

    A series of bis(sulfonyl)-1-methylhydrazines were analyzed by positive ion electron impact (EI), chemical ionization (CI) and fast atom bombardment (FAB) mass spectrometry. Since these compounds showed activity against the L1210 leukemia, an understanding of their mass spectral behavior is important should the structural characterization of metabolites be required. FAB proved to be the most useful technique, generally providing abundant protonated molecule ion peaks, in contrast to the weak peaks observed with CI (ammonia or isobutane) and the total absence of molecular ion peaks in the EI mass spectra. In addition, utilizing FAB eliminated the problem of thermal decomposition, which was very difficult to control under EI and CI experimental conditions. Fragments observed in FAB and CI mass spectra were consistent with protonation at the methyl-bearing nitrogen. One can locate the R1 and R2 moieties relative to the methyl-bearing nitrogen in FAB and CI by assigning that nitrogen as the site of protonation, with subsequent elimination of R2SO2H. PMID:1799579

  4. Quantum Chemical Benchmark Studies of the Electronic Properties of the Green Fluorescent Protein Chromophore. 1. Electronically Excited and Ionized States of the Anionic Chromophore in the Gas Phase.

    PubMed

    Epifanovsky, Evgeny; Polyakov, Igor; Grigorenko, Bella; Nemukhin, Alexander; Krylov, Anna I

    2009-07-14

    We present the results of quantum chemical calculations of the electronic properties of the anionic form of the green fluorescent protein chromophore in the gas phase. The vertical detachment energy of the chromophore is found to be 2.4-2.5 eV, which is below the strongly absorbing ??* state at 2.6 eV. The vertical excitation of the lowest triplet state is around 1.9 eV, which is below the photodetachment continuum. Thus, the lowest bright singlet state is a resonance state embedded in the photodetachment continuum, whereas the lowest triplet state is a regular bound state. Based on our estimation of the vertical detachment energy, we attribute a minor feature in the action spectrum as due to the photodetachment transition. The benchmark results for the bright ??* state demonstrated that the scaled opposite-spin method yields vertical excitation within 0.1 eV (20 nm) from the experimental maximum at 2.59 eV (479 nm). We also report estimations of the vertical excitation energy obtained with the equation-of-motion coupled cluster with the singles and doubles method, a multireference perturbation theory corrected approach MRMP2 as well as the time-dependent density functional theory with range-separated functionals. Expanding the basis set with diffuse functions lowers the ??* vertical excitation energy by 0.1 eV at the same time revealing a continuum of "ionized" states, which embeds the bright ??* transition. PMID:26610014

  5. Total Analysis of Microcystins in Fish Tissue Using Laser Thermal Desorption-Atmospheric Pressure Chemical Ionization-High-Resolution Mass Spectrometry (LDTD-APCI-HRMS).

    PubMed

    Roy-Lachapelle, Audrey; Solliec, Morgan; Sinotte, Marc; Deblois, Christian; Sauv, Sbastien

    2015-08-26

    Microcystins (MCs) are cyanobacterial toxins encountered in aquatic environments worldwide. Over 100 MC variants have been identified and have the capacity to covalently bind to animal tissue. This study presents a new approach for cell-bound and free microcystin analysis in fish tissue using sodium hydroxide as a digestion agent and Lemieux oxidation to obtain the 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) moiety, common to all microcystin congeners. The use of laser diode thermal desorption-atmospheric pressure chemical ionization coupled with Q-Exactive mass spectrometry (LDTD-APCI-HRMS) led to an analysis time of approximately 10 s per sample and high-resolution detection. Digestion/oxidation and solid phase extraction recoveries ranged from 70 to 75% and from 86 to 103%, respectively. Method detection and quantification limits values were 2.7 and 8.2 ?g kg(-1), respectively. Fish samples from cyanobacteria-contaminated lakes were analyzed, and concentrations ranging from 2.9 to 13.2 ?g kg(-1) were reported. PMID:26211936

  6. Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct chemical ionization tandem MS.

    PubMed

    Gmez-Corts, Pilar; Tyburczy, Cynthia; Brenna, J Thomas; Jurez, Manuela; de la Fuente, Miguel Angel

    2009-12-01

    Rumen biohydrogenation of dietary alpha-linolenic acid gives rise in ruminants to accumulation of fatty acid intermediates, some of which may be transferred into milk. Rumelenic acid [cis-9 trans-11 cis-15 C18:3 (RLnA)] has recently been characterized, but other C18:3 minor isomers are still unknown. The objective of this work was to identify a new isomer of octatridecenoic acid present in milk fat from ewes fed different sources of alpha-linolenic acid. Structural characterization of this fatty acid was achieved by GC-MS. Analysis of dimethyloxazoline and picolinyl ester derivatives allowed for location of the double bond positions. Covalent adduct chemical ionization tandem mass spectrometry confirmed the positional structure 9-11-15, identical to RLnA, and helped to establish double bond geometry (cis-trans-trans). This new C18:3 isomer could be formed by isomerization of cis-15 bond of RLnA and subsequently converted by hydrogenation to trans-11 trans-15 C18:2, an octadecadienoic acid also detected in this study. PMID:19542528

  7. Cationic drug analysis using matrix-assisted laser desorption/ionization mass spectrometry: application to influx kinetics, multidrug resistance, and intracellular chemical change.

    PubMed Central

    Rideout, D; Bustamante, A; Siuzdak, G

    1993-01-01

    Highly sensitive and convenient analysis of intracellular cationic drugs has been achieved by applying matrix-assisted laser desorption/ionization mass spectrometry (MALD-MS). Tetraphenylphosphonium cation was readily identified and quantified (using methyltriphenylphosphonium cation as an internal standard) at subpicomole levels in crude lysate from < 4 x 10(3) FaDu human hypopharyngeal carcinoma cells. A quantitative MALD-MS time course for tetraphenylphosphonium cation accumulation into FaDu cells was comparable to a time course using scintillation counting with tritiated tetraphenylphosphonium. MALD-MS was also capable of demonstrating the reduced accumulation of the cationic drug rhodamine-123 by DoxR MCF7, a multiply drug-resistant human breast adenocarcinoma cell line, relative to the nonresistant parent line MCF7. In addition, MALD-MS was used to follow a chemical reaction inside intact FaDu cells: the formation of a hydrazone (II-51) from benzaldehyde and an acylhydrazide, 5-[tris(4-dimethylaminophenyl)phosphonio]pentanoyl hydrazide (II-25). These results suggest that MALD-MS may provide a rapid and practical alternative to existing methods for the analysis of cationic drugs, toxins, and their metabolites in cells and tissues. PMID:8234281

  8. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites. PMID:19886654

  9. Identification and quantification of antitumor thioproline and methylthioproline in Korean traditional foods by a liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Kim, Sun Hyo; Kim, Hyun-Ji; Shin, Ho-Sang

    2014-11-01

    A liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometric method (LC-APCI-MS/MS) has been developed for the sensitive determination of antitumor thioproline and methylthioproline from fermented foods. Thioproline and methylthioproline were derivatized in one step with ethyl chloroformate at room temperature. These compounds were identified and quantified in various traditional Korean fermented foods by LC-APCI-MS/MS. The concentration range of thioproline of each food was found for doenjang (0.011-0.032mg/kg), gochujang (0.010-0.038mg/kg), and ganjang (0.010-0.038mg/kg). Those of methylthioproline of each food was found for doenjang (0.098-0.632mg/kg), gochujang (0.015-0.112mg/kg), and ganjang (0.023-1.468mg/kg). A prolonged aging time leads to an increase in both the thioproline and methylthioproline contents, suggesting that the storage time plays a key role in the formation of thioproline and methylthioproline in Korean traditional foods. The results here suggest that thioproline and methylthioproline are related to the biological activities of traditional Korean fermented foods. PMID:25128876

  10. Studies of the role of metastables and doubly ionized species in the chemical and thermal structure of the Venusian and Martian ionospheres

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1981-01-01

    Models of the upper atmospheres of Mars and Venus were constructed using Viking and Pioneer Venus data. The neutral densities, with the exception of NO, N(4S), N(2D) and N(2P) were taken from the measured values, along with the neutral, ion, and electron temperatures. Using solar fluxes and relevant cross sections, the production rates of ions and neutral fragments by photo and electron impact processes were computed. These production rates were combined with chemical production rates and loss along with one dimensional transport eddy diffusion, molecular and ambi polar diffusion, and thermal diffusion, to determine the densities of ions and odd nitrogen species. Preliminary calculations show that the chemistry of metastables and doubly ionized species is important in the ionospheres of Mars and Venus. Production of N(+) in metastable reactions is particularly important, and it explains the discrepancy between the measurements of earlier models. Production of CO(+) is also affected. Reactions of O(++) and O(+)(2D) with N2 have important consequences for the escape rate of atomic nitrogen from the Martian atmosphere.

  11. Screening of pesticides and polycyclic aromatic hydrocarbons in feeds and fish tissues by gas chromatography coupled to high-resolution mass spectrometry using atmospheric pressure chemical ionization.

    PubMed

    Nácher-Mestre, Jaime; Serrano, Roque; Portolés, Tania; Berntssen, Marc H G; Pérez-Sánchez, Jaume; Hernández, Félix

    2014-03-12

    This paper reports a wide-scope screening for detection and identification of pesticides and polycyclic aromatic hydrocarbons (PAHs) in feeds and fish tissues. QuEChERS sample treatment was applied, using freezing as an additional cleanup. Analysis was carried out by gas chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI) QTOF MS). The qualitative validation was performed for over 133 representative pesticides and 24 PAHs at 0.01 and 0.05 mg/kg. Subsequent application of the screening method to aquaculture samples made it possible to detect several compounds from the target list, such as chlorpyrifos-methyl, pirimiphos-methyl, and ethoxyquin, among others. Light PAHs (≤4 rings) were found in both animal and vegetable samples. The reliable identification of the compounds was supported by accurate mass measurements and the presence of at least two representative m/z ions in the spectrum together with the retention time of the peak, in agreement with the reference standard. Additionally, the search was widened to include other pesticides for which standards were not available, thanks to the expected presence of the protonated molecule and/or molecular ion in the APCI spectra. This could allow the detection and tentative identification of other pesticides different from those included in the validated target list. PMID:24559176

  12. Analysis of vitamin K1 in fruits and vegetables using accelerated solvent extraction and liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Jäpelt, Rie Bak; Jakobsen, Jette

    2016-02-01

    The objective of this study was to develop a rapid, sensitive, and specific analytical method to study vitamin K1 in fruits and vegetables. Accelerated solvent extraction and solid phase extraction was used for sample preparation. Quantification was done by liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization in selected reaction monitoring mode with deuterium-labeled vitamin K1 as an internal standard. The precision was estimated as the pooled estimate of three replicates performed on three different days for spinach, peas, apples, banana, and beetroot. The repeatability was 5.2% and the internal reproducibility was 6.2%. Recovery was in the range 90-120%. No significant difference was observed between the results obtained by the present method and by a method using the same principle as the CEN-standard i.e. liquid-liquid extraction and post-column zinc reduction with fluorescence detection. Limit of quantification was estimated to 0.05 μg/100g fresh weight. PMID:26304366

  13. Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography - atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Šubčíková, Lenka; Hoskovec, Michal; Vrkoslav, Vladimír; Čmelíková, Tereza; Háková, Eva; Míková, Radka; Coufal, Pavel; Doležal, Antonín; Plavka, Richard; Cvačka, Josef

    2015-01-23

    Fatty acid diesters of long-chain 1,2-diols (1,2-DDE), or type II wax diesters, were analyzed in the vernix caseosa of a newborn girl. 1,2-DDE were isolated from the total lipid extract by the semipreparative TLC using plates coated with silica gel. Chromatographic separation of the 1,2-DDE molecular species was achieved on the non-aqueous reversed-phase HPLC with two Nova-Pak C18 columns connected in series (a total length of 45cm) and using an acetonitrile-ethyl acetate gradient. 1,2-DDE eluted from the column in the order of their equivalent chain number. The analytes were detected as ammonium adducts by an ion-trap mass spectrometer equipped with an atmospheric pressure chemical ionization source. Their structures were elucidated using tandem mass spectrometry with MS, MS(2) and MS(3) steps in a data-dependent mode. More than two thousand molecular species of 1,2-DDE were identified in 141 chromatographic peaks. The most abundant 1,2-DDE were monounsaturated lipids consisting of a C22 diol and a C18:1 fatty acid together with C16:0, C14:0 or C15:0 fatty acids. The positions of double bonds were characterized by the fragmentation of [M+C3H5N](+) formed in the ion source. PMID:25555408

  14. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

    PubMed

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2014-06-01

    Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions. PMID:24913399

  15. N2O5 measurement in Hong Kong by a chemical ionization mass spectrometry: Presence of high N2O5 and implications

    NASA Astrophysics Data System (ADS)

    Jun, Tham Yee; Tao, Wang; Zhe, Wang; Xinfeng, Wang; Chao, Yan; Qiaozhi, Zha; Zheng, Xu; Likun, Xue

    2014-05-01

    Dinitrogen pentoxide (N2O5) plays key roles in a number of nocturnal chemical processes within the troposphere, including the sink of nitrogen oxides (NOx). However, accurate measurement of this atmospheric trace compound remains as a challenging task, especially in polluted environment like China. We initially deploy a thermal dissociation chemical ionization mass spectrometry (TD-CIMS) for N2O5 field measurement in Hong Kong from 2010-2012. Unusual high N2O5 signal measured as NO3- (62 amu) were frequently observed. Various interference tests and correction were conducted to verify the data, but we caution the use of 62 amu for measuring ambient N2O5 in a high NOx environment like Hong Kong. Therefore, we optimized the CIMS to measure N2O5 as ion cluster of I(N2O5)- at 235 amu with some minor improvements and demonstrated to has the ability for simultaneous in situ measurements of N2O5 at an urban site. Then, the CIMS was deployed to another field study at a mountain-top site (Tai Mo Shan). A comparison of N2O5 measurement with a cavity ring-down spectrometry was performed and found to be in good correlation with the CIMS. High concentration of N2O5 was observed between the boundary layer and there are some occasions where N2O5 exceeds several ppb, which is among the highest values ever reported. These results provide deeper understanding on the chemistry of NOx in a polluted environment. Furthermore, our first observation of nitryl chloride (ClNO2) and its co-existence with N2O5 also implies an active heterogeneous reactivity between N2O5 and chloride particles in an Asian environment. Thus, N2O5 is an important nocturnal intermediate and has the potential in jump-starting the atmospheric photochemistry in this region

  16. Negative ion source

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  17. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  18. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  19. Wafer Treatment Using Electrolysis-Ionized Water

    NASA Astrophysics Data System (ADS)

    Aoki, Hidemitsu; Nakamori, Masaharu; Aoto, Nahomi; Ikawa, Eiji

    1994-10-01

    Electrolysis-ionized water treatment is shown to be useful for removing polystyrene particles from contact holes, silicon surface cleaning and the removal of metal contamination such as copper. Electrolysis-ionized waterhas a controllable pH and a higher oxidation-reduction potential than chemicals. Moreover, this water does notcontain acid or alkaline chemicals, and can easily be neutralized without adding chemicals. Electrolysis-ionized water treatment has great potential for ecologically safe and low cost semiconductor processing.

