Science.gov

Sample records for negative chemical ionization

  1. PULSED POSITIVE ION NEGATIVE ION CHEMICAL IONIZATION MASS SPECTROMETRIC APPLICATONS TO ENVIRONMENTAL AND HAZARDOUS WASTE ANALYSIS

    EPA Science Inventory

    The simultaneous acquisition of both positive ion and negative ion data under chemical ionization mass spectrometric conditions can aid in the confirmation of assignments made by electron impact gas chromatography mass spectrometry or electron capture gas chromatography. Pulsed p...

  2. ELECTRON AFFINITIES OF POLYNUCLEAR AROMATIC HYDROCARBONS AND NEGATIVE ION CHEMICAL IONIZATION SENSITIVITIES

    EPA Science Inventory

    Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...

  3. PENTACHLOROPHENOL IN THE ENVIRONMENT: EVIDENCE FOR ITS ORIGIN FROM COMMERCIAL PENTACHLOROPHENOL BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    Commercial pentachlorophenol (PCP) contains significant quantities of tetrachlorophenol (TCP). The occurrence of TCP in environmental samples provides a chemical marker for PCP originating from commercial formulations. Negative chemical ionization mass spectrometry has been used ...

  4. PENTACHLOROPHENOL IN THE ENVIRONMENT. EVIDENCE FOR ITS ORIGIN FROM COMMERCIAL PENTACHLOROPHENOL BY NEGATIVE CHEMICAL IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    Commercial pentachlorophenol (PCP) contains significant quantities of tetrachlorophenol (TCP). The occurrence of TCP in environmental samples provides a chemical marker for PCP originating from commercial formulations. Negative chemical ionization mass spectrometry has been used ...

  5. Differentiation of (Mixed) Halogenated Dibenzo-p-Dioxins by Negative Ion Atmospheric Pressure Chemical Ionization.

    PubMed

    Fernando, Sujan; Green, M Kirk; Organtini, Kari; Dorman, Frank; Jones, Rhys; Reiner, Eric J; Jobst, Karl J

    2016-05-17

    Brominated and mixed halogenated dibenzo-p-dioxins (PBDDs and PXDDs) may well be as toxic as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2378-TCDD), a compound reputed as one of the most toxic chemicals known to exist. However, studies on the occurrence of PXDDs have been hampered by a lack of authentic standards as well as separation techniques capable of resolving the enormous number of potential isomers. Electron ionization (EI) mass spectrometry based methods are of limited value due to the lack of isomer specific fragmentation. Negative ion atmospheric pressure chemical ionization (APCI(-)) of 2378-TCDD was described in this journal over 30 years ago. Under these conditions, the reaction between O2(-•) and 2378-TCDD results in structure diagnostic cleavages of the C-O bonds, which can distinguish TCDD isomers on the basis of Cl distribution between the two aromatic rings. In the present study, the analogous ether cleavages of PBDDs and PXDDs were studied using a gas chromatograph-quadrupole time-of-flight (GC-QTOF) mass spectrometer coupled using APCI. The results indicate comparable detection limits for the radical cations [M(•+)] and negative pseudomolecular ions [M-Cl+O](-): approximately 5 fg and 10 fg, respectively, for 2378-TCDD and 5-10 fg and 10-30 fg, respectively, for the 2,3,7,8-substituted PXDDs. Detection limits obtained by monitoring the ether cleavage products were somewhat higher (between 100 and 600 fg) but still acceptable for trace analysis of PXDDs. Such reactions may resolve coeluting isomers, which is crucial for the identification of PXDDs. The technique is demonstrated by differentiating PXDD isomer classes in a sample obtained from a major industrial fire that would not be feasible using EI or positive ion APCI(+). PMID:27074061

  6. Determination of BROMATE AT PARTS-PER-TRILLION LEVELS BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH NEGATIVE CHEMICAL IONIZATION

    EPA Science Inventory

    The ozonation of bromide-containing source waters produces bromate as a class 2B carcinogenic disinfection by-product. The present work describes the determination of bromate by gas chromatography-negative chemical ionization mass spectrometry (GC-NCIMS) following a bromate react...

  7. [Determination of cyflufenamid residue in carrots by gas chromatography-negative chemical ionization mass spectrometry].

    PubMed

    Yang, Wenquan; Shen, Weijian; Zhao, Zengyun; Xu, Jinzhong; Shen, Chongyu; Wu, Bin

    2008-07-01

    A method was developed for the determination of cyflufenamid residue in carrots by solid phase extraction-gas chromatography-negative chemical ionization mass spectrometry (SPE-GC-NCI/MS). Cyflufenamid residue was extracted with ethyl acetate from carrots. The extract was cleaned-up by an active carbon SPE column connected to a neutral alumina SPE column. The analysis was carried out by the GC-NCI/MS with selected ion monitoring mode. The recoveries of cyflufenamid in carrot samples were in the range from 74.9% to 94.6% at four spiked levels, 0.005, 0.01, 0.02, 0.04 mg/kg, and the relative standard deviations (RSD) were less than 9.7% for inter-days. The linearity of the method was good in the range from 10 to 1000 ng/mL, and the limit of detection (LOD) was 0.001 mg/kg, and the limit of quantitation (LOQ) was 0.005 mg/kg. The method is selective without interference and is suitable for the determination and confirmation of cyflufenamid residue in carrots. PMID:18959256

  8. Detection of trace levels of triclopyr using capillary gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry.

    PubMed

    Begley, P; Foulger, B E

    1988-04-01

    Triclopyr, after esterification, is shown to be a suitable candidate for detection by gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry forming a characteristic carboxylate anion which offers a high detection sensitivity. A detection limit of 70 fg reaching the ionizer is indicated. Low backgrounds and an absence of chemical interferences are shown for vegetation extracts, using a simple method of extraction and derivatisation. A similar behaviour is demonstrated for 2,4-D and 2,4,5-T. PMID:3379116

  9. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt. PMID:25452581

  10. Fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry for forensic analysis of cannabinoids in whole blood.

    PubMed

    Thomas, Aurélien; Widmer, Christèle; Hopfgartner, Gérard; Staub, Christian

    2007-11-01

    The present work describes a fast gas chromatography/negative-ion chemical ionization tandem mass spectrometric assay (Fast GC/NICI-MS/MS) for analysis of tetrahydrocannabinol (THC), 11-hydroxy-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in whole blood. The cannabinoids were extracted from 500 microL of whole blood by a simple liquid-liquid extraction (LLE) and then derivatized by using trifluoroacetic anhydride (TFAA) and hexafluoro-2-propanol (HFIP) as fluorinated agents. Mass spectrometric detection of the analytes was performed in the selected reaction-monitoring mode on a triple quadrupole instrument after negative-ion chemical ionization. The assay was found to be linear in the concentration range of 0.5-20 ng/mL for THC and THC-OH, and of 2.5-100 ng/mL for THC-COOH. Repeatability and intermediate precision were found less than 12% for all concentrations tested. Under standard chromatographic conditions, the run cycle time would have been 15 min. By using fast conditions of separation, the assay analysis time has been reduced to 5 min, without compromising the chromatographic resolution. Finally, a simple approach for estimating the uncertainty measurement is presented. PMID:17913432

  11. Characterization of a novel diclofenac metabolite in human urine by capillary gas chromatography-negative chemical ionization mass spectrometry.

    PubMed

    Blum, W; Faigle, J W; Pfaar, U; Sallmann, A

    1996-10-25

    A sensitive analytical method was developed to characterize diclofenac metabolites in small amounts of body fluids. Desalted and lyophilized urine samples were extracted with supercritical carbon dioxide directly or after acidic hydrolysis. The extracts were derivatized with N-tert.-butyldimethylsilyl-N-methyltrifluoroacetamide. The derivatives were separated by capillary gas chromatography and identified by negative chemical ionization mass spectrometry. Full mass spectra were obtained at a level of 1.10(-9) g/ml. With direct extraction, the metabolites could be analysed in one step as open-chained acids and as (cyclic) oxindoles. By acidic hydrolysis the conjugates were transformed to the oxindoles. With both methods, a new main metabolite, [2-[2,6-dichloro-4-hydroxy-3-methoxyphenyl)amino]phenyl]acetic acid, was identified The mechanism of its formation is discussed. PMID:8953166

  12. Quantitative determination of terbutaline and orciprenaline in human plasma by gas chromatography/negative ion chemical ionization/mass spectrometry.

    PubMed

    Leis, H J; Gleispach, H; Nitsche, V; Malle, E

    1990-06-01

    A method for the determination of unconjugated terbutaline and orciprenaline in human plasma is described. The assay is based on stable isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. An inexpensive and rapid method for preparation of stable isotope labelled analogues as well as their use in quantitative gas chromatography/mass spectrometry is shown. A highly efficient sample work-up procedure with product recoveries of more than 95% is presented. The method developed permits quantitative measurement of terbutaline and orciprenaline in human plasma down to 100 pg ml-1, using 1 ml of sample. Plasma levels of terbutaline after oral administration of 5 mg of terbutaline sulphate were estimated. PMID:2357489

  13. The background atmospheric concentrations of cyclic perfluorocarbon tracers determined by negative ion-chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Simmonds, P. G.; Greally, B. R.; Olivier, S.; Nickless, G.; Cooke, K. M.; Dietz, R. N.

    The background atmospheric mixing ratios for a range of cyclic perfluorocarbons (cyclic-PFCs), widely used in atmospheric dispersion studies, have been measured by gas chromatography-mass spectrometry in negative ion-chemical ionization mode. Background concentrations range from <1 fl l -1 to >10 fl l -1, where femtolitre is expressed as parts in 10 15 (ppqv). Because of their very long atmospheric lifetimes (>3000 yr) the present day concentrations represent the accumulated emissions from all sources, although significant commercial production did not commence until the 1960s. Cyclic-PFCs are potent greenhouse gases; however, their atmospheric concentrations are currently so low as to make an insignificant contribution to global warming.

  14. Confirmation of clorsulon residues in cattle kidney by capillary gas chromatography-negative-ion chemical-ionization mass spectrometry.

    PubMed

    Wehner, T A; Wood, J S; Walker, R; Downing, G V; Vandenheuvel, W J

    1987-07-24

    A confirmatory assay for residues of the anthelmintic agent clorsulon [4-amino-6-(trichloroethenyl)-1,3-benzenedisulfonamide] in cattle kidney tissue has been developed. The assay involves isolation of a drug-containing fraction by solvent extraction, methylation of the analyte, and fused-silica capillary column gas chromatography-negative-ion chemical-ionization mass spectrometry of the pentamethyl derivative of clorsulon. The intensities of four negative ions [m/z 406 and 408 (trichloro species) and m/z 413 and 415 (dichloro species)] are monitored. Confirmation of the presence of drug in an analyte requires that all four ions appear at the appropriate retention time with their intensity ratios within 10-15% of those arising from analysis of the reference standard, methylated clorsulon; the lower limit of detection is 3 ppb. Quantification of the drug is based on the intensity of the m/z 406 ion. Identification and quantification of residues by the gas chromatographic-mass spectrometric assay gave results in good agreement with those obtained with an electron-capture gas chromatographic assay. PMID:3654857

  15. Identification of nitroaromatics in diesel exhaust particulate using gas chromatography/negative ion chemical ionization mass spectrometry and other techniques

    SciTech Connect

    Newton, D.L.; Erickson, M.D.; Tomer, K.B.; Pellizzari, E.D.; Gentry, P.

    1982-04-01

    A series of nitroaromatic compounds were identified in diesel exhaust particulate extract. Isomers of nitroanthracene (and/or nitrophenanthrene) and nitropyrene (and/or nitrofluoranthene) were unequivocally identified. Alkyl homologues of nitroanthracene through C/sub 3/-alkyl-nitroanthracene were tentatively identified. In addition, a C/sub 18/H/sub 11/NO/sub 2/ isomer was tentatively identified. The nitro-substituted polynuclear aromatic hydrocarbons (PAHs) were found in two fractions of diesel exhaust particulate extract collected from a low-pressure liquid chromatography (LPLC) column. One of the two fractions containing nitroaromatic constitutents accounted for a large percentage of the mutagenicity of the crude particulate extract. Initial identification were made by using high-resolution gas chromatography/electron impact mass spectrometry/computer (GC/EIMS) and negative ion chemical ionization mass specrometry/computer (GC/NICIMS). These identifications were confirmed by direct probe high-resolution mass spectrometry (HRMS) and gas chromatography/Fourier transform infrared spectrometry (GC/FT IR). The relative merit of each analytical technique for the determination of nitroaromatics is discussed with emphasis on the usefulness of GC/NICIMS as a means of analyzing for nitro-substituted PAHs.

  16. Simultaneous enantioselective determination of amphetamine and congeners in hair specimens by negative chemical ionization gas chromatography-mass spectrometry.

    PubMed

    Martins, Liliane; Yegles, Michel; Chung, Heesun; Wennig, Robert

    2005-10-15

    Enantioselective quantification of amphetamine (AM), methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) enantiomers in hair using gas chromatography-mass spectrometry (GC-MS) is described. Hair specimens were digested with 1M sodium hydroxide at 100 degrees C for 30 min and extracted by a solid phase procedure using Cleanscreen ZSDAU020. Extracted analytes were derivatised with (S)-heptafluorobutyrylprolyl chloride and the resulting diastereoisomers were quantified by GC-MS operating in the negative chemical ionization mode. Extraction yields were between 73.0 and 97.9%. Limits of detection varied in the range of 2.1-45.9 pg/mg hair, whereas the lowest limits of quantification varied between 4.3 and 91.8 pg/mg hair. Intra- and inter-assay precision and respective accuracy were acceptable. The enantiomeric ratios (R versus S) of AM, MA, MDA, MDMA and MDEA were determined in hair from suspected amphetamine abusers. Only MA and AM enantiomers were detectable in this collective and the quantification data showed in most cases higher concentrations of (R)-MA and (R)-AM than those of the corresponding (S)-enantiomers. PMID:16154523

  17. [Determination of 16 polychlorinated biphenyls in fish oil by gas chromatography-negative ion chemical ionization-mass spectrometry].

    PubMed

    Wang, Li; Li, Shushu; Zhang, Zhan; Wang, Shoulin; Li, Lei

    2015-08-01

    An analytical method for the simultaneous determination of 16 polychlorinated biphenyls (PCBs) in fish oil was developed. PCBs were extracted from fish oil with n-hexane, purified by sulfuric acid and determined by using gas chromatography-negative ion chemical ionization-mass spectrometry (GC-NCI-MS) in selected ion-monitoring (SIM) mode. A good linear relationship (r > 0.99) was observed with the PCBs concentrations from 0.01 µg/L to 10 µg/L, and the limits of quantification (LOQ, S/N = 10) were between 3 pg/g and 67 pg/g for different kinds of PCBs. The average recoveries ranged from 62.3% to 121.8% with the relative standard deviations ( RSDs, n = 3) smaller than 12%. Compared with the traditional pre-treatment of multiple material solid phase extraction, this new method is simple, rapid and less organic solvent usage. Meanwhile the method has good selectivity and sensitivity, and it is suitable for the determination of multiple trace PCBs in fish oil. PMID:26749866

  18. Gas chromatographic-mass spectrometric analysis of the tripeptide glutathione in the electron-capture negative-ion chemical ionization mode.

    PubMed

    Tsikas, Dimitrios; Hanff, Erik; Kayacelebi, Arslan Arinc; Böhmer, Anke

    2016-02-01

    The dicarboxylic tripeptide glutathione (GSH) is the most abundant intracellular thiol. GSH analysis by liquid chromatography is routine. Yet, GSH analysis by gas chromatography is challenged due to thermal instability and lacking volatility. We report a high-yield laboratory method for the preparation of (2)H-labeled GSH dimethyl ester ((d3Me)2-GSH) for use as internal standard (IS) which was characterized by LC-MS/MS. For GC-MS analysis, the dimethyl esters of GSH and the IS were derivatized with pentafluoropropionic (PFP) anhydride. Electron-capture negative-ion chemical ionization of the (Me)2-(PFP)3-GSH provided high sensitivity. We encourage increasing use of GC-MS in the analysis of amino acids as their Me-PFP derivatives in the ECNICI mode. PMID:26602568

  19. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  20. A sensitive and selective method for the determination of selected pesticides in fruit by gas chromatography/mass spectrometry with negative chemical ionization.

    PubMed

    Belmonte Valles, N; Retamal, M; Mezcua, M; Fernández-Alba, A R

    2012-11-16

    Multiresidue methods (MRMs) for pesticides residues determination in fruit and vegetables, based on GC-MS, are mainly performed in electron impact ionization mode. However an important group of them provide much better response working in negative chemical ionization mode due to the elimination of a high percentage of background signal. Considering that a selective and sensitive method has been developed for the determination of multiclass pesticide residues in different commodities by GC-MS with a triple stage quadrupole analyzer (GC-TSQ-MS); the pesticide signal has been optimized in MS-MS whilst working in negative chemical ionization mode using methane as the reagent gas. The proposed method was fully validated for 53 compounds in tomato, apple and orange matrices. The obtained limits of determination were lower than 0.1 μg/kg for more than 50% of the pesticides studied, and lower than 1 μg/kg for all pesticides studied, except for cypermethrin, boscalid, bifenthrin and deltamethrin. Linearity was studied in the 0.5-50 μg/kg range and a linear response was obtained for all pesticides in all matrices. Recoveries were evaluated at two different levels (1 and 50 μg/kg) and recoveries were ranged between 70 and 120% in tomato, apple and orange, except in the cases of chlorfenapyr, ofurace, chlozolinate, chlorothalonil, tolylfluanid and dichlofluanid with recovery values close to 60% at 1 μg/kg fortification levels. Repetitivity was evaluated and the relative standard deviation (RSD%) was lower than 10% in all cases. The developed method was employed in the analysis of real samples intended for baby food and the obtained results showed that 50% of the samples were positive for different pesticide residues. The concentration range detected was between 5 and 100 μg/kg. The positive detection of OCs was particularly noticeable; these included chlorothalonil, fenhexamide, clorpyrifos and lambda cyhalothrin, which are very persistent and toxic with low acute

  1. Above-threshold ionization of negative hydrogen

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, L. A. A.; Lambropoulos, P.

    1997-10-01

    We present detailed calculations for two-and three-photon above-threshold ionization of the negative hydrogen ion. In addition to calculated values for partial wave amplitudes and phase shifts pertaining to recent experimental results [Xin Miao Zhao et al., Phys. Rev. Lett. 78, 1656 (1997)], we also address the question of the asymmetry of photoelectron angular distributions in ionization under elliptically polarized radiation, which has been studied experimentally in other negative ions [C. Blondel and C. Delsart, Laser Phys. 3, 3 (1993); Nucl. Instrum. Methods Phys. Res. B 79, 156 (1993); F. Dulieu, C. Blondel, and C. Delsart, J. Phys. B 28, 3861 (1995)].

  2. Comparison of Gas Chromatography-Mass Spectrometry and Gas Chromatography-Tandem Mass Spectrometry with Electron Ionization and Negative-Ion Chemical Ionization for Analyses of Pesticides at Trace Levels in Atmospheric Samples

    PubMed Central

    Raina, Renata; Hall, Patricia

    2008-01-01

    A comparison of detection limits of gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) with gas chromatography-tandem mass spectrometry (GC-MS/MS) in selected reaction monitoring (SRM) mode with both electron ionization (EI) and negative-ion chemical ionization (NCI) are presented for over 50 pesticides ranging from organochlorines (OCs), organophosphorus pesticides (OPs) and pre-emergent herbicides used in the Canadian prairies (triallate, trifluralin, ethalfluralin). The developed GC-EI/SIM, GC-NCI/SIM, and GC-NCI/SRM are suitable for the determination of pesticides in air sample extracts at concentrations <100 pg μL−1 (<100 pg m−3 in air). No one method could be used to analyze the range of pre-emergent herbicides, OPs, and OCs investigated. In general GC-NCI/SIM provided the lowest method detection limits (MDLs commonly 2.5–10 pg μL−1) along with best confirmation (<25% RSD of ion ratio), while GC-NCI/SRM is recommended for use where added selectivity or confirmation is required (such as parathion-ethyl, tokuthion, carbofenothion). GC-EI/SRM at concentration <100 pg μL−1 was not suitable for most pesticides. GC-EI/SIM was more prone to interference issues than NCI methods, but gave good sensitivity (MDLs 1–10 pg μL−1) for pesticides with poor NCI response (OPs: sulfotep, phorate, aspon, ethion, and OCs: alachlor, aldrin, perthane, and DDE, DDD, DDT). PMID:19609395

  3. Quantification of low levels of organochlorine pesticides using small volumes (negative chemical ionization mass spectrometry.

    PubMed

    Rivera-Rodríguez, Laura B; Rodríguez-Estrella, Ricardo; Ellington, James Jackson; Evans, John J

    2007-07-01

    A solid phase extraction and gas chromatography with negative chemical ionization mass spectrometry in scan mode (GC-NCI-MS) method was developed to identify and quantify for the first time low levels of organochlorine pesticides (OCs) in plasma samples of less than 100 microl from wild birds. The method detection limits ranged from 0.012 to 0.102 pg/microl and the method reporting limit from 0.036 to 0.307 pg/microl for alpha, gamma, beta and delta-hexachlorocyclohexane (HCH), heptachlor, aldrin, heptachlor epoxide, endosulfan I, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), dieldrin, endrin, endosulfan-II, endrin-aldehyde and endosulfan-sulfate. Pesticide levels in small serum samples from individual Falco sparverius, Sturnella neglecta, Mimus polyglottos and Columbina passerina were quantified. Concentrations ranged from not detected (n/d) to 204.9 pg/microl for some OC pesticides. All levels in the food web in and around cultivated areas showed the presence of pesticides notwithstanding the small areas for agriculture existing in the desert of Baja California peninsula. PMID:17240024

  4. Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry.

    PubMed

    Shen, Jianzhong; Xia, Xi; Jiang, Haiyang; Li, Cun; Li, Jiancheng; Li, Xiaowei; Ding, Shuangyang

    2009-05-15

    A sensitive and reliable method using gas chromatography-negative chemical ionization mass spectrometry (GC-NCI/MS) was developed for the simultaneous determination of chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF), and florfenicol amine (FFA) at trace levels in muscle and liver. Before extraction with ethyl acetate, CAP-d(5) was added to tissue samples as internal standard. The organic extracts were frozen to remove lipid and further purified by liquid-liquid extraction (LLE) with hexane and solid-phase extraction (SPE) using Oasis HLB cartridges. The target compounds were derivatized with BSTFA+1% TMCS prior to GC-NCI/MS determination in selected ion monitoring mode (SIM). The recovery values ranged from 78.5 to 105.5%, with relative standard deviations (RSD) <17%. The limits of detections (LODs) of 0.1 microg/kg for CAP and 0.5 microg/kg for TAP, FF, and FFA were obtain. Incurred sample and samples from local market were successfully analyzed using this method. PMID:19395324

  5. Negative Ion Chemical Ionization Mass Spectrometry for the Analysis of 3,5,6-trichloro-2-pyridinol in Saliva of Rats Exposed to Chlorpyrifos

    SciTech Connect

    Campbell, James A.; Timchalk, Chuck; Kousba, Ahmed A.; Wu, Hong; Valenzuela, Blandina R.; Hoppe, Eric W.

    2005-05-01

    Organophosphorus (OP) insecticides (e.g. chlorpyrifos) are widely used in a variety of applications, and the potential exists for significant occupational and environmental exposures. They have been associated with more occupational poisoning cases than any other class of insecticides. One of the best approaches for accurately assessing human dosimetry and determining risk from both occupational and environmental exposure is biomonitoring. Biological matrices such as blood and urine have been routinely used for biomonitoring; however, other matrices such as saliva represent a simple and readily obtainable fluid. As a result, saliva has been suggested as an alternative biological matrix for the evaluation of a broad range of biomarkers such as environmental contaminants, drugs of abuse, hormones, chemotherapeutics, heavy metals, and pesticides. Chlorpyrifos (CPF), and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCP), have been quantified in urine and blood as a biomarker for exposure to OP insecticides. The purpose of this study was to develop an analytical approach for detecting and quantitating the levels of TCP in saliva obtained from rats exposed to CPF and to evaluate the potential of saliva as a non-invasive biomonitoring matrix. Adult male rats were administered CPF, and blood and saliva were humanely collected for analysis of TCP and CPF. TCP was detected and quantitated in saliva using negative ion chemical ionization mass spectrometry with selected ion monitoring. Initial results indicate that saliva may be potentially utilized as a non-invasive biomonitoring matrix to determine exposure to organophosphate insecticides.

  6. Use of capillary gas chromatography with negative ion-chemical ionization mass spectrometry for the determination of perfluorocarbon tracers in the atmosphere.

