Sample records for negative-index material design

  1. Creating double negative index materials using the Babinet principle with one metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Koschny, Thomas; Soukoulis, C. M.

    2013-01-01

    Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative ɛ, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability μ, with perpendicular direction. The combined electromagnetic response of this planar metamaterial, where the negative μ comes from the aperture and the negative ɛ from the remainder of the continuous metallic plate, allows achievement of a double negative index metamaterial (NIM) with only one metasurface and strong transmission. These designs can be used to fabricate NIMs at microwave and optical wavelengths and three-dimensional metamaterials.

  2. Negative index effects from a homogeneous positive index prism

    NASA Astrophysics Data System (ADS)

    Marcus, Sherman W.; Epstein, Ariel

    2017-12-01

    Cellular structured negative index metamaterials in the form of a right triangular prism have often been tested by observing the refraction of a beam across the prism hypotenuse which is serrated in order to conform to the cell walls. We show that not only can this negative index effect be obtained from a homogeneous dielectric prism having a positive index of refraction, but in addition, for sampling at the walls of the cellular structure, the phase in the material has the illusory appearance of moving in a negative direction. Although many previous reports relied on refraction direction and phase velocity of prism structures to verify negative index design, our investigation indicates that to unambiguously demonstrate material negativity additional empirical evidence is required.

  3. TE and TM guided modes in an air waveguide with negative-index-material cladding.

    PubMed

    D'Aguanno, G; Mattiucci, N; Scalora, M; Bloemer, M J

    2005-04-01

    We numerically demonstrate that a planar waveguide in which the inner layer is a gas with refractive index n0 = 1, sandwiched between two identical semi-infinite layers of a negative index material, can support both transverse electric and transverse magnetic guided modes with low losses. Recent developments in the design of metamaterials with an effective negative index suggest that this waveguide could operate in the infrared region of the spectrum.

  4. Second-harmonic generation from a positive-negative index material heterostructure.

    PubMed

    Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J; Scalora, Michael

    2005-12-01

    Resonant cavities have been widely used in the past to enhance material, nonlinear response. Traditional mirrors include metallic films and distributed Bragg reflectors. In this paper we propose negative index material mirrors as a third alternative. With the help of a rigorous Green function approach, we investigate second harmonic generation from single and coupled cavities, and theoretically prove that negative index material mirrors can raise the nonlinear conversion efficiency of a bulk material by at least four orders of magnitude compared to a bulk medium.

  5. Dispersion-free pulse propagation in a negative-index material.

    PubMed

    D'Aguanno, Giuseppe; Akozbek, Neset; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J; Zheltikov, Aleksei M

    2005-08-01

    The possibility of controlling the spectral position of the zero group-velocity dispersion point of a negative-index material can be exploited by varying the ratio between the electric and the magnetic plasma frequency to obtain dispersion-free propagation in spectral regions otherwise inaccessible using conventional positive-index materials. Our predictions are confirmed by pulse propagation simulations where all the orders of the complex dispersion of the material are taken into account.

  6. Uniform refraction in negative refractive index materials.

    PubMed

    Gutiérrez, Cristian E; Stachura, Eric

    2015-11-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.

  7. Design of negative refractive index metamaterial with water droplets using 3D-printing

    NASA Astrophysics Data System (ADS)

    Shen, Zhaoyang; Yang, Helin; Huang, Xiaojun; Yu, Zetai

    2017-11-01

    We numerically and experimentally demonstrate a negative refractive index (NRI) behavior in combined water droplets and photosensitive resin materials operating in the microwave regime. The NRI is achieved over a very wide frequency range in 10.27-15 GHz with bandwidth of 4.63 GHz. The simulated results approximately agree with the experimental results. The negative index band can be controlled by water droplet radius. The proposed metamaterial production process is simple and may have potential applications in broadband tunable devices.