  20. APPLICATION OF NEGATIVE ION CHEMICAL IONIZATION MASS SPECTROMETRY FOR THE ANALYSIS OF TRICHLOROPYRIDINOL IN SALIVA OF RATS EXPOSED TO CHLORPYRIFOS. (R828608)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes

    PubMed Central

    Zhang, Wendian; Peng, Fangqi; Zhou, Taotao; Huang, Yifei; Zhang, Li; Ye, Peng; Lu, Miao; Yang, Guang; Gai, Yongkang; Yang, Tan; Ma, Xiang; Xiang, Guangya

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. Gene therapy was established as a new strategy for treating HCC. To explore the potential delivery system to support the gene therapy of HCC, negatively charged liposomal delivery system was used to deliver miR-221 antisense oligonucleotide (anti-miR-221) to the transferrin (Tf) receptor over expressed HepG2 cells. The liposome exhibited a mean particle size of 122.5 nm, zeta potential of ?15.74 mV, anti-miR-221 encapsulation efficiency of 70%, and excellent colloidal stability at 4C. Anti-miR-221-encapsulated Tf-targeted liposome demonstrated a 15-fold higher delivery efficiency compared to nontargeted liposome in HepG2 cells in vitro. Anti-miR-221 Tf-targeted liposome effectively delivered anti-miR-221 to HepG2 cells, upregulated miR-221 target genes PTEN, P27kip1, and TIMP3, and exhibited greater silencing efficiency over nontargeted anti-miR-221 liposome. After intravenous injection into HepG2 tumor-bearing xenografted mice with Cy3-labeled anti-miR-221 Tf-targeted liposome, Cy3-anti-miR-221 was successfully delivered to the tumor site and increased the expressions of PTEN, P27kip1, and TIMP3. Our results demonstrate that the Tf-targeted negatively charged liposome could be a potential therapeutic modality in the gene therapy of human HCC. PMID:26251599

  2. Molecular Characterization of S- and N-containing Organic Constituents in Ambient Aerosols by negative ion mode High-Resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-27

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using Nanospray Desorption Electrospray Ionization High Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day were collected in Bakersfield, CA on June 20-24 with a collection time of 6 hours per sample. Four characteristic groups of organic constituents were identified in the samples: compounds containing carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen-(CHON), and both nitrogen- and sulfur-containing organics (CHONS). Within the groups, organonitrates, organosulfates, and nitroxy organosulfates were assigned based on accurate mass measurements and elemental ratio comparisons. Changes in the chemical composition of the aerosol samples were observed throughout the day. The number of observed CHO compounds increased in the afternoon samples, suggesting regional photochemical processing as a source. The average number of CHOS compounds had the smallest changes throughout the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHON and CHONS) had greater numbers of compounds in the night and morning samples, indicating that nitrate radical chemistry was likely a source for those compounds. Most of the compounds were found in submicron particles. The size distribution of CHON compounds was bimodal. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources.

  3. Harnessing entropic and enthalpic contributions to create a negative tone chemically amplified molecular resist for high-resolution lithography

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Prashant K.; Maruyama, Ken; Kiani, Sara; Blackwell, James; Olynick, Deirdre L.; Ashby, Paul D.

    2014-08-01

    Here we present a new resist design concept. By adding dilute cross-linkers to a chemically amplified molecular resist, we synergize entropic and enthalpic contributions to dissolution by harnessing both changes to molecular weight and changes in intermolecular bonding to create a system that outperforms resists that emphasize one contribution over the other. We study patterning performance, resist modulus, solubility kinetics and material redistribution as a function of cross-linker concentration. Cross-linking varies from dilute oligomerization to creating a highly networked system. The addition of small amounts of cross-linker improves resist performance by reducing material diffusion and redistribution during development and stiffening the features to avoid pattern collapse. The new dilute cross-linking system achieves the highest resolution of a sensitive molecular glass resist at 20 nm half-pitch and line-edge roughness (LER) of 4.3 nm and can inform new resist design towards patterned feature control at the molecular level.

  4. Gas-phase ion/molecule isotope-exchange reactions: methodology for counting hydrogen atoms in specific organic structural environments by chemical ionization mass spectrometry

    SciTech Connect

    Hunt, D.F.; Sethi, S.K.

    1980-11-05

    Ion/molecule reactions are described which facilitate exchange of hydrogens for deuteriums in a variety of different chemical environments. Aromatic hydrogens in alkylbenzenes, oxygenated benzenes, m-toluidine, m-phenylenediamine, thiophene, and several polycyclic aromatic hydrocarbons and metallocenes are exchanged under positive ion CI conditions by using either D/sub 2/O, EtOD, or ND/sub 3/ as the reagent gas. Aromatic hydrogens, benzylic hydrogens, and hydrogens on carbon adjacent to carbonyl groups suffer exchange under negative ion CI conditions in ND/sub 3/, D/sub 2/O, and EtOD, respectively. A possible mechanism for the exchange process is discussed. 1 figure, 2 tables.

  5. Nonideal ionization in plasmas with higher charges

    NASA Astrophysics Data System (ADS)

    Ebeling, W.; Lehmann, H.

    The effect of multiple ionization in dense plasmas is studied. By including the Coulomb interactios into the chemical potentials generalized Saha equations are derived. The existence of the following feedback loop is verified: (1) multiply charged ions strongly enhance the nonideality; (2) nonideality enhances multiple ionization. Based on the pair distribution function at small distances simple expressions for the ionization recombination coefficients are derived.

  6. Heat Stress Evaluation of Two-layer Chemical Demilitarization Ensembles with a Full Face Negative Pressure Respirator

    PubMed Central

    FLETCHER, Oclla Michele; GUERRINA, Ryan; ASHLEY, Candi D.; BERNARD, Thomas E.

    2014-01-01

    The purpose of this study was to examine the heat stress effects of three protective clothing ensembles: (1) protective apron over cloth coveralls including full face negative pressure respirator (APRON); (2) the apron over cloth coveralls with respirator plus protective pants (APRON+PANTS); and (3) protective coveralls over cloth coveralls with respirator (PROTECTIVE COVERALLS). In addition, there was a no-respirator ensemble (PROTECTIVE COVERALLS-noR), and WORK CLOTHES as a reference ensemble. Four acclimatized male participants completed a full set of five trials, and two of the participants repeated the full set. The progressive heat stress protocol was used to find the critical WBGT (WBGTcrit) and apparent total evaporative resistance (Re,T,a) at the upper limit of thermal equilibrium. The results (WBGTcrit [C-WBGT] and Re,T,a [kPa?m2 W?1]) were WORK CLOTHES (35.5, 0.0115), APRON (31.6, 0.0179), APRON+PANTS (27.7, 0.0244), PROTECTIVE COVERALLS (25.9, 0.0290), and PROTECTIVE COVERALLS-noR (26.2, 0.0296). There were significant differences among the ensembles. Supporting previous studies, there was little evidence to suggest that the respirator contributed to heat stress. PMID:24705801

  7. Prediction of mixture toxicity from the hormesis of a single chemical: A case study of combinations of antibiotics and quorum-sensing inhibitors with gram-negative bacteria.

    PubMed

    Wang, Ting; Wang, Dali; Lin, Zhifen; An, Qingqing; Yin, Chunsheng; Huang, Qinghui

    2016-05-01

    The 50% effect level of a single chemical in the real environment is almost impossible to determine at the low exposure concentration, and the prediction of the concentration of a mixture at the 50% effect level from the concentration of a single chemical at the low effect level is even more difficult. The current literature does not address this problem. Thus, to determine solutions for this question, single/mixture chronic toxicities of sulfonamides (SAs) and quorum-sensing inhibitors (QSIs) were determined using Gram-negative bacteria (Vibrio fischeri and E. coli.) and Gram-positive bacteria (B. subtilis) as the target organisms. The results showed that the joint effects of SAs and QSIs were primarily antagonistic responses. In addition, the toxicity mechanisms of mixtures of SAs and QSIs were investigated further, and the results revealed that the chronic joint effects were primarily an antagonistic response due to the QSI competing against acyl-homoserine lactones (AHL) for luxR in V. fischeri and SdiA in E. coli generated by the SAs, leading to negative effects exerted by the QSI-luxR or QSI-SdiA complexes on luxI in V. fischeri or FtsZ in E. coli. This phenomenon eventually weakened the stimulatory effect caused by the SAs. Based on the mixture toxicity mechanism, the relationship between the mixture toxicity and the simulation effect was formulated. PMID:26901472

  8. Determination of toluenediamine isomers by capillary gas chromatography and chemical ionization mass spectrometry with special reference to the biological monitoring of 2,4- and 2,6-toluene diisocyanate.

    PubMed

    Skarping, G; Dalene, M; Lind, P

    1994-03-11

    The determination of 2,3-, 3,4-, 2,6-, 2,4- and 2,5-toluenediamine (TDA) in hydrolysed human urine and blood plasma was studied by GC-MS. The TDA isomers as their perfluoro-fatty acid anhydride derivatives were investigated. Chemical ionization with ammonia and isobutane as reagent gas and monitoring both positive and negative ions are studied. Negative ion monitoring using ammonia and the TDA pentafluoropropionic anhydride (PFPA) derivatives were chosen owing to the low detection limits and good separations of the isomers studied. The ions monitored were m/z 394 and 374 corresponding to the (M-20)- and (M-40)- ions and the m/z = 397 and 377 ions of the tri-deuterium-labelled TDA used as an internal standard. The performance of 2,4-, 2,5- and 2,6-TDA-PFPA in the ion source was studied by varying the ammonia pressure, temperature and electron energy. A 1-ml volume of human urine was added to 1.5 ml of 6 M HCl containing 0.5 micrograms/l of each of the trideuterated 2,6- and 2,4-TDA and the solution was hydrolysed at 100 degrees C overnight. TDA was extracted into 2 ml of toluene by the addition of 5 ml of saturated NaOH solution. Derivatization was performed in toluene by the addition of 10 microliters of PFPA. The excesses of the reagent and acid formed were removed by extraction with 1 M phosphate buffer solution (pH 7.5). Analyses of 2,6-, 2,4- and 2,5-TDA-spiked human urine (0.2-2.5 micrograms/l) were performed. The correlation coefficients were 0.999 (n = 6). The precision (R.S.D.) for human urine spiked at 1 micrograms/l was 1.6% for 2.6-TDA, 3,5% for 2,4-TDA and 3.2% for 2,5-TDA (n = 10). The detection limit, defined as twice the signal-to-noise ratio, was 1-5 fg injected, corresponding to less than 0.05 micrograms/l of TDA in human urine or plasma. PMID:8173666

  9. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    PubMed Central

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l−1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l−1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID:26441874

  10. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria.

    PubMed

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l(-1) O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l(-1). However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID:26441874

  11. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  12. Differentiation of Positional Isomers of Hybrid Peptides Containing Repeats of ?-Nucleoside Derived Amino Acid (?-Nda-) and L-Amino Acids by Positive and Negative Ion Electrospray Ionization Tandem Mass Spectrometry (ESI-MS n )

    NASA Astrophysics Data System (ADS)

    Raju, B.; Ramesh, M.; Srinivas, R.; Chandrasekhar, S.; Kiranmai, N.; Sarma, V. U. M.

    2011-04-01

    A new class of positional isomeric pairs of -Boc protected oligopeptides comprised of alternating nucleoside derived ?-amino acid (?-Nda-) and L-amino acid residues (alanine, valine, and phenylalanine) have been differentiated by both positive and negative ion electrospray ionization ion-trap tandem mass spectrometry (ESI-MS n ). The protonated dipeptide positional isomers with ?-Nda- at the N-terminus lose CH3OH, NH3, and C2H4O2, whereas these processes are absent for the peptides with L-amino acids at the N-terminus. Instead, the presence of L-amino acids at the N-terminus results in characteristic retro-Mannich reaction involving elimination of imine. A good correlation has been observed between the conformational structure of the peptides and the abundance of y{n/+} and b{n/+} ions in MS n spectra. In the case of tetrapeptide isomers that are reported to form helical structures in solution phase, no y{n/+} and b{n/+} ions are observed when the corresponding amide -NH- participates in the helical structures. In contrast, significant y{n/+} and b{n/+} ions are formed when the amide -NH- is not involved in the H-bonding. In the case of tetra- and hexapeptides, it is observed that abundant b{n/+} ions are formed, presumably with stable oxazolone structures when the C-terminus of the b{n/+} ions possessed L-amino acid and the ?-Nda- at the C-terminus appears to prevent the cyclization process leading to the absence of corresponding b{n/+} ions.

  13. High-Precision Tungsten Isotopic Analysis by Multicollection Negative Thermal Ionization Mass Spectrometry Based on Simultaneous Measurement of W and (18)O/(16)O Isotope Ratios for Accurate Fractionation Correction.

    PubMed

    Trinquier, Anne; Touboul, Mathieu; Walker, Richard J

    2016-02-01

    Determination of the (182)W/(184)W ratio to a precision of 5 ppm (2?) is desirable for constraining the timing of core formation and other early planetary differentiation processes. However, WO3(-) analysis by negative thermal ionization mass spectrometry normally results in a residual correlation between the instrumental-mass-fractionation-corrected (182)W/(184)W and (183)W/(184)W ratios that is attributed to mass-dependent variability of O isotopes over the course of an analysis and between different analyses. A second-order correction using the (183)W/(184)W ratio relies on the assumption that this ratio is constant in nature. This may prove invalid, as has already been realized for other isotope systems. The present study utilizes simultaneous monitoring of the (18)O/(16)O and W isotope ratios to correct oxide interferences on a per-integration basis and thus avoid the need for a double normalization of W isotopes. After normalization of W isotope ratios to a pair of W isotopes, following the exponential law, no residual W-O isotope correlation is observed. However, there is a nonideal mass bias residual correlation between (182)W/(i)W and (183)W/(i)W with time. Without double normalization of W isotopes and on the basis of three or four duplicate analyses, the external reproducibility per session of (182)W/(184)W and (183)W/(184)W normalized to (186)W/(183)W is 5-6 ppm (2?, 1-3 ?g loads). The combined uncertainty per session is less than 4 ppm for (183)W/(184)W and less than 6 ppm for (182)W/(184)W (2?m) for loads between 3000 and 50 ng. PMID:26751903

  14. Chemistry of α-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE PAGESBeta

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of α-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm−3 s, corresponding to approximately 1.0 to 7.5 daysmore » of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  15. Development and Comparison of Three Liquid Chromatography-Atmospheric Pressure Chemical Ionization/Mass Spectrometry Methods for Determining Vitamin D Metabolites in Human Serum

    PubMed Central

    Bedner, Mary; Phinney, Karen W.

    2012-01-01

    Liquid chromatographic methods with atmospheric pressure chemical ionization mass spectrometry were developed for the determination of the vitamin D metabolites 25-hydroxyvitamin D2 (25(OH)D2), 25-hydroxyvitamin D3 (25(OH)D3), and 3-epi-25-hydroxyvitamin-D3 (3-epi-25(OH)D3) in the four Levels of SRM 972, Vitamin D in Human Serum. One method utilized a C18 column, which separates 25(OH)D2 and 25(OH)D3, and one method utilized a CN column that also resolves the diastereomers 25(OH)D3 and 3-epi-25(OH)D3. Both methods utilized stable isotope labeled internal standards for quantitation of 25(OH)D2 and 25(OH)D3. These methods were subsequently used to evaluate SRM 909c Human Serum, and 25(OH)D3 was the only vitamin D metabolite detected in this material. However, SRM 909c samples contained matrix peaks that interfered with the determination of the [2H6]-25(OH)D3 peak area. The chromatographic conditions for the C18 column were modified to remove this interference, but conditions that separated the matrix peaks from [2H6]-25(OH)D3 on the CN column could not be identified. The alternate internal standard [2H3]-25(OH)D3 did not suffer from matrix interferences and was used for quantitation of 25(OH)D3 in SRM 909c. During the evaluation of SRM 909c samples, a third method was developed using a pentafluorophenylpropyl column that also separates the diastereomers 25(OH)D3 and 3-epi-25(OH)D3. The 25(OH)D3 was measured in SRM 909c using all three methods, and the results were compared. PMID:22533908

  16. Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Solliec, Morgan; Mass, Daniel; Sauv, Sbastien

    2014-10-01

    A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3 g kg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28gkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)? 0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples. PMID:25059125

  17. Development of An Ion-Drift Time-of-Flight Chemical Ionization Mass Spectrometry Technique for Measurements of Aerosol Precursor Gases

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Ma, Y.; Chen, M.