    PubMed

    Cooke, K M; Simmonds TPG; Nickless, G; Makepeace, A P

    2001-09-01

    A sensitive and selective technique for the quantitative measurement of atmospheric perfluorocarbon trace species at the sub part per quadrillion (10(-15)) levels is presented. The method utilizes advances in adsorbent enrichment techniques coupled with benchtop capillary gas chromatography and negative ion-chemical ionization mass spectrometry. The development and enhancement of sampling technology for tracer experiments is described, and the results from background measurements and a preliminary field experiment are presented. The overall precision of the analytical method with respect to the preferred tracer for these atmospheric transport studies, perfluoromethylcyclohexane, was +/-1.7%. The background concentrations of perfluorodimethylcyclobutane, perfluoromethylcyclopentane, and perfluoromethylcyclohexane at a remote coastal location (Mace Head, Ireland, 53 degrees N, 10 degrees W) were found to be 2.5 (+/-0.4), 6.8 (+/-1.0), and 5.2 fL L(-1) (+/-1.3), respectively. Background concentrations within an urban conurbation (Bristol, U.K.) were slightly greater at 3.0 (+/-1.5), 8.1 (+/-1.8), and 6.3 fL L(-1) (+/-1.1), respectively. PMID:11569822

  7. Mechanism of branching in negative ionization fronts.

    PubMed

    Arrayás, Manuel; Fontelos, Marco A; Trueba, José L

    2005-10-14

    When a strong electric field is applied to nonconducting matter, narrow channels of plasma called streamers may form. Branchlike patterns of streamers have been observed in anode directed discharges. We explain a mechanism for branching as the result of a balance between the destabilizing effect of impact ionization and the stabilizing effect of electron diffusion on ionization fronts. The dispersion relation for transversal perturbation of a planar negative front is obtained analytically when the ratio D between the electron diffusion coefficient and the intensity of the externally imposed electric field is small. We estimate the spacing lambda between streamers and deduce a scaling law lambda approximately D(1/3). PMID:16241810

  8. Chemical protection against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Maisin, J. R.

    Some of the problems related to chemical protection against ionizing radiation are discussed with emphasis on : definition, classification, degree of protection, mechanisms of action and toxicity. Results on the biological response modifyers (BRMs) and on the combination of nontoxic (i.e. low) doses of sulphydryl radioprotectors and BRMs are presented.

  9. Ionization phenomena and sources of negative ions

    SciTech Connect

    Alton, G.D.

    1983-01-01

    Negative ion source technology has rapidly advanced during the past several years as a direct consequence of the discovery of Krohn that negative ion yields can be greatly enhanced by sputtering in the presence of Group IA elements. Today, most negative ion sources use this discovery directly or the principles implied to effect negative ion formation through surface ionization. As a consequence, the more traditional direct extraction plasma and charge exchange sources are being used less frequently. However, the charge exchange generation mechanism appears to be as universal, is very competitive in terms of efficiency and has the advantage in terms of metastable ion formation. In this review, an attempt has been made to briefly describe the principal processes involved in negative ion formation and sources which are representative of a particular principle. The reader is referred to the literature for specific details concerning the operational characteristics, emittances, brightnesses, species and intensity capabilities of particular sources. 100 references.

  10. An examination of pentafluorobenzoyl derivatization strategies for the analysis of fatty alcohols using gas chromatography/electron capture negative ion chemical ionization-mass spectrometry.

    PubMed

    Bowden, John A; Ford, David A

    2011-05-15

    Gas chromatography/electron capture negative ion chemical ionization-mass spectrometry (GC/ECNICI-MS) combined with pentafluorobenzoyl derivatization (PFBoyl) is frequently used for the sensitive detection of fatty alcohols (FOH). However, this derivatization technique suffers from a lack of established reaction protocols, time-consuming reactions, and the presence of reagent artifacts or unwanted derivatization by-products which can hinder analyte detection. Here, strategies are presented to reduce the problems associated with PFBoyl-derivatization, including (1) the optimization of reaction conditions (derivatization time and temperature) for a variety of PFBoyl-derivatized FOH, (2) an investigation of microwave-accelerated derivatization (MAD) as a rapid alternative heating mechanism for the PFBoyl-derivatization of FOH, and (3) an analysis of an alternative strategy employing a solvent extraction procedure post-derivatization to reduce the detrimental effects commonly associated with PFBoyl derivatization reagents. The optimal reaction conditions for the PFBoyl-derivatization of FOH were determined to be 60°C for 45 min. The investigation in MAD demonstrated the potential of obtaining comparable PFBoyl-derivatizations to those obtained using traditional heating methods, albeit in a reaction time of 3 min. An examination of several solvents for post-derivatization extraction revealed improved relative response factors in comparison to those obtained without solvent extraction. The best solvents for the PFBoyl-FOH extraction, dichloromethane and tert-butyl methyl ether, were also compared to the no solvent extraction samples with standard response curves and PFBoyl-derivatized FOH in Bligh-Dyer extracted rat plasma. PMID:21094100

  11. Determination of naltrexone and 6-beta-naltrexol in plasma by solid-phase extraction and gas chromatography-negative ion chemical ionization-mass spectrometry.

    PubMed

    Huang, W; Moody, D E; Foltz, R L; Walsh, S L

    1997-01-01

    Solid-phase extraction (SPE) and a one-step derivatization are combined with gas chromatography-negative ion chemical ionization-mass spectrometry to simplify a previously reported method for the determination of naltrexone and its metabolite, 6-beta-naltrexol, in human plasma. Deuterated isotopomers of naltrexone and 6-beta-naltrexol are used as internal standards. After SPE, the extracts are derivatized with pentafluoropropionic anhydride at room temperature to form predominantly the bispentafluoropropionyl derivative of naltrexone and the trispentafluoropropionyl derivative of 6-beta-naltrexol. The derivatized extracts are analyzed by monitoring ion currents at m/z 633 (naltrexone), m/z 636 (naltrexone-2H3), m/z 633 6-beta-naltrexol), and m/z 640 (6-beta-naltrexol-2H7). Control plasma samples containing 0.3, 3, or 30 ng/nl of each analyte were analyzed for precision and accuracy with the following results: intra-assay, the percentage of target concentrations were 107-113% for naltrexone and 107-120% for 6-beta-naltrexol, and the coefficients of variation (CVs) were 3.1-6.3% for naltrexone and 3.1-5.7% for 6-beta-naltrexol; interassay, the percentage of target concentrations were 103-110% for naltrexone and 110-113% for 6-beta-naltrexol, and the CVs were 6.1-9.1% for naltrexone and 5.9-9.1% for 6-beta-naltrexol. At the limit of quantitation (LOQ) of 0.1 ng/ml, both analytes quantified within 20% of the target concentration with CVs less than 17%. The extraction recoveries determined at 0.3 and 30 ng/ml were 79 and 80% for naltrexone and 76 and 75% for 6-beta-naltrexol. Bench-top stability tested with concentrations of 0.3 and 3.0 ng/ml did not decrease more than 10% from the zero-hour controls at 3, 6 and 24 h. Selectively was determined using plasma from six donors and none showed interfering peaks greater than 22% of the LOQ for naltrexone and 53% of the LOQ for 6-beta-naltrexol. Using this method, naltrexone and 6-beta-naltrexol were readily detected in plasma

  12. A multi-residue method for pesticides analysis in green coffee beans using gas chromatography-negative chemical ionization mass spectrometry in selective ion monitoring mode.

    PubMed

    Pizzutti, Ionara R; de Kok, Andre; Dickow Cardoso, Carmem; Reichert, Bárbara; de Kroon, Marijke; Wind, Wouter; Weber Righi, Laís; Caiel da Silva, Rosselei

    2012-08-17

    In this study, a new gas chromatography-mass spectrometry (GC-MS) method, using the very selective negative chemical ionization (NCI) mode, was developed and applied in combination with a modified acetonitrile-based extraction method (QuEChERS) for the analysis of a large number of pesticide residues (51 pesticides, including isomers and degradation products) in green coffee beans. A previously developed integrated sample homogenization and extraction method for both pesticides and mycotoxins analysis was used. An homogeneous slurry of green milled coffee beans and water (ratio 1:4, w/w) was prepared and extracted with acetonitrile/acetic acid (1%), followed by magnesium sulfate addition for phase separation. Aliquots from this extract could be used directly for LC-MS/MS analysis of mycotoxins and LC-amenable pesticides. For GC-MS analysis, a further clean-up was necessary. C18- and PSA-bonded silica were tested as dispersive solid-phase extraction (d-SPE) sorbents, separate and as a mixture, and the best results were obtained using C18-bonded silica. For the optimal sensitivity and selectivity, GC-MS detection in the NCI-selected ion monitoring (SIM) mode had to be used to allow the fast analysis of the difficult coffee bean matrix. The validation was performed by analyzing recovery samples at three different spike concentrations, 10, 20 and 50 μg kg(-1), with 6 replicates (n=6) at each concentration. Linearity (r(2)) of calibration curves, estimated instrument and method limits of detection and limits of quantification (LOD(i), LOD(m), LOQ(i) and LOQ(m), respectively), accuracy (as recovery %), precision (as RSD%) and matrix effects (%) were determined for each individual pesticide. From the 51 analytes (42 parent pesticides, 4 isomers and 5 degradation products) determined by GC-MS (NCI-SIM), approximately 76% showed average recoveries between 70-120% and 75% and RSD ≤ 20% at the lowest spike concentration of 10 μg kg(-1), the target method LOQ. For the

  13. Development and validation of an analytical method for determination of 3-chloropropane-1,2-diol in rat blood and urine by gas chromatography-mass spectrometry in negative chemical ionization mode.

    PubMed

    Berger-Preiss, Edith; Gerling, Susanne; Apel, Elisabeth; Lampen, Alfonso; Creutzenberg, Otto

    2010-09-01

    We have developed a highly selective and sensitive method using gas chromatography-mass spectrometry with negative chemical ionization for measuring 3-chloropropane-1,2-diol (3-MCPD) in rat blood and urine. Samples were adsorbed on silica gel, extracted with ethyl acetate, and derivatized by chemical derivatization with heptafluorobutyric acid anhydride. For quantification, matrix-based calibration curves and 3-MCPD-d (5), as an isotope-labeled internal standard, were used. The relative recoveries of 3-MCPD were between 80 and 110% in most cases and the relative standard deviations were typically less than 10%, with some exceptions. The limit of quantification of the method was found to be about 2 ng/mL. In conclusion, a valuable, robust, and sensitive method for detection of 3-MCPD is now available for biokinetics studies. PMID:20640896

  14. Trace level determination of organochlorine, organophosphorus and pyrethroid pesticides in lanolin using gel permeation chromatography followed by dual gas chromatography and gas chromatography-negative chemical ionization mass spectrometric confirmation.

    PubMed

    Jover, Eric; Bayona, Josep Maria

    2002-03-15

    A methodology for multi-class pesticide determination at trace level in lanolin is presented. Gel permeation chromatography on a Bio-Beads SX-3 column followed by a dual GC chromatographic determination has been developed. The effluent of the analytical column (50% diphenyl-methyl- or 14% cyanopropyl-phenylpolysiloxane) was split into an electron-capture and a nitrogen-phosphorus detection system. The chromatographic system was optimised for 28 pesticides commonly used to control sheep pests and corresponding to organochlorine, organophosphorus and pyretroid classes. Identification has been carried out by gas chromatography coupled to negative chemical ionization mass spectrometry. Recoveries ranged from 72 to 94% and the detection limits from 20 to 97 ng/g depending on the pesticide class, the RSDs were below 10%. Finally, the developed analytical methodology has been successfully applied to the determination of pesticides in several lanolin samples. PMID:11990995

  15. USE OF NEGATIVE ARI IONIZATION FOR REDUCING BACTERIAL PATHOGENS AND SPORES ON STAINLESS STEEL SURFACES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of chemicals in food plant sanitation for removing and killing microorganisms could be reduced by the use of alternative non-chemical interventions. Negative air ionization is a new technology that has shown potential to effectively reduce airborne and surface microorganisms. Current studies...

  16. Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale.

    PubMed

    Rebane, Riin; Kruve, Anneli; Liigand, Piia; Liigand, Jaanus; Herodes, Koit; Leito, Ivo

    2016-04-01

    Recent evidence has shown that the atmospheric pressure chemical ionization (APCI) mechanism can be more complex than generally assumed. In order to better understand the processes in the APCI source, for the first time, an ionization efficiency scale for an APCI source has been created. The scale spans over 5 logIE (were IE is ionization efficiency) units and includes 40 compounds with a wide range of chemical and physical properties. The results of the experiments show that for most of the compounds the ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source. Most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. At the same time, low-polarity hydrocarbons pyrene and anthracene are ionized in the APCI source but not in the ESI source. These results strongly imply that in APCI several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed. PMID:26943482

  17. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  18. Rapid multi-residue method for the determination of azinphos methyl, bromopropylate, chlorpyrifos, dimethoate, parathion methyl and phosalone in apricots and peaches by using negative chemical ionization ion trap technology.

    PubMed

    Liapis, Konstantinos S; Aplada-Sarlis, Pipina; Kyriakidis, Nikolaos V

    2003-05-01

    A rapid, selective and sensitive multi-residue method for the determination of six common pesticides in stone fruit samples is described. The proposed method involves the extraction of the pesticides with the use of acetone solvent followed by liquid-liquid partition with a mixture of dichloromethane and light petroleum (40-60 degrees C) and subsequent determination by a gas chromatographic-mass spectrometry system using ion trap technology in negative ion chemical ionization mode. The average percent recoveries of bromopropylate and phosalone in the concentration range 0.2-2.0 mg/kg were 97.3 +/- 6.7 to 120 +/- 1.0%, while the recoveries of chlorpyrifos and parathion methyl examined in the concentration range 0.02-0.2 mg/kg were 95.5 +/- 7.5 to 145 +/- 3.6%, the recoveries of azinphos methyl in the range 0.05-0.5 mg/kg were 74.8 +/- 29.6 to 96.5 +/- 13% and those of dimethoate in the range 0.1-1.0 mg/kg were 73.1 +/- 5.7 to 92.8 +/- 2.8% for n = 3 for all the above pesticides. The high mean recovery (145%) for chlorpyrifos is attributed to a matrix enhancement effect. The limits of quantitation in apricots were 0.01 mg/kg for chlorpyrifos, 0.02 mg/kg for dimethoate and parathion methyl, 0.05 mg/kg for azinphos methyl and phosalone and 0.1 mg/kg for bromopropylate. The usefulness of tandem mass spectrometry for confirmation purposes was also examined. The method was applied successfully to the determination of the target pesticides in 32 samples of stone fruits (apricots and peaches). PMID:12830919

  19. Ultrasound-assisted dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry in negative chemical ionization mode for the determination of polybrominated diphenyl ethers in water.

    PubMed

    Zhang, Qian; Liang, Tao; Guan, Lili

    2013-04-01

    A simple and economical method for the determination of eight polybrominated diphenyl ethers (BDE-28, 47, 99, 100,153,154,183, and 209) in water was developed. This method involves the use of ultrasound-assisted dispersive liquid-liquid microextraction combined with GC-MS in negative chemical ionization mode. Various parameters affecting the extraction efficiency, including the type and volume of extraction and dispersive solvents, salt concentration, extraction time, and ultrasonic time, were investigated. A volume of 1.0 mL of acetone (dispersive solvent) containing 10 μL tetrachloroethylene (extraction solvent) was injected into 5.0 mL of water samples and then emulsified by ultrasound for 2.0 min to produce the cloudy solution. Under the optimal condition, the enrichment factors for the eight PBDEs were varied from 845- to 1050-folds. Good linearity was observed in the range of 1.0-200 ng L(-1) for BDE-28, 47, 99, and 100; 5.0-200 ng L(-1) for BDE-153, 154, and 183; and 5.0-500 ng L(-1) for BDE-209. The RSD values were in the range of 2.5-8.4% (n = 5) and the LODs ranged from 0.40 to 2.15 ng L(-1) (S/N = 3). The developed method was applied for the determination of eight BPDEs in the river and lake water samples, and the mean recoveries at spiking levels of 5.0 and 50.0 ng L(-1) were in the range of 70.6-105.1%. PMID:23483741

  20. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.

    PubMed

    Albert, Anastasia; Engelhard, Carsten

    2012-12-18

    Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

  1. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Barcelo, D.

    2001-01-01

    An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.

  2. Matrix-assisted laser desorption/ionization matrices for negative mode metabolomics.

    PubMed

    Fagerer, Stephan R; Nielsen, Simone; Ibáñez, Alfredo; Zenobi, Renato

    2013-01-01

    Matrix-assisted laser desorption/ionization (MALDI) has been shown to be highly sensitive for analyzing low-mass compounds such as metabolites if the right matrix is used. 9-aminoacridine (9AA) is the most commonly employed matrix for negative mode MALDI-MS in metabolomics. However, matrix interferences and the strongly varying sensitivity for different metabolites make a search for alternative matrices desirable, in order to identify compounds with a different chemical background and/or favoring a different range of analytes. We tested the performance of a series of potential negative mode MALDI matrices with a mix of 29 metabolites containing amino acids, nucleotide phosphates and Krebs cycle intermediates. While ethacridine lactate was found to provide limits of detection (LODs) in the low femtomole range for nucleotide phosphates, amino acids and Krebs cycle intermediates in the low picomole range, 4-amino-2-methylquinoline showed LODs in the picomole range for most metabolites, but is capable of ionizing a broader range of analytes than both 9AA and ethacridine. PMID:23841224

  3. Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization.

    PubMed

    Galhena, Asiri S; Harris, Glenn A; Nyadong, Leonard; Murray, Kermit K; Fernández, Facundo M

    2010-03-15

    Presented here is a novel ambient ion source termed infrared laser ablation metastable-induced chemical ionization (IR-LAMICI). IR-LAMICI integrates IR laser ablation and direct analysis in real time (DART)-type metastable-induced chemical ionization for open air mass spectrometry (MS) ionization. The ion generation in the IR-LAMICI source is a two step process. First, IR laser pulses impinge the sample surface ablating surface material. Second, a portion of ablated material reacts with the metastable reactive plume facilitating gas-phase chemical ionization of analyte molecules generating protonated or deprotonated species in positive and negative ion modes, respectively. The successful coupling of IR-laser ablation with metastable-induced chemical ionization resulted in an ambient plasma-based spatially resolved small molecule imaging platform for mass spectrometry (MS). The analytical capabilities of IR-LAMICI are explored by imaging pharmaceutical tablets, screening counterfeit drugs, and probing algal tissue surfaces for natural products. The resolution of a chemical image is determined by the crater size produced with each laser pulse but not by the size of the metastable gas jet. The detection limits for an active pharmaceutical ingredient (acetaminophen) using the IR-LAMICI source is calculated to be low picograms. Furthermore, three-dimensional computational fluid dynamic simulations showed improvements in the IR-LAMICI ion source are possible. PMID:20155978

  4. UPTAKE OF IONIZABLE ORGANIC CHEMICALS AT FISH GILLS

    EPA Science Inventory

    Uptake of organic acids by fish, and their toxicity, generally decrease with increasing pH above the pK, presumably due to neutral forms of such chemicals being more readily adsorbed than their ionized forms. However, uptake usually exceeds that expected based just on the concent...

  5. Tetramethylammonium hydroxide as a reagent for complex mixture analysis by negative ion electrospray ionization mass spectrometry.

    PubMed

    Lobodin, Vladislav V; Juyal, Priyanka; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G

    2013-08-20

    Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) enables the direct characterization of complex mixtures without prior fractionation. High mass resolution can distinguish peaks separated by as little as 1.1 mDa), and high mass accuracy enables assignment of elemental compositions in mixtures that contain tens of thousands of individual components (crude oil). Negative electrospray ionization (ESI) is particularly useful for the speciation of the most acidic petroleum components that are implicated in oil production and processing problems. Here, we replace conventional ammonium hydroxide by tetramethylammonium hydroxide (TMAH, a much stronger base, with higher solubility in toluene) to more uniformly deprotonate acidic components of complex mixtures by negative ESI FTICR MS. The detailed compositional analysis of four crude oils (light to heavy, from different geographical locations) reveals that TMAH reagent accesses 1.5-6 times as many elemental compositions, spanning a much wider range of chemical classes than does NH4OH. For example, TMAH reagent produces abundant negative electrosprayed ions from less acidic and neutral species that are in low abundance or absent with NH4OH reagent. More importantly, the increased compositional coverage of TMAH-modified solvent systems maintains, or even surpasses, the compositional information for the most acidic species. The method is not limited to petroleum-derived materials and could be applied to the analysis of dissolved organic matter, coal, lipids, and other naturally occurring compositionally complex organic mixtures. PMID:23919350

  6. Gasification and Ionization of Chemically Complex Liquids for FRC Injection

    NASA Astrophysics Data System (ADS)

    Holmes, Michael; Hill, Carrie

    2014-10-01

    Ion thrusters provide reliable and efficient spacecraft propulsion but are limited to noble gas propellants to limit chemical attack of components. However, thrusters based on Field Reversed Configuration (FRC) plasmas are becoming a reality. High beta compact-toroids are generated within an FRC thruster and then expelled to provide thrust. The closed field lines restrict the plasma from attacking thruster components. More convenient propellants such as water are therefore possible. The FRC thruster would generate a series of compact-toroids (plasmoids) to develop continuous spacecraft thrust. Each plasmoid ejection would empty the discharge region. The feed system would then refill the discharge region with partially ionized gas for the next discharge. The ionization part of this feed system is the subject of this paper. The question is how to produce a uniform, chemically complex, ionized gas within the discharge region that optimizes compact-toroid formation? We will be measuring chemical state, ionization state, and uniformity as the propellant enters the discharge region.

  7. Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals.

    PubMed

    Gilbert-López, Bienvenida; Schilling, Michael; Ahlmann, Norman; Michels, Antje; Hayen, Heiko; Molina-Díaz, Antonio; García-Reyes, Juan F; Franzke, Joachim

    2013-03-19

    In this work, the combined use of desorption by a continuous wave near-infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of nonvolatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, ease of use, and small size. To achieve an efficient desorption, the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, cyclo-1,3,5,7-tetramethylene tetranitrate (HMX), and cyclo-1,3,5-trimethylene trinitramine (RDX)). A comparative evaluation revealed that the use of the laser is advantageous, compared to just heating the substrate surface. PMID:23419061

  8. Self-consistent chemical model of partially ionized plasmas

    SciTech Connect

    Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E.

    2011-01-15

    A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

  9. Characterization of Nonpolar Lipids and Selected Steroids by Using Laser-Induced Acoustic Desorption/Chemical Ionization, Atmospheric Pressure Chemical Ionization, and Electrospray Ionization Mass Spectrometry†

    PubMed Central

    Jin, Zhicheng; Daiya, Shivani; Kenttämaa, Hilkka I.

    2011-01-01

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H2O) with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids. PMID:21528012

  10. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure.

    PubMed

    Marotta, Ester; Paradisi, Cristina; Scorrano, Gianfranco

    2004-07-01

    A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed

  11. [Morphology determination of ionization region in multi-needle-to-plate negative corona discharge].

    PubMed

    Su, Peng-Hao; Zhu, Yi-Min; Chen, Hai-Feng

    2007-11-01

    Based on the former work on the current-voltage characteristics of a multi-needle-to-plate negative corona discharge at atmospheric pressure, the present work uses the method of OES (optical emission spectrum) for measuring N2 emission spectrum, and the morphology determination of the ionization region has been investigated. According to the distribution of N2 second positive band's intensity I(SPB), the highest of all bands, the outline of the ionization region was drawn fairly accurately. The relationship between I(SPB) and discharge current I can be obtained through the volume integral of the I(SPB). The experimental results show that the size of the ionization region enhances with the rise of the applied voltage U, and the electron avalanche begins at about 1 mm off the tips of needle electrode and multiplies only in the range of several millimeters, indicating that, the range of the ionization region is at the magnitude of mm. The electron avalanche along the axis of the needle develops farther than that along the radial direction of needle, and the shape of the ionization region looks like a bullet. The integral of I(SPB) is second-order linear to I, with a very second order coefficient, meaning that the main excited substance is N2. Energetic electrons mainly exist in ionization region while ions are the main charged particles to form discharge current in the transfer region. PMID:18260386

  12. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    Negative electrospray ionization/MS enabled rapid, specific, and selective screening for unique polar components at parts per million concentrations in commercial hydrocarbon products without extensive sample preparation, separation, chromatography, or quantitation. Commercial fuel types were analyzed with this method, including kerosene, jet fuel, white gas, charcoal lighter fluid, on-road and off-road diesel fuels, and various grades and brands of gasolines. The different types of fuels produced unique and relatively simple spectra. These analyses were then applied to hydrocarbon samples from a large, long-term fuel spill. Although the alkane, isoprenoid, and alkylcyclohexane portions began to biodegrade or weather, the polar components in these samples remained relatively unchanged. The type of fuel involved was readily identified by negative electrospray ionization/MS. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).