  8. Towards a Negative Refractive Index in an Atomic System

    NASA Astrophysics Data System (ADS)

    Simmons, Zach; Brewer, Nick; Yavuz, Deniz

    2014-05-01

    The goal of our experiments is to obtain a negative index of refraction in the optical region of the spectrum using an atomic system. The concept of negative refraction, which was first predicted by Veselago more than four decades ago, has recently emerged as a very exciting field of science. Negative index materials exhibit many seemingly strange properties such as electromagnetic vectors forming a left-handed triad. A key potential application for these materials was discovered in 2000 when Pendry predicted that a slab with a negative refractive index can image objects with a resolution far better than the diffraction limit. Thus far, research in negative index materials has primarily focused on meta-materials. The fixed response and often large absorption of these engineered materials motivates our efforts to work in an atomic system. An atomic media offers the potential to be actively modified, for example by changing laser parameters, and can be tuned to cancel absorption. A doped crystal allows for high atomic densities compared to other atomic systems. So far we have identified a transition in such a material, Eu:YSO, as a candidate for these experiments and are performing spectroscopy on this material.

  9. Overlapping illusions by transformation optics without any negative refraction material.

    PubMed

    Sun, Fei; He, Sailing

    2016-01-11

    A novel method to achieve an overlapping illusion without any negative refraction index material is introduced with the help of the optic-null medium (ONM) designed by an extremely stretching spatial transformation. Unlike the previous methods to achieve such an optical illusion by transformation optics (TO), our method can achieve a power combination and reshape the radiation pattern at the same time. Unlike the overlapping illusion with some negative refraction index material, our method is not sensitive to the loss of the materials. Other advantages over existing methods are discussed. Numerical simulations are given to verify the performance of the proposed devices.

  10. Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuanyuan; Wei, Yanyu; Jiang, Xuebing

    We present an analysis of a Cherenkov free-electron laser based on a single slab made from negative-index materials. In this system, a flat electron beam with finite thickness travelling close to the surface of the slab interacts with the copropagating electromagnetic surface mode. The dispersion equation for a finitely thick slab is worked out and solved numerically to study the dispersion relation of surface modes supported by negative-index materials, and the calculations are in good agreement with the simulation results from a finite difference time domain code. We find that under suitable conditions there is inherent feedback in such amore » scheme due to the characteristics of negative-index materials, which means that the system can oscillate without external reflectors when the beam current exceeds a threshold value, i.e., start current. Using the hydrodynamic approach, we setup coupled equations for this system, and solve these equations analytically in the small signal regime to obtain formulas for the spatial growth rate and start current.« less

  11. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    PubMed

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  12. Active microwave negative-index metamaterial transmission line with gain.

    PubMed

    Jiang, Tao; Chang, Kihun; Si, Li-Ming; Ran, Lixin; Xin, Hao

    2011-11-11

    We studied the active metamaterial transmission line at microwave frequency. The active composite right-handed or left-handed transmission line was designed to incorporate a germanium tunnel diode with a negative differential resistance property as the gain device at the unit cell level. Measurements of the fabricated planar transmission line structures with one-, two-, and three-unit cells showed that the addition of the dc pumped tunnel diodes not only provided gain but also maintained the left handedness of the transmission line metamaterial. Simulation results agree well with experimental observation. This work demonstrated that negative index material can be obtained with a net gain when an external source is incorporated.

  13. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  14. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  15. Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials.

    PubMed

    Scalora, Michael; Syrchin, Maxim S; Akozbek, Neset; Poliakov, Evgeni Y; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Zheltikov, Aleksei M

    2005-07-01

    A new generalized nonlinear Schrödinger equation describing the propagation of ultrashort pulses in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability is derived and used to characterize wave propagation in a negative index material. The equation has new features that are distinct from ordinary materials (mu=1): the linear and nonlinear coefficients can be tailored through the linear properties of the medium to attain any combination of signs unachievable in ordinary matter, with significant potential to realize a wide class of solitary waves.

  16. Nickel cadmium cell designs negative to positive material ratio and precharge levels

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1977-01-01

    A review is made of the factors affecting the choices of negative-to-positive materials ratio and negative precharge in nickel-cadmium cells. The effects of these variables on performance are given, and the different methods for setting precharge are evaluated. The effects of special operating requirements on the design are also discussed.

  17. Optic-null space medium for cover-up cloaking without any negative refraction index materials

    PubMed Central

    Sun, Fei; He, Sailing

    2016-01-01

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology. PMID:27383833

  18. Optic-null space medium for cover-up cloaking without any negative refraction index materials.

    PubMed

    Sun, Fei; He, Sailing

    2016-07-07

    With the help of optic-null medium, we propose a new way to achieve invisibility by covering up the scattering without using any negative refraction index materials. Compared with previous methods to achieve invisibility, the function of our cloak is to cover up the scattering of the objects to be concealed by a background object of strong scattering. The concealed object can receive information from the outside world without being detected. Numerical simulations verify the performance of our cloak. The proposed method will be a great addition to existing invisibility technology.