    2012-12-01

    We have developed a new technique, i.e., ion-drift time-of-flight chemical ionization mass spectrometry (ID-ToF-CIMS) for measurements of aerosol precursor gases, including ammonia, amines, organic acids and oxygenated VOCs at pptv level with a response time less than 1 s. The ID-ToF-CIMS was modified from an Aerodyne high resolution ToF-CIMS with a custom-designed ion-drift tube, which can control the ion flight velocity and hence the ion-molecular reaction time. In addition, the tunable electric field generated by the drift tube can break up water clusters to select the major reagent ions. The advantages of the ID-ToF-CIMS over the traditional quadrupole-based ID-CIMS were the high mass-resolving power of the ToF mass analyzer and the capability of simultaneous measurement of the full mass range (typically up to 300 m/z) of product ions. Using hydronium ion based reagent ions, we demonstrated that the ID-ToF-CIMS can unambiguously measure ammonia (NH3) at 18.03 m/z, methyl amine (CH3NH2) at 32.05 m/z, formic acid (HCOOH) at 47.01 m/z and acetone (CH3COCH3) at 59.05 m/z. Calibrations were performed with both compressed commercial standard gases and permeation tubes and the results showed that the instrument detection limit can reach pptv level for 1 s average time or less. The ID-ToF-CIMS was also field tested in a mobile laboratory on the campus of Nanjing University of Information Science & Technology (NUIST). The preliminary results will be discussed.

  18. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Portols, T; Mol, J G J; Sancho, J V; Lpez, Francisco J; Hernndez, F

    2014-08-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS(E)). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20mg kg(-1). For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01mg kg(-1) level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01mg kg(-1) for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ?5ppm and an ion-ratio deviation ?30%, were investigated. At the 0.01mg kg(-1) level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20mg kg(-1) level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to identify detected pesticides, followed by deviations in mass accuracy and ion ratios. PMID:25064246

  19. Measurements of Oxidized Organic Compounds during SOAS 2013 using nitrate ion chemical ionization coupled with High Resolution Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Stark, H.; Cnagaratna, M.; Junninen, H.; Hakala, J. P.; Mauldin, R.; Ehn, M.; Sipila, M.; Krechmer, J.; Kimmel, J.; Jimenez, J. L.; Jayne, J. T.; Worsnop, D. R.

    2013-12-01

    We present ambient measurements of gaseous organic compounds by means of a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometry (HR-ToF-CIMS) using nitrate ion (NO3-) chemistry. This technique allows to selectively detect oxidized gas-phase species, e.g., oxidized organic molecules and sulfuric acid via clustering with NO3- and its high order clusters. The capability of making such measurements is important because both sulfuric acid and organic gas molecules have a recognized key role in new particle formation (NPF) processes and likely have an important role in particulate phase chemistry and formation of secondary organic aerosols (SOA). The HR-ToF-CIMS was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the forest supersite in Centreville, AL, from June 1 to July 15, 2013. The main goal of the SOAS campaign was to investigate the composition and sources of SOA in the Southeast US, where emissions are mainly represented by biogenic volatile organic compounds (BVOC) emissions and in less extent by anthropogenic emissions (AVOC). During SOAS, the HR-ToF-CIMS detected a range of organic ions that based on previous literature could be identified as oxidation products of both isoprene and terpenes. The isoprene products were 5 to 10 times more abundant than the terpene products. The isoprene-related molecules showed a diurnal cycle with a day time peak, typically after 1500 local time, while the terpene products were higher at night (between 2000 and 0600 local time). These results are consistent with the diurnal trends of primary BVOC emissions from other co-located instruments. The ambient data are also compared to laboratory measurements where oxidized organic vapors are produced using a Potential Aerosol Mass (PAM) flow reactor by the OH oxidation of biogenic gas-phase precursors (isoprene, a-pinene) over multiple days of equivalent atmospheric exposure.

  20. Identification of organic nitrates in the NO3 radical initiated oxidation of alpha-pinene by atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Perraud, Véronique; Bruns, Emily A; Ezell, Michael J; Johnson, Stanley N; Greaves, John; Finlayson-Pitts, Barbara J

    2010-08-01

    The gas-phase reactions of nitrate radicals (NO3) with biogenic organic compounds are a major sink for these organics during night-time. These reactions form secondary organic aerosols, including organic nitrates that can undergo long-range transport, releasing NOx downwind. We report here studies of the reaction of NO3 with alpha-pinene at 1 atm in dry synthetic air (relative humidity approximately 3%) and at 298 K using atmospheric pressure chemical ionization triple quadrupole mass spectrometry (APCI-MS) to identify gaseous and particulate products. The emphasis is on the identification of individual organic nitrates in the particle phase that were obtained by passing the product mixture through a denuder to remove gas-phase reactants and products prior to entering the source region of the mass spectrometer. Filter extracts were also analyzed by GC-MS and by APCI time-of-flight mass spectrometry (APCI-ToF-MS) with methanol as the proton source. In addition to pinonaldehyde and pinonic acid, five organic nitrates were identified in the particles as well as in the gas phase: 3-oxopinane-2-nitrate, 2-hydroxypinane-3-nitrate, pinonaldehyde-PAN, norpinonaldehyde-PAN, and (3-acetyl-2,2-dimethyl-3-nitrooxycyclobutyl)acetaldehyde. Furthermore, there was an additional first-generation organic nitrate product tentatively identified as a carbonyl hydroxynitrate with a molecular mass of 229. These studies suggest that a variety of organic nitrates would partition between the gas phase and particles in the atmosphere, and serve as a reservoir for NOx. PMID:20608721

  1. Identification and quantification of seven volatile n-nitrosamines in cosmetics using gas chromatography/chemical ionization-mass spectrometry coupled with head space-solid phase microextraction.

    PubMed

    Choi, Na Rae; Kim, Yong Pyo; Ji, Won Hyun; Hwang, Geum-Sook; Ahn, Yun Gyong

    2016-02-01

    An analytical method was developed for the identification and quantification of seven volatile n-nitrosamines (n-nitrosodimethylamine [NDMA], n-nitrosoethylmethylamine [NMEA], n-nitrosodiethylamine [NDEA], n-nitrosodipropylamine [NDPA], n-nitrosodibutylamine [NDBA], n-nitrosopiperidine [NPIP], and n-nitrosopyrrolidine [NPYR]) in water insoluble cream type cosmetics. It was found that the head space-solid phase microextraction (HS-SPME) was suitable for extraction, clean up, and pre-concentration of n-nitrosamines in the cream type samples so its optimal conditions were investigated. Identification and quantification of n-nitrosamines using single quadrupole gas chromatography/mass spectrometry (GC/MS) in chemical ionization (CI) mode were carried out with accurate mass measurements. Their accurate masses of protonated molecular ions were obtained within 10mDa of the theoretical masses when sufficiently high signal was acquired from the unique calibration method using mass and isotope accuracy. For the method validation of quantification, spiking experiments were carried out to determine the linearity, recovery, and method detection limit (MDL) using three deuterated internal standards. The average recovery was 79% within 20% relative standard deviation (RSD) at the concentration of 50ng/g. MDLs ranged from 0.46ng/g to 36.54ng/g, which was satisfactory for the directive limit of 50ng/g proposed by the European Commission (EC). As a result, it was concluded that the method could be provided for the accurate mass screening, confirmation, and quantification of n-nitrosamines when applied to cosmetic inspection. PMID:26653425

  2. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH(+), MOH(+), and MO(2)H(+), respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH(+) sharply decreased, that of MOH(+) increased once and then decreased, and that of MO(2)H(+) sharply increased until reaching a plateau. The signal intensity of MO(2)H(+) at the plateau was 40 times higher than that of MH(+) and 100 times higher than that of MOH(+) in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO(2)H(+) signal in the concentration range up to 60 ?g/m(3), which is high enough for hygiene management. In the low concentration range lower than 3 ?g/m(3), which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-?g/m(3) vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s. PMID:26091887

  3. Determination and confirmation of malachite green and leucomalachite green residues in salmon using liquid chromatography/mass spectrometry with no-discharge atmospheric pressure chemical ionization.

    PubMed

    Turnipseed, Sherri B; Andersen, Wendy C; Roybal, José E

    2005-01-01

    A liquid chromatography/mass spectrometry (LC/MS) method was developed to quantitate and confirm residues of leucomalachite green (LMG) in salmon tissue after their conversion to chromic malachite green (MG) in the extraction process. The method uses no-discharge atmospheric pressure chemical ionization (APCI) in conjunction with an ion-trap instrument to generate product-ion spectra. In the sample preparation procedure, salmon tissue is extracted with acetonitrile/buffer, the LMG residue is partitioned into methylene chloride, the LMG is converted to MG using an organic oxidizing agent, and the MG is isolated on alumina/propylsulfonic acid solid-phase extraction cartridges. The method was validated by fortifying salmon with different levels of LMG, and then detecting the residue as MG The LC/MS conditions, including a comparison of electrospray and no-discharge APCI, were evaluated and optimized. MG was not confirmed in any of the control tissue extracts, and all fortified samples analyzed during validation met the confirmation criteria as described. In addition to providing confirmatory data, this method can provide an alternative method for quantitation of MG in salmon. The recoveries of LMG measured as MG by this LC/MS method, at fortification levels of 1-10 ng/g were very high (86-109%), with low relative standard deviation(RSD) values (6.4-13%). The results agreed very closely with those obtained for the same extracts using an LCNIS procedure, indicating that matrix suppression was not an issue. The presence of LMG in salmon tissue samples fortified at 0.25 ng/g was confirmed by this method, with an average recovery of 70.1% and an RSD of 12.0%. Sample extracts from fish exposed to MG were also analyzed. PMID:16385980

  4. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient atmosphere.

  5. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient atmosphere.

  6. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  7. Separation and determination of diversiform phytosterols in food materials using supercritical carbon dioxide extraction and ultraperformance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Lu, Baiyi; Zhang, Ying; Wu, Xiaoqin; Shi, Jiayi

    2007-04-01

    This paper presents at first time that the ultra-performance liquid chromatographic atmospheric pressure chemical ionization mass spectrometer (UPLC-APCI-MS) was used as an efficient method for the identification and quantification of diversiform phytosterols in food materials. The sample preparation consisted of extraction by supercritical carbon dioxide fluid extraction (SCE) and saponification by refluxing with ethanolic KOH, and then the non-saponificable fraction was extracted with petroleum ether. This fraction was subjected to solid phase extraction (SPE) on silica gel cartridge and then the sterols were eluted with hexane-ethyl acetate. Sterols were separated on an Acquity UPLC BEH C18 column (100 mm x 1.0 mm, 1.7 microm particle size) with a gradient of methanol/water (1% acetonitrile) at a flow of 0.1 mL min(-1). The determination was performed in selective ion monitoring mode. The quality parameter of the developed method was established using 6-ketocholestanol as internal standard. Limits of quantification (LOQ) were 0.1754, 0.0341, 0.0500, 0.0205, 0.0225, 0.3674, 0.0241, 0.0272, 0.0076 microg L(-1) and 0.1525 microg mL(-1) for 6-ketocholestanol, desmosterol, ergosterol, cholesterol, lanosterol, cholestanol, campesterol, stigmasterol, beta-sitosterol, and stigmastanol, respectively. The intra- and inter-day determination precision for the 10 phytosterols were less than 5 and 6% in relative standard deviations, and their recoveries were located in the range of 94-107%. The developed approach has been applied successfully for efficient determination of diversiform phytosterols in food materials, including corn, sesame, oat and peanut. PMID:17386793

  8. Structural elucidation of monoterpene oxidation products by ion trap fragmentation using on-line atmospheric pressure chemical ionisation mass spectrometry in the negative ion mode.

    PubMed

    Warscheid, B; Hoffmann, T

    2001-01-01

    Based on ion trap mass spectrometry, an on-line method is described which provides valuable information on the molecular composition of structurally complex organic aerosols. The investigated aerosols were generated from the gas-phase ozonolysis of various C(10)H(16)-terpenes (alpha-pinene, beta-pinene, 3-carene, sabinene, limonene), and directly introduced into the ion source of the mass spectrometer. Negative ion chemical ionisation at atmospheric pressure (APCI(-)) enabled the detection of multifunctional carboxylic acid products by combining inherent sensitivity and molecular weight information. Sequential low-energy collision-induced product ion fragmentation experiments (MS(n)) were performed in order to elucidate characteristic decomposition pathways of the compounds. Dicarboxylic acids, oxocarboxylic acids and hydroxyketocarboxylic acid products could be clearly distinguished by multistage on-line MS. Furthermore, sabinonic acid and two C(9)-ether compounds were tentatively identified for the first time by applying on-line APCI(-)-MS(n). PMID:11746892

  9. Ionization chamber

    DOEpatents

    Walenta, Albert H. (Port Jefferson Station, NY)

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  10. Peroxynitric acid (HO2NO2) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Roberts, J. M.; Wild, R. J.; Edwards, P. M.; Brown, S. S.; Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Zamora, R. J.; de Gouw, J.

    2015-02-01

    Laboratory work is reported here establishing iodide ion chemical ionization mass spectrometry (I- CIMS) as a sensitive method for the unambiguous detection of peroxynitric acid (HO2NO2, PNA). A~dynamic calibration source for HO2NO2, HO2, and HONO was developed and calibrated using a~novel total NOy detector (NOy CaRDS). Photochemical sources of these species were used for the calibration and validation of the I- CIMS instrument for detection of HO2NO2. A dual inlet system was developed to determine differences in the instrument response when using a heated inlet dissociator (150 °C) and a "cold" room-temperature inlet. HO2NO2 was detected as I-HO2- (m/z 160), NO3- (m/z 62) and I-HO2NO2- (m/z 206). The I- CIMS normalized sensitivity to peroxynitric acid was 2.0 Hz pptv-1 with a detection limit (3σ) of 40 pptv via detection of the I-HO2- (m/z 160) cluster ion using an inlet dissociator at a temperature of 150 °C. Alternatively, PNA was detected via I- CIMS with a cold inlet at both the NO3- (m/z 62) and I-HO2NO2- (m/z 206) ions with normalized detection sensitivities of 144 and 0.4 Hz pptv-1 respectively. The cold inlet sensitivity of iodide CIMS towards the detection of HO2 radicals, also via detection at the I-HO2- cluster ion, a potential HO2NO2 interference, was approximately 2.6 Hz pptv-1 with an instrumental detection limit (3σ) of 20 pptv. Ambient observations of HO2NO2 using I- CIMS were made during the 2013 and 2014 Uintah Basin Wintertime Ozone Study (UBWOS) are presented. Strong inversions leading to a build-up of many primary and secondary pollutants as well as low temperatures drove daytime HO2NO2 as high as 1.5 ppbv during the 2013 study. A comparison of HO2NO2 observations to mixing ratios predicted using a chemical box model describing an ozone formation event observed during the 2013 wintertime shows agreement in the daily maxima HO2NO2 mixing ratio, but a significant difference os several hours in the timing of the observed maxima. Observations of vertical gradients suggest that the ground snow surface potentially serves as both a net sink and source of HO2NO2 depending on time of day. Sensitivity tests using a chemical box model indicate that the lifetime of HO2NO2 with respect to deposition has a non-negligible impact on ozone production rates on the order of 10%.