  13. The influence of negative ionization of the air on motor activity in Syrian hamsters ( Masocricetus auratus Waterhouse) in light conditions

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Zofia; Dabrowska, Barbara; Schiffer, Zofia

    1989-12-01

    The motor activity of Syrian hamsters ( Mesocricetus auratus Waterhouse) under the influence of negative ionization of the atmosphere applied for 10, 20 or 30 min per day was investigated. An ionizer with output of 14000 light negative ions per 1 cm3 of air was used. Studies carried out in the light phase of a 12∶12 h light/dark regime revealed a relation between the reaction of the animal and the time of day at which ionization was applied. Ionization for 20 or 30 min in the light phase decreased motor activity, while 10 min of ionization increased it compared to control animals. Ionization in the dark phase gave a more distinct rise in activity than that applied in the light phase for all three durations of ionization.

  14. Application of Ni-63 photo and corona discharge ionization for the analysis of chemical warfare agents and toxic wastes

    NASA Technical Reports Server (NTRS)

    Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.

    1995-01-01

    Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.

  15. Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, K. M.; Beaver, M. R.; St. Clair, J. M.; Crounse, J. D.; Paulot, F.; Wennberg, P. O.

    2011-08-01

    Chemical ionization mass spectrometry (CIMS) enables online, fast, in situ detection and quantification of hydroxyacetone and glycolaldehyde. Two different CIMS approaches are demonstrated employing the strengths of single quadrupole mass spectrometry and triple quadrupole (tandem) mass spectrometry. Both methods are capable of the measurement of hydroxyacetone, an analyte with minimal isobaric interferences. Tandem mass spectrometry provides direct separation of the isobaric compounds glycolaldehyde and acetic acid using distinct, collision-induced dissociation daughter ions. Measurement of hydroxyacetone and glycolaldehyde by these methods was demonstrated during the ARCTAS-CARB 2008 campaign and the BEARPEX 2009 campaign. Enhancement ratios of these compounds in ambient biomass burning plumes are reported for the ARCTAS-CARB campaign. BEARPEX observations are compared to simple photochemical box model predictions of biogenic volatile organic compound oxidation at the site.

  16. Characterization of glycosphingolipids by direct inlet chemical ionization mass spectrometry.

    PubMed

    Ariga, T; Murata, T; Oshima, M; Maezawa, M; Miyatake, T

    1980-09-01

    Permethylated derivatives of cerebrosides and ceramide di-, tri-, tetra-, and penta-hexosides were analyzed by the direct inlet ammonia chemical ionization (CI) mass spectrometry. In the CI mass spectra, the fragment ions produced by the loss of methanol from the protonated molecular ion were observed in all of the glycosphingolipids. Other fragment ions due to the cleavage of glycosidic moiety were major ones under the CI conditions. These ions provide information on the molecular species of glycosphingolipids and the sugar sequence of their oligosaccharides. Glycosphingolipids with hydroxy fatty acids could also be differentiated from those with nonhydroxy fatty acids by comparing the intensities of characteristic fragment ions. The CI method should be particularly useful in structural studies of glycosphingolipids from natural sources. PMID:7441059

  17. Constraining Anthropogenic and Biogenic Emissions Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Spencer, Kathleen M.

    Numerous gas-phase anthropogenic and biogenic compounds are emitted into the atmosphere. These gases undergo oxidation to form other gas-phase species and particulate matter. Whether directly or indirectly, primary pollutants, secondary gas-phase products, and particulate matter all pose health and environmental risks. In this work, ambient measurements conducted using chemical ionization mass spectrometry are used as a tool for investigating regional air quality. Ambient measurements of peroxynitric acid (HO2NO2) were conducted in Mexico City. A method of inferring the rate of ozone production, PO3, is developed based on observations of HO2NO 2, NO, and NO2. Comparison of this observationally based PO3 to a highly constrained photochemical box model indicates that regulations aimed at reducing ozone levels in Mexico City by reducing NOx concentrations may be effective at higher NO x levels than predicted using accepted photochemistry. Measurements of SO2 and particulate sulfate were conducted over the Los Angeles basin in 2008 and are compared to measurements made in 2002. A large decrease in SO2 concentration and a change in spatial distribution are observed. Nevertheless, only a modest reduction in sulfate concentration is observed at ground sites within the basin. Possible explanations for these trends are investigated. Two techniques, single and triple quadrupole chemical ionization mass spectrometry, were used to quantify ambient concentrations of biogenic oxidation products, hydroxyacetone and glycolaldehyde. The use of these techniques demonstrates the advantage of triple quadrupole mass spectrometry for separation of mass analogues, provided the collision-induced daughter ions are sufficiently distinct. Enhancement ratios of hydroxyacetone and glycolaldehyde in Californian biomass burning plumes are presented as are concentrations of these compounds at a rural ground site downwind of Sacramento.

  18. Ion chemistry of VX surrogates and ion energetics properties of VX: new suggestions for VX chemical ionization mass spectrometry detection.

    PubMed

    Midey, Anthony J; Miller, Thomas M; Viggiano, A A; Bera, Narayan C; Maeda, Satoshi; Morokuma, Keiji

    2010-05-01

    Room temperature rate constants and product ion branching ratios have been measured for the reactions of numerous positive and negative ions with VX chemical warfare agent surrogates representing the amine (triethylamine) and organophosphonate (diethyl methythiomethylphosphonate (DEMTMP)) portions of VX. The measurements have been supplemented by theoretical calculations of the proton affinity, fluoride affinity, and ionization potential of VX and the simulants. The results show that many proton transfer reactions are rapid and that the proton affinity of VX is near the top of the scale. Many proton transfer agents should detect VX selectively and sensitively in chemical ionization mass spectrometers. Charge transfer with NO(+) should also be sensitive and selective since the ionization potential of VX is small. The surrogate studies confirm these trends. Limits of detection for commercial and research grade CIMS instruments are estimated at 80 pptv and 5 ppqv, respectively. PMID:20384284

  19. Chemical Abundances and Properties of the Ionized Gas in NGC 1705

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Pasquali, A.; Aloisi, A.; Mignoli, M.; Romano, D.

    2015-11-01

    We obtained [O iii] narrow-band imaging and multi-slit MXU spectroscopy of the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical abundances of planetary nebulae and H ii regions and, more in general, to characterize the properties of the ionized gas. The auroral [O iii]λ 4363 line was detected in all but 1 of the 11 analyzed regions, allowing for a direct estimate of their electron temperature. The only object for which the [O iii]λ 4363 line was not detected is a possible low-ionization PN, the only one detected in our data. For all the other regions, we derived the abundances of nitrogen, oxygen, neon, sulfur, and argon out to ˜1 kpc from the galaxy center. We detect for the first time in NGC 1705 a negative radial gradient in the oxygen metallicity of -0.24+/- 0.08 dex kpc-1. The element abundances are all consistent with values reported in the literature for other samples of dwarf irregular and BCD galaxies. However, the average (central) oxygen abundance, 12+{log}({{O}}/{{H}})=7.96+/- 0.04, is ˜0.26 dex lower than previous literature estimates for NGC 1705 based on the [O iii]λ 4363 line. From classical emission line diagnostic diagrams, we exclude a major contribution from shock excitation. On the other hand, the radial behavior of the emission line ratios is consistent with the progressive dilution of radiation with increasing distance from the center of NGC 1705. This suggests that the strongest starburst located within the central ˜150 pc is responsible for the ionization of the gas out to at least ˜1 kpc. The gradual dilution of the radiation with increasing distance from the center reflects the gradual and continuous transition from the highly ionized H ii regions in the proximity of the major starburst into the diffuse ionized gas.

  20. Peroxy radical observations using chemical ionization mass spectrometry during TOPSE

    NASA Astrophysics Data System (ADS)

    Cantrell, Christopher A.; Edwards, G. D.; Stephens, S.; Mauldin, L.; Kosciuch, E.; Zondlo, M.; Eisele, F.

    2003-03-01

    Peroxy radicals (HO2 + RO2) were measured by chemical conversion-chemical ionization mass spectroscopy in the TOPSE (Tropospheric Ozone Production about the Spring Equinox) campaign that took place February through May 2000. Instrumentation for these measurements was deployed on the NCAR/NSF C-130 aircraft that flew at latitudes from 40 to 85°N, and altitudes from the surface to 7.5 km over the North American continent. The measurements demonstrate the evolution of photochemical activity as time progresses through the study period due to increases in free radical source rates. The increase in average peroxy radical concentration moves northward as the maximum solar elevation and length of sunlit days increase. HOxROx (HO2 + RO2) concentrations are distributed lognormally with means of 11.5 and 7.8 pptv for the middle-latitude band (MLB) and high-latitude band (HLB), respectively. The observations agree well on average with steady state derived concentrations; measurement-model concentration ratios are 1.04 (MLB) and 0.94 (HLB). Concentrations within a given latitude band and altitude region sometimes appear to increase with NOx concentrations, but this correlation nearly disappears at low and moderate NOx levels when the data are parsed by radical production rate; lower radical levels are observed at the highest NOx levels measured (near 1 ppbv). These data are compared with results from other recent observations utilizing a variety of platforms.

  1. A Negative-Surface Ionization for Generation of Halogen Radioactive Ion Beams

    SciTech Connect

    Zaim, H.

    2001-04-16

    A simple and efficient negative surface ionization source has been designed, fabricated and initially tested for on-line generation of radioactive ion beams of the halogens (Cl, Br, I, and At) for use in the nuclear-structure and nuclear-astrophysics research programs at the Holifield Radioactive Ion Beam Facility. The source utilizes a solid, spherical geometry LaB{sub 6} surface ionizer for forming highly electronegative atoms and molecules. Despite its widely publicized propensity for being easily poisoned, no evidences of this effect were experienced during testing of the source. Nominal efficiencies of 15% for Br{sup {minus}} beam generation were obtained during off-line evaluation of the source with AlBr3 feed material when account is taken of the fractional dissociation of the molecule. Principles of operation, design features, operational parameter data, initial performance results, and beam quality data (emittance) are presented in this article.

  2. Alternative Filament Loading Solution for Accurate Analysis of Boron Isotopes by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2008-12-01

    The negative thermal ionization mass spectrometry technique has become the major tool for investigating boron isotopes in the environment. The high sensitivity of BO2- ionization enables measurements of ng levels of boron. However, B isotope measurement by this technique suffers from two fundamental problems (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; and (2) CNO- interference on mass 42 that is often present in some load solutions (such as B-free seawater processed through ion-exchange resin). Here we report a potentially improved methodology using an alternative filament loading solution with a recently-installed Thermo Scientific TRITON thermal ionization mass spectrometer. Our initial results suggest that this solution -- prepared by combining high-purity single- element standard solutions of Ca, Mg, Na, and K in proportions similar to those in seawater in a 5% HCl matrix -- may offer significant improvement over some other commonly used load solutions. Total loading blank is around 15pg as determined by isotope dilution (NIST952). Replicate analyses of NIST SRM951 and modern seawater thus far have yielded 11B/10B ratios of 4.0057 (±0.0008, n=14) and 4.1645 (±0.0017, n=7; δ11B=39.6 permil), respectively. Replicate analyses of samples and SRM951 yield an average standard deviation (1 σ) of approximately 0.001 (0.25 permil). Fractionation during analysis (60-90 minutes) has thus far typically been less than 0.002 (0.5 permil). The load solution delivers ionization efficiency similar to directly-loaded seawater and has negligible signal at mass 26 (CN-), a proxy for the common interfering molecular ion (CNO-) on mass 42. Standards and samples loaded with the solution behave fairly predictably during filament heating and analysis, thus allowing for the possibility of fully automated data collection.

  3. Chemical Aspects of the Extractive Methods of Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Badu-Tawiah, Abraham K.; Eberlin, Livia S.; Ouyang, Zheng; Cooks, R. Graham

    2013-04-01

    Ambient ionization techniques allow complex chemical samples to be analyzed in their native state with minimal sample preparation. This brings the obvious advantages of simplicity, speed, and versatility to mass spectrometry: Desorption electrospray ionization (DESI), for example, is used in chemical imaging for tumor margin diagnosis. This review on the extractive methods of ambient ionization focuses on chemical aspects, mechanistic considerations, and the accelerated chemical reactions occurring in charged liquid droplets generated in the spray process. DESI uses high-velocity solvent droplets to extract analytes from surfaces. Nano-DESI employs liquid microjunctions for analyte dissolution, whereas paper-spray ionization uses DC potentials applied to wet porous material such as paper or biological tissue to field emit charged analyte-containing solvent droplets. These methods also operate in a reactive mode in which added reagents allow derivatization during ionization. The accelerated reaction rates seen in charged microdroplets are useful in small-scale rapid chemical synthesis.

  4. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    An application of electrospray ionization/mass spectrometry for identification of various commercially refined fuels using the unique signature of polar components, was investigated. The samples were analyzed by mass spectrometry using negative electrospray on an Agilent Series 1100 liquid chromatograph/mass spectrometer. These analysis were applied to hydrocarbon samples from a large, long-term fuel spill which were taken from the subsurface and different extent of biodegradation or weathering. The technique provided rapid identification of hydrocarbons released into the environment because these polar compounds are unique in different fuels.

  5. Symmetry Switching of Negative Thermal Expansion by Chemical Control.

    PubMed

    Senn, Mark S; Murray, Claire A; Luo, Xuan; Wang, Lihai; Huang, Fei-Ting; Cheong, Sang-Wook; Bombardi, Alessandro; Ablitt, Chris; Mostofi, Arash A; Bristowe, Nicholas C

    2016-05-01

    The layered perovskite Ca3-xSrxMn2O7 is shown to exhibit a switching from a material exhibiting uniaxial negative to positive thermal expansion as a function of x. The switching is shown to be related to two closely competing phases with different symmetries. The negative thermal expansion (NTE) effect is maximized when the solid solution is tuned closest to this region of phase space but is switched off suddenly on passing though the transition. Our results show for the first time that, by understanding the symmetry of the competing phases alone, one may achieve unprecedented chemical control of this unusual property. PMID:26927232

  6. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode.

    PubMed

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low pK a1 and pK a2) and to have high hydrophobicity (logP ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions. Graphical Abstract ᅟ. PMID:27044024

  7. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-07-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low p K a1 and p K a2) and to have high hydrophobicity (log P ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  8. The Effect of Salts on Electrospray Ionization of Amino Acids in the Negative Mode

    NASA Technical Reports Server (NTRS)

    Kim, H. I.; Johnson, P. V.; Beegle, L. W.; Kanik, I.

    2004-01-01

    The continued search for organics on Mars will require the development of simplified procedures for handling and processing of soil or rock core samples prior to analysis by onboard instrumentation. Extraction of certain organic molecules such as amino acids from rock and soil samples using a liquid solvent (H2O) has been shown to be more efficient (by approximately an order of magnitude) than heat extraction methods. As such, liquid extraction (using H2O) of amino acid molecules from rock cores or regolith material is a prime candidate for the required processing. In this scenario, electrospray ionization (ESI) of the liquid extract would be a natural choice for ionization of the analyte prior to interrogation by one of a variety of potential analytical separation techniques (mass spectroscopy, ion mobility spectroscopy, etc.). Aside from the obvious compatibility of ESI and liquid samples, ESI offers simplicity and a soft ionization capability. In order to demonstrate that liquid extraction and ESI can work as part of an in situ instrument on Mars, we must better understand and quantify the effect salts have on the ESI process. In the current work, we have endeavored to investigate the feasibility and limitations of negative mode ESI of Martian surface samples in the context of sample salt content using ion mobility spectroscopy (IMS).

  9. Quantification of hydroxyacetone and glycolaldehyde using chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    St. Clair, J. M.; Spencer, K. M.; Beaver, M. R.; Crounse, J. D.; Paulot, F.; Wennberg, P. O.

    2014-04-01

    Chemical ionization mass spectrometry (CIMS) enables online, rapid, in situ detection and quantification of hydroxyacetone and glycolaldehyde. Two different CIMS approaches are demonstrated employing the strengths of single quadrupole mass spectrometry and triple quadrupole (tandem) mass spectrometry. Both methods are generally capable of the measurement of hydroxyacetone, an analyte with known but minimal isobaric interferences. Tandem mass spectrometry provides direct separation of the isobaric compounds glycolaldehyde and acetic acid using distinct, collision-induced dissociation daughter ions. The single quadrupole CIMS measurement of glycolaldehyde was demonstrated during the ARCTAS-CARB (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites - California Air Resources Board) 2008 campaign, while triple quadrupole CIMS measurements of glycolaldehyde and hydroxyacetone were demonstrated during the BEARPEX (Biosphere Effects on Aerosols and Photochemistry Experiment) 2009 campaign. Enhancement ratios of glycolaldehyde in ambient biomass-burning plumes are reported for the ARCTAS-CARB campaign. BEARPEX observations are compared to simple photochemical box model predictions of biogenic volatile organic compound oxidation at the site.

  10. Ionization of Samarium by Chemical Releases in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Holmes, J. M.; Pedersen, T. R.; Caton, R.; Miller, D.; Groves, K. M.

    2014-12-01

    The release of Samarium vapor into the upper atmosphere was studied using during the Air Force Research Laboratory sponsored Metal Oxide Space Cloud (MOSC) rocket launches in May 2009. The Naval Research Laboratory supported these experiments with 3-D photochemical modeling of the artificial plasma cloud including (1) reactions with atomic oxygen, (2) photo excitation, (3) photoionization, (4) dissociative recombination, and (5) ion and neutral diffusion. NRL provided the experimental diagnostic instrument on the rocket which was a dual frequency radio beacon on the rocket to measure changes in total electron content. The AFRL provided ground based diagnostics of incoherent scatter radar and optical spectroscopy and imagery. The NRL Chemical Release Model (CRM) has over 600 excited states of atomic Samarium neutrals, atomic ions, along with Samarium Oxide Ions and electrons. Diffusive transport of neutrals in cylindrical geometry and ions along magnetic field lines is computed along with the reactive flow to predict the concentrations of Sm, Sm-Ion, Sm0, and SmO Ion. Comparison of the CRM with observations demonstrates that Sm release into the upper atmosphere initially produces enhanced electron densities and SmO-Ions. The diatomic ions recombine with electrons to yield neutral Sm and O. Only the photo ionization of Sm yields a stable atomic ion that does not substantially recombine. The MOSC releases in sunlight yielded long duration ion clouds that can be replicated with the CRM. The CRM predicts that Sm releases in darkness would not produce long duration plasma clouds because of the lack of photo excitation and photoionization.

  11. Determination of nicarbazin in eggs by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Blanchflower, W J; Hughes, P J; Kennedy, D G

    1997-01-01

    A method was developed to determine in eggs 2 components [4,6-dimethyl-2-hydroxypyrimidine and 1,3-bis(4-nitrophenyl)urea] of the anticoccidial drug nicarbazin, used to treat poultry. Samples were extracted with acetonitrile, and the extracts were washed with hexane and evaporated to dryness before analysis by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. By switching from positive to negative ion monitoring and using gradient elution, both components were measured within one run. The limit of quantitation of the assay was 10 ng/g for each component. The results of a preliminary feeding trial in which chickens were fed contamination levels of the drug are also reported. PMID:9419856

  12. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    PubMed

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-01

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring. PMID:23339735

  13. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion. PMID:22528201

  14. Formation of Metal-Adducted Analyte Ions by Flame-Induced Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie

    2016-05-17

    A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode. PMID:27093572

  15. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  16. Chemical-ionization visible and ultraviolet gas lasers: A concept

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.

    1975-01-01

    Charge-transfer reactions or Penning ionization reactions are used to produce population inversions between electronic states of molecular ions which should result in stimulated emission in ultraviolet and visible regions. Such lasers could be used in study of short-lived reaction intermediates, crystal structure and scattering, and photolysis.

  17. CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)

    EPA Science Inventory

    A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

  18. Plasma-chemical simulation of negative corona near the inception voltage

    NASA Astrophysics Data System (ADS)

    Pontiga, Francisco; Duran-Olivencia, Francisco J.; Castellanos, Antonio

    2013-09-01

    The spatiotemporal development of Trichel pulses in oxygen between a spherical electrode and a grounded plane has been simulated using a fluid approximation that incorporates the plasma chemistry of the electrical discharge. Elementary plasma processes, such as ionization, electron attachment, electron detachment, recombination between ions and chemical reactions between neutral species, are all included in a chemical model consisting of 55 reactions between 8 different species (electrons, O2+,O2-,O3-,O-, O2, O, O3). Secondary emission at the cathode by the impact of positive ions and photons is also considered. The spatial distribution of species is computed in three dimensions (2D-axysimmetrical) by solving Poisson's equation for the electric field and the continuity equations for the species, with the inclusion of the chemical gain/loss rate due to the particle interaction. The results of the simulation reveal the interplay between the different negative ions during the development of every Trichel pulse, and the rate of production of atomic oxygen and ozone by the corona discharge. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.

  19. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    PubMed

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-01

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision. PMID:25406110

  20. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko; Aikawa, Yuri

    2012-03-10

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO{sup +}, N{sub 2}H{sup +}, H{sub 2}O, CO{sub 2}, and CH{sub 3}OH. The only molecule significantly affected by the X-ray ionization is N{sub 2}H{sup +}, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H{sub 2} and C{sup +}/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable 'dead zone' where accretion is suppressed, present in a layer, Z/R {approx}< 0.1-0.2, in the disk midplane, within R Almost-Equal-To 200 AU.

  1. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ. PMID:26133527

  2. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  3. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGESBeta

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through a combinationmore » of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  4. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.

  5. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Zoerb, M. C.; Campbell, N. R.; Zimmermann, K. J.; Blomquist, B. W.; Huebert, B. J.; Bertram, T. H.

    2015-10-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer. Measurements from the two instruments were highly correlated (R2=0.80) over a wide range of sampling conditions.

  6. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  7. High-Resolution Desorption Electrospray Ionization Mass Spectrometry for Chemical Characterization of Organic Aerosols

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Roach, Patrick J.; Slysz, Gordon W.; Anderson, Gordon A.; Nizkorodov, Serguei; Bones, David L.; Nguyen, Lucas

    2010-03-01

    Characterization of the chemical composition and chemical transformations of secondary organic aerosol (SOA) is both a major challenge and the area of greatest uncertainty in current aerosol research. This study presents the first application of desorption electrospray ionization combined with high-resolution mass spectrometry (DESI-MS) for detailed chemical characterization and studies of chemical aging of OA collected on Teflon substrates. DESI-MS offers unique advantages both for detailed characterization of chemically labile components in OA that cannot be detected using more traditional electrospray ionization mass spectrometry (ESI-MS) and for studying chemical aging of OA. DESI-MS enables rapid characterization of OA samples collected on substrates by eliminating the sample preparation stage. In addition, it enables detection and structural characterization of chemically labile molecules in OA samples by minimizing the residence time of analyte in the solvent. SOA produced by the ozonolysis of limonene (LSOA) was allowed to react with gaseous ammonia. Chemical aging resulted in measurable changes in the optical properties of LSOA observed using UV- visible spectroscopy. DESI-MS combined with tandem mass spectrometry experiments (MS/MS) enabled identification of species in aged LSOA responsible for absorption of the visible light. Detailed analysis of the experimental data allowed us to identify chemical changes induced by reactions of LSOA constituents with ammonia and distinguish between different mechanisms of chemical aging.

  8. [Development of a membrane inlet-single photon ionization/chemical ionization-mass spectrometer for online analysis of VOCs in water].

    PubMed

    Hua, Lei; Wu, Qing-Hao; Hou, Ke-Yong; Cui, Hua-Peng; Chen, Ping; Zhao, Wu-Duo; Xie, Yuan-Yuan; Li, Hai-Yang

    2011-12-01

    A home-made membrane inlet- single photon ionization/chemical ionization- time-of-flight mass spectrometer has been described. A vacuum ultraviolet (VUV) lamp with photon energy of 10.6 eV was used as the light source for single photon ionization (SPI). Chemical ionization (CI) was achieved through ion-molecule reactions with O2- reactant ions generated by photoelectron ionization. The two ionization modes could be rapidly switched by adjusting electric field in the ionization region within 2 s. Membrane inlet system used for rapid enrichment of volatile organic compounds (VOCs) in water was constructed by using a polydimethylsiloxane (PDMS) membrane with a thickness of 50 microm. A purge gas was added to accelerate desorption of analytes from the membrane surface. The purge gas could also help to prevent the pump oil back-streaming into the ionization region from the analyzer chamber and improve the signal to noise ratio (S/N). Achieved detection limits were 2 microg x L(-1) for methyl tert-butyl ether (MTBE) in SPI mode and 1 microg x L(-1) for chloroform in SPI-CI mode within 10 s analysis time, respectively. The instrument has been successfully applied to the rapid analysis of MTBE in simulated underground water nearby petrol station and VOCs in disinfected drinking water. The results indicate that the instrument has a great application prospect for online analysis of VOCs in water. PMID:22468530

  9. Power laws and self-similar behaviour in negative ionization fronts

    NASA Astrophysics Data System (ADS)

    Arrayás, Manuel; Fontelos, Marco A.; Trueba, José L.