  19. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David A.; Vedral, L. James; Smith, David A.

    2015-04-15

    Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and comparedmore » well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.« less

  20. Experimental verification and simulation of negative index of refraction using Snell's law.

    PubMed

    Parazzoli, C G; Greegor, R B; Li, K; Koltenbah, B E C; Tanielian, M

    2003-03-14

    We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the real part of the index of refraction to be -1.05. The measurements and simulations of the electromagnetic field profiles were performed at distances of 14lambda and 28lambda from the sample; the fields were also computed at 100lambda.

  1. Cavity equations for a positive- or negative-refraction-index material with electric and magnetic nonlinearities.

    PubMed

    Mártin, Daniel A; Hoyuelos, Miguel

    2009-11-01

    We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.

  2. Nanoimprinting techniques for large-area three-dimensional negative index metamaterials with operation in the visible and telecom bands.

    PubMed

    Gao, Li; Shigeta, Kazuki; Vazquez-Guardado, Abraham; Progler, Christopher J; Bogart, Gregory R; Rogers, John A; Chanda, Debashis

    2014-06-24

    We report advances in materials, designs, and fabrication schemes for large-area negative index metamaterials (NIMs) in multilayer "fishnet" layouts that offer negative index behavior at wavelengths into the visible regime. A simple nanoimprinting scheme capable of implementation using standard, widely available tools followed by a subtractive, physical liftoff step provides an enabling route for the fabrication. Computational analysis of reflection and transmission measurements suggests that the resulting structures offer negative index of refraction that spans both the visible wavelength range (529-720 nm) and the telecommunication band (1.35-1.6 μm). The data reveal that these large (>75 cm(2)) imprinted NIMs have predictable behaviors, good spatial uniformity in properties, and figures of merit as high as 4.3 in the visible range.

  3. Bright and dark gap solitons in a negative index Fabry-Pérot etalon.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2004-11-19

    We predict the existence of bright and dark gap solitons in a single slab of negative index material. The formation of gap solitons is made possible by the exceptional interplay between the linear dispersive properties of the negative index etalon and the effect of a cubic nonlinearity.

  4. Evidence of negative-index refraction in nonlinear chemical waves.

    PubMed

    Yuan, Xujin; Wang, Hongli; Ouyang, Qi

    2011-05-06

    The negative index of refraction of nonlinear chemical waves has become a recent focus in nonlinear dynamics researches. Theoretical analysis and computer simulations have predicted that the negative index of refraction can occur on the interface between antiwaves and normal waves in a reaction-diffusion (RD) system. However, no experimental evidence has been found so far. In this Letter, we report our experimental design in searching for such a phenomenon in a chlorite-iodide-malonic acid (CIMA) reaction. Our experimental results demonstrate that competition between waves and antiwaves at their interface determines the fate of the wave interaction. The negative index of refraction was only observed when the oscillation frequency of a normal wave is significantly smaller than that of the antiwave. All experimental results were supported by simulations using the Lengyel-Epstein RD model which describes the CIMA reaction-diffusion system.

  5. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

    NASA Astrophysics Data System (ADS)

    Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.

    2018-06-01

    The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

  6. A Soft 3D Acoustic Metafluid with Dual-Band Negative Refractive Index.

    PubMed

    Raffy, Simon; Mascaro, Benoit; Brunet, Thomas; Mondain-Monval, Olivier; Leng, Jacques

    2016-03-02

    Spherical silica xerogels are efficient acoustic Mie resonators. When these sub-wavelength inclusions are dispersed in a matrix, the final metafluid may display a negative acoustic refractive index upon a set of precise constraints concerning material properties, concentration, size, and dispersity of the inclusions. Because xerogels may sustain both pressure and shear waves, several bands with negative index can be tailored. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  8. Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths.