  11. Microwave remote sensing of ionized air.

    SciTech Connect

    Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C.

    2011-07-01

    We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air.

  12. Measurements of HNO3 and N2O5 using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhang, R.; Fortner, E. C.; Volkamer, R. M.; Molina, L.; Aiken, A. C.; Jimenez, J. L.; Gaeggeler, K.; Dommen, J.; Dusanter, S.; Stevens, P. S.; Tie, X.

    2008-11-01

    An ion drift-chemical ionization mass spectrometer (ID-CIMS) was deployed in Mexico City between 7 and 31 March to measure gas-phase nitric acid (HNO3) and dinitrogen pentoxide (N2O5 during the Mexico City Metropolitan Area (MCMA)-2006 field campaign. The observation site was located at the Instituto Mexicano del Petrleo in the northern part of Mexico City urban area with major emissions of pollutants from residential, vehicular and industrial sources. Diurnally, HNO3 was less than 200 parts per trillion (ppt) during the night and early morning. The concentration of HNO3 increased steadily from around 09:00 a.m. central standard time (CST), reached a peak value of 0.5 to 3 parts per billion (ppb) in the early afternoon, and then declined sharply to less than half of the peak value near 05:00 p.m. CST. An inter-comparison between the ID-CIMS and an ion chromatograph/mass spectrometer (ICMS) showed a good agreement between the two HNO3 measurements (R2=0.75). The HNO3 mixing ratio was found to anti-correlate with submicron-sized aerosol nitrate, suggesting that the gas-particle partitioning process was a major factor in determining the gaseous HNO3 concentration. Losses by irreversible reactions with mineral dust and via dry deposition also could be important at this site. Most of the times during the MCMA 2006 field campaign, N2O5 was found to be below the detection limit (about 30 ppt for a 10 s integration time) of the ID-CIMS, because of high NO mixing ratio at the surface (>100 ppb) during the night. An exception occurred on 26 March 2006, when about 40 ppt N2O5 was observed during the late afternoon and early evening hours under cloudy conditions before the build-up of NO at the surface site. The results revealed that during the MCMA-2006 field campaign HNO3 was primarily produced from the reaction of OH with NO2 and regulated by gas/particle transfer and dry deposition. The production of HNO3 from N2O5 hydrolysis during the nighttime was small because of high NO and low O3 concentrations near the surface.

  13. Measurements of HNO3 and N2O5 using Ion drift - Chemical Ionization Mass Spectrometry during the MCMA - 2006 Campaign

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhang, R.; Fortner, E. C.; Molina, L.; Aiken, A. C.; Jimenez, J. L.; Gggeler, K.; Dommen, J.; Dusanter, S.; Stevens, P. S.; Tie, X.

    2008-03-01

    An ion drift - chemical ionization mass spectrometry (ID-CIMS) was deployed in Mexico City between 5 and 31 March to measure HNO3 and N2O5 during the 2006 Mexico City Metropolitan Area (MCMA) field campaign. The observation site, T0, was located at the Instituto Mexicano del Petrleo at the center of the Mexico City Basin with major emissions of pollutants from both domestic and industrial sources. Diurnally, HNO3 was less than 200 parts per trillion (ppt) during the night and in the early morning, increased steadily from around 09:00 a.m. central standard time (CST), reached a peak value of 0.5 to 3 parts per billion (ppb) in the early afternoon, and declined sharply to less than half of the peak value near 05:00 p.m. CST. An inter-comparison between the ID-CIMS and an ion chromatograph/mass spectrometer (ICMS) showed a good correlation in the HNO3 measurements (R2=0.75). The HNO3 mixing ratio was found to anti-correlate with aerosol nitrate, suggesting that the gaseous HNO3 concentration was controlled by the gas-particle partitioning process. During most times of the MCMA 2006 field campaign, N2O5 was found to be under the detection limit (about 20 ppt for a 10 s integration time) of the ID-CIMS, because of high NO mixing ratio (>100 ppb) during the night. With one exception on 26 March 2006, about 40 ppt N2O5 was observed during the late afternoon and early evening hours under a cloudy condition, before NO built up at the surface site. The results revealed that during the 2006 MCMA field campaign HNO3 was primarily produced by the reaction of OH with NO2 and regulated by gas/particle partitioning, and HNO3 production from N2O5 hydrolysis during the nighttime was small because of high NO and low O3 concentrations near the surface.

  14. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography-quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Cervera, M I; Portolés, T; López, F J; Beltrán, J; Hernández, F

    2014-11-01

    An atmospheric pressure chemical ionization source has been used to enhance the potential of gas chromatography coupled with quadrupole time-of-flight (QTOF) mass spectrometry (MS) for screening and quantification purposes in pesticide residue analysis. A screening method developed in our laboratory for around 130 pesticides has been applied to fruit and vegetable samples, including strawberries, oranges, apples, carrots, lettuces, courgettes, red peppers, and tomatoes. Samples were analyzed together with quality control samples (at 0.05 mg/kg) for each matrix and for matrix-matched calibration standards. The screening strategy consisted in first rapid searching and detection, and then a refined identification step using the QTOF capabilities (MS(E) and accurate mass). Identification was based on the presence of one characteristic m/z ion (Q) obtained with the low collision energy function and at least one fragment ion (q) obtained with the high collision energy function, both with mass errors of less than 5 ppm, and an ion intensity ratio (q/Q) within the tolerances permitted. Following this strategy, 15 of 130 pesticides were identified in the samples. Afterwards, the quantitation capabilities were tested by performing a quantitative validation for those pesticides detected in the samples. To this aim, five matrices were selected (orange, apple, tomato, lettuce, and carrot) and spiked at two concentrations (0.01 and 0.1 mg/kg), and quantification was done using matrix-matched calibration standards (relative responses versus triphenyl phosphate used as an internal standard). Acceptable average recoveries and relative standard deviations were obtained for many but not all pesticide-matrix combinations. These figures allowed us to perform a retrospective quantification of positives found in the screening without the need for additional analysis. Taking advantage of the accurate-mass full-spectrum data provided by QTOF MS, we searched for a higher number of compounds (up to 416 pesticides) in a second stage by performing extra data processing without any new sample injection. Several more pesticides were detected, confirmed, and/or tentatively identified when the reference standard was unavailable, illustrating in this way the potential of gas chromatography-QTOF MS to detect pesticides in addition to the ones targeted in quantitative analysis of pesticides in food matrices. PMID:24828980

  15. Identification and characterization of conjugated fatty acid methyl esters of mixed double bond geometry by acetonitrile chemical ionization tandem mass spectrometry.

    PubMed

    Michaud, Anthony L; Yurawecz, Martin P; Delmonte, Pierluigi; Corl, Benjamin A; Bauman, Dale E; Brenna, J Thomas

    2003-09-15

    Fatty acids with conjugated double bonds have attracted great interest because of their reported potent bioactivities. However, there are currently no rapid methods for their structural characterization. We report here a convenient mass spectrometry-based strategy to establish double bond geometry by analysis of collisional dissociation products of cis/trans and trans/cis conjugated linoleic acids (CLAs), as methyl esters, and to distinguish CLAs from homoallylic (methylene-interrupted) fatty acids in a single-stage mass spectrum. A series of CLA standards with double bond positions 6,8; 7,9; 8,10; 9,11; 10,12; 11,13; 12,14; and 13,15, with all four possible geometries (cis/trans; trans/cis; cis/cis; trans/trans) were analyzed. The m/z 54 (1-methyleneimino)-1-ethenylium ion, generated by self-reaction of acetonitrile under chemical ionization conditions, reacts with unsaturated fatty acids to yield an [M + 54]+ ion, which decomposes in the single-stage mass spectrum by loss of neutral methanol to form [M + 54 - 32]+. The ratio of [M + 54]+/[M + 54 - 32]+ in the single-stage mass spectra of CLA isomers is 1 order of magnitude less than for homoallylic diene FAME. Collisional dissociation of the [M + 54]+ ion yields two diagnostic ions that contain the alpha- and omega-carbon atoms and is characteristic of double bond position in the analyte. The fragment vinylic to the trans double bond is significantly more abundant than that for the cis double bond, revealing double bond geometry. The ratio of alpha to we diagnostic ion abundances is >4.8 for cis/trans isomers, <0.5 for trans/cis isomers, and 0.7-3.2 for cis/cis and trans/trans isomers. This method provides a rapid alternative to conventional conjugated fatty acid analysis and, together with complementary elution time information provided by gas chromatography, enables rapid, positive identification of double bond position and geometry in most CLA FAME. PMID:14674473

  16. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 2, chemical-mechanical degradation model

    NASA Astrophysics Data System (ADS)

    Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.

    2014-12-01

    Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 C-46 C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.

  17. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA); Hiskes, John R. (Livermore, CA)

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  18. Hyphenation of Thermal Analysis to Ultrahigh-Resolution Mass Spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry) Using Atmospheric Pressure Chemical Ionization For Studying Composition and Thermal Degradation of Complex Materials.

    PubMed

    Rüger, Christopher P; Miersch, Toni; Schwemer, Theo; Sklorz, Martin; Zimmermann, Ralf

    2015-07-01

    In this study, the hyphenation of a thermobalance to an ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (UHR FTICR MS) is presented. Atmospheric pressure chemical ionization (APCI) is used for efficient ionization. The evolved gas analysis (EGA), using high-resolution mass spectrometry allows the time-resolved molecular characterization of thermally induced processes in complex materials or mixtures, such as biomass or crude oil. The most crucial part of the setup is the hyphenation between the thermobalance and the APCI source. Evolved gases are forced to enter the atmospheric pressure ionization interface of the MS by applying a slight overpressure at the thermobalance side of the hyphenation. Using the FTICR exact mass data, detailed chemical information is gained by calculation of elemental compositions from the organic species, enabling a time and temperature resolved, highly selective detection of the evolved species. An additional selectivity is gained by the APCI ionization, which is particularly sensitive toward polar compounds. This selectivity on the one hand misses bulk components of petroleum samples such as alkanes and does not deliver a comprehensive view but on the other hand focuses particularly on typical evolved components from biomass samples. As proof of principle, the thermal behavior of different fossil fuels: heavy fuel oil, light fuel oil, and a crude oil, and different lignocellulosic biomass, namely, beech, birch, spruce, ash, oak, and pine as well as commercial available softwood and birch-bark pellets were investigated. The results clearly show the capability to distinguish between certain wood types through their molecular patterns and compound classes. Additionally, typical literature known pyrolysis biomass marker were confirmed by their elemental composition, such as coniferyl aldehyde (C10H10O3), sinapyl aldehyde (C11H12O4), retene (C18H18), and abietic acid (C20H30O2). PMID:26024433

  19. Single Photon K-2 and K-1K-1 Double Core Ionization in C2H2n (n=1-3), CO, and N2 as a Potential New Tool for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Penent, F.; Tashiro, M.; Grozdanov, T. P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I. H.; Kouchi, N.; Ito, K.

    2013-04-01

    We have observed single photon double K-shell photoionization in the C2H2n (n=1-3) hydrocarbon sequence and in N2 and CO, using synchrotron radiation and electron coincidence spectroscopy. Our previous observations of the K-2 process in these molecules are extended by the observations of a single photon double photoionization with one core hole created at each of the two neighboring atoms in the molecule (K-1K-1 process). In the C2H2n sequence, the spectroscopy of K-1K-1 states is much more sensitive to the bond length than conventional electron spectroscopy for chemical analysis spectroscopy based on single K-shell ionization. The cross section variation for single photon K-1K-1 double core ionization in the C2H2n sequence and in the isoelectronic C2H2, N2 and CO molecules validates a knock-out mechanism in which a primary ionized 1s photoelectron ejects another 1s electron of the neighbor atom. The specific Auger decay from such states is clearly observed in the CO case.

  20. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    SciTech Connect

    Yang, Rui Gudipati, Murthy S.

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.

  1. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: probing chemical composition of D2O ice beneath a H2O ice layer.

    PubMed

    Yang, Rui; Gudipati, Murthy S

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D2O ices by novel infrared (IR) laser ablation of a layered non-absorbing D2O ice (spectator) containing the analytes and an ablation-active IR-absorbing H2O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H2O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D2O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D2O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H2O molecules in the shockwave. We call this "shockwave mediated surface resonance enhanced subsurface ablation" technique as "two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers." This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes--ablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings. PMID:24628162

  2. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D2O ice beneath a H2O ice layer

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Gudipati, Murthy S.

    2014-03-01

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D2O ices by novel infrared (IR) laser ablation of a layered non-absorbing D2O ice (spectator) containing the analytes and an ablation-active IR-absorbing H2O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H2O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D2O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D2O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H2O molecules in the shockwave. We call this "shockwave mediated surface resonance enhanced subsurface ablation" technique as "two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers." This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processesablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.

  3. Profiling of acylcarnitines and sterols from dried blood or plasma spot by atmospheric pressure thermal desorption chemical ionization (APTDCI) tandem mass spectrometry.

    PubMed

    Corso, Gaetano; D'Apolito, Oceania; Garofalo, Daniela; Paglia, Giuseppe; Dello Russo, Antonio

    2011-11-01

    Free carnitine and acylcarnitines play an important role in the metabolism of fatty acids. Sterols are structural lipids found in the membranes of many eukaryotic cells, and they also have functional roles such as the regulation of membrane permeability and fluidity, activity of membrane-bound enzymes and signals transduction. Abnormal profiles of these compounds in biological fluids may be useful markers of metabolic changes. In this review, we describe the subset of the lipidome represented by acylcarnitines and sterols, and we summarize how these compounds have been analyzed in the past. Over the last 50years, lipid mass spectrometry (MS) has evolved to become one of the most useful techniques for metabolic analysis. Today, the introduction of new ambient ionization techniques coupled to MS (AMS), which are characterized by the direct desorbing/ionizing of molecules from solid samples, is generating new possibilities for in situ analysis. Recently, we developed an AMS approach called APTDCI to desorb/ionize using a heated gas flow and an electrical discharge to directly analyze sterols and indirectly investigate acylcarnitines in dried blood or plasma spot samples. Here, we also describe the APTDCI method and some of its clinical applications, and we underline the common complications and issues that remain to be resolved. PMID:21683155

  4. Average local ionization energy generalized to correlated wavefunctions

    SciTech Connect

    Ryabinkin, Ilya G.; Staroverov, Viktor N.

    2014-08-28

    The average local ionization energy function introduced by Politzer and co-workers [Can. J. Chem. 68, 1440 (1990)] as a descriptor of chemical reactivity has a limited utility because it is defined only for one-determinantal self-consistent-field methods such as the Hartree–Fock theory and the Kohn–Sham density-functional scheme. We reinterpret the negative of the average local ionization energy as the average total energy of an electron at a given point and, by rewriting this quantity in terms of reduced density matrices, arrive at its natural generalization to correlated wavefunctions. The generalized average local electron energy turns out to be the diagonal part of the coordinate representation of the generalized Fock operator divided by the electron density; it reduces to the original definition in terms of canonical orbitals and their eigenvalues for one-determinantal wavefunctions. The discussion is illustrated with calculations on selected atoms and molecules at various levels of theory.

  5. Average local ionization energy generalized to correlated wavefunctions

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Staroverov, Viktor N.