    2006-06-01

    We study anode-directed ionization fronts in curved geometries. An electric shielding factor determines the behaviour of the electric field and the charged particle densities. From a minimal streamer model, a Burgers type equation which governs the dynamics of the electric shielding factor is obtained when electron diffusion is neglected. A Lagrangian formulation is then derived to analyse the ionization fronts. Power laws for the velocity and the amplitude of streamer fronts are found numerically and calculated analytically by using the shielding factor formulation. The phenomenon of geometrical diffusion is explained and clarified, and a universal self-similar asymptotic behaviour is derived.

  10. Quantification of dimethindene in plasma by gas chromatography-mass fragmentography using ammonia chemical ionization.

    PubMed

    Kauert, G; Herrle, I; Wermeille, M

    1993-08-11

    A gas chromatographic-mass fragmentographic method using ammonia chemical ionization for the determination of dimethindene in human plasma is described. The drug was isolated from plasma by liquid-liquid extraction with hexane-2-methylbutanol. Plasma components were separated on a capillary column coated with chemically bonded methyl silicone. For detection of dimethindene, its quasi-molecular ion (M + H+) was mass fragmentographically monitored after chemical ionization with ammonia as reagent gas. Dimethindene was quantified using methaqualone as the internal standard: the quantification limit in plasma was 0.2 ng/ml, the within-run precision was 8.0% and the inter-run precision 5.6%. The plasma concentration-time profile was established after a single dose of 4 mg of dimethindene with an average maximum concentration of 5.5 ng/ml, detectable up to 48 h post application. PMID:8408399

  11. Fragmentation of Allylmethylsulfide by Chemical Ionization: Dependence on Humidity and Inhibiting Role of Water

    PubMed Central

    2013-01-01

    We report on a previously unknown reaction mechanism involving water in the fragmentation reaction following chemical ionization. This result stems from a study presented here on the humidity-dependent and energy-dependent endoergic fragmentation of allyl methyl sulfide (AMS) upon protonation in a proton transfer reaction-mass spectrometer (PTR-MS). The fragmentation pathways were studied with experimental (PTR-MS) and quantum chemical methods (polarizable continuum model (PCM), microhydration, studied at the MP2/6-311+G(3df,2p)//MP2/6-31G(d,p) level of theory). We report in detail on the energy profiles, reaction mechanisms, and proton affinities (G4MP2 calculations). In the discovered reaction mechanism, water reduces the fragmentation of protonated species in chemical ionization. It does so by direct interaction with the protonated species via covalent binding (C3H5+) or via association (AMS·H+). This stabilizes intermediate complexes and thus overall increases the activation energy for fragmentation. Water thereby acts as a reusable inhibitor (anticatalyst) in chemical ionization. Moreover, according to the quantum chemical (QC) results, when water is present in abundance it has the opposite effect and enhances fragmentation. The underlying reason is a concentration-dependent change in the reaction principle from active inhibition of fragmentation to solvation, which then enhances fragmentation. This amphoteric behavior of water is found for the fragmentation of C3H5+ to C3H3+, and similarly for the fragmentation of AMS·H+ to C3H5+. The results support humidity-dependent quantification efforts for PTR-MS and chemical ionization mass spectrometry (CIMS). Moreover, the results should allow for a better understanding of ion-chemistry in the presence of water. PMID:23682687

  12. Gaseous composition measured by a chemical ionization mass spectrometer in fresh and aged ship plumes

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Psichoudaki, Magda; Kuuluvainen, Heino; Hallquist, Åsa; Thomson, Erik; Pettersson, Jan; Hallquist, Mattias

    2015-04-01

    The port of Gothenburg is the largest port of the Nordic countries with numerous ships calling the port daily. The ship exhausts contain numerous pollutants including gases such as SO2 and NOx as well as particulate matter and soot. The exhaust also contains numerous organic compounds, a large fraction of which are unidentified. These organics are oxidized in the atmosphere producing more oxygenated and potentially less volatile compounds that may contribute to the secondary organic aerosol (SOA). This work focuses on the characterization of fresh gaseous species present in the exhaust plumes of the passing ships and also on their photochemical aging. Between 26 September and 12 November 2014 measurements were conducted at a sampling site located on a small peninsula at the entrance of Gothenburg's port. The campaign was divided in two periods. During the first period, the fresh plumes of the passing ships were measured through a main inlet. During the second period, the sample passed through the same inlet and was then introduced into a Potential Aerosol Mass (PAM) reactor. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the plumes. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in the current camping corresponded to 3.4 days in the atmosphere. A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged plumes. Water (positive) and iodide (negative) ionization methods were employed were water was primarily used for fresh plumes (large fraction of non-polar compounds) while iodide was used for the aged plumes (primarily oxidised products). The H2O, O3 and SO2 concentrations inside the PAM chamber were monitored, and an organic tracer for OH exposure determination

  13. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    SciTech Connect

    Waltman, Melanie J.

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  14. Evaluating the Utility of an Atmospheric Pressure Chemical Ionization Mass Spectrometer for Analyzing Organic Peroxides

    NASA Astrophysics Data System (ADS)

    Jameer, A.; Hastie, D. R.

    2013-12-01

    Secondary organic aerosols (SOA) are known to affect the earth's radiation budget through its ability to scatter and absorb radiation. Consequently, the mechanisms and factors that influence SOA composition and formation are poorly understood. However, recent modeling studies coupled with smog chamber experiments suggest that organic peroxides (organic hydroperoxides and peroxyhemiacetals) might be a major component of SOA composition under low NOx conditions. This study utilized an atmospheric pressure chemical ionization mass spectrometer (APCI-MS) in the positive mode to detect organic peroxides. Mass spectra of organic peroxides analyzed in this study show excessive fragmentation during ionization with protonated water clusters. It was believed that intact ions were not found due to decomposition in the ion source. Future work will explore new reagents for ionization to reduce fragmentation during analysis.

  15. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    SciTech Connect

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of these studies for the detection and quantitation of bile acids is discussed. 2 tables.

  16. Medium Vacuum Electron Emitter as Soft Atmospheric Pressure Chemical Ionization Source for Organic Molecules.

    PubMed

    Liedtke, Sascha; Ahlmann, Norman; Marggraf, Ulrich; Schütz, Alexander; Vautz, Wolfgang; Franzke, Joachim

    2016-05-01

    An electron emitter as a soft atmospheric pressure chemical ionization source is presented, which operates at inner pressures of the device in the medium vacuum range (>10(-3) hPa). Conventional nonradioactive electron emitters require high vacuum (<10(-6) hPa) to prevent electrical sparkovers. The emitter presented here contains structural modifications of an existing setup, which inhibits electrical breakdowns up to 10(-2) hPa at 8 kV acceleration voltage. The increased inner pressure reduces the ionization efficiency until 10(-3) hPa-achievable without a turbomolecular pump-by 2% compared to high-vacuum conditions. This can be compensated with an increase of the electron source output. The functionality of this ion source is demonstrated with mass spectrometric and ion mobility measurements of acetone, eucalyptol, and diisopropyl methanephosphonate. Additional mass spectrometric measurements of 20 different organic compounds demonstrate the soft characteristics of this ionization source. PMID:27046293

  17. Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.

    2011-04-28

    The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240. The reduced mobility value of this ion was constant at 1.36 cm{sup 2}V{sup -1}s{sup -1} across the temperature range from 60 to 140 C. The stability of this ion was temperature dependent and did not exist at temperatures above 140 C, where only fragment ions were observed. The introduction of ammonia vapors with TATP resulted in the formation of m/z 58 ion. As the concentration of ammonia increased, this smaller ion appeared to dominate the spectra and the TATP-ammonium adduct decreased in intensity. The ion at m/z 58 has been noted by several research groups upon using ammonia reagents in chemical ionization, but the identity was unknown. Evidence presented here supports the formation of protonated 2-propanimine. A proposed mechanism involves the addition of ammonia to the TATP-ammonium adduct followed by an elimination reaction. A similar mechanism involving the chemical ionization of acetone with excess ammonia also showed the formation of m/z 58 ion. TATP vapors from a solid sample were detected with a hand-held ion mobility spectrometer operated at room temperature. The TATP-ammonium molecular adduct was observed in the presence of ammonia and TATP vapors with this spectrometer.

  18. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGESBeta

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-01-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through a combination of ligand-switching and directmore » charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  19. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.

    PubMed

    Steiner, Wes E; Clowers, Brian H; Haigh, Paul E; Hill, Herbert H

    2003-11-15

    For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer (IM(tof)MS) to detect chemical warfare agent (CWA) simulants from both aqueous- and gas-phase samples. For liquid-phase samples, ESI was used as the sample introduction and ionization method. For the secondary ionization (SESI, CI, and traditional (63)Ni ionization) of vapor-phase samples, two modes of sample volatilization (heated capillary and thermal desorption chamber) were investigated. Simulant reference materials, which closely mimic the characteristic chemical structures of CWA as defined and described by Schedule 1, 2, or 3 of the Chemical Warfare Convention treaty verification, were used in this study. A mixture of four G/V-type nerve simulants (dimethyl methylphosphonate, pinacolyl methylphosphonate, diethyl phosphoramidate, and 2-(butylamino)ethanethiol) and one S-type vesicant simulant (2-chloroethyl ethyl sulfide) were found in each case (sample ionization and introduction methods) to be clearly resolved using the IM(tof)MS method. In many cases, reduced mobility constants (K(o)) were determined for the first time. Ion mobility drift times, flight times, relative signal intensities, and fragmentation product signatures for each of the CWA simulants are reported for each of the methods investigated. PMID:14615983

  20. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-04-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  1. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  2. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As(+)) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH(+)) of DA, DC, DPAH, and BDPAO could produce Ph2As(+) through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As(+) signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH(+) signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As(+). Graphical Abstract ᅟ. PMID:27098411

  3. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  4. Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani.

    PubMed

    Imbert, Laurent; Gaudin, Mathieu; Libong, Danielle; Touboul, David; Abreu, Sonia; Loiseau, Philippe M; Laprévote, Olivier; Chaminade, Pierre

    2012-06-15

    A comparison of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) for the analysis of a wide range of lipids has been performed on standard mixtures and extracts of Leishmania donovani promastigotes resistant to Amphotericin B (AmB). Calibration model, precision, limits of detection and quantification (LOD and LOQ) were assessed for each source. APPI provided the highest signal, signal-to-noise (S/N), and sensitivity for non-polar and low-polarity lipids, while ESI and APCI gave better results for the most polar ones. The linear model was valid for all lipids, except for one class with APPI, six classes with ESI, and eleven classes with APCI. LODs ranged from 0.2 to 20 μg mL(-1) for ESI, from 0.1 to 10 μg mL(-1) for APCI, and from 0.02 to 9.5 μg mL(-1) for APPI. LOQs ranged from 0.2 to 61 μg mL(-1) for ESI, from 0.4 to 31 μg mL(-1) for APCI, and from 0.1 to 29 μg mL(-1) for APPI. Each source provided similar lipid composition and variations in a comparison of three different L. donovani samples: miltefosine-treated, miltefosine-resistant and treated miltefosine-resistant parasites. A treated miltefosine-resistant sample was finally analyzed with each ion source in order to verify that the same lipid molecular species are detected. PMID:22560453

  5. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOEpatents

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  6. Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors

    NASA Technical Reports Server (NTRS)

    Narziev, M.

    2011-01-01

    On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.

  7. Electron impact and chemical ionization mass spectral analysis of a volatile uranyl derivative

    SciTech Connect

    Reutter, D.J.; Hardy, D.R.

    1981-01-01

    Quadrupole mass spectral analysis of the volatile uranium ligand complex bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) dioxouranium-di-n-butyl sulfoxide is described utilizing electron impact (EI) and methane chemical ionization (CI) ion sources. All major ions are tentatively identified and the potential usefulness of this complex for determining uranium isotope /sup 235/U//sup 238/U abundance is demonstrated.

  8. Supersonic jet/multiphoton ionization spectrometry of chemical species resulting from thermal decomposition and laser ablation of polymers

    NASA Astrophysics Data System (ADS)

    Hozumi, Masami; Murata, Yoshiaki; Cheng-Huang Lin, Imasaka, Totaro

    1995-04-01

    The chemical species resulting from thermal decomposition and laser ablation of polymers are measured by excitation/fluorescence and multiphoton ionization/mass spectrometries after supersonic jet expansion for rotational cooling to simply the optical spectrum. The signal of minor chemical species occurred is strongly enhanced by resonant excitation and multiphoton ionization, and even the isomer can be clearly differentiated. For example, p-cresol occurred by thermal decomposition of polycarbonate is detected selectively by mass-selected resonant multiphoton ionization spectrometry. Various chemical species occurred by laser ablation of even a polystyrene foam are also measured by this technique.

  9. Alternative Methodology for Boron Isotopic Analysis of CaCO3 by Negative Thermal Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dwyer, G. S.; Vengosh, A.

    2012-12-01

    Negative thermal ionization mass spectrometry (NTIMS) has been a common tool for investigating boron isotopes in CaCO3 and other environmental samples, the high sensitivity of BO2- ionization enabling measurements of ng levels of boron. However, B isotope measurement by this technique suffers from a number of problems, including: (1) fractionation induced by selective ionization of B isotopes in the mass spectrometer; (2) CNO- interference on mass 42 ([10BO2]-) that may be present in some filament load solutions (such as B-free seawater processed through ion-exchange resin), and (3) potential matrix effects due to widely differing chemistry of samples and standards. Here we examine a potentially improved NTIMS methodology that incudes removal of sample-related calcium (and other cations) by ion exchange and uses an alternative filament loading solution prepared from high-purity single-element solutions of Ca, Mg, Na, and K. Initial results suggest that this new method may offer significant improvement over the more traditional NTIMS approach in which digested CaCO3 samples are directly loaded onto filaments in B-free seawater. Replicate analyses of standards and samples yield a typical standard deviation of approximately 0.3‰ δ11B and boron isotopic compositions comparable to reported or consensus values. Fractionation during analysis has thus far typically been less than 0.5‰ δ11B. The method delivers boron ionization efficiency similar to directly-loaded seawater, and negligible signal at mass 26 (CN-), a proxy for the possible interfering molecular CNO- ion. Standards and samples behave similarly and predictably during filament heating and analysis, thus allowing for fully automated data acquisition, which in turn may increase sample throughput and reduce potential analytical inconsistencies associated with operator-controlled heating and analysis.

  10. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2011-03-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a commercial linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. From the four APCI reagent systems tested, neat carbon disulfide provided the best results. The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar but minor amount of fragmentation was observed for these two reagents. When the experiment was performed without a liquid reagent (nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to predominantly form stable molecular ions.

  11. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  12. Laser-Induced Acoustic Desorption/Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Gao, Jinshan; Borton, David J.; Owen, Benjamin C.; Jin, Zhicheng; Hurt, Matt; Amundson, Lucas M.; Madden, Jeremy T.; Qian, Kuangnan; Kenttämaa, Hilkka I.

    2010-01-01

    Laser-induced acoustic desorption (LIAD) was successfully coupled to a conventional atmospheric pressure chemical ionization (APCI) source in a linear quadrupole ion trap mass spectrometer (LQIT). Model compounds representing a wide variety of different types, including basic nitrogen and oxygen compounds, aromatic and aliphatic compounds, as well as unsaturated and saturated hydrocarbons, were tested separately and as a mixture. These model compounds were successfully evaporated into the gas phase by using LIAD and then ionized by using APCI with different reagents. Four APCI reagent systems were tested: the traditionally used mixture of methanol and water, neat benzene, neat carbon disulfide, and nitrogen gas (no liquid reagent). The mixture of methanol and water produced primarily protonated molecules, as expected. However, only the most basic compounds yielded ions under these conditions. In sharp contrast, using APCI with either neat benzene or neat carbon disulfide as the reagent resulted in the ionization of all the analytes studied to predominantly yield stable molecular ions. Benzene yielded a larger fraction of protonated molecules than carbon disulfide, which is a disadvantage. A similar amount of fragmentation was observed for these reagents. When the experiment was performed without a liquid reagent(nitrogen gas was the reagent), more fragmentation was observed. Analysis of a known mixture as well as a petroleum cut was also carried out. In summary, the new experiment presented here allows the evaporation of thermally labile compounds, both polar and nonpolar, without dissociation or aggregation, and their ionization to form stable molecular ions. PMID:21472571

  13. Rotation planar chromatography coupled on-line with atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Van Berkel, Gary J; Llave, Jonathan J; De Apadoca, Marilyn F; Ford, Michael J

    2004-01-15

    The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively. PMID:14719901

  14. Differentiation of commercial fuels based on polar components using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.

    2006-01-01

    Polar components in fuels may enable differentiation between fuel types or commercial fuel sources. A range of commercial fuels from numerous sources were analyzed by flow injection analysis/electrospray ionization/mass spectrometry without extensive sample preparation, separation, or chromatography. This technique enabled screening for unique polar components at parts per million levels in commercial hydrocarbon products, including a range of products from a variety of commercial sources and locations. Because these polar compounds are unique in different fuels, their presence may provide source information on hydrocarbons released into the environment. This analysis was then applied to mixtures of various products, as might be found in accidental releases into the environment. Copyright ?? Taylor & Francis Group, LLC.

  15. Gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Luosujärvi, Laura; Haapala, Markus; Grigoras, Kestas; Ketola, Raimo A; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2006-05-01

    An atmospheric pressure chemical ionization (APCI) microchip is presented for combining a gas chromatograph (GC) to a mass spectrometer (MS). The chip includes capillary insertion channel, stopper, vaporizer channel, nozzle and nebulizer gas inlet fabricated on the silicon wafer, and a platinum heater sputtered on a glass wafer. These two wafers are joined by anodic bonding creating a two-dimensional version of an APCI microchip. The sample from GC is directed via heated transfer line capillary to the vaporizer channel of the APCI chip. The etched nozzle forms narrow sample plume, which is ionized by an external corona discharge needle, and the ions are analyzed by a mass spectrometer. The GC-microchip APCI-MS combination provides an efficient method for qualitative and quantitative analysis. The spectra produced by microchip APCI show intensive protonated molecule and some fragmentation products as in classical chemical ionization for structure elucidation. In quantitative analysis the GC-microchip APCI-MS showed good linearity (r(2) = 0.9989) and repeatability (relative standard deviation 4.4%). The limits of detection with signal-to-noise ratio of three were between 0.5 and 2 micromol/L with MS mode using selected ion monitoring and 0.05 micromol/L with MS/MS using multiple reaction monitoring. PMID:16642989

  16. Determination of double bond position in conjugated dienes by chemical ionization mass spectrometry with isobutane

    SciTech Connect

    Doolittle, R.E.; Tumlinson, J.H.; Proveaux, A.

    1985-07-01

    The chemical ionization (CI) mass spectra of a series of functionalized conjugated dienes, including aldehydes, alcohols, formates, acetates, and hydrocarbons were investigated to determine whether fragmentations occur that are characteristic of the position of the conjugated system within the hydrocarbon chain. CI with isobutane as ionizing gas produces structure-specific fragment ions with m/z ratios that can be used to locate the positions of the double bonds in most of the cases studied. When the conjugated system is proximal to the functional group or conjugated with the functional group, other fragmentation processes take precedence. These patterns of fragmentations constitute a very useful analytical tool for the location of conjugated double bonds in a variety of natural products. 34 references, 3 tables, 3 figures.

  17. Carbon disulfide reagent allows the characterization of nonpolar analytes by atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Owen, Benjamin C; Gao, Jinshan; Borton, David J; Amundson, Lucas M; Archibold, Enada F; Tan, Xiaoli; Azyat, Khalid; Tykwinski, Rik; Gray, Murray; Kenttämaa, Hilkka I

    2011-07-30

    While atmospheric pressure ionization methodologies have revolutionized the mass spectrometric analysis of nonvolatile analytes, limitations native to the chemistry of these methodologies hinder or entirely inhibit the analysis of certain analytes, specifically, many nonpolar compounds. Examination of various analytes, including asphaltene and lignin model compounds as well as saturated hydrocarbons, demonstrates that atmospheric pressure chemical ionization (APCI) using CS(2) as the reagent produces an abundant and stable molecular ion (M(+•)) for all model compounds studied, with the exception of completely saturated aliphatic hydrocarbons and the two amino acids tested, arginine and phenylalanine. This reagent substantially broadens the applicability of mass spectrometry to nonvolatile nonpolar analytes and also facilitates the examination of radical cation chemistry by mass spectrometry. PMID:21698674

  18. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-04-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  19. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ. PMID:27126470

  20. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  1. Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons.

    PubMed

    Nyadong, Leonard; Quinn, John P; Hsu, Chang S; Hendrickson, Christopher L; Rodgers, Ryan P; Marshall, Alan G

    2012-08-21

    We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+•) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products. PMID:22881221

  2. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  3. Direct Measurement of Atmospheric Ammonia from an Airborne Miniature Chemical Ionization Mass Spectrometer (miniCIMS)

    NASA Astrophysics Data System (ADS)

    Casados, K.; Schill, S.; Freeman, S.; Zoerb, M.; Bertram, T. H.; Lefer, B. L.

    2015-12-01

    Ammonia is emitted into the atmosphere from a variety of sources such as trees, ocean, diary fields, biomass burning, and fuel emissions. Previous studies have investigated the environmental impacts of atmospheric ammonia which can include chemical reactivity, nucleation of fine particulate matter 2.5 (PM 2.5 ), and implications for human health, but its chemical nature and relatively short lifetime make direct measurement of atmospheric ammonia difficult. During the 2015 NASA Student Airborne Research Program (SARP) an airborne miniature Chemical Ionization Mass Spectrometer (miniCIMS) was deployed on the NASA DC-8 flying laboratory in the Southern California region. The spatial and temporal variability of measured atmospheric ammonia concentrations will be discussed.

  4. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    SciTech Connect

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A.; Owen, T.

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  5. Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines

    SciTech Connect

    Quirke, J.M.E.; Adams, C.L.; Van Berkel, G.J. )

    1994-04-15

    Derivatization strategies and specific derivatization reactions for conversion of simple alkyl halides, alcohols, phenols, thiols, and amines to ionic or solution-ionizable derivatives, that is [open quotes]electrospray active[close quotes] (ES-active) forms of the analyte, are presented. Use of these reactions allows detection of analytes among those listed that are not normally amenable to analysis by electrospray ionization mass spectrometry (ES-MS). In addition, these reactions provide for analysis specificity and flexibility through functional group specific derivatization and through the formation of derivatives that can be detected in positive ion or in negative ion mode. For a few of the functional groups, amphoteric derivatives are formed that can be analyzed in either positive or negative ion modes. General synthetic strategies for transformation of members of these five compound classes to ES-active species are presented along with illustrative examples of suitable derivatives. Selected derivatives were prepared using model compounds and the ES mass spectra obtained for these derivatives are discussed. The analytical utility of derivatization for ES-MS analysis is illustrated in three experiments: (1) specific detection of the major secondary alcohol in oil of peppermint, (2) selective detection of phenols within a synthetic mixture of phenols, and (3) identification of the medicinal amines within a commercially available cold medication as primary, secondary or tertiary. 65 refs., 3 figs., 3 tabs.

  6. An electron impact and chemical ionization study of some diethyl dicarboxylates

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Malat, Jan

    1997-11-01

    The electron ionization and Bronsted acid chemical ionization mass spectra of the diethyl esters of succinic acid, methylmalonic acid, glutaric acid, ethylmalonic acid and dimethylmalonic acid have been determined. The major primary fragmentation reaction of the molecular ion in the electron ionization mass spectra is by loss of OC2H5 while the MH+ ions fragment by loss of C2H5OH to form the same fragment ion. Using isotopic labelling (diethyl-d5 esters) and metastable ion studies, it is shown that the [M---OC2H5]+ ions formed from diethyl succinate and diethyl glutarate have ethyl-cationated cyclic anhydride structures which fragment further by elimination of C2H4 to form the protonated anhydride. For the remaining esters the [M---OC2H5]+ ions have an acylium ion structure and fragment primarily by elimination of CO to form, initially, substituted [alpha]-carboethoxy carbenium ions although there is significant rearrangement to protonated ethyl esters of olefinic acids prior to further fragmentation.

  7. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  8. Molecular Surface Sampling and Chemical Imaging using Proximal Probe Thermal Desorption/Secondary Ionization Mass Spectrometry

    SciTech Connect

    Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Proximal probe thermal desorption/secondary ionization mass spectrometry was studied and applied to molecular surface sampling and chemical imaging using printed patterns on photopaper as test substrates. With the use of a circular cross section proximal probe with a tip diameter of 50 m and fixed temperature (350 C), the influence of probe-to-surface distance, lane scan spacing, and surface scan speed on signal quality and spatial resolution were studied and optimized. As a compromise between signal amplitude, signal reproducibility, and data acquisition time, a surface scan speed of 100 m/s, probe-to-paper surface distance of 5 m, and lane spacing of 10 m were used for imaging. Under those conditions the proximal probe thermal desorption/secondary ionization mass spectrometry method was able to achieve a spatial resolution of about 50 m as determined by the ability to distinguish surface patterns of known dimensions that were printed on the paper substrate. It is expected that spatial resolution and chemical image quality could be further improved by using probes of smaller cross section size and by incorporating a means to maintain a fixed optimal probe-to-surface distance real time, continuously adapting to the changing topography of the surface during a lane scan.