    PubMed

    García-Meca, C; Ortuño, R; Salvador, R; Martínez, A; Martí, J

    2007-07-23

    We present a structure exhibiting a negative index of refraction at visible or near infrared frequencies using a single metal layer. This contrasts with recently developed structures based on metal-dielectric-metal composites. The proposed metamaterial consists of periodically arranged thick stripes interacting with each other to give rise to a negative permeability. Improved designs that allow for a negative index for both polarizations are also presented. The structures are numerically analyzed and it is shown that the dimensions can be engineered to shift the negative index band within a region ranging from telecommunication wavelengths down to blue light.

  9. Metamaterials with gradient negative index of refraction.

    PubMed

    Pinchuk, Anatoliy O; Schatz, George C

    2007-10-01

    We propose a new metamaterial with a gradient negative index of refraction, which can focus a collimated beam of light coming from a distant object. A slab of the negative refractive index metamaterial has a focal length that can be tuned by changing the gradient of the negative refractive index. A thin metal film pierced with holes of appropriate size or spacing between them can be used as a metamaterial with the gradient negative index of refraction. We use finite-difference time-domain calculations to show the focusing of a plane electromagnetic wave passing through a system of equidistantly spaced holes in a metal slab with decreasing diameters toward the edges of the slab.

  10. Analysis of scattering by spheres having a negative acoustical refractive index

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2005-04-01

    Electromagnetic waves having oppositely directed phase and group velocities propagate in metamaterials having a negative permeability and negative permittivity [J. B. Pendry and D. R. Smith, Phys. Today 57(6), 37-44 (2004)]. Such materials are predicted to have unusual electromagnetic scattering properties [R. Ruppin, Solid State Commun. 116, 411-415 (2000)]. If it is possible to fabricate acoustical materials having a simultaneously negative effective elastic modulus and density (in a dynamical sense), the mechanical energy flux will have the opposite direction as the wave-vector associated with phase evolution. Rays descriptive of the energy flux refracted by such hypothetical materials at interfaces with ordinary fluids would be characterized by a negative acoustical refractive index. Partial-wave-series calculations of high frequency scattering by fluid spheres having an acoustical refractive index at (or close to) 1 reveal backscattering enhancements associated with glory rays which, unlike ordinary spheres [P. L. Marston and D. S. Langley, J. Acoust. Soc. Am. 73, 1464-1475 (1983)], require only a single internal chord. Generalized Lamb waves on elastic shells having opposite phase and group velocities also cause enhanced backscattering associated with unusual rays [G. Kaduchak, D. H. Hughes, and P. L. Marston, J. Acoust. Soc. Am. 96, 3704-3714 (1994)].

  11. Omnidirectional and multi-channel filtering by photonic quantum wells with negative-index materials.

    PubMed

    Lin, Mi; Ouyang, Zhengbiao; Xu, Jun; Qiu, Gaoxin

    2009-03-30

    We propose a type of photonic quantum well made of two different photonic crystals with negative- and positive-index materials. It is demonstrated by transfer matrix method that, omnidirectional and multichannel filtering can be achieved. Resonance tunneling modes, or the multi-channel filtering modes, are found to exist when a passband of the well photonic crystal is located inside the gap of the barrier photonic crystals. And for each passband of the well photonic crystal in the photonic bandgap of the barrier photonic crystal, the number of modes is the same as the number of periods in the well photonic crystals. Moreover, the modes are insensitive to the incident angle from 0 to 85 degrees and the scaling of the barrier photonic crystals at a certain range. Such structures are useful for all-direction receiving, sending, or linking-up of multi-channel signals in wireless-communication networks. And they can be applied in signal-detection systems to enhance signal-detection sensitivity.

  12. Gap solitons in a nonlinear quadratic negative-index cavity.

    PubMed

    Scalora, Michael; de Ceglia, Domenico; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Centini, Marco; Bloemer, Mark J

    2007-06-01

    We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index materials. This similarity also results in comparable field localization and enhancement properties that under appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conversion. We thus report that an intense, fundamental pump pulse is able to shift the band edge of a negative index cavity, and make it possible for a weak second harmonic pulse initially tuned inside the gap to be transmitted, giving rise to a gap soliton. The process is due to cascading, a well-known phenomenon that occurs far from phase matching conditions that limits energy conversion rates, it resembles a nonlinear third-order process, and causes pulse compression due to self-phase modulation. The symmetry of the equations of motion under the action of either an electric or a magnetic nonlinearity suggests that both nonlinear polarization and magnetization, or a combination of both, can lead to solitonlike pulses. More specifically, the antisymmetric localization properties of the electric and magnetic fields cause a nonlinear polarization to generate a dark soliton, while a nonlinear magnetization spawns a bright soliton.