    2014-08-01

    The average local ionization energy function introduced by Politzer and co-workers [Can. J. Chem. 68, 1440 (1990)] as a descriptor of chemical reactivity has a limited utility because it is defined only for one-determinantal self-consistent-field methods such as the Hartree-Fock theory and the Kohn-Sham density-functional scheme. We reinterpret the negative of the average local ionization energy as the average total energy of an electron at a given point and, by rewriting this quantity in terms of reduced density matrices, arrive at its natural generalization to correlated wavefunctions. The generalized average local electron energy turns out to be the diagonal part of the coordinate representation of the generalized Fock operator divided by the electron density; it reduces to the original definition in terms of canonical orbitals and their eigenvalues for one-determinantal wavefunctions. The discussion is illustrated with calculations on selected atoms and molecules at various levels of theory.

  6. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  7. Thai Negation.

    ERIC Educational Resources Information Center

    Alam, Samsul

    A study analyzed the structure of negative sentences in the Thai language, based on data gathered from two native speakers. It is shown that the Thai negative marker generally occurs between the noun phrase (subject) and the verb phrase in simple active sentences and in passive sentences. Negation of noun phrases is also allowed in Thai, with a

  8. Three chamber negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  9. A compact high resolution electrospray ionization ion mobility spectrometer.

    PubMed

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75mm drift tube length and a drift voltage of 5kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100°C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. PMID:26838374

  10. Superior performance of asymmetric supercapacitor based on reduced graphene oxide-manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials

    NASA Astrophysics Data System (ADS)

    Jana, Milan; Kumar, J. Sharath; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2016-01-01

    A novel strategy to synthesize hierarchical rod like MnCO3 on the reduced graphene oxide (RGO) sheets by a facile and cost-effective hydrothermal method is demonstrated. The chelating action of citric acid facilitates the formation a complex intermediate of Mn2+ and citrate ions, which finally results a 3D MnCO3/RGO (MRGO) composite with high electrical conductivity (∼1056 S m-1), good surface area (59 m2 g-1) and high pore volume (0.3 cm3 g-1). The specific capacitance (SC) of the MRGO composite is ∼1120 F g-1 at a current density of 2 A g-1 in three electrode system. An asymmetric device has been designed with MRGO as positive and sono-chemically reduced RGO (SRGO) as negative electrode material. The asymmetric device (MRGO//SRGO) shows the SC of ∼318 F g-1 (at 2 A g-1) and energy density of ∼113 W h kg-1 (at 1600 W kg-1). The true energy density (1.7 W h kg-1) has been calculated considering the total weight of the device. The MRGO//SRGO device can power a wall clock for ∼13 min after full charging. The Nyquist plot of the asymmetric cell has been simulated with Z-View software to measure the solution resistance, charge-transfer resistance and Warburg elements.

  11. Ionizable-Substance Detector

    NASA Technical Reports Server (NTRS)

    Mcelroy, William; Smith, William

    1991-01-01

    Device that includes all conventional components of fuel cell and electrolyzer continuously monitors concentration of ionizable substance in stream of fluid without significantly disrupting flow or chemical composition. Among substances monitored are hydrogen, sodium, fluorine, chlorine, oxygen, and bromine. Useful in early detection of fluctuations, malfunctions, or hazards. Particularly useful for detecting hydrogen in stream of water in closed system containing oxygen, wherein concentration of hydrogen must not exceed given maximum, lest hydrogen react explosively with oxygen. Also used to monitor exhaust stream to comply with environmental-protection requirements.

  12. Real-time air monitoring of mustard gas and Lewisite 1 by detecting their in-line reaction products by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow ion introduction.

    PubMed

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2015-01-20

    A new method enabling sensitive real-time air monitoring of highly reactive chemical warfare agents, namely, mustard gas (HD) and Lewisite 1 (L1), by detecting ions of their in-line reaction products instead of intact agents, is proposed. The method is based on corona discharge-initiated atmospheric pressure chemical ionization coupled with ion trap tandem mass spectrometry (MS(n)) via counterflow ion introduction. Therefore, it allows for highly sensitive and specific real-time detection of a broad range of airborne compounds. In-line chemical reactions, ionization reactions, and ion fragmentations of these agents were investigated. Mustard gas is oxygenated in small quantity by reactive oxygen species generated in the corona discharge. With increasing air humidity, the MS(2) signal intensity of protonated molecules of mono-oxygenated HD decreases but exceeds that of dominantly existing intact HD. This result can be explained in view of proton affinity. Lewisite 1 is hydrolyzed and oxidized. As the humidity increases from zero, the signal of the final product, namely, didechlorinated, dihydroxylated, and mono-oxygenated L1, quickly increases and reaches a plateau, giving the highest MS(2) and MS(3) signals among those of L1 and its reaction products. The addition of minimal moisture gives the highest signal intensity, even under low humidity. The method was demonstrated to provide sufficient analytical performance to meet the requirements concerning hygienic management and counter-terrorism. It will be the first practical method, in view of sensitivity and specificity, for real-time air monitoring of HD and L1 without sample pretreatment. PMID:25553788

  13. On ionization and luminescence in flames

    NASA Technical Reports Server (NTRS)

    Sanger, E; Goercke, P; BREDT I

    1951-01-01

    An explanation based upon reaction kinetics is presented to account for the deviation of measured ionization levels obtained from reflection experiments from the values computed assuming chemical equilibrium. The heat transfer to the unburned fuel is also considered.

  14. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  15. Determination of organophosphate flame retardants and plasticizers in lipid-rich matrices using dispersive solid-phase extraction as a sample cleanup step and ultra-high performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Chu, Shaogang; Letcher, Robert J

    2015-07-23

    A fast, robust and highly sensitive analysis method for determination of trace levels of organophosphate ester (OPE) flame retardants and plasticizers in lipid-rich samples was presently developed, and based on ultra-high performance liquid chromatography-tandem mass spectrometry coupled to a positive atmospheric pressure chemical ionization source (UHPLC-MS/MS-APCI(+)). The target OPEs in the sample were extracted from the biota samples, such as egg and liver, by ultrasonic extraction, and cleaned up further by dispersive solid phase extraction (d-ESP). As a result, background contamination was largely reduced. Different dispersive ESP sorbents were tested and primary secondary amine (PSA) bonded silica sorbents showed the best recoveries for these target OPEs. The recoveries obtained were in the range 54-113% (RSD<17%), with method limits of quantification (MLOQs) ranging between 0.06 and 0.29ng/g in egg, and 0.05 and 0.50ng/g w.w. in liver sample. The matrix effects (MEs) associated with using APCI(+) and ESI(+) sources were investigated. APCI(+) showed much less ion suppression than ESI(+) for the determination of these OPEs. For egg and liver samples, the APCI(+) ME values ranged from 40% to 94%, while ESI(+) ME values ranged from 0% to 36%. Although APCI(+) was used for the determination of OPEs, the ionization mechanism might mainly be a thermospray ionization process. This UHPLC-MS/MS-APCI(+) method showed good response linearity for calibration (R2>0.99). The proposed method was applied to real environmental bird egg and fish samples, where several OPE were quantifiable and different OPE patterns was observed between samples. PMID:26231904

  16. Highly resolved online organic-chemical speciation of evolved gases from thermal analysis devices by cryogenically modulated fast gas chromatography coupled to single photon ionization mass spectrometry.

    PubMed

    Saraji-Bozorgzad, Mohammad R; Eschner, Markus; Groeger, Thomas M; Streibel, Thorsten; Geissler, Robert; Kaisersberger, Erwin; Denner, Thomas; Zimmermann, Ralf

    2010-12-01

    Multi-dimensional analysis (MDA) in analytical chemistry is often applied to improve the selectivity of an analytical device and, therefore, to achieve a better overview of a sample composition. Recently, the hyphenation of thermogravimetry with single photo ionization mass spectrometry (TG-SPIMS) using an electron beam pumped excimer lamp (EBEL) for VUV radiation was applied. The concept of MDA has been realized by upgrading the TG-SPIMS system with a quasi comprehensive chromatographic separation step before the soft ionization (TG-GCxSPIMS). The system was characterized by the thermal analysis of diesel fuel, which has often been investigated by the GCxGC-community and is therefore a well-known sample material in MDA. Data from this measurement are used to explain the three-dimensional data structure and the advantages of the online TG-GCxSPIMS as compared to TG-SPIMS. Subsequently, the thermal decomposition behavior of a polymer, acrylonitrile-butadiene-styrene (ABS), is investigated. TG-GCxSPIMS provides a two-dimensional analysis of the evolved gaseous products. TG relevant data are obtained as well as an improved resolution power to separate isobaric molecular structures without losing any fraction of the samples, as is often the case in heart cutting approaches. Additionally, this solution is not associated with any extension of the measurement time. The assignment of the substance pattern to distinct species is improved as compared to solely using mass spectrometry without a preceding separation step. Furthermore, hitherto undetected compounds have been found in the evolved gases from the thermal degradation of ABS. Finally, a first estimation of the limit of detection has been carried out. This results in a significant decrease of the LOD in case of TG-GCxSPIMS (500 ppt for toluene) as compared to 30 ppb, which could be reached with TG-SPIMS. PMID:21043436

  17. Structure and energetics of the anisole-Ar(n) (n = 1, 2, 3) complexes: high-resolution resonant two-photon and threshold ionization experiments, and quantum chemical calculations.

    PubMed

    Mazzoni, Federico; Becucci, Maurizio; Řezáč, Jan; Nachtigallová, Dana; Michels, François; Hobza, Pavel; Müller-Dethlefs, Klaus

    2015-05-21

    We present a concerted experimental and theoretical study of the anisole···Arn complexes with n = 1-3. Experimentally, anisole was seeded into a pulsed supersonic argon jet producing a molecular beam. Resonant two-photon, two-colour ionisation (R2PI) spectra of anisole···Arn complexes with n = 1-3 were obtained. Also, the photodissociation of the (1 : 1) cluster was probed synchronously by - Zero Electron Kinetic Energy Photoelectron Spectroscopy (ZEKE) - and - Mass Resolved Threshold Ionization (MATI) - measuring electrons and ions obtained from pulsed field ionization of high-n Rydberg states upon two-colour laser excitation. The experimental results are compared to quantum chemical calculations at the DFT-D3 (B-LYP/def2-QZVP level with Grimme's D3 dispersion correction) level. Structure and energetics due to microsolvation effects by the direct interaction of the argon atoms with the π-system were evaluated. The experimental binding energy of the 1 : 1 cluster is finally compared to computational results; in the S0 ground state the theoretical value based on the "gold standard" CCSD(T)/CBS calculations lies within the error bars of the observed value. In the excited state the agreement between theory and experiment is not so spectacular but relative values of observed dissociation energies (D0) in the ground and excited states and of calculated ones agree well. PMID:25899323

  18. Schinus terebinthifolius scale-up countercurrent chromatography (Part I): High performance countercurrent chromatography fractionation of triterpene acids with off-line detection using atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Vieira, Mariana Neves; Costa, Fernanda das Neves; Leito, Gilda Guimares; Garrard, Ian; Hewitson, Peter; Ignatova, Svetlana; Winterhalter, Peter; Jerz, Gerold

    2015-04-10

    'Countercurrent chromatography' (CCC) is an ideal technique for the recovery, purification and isolation of bioactive natural products, due to the liquid nature of the stationary phase, process predictability and the possibility of scale-up from analytical to preparative scale. In this work, a method developed for the fractionation of Schinus terebinthifolius Raddi berries dichloromethane extract was thoroughly optimized to achieve maximal throughput with minimal solvent and time consumption per gram of processed crude extract, using analytical, semi-preparative and preparative 'high performance countercurrent chromatography' (HPCCC) instruments. The method using the biphasic solvent system composed of n-heptane-ethyl acetate-methanol-water (6:1:6:1, v/v/v/v) was volumetrically scaled up to increase sample throughput up to 120 times, while maintaining separation efficiency and time. As a fast and specific detection alternative, the fractions collected from the CCC-separations were injected to an 'atmospheric pressure chemical ionization mass-spectrometer' (APCI-MS/MS) and reconstituted molecular weight MS-chromatograms of the APCI-ionizable compounds from S. terebinthifolius were obtained. This procedure led to the direct isolation of tirucallane type triterpenes such as masticadienonic and 3?-masticadienolic acids. Also oleanonic and moronic acids have been identified for the first time in the species. In summary, this approach can be used for other CCC scale-up processes, enabling MS-target-guided isolation procedures. PMID:25757818

  19. Chemical Profiling of Re-Du-Ning Injection by Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Quadrupole Time-of-Flight Mass Spectrometry through the Screening of Diagnostic Ions in MSE Mode

    PubMed Central

    Wang, Zhenzhong; Geng, Jianliang; Dai, Yi; Xiao, Wei; Yao, Xinsheng

    2015-01-01

    The broad applications and mechanism explorations of traditional Chinese medicine prescriptions (TCMPs) require a clear understanding of TCMP chemical constituents. In the present study, we describe an efficient and universally applicable analytical approach based on ultra-performance liquid chromatography coupled to electrospray ionization tandem quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q/TOF-MS) with the MSE (E denotes collision energy) data acquisition mode, which allowed the rapid separation and reliable determination of TCMP chemical constituents. By monitoring diagnostic ions in the high energy function of MSE, target peaks of analogous compounds in TCMPs could be rapidly screened and identified. Re-Du-Ning injection (RDN), a eutherapeutic traditional Chinese medicine injection (TCMI) that has been widely used to reduce fever caused by viral infections in clinical practice, was studied as an example. In total, 90 compounds, including five new iridoids and one new sesquiterpene, were identified or tentatively characterized by accurate mass measurements within 5 ppm error. This analysis was accompanied by MS fragmentation and reference standard comparison analyses. Furthermore, the herbal sources of these compounds were unambiguously confirmed by comparing the extracted ion chromatograms (EICs) of RDN and ingredient herbal extracts. Our work provides a certain foundation for further studies of RDN. Moreover, the analytical approach developed herein has proven to be generally applicable for profiling the chemical constituents in TCMPs and other complicated mixtures. PMID:25875968

  20. Electrospray ionization mass spectrometry fingerprinting of beer.

    PubMed

    Arajo, Alexssander S; da Rocha, Lilian L; Tomazela, Daniela M; Sawaya, Alexandra C H F; Almeida, Reinaldo R; Catharino, Rodrigo R; Eberlin, Marcos N

    2005-06-01

    After just simple degassing, dilution, pH adjustment and direct flow injection, characteristic fingerprint spectra of beer samples have been obtained by fast (few seconds) electrospray ionization mass spectrometry (ESI-MS) analysis in both the negative and positive ion modes. A total of 29 samples belonging to the two main beer types (lagers and ales) and several beer subtypes from USA, Europe and Brazil could be clearly divided into three groups both by simple visual inspection of their ESI(+)-MS and ESI(-)-MS fingerprints as well as by chemometric treatment of the MS data. Diagnostic ions with contrasting relative abundances in both the positive and negative ion modes allow classification of beers into three major types: P = pale (light) colored (pilsener, pale ale), D = dark colored (bock, stout, porter, mild ale) and M = malt beer. For M beers, samples of a dark and artificially sweetened caramel beer produced in Brazil and known as Malzbiers were used. ESI-MS/MS on these diagnostic beer cations and anions, most of which are characterized as arising from ionization of simple sugars, oligosaccharides, and iso-alpha-acids, yield characteristic tandem mass spectra adding a second and optional MS dimension for improved selectivity for beer characterization by fingerprinting. Direct ESI-MS or ESI-MS/MS analysis can therefore provide fast and reliable fingerprinting characterization of beers, distinguishing between types with different chemical compositions. Other unusual polar components, impurities or additives, as well as fermentation defects or degradation products, could eventually be detected, making the technique promising for beer quality control. PMID:15912237

  1. Magnetic metal-organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Bian, Wei; Zheng, Jiangnan; Cai, Zongwei

    2015-05-25

    Zeolitic imidazolate framework-8 coated magnetic nanocomposites (Fe3O4@ZIF-8 MNCs) served as an absorbent and a matrix for negative-ion MALDI-TOF MS. The host-guest property and interference-free background made them an ideal dual platform for the sensitive analysis of small molecules. PMID:25915018

  2. Evaluation and validation of housekeeping genes in response to ionizing radiation and chemical exposure for normalizing RNA expression in real-time PCR.