  9. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    SciTech Connect

    Beste, Ariana; Harrison, Robert J; Yanai, Takeshi

    2006-01-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (c.f., thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory (DFT) and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a non-geometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as constraining the orbitals to be orthogonal.

  10. Direct computation of general chemical energy differences: Application to ionization potentials, excitation, and bond energies

    NASA Astrophysics Data System (ADS)

    Beste, A.; Harrison, R. J.; Yanai, T.

    2006-08-01

    Chemists are mainly interested in energy differences. In contrast, most quantum chemical methods yield the total energy which is a large number compared to the difference and has therefore to be computed to a higher relative precision than would be necessary for the difference alone. Hence, it is desirable to compute energy differences directly, thereby avoiding the precision problem. Whenever it is possible to find a parameter which transforms smoothly from an initial to a final state, the energy difference can be obtained by integrating the energy derivative with respect to that parameter (cf. thermodynamic integration or adiabatic connection methods). If the dependence on the parameter is predominantly linear, accurate results can be obtained by single-point integration. In density functional theory and Hartree-Fock, we applied the formalism to ionization potentials, excitation energies, and chemical bond breaking. Example calculations for ionization potentials and excitation energies showed that accurate results could be obtained with a linear estimate. For breaking bonds, we introduce a nongeometrical parameter which gradually turns the interaction between two fragments of a molecule on. The interaction changes the potentials used to determine the orbitals as well as the constraint on the orbitals to be orthogonal.

  11. Laser Microdissection and Atmospheric Pressure Chemical Ionization Mass Spectrometry Coupled for Multimodal Imaging

    SciTech Connect

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    This paper describes the coupling of ambient laser ablation surface sampling, accomplished using a laser capture microdissection system, with atmospheric pressure chemical ionization mass spectrometry for high spatial resolution multimodal imaging. A commercial laser capture microdissection system was placed in close proximity to a modified ion source of a mass spectrometer designed to allow for sampling of laser ablated material via a transfer tube directly into the ionization region. Rhodamine 6G dye of red sharpie ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from full scan mass spectra. A minimal spot diameter of 8 m was achieved using the 10X microscope cutting objective with a lateral oversampling pixel resolution of about 3.7 m. Distinguishing between features approximately 13 m apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion including co-registered optical and mass spectral chemical images.

  12. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups). PMID:23479312

  13. Typing of Blood-Group Antigens on Neutral Oligosaccharides by Negative-Ion Electrospray Ionization Tandem Mass Spectrometry

    PubMed Central

    Zhang, Hongtao; Zhang, Shuang; Tao, Guanjun; Zhang, Yibing; Mulloy, Barbara; Zhan, Xiaobei; Chai, Wengang

    2013-01-01

    Blood-group antigens, such as those containing fucose and bearing the ABO(H)- and Lewis-type determinants expressed on the carbohydrate chains of glycoproteins and glycolipids, and also on unconjugated free oligosaccharides in human milk and other secretions, are associated with various biological functions. We have previously shown the utility of negative-ion electrospay ionization tandem mass spectrometry with collision-induced dissociation (ESI-CID-MS/MS) for typing of Lewis (Le) determinants, e.g. Lea, Lex, Leb, and Ley on neutral and sialylated oligosaccharide chains. In the present report we extended the strategy to characterization of blood-group A-, B- and H-determinants on type 1 and type 2, and also on type 4 globoside chains to provide a high sensitivity method for typing of all the major blood-group antigens, including the A, B, H, Lea, Lex, Leb, and Ley determinants, present in oligosaccharides. Using the principles established we identified two minor unknown oligosaccharide components present in the products of enzymatic synthesis by bacterial fermentation. We also demonstrated that the unique fragmentations derived from the D- and 0,2A-type cleavages observed in ESI-CID-MS/MS, which are important for assigning blood-group and chain types, only occur under the negative-ion conditions for reducing sugars but not for reduced alditols or under positive-ion conditions. PMID:23692402

  14. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry.

    PubMed

    Hua, Lei; Wu, Qinghao; Hou, Keyong; Cui, Huapeng; Chen, Ping; Wang, Weiguo; Li, Jinghua; Li, Haiyang

    2011-07-01

    A novel combined ion source based on a vacuum ultraviolet (VUV) lamp with both single photon ionization (SPI) and chemical ionization (CI) capabilities has been developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). The SPI was accomplished using a commercial 10.6 eV krypton discharge lamp with a photon flux of about 10(11) photons s(-1), while the CI was achieved through ion-molecule reactions with O(2)(+) reactant ions generated by photoelectron ionization at medium vacuum pressure (MVP). To achieve high ionization efficiency, the ion source pressure was elevated to 0.3 mbar and the photoionization length was extended to 36 mm. As a result, limits of detection (LODs) down to 3, 4, and 6 ppbv were obtained for benzene, toluene, and p-xylene in MVP-SPI mode, and values of 8 and 10 ppbv were obtained for toluene and chloroform, respectively, in SPI-CI mode. As it is feasible to switch between MVP-SPI mode and SPI-CI mode rapidly, this system is capable of monitoring complex organic mixtures with a wide range of ionization energies (IEs). The analytical capacity of this system was demonstrated by measuring dehydrogenation products of long-chain paraffins to olefins through direct capillary sampling and drinking water disinfection byproducts from chlorine through a membrane interface. PMID:21591696

  15. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    PubMed Central

    Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  16. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal.

    PubMed

    Zuber, Jan; Kroll, Marius M; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  17. Unexpected observation of ion suppression in a liquid chromatography/atmospheric pressure chemical ionization mass spectrometric bioanalytical method.

    PubMed

    Sangster, Tim; Spence, Mike; Sinclair, Peta; Payne, Richard; Smith, Christopher

    2004-01-01

    Ion suppression is a well-known phenomenon in electrospray ionization (ESI) mass spectrometry. These suppression effects have been shown to adversely affect the accuracy and precision of quantitative bioanalytical methods using ion spray. Such suppression effects have not been as well defined in atmospheric pressure chemical ionization (APCI) and there is some debate whether these effects actually occur in the ionization process using APCI. Here an example is described where clear ion suppression was observed during studies on a model compound and three metabolites using APCI liquid chromatography/tandem mass spectrometry (LC/MS/MS). PMID:15174192

  18. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  19. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives.

    PubMed

    Jjunju, Fred P M; Maher, Simon; Li, Anyin; Syed, Sarfaraz U; Smith, Barry; Heeren, Ron M A; Taylor, Stephen; Cooks, R Graham

    2015-10-01

    A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns. PMID:26329926

  20. Determination of organic acids in ground water by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry

    SciTech Connect

    Fang, J.; Barcelona, M.J.

    1999-05-01

    Current methods of determining organic acids in ground water are labor-intensive, time-consuming and require a large volume of sample (100 milliliter to 1.0 liter). This paper reports a new method developed to determine aliphatic, alicyclic, and aromatic acids in ground water using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). This method was shown to be fast (less than 1 hour), effective, and reproducible, requiring only 1.0 mL of ground-water sample. Ground water was pH-adjusted, filtered through 0.45 {micro}m filters and directly injected into the LC. A binary solvent system consisting of 40 mM of aqueous ammonium acetate and methanol and a C18 column were used for chromatographical separation. The APCI was operated under negative ionization mode. Selected ion monitoring (SIM) was used for detection and quantitation of the analytes. This method was applied to the analysis of organic acids in ground-water samples collected from an aquifer contaminated with JP-4 fuel hydrocarbons at Wurtsmith Air Force Base in Oscoda, Michigan. Aromatic acids identified in the contaminated ground water include o-, m-toluic acids (2- and 3-methylbenzoic acids), 2,6-dimethylbenzoic acid, 2,3,5-and 2,4,6-trimethylbenzoic acids and two additional trimethylbenzoic acids with unknown location of methylation. The detection of aromatic acids in groundwater from the KC-135 site provided evidence for in situ microbial degradation of hydrocarbons occurring in the aquifer.

  1. Qualitative analysis of some carboxylic acids by ion-exclusion chromatography with atmospheric pressure chemical ionization mass spectrometric detection.

    PubMed

    Helale, Murad I H; Tanaka, Kazuhiko; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2002-05-17

    A simple, selective and sensitive method for the determination of carboxylic acids has been developed. A mixture of formic, acetic, propionic, valeric, isovaleric, isobutyric, and isocaproic acids has been separated on a polymethacrylate-based weak acidic cation-exchange resin (TSK gel OA pak-A) based on an ion-exclusion chromatographic mechanism with detection using UV-photodiode array, conductivity and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). A mobile phase consisting of 0.85 mM benzoic acid in 10% aqueous methanol (pH 3.89) was used to separate the above carboxylic acids in about 40 min. For LC-MS, the APCI interface was used in the negative ionization mode. Linear plots of peak area versus concentration were obtained over the range 1-30 mM (r2=0.9982) and 1-30 mM (r2=0.9958) for conductimetric and MS detection, respectively. The detection limits of the target carboxylic acids calculated at S/N=3 ranged from 0.078 to 2.3 microM for conductimetric and photometric detection and from 0.66 to 3.82 microM for ion-exclusion chromatography-APCI-MS. The reproducibility of retention times was 0.12-0.16% relative standard deviation for ion-exclusion chromatography and 1.21-2.5% for ion-exclusion chromatography-APCI-MS. The method was applied to the determination of carboxylic acids in red wine, white wine, apple vinegar, and Japanese rice wine. PMID:12108651

  2. Fine structure and ionization energy of the 1s2s2p 4P state of the helium negative ion He-.

    PubMed

    Wang, Liming; Li, Chun; Yan, Zong-Chao; Drake, G W F

    2014-12-31

    The fine structure and ionization energy of the 1s2s2p (4)P state of the helium negative ion He(-) are calculated in Hylleraas coordinates, including relativistic and QED corrections up to O(α(4)mc(2)), O((μ/M)α(4)mc(2)), O(α(5)mc(2)), and O((μ/M)α(5)mc(2)). Higher order corrections are estimated for the ionization energy. A comparison is made with other calculations and experiments. We find that the present results for the fine structure splittings agree with experiment very well. However, the calculated ionization energy deviates from the experimental result by about 1 standard deviation. The estimated theoretical uncertainty in the ionization energy is much less than the experimental accuracy. PMID:25615325

  3. Negative Electron Affinity Effect on the Surface of Chemical Vapor Deposited Diamond Polycrystalline Films

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.; Mearini, G. T.; Dayton, J. A., Jr.

    1996-01-01

    Strong negative electron affinity effects have been observed on the surface of as-grown chemical vapor deposited diamond using Secondary Electron Emission. The test samples were randomly oriented and the surface was terminated with hydrogen. The effect appears as an intensive peak in the low energy part of the spectrum of the electron energy distribution and may be described in the model of effective negative electron affinity.

  4. An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Headley, John V

    2014-08-19

    The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the Ox and OxS compound classes predominated, with OxS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics. PMID:25036898

  5. Developmental effects of magnetic field (50 Hz) in combination with ionizing radiation and chemical teratogens.

    PubMed

    Pafková, H; Jerábek, J; Tejnorová, I; Bednár, V

    1996-11-01

    The influence of a 50 Hz magnetic field (MF) on avian and mammalian embryogenesis, the MF level and vector, as well as the effect of exposure to MF (50 Hz, 10 mT) in combination with X-rays has been recently reported [2,3]. No significant alterations of chick or rat embryogenesis were found after repeated exposures to 50 Hz MF at 10 mT or 6 microT or with different vectors. However, X-ray chick embryotoxicity was significantly affected by repeated exposures of developing organisms to MF. A strong dependence of effect on the type of interaction was revealed. A decrease of X-ray induced teratogenicity was observed when MF preceded X-ray exposure (indirect interaction), while MF exposure applied immediately after X-ray radiation (direct interaction) non-significantly potentiated adverse developmental effects of ionizing radiation. This study deals with the effects of MF in combination with insulin or tetracycline. Exposure of chick embryos to MF influenced the sensitivity of embryonic morphogenetic systems to the subsequently administered chemical teratogens, insulin and/or tetracycline. A protective effect of MF was detected similarly as in the case of indirect interaction with ionizing radiation. PMID:8920754

  6. Kinetic and Thermodynamic Control of Protonation in Atmospheric Pressure Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Hu, Nan; Pan, Yuanjiang

    2013-07-01

    For p-(dimethylamino)chalcone ( p-DMAC), the N atom is the most basic site in the liquid phase, whereas the O atom possesses the highest proton affinity in the gas phase. A novel and interesting observation is reported that the N- and O-protonated p-DMAC can be competitively produced in atmospheric pressure chemical ionization (APCI) with the change of solvents and ionization conditions. In neat methanol or acetonitrile, the protonation is always under thermodynamic control to form the O-protonated ion. When methanol/water or acetonitrile/water was used as the solvent, the protonation is kinetically controlled to form the N-protonated ion under conditions of relatively high infusion rate and high concentration of water in the mixed solvent. The regioselectivity of protonation of p-DMAC in APCI is probably attributed to the bulky solvent cluster reagent ions (SnH+) and the analyte having different preferred protonation sites in the liquid phase and gas phase.

  7. Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill.

    PubMed

    Lobodin, Vladislav V; Maksimova, Ekaterina V; Rodgers, Ryan P

    2016-07-01

    We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources. PMID:27281271

  8. Sensitivity effects in Uk'37 paleotemperature estimation by chemical ionization mass spectrometry.

    PubMed

    Chaler, R; Grimalt, J O; Pelejero, C; Calvo, E

    2000-12-15

    Analysis of C37 alkenone mixtures by gas chromatography (GC) with flame ionization detection (FID) and GC coupled to mass spectrometry (GC/MS) in the chemical ionization mode (CI) shows that the later is useful for paleotemperature estimation when ammonia is used as reagent gas. Conversely, the use of isobutane gives rise to Uk'37 readings that are dependent on the amount of C37 alkenones introduced in the system, being unreliable for paleoclimatic studies. However, ammonia CI GC/MS may produce Uk'37 measurements that deviate from those obtained by GC-FID, the method calibrated for temperature estimation from algal cultures and marine sedimentary data. The differences result from changes in relative sensitivity between the di- and triunsaturated alkenones and depend on the instrument used and operational conditions. This problem is solved in the present study by determination of the response factor linear equations for each alkenone and their average relative sensitivity (R) using mixtures of known composition. These parameters allow the transformation of the GC/MS readings into the GC-FID equivalents using the following equation: UG = R x UM/(1 - UM(1 - R)). Examples of the suitability of this approach are given. PMID:11140754

  9. Picoelectrospray Ionization Mass Spectrometry Using Narrow-bore Chemically Etched Emitters

    SciTech Connect

    Marginean, Ioan; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) at flow rates below ~10 nL/min has been only sporadically explored due to difficulty in reproducibly fabricating emitters that can operate at lower flow rates. Here we demonstrate narrow orifice chemically etched emitters for stable electrospray at flow rates as low as 400 pL/min. Depending on the analyte concentration, we observe two types of MS signal response as a function of flow rate. At low concentrations, an optimum flow rate is observed slightly above 1 nL/min, while the signal decreases monotonically with decreasing flow rates at higher concentrations. In spite of lower MS signal, the ion utilization efficiency increases exponentially with decreasing flow rate in all cases. No unimolecular response was observed within this flow rate range during the analysis of an equimolar mixture of peptides, indicating that ionization efficiency is an analyte-dependent characteristic in given experimental conditions. While little to no gain in signal-to-noise was achieved at ultralow flow rates for concentration-limited analyses, experiments consuming the same amount of analyte suggest that mass-limited analyses will benefit strongly from the use of low flow rates and avoiding unnecessary sample dilution. By operating under optimal conditions, consumption of just 500 zmol of sample yielded signal-to-noise ratios ~10 for some peptides. These findings have important implications for the analysis of trace biological samples.

  10. Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components

    SciTech Connect

    Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin

    2012-05-16

    We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190−5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100–250, with some compounds being analyzable by gas chromatography–mass spectrometry (GC–MS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GC–MS. This unveiled a much more complex nature of bio-oils than typically shown by GC–MS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call “sugaric” compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.

  11. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    NASA Astrophysics Data System (ADS)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  12. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  13. Water chemical ionization mass spectrometry of aldehydes, ketones esters, and carboxylic acids

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.

    1986-11-01

    Chemical ionization mass spectrometry (CI) of aliphatic and aromatic carbonyl compounds using water as the reagent gas provides intense pseudomolecular ions and class-specific fragmentation patterns that can be used to identify aliphatic aldehydes, ketones, carboxylic acids, and esters. The length of ester acyl and alkyl groups can easily be determined on the basis of loss of alcohols from the protonated parent. Water CI provides for an approximately 200:1 selectivity of carbonyl species over alkanes. No reagent ions are detected above 55 amu, allowing species as small as acetone, propanal, acetic acid, and methyl formate to be identified. When deuterate water was used as the reagent, only the carboxylic acids and ..beta..-diketones showed significant H/D exchange. The use of water CI to identify carbonyl compounds in a wastewater from the supercritical water extraction of lignite coal, in lemon oil, and in whiskey volatiles is discussed.

  14. Qualitative Gas Chromatography-Mass Spectrometry Analyses Using Amines as Chemical Ionization Reagent Gases

    NASA Astrophysics Data System (ADS)

    Little, James L.; Howard, Adam S.

    2013-12-01

    Ammonia is a very useful chemical ionization (CI) reagent gas for the qualitative analyses of compounds by positive ion gas chromatography-mass spectrometry (GCMS). The gas is readily available, inexpensive, and leaves no carbon contamination in the MS source. Compounds of interest to our laboratory typically yield abundant protonated or ammoniated species, which are indicative of a compound's molecular weight. Nevertheless, some labile compounds fragment extensively by substitution and elimination reactions and yield no molecular weight information. In these cases, a CI reagent gas mixture of methylamine in methane prepared dynamically was found to be very useful in obtaining molecular weight data. Likewise, deuterated ammonia and deuterated methylamine are useful CI reagent gases for determining the exchangeable protons in organic compounds. Deuterated methylamine CI reagent gas is conveniently prepared by dynamically mixing small amounts of methylamine with excess deuterated ammonia.

  15. Demonstration of real-time monitoring of a photolithographic exposure process using chemical ionization mass spectrometry

    SciTech Connect

    Mowry, C.D.

    1998-02-01

    Silicon wafers are coated with photoresist and exposed to ultraviolet (UV) light in a laboratory to simulate typical conditions expected in an actual semiconductor manufacturing process tool. Air is drawn through the exposure chamber and analyzed using chemical ionization mass spectrometry (CI/MS). Species that evaporate or outgas from the wafer are thus detected. The purpose of such analyses is to determine the potential of CI/MS as a real-time process monitoring tool. Results demonstrate that CI/MS can remotely detect the products evolved before, during, and after wafer UV exposure; and that the quantity and type of products vary with the photoresist coated on the wafer. Such monitoring could provide semiconductor manufacturers benefits in quality control and process analysis. Tool and photoresist manufacturers could also realize benefits from this measurement technique with respect to new tool, method, or photoresist development. The benefits realized can lead to improved device yields and reduced product and development costs.

  16. Fast Differential Analysis of Propolis Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry

    PubMed Central

    Huang, Xue-yong; Guo, Xia-li; Luo, Huo-lin; Fang, Xiao-wei; Zhu, Teng-gao; Zhang, Xing-lei; Chen, Huan-wen; Luo, Li-ping

    2015-01-01

    Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis. PMID:26339245

  17. Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass.

    PubMed

    Jain, Shashank; Zahardis, James; Petrucci, Giuseppe A

    2014-05-01

    Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5× lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality. PMID:24666343

  18. Tracing origins of complex pharmaceutical preparations using surface desorption atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Zhang, Xinglei; Jia, Bin; Huang, Keke; Hu, Bin; Chen, Rong; Chen, Huanwen

    2010-10-01

    A novel strategy to trace the origins of commercial pharmaceutical products has been developed based on the direct chemical profiling of the pharmaceutical products by surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Besides the unambiguous identification of active drug components, various compounds present in the matrixes are simultaneously detected without sample pretreatment, providing valuable information for drug quality control and origin differentiation. Four sources of commercial amoxicillin products made by different manufacturers have been successfully differentiated. This strategy has been extended to secerning six sources of Liuwei Dihuang Teapills, which are herbal medicine preparations with extremely complex matrixes. The photolysis status of chemical drug products and the inferior natural herd medicine products prepared with different processes (e.g., extra heating) were also screened using the method reported here. The limit of detection achieved in the MS/MS experiments was estimated to be 1 ng/g for amoxicillin inside the capsule product. Our experimental data demonstrate that DAPCI-MS is a useful tool for rapid pharmaceutical analysis, showing promising perspectives for tracking the entire pharmaceutical supply chain to prevent counterfeit intrusions. PMID:20809628

  19. Atmospheric amines and ammonia measured with a chemical ionization mass spectrometer (CIMS)

    NASA Astrophysics Data System (ADS)

    You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, A. B.; Madronich, S.; Sierra-Hernández, M. R.; Lawler, M.; Smith, J. N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, E. S.; Porcelli, L.; Brune, W. H.; Goldstein, A. H.; Lee, S.-H.

    2014-11-01

    We report measurements of ambient amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest and a moderately polluted midwestern site during the summer. At the forest site, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected, and they both showed temperature dependencies. Aerosol-phase amines measured thermal-desorption chemical ionization mass spectrometer (TDCIMS) showed a higher mass fraction in the evening with cooler temperatures and lower in the afternoon with warmer temperatures, a trend opposite to the gas-phase amines. Concentrations of aerosol-phase primary amines measured with Fourier transform infrared spectroscopy (FTIR) from micron and submicron particles were 2 orders of magnitude higher than the gas-phase amines. These results indicate that gas to particle conversion is one of the major processes that control the ambient amine concentrations at this forest site. Temperature dependencies of C3-amines and ammonia also imply reversible processes of evaporation of these nitrogen-containing compounds from soil surfaces in daytime and deposition to soil surfaces at nighttime. During the transported biomass burning plume events, various amines (C1-C6) appeared at the pptv level, indicating that biomass burning is a substantial source of amines in the southeastern US. At the moderately polluted Kent site, there were higher concentrations of C1- to C6-amines (pptv to tens of pptv) and ammonia (up to 6 ppbv). C1- to C3-amines and ammonia were well correlated with the ambient temperature. C4- to C6-amines showed frequent spikes during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Higher amine concentrations measured at the polluted site than at the rural forested site highlight the importance of constraining anthropogenic emission

  20. Liquid chromatography/atmospheric pressure chemical ionization-mass spectrometric analysis of benzoylurea insecticides in citrus fruits.

    PubMed

    Valenzuela, A I; Picó, Y; Font, G

    2000-01-01

    A liquid chromatography (LC) method for the quantitative determination of three benzoylurea insecticide residues (diflubenzuron, flufenoxuron and hexaflumuron) in citrus fruits is described. Residues were successfully separated on a C18 column by methanol/water gradient elution. Detection was by negative-ion, selected-ion monitoring atmospheric pressure chemical ionization-mass spectrometry (APCI-MS); the main ions were [M - H]-, and the secondary fragment ions were [M - H - HF]-. Useful confirmatory information can thus be obtained at low extraction voltages from losses of HF. Detection limits for standard solutions were 10 fg injected and good linearity and reproducibility were obtained. The optimum LC/APCI-MS conditions were applied to the analysis of benzoylureas in oranges. Samples were extracted using matrix solid phase dispersion (MSPD), in which orange samples were homogenized with Cs, placed onto a glass column and eluted with dichloromethane. Detection limits of 2 microg kg(-1) in the crop were obtained. Average recoveries from citrus fortified with approximately (25-1000 microg kg(-1)) ranged from 87 to 102%. The method was applied to field-treated orange samples and benzoylureas were sometimes detected at concentration levels lower than maximum residue limits. PMID:10775090

  1. Novel non-chemically amplified (n-CARs) negative resists for EUVL

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Satyanarayana, V. S. V.; Sharma, Satinder K.; Ghosh, Subrata; Gonsalves, Kenneth E.

    2014-03-01

    We report the lithography performance of novel non chemical amplified (n-CARS) negative photoresist materials which are accomplished by homopolymers and copolymers that are prepared from monomers containing sulfonium groups. The latter have long been found to be sensitive to UV radiation and undergo polarity change on exposure. For this reason, these groups were chosen as radiation sensitive groups in non- CARs that are discussed herein. Novel n-CAR negative resists were synthesized and characterized for EUVL applications, as they are directly sensitive to radiation without utilizing the concept of chemical amplification. The n-CARs achieved 20 and 16 nm L/2S, L/S patterns to meet the ITRS requirements. We will also discuss the sensitivity and LER of these negative n-CARS to e-beam irradiation which will provide a basis for EUVL down to the 16 nm node and below. These new negative tone resist provide a viable path forward for designing non- chemically amplified resists that can obtain higher resolutions than current chemically amplified resists at competitive sensitivities.