  13. Experimental validation of systematically designed acoustic hyperbolic meta material slab exhibiting negative refraction

    NASA Astrophysics Data System (ADS)

    Christiansen, Rasmus E.; Sigmund, Ole

    2016-09-01

    This Letter reports on the experimental validation of a two-dimensional acoustic hyperbolic metamaterial slab optimized to exhibit negative refractive behavior. The slab was designed using a topology optimization based systematic design method allowing for tailoring the refractive behavior. The experimental results confirm the predicted refractive capability as well as the predicted transmission at an interface. The study simultaneously provides an estimate of the attenuation inside the slab stemming from the boundary layer effects—insight which can be utilized in the further design of the metamaterial slabs. The capability of tailoring the refractive behavior opens possibilities for different applications. For instance, a slab exhibiting zero refraction across a wide angular range is capable of funneling acoustic energy through it, while a material exhibiting the negative refractive behavior across a wide angular range provides lensing and collimating capabilities.

  14. Direct-write graded index materials realized in protein hydrogels

    DOE PAGES

    Kaehr, Bryan; Scrymgeour, David A.

    2016-09-20

    Here, the ability to create optical materials with arbitrary index distributions would prove transformative for optics design and applications. However, current fabrication techniques for graded index (GRIN) materials rely on diffusion profiles and therefore are unable to realize arbitrary distribution GRIN design. Here, we demonstrate the laser direct writing of graded index structures in protein-based hydrogels using multiphoton lithography. We show index changes spanning a range of 10 –2, which is comparable with laser densified glass and polymer systems. Further, we demonstrate the conversion of these written density variation structures into SiO 2, opening up the possibility of transforming GRINmore » hydrogels to a wide range of material systems.« less

  15. Direct-write graded index materials realized in protein hydrogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaehr, Bryan; Scrymgeour, David A.

    Here, the ability to create optical materials with arbitrary index distributions would prove transformative for optics design and applications. However, current fabrication techniques for graded index (GRIN) materials rely on diffusion profiles and therefore are unable to realize arbitrary distribution GRIN design. Here, we demonstrate the laser direct writing of graded index structures in protein-based hydrogels using multiphoton lithography. We show index changes spanning a range of 10 –2, which is comparable with laser densified glass and polymer systems. Further, we demonstrate the conversion of these written density variation structures into SiO 2, opening up the possibility of transforming GRINmore » hydrogels to a wide range of material systems.« less

  16. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  17. Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband.

    PubMed

    Suzuki, Takehito; Sekiya, Masashi; Sato, Tatsuya; Takebayashi, Yuki

    2018-04-02

    The refractive index is a basic parameter of materials which it is essential to know for the manipulation of electromagnetic waves. However, there are no naturally occurring materials with negative refractive indices, and high-performance materials with negative refractive indices and low losses are demanded in the terahertz waveband. In this paper, measurements by terahertz time-domain spectroscopy (THz-TDS) demonstrate a metamaterial with a negative refractive index n of -4.2 + j0.17, high transmitted power of 81.5%, low reflected power of 4.3%, and a high figure of merit (FOM = |Re(n)/Im(n)|) of 24.2 at 0.42 THz. The terahertz metamaterial with these unprecedented properties can provide various attractive terahertz applications such as superlenses with resolutions beyond the diffraction limit in terahertz continuous wave imaging.

  18. Microwave gain medium with negative refractive index.

    PubMed

    Ye, Dexin; Chang, Kihun; Ran, Lixin; Xin, Hao

    2014-12-19

    Artificial effective media are attractive because of the fantastic applications they may enable, such as super lensing and electromagnetic invisibility. However, the inevitable loss due to their strongly dispersive nature is one of the fundamental challenges preventing such applications from becoming a reality. In this study, we demonstrate an effective gain medium based on negative resistance, to overcompensate the loss of a conventional passive metamaterial, meanwhile keeping its original negative-index property. Energy conservation-based theory, full-wave simulation and experimental measurement show that a fabricated sample consisting of conventional sub-wavelength building blocks with embedded microwave tunnel diodes exhibits a band-limited Lorentzian dispersion simultaneously with a negative refractive index and a net gain. Our work provides experimental evidence to the assertion that a stable net gain in negative-index gain medium is achievable, proposing a potential solution for the critical challenge current metamateiral technology faces in practical applications.