    PubMed

    Banda, Malathi; Bommineni, Aryamani; Thomas, Robert A; Luckinbill, Leo S; Tucker, James D

    2008-01-01

    Gene expression changes are used with increasing frequency to assess the effects of exposure to environmental agents. Housekeeping (Hk) genes are essential in these analyses as internal controls for normalizing expression levels evaluated with Real-Time PCR (RT-PCR). Ideal Hk genes are constitutively expressed, do not respond to external stimuli and exhibit little or no sample-to-sample or run-to-run variation. Previous studies indicate that some commonly used Hk genes including glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin have differential expression in various cell lines. Here we examine the expression of 11 Hk genes in four normal human lymphoblastoid cell lines and one T-cell leukemia (Jurkat) cell line following exposure to graded doses of ionizing radiation or to varying ratio concentrations of phytohemagglutinin (PHA) and phorbol myristate acetate (PMA). PHA and PMA are known to have synergistic effects on the expression of some genes and have very different effects from those of radiation. There has been no systematic study performed to ascertain the best control genes for radiation and/or PHA/PMA exposures in lymphoblastoid cells. Using a two-step reverse-transcriptase RT-PCR protocol we show that following radiation doses ranging from 0 to 400 cGy, 18S rRNA, acidic ribosomal protein, beta-actin, cyclophilin, GAPDH, phosphoglycerokinase, beta-2 microglobulin (B2M), beta-glucuronidase, hypoxanthine phosphoribosyltransferase and transferrin receptor showed no significant variation in expression in normal lymphoblastoid cells. In contrast, only 18S rRNA levels were unchanged in Jurkat cells. After PHA/PMA treatment of the same normal cell lines, B2M showed no significant variation and 18S rRNA, GAPDH and transcription binding protein (TBP) were minimally responsive, whereas in Jurkat cells all these genes were unresponsive. While our results suggest that the utility of a particular Hk gene should be determined for each experimental condition, 18S rRNA and B2M appear to be excellent candidates for use as internal controls in RT-PCR in human lymphoblastoid cells because they have the most constant levels of expression across cell lines following exposure to ionizing radiation as well as to PHA/PMA. PMID:17904413

  3. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  4. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-01

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction. PMID:25188920

  5. SIMULTANEOUS QUANTIFICATION OF JASMONIC ACID AND SALICYLIC ACID IN PLANTS BY VAPOR PHASE EXTRACTION AND GAS CHROMATOGRAPHY-CHEMICAL IONIZATION-MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid and salicylic acid represent important signaling compounds in plant defensive responses against other organisms. Here, we present a new method for the easy, sensitive and reproducible quantification of both compounds by vapor phase extraction and gas chromatography-positive ion chemic...

  6. Bulk Velocities, Chemical Composition, and Ionization Structure of the X-Ray Shocks in WR 140 near Periastron as Revealed by the Chandra Gratings

    NASA Astrophysics Data System (ADS)

    Pollock, A. M. T.; Corcoran, Michael F.; Stevens, Ian R.; Williams, P. M.

    2005-08-01

    The Wolf-Rayet WC7+O4-5 binary WR 140 went through the periastron passage of its 8 yr eccentric binary orbit in early 2001 as the two stars made their closest approach. Both stars have powerful supersonic stellar winds that crash into each other between the stars to produce X-rays. Chandra grating observations were made when the X-rays were at their peak, making WR 140 the brightest hot-star X-ray source in the sky and giving the opportunity to study the velocity profiles of lines, all of which were resolved and blueshifted before periastron. In the general context of shock physics, the measurements constrain the flow of hot gas and where different ions were made. The brightness of lines relative to the strong continuum in conjunction with plasma models gives interim abundance estimates for eight different elements in WC-type material including an Ne/S ratio in good agreement with earlier long-wavelength measurements. The lower velocity widths of cool ions imply a plasma that was not in equilibrium, probably due to the collisionless nature of the shock transitions and the slow character of both the postshock energy exchange between ions and electrons and subsequent ionization. Electron heat conduction into fast-moving preshock gas was absent, probably suppressed by the magnetic field involved in WR 140's synchrotron emission. After periastron, the spectrum was weaker due mainly to absorption by cool Wolf-Rayet star material.

  7. Negative ion spectrometry for detecting nitrated explosives

    NASA Technical Reports Server (NTRS)

    Boettger, H. G.; Yinon, J.

    1975-01-01

    Ionization procedure is modified to produce mainly negative ions by electron capture. Peaks of negative ions are monitored conventionally. Nitrated organic materials could be identified directly from sample sniff inlet stream by suitably modified mass spectrometer because of unique electronegativity which nitro group imparts to organic material.

  8. Direct High-Precision Measurements of the (87)Sr/(86)Sr Isotope Ratio in Natural Water without Chemical Separation Using Thermal Ionization Mass Spectrometry Equipped with 10(12) Ω Resistors.

    PubMed

    Li, Chao-Feng; Guo, Jing-Hui; Chu, Zhu-Yin; Feng, Lian-Jun; Wang, Xuan-Ce

    2015-07-21

    Thermal ionization mass spectrometry (TIMS) allows excellent precision for determining Sr isotope ratios in natural water samples. Traditionally, a chemical separation procedure using cation exchange resin has been employed to obtain a high purity Sr fraction from natural water, which makes sample preparation time-consuming. In this study, we present a rapid and precise method for the direct determination of the Sr isotope ratio of natural water using TIMS equipped with amplifiers with two 10(12) Ω resistors. To eliminate the (87)Rb isobaric interference, Re ribbons are used as filaments, providing a significant advantage over W ribbons in the inhibition of Rb(+) emission, based on systematically examining a series of NIST SRM987 standard doping with various amounts of Rb using Re and W ribbons. To validate the applicability of our method, twenty-two natural water samples, including different water types (rain, snow, river, lake and drinking water), that show a large range in Sr content variations (2.54-922.8 ppb), were collected and analyzed from North and South China. Analytical results show good precision (0.003-0.005%, 2 RSE) and the method was further validated by comparative analysis of the same water with and without chemical separation. The method is simple and rapid, eliminates sample preparation time, and prevents potential contamination during complicated sample-preparation procedures. Therefore, a high sample throughput inherent to the TIMS can be fully utilized. PMID:26105121

  9. Recent advancements in sputter-type heavy negative ion sources

    SciTech Connect

    Alton, G.D.

    1989-01-01

    Significant advancement have been made in sputter-type negative ion sources which utilize direct surface ionization, or a plasma to form the positive ion beam used to effect sputtering of samples containing the material of interest. Typically, such sources can be used to generate usable beam intensities of a few ..mu..A to several mA from all chemically active elements, depending on the particular source and the electron affinity of the element in question. The presentation will include an introduction to the fundamental processes underlying negative ion formation by sputtering from a low work function surface and several sources will be described which reflect the progress made in this technology. 21 refs., 9 figs., 1 tab.

  10. Design, construction and development of a laser desorption ionization/laser ablation time-of-flight mass spectrometer for chemical analysis with and without surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Owega, Sandy

    Theoretical modeling of the Wiley-McLaren double-focusing field system (two acceleration fields) provided the critical dimensions for the design and construction of a time-of-flight mass spectrometer (TOFMS) for this research. For optimum resolution, the distances within the acceleration fields, s (0.26 cm) and d (2.60 cm) were determined for a drift tube length D of 42.2 cm. Arcing occurred frequently using our laser desorption ionization (LDI)/laser ablation (LA) technique; five different configurations were designed and evaluated. The third configuration was determined to be the most useful for LDI/LA-TOFMS experiments. The LDI/LA technique was tested for molecular mass and structural reactivity analysis. This LDI/LA technique was successfully applied to dithizone, 1,4,8,11- tetraazocyclotetradecane, dicyclohexyl-18-crown-6 ether, [5]-helicene dendrimer, gramicidin S, substance P, mellitin, PAHs, fullerenes/derivatives, thia fatty esters/acids, and a variety of related compounds. One advantage of the present LDI/LA technique, over conventional ones is that the sample does not need to have appreciable spectral absorption at the laser wavelength. The physical process that occurred during our LDI/LA technique was elucidated with internal standardization and ion association using gramicidin S. The LDI/LA mechanism generating the [M + Ag]+ cation was thought to be electronic-excitation (at low laser fluences) that evolved into a thermal one (at high laser fluences), depending on the silver film thickness. The five configurations were also evaluated for incorporating surface plasmon resonance (SPR) into our LDI/LA technique to ultimately construct a novel SPR- LDI/LA-TOFMS instrument. They indicated that silver surface plasmons have a SPR angle ?r of 44 and an energy of 3.7 eV for a thin silver film thickness of 40 nm. The SPR-LDI/LA technique demonstrated that a lower minimum laser fluence for the production of the silver cluster cations [Agn]+ was required at ? r. SPR was thus confirmed to assist in the electronic-excitation desorption during LDI/LA of a thin silver film with or without deposited samples. The capability to perform SPR- LDI/LA on a molecular weight of 1141 Da from a thin silver film represents a new milestone beyond previous achievements. (Abstract shortened by UMI.)

  11. Novel analytical methods for flame retardants and plasticizers based on gas chromatography, comprehensive two-dimensional gas chromatography, and direct probe coupled to atmospheric pressure chemical ionization-high resolution time-of-flight-mass spectrometry.

    PubMed

    Ballesteros-Gmez, Ana; de Boer, Jacob; Leonards, Pim E G

    2013-10-15

    In this study, we assess the applicability of different analytical techniques, namely, direct probe (DP), gas chromatography (GC), and comprehensive two-dimensional gas chromatography (GC GC) coupled to atmospheric pressure chemical ionization (APCI) with a high resolution (HR)-time-of-flight (TOF)-mass spectrometry (MS) for the analysis of flame retardants and plasticizers in electronic waste and car interiors. APCI-HRTOFMS is a combination scarcely exploited yet with GC or with a direct probe for screening purposes and to the best of our knowledge, never with GC GC to provide comprehensive information. Because of the increasing number of flame retardants and questions about their environmental fate, there is a need for the development of wider target and untargeted screening techniques to assess human exposure to these compounds. With the use of the APCI source, we took the advantage of using a soft ionization technique that provides mainly molecular ions, in addition to the accuracy of HRMS for identification. The direct probe provided a very easy and inexpensive method for the identification of flame retardants without any sample preparation. This technique seems extremely useful for the screening of solid materials such as electrical devices, electronics and other waste. GC-APCI-HRTOF-MS appeared to be more sensitive compared to liquid chromatography (LC)-APCI/atmospheric pressure photoionization (APPI)-HRTOF-MS for a wider range of flame retardants with absolute detection limits in the range of 0.5-25 pg. A variety of tri- to decabromodiphenyl ethers, phosphorus flame retardants and new flame retardants were found in the samples at levels from microgram per gram to milligram per gram levels. PMID:24016281

  12. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  13. Microwave-induced plasma desorption/ionization source for ambient mass spectrometry.

    PubMed

    Zhan, Xuefang; Zhao, Zhongjun; Yuan, Xin; Wang, Qihui; Li, Dandan; Xie, Hong; Li, Xuemei; Zhou, Meigui; Duan, Yixiang

    2013-05-01

    A new ionization source based on microwave induced plasma was developed for ambient desorption/ionization. The microwave-induced plasma desorption/ionization source (MIPDI) was composed of a copper Surfatron microwave cavity where a fused-silica tube was centered axially. Stable nonlocal thermodynamic equilibrium plasma was generated in the quartz discharge tube when a microwave at a frequency of 2450 MHz was coupled to the microwave cavity. Analytes deposited on the surface of poly(tetrafluoroethylene) (PTFE) or quartz slide after hydrofluoric acid (HF) etching were desorbed and ionized by the plasma. The performance of the MIPDI technique was validated by the analysis of a variety of chemical substances, polymer compounds, and pharmaceutical drugs using argon or helium as the discharge gas. Protonated [M + H](+) or deprotonated [M - H](-) ions were observed in the positive or negative mode. MIPDI was also used for the analysis of compounds in a complex matrix without any sample preparation. MIPDI was also capable of analyzing liquid samples. The signal-to-noise ratio was 463 in the analysis of 9.2 ng of phenylalanine, and the limit of detection was 60 pg for phenylalanine. MIPDI could desorb and ionize analytes with a molecular weight of up to 1200, which was demonstrated by the analysis of polyethylene glycol 800 (PEG800). MIPDI has advantages of simple instrumentation, relatively high temperature, stability, and reproducibility. PMID:23534913

  14. Analysis of secondary organic aerosol using a Micro-Orifice Volatilization Impactor (MOVI) coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS)

    NASA Astrophysics Data System (ADS)

    Brueggemann, M.; Vogel, A.; Hoffmann, T.

    2012-04-01

    We describe the development and characterization of a Micro-Orifice Volatilization Impactor (MOVI) which is coupled to an ion trap mass spectrometer with atmospheric pressure chemical ionization (APCI-IT/MS), and its application in laboratory and field measurements. The MOVI-APCI-IT/MS allows the quantification of organic acids and other oxidation products of volatile organic compounds (VOCs) in secondary organic aerosols (SOA) on a semi-continuous basis. Furthermore, the vapor pressure and saturation concentration of the particle components can be estimated. The MOVI was first described in 2010 by Yatavelli and Thornton (Yatavelli and Thornton, 2010). It is a single stage, multi-nozzle impactor with 100 nozzles, each having a diameter of 150 ?m. At a flow-rate of 10 Lmin-1 air is drawn through the MOVI and particles are collected on a deposition plate. The cut-point diameter (d50, diameter of 50% collection efficiency) is at 130 nm. A low pressure-drop of only 5.3% of atmospheric pressure behind the nozzles allows collecting not only low-volatile but even semi-volatile compounds, which are an important part of SOA. After collecting particles hydrocarbon-free synthetic air is led over the collection surface into the APCI-IT/MS and the collection surface is heated up to 120 C in less than 200 s, volatilizing the sampled SOA. The vaporized compounds are transferred into the ion source and subsequently analyzed by mass spectrometry. Due to the soft ionization at atmospheric pressure the obtained mass spectra show only low fragmentations and can easily be interpreted. In laboratory experiments the MOVI-APCI-IT/MS was used for the chemical analysis of SOA generated from ?-pinene-ozonolysis in a smog chamber. The limit of detection was found at 7.3 ng for pinic acid. The vapor pressure log p0 and the saturation concentration C25* for pinic acid were calculated from the desorption temperature using the method presented by Faulhaber et al. (Faulhaber et al., 2009). Furthermore, in summer 2011 the MOVI-APCI-IT/MS was successfully tested in field measurements during the "Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Biogenic Aerosol Study" (BEACHON-RoMBAS) in a ponderosa pine woodland in the southern Rocky Mountains of North America. The study was focused on understanding the formation, growth and properties of biogenic organic aerosol. We measured the composition of the aerosol particles and determined the concentration of pinic acid and isobaric substances. By means of intercomparison studies with other instruments like an aerosol mass spectrometer (AMS) and a MOVI coupled to a chemical ionization mass spectrometer (CIMS) we could validate our measurements.