  2. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    PubMed

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical. PMID:25055654

  3. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS- α method

    NASA Astrophysics Data System (ADS)

    Dana, Saswati; Raha, Soumyendu

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic α (FIS α) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  4. Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-{alpha} method

    SciTech Connect

    Dana, Saswati; Raha, Soumyendu

    2011-10-01

    Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic {alpha} (FIS {alpha}) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway.

  5. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].

    PubMed

    Steiner, Wes E; Harden, Charles S; Hong, Feng; Klopsch, Steve J; Hill, Herbert H; McHugh, Vincent M

    2006-02-01

    The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined. Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified reference materials (CRM) of CWA degradation products for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention (CWC) treaty verification were used in this study. A mixture of six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA, and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, K(o) values, and signal intensities for each of the CWA degradation products are reported. PMID:16413205

  6. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS. PMID:16804601

  7. Chemical rescue, multiple ionizable groups, and general acid-base catalysis in the HDV genomic ribozyme.

    PubMed

    Perrotta, Anne T; Wadkins, Timothy S; Been, Michael D

    2006-07-01

    In the ribozyme from the hepatitis delta virus (HDV) genomic strand RNA, a cytosine side chain is proposed to facilitate proton transfer in the transition state of the reaction and, thus, act as a general acid-base catalyst. Mutation of this active-site cytosine (C75) reduced RNA cleavage rates by as much as one million-fold, but addition of exogenous cytosine and certain nucleobase or imidazole analogs can partially rescue activity in these mutants. However, pH-rate profiles for the rescued reactions were bell shaped, and only one leg of the pH-rate curve could be attributed to ionization of the exogenous nucleobase or buffer. When a second potential ionizable nucleobase (C41) was removed, one leg of the bell-shaped curve was eliminated in the chemical-rescue reaction. With this construct, the apparent pK(a) determined from the pH-rate profile correlated with the solution pK(a) of the buffer, and the contribution of the buffer to the rate enhancement could be directly evaluated in a free-energy or Brønsted plot. The free-energy relationship between the acid dissociation constant of the buffer and the rate constant for cleavage (Brønsted value, beta, = approximately 0.5) was consistent with a mechanism in which the buffer acted as a general acid-base catalyst. These data support the hypothesis that cytosine 75, in the intact ribozyme, acts as a general acid-base catalyst. PMID:16690998

  8. Universal imaging: Dissociative ionization of polyatomic molecules, chemical dynamics beamline 9.0.2

    SciTech Connect

    Ahmed, M.; Chen, D.; Suits, A.G.

    1997-04-01

    A third endstation was recently added to the Chemical Dynamics beamline, designed to exploit the high flux broadband undulator light for a range of studies of reactive scattering, photochemistry and photoionization processes using time-of-flight mass spectroscopy coupled with position-sensitive detection. Two molecular beam sources are fixed at right angles, with the undulator light, or laser beams, intersecting the molecular beams at 45{degrees}. To date, beamline experiments have included a study of dissociative photoionization of a variety of molecules including N{sub 2}O and SF{sub 6}. In this mode, a single molecular beam source is used, with the tunable undulator light inducing, in SF{sub 6} for example, the process SF{sub 6} {r_arrow} SF{sub 6}{sup +} + e{sup {minus}} {r_arrow} SF{sub 5}{sup +} + F + e{sup {minus}}. The SF{sub 5}{sup +} ions are accelerated up the flight tube, mass selected and detected as a function of position on a phosphor screen viewed by a CCD camera. The position directly reveals the recoil speed (or translational energy release) and angular distribution for the dissociative ionization process. Furthermore, this measurement is obtained for all recoil speeds and angles simultaneously. Such detailed angular information has not previously been obtained for dissociative ionization processes; typically ion time-of-flight profiles are deconvoluted to yield rough insight into the angular distributions. The recorded image is actually a 2-dimensional projection of the nascent 3-dimensional velocity distribution, but established tomographic techniques enable the authors to reconstruct the 3-D distribution.

  9. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  10. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for species identification of nonfermenting Gram-negative bacilli.

    PubMed

    Almuzara, Marisa; Barberis, Claudia; Traglia, Germán; Famiglietti, Angela; Ramirez, Maria Soledad; Vay, Carlos

    2015-05-01

    Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) to identify 396 Nonfermenting Gram-Negative Bacilli clinical isolates was evaluated in comparison with conventional phenotypic tests and/or molecular methods. MALDI-TOF MS identified to species level 256 isolates and to genus or complex level 112 isolates. It identified 29 genera including uncommon species. PMID:25765149

  11. Ionization controls for biomineralization-inspired CO2 chemical looping at constant room temperature.

    PubMed

    Liu, Zhaoming; Hu, Yadong; Zhao, Hongqing; Wang, Yang; Xu, Xurong; Pan, Haihua; Tang, Ruikang

    2015-04-21

    Living organisms such as corals can carry out CO2 looping efficiently via biomineralization under ambient conditions. Inspired by this natural process, we establish a solution system of calcium acetate-ethanol-water (Ca(Ac)2-C2H5OH-H2O) for CO2 chemical looping at constant room temperature. The CO2 capture is achieved by its reaction with Ca(Ac)2 to form calcium carbonate (CaCO3) mineral and HAc in the binary solvent with a high C2H5OH content. However, an increase in the H2O content in the system triggers acetic acid (HAc)-induced CaCO3 dissolution to release CO2. The system can be recovered for CO2 capture readily by the replenishment of C2H5OH. This biomimetic mineralization-based CO2 capture/release is controlled by the ionization states of the electrolytes, and is precisely regulated in the C2H5OH-H2O binary solvent. Our attempt highlights the fundamental principle of solution chemistry in reaction control and provides a bioinspired strategy for CO2 capture/release with very low cost and easy availability. PMID:25787086

  12. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    PubMed

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26149109

  13. Ion-molecule reactions of oxygenated chemical ionization reagents with vincamine.

    PubMed

    Bauerle, G F; Hall, B J; Tran, N V; Brodbelt, J S

    1996-03-01

    The ion-molecule reactions of ions from acetone, dimethyl ether, 2-methoxyethanol, and vinyl methyl ether with vincamine were investigated. Reactions with dimethyl ether result in [M+13](+) and [M+45](+) products, reactions with 2-methoxyethanol produce [M+13](+) and [M+89](+) ions, and reactions with acetone or vinyl methyl ether ions generate predominantly [M+43](+) ions. Collision-activated dissociation and deuterium labeling experiments allowed speculation about the product structures and mechanisms of dissociation. The methylene substitution process was shown to occur at the hydroxyl oxygen and the phenyl ring of vincamine for dimethyl ether reactions, but the methylene substitution process was not favored at the hydroxyl oxygen for the 2-methoxyethanol reactions, instead favored at the 12 phenyl position. The reaction site is likely different for the 2-methoxyethanol ion due to its capability for secondary hydrogen-bonding interactions. For the [M+45](+) and [M+89](+) ions, evidence suggests that charge-remote fragmentation processes occur from these products. In general, the use of dimethyl ether ions or 2-methoxyethanol ions for ionmolecule reactions prove highly diagnostic for the characterization of vincamine; both molecular weight and structural information are obtained. Limits of detection for vincamine with dimethyl ether chemical ionization via this technique on a benchtop ion trap gas chromatography-tandem mass spectrometer are in the upper parts per trillion range. PMID:24203296

  14. Investigations of Acetate Chemical Ionization Mass Spectrometry (NIPT-CIMS): Underlying Chemistry, Calibrations, and Operational Considerations for the Detection of Carboxylic Acids and Other Species

    NASA Astrophysics Data System (ADS)

    Brophy, P.; Farmer, D.

    2015-12-01

    The growing use of high resolution time-of-flight chemical ionization mass spectrometers (HR-TOF-CIMS) as applied to gas and particle measurements requires a thorough understanding of the underlying chemistry to ensure accurate molecular identification. These systems are deployed using a number of reagent ion chemistries in both the positive and negative mode. Moreover, high resolution time-of-flight mass spectrometers make it possible to detect and (potentially) quantify species without the use of authentic standards. Acetate CIMS (or negative-ion proton-transfer CIMS) detects species by abstracting a proton from carboxylic acids, nitrated phenols, and other species with acidic protons. Clustering reactions are also known to occur, complicating analysis. proper interpretation of the mass spectra requires understanding these mechanisms and controlling for unwanted ionization processes. We investigate the ability to control for clustering reactions using authentic standards under various clustering regimes while maintaining ion transmission efficiency in simple and complex matrices. The feasibility of using isotopically labeled acetate to unambiguously identify clusters is also investigated. Bulk metrics for describing the spectra (oxygen:carbon, oxidation state, average carbon number, etc) are also investigated to understand their susceptibility to experimental configuration.

  15. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cody, Robert B.; Dane, A. John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  16. Direct quantification of chemical warfare agents and related compounds at low ppt levels: comparing active capillary dielectric barrier discharge plasma ionization and secondary electrospray ionization mass spectrometry.

    PubMed

    Wolf, Jan-Christoph; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2015-01-01

    A novel active capillary dielectric barrier discharge plasma ionization (DBDI) technique for mass spectrometry is applied to the direct detection of 13 chemical warfare related compounds, including sarin, and compared to secondary electrospray ionization (SESI) in terms of selectivity and sensitivity. The investigated compounds include an intact chemical warfare agent and structurally related molecules, hydrolysis products and/or precursors of highly toxic nerve agents (G-series, V-series, and "new" nerve agents), and blistering and incapacitating warfare agents. Well-defined analyte gas phase concentrations were generated by a pressure-assisted nanospray with consecutive thermal evaporation and dilution. Identification was achieved by selected reaction monitoring (SRM). The most abundant fragment ion intensity of each compound was used for quantification. For DBDI and SESI, absolute gas phase detection limits in the low ppt range (in MS/MS mode) were achieved for all compounds investigated. Although the sensitivity of both methods was comparable, the active capillary DBDI sensitivity was found to be dependent on the applied AC voltage, thus enabling direct tuning of the sensitivity and the in-source fragmentation, which may become a key feature in terms of field applicability. Our findings underline the applicability of DBDI and SESI for the direct, sensitive detection and quantification of several CWA types and their degradation products. Furthermore, they suggest the use of DBDI in combination with hand-held instruments for CWAs on-site monitoring. PMID:25427190

  17. Evaluation of ELISA kits followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry for the determination of organic pollutants in industrial effluents

    SciTech Connect

    Castillo, M.; Oubina, A.; Barcelo, D.

    1998-07-15

    Contaminated industrial effluents often contain a variety of organic pollutants which are difficult to analyze by standard GC-MS methods since they often miss the more polar or nonvolatile of these organic compounds. The identification of highly polar analytes by chemical or rapid biological techniques is needed for characterization of the effluents. The present work evaluates the use of enzyme linked immunosorbent assays (ELISA) kits for determining pentachlorophenol, carcinogenic PAHs and BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) among the organic analytes present in various industrial effluents from Europe. The analytical protocol applied for the evaluation of the kits was based on the use of ELISA followed by solid-phase extraction (SPE) for the preconcentration of a variety of organic pollutants such as pentachlorophenol, phthalates, and nonylphenol and final determination with LC-MS characterization using an atmospheric pressure chemical ionization (APCI) interface in the positive and negative ionization modes. The developed protocol permitted the unequivocal identification of target analytes such as pentachlorophenol, nonylphenol, dibutylphthalate, dimethylphthalate, bis(2-ethylhexyl)phthalate 2-methylbenzenesulfonamide, and 2,2-dimethylbenzene-sulfonamide present in industrial effluents. The advantages and limitations of the three RaPID-magnetic particle-based ELISA kits applied to the characterization of industrial effluents are also reported.

  18. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization. PMID:24081306

  19. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    PubMed

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range. PMID:19682922

  20. Atmospheric amines and ammonia measured with a Chemical Ionization Mass Spectrometer (CIMS)

    NASA Astrophysics Data System (ADS)

    You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, A. B.; Madronich, S.; Sierra-Hernández, M. R.; Lawler, M.; Smith, J. N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, E. S.; Porcelli, L.; Brune, W. H.; Goldstein, A. H.; Lee, S.-H.

    2014-06-01

    We report ambient measurements of amines and ammonia with a~fast response chemical ionization mass spectrometer (CIMS) in a southeastern US forest in Alabama and a~moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast US. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.

  1. Atmospheric Amines and Ammonia Measured with a Chemical Ionization Mass Spectrometer (CIMS)

    SciTech Connect

    You, Y.; Kanawade, V. P.; de Gouw, J. A.; Guenther, Alex B.; Madronich, Sasha; Sierra-Hernandez, M. R.; Lawler, M.; Smith, James N.; Takahama, S.; Ruggeri, G.; Koss, A.; Olson, K.; Baumann, K.; Weber, R. J.; Nenes, A.; Guo, H.; Edgerton, Eric S.; Porcelli, L.; Brune, W. H.; Goldstein, Allen H.; Lee, S.-H

    2014-11-19

    We report ambient measurements of amines and ammonia with a fast response chemical ionization mass spectrometer (CIMS) in a Southeastern U.S. forest in Alabama and a moderately polluted Midwestern site during the summer. In the Alabama forest, mostly C3-amines (from pptv to tens of pptv) and ammonia (up to 2 ppbv) were detected on a daily basis. C3-amines and ammonia showed similar diurnal trends and temperature and wind direction dependences, and were not associated with transported CO and SO2 plumes. Consistent with temperature dependences, amine and ammonia in the gas and aerosol phases showed opposite diurnal trends, indicating gas-to-particle partitioning of amines and ammonia. Temperature dependences also imply reversible processes of amines and ammonia evaporation from soil surfaces in daytime and deposition of amines and ammonia to soil surfaces at nighttime. Various amines (C1-C6) at the pptv level were observed in the transported biomass burning plumes, showing that biomass burning can be a substantial source of amines in the Southeast U.S. At the moderately polluted Kent site, higher concentrations of amines (C1-C6, from pptv to tens of pptv) and ammonia (up to 6 ppbv) were detected. Diurnal variations of C1- to C3-amines and ammonia were correlated with the ambient temperature. C4- to C6-amines showed abrupt increases during the nighttime, suggesting that they were emitted from local sources. These abundant amines and ammonia may in part explain the frequent new particle formation events reported from Kent. Lower amine concentrations at the rural forested site highlight the importance of constraining anthropogenic sources of amines.

  2. Identification and Characterization of the Major Chemical Constituents in Fructus Akebiae by High-Performance Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time-of-Flight Mass Spectrometry.

    PubMed

    Ling, Yun; Zhang, Qing; Zhu, Dan-dan; Chen, Fei; Kong, Xiu-hua; Liao, Liang

    2016-02-01

    Fructus Akebiae (FA), the dry fruit of Akebia quinata (THUNB.) DECNE., possesses potent antidepressant properties. Owing to the structural complexity, high polarity and thermal lability in plants, it is difficult and time-consuming to analyze the major chemical constituents by traditional strategies that involve extraction, isolation, purification and identification by chemical manipulations and spectroscopic methods. In this study, a high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS-MS) method was established for quickly identifying the chemical constituents in the extract of Fructus Akebiae. The main saponin components in the extract of Fructus Akebiae were detected with the HPLC-ESI-Q-TOF-MS-MS in negative-ion mode. These components were further analyzed by MS(2) spectra, and compared with the corresponding reference substances and literature data. Nineteen saponins in the extract of Fructus Akebiae were well separated in one run. The new method is accurate and rapid. It can be used to identify the main chemical constituents in the extract of Fructus Akebiae and can be suitable for the quality control of Fructus Akebiae. PMID:26311648

  3. Herbert P. Broida Prize Lecture: Probing chemical dynamics with negative ion photodetachment

    NASA Astrophysics Data System (ADS)

    Neumark, Daniel

    2013-03-01

    Photoelectron spectroscopy and its variants have been used in our laboratory to study diverse phenomena in chemical dynamics, including transition state spectroscopy, the electronic and vibrational spectroscopy of clusters, the photodissociation of reactive free radicals, hydrated electron dynamics in clusters and liquid jets, and the ultrafast dynamics of helium nanodroplets. This talk will focus on two examples of this type of work: slow electron velocity map imaging (SEVI) of trapped and cooled negative ions, and time-resolved photoelectron spectroscopy (TRPES) of negative ions. SEVI of cold ions represents a powerful means of performing high resolution photoelectron spectroscopy on complex species. Time-resolved radiation chemistry in nucleobases will be carried out with TRPES. In this work, starting with iodide-nucleobase complexes, we inject electrons into low-lying unoccupied orbitals of the nucleobase and follow the ensuing dynamics.

  4. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  5. Negative-tone block copolymer lithography by in situ surface chemical modification.

    PubMed

    Kim, Bong Hoon; Byeon, Kyeong-Jae; Kim, Ju Young; Kim, Jinseung; Jin, Hyeong Min; Cho, Joong-Yeon; Jeong, Seong-Jun; Shin, Jonghwa; Lee, Heon; Kim, Sang Ouk

    2014-10-29

    Negative-tone block copolymer (BCP) lithography based on in situ surface chemical modification is introduced as a highly efficient, versatile self-assembled nanopatterning. BCP blends films consisting of end-functionalized low molecular weight poly(styrene-ran-methyl methacrylate) and polystyrene-block-Poly(methyl methacylate) can produce surface vertical BCP nanodomains on various substrates without prior surface chemical treatment. Simple oxygen plasma treatment is employed to activate surface functional group formation at various substrates, where the end-functionalized polymers can be covalently bonded during the thermal annealing of BCP thin films. The covalently bonded brush layer mediates neutral interfacial condition for vertical BCP nanodomain alignment. This straightforward approach for high aspect ratio, vertical self-assembled nanodomain formation facilitates single step, site-specific BCP nanopatterning widely useful for various substrates. Moreover, this approach is compatible with directed self-assembly approaches to produce device oriented laterally ordered nanopatterns. PMID:24912807

  6. Gaseous and particulate composition of fresh and aged emissions of diesel, RME and CNG buses using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Psichoudaki, Magda; Le Breton, Michael; Hallquist, Mattias; Watne, Ågot; Hallquist, Asa

    2016-04-01

    . A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged emissions. This instrument is capable of identifying the molecular formulas of species in the gas phase. The FIGAERO inlet, also enabled the characterisation of the particle phase, as particles were simultaneously collected on a filter, from which they could then be thermally desorbed and detected. Acetate (negative) ionization was utilised to allow high sensitivity measurements of organic acids, aldehydes, ketones, diols and halogenated species. The H2O, O3 and NOx concentrations inside the PAM flow reactor were monitored, and an organic tracer for OH exposure was also continuously measured. The concentrations of dominant species in both fresh and aged gaseous and particulate bus emissions from the different fuel types will be presented as well as their emission factors, calculated from concurrent CO2 measurements.

  7. Potential of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry for screening and quantification of hexabromocyclododecane.

    PubMed

    Sales, Carlos; Portolés, Tania; Sancho, Juan Vicente; Abad, Esteban; Ábalos, Manuela; Sauló, Jordi; Fiedler, Heidelore; Gómara, Belén; Beltrán, Joaquim

    2016-01-01

    A fast method for the screening and quantification of hexabromocyclododecane (sum of all isomers) by gas chromatography using a triple quadrupole mass spectrometer with atmospheric pressure chemical ionization (GC-APCI-QqQ) is proposed. This novel procedure makes use of the soft atmospheric pressure chemical ionization source, which results in less fragmentation of the analyte than by conventional electron impact (EI) and chemical ionization (CI) sources, favoring the formation of the [M - Br](+) ion and, thus, enhancing sensitivity and selectivity. Detection was based on the consecutive loses of HBr from the [M - Br](+) ion to form the specific [M - H5Br6](+) and [M - H4Br5](+) ions, which were selected as quantitation (Q) and qualification (q) transitions, respectively. Parameters affecting ionization and MS/MS detection were studied. Method performance was also evaluated; calibration curves were found linear from 1 pg/μL to 100 pg/μL for the total HBCD concentration; instrumental detection limit was estimated to be 0.10 pg/μL; repeatability and reproducibility, expressed as relative standard deviation, were better than 7% in both cases. The application to different real samples [polyurethane foam disks (PUFs), food, and marine samples] pointed out a rapid way to identify and allow quantification of this compound together with a number of polybrominated diphenyl ethers (BDE congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two other novel brominated flame retardants [i.e., decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE)] because of their presence in the same fraction when performing the usual sample treatment. PMID:26554601

  8. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  9. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    SciTech Connect

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-08-15

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H{sub 3}O{sup +}, but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re{sup +} with O{sub 2} proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re{sub 2}{sup 2+} is found to charge transfer with O{sub 2} at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba{sup +}, which is reacted with N{sub 2}O to create BaO{sup +}, and we find a rate constant that agrees with the literature.

  10. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Stephens, Edward R.; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A.

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques.

  11. Benzylammonium Thermometer Ions: Internal Energies of Ions Formed by Low Temperature Plasma and Atmospheric Pressure Chemical Ionization.

    PubMed

    Stephens, Edward R; Dumlao, Morphy; Xiao, Dan; Zhang, Daming; Donald, William A

    2015-12-01

    The extent of internal energy deposition upon ion formation by low temperature plasma and atmospheric pressure chemical ionization was investigated using novel benzylammonium thermometer ions. C-N heterolytic bond dissociation enthalpies of nine 4-substituted benzylammoniums were calculated using CAM-B3LYP/6-311++G(d,p), which was significantly more accurate than B3LYP/6-311++G(d,p), MP2/6-311++G(d,p), and CBS-QB3 for calculating the enthalpies of 20 heterolytic dissociation reactions that were used to benchmark theory. All 4-substituted benzylammonium thermometer ions fragmented by a single pathway with comparable dissociation entropies, except 4-nitrobenzylammonium. Overall, the extent of energy deposition into ions formed by low temperature plasma was significantly lower than those formed by atmospheric pressure chemical ionization under these conditions. Because benzylamines are volatile, this new suite of thermometer ions should be useful for investigating the extent of internal energy deposition during ion formation for a wide range of ionization methods, including plasma, spray and laser desorption-based techniques. Graphical Abstract ᅟ. PMID:26438128

  12. On-line characterization of organic aerosols formed from biogenic precursors using atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Kückelmann, U; Warscheid, B; Hoffmann, T

    2000-04-15

    A method to investigate the chemical composition of organic aerosols formed from biogenic hydrocarbon oxidation using atmospheric pressure chemical ionization mass spectrometry (APCI/MS) is described. The method involves the direct introduction of aerosol particles into the ion source of the mass spectrometer. Using this technique, reaction monitoring experiments of alpha-pinene ozonolysis show the formation of hetero- and homomolecular cluster anions (dimers) of the primary oxidation products (multifunctional carboxylic acids). Since the formation of dimers plays a profound role in new particle formation processes by homogeneous nucleation in the atmosphere and, at the same time, is an intrinsic feature of APCI, it is essential to differentiate between both processes when on-line APCI/MS is applied. In this paper, we compare the results from the investigations of organic aerosols and artificially generated dimer cluster ions of the same compounds using identical ionization conditions. The clusters and their formation processes are characterized by varying the analyte concentration, investigating the thermal stability of dimers, and studying collisional activation properties of both ion species. The investigations show a significant difference in ion stability: dimer anions measured on-line have an estimated stability that is 20 kJ mol(-1) higher than that of the corresponding artificially generated cluster ions. Hence, the technique provides the possibility to accurately characterize dimers as ionized reaction products from biogenic hydrocarbon oxidation and allows an insight into the process of new-particle formation by homogeneous nucleation. PMID:10784160

  13. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Shuman, Nicholas S; Pedder, Randall E; Taormina, Christopher R; Viggiano, Albert A

    2015-08-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H3O(+), but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re(+) with O2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re2(2+) is found to charge transfer with O2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba(+), which is reacted with N2O to create BaO(+), and we find a rate constant that agrees with the literature. PMID:26329209

  14. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    NASA Astrophysics Data System (ADS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Pedder, Randall E.; Taormina, Christopher R.; Viggiano, Albert A.

    2015-08-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H3O+, but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re+ with O2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re22+ is found to charge transfer with O2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba+, which is reacted with N2O to create BaO+, and we find a rate constant that agrees with the literature.

  15. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2013-02-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a different oxidant

  16. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-08-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  17. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    PubMed

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples. PMID:24492411

  18. High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer.

    PubMed

    Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-02-17

    High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research. PMID:25642789

  19. Optimization of fullerene-based negative tone chemically amplified fullerene resist for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Frommhold, A.; Yang, D. X.; McClelland, A.; Xue, X.; Ekinci, Y.; Palmer, R. E.; Robinson, A. P. G.