  19. Symmetry breaking and optical negative index of closed nanorings

    NASA Astrophysics Data System (ADS)

    Kanté, Boubacar; Park, Yong-Shik; O'Brien, Kevin; Shuldman, Daniel; Lanzillotti-Kimura, Norberto D.; Jing Wong, Zi; Yin, Xiaobo; Zhang, Xiang

    2012-11-01

    Metamaterials have extraordinary abilities, such as imaging beyond the diffraction limit and invisibility. Many metamaterials are based on split-ring structures, however, like atomic orbital currents, it has long been believed that closed rings cannot produce negative refractive index. Here we report a low-loss and polarization-independent negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite ‘chess metamaterial’. The formation of an ultra-broad Fano-resonance-induced optical negative-index band, spanning wavelengths from 1.3 to 2.3 μm, is experimentally observed in this structure. This discrete and mono-particle negative-index approach opens exciting avenues towards symmetry-controlled topological nanophotonics with on-demand linear and nonlinear responses.

  20. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    PubMed Central

    Islam, Md. Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais

    2015-01-01

    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications. PMID:28787945

  1. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications.

    PubMed

    Islam, Md Moinul; Islam, Mohammad Tariqul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah; Mansor, Mohd Fais

    2015-01-23

    A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR) and capacitance-loaded strip (CLS) unit cells is presented for Ultra wideband (UWB) microwave imaging applications. Four left-handed (LH) metamaterial (MTM) unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR) with a capacitance-loaded strip (CLS) to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm³, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4-12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  2. Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths.

    PubMed

    García-Meca, Carlos; Hurtado, Juan; Martí, Javier; Martínez, Alejandro; Dickson, Wayne; Zayats, Anatoly V

    2011-02-11

    We experimentally demonstrate a low-loss multilayered metamaterial exhibiting a double-negative refractive index in the visible spectral range. To this end, we exploit a second-order magnetic resonance of the so-called fishnet structure. The low-loss nature of the employed magnetic resonance, together with the effect of the interacting adjacent layers, results in a figure of merit as high as 3.34. A wide spectral range of negative index is achieved, covering the wavelength region between 620 and 806 nm with only two different designs.

  3. Electromagnetic forces in negative-refractive-index metamaterials: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yannopapas, Vassilios; Galiatsatos, Pavlos G.

    2008-04-01

    According to the theory of Veselago, when a particle immersed within a metamaterial with negative refractive index is illuminated by plane wave, it experiences a reversed radiation force due to the antiparallel directions of the phase velocity and energy flow. By employing an ab initio method, we show that, in the limit of zero losses, the effect of reversed radiation pressure is generally true only for the specular beam. Waves generated by diffraction of the incident light at the surface of the slab of the metamaterial can produce a total force which is parallel to the radiation flow. However, when the actual losses of the materials are taken into account, the phenomenon of reversed radiation force is evident within the whole range of a negative refractive index band.

  4. Dynamics of short pulses and phase matched second harmonic generation in negative index materials.

    PubMed

    Scalora, Michael; D'Aguanno, Giuseppe; Bloemer, Mark; Centini, Marco; de Ceglia, Domenico; Mattiucci, Nadia; Kivshar, Yuri S

    2006-05-29

    We study pulsed second harmonic generation in metamaterials under conditions of significant absorption. Tuning the pump in the negative index range, a second harmonic signal is generated in the positive index region, such that the respective indices of refraction have the same magnitudes but opposite signs. This insures that a forward-propagating pump is exactly phase matched to the backward-propagating second harmonic signal. Using peak intensities of ~500 MW/cm(2), assuming chi((2))~80pm/V, we predict conversion efficiencies of 12% and 0.2% for attenuation lengths of 50 and 5microm, respectively.