  15. Simultaneous measurements of peroxyacetyl nitrate and peroxyacetic acid by Chemical Ionization Mass Spectrometry (CIMS): contrasting boreal forest with rural continental Europe

    NASA Astrophysics Data System (ADS)

    Phillips, G. J.; Pouvesle, N.; Thieser, J.; Axinte, R.; Schuster, G.; Fischer, H.; Williams, J.; Crowley, J. N.

    2012-04-01

    The peroxyacetyl radical (PA) is formed via the photochemical oxidation of a number of different VOCs. PA radical acts as the source of peroxyacetyl nitrate (PAN), via the reaction with NO2, and peroxyacetic acid (PAA), via reaction with the HO2 radical. PAN can act as a temporary reservoir of both PA radical and NO2 transporting NOx far from source regions, whereas PAA lifetimes, dominated by deposition, are shorter. We present simultaneous measurements of PAN and PAA in different environments and study the chemistry of the PA radical in contrasting chemical and meteorological conditions. PAN and PAA were measured simultaneously using CIMS during two field intensives with contrasting meteorological and chemical conditions. The HUMPPA-COPEC 2010 campaign took place during July-August 2010 at the SMEAR II field site, located in boreal forest near Hyytiälä, Finland [1]. The campaign was characterised by above average temperatures with large emissions of BVOCs from the boreal forest. The Particles and Radicals: Diel observations of the impact of urban and biogenic Emissions (PARADE) campaign took place during August-September 2011 at the mountaintop fieldsite on the Kleiner Feldberg, Hessen, Germany, approximately 10 km north of Frankfurt. Temperatures were markedly lower during PARADE compared to HUMPPA and the site had much lower impact from VOCs and a much larger impact from anthropogenic emissions. PAA was found to be a large proportion of ΣPA(PAA+PAN) during the HUMPPA campaign, approaching 50% on occasion. In addition, PAA was found to make up a significant fraction of the total organic peroxides. In contrast, ΣPA(PAA+PAN)during PARADE was dominated by PAN reflecting the lower temperatures and NOx levels. [1] J. Williams et al, 2011, Atmos. Chem. Phys., 11, 10599-10618

  16. Ultrastructural, physico-chemical and conformational study of the interactions of gentamicin and bis(beta-diethylaminoethylether) hexestrol with negatively-charged phospholipid layers.

    PubMed

    Mingeot-Leclercq, M P; Schanck, A; Ronveaux-Dupal, M F; Deleers, M; Brasseur, R; Ruysschaert, J M; Laurent, G; Tulkens, P M

    1989-03-01

    Aminoglycoside antibiotics such as gentamicin, which are fully hydrophilic, and cationic amphiphilic drugs such as bis(beta-diethylaminoethylether)hexestrol (DEH), are both known to inhibit lysosomal phospholipases and induce phospholipidosis. This enzymatic inhibition is probably related to the neutralization of the surface negative charges on which the lysosomal phospholipases A1 and A2 are dependent to express fully their activities (Mingeot-Leclerq et al., Biochem Pharmacol 37: 591-599, 1988). Using negatively charged liposomes, we show by 31P NMR spectroscopy that both gentamicin and DEH cause a significant restriction in the phosphate head mobility and, in sonicated vesicles, the appearance of larger bilayer structures. Both DEH and gentamicin increased the apparent size of sonicated negatively charged liposomes (but not of neutral liposomes) as measured by quasi-elastic light scattering spectroscopy. Examination of replicas from freeze-etched samples, however, revealed that gentamicin caused aggregation of liposomes, whereas DEH induced their fusion and the formation of intramembranous roundly shaped structures. Only DEH caused a significant decrease of the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, a fluorescent lipid-soluble probe. In addition, DEH, but not gentamicin, interfered with the bilayer to hexagonal phase transition occurring in dioleoyl- and dielaidoylphosphatidylethanolamine liposomes upon warming, and caused the appearance of an isotropic signal suggestive of the formation of inverted micelles. In computer-aided conformational analysis of the molecules at a simulated air-water interface, gentamicin was shown to display a largely-open crescent shape. When surrounded by phosphatidylinositol molecules, it remained as such at the interface which it locally mis-shaped, establishing close contact with the negatively charged phospho groups. In contrast, DEH could be oriented perpendicularly to the interface, with its two cationic groups associated with the phospho groups, and its phenyl- and diethylethandiyl moieties deeply inserted between and interacting with the aliphatic chains. Thus, although both agents cause lysosomal phospholipases inhibition, the differences in their interactions with negatively-charged bilayers is likely to result in a different organization of the phospholipids accumulated in vivo, which could lead to different toxicities. PMID:2539158

  17. High-sensitivity elemental ionization for quantitative detection of halogenated compounds.

    PubMed

    Wang, Haopeng; Minardi, Carina S; Badiei, Hamid; Kahen, Kaveh; Jorabchi, Kaveh

    2015-12-21

    The rising importance of organohalogens in environmental, pharmaceutical, and biological applications has drawn attention to analysis of these compounds in recent years. Elemental mass spectrometry (MS) is particularly advantageous in this regard because of its ability to quantify without compound-specific standards. However, low sensitivity of conventional elemental MS for halogens has hampered applications of this powerful method in organohalogen analyses. To this end, we have developed a high-sensitivity elemental ion source compatible with widely available atmospheric-sampling mass spectrometers. We utilize a helium-oxygen plasma for atomization followed by negative ion formation in plasma afterglow, a configuration termed as plasma-assisted reaction chemical ionization (PARCI). The effect of oxygen on in-plasma and afterglow reactions is investigated, leading to fundamental understanding of ion generation processes as well as optimized operating conditions. Coupled to a gas chromatograph, PARCI shows constant ionization efficiency for F, Cl, and Br regardless of the chemical structure of the compounds. Negative ionization in the afterglow improves halide ion formation efficiency and eliminates isobaric interferences, offering sub-picogram elemental detection for F, Cl, and Br using low-resolution MS. Notably, the detection limit for F is about one order of magnitude better than other elemental MS techniques. The high sensitivity and facile adoptability of PARCI pave the way for combined elemental-molecular characterization, a comprehensive analytical scheme for rapid identification and quantification of organohalogens. PMID:26549767

  18. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  19. Lymphoblastoid lines and skin fibroblasts from patients with tuberous sclerosis are abnormally sensitive to ionizing radiation and to a radiomimetic chemical

    SciTech Connect

    Scudiero, D.A.; Moshell, A.N.; Scarpinato, R.G.; Meyer, S.A.; Clatterbuck, B.E.; Tarone, R.E.; Robbins, J.H.

    1982-03-01

    Lymphoblastoid lines, derived by transforming peripheral blood lymphocytes with Epstein-Barr virus, and skin fibroblast lines were established from two patients with tuberous sclerosis. The number of viable lymphoblastoid cells was determined by their ability to exclude the vital dye trypan blue after their irradiation with x-rays or 254 nm ultraviolet light. The growth of fibroblasts was determined by their ability to form colonies after treatment with the radiomimetic, DNA-damaging chemical N-methyl-N'-nitro-N-nitrosoguanidine. The tuberous sclerosis lymphoblastoid lines were hypersensitive to x-rays but had normal sensitivity to the ultraviolet radiation. The tuberous sclerosis fibroblast lines were hypersensitive to the N-methyl-N'-nitro-N-nitrosoguanidine. The hypersensitivity of tuberous sclerosis cells to x-rays and to N-methyl-N'-nitro-N-nitrosoguanidine is believed to reflect defective repair of DNA damaged by these agents and may provide the basis for in vitro, including prenatal, diagnostic tests for tuberous sclerosis.

  20. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V.

    2014-12-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100-500 Hz, with a pulse peak voltage and current of 10-15 kV and 7-20 A, respectively, a pulse FWHM of ˜100 ns, and a coupled pulse energy of 2-9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol-saturated butanol vapor interface, as well as over the distilled water-saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge removal from the liquid surface between the pulses on a microsecond time scale. Products of the plasma chemical reaction that accumulated in the ionization wave discharge over the liquid butanol-saturated butanol vapor interface were detected ex situ, using FTIR absorption spectroscopy. Reaction products identified include CO, alkanes (CH4,C2H6, C3H8), alkynes (C2H2), aldehydes (CH2O) and lighter alcohols (CH3OH).

  1. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  2. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above

  3. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons

    SciTech Connect

    Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun; Liu, Yu-Shen Feng, Jin-Fu; Wang, Xue-Feng

    2015-01-14

    Ab initio calculations combining density-functional theory and nonequilibrium Green’s function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the high bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.

  4. Matrix isolation studies of the interactions of BF3 with water and substituted diethyl ethers. Chemical ionization mass spectrometric determination of the proton affinity of (CF3CH2)2O

    NASA Technical Reports Server (NTRS)

    Ball, David W.; Zehe, Michael J.

    1993-01-01

    BF3 was co-condensed with H2O, D2O, (C2H5)2O, (CF3CH2)2O, and (C2F5)2O in excess argon at 15 K. Infrared spectra of BF3/water isolated in solid argon provided a more complete analysis of the BF3--H2O complex than previously published. Infrared spectra of the matrices showed a definite Lewis acid-base interaction between BF3 and diethyl ether; a weak but definite interaction with bis (2,2,2-trifluorodiethyl) ether, and no observable interaction with perfluorodiethyl ether. Thus, the ether data indicate a clear trend between strength of interaction with BF3 and the degree of F substitution. To support and explain the emerging relationship between interaction strength and the basicity of the oxygen-containing molecule, the proton affinity of (CF3CH2)2O was measured using chemical ionization mass spectrometry. The implications of the results for lubricant/metal oxide surface interactions are discussed.

  5. A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 southern oxidant and aerosol study

    NASA Astrophysics Data System (ADS)

    Brophy, P.; Farmer, D. K.

    2015-07-01

    A novel configuration of the Aerodyne high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) as a switchable reagent ion (SRI) HR-TOF-CIMS is presented and described along with data collected at the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013. The calibration system and reduced pressure gas phase inlet are characterized. The average limit of detection and limit of quantification for formic acid during SOAS are 82 and 863 ppt, respectively, corresponding to an average sensitivity of 13 5 Hz ppt-1. Hourly background determinations and calibrations are shown to be essential for tracking instrument performance and accurately quantifying formic acid. Maximum daytime formic acid concentrations of 10 ppb are reported during SOAS, and a strong diel cycle is observed leading to nighttime concentrations below the limit of quantification. Other species presented exhibit diel behavior similar to formic acid. The concept of the mass defect enhancement plot and the use of signal-to-noise are described in detail as a method for investigating HR-TOF-CIMS spectra in an effort to reduce data complexity.

  6. Real-time gas and particle-phase organic acids measurement at a forest site using chemical ionization high-resolution time-of-flight mass spectrometry during BEACHON-RoMBAS

    NASA Astrophysics Data System (ADS)

    Yatavelli, L. R.; Stark, H.; Kimmel, J.; Cubison, M.; Day, D. A.; Jayne, J.; Thornton, J. A.; Worsnop, D. R.; Jimenez, J. L.

    2011-12-01

    We present measurement of organic acids in gas and aerosol particles conducted in a ponderosa pine forest during July and August 2011 as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS; http://tinyurl.com/BEACHON-RoMBAS). The measurement technique is based on chemical ionization, high-resolution time-of-flight mass spectrometry and utilizes a Micro-Orifice Volatilization Impactor [MOVI-CI-HR-ToFMS; Yatavelli et al., AS&T, 2010] to collect sub-micron aerosol particles while simultaneously measuring the gas-phase composition. The collected particles are subsequently analyzed by temperature-programmed thermal desorption. The reagent ion chosen for this campaign is the acetate anion (CH3C(O)O-, m/z 59), which reacts selectively via proton transfer with compounds that are stronger gas-phase acids than acetic acid [Veres et al., IJMS, 2008]. Preliminary results show substantial particle-phase concentrations of biogenic oxidation products such as hydroxy-glutaric acid, pinic acid, pinonic acid, and hydroxy-pinonic acid along with numerous lower and higher molecular weight organic acids. Correlations of the organic acid concentrations with meteorological, gas and aerosol parameters measured by other instrumentation are investigated in order to understand the formation, transformation, and partitioning of gas and particle-phase organic acids in a forested environment dominated by terpenes.

  7. Method development for the determination of 24S-hydroxycholesterol in human plasma without derivatization by high-performance liquid chromatography with tandem mass spectrometry in atmospheric pressure chemical ionization mode.

    PubMed

    Sugimoto, Hiroshi; Kakehi, Masaaki; Satomi, Yoshinori; Kamiguchi, Hidenori; Jinno, Fumihiro

    2015-10-01

    We developed a highly sensitive and specific high-performance liquid chromatography with tandem mass spectrometry method with an atmospheric pressure chemical ionization interface to determine 24S-hydroxycholesterol, a major metabolite of cholesterol formed by cytochrome P450 family 46A1, in human plasma without any derivatization step. Phosphate buffered saline including 1% Tween 80 was used as the surrogate matrix for preparation of calibration curves and quality control samples. The saponification process to convert esterified 24S-hydroxycholesterol to free sterols was optimized, followed by liquid-liquid extraction using hexane. Chromatographic separation of 24S-hydroxycholesterol from other isobaric endogenous oxysterols was successfully achieved with gradient mobile phase comprised of 0.1% propionic acid and acetonitrile using L-column2 ODS (2 ?m, 2.1 mm id 150 mm). This assay was capable of determining 24S-hydroxycholesterol in human plasma (200 ?L) ranging from 1 to 100 ng/mL with acceptable intra- and inter-day precision and accuracy. The potential risk of in vitro formation of 24S-hydroxycholesterol by oxidation from endogenous cholesterol in human plasma was found to be negligible. The stability of 24S-hydroxycholesterol in relevant solvents and human plasma was confirmed. This method was successfully applied to quantify the plasma concentrations of 24S-hydroxycholesterol in male and female volunteers. PMID:26249017

  8. A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: characterization from the 2013 Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Brophy, P.; Farmer, D. K.

    2015-03-01

    A novel configuration of the Aerodyne high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) as a switchable reagent ion (SRI) HR-TOF-CIMS is presented and described along with data collected at the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013. The calibration system and reduced pressure gas-phase inlet are characterized. The average limit of detection and limit of quantification for formic acid during SOAS are 82 and 863 ppt, respectively, corresponding to an average sensitivity of 13 5 Hz ppt-1. Hourly background determinations and calibrations are shown to be essential for tracking instrument performance and accurately quantifying formic acid. Maximum daytime formic acid concentrations of 10 ppb are reported during SOAS, and a strong diel cycle is observed leading to night time concentrations below the limit of quantification. Other species presented exhibit diel behavior similar to formic acid. The concept of the mass defect enhancement plot and the use of signal-to-noise are described in detail as a method for investigating HR-TOF-CIMS spectra in an effort to reduce data complexity.

  9. A new concept kinetic-ejection negative-ion source for rib generation

    NASA Astrophysics Data System (ADS)

    Alton, G. D.; Liu, Y.; Williams, C.; Murray, S. N.

    2000-10-01

    Chemically active radioactive species are often released from target-materials in a variety of molecular forms. For example, 17F, is principally released from Al 2O 3 target-material as Al 17F. Because of the low probability of simultaneously dissociating such molecular carriers and efficiently ionizing their atomic constituents with conventional hot-cathode, electron-impact ion sources, species of interest are often distributed in several mass channels in the form of molecular side-band beams. Consequently, beam intensities of the desired radioactive species are diluted. The sputter negative-ion beam generation technique is particularly effective for simultaneously dissociating molecular carriers and efficiently ionizing highly electronegative atomic constituents. Therefore, a new concept kinetic-ejection negative-ion source (KENIS), based on this principle, was conceived to address this problem. The source has proven to be highly efficient for simultaneously dissociating and negatively ionizing sputter-ejected atomic fluorine from cesiated surfaces. The source has been successfully employed on-line to generate high intensity 17F - beams for use in the astrophysics research program at the Holifield Radioactive Ion Beam Facility (HRIBF) using the 16O(d,n) 17F reaction. The mechanical design features, principles of operation, operational parameters, beam quality information (emittance data) and efficiencies for forming intense beams of 17F - during off-line and on-line operation of the source are presented in this report.