    2014-03-01

    While the technological progress of Next Generation Lithography (NGL) steadily continues, further progress is required before successful insertion in high volume manufacturing is possible. A key issue is the development of new resists suitable to achieve higher lithographic resolution with acceptable sensitivity and line edge roughness. Molecular resists have been a primary focus of interest for NGL because they promise high resolution and small line edge roughness (LER), but no suitable resist candidate has emerged yet that fulfills all of the industry's criteria. We have previously shown first extreme ultraviolet lithography (EUVL) exposures for a new fullerene derivative based three-component negative tone chemically amplified resist with suitable properties close to or within the target range of the resist metrics as set out in the International Technology Roadmap for Semiconductors for 2016. Here we present the results of our efforts to optimize the EUVL performance of our resist system especially with regards to LER.

  20. Negative Magnetoresistance of Indium Tin Oxide Nanoparticle Thin Films Grown by Chemical Thermolysis

    NASA Astrophysics Data System (ADS)

    Fujimoto, Akira; Yoshida, Kota; Higaki, Tomohiro; Kimura, Yuta; Nakamoto, Masami; Kashiwagi, Yukiyasu; Yamamoto, Mari; Saitoh, Masashi; Ohno, Toshinobu; Furuta, Shinya

    2013-02-01

    To clarify the electrical transport properties of nanostructured thin films, tin-doped indium oxide (ITO) nanoparticle (NP) solution-processed films were fabricated. An air-atmosphere, simple chemical thermolysis method was used to grow the ITO NPs, and the structural and electrical properties of spin-coated granular ITO NP films were investigated. X-ray diffraction measurements showed clear observation of the cubic indium oxide (222) diffraction peak, and films with a smaller Sn concentration were shown to have a better crystalline quality. We further explored the physical origin of the sign of the magnetoresistance (MR) in the variable-range hopping (VRH) region. A negative MR under a magnetic field perpendicular to the film surface increases with decreasing Sn concentration, and these results can be explained by the forward interference model in the VRH region. A larger negative MR is attributed to longer localization and hopping lengths, and better crystallinity. Thus, ITO NP thin films produced by this method are attractive candidates for oxide-based diluted magnetic semiconductors and other electronic devices.

  1. Ion Yields in the Coupled Chemical and Physical Dynamics Model of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Knochenmuss, Richard

    2015-08-01

    The Coupled Chemical and Physical Dynamics (CPCD) model of matrix assisted laser desorption ionization has been restricted to relative rather than absolute yield comparisons because the rate constant for one step in the model was not accurately known. Recent measurements are used to constrain this constant, leading to good agreement with experimental yield versus fluence data for 2,5-dihydroxybenzoic acid. Parameters for alpha-cyano-4-hydroxycinnamic acid are also estimated, including contributions from a possible triplet state. The results are compared with the polar fluid model, the CPCD is found to give better agreement with the data.

  2. Chemically driven negative linear compressibility in sodium amidoborane, Na(NH2BH3).

    PubMed

    Magos-Palasyuk, Ewelina; Fijalkowski, Karol J; Palasyuk, Taras

    2016-01-01

    Over the past few years we have been witnessing a surge of scientific interest to materials exhibiting a rare mechanical effect such as negative linear compressibility (NLC). Here we report on strong NLC found in an ionic molecular crystal of sodium amidoborane (NaAB) - easily-accessible, optically transparent material. In situ Raman measurements revealed abnormal elongation of B-N and N-H bonds of NaAB at pressure about 3 GPa. Ab initio calculations indicate the observed spectroscopic changes are due to an isostructural phase transition accompanied by a stepwise expansion of the crystal along c axis. Analysis of calculated charge density distribution and geometry of molecular species (NH2BH3) univocally points to a chemically driven mechanism of NLC - pressure-induced formation of hydrogen bonds. The new H-bond acts as a "pivot screw" coupling N-H covalent bonds of neighbor molecular species - a system resembling a two-lever "jack device" on a molecular scale. A mechanism based on formation of new bonds stands in apparent contrast to mechanisms so far reported in majority of NLC materials where no significant alteration of chemical bonding was observed. The finding therefore suggests a qualitatively new direction in exploration the field towards rational design of incompressible materials. PMID:27357442

  3. Chemically driven negative linear compressibility in sodium amidoborane, Na(NH2BH3)

    NASA Astrophysics Data System (ADS)

    Magos-Palasyuk, Ewelina; Fijalkowski, Karol J.; Palasyuk, Taras

    2016-06-01

    Over the past few years we have been witnessing a surge of scientific interest to materials exhibiting a rare mechanical effect such as negative linear compressibility (NLC). Here we report on strong NLC found in an ionic molecular crystal of sodium amidoborane (NaAB) – easily-accessible, optically transparent material. In situ Raman measurements revealed abnormal elongation of B-N and N-H bonds of NaAB at pressure about 3 GPa. Ab initio calculations indicate the observed spectroscopic changes are due to an isostructural phase transition accompanied by a stepwise expansion of the crystal along c axis. Analysis of calculated charge density distribution and geometry of molecular species (NH2BH3) univocally points to a chemically driven mechanism of NLC – pressure-induced formation of hydrogen bonds. The new H-bond acts as a “pivot screw” coupling N-H covalent bonds of neighbor molecular species – a system resembling a two-lever “jack device” on a molecular scale. A mechanism based on formation of new bonds stands in apparent contrast to mechanisms so far reported in majority of NLC materials where no significant alteration of chemical bonding was observed. The finding therefore suggests a qualitatively new direction in exploration the field towards rational design of incompressible materials.

  4. Chemically driven negative linear compressibility in sodium amidoborane, Na(NH2BH3)

    PubMed Central

    Magos-Palasyuk, Ewelina; Fijalkowski, Karol J.; Palasyuk, Taras

    2016-01-01

    Over the past few years we have been witnessing a surge of scientific interest to materials exhibiting a rare mechanical effect such as negative linear compressibility (NLC). Here we report on strong NLC found in an ionic molecular crystal of sodium amidoborane (NaAB) – easily-accessible, optically transparent material. In situ Raman measurements revealed abnormal elongation of B-N and N-H bonds of NaAB at pressure about 3 GPa. Ab initio calculations indicate the observed spectroscopic changes are due to an isostructural phase transition accompanied by a stepwise expansion of the crystal along c axis. Analysis of calculated charge density distribution and geometry of molecular species (NH2BH3) univocally points to a chemically driven mechanism of NLC – pressure-induced formation of hydrogen bonds. The new H-bond acts as a “pivot screw” coupling N-H covalent bonds of neighbor molecular species – a system resembling a two-lever “jack device” on a molecular scale. A mechanism based on formation of new bonds stands in apparent contrast to mechanisms so far reported in majority of NLC materials where no significant alteration of chemical bonding was observed. The finding therefore suggests a qualitatively new direction in exploration the field towards rational design of incompressible materials. PMID:27357442

  5. Multiple sublethal chemicals negatively affect tadpoles of the green frog, Rana clamitans

    USGS Publications Warehouse

    Boone, Michelle D.; Bridges, Christine M.; Fairchild, James F.; Little, Edward E.

    2005-01-01

    Many habitats may be exposed to multiple chemical contaminants, particularly in agricultural areas where fertilizer and pesticide use are common; however, the singular and interactive effects of contaminants are not well understood. The objective of our study was to examine how realistic, sublethal environmental levels of ammonium nitrate fertilizer (0, 10, 20 mg/L and ammonium chloride control) and the common insecticide carbaryl (0 or 2.5 mg/L) individually and interactively affect the development, size, and survival of green frog (Rana clamitans) tadpoles. We reared tadpoles for 95 d in outdoor 1,000-L polyethylene ponds. We found that the combination of carbaryl and nitrate had a negative effect on development and mass of tadpoles compared to the positive effect that either contaminant had alone. Presence of carbaryl was generally associated with short-term increases in algal resources, including ponds exposed to both carbaryl and nitrate. However, with exposure to nitrate and carbaryl, tadpole mass and development were not positively affected as with one chemical stressor alone. The combination of these sublethal contaminants may reduce the ability of amphibians to benefit from food-rich environments or have metabolic costs. Our study demonstrates the importance of considering multiple stressors when evaluating population-level responses.

  6. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products.

    PubMed

    Owen, Benjamin C; Haupert, Laura J; Jarrell, Tiffany M; Marcum, Christopher L; Parsell, Trenton H; Abu-Omar, Mahdi M; Bozell, Joseph J; Black, Stuart K; Kenttämaa, Hilkka I

    2012-07-17

    In the search for a replacement for fossil fuel and the valuable chemicals currently obtained from crude oil, lignocellulosic biomass has become a promising candidate as an alternative biorenewable source for crude oil. Hence, many research efforts focus on the extraction, degradation, and catalytic transformation of lignin, hemicellulose, and cellulose. Unfortunately, these processes result in the production of very complex mixtures. Further, while methods have been developed for the analysis of mixtures of oligosaccharides, this is not true for the complex mixtures generated upon degradation of lignin. For example, high-performance liquid chromatography/multiple stage tandem mass spectrometry (HPLC/MS(n)), a tool proven to be invaluable in the analysis of complex mixtures derived from many other biopolymers, such as proteins and DNA, has not been implemented for lignin degradation products. In this study, we have developed an HPLC separation method for lignin degradation products that is amenable to negative-ion-mode electrospray ionization (ESI doped with NaOH), the best method identified thus far for ionization of lignin-related model compounds without fragmentation. The separated and ionized compounds are then analyzed by MS(3) experiments to obtain detailed structural information while simultaneously performing high-resolution measurements to determine their elemental compositions in the two parts of a commercial linear quadrupole ion trap/Fourier-transform ion cyclotron resonance mass spectrometer. A lignin degradation product mixture was analyzed using this method, and molecular structures were proposed for some components. This methodology significantly improves the ability to analyze complex product mixtures that result from degraded lignin. PMID:22746183

  7. Experts workshop on the ecotoxicological risk assessment of ionizable organic chemicals: Towards a science-based framework for chemical assessment

    EPA Science Inventory

    There is a growing need to develop analytical methods and tools that can be applied to assess the environmental risks associated with charged, polar, and ionisable organic chemicals, such as those used as active pharmaceutical ingredients, biocides, and surface active chemicals. ...

  8. Synergistic effect of ionizing radiation on chemical disinfectant treatments for reduction of natural microflora on seafood

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjoo; Ha, Ji-Hyoung; Lee, Ju-Woon; Jo, Cheorun; Ha, Sang-Do

    2012-08-01

    The purpose of this study was to determine whether combined treatments would produce synergistic disinfection effects on seafood products such as mussel and squid compared with single treatments. We investigated the bactericidal effects of chlorine and ionizing radiation on the natural microflora of mussel and squid. Total aerobic bacteria initially ranged from 102 to 104 Log CFU/g. More than 100 ppm of chlorine and irradiation at 1 kGy were sufficient to reduce the total aerobic bacteria on mussel and squid to a level lower than detection limit (10 CFU/g). Synergistic effects against natural microflora were observed for all combined treatment. These results suggest that a significant synergistic benefit results from combine chlorine-ionizing radiation treatment against natural microflora on mussel and squid.

  9. Chemical abundances and ionization in sub-Damped Lyman-alpha absorbers at z < 1.5

    NASA Astrophysics Data System (ADS)

    Meiring, Joseph D.

    2008-06-01

    The chemical composition of galaxies provide important clues into galaxy formation and evolution. Quasar (QSO) absorption line systems offer a unique window into the high redshift Universe and the properties of normal galaxies at high redshift. QSO absorbers have long been used to study distant galaxies and the intergalactic medium (IGM). The Damped Lyman-a systems (DLAs), with neutral Hydrogen column densities of log N H I > 20.3, and sub-Damped Lyman-a systems (sub-DLAs) with 19.0 < log N H I < 20.3 contain the majority of the neutral gas in the Universe at high redshift, probe metallicities over ~90% of the cosmic history, and are believed to be the progenitors of modern day galaxies. Models of the chemical evolution of galaxies predict that the mean metallicity of galaxies should reach a solar value by z ~ 0 due to the ongoing cycles of star formation which enrich the galaxy with heavy elements. The DLA systems which have been the preferred class of absorbers for these investigations however appear to be metal poor at all redshifts, and show little evolution in their metallicity, contradicting the models of chemical evolution, the "missing metals problem". We have amassed a sample of 32 sub-DLAs and 3 DLAS at z abs < 1.5 using the 6.5m Magellan II telescope with the MIKE spectrograph, and the 8.2m VLT-Kueyen telescope with the UVES spectrograph to study the properties of these systems and determine their metal content. We have measured the absorption lines of multiple lines in these systems and determined column densities and abundances. We have also created grids of photoionization models using CLOUDY to determine the effects of ionization in these systems. Although the gas is largely ionized, the abundances appear not to require significant ionization corrections. We find that the sub-DLAs, especially at low z are more metal rich than the DLA systems, with [Zn/H] subDLA = -0.30 ± 0.15 and [Zn/H] DLA = -0.94 ± 0.11. These systems appear to contain ~ 40 - 75

  10. Chemical Composition of Micrometer-Sized Filaments in an Aragonite Host by a Miniature Laser Ablation/Ionization Mass Spectrometer.

    PubMed

    Tulej, Marek; Neubeck, Anna; Ivarsson, Magnus; Riedo, Andreas; Neuland, Maike B; Meyer, Stefan; Wurz, Peter

    2015-08-01

    Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (∼15 μm) and vertical (∼20-200 nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR). PMID:26247475

  11. Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants.

    PubMed

    Adlem, K; Čopič, M; Luckhurst, G R; Mertelj, A; Parri, O; Richardson, R M; Snow, B D; Timimi, B A; Tuffin, R P; Wilkes, D

    2013-08-01

    Here we report the chemical induction of the twist-bend nematic phase in a nematic mixture of ether-linked liquid crystal dimers by the addition of a dimer with methylene links; all dimers have an odd number of groups in the spacer connecting the two mesogenic groups. The twist-bend phase has been identified from its optical texture and x-ray scattering pattern as well as NMR spectroscopy, which demonstrates the phase chirality. Theory predicts that the key macroscopic property required for the stability of this chiral phase formed from achiral molecules is for the bend elastic constant to tend to be negative; in addition the twist elastic constant should be smaller than half the splay elastic constant. To test these important aspects of the prediction we have measured the bend and splay elastic constants in the nematic phase preceding the twist-bend nematic using the classic Frederiks methodology and all three elastic constants employing the dynamic light scattering approach. Our results show that, unlike the splay, the bend elastic constant is small and decreases significantly as the transition to the induced twist-bend nematic phase is approached, but then exhibits unexpected behavior prior to the phase transition. PMID:24032852

  12. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.

    PubMed

    Chen, Jun; Hu, Lei; Deng, Jinxia; Xing, Xianran

    2015-06-01

    Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials. PMID:25864730

  13. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  14. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.

    PubMed

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons' law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models. PMID:23064494

  15. Investigating the Chemical Evolution of the Universe via Numerical Simulations: Supernova Dust Destruction and Non-Equilibrium Ionization Chemistry

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.

    2013-12-01

    The chemical evolution of the Universe is a complicated process with countless facets that define its properties over the course of time. In the early Universe, the metal-free first stars were responsible for originally introducing metals into the pristine gas left over from the Big Bang. Once these metals became prevalent, they forever altered the thermodynamics of the Universe. Understanding precisely where these metals originated, where they end up, and the conditions they experience along the way is of great interest in the astrophysical community. In this work, I have used numerical simulations as a means of understanding two separate phenomena related to the chemical evolution the Universe. The first topic focuses on the question as to whether or not core-collapse supernovae in the high-redshift universe are capable of being "dust factories" for the production of galactic dust. To achieve this, I carried out idealized simulations of supernova ejecta clouds being impacted by reverse-shock blast waves. By post-processing the results of these simulations, I was able to estimate the amount of dust destruction that would occur due to thermal sputtering. In the most extreme scenarios, simulated with high relative velocities between the shock and the ejecta cloud and high gas metallicities, I find complete destruction for some grains species and only 44% dust mass survival for even the most robust species. This raises the question as to whether or not high-redshift supernova can produce dust masses in sufficient excess of the ˜1 Msun per event required to match observations of high-z galaxies. The second investigation was driven by the desire to find an answer to the missing baryon problem and a curiosity as to the impact that including a full non-equilibrium treatment of ionization chemistry has on simulations of the intergalactic medium. To address these questions, I have helped to develop Dengo, a new software package for solving complex chemical networks. Once

  16. Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and

  17. Chemical analysis of complex organic mixtures using reactive nanospray desorption electrospray ionization mass spectrometry.

    PubMed

    Laskin, Julia; Eckert, Peter A; Roach, Patrick J; Heath, Brandi S; Nizkorodov, Sergey A; Laskin, Alexander

    2012-08-21

    Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies have shown that LSOA constituents are multifunctional compounds containing at least one aldehyde or ketone groups. In this study, we used the selectivity of the Girard's reagent T (GT) toward carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 μM GT solutions were used as the working solvents for reactive nano-DESI analysis. Abundant products from the single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 μM. We found that LSOA dimeric and trimeric compounds react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in the formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the time scale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at the ~0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ~11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and for the quantification of compounds possessing

  18. Non-linear effects in the determination of paleotemperature U37(k') alkenone ratios by chemical ionization mass spectrometry.

    PubMed

    Chaler, R; Villanueva, J; Grimalt, J O

    2003-09-12

    The performance of gas chromatography coupled to mass spectrometry in the positive chemical ionization mode using ammonia as reagent gas (GC-PCI-MS) in the analysis of C37 alkenones for paleotemperature estimation has been re-evaluated. In some conditions, the discrepancies observed in the measurement of the U37(k') index with this technique as compared with GC equipped with flame ionization detection (GC-FID) cannot be explained by differences in sensitivity between the tri- and diunsaturated alkenones. Thus, at low (currently <0.3) or high (currently >0.4) U37(k') values the GC-PCI-MS determinations may be observed to be lower or higher, respectively, than those measured with GC-FID. As shown by analysis of a series of synthetic C37 alkenone standards these discrepant results can be explained by non linear effects in the GC-PCI-MS response factors. Second-order polynomial functions provide equations that describe better the signal to amount of analyte ratios. Users of GC-PCI-MS should calibrate their instruments with standards of known C37 alkenone composition in order to minimize non-linear effects. PMID:14509345

  19. Measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry during the 2009 SHARP field campaign

    NASA Astrophysics Data System (ADS)

    Levy, Misti; Zhang, Renyi; Zheng, Jun; Zhang, Annie L.; Xu, Wen; Gomez-Hernandez, Mario; Wang, Yuan; Olaguer, Eduardo

    2014-09-01

    We have developed a novel approach for ambient measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry (ID-CIMS). HONO is ionized using the sulfur hexafluoride anion, representing the first application of this reagent ion under humid tropospheric conditions. During the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) Field Campaign, HONO measurements were continuously conducted from 1 May to 1 June at a site located on the campus of the University of Houston. Diurnally, HONO concentration accumulates in the late afternoon, reaches a nighttime maximum, and declines rapidly after sunrise. The nighttime HONO peaks show close correlations with the NO2 concentration, particle surface area, and soot mass concentration, indicating that the aerosol-phase chemistry likely contributes to HONO formation. A higher nighttime HONO peak concentration typically precedes a higher and earlier ozone peak concentration of the following day, by about 20 ppb higher and four hours earlier than those with a lower preceding HONO peak concentration. Because of its high detection sensitivity and fast-responding time, the ID-CIMS method described in this work may greatly facilitate HONO detection under typical tropospheric conditions.

  20. Gas Chromatography Coupled to Atmospheric Pressure Chemical Ionization FT-ICR Mass Spectrometry for Improvement of Data Reliability.

    PubMed

    Schwemer, Theo; Rüger, Christopher P; Sklorz, Martin; Zimmermann, Ralf

    2015-12-15

    Atmospheric pressure chemical ionization (APCI) offers the advantage of molecular ion information with low fragmentation. Hyphenating APCI to gas chromatography (GC) and ultrahigh resolution mass spectrometry (FT-ICR MS) enables an improved characterization of complex mixtures. Data amounts acquired by this system are very huge, and existing peak picking algorithms are usually extremely time-consuming, if both gas chromatographic and ultrahigh resolution mass spectrometric data are concerned. Therefore, automatic routines are developed that are capable of handling these data sets and further allow the identification and removal of known ionization artifacts (e.g., water- and oxygen-adducts, demethylation, dehydrogenation, and decarboxylation). Furthermore, the data quality is enhanced by the prediction of an estimated retention index, which is calculated simply from exact mass data combined with a double bond equivalent correction. This retention index is used to identify mismatched elemental compositions. The approach was successfully tested for analysis of semivolatile components in heavy fuel oil and diesel fuel as well as primary combustion particles emitted by a ship diesel research engine. As a result, 10-28% of the detected compounds, mainly low abundant species, classically assigned by using only the mass spectrometric information, were identified as not valid and removed. Although GC separation is limited by the slow acquisition rate of the FT-ICR MS (<1 Hz), a database driven retention time comparison, as commonly used for low resolution GC/MS, can be applied for revealing isomeric information. PMID:26560682

  1. Comparative analysis of different plant oils by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Jakab, Annamaria; Héberger, Károly; Forgács, Esther

    2002-11-01

    Different vegetable oil samples (almond, avocado, corngerm, grapeseed, linseed, olive, peanut, pumpkin seed, soybean, sunflower, walnut, wheatgerm) were analyzed using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. A gradient elution technique was applied using acetone-acetonitrile eluent systems on an ODS column (Purospher, RP-18e, 125 x 4 mm, 5 microm). Identification of triacylglycerols (TAGs) was based on the pseudomolecular ion [M+1]+ and the diacylglycerol fragments. The positional isomers of triacylglycerol were identified from the relative intensities of the [M-RCO2]+ fragments. Linear discriminant analysis (LDA) as a common multivariate mathematical-statistical calculation was successfully used to distinguish the oils based on their TAG composition. LDA showed that 97.6% of the samples were classified correctly. PMID:12462617

  2. Investigation of the Reactivity of Oligodeoxynucleotides with Glyoxal and KMnO4 Chemical Probes by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Parr, Carol; Pierce, Sarah E.; Smith, Suncerae I.; Brodbelt, Jennifer S.

    2010-01-01

    The reactions of two well-known chemical probes, glyoxal and potassium permanganate (KMnO4), with oligodeoxynucleotides were monitored by electrospray ionization (ESI) mass spectrometry to evaluate the influence of the sequence of DNA, its secondary structure, and interactions with associated ligands on the reactivity of the two probes. Glyoxal, a guanine-reactive probe, incorporated a mass shift of 58 Da, and potassium permanganate (KMnO4) is a thymine-reactive probe that resulted in a mass shift of 34 Da. The reactions depended on the accessibility of the nucleobases, and the peak abundances of the adducts in the ESI-mass spectra were used to quantify the extent of the chemical probe reactions. In this study, both mixed-base sequences were studied as well as control sequences in which one reactive site was located at the terminus or center of the oligodeoxynucleotide while the surrounding bases were a second, different nucleobase. In addition, the reactions of the chemical probes with non-covalent complexes formed between DNA and either actinomycin D or ethidium bromide, both known to interact with single strand DNA, were evaluated. PMID:21743793

  3. Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Rubitschun, Caitlin L.; Surratt, Jason D.; Goldstein, Allen H.

    2014-11-01

    Samples of ambient aerosols from the 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study were analyzed using negative ion mode Nanospray Desorption Electrospray Ionization High-Resolution Mass Spectrometry (nano-DESI/MS). Four samples per day (6 h each) were collected in Bakersfield, CA on 20-24 June. Four characteristic groups were identified: molecules composed of carbon, hydrogen, and oxygen only (CHO), sulfur- (CHOS), nitrogen- (CHON), and both nitrogen- and sulfur-containing organics (CHONS). The chemical formula and elemental ratios were consistent with the presence of organonitrates, organosulfate, and nitroxy organosulfates in the negative ion mode mass spectra. The number of observed CHO compounds increased in the afternoon samples, suggesting photochemical processing as a source. The average number of CHOS compounds had the smallest changes during the day, consistent with a more broadly distributed source. Both of the nitrogen-containing groups (CHONS and CHON) had greater numbers of compounds in the early morning (midnight to 6 A.M.) and night (6 P.M. to midnight) samples, respectively, consistent with nitrate radical chemistry as a likely source for those compounds. Most of the compounds were found in submicron particles. The size distribution of the number of CHON compounds was bimodal, potentially indicating two types of sources. We conclude that the majority of the compounds observed were secondary in nature with both biogenic and anthropogenic sources. These data are complementary to previous results from positive ion mode nano-DESI/MS analysis of a subset of the same samples providing a more complete view of aerosol chemical composition at Bakersfield.

  4. Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry.