  10. New quantitative structure-fragmentation relationship strategy for chemical structure identification using the calculated enthalpy of formation as a descriptor for the fragments produced in electron ionization mass spectrometry: a case study with tetrachlorinated biphenyls.

    PubMed

    Dinca, Nicolae; Dragan, Simona; Dinca, Mihael; Sisu, Eugen; Covaci, Adrian

    2014-05-20

    Differential mass spectrometry correlated with quantum chemical calculations (QCC-?MS) has been shown to be an efficient tool for the chemical structure identification (CSI) of isomers with similar mass spectra. For this type of analysis, we report here a new strategy based on ordering (ORD), linear correlation (LCOR) algorithms, and their coupling, to filter the most probable structures corresponding to similar mass spectra belonging to a group with dozens of isomers (e.g., tetrachlorinated biphenyls, TeCBs). This strategy quantifies and compares the values of enthalpies of formation (?(f)H) obtained by QCC for some isobaric ions from the electron ionization (EI)-MS mass spectra, to the corresponding relative intensities. The result of CSI is provided in the form of lists of decreasing probabilities calculated for all the position-isomeric structures using the specialized software package CSI-Diff-MS Analysis 3.1.1. The simulation of CSI with ORD, LCOR, and their coupling of six TeCBs (IUPAC no. 44, 46, 52, 66, 74, and 77) has allowed us to find the best semiempirical molecular-orbital methods for several of their common isobaric fragments. The study of algorithms and strategy for the entire group of TeCBs (42 isomers) was made with one of the optimal variants for the computation of ?(f)H using semiempirical molecular orbital methods of HyperChem: AM1 for M(+) and [M - 4Cl](+) ions and RM1 for [M - Cl](+) and [M - 2Cl](+). The analytical performance of ORD, LCOR, and their coupling resulted from the CSI simulation of an analyte of known structure, using a decreasing number of isomeric standards, s = 5, 4, 3, and 2. Compared with the results obtained by a classical library search for TeCB isomers, the novel strategies of assigning structures of isomers with very similar mass spectra based on ORD, LCOR, and their coupling were much more efficient, because they provide the correct structure at the top of the probability list. Databases used in these CSI do not contain mass spectra, as in the case of a library search, but a series of ?(f)H values obtained by QCC. These techniques are capable of relating relative intensities to the chemical structures of analytes via ?(f)H of ions which turns out to be a good quantitative structure-fragmentation relationship (QSFR) descriptor. PMID:24773183

  11. Thermal ionization cavity source for mass spectrometry

    SciTech Connect

    Olivares, J.A.; Chamberlin, E.P.; Duan, Yixiang

    1995-12-31

    Thermal ionization mass spectrometry (TIMS) is widely used for isotopic determination, and elemental concentration measurements by isotope dilution. TIMS is applicable to over 70 elements in the periodic table, often, with very high sensitivity, low detection limits, high precision, and high accuracy. Probably due to its success and simplicity, the traditional resistively heated filament type ion source, used in TIMS, has remained relatively unchanged in the past 50 years. Only minor changes in the number of filaments used for vaporization and ionization, and the shape of the filament have been employed. Much of the science of thermal ionization has focused on sample preparation, and chemical ionization enhancers. Beyer et al., in the USSR, and Johnson et al., later in the US, introduced a new high temperature cavity-type thermal ionization source for isotope separation on-line (ISOL) projects. Delmore et al. introduced a similar cavity-type source for the study of thermal emission of primary ions for secondary ionization mass spectrometry (SIMS). A new thermal ionization cavity-type source for mass spectrometry has been developed in this laboratory.

  12. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  13. An overview of some recent developments in ionization methods for mass spectrometry.

    PubMed

    Van Berkel, Gary J

    2003-01-01

    An overview of some recent advances in ionization sources for mass spectrometry is presented. Limitations were set so that the overview covers ionization techniques relevant to organic and biological analysis that have appeared in the literature since the year 2000. No effort is made to be comprehensive. Rather, a broad sweep overview of author-subjective highlights among a wide variety of sources is presented. These ionization sources include electron ionization, chemical ionization, various atmospheric plasma ionization sources, laser desorption sources, sonic spray and electrospray ionization sources. PMID:15100466

  14. ESTIMATION OF IONIZATION CONSTANTS OF AZO DYES AND RELATED AROMATIC AMINES: ENVIRONMENTAL IMPLICATIONS

    EPA Science Inventory

    Ionization constants for 214 dye molecules were calculated from molecular structures using the chemical reactivity models developed in SPARC (SPARC Performs Automated Reasoning in Chemistry). hese models used fundamental chemical structure theory to predict chemical reactivities ...

  15. Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Huang, Yu; Mao, Yang; Naimy, Hicham; Zaia, Joseph

    2012-09-01

    Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO3) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO3 loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO3 from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.

  16. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  17. Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Alajajian, S. H.; Chutjian, A.

    1992-01-01

    First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.

  18. A rapid and simple method for the simultaneous determination of four endogenous monoamine neurotransmitters in rat brain using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry.

    PubMed

    Zhou, Wenbin; Zhu, Bangjie; Liu, Feng; Lyu, Chunming; Zhang, Shen; Yan, Chao; Cheng, Yu; Wei, Hai

    2015-10-01

    Endogenous monoamine neurotransmitters play an essential role in neural communication in mammalians. Many quantitative methods for endogenous monoamines have been developed during recent decades. Yet, matrix effect was usually a challenge in the quantification, in many cases asking for tedious sample preparation or sacrificing sensitivity. In this work, a simple, fast and sensitive method with no matrix effect was developed to simultaneously determine four endogenous monoamines including serotonin, dopamine, epinephrine and norepinephrine in rat brain tissues, using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. Various conditions, including columns, chromatographic conditions, ion source, MS/MS conditions, and brain tissue preparation methods, were optimized and validated. Pre-weighed 20mg brain sample could be effectively and reproducibly homogenized and protein-precipitated by 20 times value of 0.2% formic acid in cold organic solvents (methanol-acetonitrile, 10:90, v/v). This method exhibited excellent linearity for all analytes (regression coefficients>0.998 or 0.999). The precision, expressed as coefficients of variation, was less than 3.43% for intra-day analyses and ranged from 4.17% to 15.5% for inter-day analyses. Good performance was showed in limit of detection (between 0.3nM and 3.0nM for all analytes), recovery (90.8-120%), matrix effect (84.4-107%), accuracy (89.8-100%) and stability (88.3-104%). The validated method was well applied to simultaneously determine the endogenous serotonin, dopamine, epinephrine and norepinephrine in four brain sections of 18 Wistar rats. The quantification of four endogenous monoamines in rat brain performed excellently in the sensitivity, high throughput, simple sample preparation and matrix effect. PMID:26363373

  19. Quantification of ?-carotene, retinol, retinyl acetate and retinyl palmitate in enriched fruit juices using dispersive liquid-liquid microextraction coupled to liquid chromatography with fluorescence detection and atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Vias, Pilar; Bravo-Bravo, Mara; Lpez-Garca, Ignacio; Hernndez-Crdoba, Manuel

    2013-02-01

    A detailed optimization of dispersive liquid-liquid microextraction (DLLME) was carried out for developing liquid chromatographic (HPLC) techniques, using both fluorescence and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of preforms of vitamin A: retinol (R), retinyl acetate (RA), retinyl palmitate (RP) and ?-carotene (?-C). The HPLC analyses were carried out using a mobile phase composed of methanol and water, with gradient elution. The APCI-MS and fluorescence spectra permitted the correct identification of compounds in the analyzed samples. Parameters affecting DLLME were optimized using 2 mL of methanol (disperser solvent) containing 150 ?L carbon tetrachloride (extraction solvent). The precision ranged from 6% to 8% (RSD) and the limits of detection were between 0.03 and 1.4 ng mL(-1), depending on the compound. The enrichment factor values were in the 21-44 range. Juice samples were analyzed without saponification and no matrix effect was found when using fluorescence detection, so calibration was possible with aqueous standards. However, a matrix effect appeared with APCI-MS, in which case it was necessary to apply matrix-matched calibration. There was great variability in the forms of vitamin A present in the juices, the most abundant ester being retinyl acetate (0.04 to 3.4 ?g mL(-1)), followed by the amount of retinol (0.01 to 0.16 ?g mL(-1)), while retinyl palmitate was not detected, except in the milk-containing juice, in which RP was the main form. The representative carotenoid ?-carotene was present in the orange, peach, mango and multifruit juices in high amounts. The method was validated using two certified reference materials. PMID:23290361

  20. A novel derivatization method for the determination of Fosfomycin in human plasma by liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometric detection via phase transfer catalyzed derivatization.

    PubMed

    Papakondyli, Theodora A; Gremilogianni, Aikaterini M; Megoulas, Nikolaos C; Koupparis, Michael A

    2014-03-01

    An analytical method employing novel sample preparation and liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometric detection (LC-APCI/MS) was developed for the determination of fosfomycin in human plasma. Sample preparation involves derivatization through phase transfer catalysis (PTC) which offers multiple advantages due to the simultaneous extraction, preconcentration and derivatization of the analyte. Using a PT catalyst, fosfomycin was extracted from plasma in an organic phase and, then converted to a pentafluorobenzyl ester with the use of pentafluorobenzyl bromide (PFBBr) derivatization reagent. The method was fully optimized by taking into account both PTC and derivatization parameters. Several catalysts, in a wide range of concentrations, with different counter ions and polarities were tested along with different extraction solvents and pH values. Thereafter, the derivatization procedure was optimized by altering the amount of the derivatization reagent, the temperature of the reaction and finally, the derivatization duration. As internal standard (I.S.) ethylphosphonic acid was chosen and underwent the same pretreatment. The derivatives were separated on a pentafluorophenyl (PFP)-C18 analytical column, which provides unique selectivity, using an isocratic elution with acetonitrile-water (70-30, v/v). The method was validated according to US Food and Drug Administration (FDA) guidelines and can be used for a bioequivalence study of fosfomycin in human plasma. The correlation coefficient (r(2)) of the calibration curve of spiked plasma solutions in the range of 50-12000 ng/mL was found greater than 0.999 with a limit of quantitation (LOQ) equal to 50 ng/ml (for 500 ?L plasma sample). PMID:24508398

  1. Development of a new multi-residue laser diode thermal desorption atmospheric pressure chemical ionization tandem mass spectrometry method for the detection and quantification of pesticides and pharmaceuticals in wastewater samples.

    PubMed

    Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien

    2012-11-19

    A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. PMID:23140957

  2. An approach based on ultrahigh performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry allowing the quantification of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures.

    PubMed

    Scholz, Birgit; Menzel, Nicole; Lander, Vera; Engel, Karl-Heinz

    2016-01-15

    A method for the analysis of both individual phytosteryl and phytostanyl fatty acid esters in complex mixtures was established. The approach was based on a previously not described combination of three elements: (i) the formation of [M-FA+H](+) fragment ions via APCI (atmospheric pressure chemical ionization), (ii) a highly efficient UHPLC-based separation on a 1.7μ C8 column, previously established for phytostanyl fatty acid esters, allowing the distinction of individual fatty acid esters sharing the same sterol/stanol nucleus and of isotope peaks of phytosteryl fatty acid esters and corresponding phytostanyl fatty acid esters based on these [M-FA+H](+) fragment ions, and (iii) the adjustment of the APCI conditions allowing the differential APCI-MS-SIM (single ion monitoring) detection of phytostanyl esters of linoleic and linolenic acid based on their distinct formation of a [M+H](+) ion. The usefulness of the methodology was demonstrated by the analysis of a commercially available enriched margarine. Two runs per sample allowed the quantification of 35 target analytes; the total amounts of esters were between 124.7 and 125.3g/kg, being in good agreement with the labelled 125g/kg. Validation data were elaborated for 35 individual fatty acid esters of sitosterol, campesterol, brassicasterol, stigmasterol, sitostanol and campestanol. Recovery rates ranged from 95 to 106%; the coefficients of variation were consistently <5%, except for stigmasteryl-18:1. The approach describes for the first time a quantification of both individual phytosteryl and phytostanyl fatty acid esters and thus closes an analytical gap related to this class of health-relevant food constituents. PMID:26718186

  3. Dispersive liquid-liquid microextraction for the determination of vitamins D and K in foods by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection.

    PubMed

    Vias, Pilar; Bravo-Bravo, Mara; Lpez-Garca, Ignacio; Hernndez-Crdoba, Manuel

    2013-10-15

    A simple and rapid method was developed using reversed-phase liquid chromatography (LC) with both diode array (DAD) and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of the vitamins ergocalciferol (D2), cholecalciferol (D3), phylloquinone (K1), menaquinone-4 (K2) and a synthetic form of vitamin K, menadione (K3). The Taguchi experimental method, an orthogonal array design (OAD), was used to optimize an efficient and clean preconcentration step based on dispersive liquid-liquid microextraction (DLLME). A factorial design was applied with six factors and three levels for each factor, namely, carbon tetrachloride volume, methanol volume, aqueous sample volume, pH of sample, sodium chloride concentration and time of the centrifugation step. The DLLME optimized procedure consisted of rapidly injecting 3 mL of acetonitrile (disperser solvent) containing 150 L carbon tetrachloride (extraction solvent) into the aqueous sample, thereby forming a cloudy solution. Phase separation was performed by centrifugation, and the sedimented phase was evaporated with nitrogen, reconstituted with 50 L of acetonitrile, and injected. The LC analyses were carried out using a mobile phase composed of acetonitrile, 2-propanol and water, under gradient elution. Quantification was carried out by the standard additions method. The APCI-MS spectra, in combination with UV spectra, permitted the correct identification of compounds in the food samples. The method was validated according to international guidelines and using a certified reference material. The validated method was applied for the analysis of vitamins D and K in infant foods and several green vegetables. There was little variability in the forms of vitamin K present in vegetables, with the most abundant vitamer in all the samples being phylloquinone, while menadione could not be detected. Conversely, cholecalciferol, which is present in food of animal origin, was the main form in infant foods, while ergocalciferol was not detected. PMID:24054666

  4. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    SciTech Connect

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-10-10

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10{sup –7}) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10{sup –6}-1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H{sub 2}, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

  5. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  6. Low-density ionization behavior

    SciTech Connect

    Baker, G.A. Jr.

    1995-04-01

    As part of a continuing study of the physics of matter under extreme conditions, I give some results on matter at extremely low density. In particular I compare a quantum mechanical calculation of the pressure for atomic hydrogen with the corresponding pressure given by Thomas-Fermi theory. (This calculation differs from the ``confined atom`` approximation in a physically significant way.) Since Thomas-Fermi theory in some sense, represents the case of infinite nuclear charge, these cases should represent extremes. Comparison is also made with Saha theory, which considers ionization from a chemical point of view, but is weak on excited-state effects. In this theory, the pressure undergoes rapid variation as electron ionization levels are passed. This effect is in contrast to the smooth behavior of the Thomas-Fermi fixed temperature, complete ionization occurs in the low density limit, I study the case where the temperature goes appropriately to zero with the density. Although considerable modification is required, Saha theory is closer to the actual results for this case than is Thomas-Fermi theory.

  7. Negative ion mass spectrometry and the detection of carbonyls and HCN from clover

    NASA Astrophysics Data S