    PubMed

    Huang, Min-Zong; Zhou, Chi-Chang; Liu, De-Lin; Jhang, Siou-Sian; Cheng, Sy-Chyi; Shiea, Jentaie

    2013-10-01

    Rapid characterization of thermally stable chemical compounds in solid or liquid states is achieved through thermal desorption electrospray ionization mass spectrometry (TD-ESI/MS). A feature of this technique is that sampling, desorption, ionization, and mass spectrometric detection are four separate events with respect to time and location. A metal probe was used to sample analytes in their solid or liquid states. The probe was then inserted in a preheated oven to thermally desorb the analytes on the probe. The desorbed analytes were carried by a nitrogen gas stream into an ESI plume, where analyte ions were formed via interactions with charged solvent species generated in the ESI plume. The analyte ions were subsequently detected by a mass analyzer attached to the TD-ESI source. Quantification of acetaminophen in aqueous solutions using TD-ESI/MS was also performed in which a linear response for acetaminophen was obtained between 25 and 500 ppb (R(2) = 0.9978). The standard deviation for a reproducibility test for ten liquid samples was 9.6%. Since sample preparation for TD-ESI/MS is unnecessary, a typical analysis can be completed in less than 10 s. Analytes such as the active ingredients in over-the-counter drugs were rapidly characterized regardless of the different physical properties of said drugs, which included liquid eye drops, viscous cold syrup solution, ointment cream, and a drug tablet. This approach was also used to detect trace chemical compounds in illicit drugs and explosives, in which samples were obtained from the surfaces of a cell phone, piece of luggage made from hard plastic, business card, and wooden desk. PMID:24050317

  5. Non-aqueous capillary electrophoresis for the analysis of acidic compounds using negative electrospray ionization mass spectrometry.

    PubMed

    Bonvin, Grégoire; Schappler, Julie; Rudaz, Serge

    2014-01-01

    Non-aqueous capillary electrophoresis (NACE) is an attractive CE mode, in which water solvent of the background electrolyte (BGE) is replaced by organic solvent or by a mixture of organic solvents. This substitution alters several parameters, such as the pKa, permittivity, viscosity, zeta potential, and conductivity, resulting in a modification of CE separation performance (i.e., selectivity and/or efficiency). In addition, the use of NACE is particularly well adapted to ESI-MS due to the high volatility of solvents and the low currents that are generated. Organic solvents reduce the number of side electrochemical reactions at the ESI tip, thereby allowing the stabilization of the ESI current and a decrease in background noise. All these features make NACE an interesting alternative to the aqueous capillary zone electrophoresis (CZE) mode, especially in combination with mass spectrometry (MS) detection. The aim of this work was to evaluate the use of NACE coupled to negative ESI-MS for the analysis of acidic compounds with two available CE-MS interfaces (sheath liquid and sheathless). First, NACE was compared to aqueous CZE for the analysis of several pharmaceutical acidic compounds (non-steroidal anti-inflammatory drugs, NSAIDs). Then, the separation performance and the sensitivity achieved by both interfaces were evaluated, as were the impact of the BGE and the sample composition. Finally, analyses of glucuronides in urine samples subjected to a minimal sample pre-treatment ("dilute-and-shoot") were performed by NACE-ESI-MS, and the matrix effect was evaluated. A 20- to 100-fold improvement in sensitivity was achieved using the NACE mode in combination with the sheathless interface and no matrix effect was observed regardless of the interfaces. PMID:24315358

  6. Accuracy of Calculated Chemical Shifts in Carbon 1s Ionization Energies from Single-Reference ab Initio Methods and Density Functional Theory.

    PubMed

    Holme, Alf; Børve, Knut J; Sæthre, Leif J; Thomas, T Darrah

    2011-12-13

    A database of 77 adiabatic carbon 1s ionization energies has been prepared, covering linear and cyclic alkanes and alkenes, linear alkynes, and methyl- or fluoro-substituted benzenes. Individual entries are believed to carry uncertainties of less than 30 meV in ionization energies and less than 20 meV for shifts in ionization energies. The database provides an unprecedented opportunity for assessing the accuracy of theoretical schemes for computing inner-shell ionization energies and their corresponding chemical shifts. Chemical shifts in carbon 1s ionization energies have been computed for all molecules in the database using Hartree-Fock, Møller-Plesset (MP) many-body perturbation theory of order 2 and 3 as well as various approximations to full MP4, and the coupled-cluster approximation with single- and double-excitation operators (CCSD) and also including a perturbational estimate of the energy effect of triple-excitation operators (CCSD(T)). Moreover, a wide range of contemporary density functional theory (DFT) methods are also evaluated with respect to computing experimental shifts in C1s ionization energies. Whereas the top ab initio methods reproduce the observed shifts almost to within the experimental uncertainty, even the best-performing DFT approaches meet with twice the root-mean-squared error and thrice the maximum error compared to CCSD(T). However, a number of different density energy functionals still afford sufficient accuracy to become tools in the analysis of complex C1s photoelectron spectra. PMID:26598356

  7. Application of pentafluorophenyl hydrazine derivatives to the analysis of nabumetone and testosterone in human plasma by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Sheen, J F; Her, G R

    2004-12-01

    Two carbonyl compounds, nabumetone and testosterone, were derivatized with pentafluorophenyl hydrazine (PFPH) and analyzed by atmospheric-pressure chemical-ionization mass spectrometry. The PFPH derivatives underwent dissociative electron capture in negative-ion APCI (ECAPCI) and gave intense [M-20](-) ions in the mass spectra. In positive-ion APCI, the PFPH derivatives underwent efficient protonation and gave intense [M + H](+) ions in the mass spectra. In CID, the major product ions of the [M-20](-) ions in ECAPCI corresponded to the partial moiety of PFPH. In contrast, the major product ions of [M + H](+) corresponded to the partial moiety of the analyte. By using selected reaction monitoring (SRM) detection, low pg of nabumetone (1 pg) and testosterone (7 pg) could be detected in both ECAPCI and positive-ion APCI. In comparison with the detection limits (SRM) of the underivatized analytes, use of the PFPH derivatives resulted in 2500-fold and 35-fold sensitivity enhancements for nabumetone and testosterone, respectively. The PFPH derivatives were applied to the analysis of nabumetone and testosterone in human plasma by both ECAPCI and positive-ion APCI and were found to enable detection of 0.1 ng mL(-1) nabumetone in spiked plasma. For testosterone, endogenous testosterone in female plasma was detected in both ECAPCI and positive-ion APCI. PMID:15700167

  8. Experts Workshop on the Ecotoxicological Risk Assessment of Ionizable Organic Chemicals: Bioaccumulation/ADME

    EPA Science Inventory

    The bioaccumulation potential of neutral organic chemicals (e.g., PCBs, DDT, brominated flame retardants) has received a great deal of attention from scientists in the field of environment toxicology and chemistry over the past four decades. Regulations based on our understanding...

  9. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. PMID:27590551

  10. Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion

    SciTech Connect

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.; Mendive-Tapia, David

    2015-03-07

    Photoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case. However, if we add methyl substituents that break symmetry but do not radically alter the electronic structure, we see charge migration: oscillations in the spin density that we can correlate with particular localized electronic structures, with a period depending on the gap between the states initially populated. We have also investigated the effect of nuclear motion on electron dynamics using a complete active space self-consistent field (CASSCF) implementation of the Ehrenfest method, most previous theoretical studies of electron dynamics having been carried out with fixed nuclei. In toluene cation for instance, simulations where the nuclei are allowed to move show significant differences in the electron dynamics after 3 fs, compared to simulations with fixed nuclei.

  11. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  12. Chemical Analysis of Organic Aerosols Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Laskin, J.; Nizkorodov, S.

    2013-12-01

    Nanospray Desorption Electrospray Ionization (nano-DESI) technique integrated with high resolution mass spectrometry (HR-MS) enables molecular level analysis of organic aerosol (OA) samples. In nano-DESI, analyte is desorbed into a small volume solvent bridge formed between two capillaries positioned in contact with analyte and enables fast and efficient characterization of OA collected on substrates without sample preparation. We report applications of the nano-DESI/HR-MS approach in a number of our recent studies focused on molecular identification of organic compounds in laboratory and in field collected OA samples. Reactive nano-DESI approach where selected reagent is added to the solvent is used for examining the presence of individual species containing specific functional groups and for their quantification within complex mixtures of OA. Specifically, we use the Girard's reagent T (GT) to probe and quantify carbonyl compounds in the SOA mixtures. We estimate for the first time the amounts of dimers and trimers in the SOA mixtures. We found that the most abundant dimer in limonene/O3 SOA was detected at the ˜0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ˜11 pg. Understanding of the OA composition at the molecular level allowed us to identify key aging reactions, including the transformation of carbonyls to imines and carbonyl-imine oligomerization, that may contribute to the formation of brown carbon in the atmosphere.

  13. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    SciTech Connect

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin; Jeong, Jae-Hoon; Kang, Seongman; Lim, Young-Bin

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  14. Simultaneous detection of polar and nonpolar compounds by ambient mass spectrometry with a dual electrospray and atmospheric pressure chemical ionization source.

    PubMed

    Cheng, Sy-Chyi; Jhang, Siou-Sian; Huang, Min-Zong; Shiea, Jentaie

    2015-02-01

    A dual ionization source combining electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was developed to simultaneously ionize both polar and nonpolar compounds. The source was constructed by inserting a fused silica capillary into a stainless steel column enclosed in a glass tube. A high dc voltage was applied to a methanol solution flowing in the fused silica capillary to generate an ESI plume at the capillary tip. A high ac voltage was applied to a ring electrode attached to the glass tube to generate plasma from the nitrogen gas flowing between the glass tube and the stainless steel column. The concentric arrangement of the ESI plume and the APCI plasma in the source ensured that analytes entering the ionization region interacted with both ESI and APCI primary ion species generated in the source. Because the high voltages required for ESI and APCI were independently applied and controlled, the dual ion source could be operated in ESI-only, APCI-only, or ESI+APCI modes. Analytes were introduced into the ESI and/or APCI plumes by irradiating sample surfaces with a continuous-wavelength laser or a pulsed laser beam. Analyte ions could also be produced by directing the dual ESI+APCI source toward sample surfaces for desorption and ionization. The ionization mechanisms involved in the dual ion source include Penning ionization, ion molecule reactions, and fused-droplet electrospray ionization. Standards of polycyclic aromatic hydrocarbons, angiotensin I, lidocaine, ferrocene, diesel, and rosemary oils were used for testing. Protonated analyte ions were detected in ESI-only mode, radical cations were detected in APCI-only mode, and both types of ions were detected in ESI+APCI mode. PMID:25562530

  15. Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners.

    PubMed

    Portolés, Tania; Sales, Carlos; Gómara, Belén; Sancho, Juan Vicente; Beltrán, Joaquim; Herrero, Laura; González, María José; Hernández, Félix

    2015-10-01

    The analysis of brominated flame retardants (BFRs) commonly relies on the use of gas chromatography coupled to mass spectrometry (GC-MS) operating in electron ionization (EI) and electron capture negative ionization (ECNI) modes using quadrupole, triple quadrupole, ion trap, and magnetic sector analyzers. However, these brominated contaminants are examples of compounds for which a soft and robust ionization technique might be favorable since they show high fragmentation in EI and low specificity in ECNI. In addition, the low limits of quantification (0.01 ng/g) required by European Commission Recommendation 2014/118/EU on the monitoring of traces of BFRs in food put stress on the use of highly sensitive techniques/methods. In this work, a new approach for the extremely sensitive determination of BFRs taking profit of the potential of atmospheric pressure chemical ionization (APCI) combined with GC and triple quadrupole (QqQ) mass analyzer is proposed. The objective was to explore the potential of this approach for the BFRs determination in samples at pg/g levels, taking marine samples and a cream sample as a model. Ionization and fragmentation behavior of 14 PBDEs (congeners 28, 47, 66, 85, 99, 100, 153, 154, 183, 184, 191, 196, 197, and 209) and two novel BFRs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), in the GC-APCI-MS system has been investigated. The formation of highly abundant (quasi) molecular ion was the main advantage observed in relation to EI. Thus, a notable improvement in sensitivity and specificity was observed when using it as precursor ion in tandem MS. The improved detectability (LODs < 10 fg) achieved when using APCI compared to EI has been demonstrated, which is especially relevant for highly brominated congeners. Analysis of samples from an intercomparison exercise and samples from the marine field showed the potential of this approach for the reliable identification and quantification at very low

  16. Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters.

    PubMed

    Portolés, Tania; Mol, Johannes G J; Sancho, Juan V; Hernández, Félix

    2014-04-25

    A new approach has been developed for multiclass screening of organic contaminants in water based on the use of gas chromatography coupled to hybrid quadrupole high-resolution time-of-flight mass spectrometry with atmospheric pressure chemical ionization (GC-(APCI)QTOF MS). The soft ionization promoted by the APCI source allows effective and wide-scope screening based on the investigation of the molecular ion and/or protonated molecule. This is in contrast to electron ionization (EI) where ionization typically results in extensive fragmentation, and diagnostic ions and/or spectra need to be known a priori to facilitate detection of the analytes in the raw data. Around 170 organic contaminants from different chemical families were initially investigated by both approaches, i.e. GC-(EI)TOF and GC-(APCI)QTOF, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and a notable number of pesticides and relevant metabolites. The new GC-(APCI)QTOF MS approach easily allowed widening the number of compounds investigated (85 additional compounds), with more pesticides, personal care products (UV filters, musks), polychloronaphthalenes (PCNs), antimicrobials, insect repellents, etc., most of them considered as emerging contaminants. Both GC-(EI)TOF and GC-(APCI)QTOF methodologies have been applied, evaluating their potential for a wide-scope screening in the environmental field. PMID:24674644

  17. Direct Analysis of Nonvolatile Chemical Compounds on Surfaces Using a Hand-Held Mass Spectrometer with Synchronized Discharge Ionization Function.

    PubMed

    Wang, Xiao; Zhou, Xiaoyu; Ouyang, Zheng

    2016-01-01

    Synchronized discharge ionization (SDI) was previously developed for hand-held mass spectrometers with discontinuous atmospheric pressure interfaces. The function of SDI has been demonstrated for analysis of volatile organic compounds in air at high sensitivity, which is attributed to the fact that ions were produced next to the ion trap mass analyzer inside the vacuum manifold. In this study, a simple sampling device was designed and fitted to a hand-held mass spectrometer to characterize its potential in direct analysis of low-volatility chemicals on surfaces. Nine chemicals of vapor pressures ranging from 10(-4) to 10(-8) Torr (at room temperature), including pesticides, illicit drugs, and explosives, were selected to evaluate and demonstrate the analytical capability of the designed system. Compounds of vapor pressures below 10(-7) Torr, such as tetryl, cocaine, and tetrahydrocannabinol (THC), have been successfully detected. Direct analysis of pesticides from fruit and explosives from a large surface area has also been demonstrated. Tandem mass analysis was performed, which helped to confirm the analyte identity as well as to improve the signal-to-noise ratio (S/N). PMID:26618852

  18. Comparative analysis of dioxins and furans by electron impact, high-resolution mass spectrometry and by electron capture, negative ionization, low-resolution mass spectrometry

    SciTech Connect

    Koester, C.J.; Harless, R.L.; Hites, R.A.

    1990-01-01

    Electron impact, high resolution mass spectrometry (HRMS) is currently the method of choice for the analysis of polychlorinated dibenso-p-dioxins and dibenzofurans (PCDD/F) because of its ability to detect PCDD/F in the presence of interfering compounds, such as polychlorinated biphenyls (PCB), which cannot be resolved by low resolution methods. The PDCC/F analyses may also be performed using electron capture, negative ionization (ECNI) low resolution mass spectrometry, providing extensive sample preparation is done to remove interferences. Before ECNI low resolution mass spectrometry (MS) can be accepted as a routine method for PCDD/F analysis, it is necessary to show that results generated by this method are comparable to those obtained by HRMS. Known mixtures and unknown air samples were analyzed by electron impact HRMS (Finnigan MAT 90 system) and by ECNI low resolution MS (Hewlett Packard 5985B). Both instruments were fitted with a gas chromatographic inlet. The PCDD/F concentrations determined by the two techniques compare favorably, typically within 20%. The major difference between these two methods is that the ECNI low resolution method shows poor sensitivity in detecting 2,3,7,8-tetrachlorodioxin. However, ECNI MS offers the advantage of lower detection limits (50-100 fg) than electron impact HRMS (0.1 to 0.5 pg). These results suggest that ECNI low resolution MS can be a simple, low cost alternative to the common high resolution methods used for PCDD/F analysis.

  19. Determination of betamethasone and betamethasone 17-monopropionate in human plasma by liquid chromatography-positive/negative electrospray ionization tandem mass spectrometry.

    PubMed

    Zou, Jian-Jun; Dai, Li; Ding, Li; Xiao, Da-Wei; Bin, Zhu-Yu; Fan, Hong-Wei; Liu, Li; Wang, Guang-Ji

    2008-10-01

    This study presents a high-performance liquid chromatography-positive/negative electrospray ionization tandem mass spectrometric (LC-ESI(+/-)-MS-MS) method for the determination of betamethasone (BOH) and betamethasone 17-monopropionate (B17P) in human plasma using beclomethasone dipropionate as the internal standard (I.S.). Both compounds were extracted from human plasma with ether-cyclohexane (4:1, v/v) and were separated by HPLC on a Hanbon Lichrospher C(18) column with a mobile phase of methanol-water (85:15, v/v) at a flow rate of 0.7ml/min. Calibration curves were linear over the range of 0.10-50ng/ml for BOH and 0.050-50ng/ml for B17P. The inter-run relative standard deviations were less than 14.4% for BOH and 12.3% for B17P. The intra-run relative standard deviations were less than 9.3% for BOH and 7.9% for B17P. The mean plasma extraction recovery for BOH and B17P were in the ranges of 82.7-85.9% and 83.6-85.3%, respectively. The method was successfully applied to study the pharmacokinetics of a new formulation of betamethasone phosphate/betamethasone dipropionate injection in healthy Chinese volunteers. PMID:18757252

  20. Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Ross, John J

    2010-04-15

    It has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles. This observation has major implications for quantitative assays using deuterium-labelled internal standards and for the detection of deuterium-labelled products from isotopically labelled feeding experiments where there is a risk of back exchange to the protonated form during the analysis. PMID:20213724

  1. Multiresidue analysis of pesticides in traditional Chinese medicines using gas chromatography - negative chemical ionization tandem mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a residue analysis method for the simultaneous determination of 107 pesticides in the traditional Chinese medicines (TCMs), Angelica sinensis, Angelica dahurica, Leonurus heterophyllus Sweet, Pogostemon cablin, and Lonicera japonica Thunb, was developed using gas chromatography couple...

  2. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  3. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  4. Development of a gas-cylinder-free plasma desorption/ionization system for on-site detection of chemical warfare agents.

    PubMed

    Iwai, Takahiro; Kakegawa, Ken; Aida, Mari; Nagashima, Hisayuki; Nagoya, Tomoki; Kanamori-Kataoka, Mieko; Miyahara, Hidekazu; Seto, Yasuo; Okino, Akitoshi

    2015-06-01

    A gas-cylinder-free plasma desorption/ionization system was developed to realize a mobile on-site analytical device for detection of chemical warfare agents (CWAs). In this system, the plasma source was directly connected to the inlet of a mass spectrometer. The plasma can be generated with ambient air, which is drawn into the discharge region by negative pressure in the mass spectrometer. High-power density pulsed plasma of 100 kW could be generated by using a microhollow cathode and a laboratory-built high-intensity pulsed power supply (pulse width: 10-20 μs; repetition frequency: 50 Hz). CWAs were desorbed and protonated in the enclosed space adjacent to the plasma source. Protonated sample molecules were introduced to the mass spectrometer by airflow through the discharge region. To evaluate the analytical performance of this device, helium and air plasma were directly irradiated to CWAs in the gas-cylinder-free plasma desorption/ionization system and the protonated molecules were analyzed by using an ion-trap mass spectrometer. A blister agent (nitrogen mustard 3) and nerve gases [cyclohexylsarin (GF), tabun (GA), and O-ethyl S-2-N,N-diisopropylaminoethyl methylphosphonothiolate (VX)] in solution in n-hexane were applied to the Teflon rod and used as test samples, after solvent evaporation. As a result, protonated molecules of CWAs were successfully observed as the characteristic ion peaks at m/z 204, 181, 163, and 268, respectively. In air plasma, the limits of detection were estimated to be 22, 20, 4.8, and 1.0 pmol, respectively, which were lower than those obtained with helium plasma. To achieve quantitative analysis, calibration curves were made by using CWA stimulant dipinacolyl methylphosphonate as an internal standard; straight correlation lines (R(2) = 0.9998) of the peak intensity ratios (target per internal standard) were obtained. Remarkably, GA and GF gave protonated dimer ions, and the ratios of the protonated dimer ions to the protonated

  5. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-06-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1-300 ppm) and D-limonene (0.02-3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  6. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-02-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1-300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  7. Self-Aspirated Atmospheric Pressure Chemical Ionization Source for Direct Sampling of Analytes on Surfaces and in Liquid Solutions

    SciTech Connect

    Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.

  8. Analysis of Polycyclic Aromatic Hydrocarbons Using Desorption Atmospheric Pressure Chemical Ionization Coupled to a Portable Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Jjunju, Fred P. M.; Maher, Simon; Li, Anyin; Badu-Tawiah, Abraham K.; Taylor, Stephen; Graham Cooks, R.

    2015-02-01

    Desorption atmospheric pressure chemical ionization (DAPCI) is implemented on a portable mass spectrometer and applied to the direct detection of polycyclic aromatic hydrocarbons (PAHs) and alkyl substituted benzenes. The presence of these compounds in the environment poses a significant threat to the health of both humans and wildlife because of their carcinogenic, toxic, and mutagenic properties. As such, instant detection outside of the laboratory is of particular importance to allow in-situ measurement at the source. Using a rapid, high throughput, miniature, handheld mass spectrometer, several alkyl substituted benzenes and PAHs (i.e., 1,2,3,5-tetramethylbenzene, pentamethylbenzene, hexamethylbenzene, fluoranthene, anthracene, benzo[ k]fluoranthene, dibenz[ a,h]anthracene, acenaphthene, indeno[1,2,3-c,d]pyrene, 9-ethylfluorene, and 1-benzyl-3-methyl-naphthalene) were identified and characterized using tandem mass spectrometry (MS/MS) from ambient surfaces, in the open air. This method can provide almost instantaneous information while minimizing sample preparation, which is advantageous in terms of both cost and simplicity of analysis. This MS-based technique is applicable to a wide range of environmental organic molecules.

  9. Post-Blast Analysis of Hexamethylene Triperoxide Diamine using Liquid Chromatography-Atmospheric Pressure Chemical Ionization-Mass Spectrometry.

    PubMed

    Marsh, Christine M; Mothershead, Robert F; Miller, Mark L

    2015-09-01

    A qualitative method using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS) has been developed and validated for the identification of trace hexamethylene triperoxide diamine (HMTD) using three structurally-specific ions. Residues are extracted with deionized water (DI) and identified using a gradient mobile phase program and positive ion full scan mode on a Thermo Finnigan LCQ Ion Trap Mass Spectrometer. This method was validated according to several performance characteristics for the qualitative identification of an analyte using the characteristic ions, demonstrating the method's reliability for use on forensic applications. The method's limit of detection (LOD) can identify HMTD in an extract from a cotton matrix to which 20 μg of HMTD has been applied (equivalent to 10 ppm in extract). Previous scientific publications using LC/MS have not demonstrated post-blast HMTD residue analyses and suffer from a lack of chromatographic retention, sufficient number of mass spectral ions with validation, or require more complex/expensive instrumental methods (accurate mass or MS/MS). Post-blast analyses were successfully conducted with two syringe detonations that verified the efficacy of the method on the analysis of debris and residues following detonation. PMID:26385711

  10. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.

    PubMed

    Cotte-Rodríguez, Ismael; Justes, Dina R; Nanita, Sergio C; Noll, Robert J; Mulligan, Christopher C; Sanders, Nathaniel L; Cooks, R Graham

    2006-04-01

    The suitability of atmospheric pressure chemical ionization mass spectrometry as sensing instrumentation for the real-time monitoring of low levels of toxic compounds is assessed, especially with respect to public safety applications. Gaseous samples of nine toxic industrial compounds, NH3, H2S, Cl2, CS2, SO2, C2H4O, HBr, C6H6 and AsH3, and two chemical warfare agent simulants, dimethyl methylphosphonate (DMMP) and methyl salicylate (MeS), were studied. API-MS proves highly suited to this application, with speedy analysis times (<30 seconds), high sensitivity, high selectivity towards analytes, good precision, dynamic range and accuracy. Tandem MS methods were implemented in selected cases for improved selectivity, sensitivity, and limits of detection. Limits of detection in the parts-per-billion and parts-per-trillion range were achieved for this set of analytes. In all cases detection limits were well below the compounds' permissible exposure limits (PELs), even in the presence of added complex mixtures of alkanes. Linear responses, up to several orders of magnitude, were obtained over the concentration ranges studied (sub-ppb to ppm), with relative standard deviations less than 3%, regardless of the presence of alkane interferents. Receiver operating characteristic (ROC) curves are presented to show the performance trade-off between sensitivity, probability of correct detection, and false positive rate. A dynamic sample preparation system for the production of gas phase analyte concentrations ranging from 100 pptr to 100 ppm and capable of admixing gaseous matrix compounds and control of relative humidity and temperature is also described. PMID:16568176