  5. Negative refractive index, perfect lenses and checkerboards: Trapping and imaging effects in folded optical spaces

    NASA Astrophysics Data System (ADS)

    Guenneau, Sébastien; Ramakrishna, S. Anantha

    2009-06-01

    Newly discovered metamaterials have opened new vistas for better control of light via negative refraction, whereby light refracts in the "wrong" manner. These are dielectric and metallic composite materials structured at subwavelength lengthscales. Their building blocks consist of local resonators such as conducting thin bars and split rings driving the material parameters such as the dielectric permittivity and magnetic permeability to negative (complex) values. Combined together, these structural elements can bring about a (complex valued) negative effective refractive index for the Snell-Descartes law and result in negative refraction of radiation. Negative refractive index materials can support a host of surface plasmon states for both polarizations of light. This makes possible unique effects such as imaging with subwavelength image resolution through the Pendry-Veselago slab lens. Other geometries have also been investigated, such as cylindrical or spherical lenses that enable a magnification of images with subwavelength resolution. Superlenses of three-fold (equilateral triangle), four-fold (square) and six-fold (hexagonal) geometry allow for multiple images, respectively two, three, and five. Generalization to rectangular and triangular checkerboards consisting of alternating cells of positive and negative refractive index represents a very singular situation in which the density of modes diverges at the corners, with an infinity of images. Sine-cosecant anisotropic heterogeneous square and triangular checkerboards can be respectively mapped onto three-dimensional cubic and icosahedral corner lenses consisting of alternating positive and negative refractive regions. All such systems with corners between negative and positive refractive media display very singular behavior with the local density of states becoming infinitely large at the corner, in the limit of no dissipation. We investigate all of these, using the unifying viewpoint of transformation optics

  6. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  7. Positive phase evolution of waves propagating along a photonic crystal with negative index of refraction.

    PubMed

    Martínez, Alejandro; Martí, Javier

    2006-10-16

    We analyze propagation of electromagnetic waves in a photonic crystal at frequencies at which it behaves as an effective medium with a negative index in terms of refraction at its interface with free space. We show that the phase evolution along the propagation direction is positive, despite the fact that the photonic crystal displays negative refraction following Snell's law, and explain it in terms of the Fourier components of the Bloch wave. Two distinct behaviors are found at frequencies far and close to the band edge of the negative-index photonic band. These findings contrast with the negative phase evolution that occurs in left-handed materials, so care has to be taken when applying the term left-handed to photonic crystals.

  8. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  9. Negative terahertz photoconductivity in 2D layered materials.

    PubMed

    Lu, Junpeng; Liu, Hongwei; Sun, Jing

    2017-11-17

    The remarkable qualities of 2D layered materials such as wide spectral coverage, high strength and great flexibility mean that ultrathin 2D layered materials have the potential to meet the criteria of next-generation optoelectronic devices. Photoconductivity is one of the critical parameters of materials applied to optoelectronics. In contrast to traditional semiconductors, specific ultrathin 2D layers present anomalous negative photoconductivity. This opens a new avenue for designing novel optoelectronic devices. It is important to have a deep understanding of the fundamentals of this anomalous response, in order to design and optimize such devices. In this review, we provide an overview of the observation of negative photoconductivity in 2D layered materials including graphene, topological insulators and transitional metal dichalcogenides. We also summarize recent reports on investigations into the fundamental mechanism using ultrafast terahertz (THz) spectroscopies. Finally, we conclude the review by discussing the existing challenges and proposing the possible prospects of this direction of research.

  10. Relationship between the Kramers-Kronig relations and negative index of refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyurtlu, Alkim; Kussow, Adil-Gerai

    2010-11-15

    The condition for a negative index of refraction with respect to the vacuum index is established in terms of permittivity and permeability susceptibilities. It is found that the imposition of analyticity to satisfy the Kramers-Kronig relations is a sufficiently general criterion for a physical negative index. The satisfaction of the Kramers-Kronig relations is a manifestation of the principle of causality and the predicted frequency region of negative index agrees with the Depine-Lakhtakia condition for the phase velocity being antidirected to the Poynting vector, although the conditions presented here do not assume a priori a negative solution branch for n.

  11. Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.

    2017-12-01

    An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.

  12. Negative index of refraction in a four-level system with magnetoelectric cross coupling and local field corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, F.

    2011-07-15

    This research focuses on a coherently driven four-level atomic medium with the aim of inducing a negative index of refraction while taking into consideration local field corrections as well as magnetoelectric cross coupling (i.e.,chirality) within the material's response functions. Two control fields are used to render the medium transparent for a probe field which simultaneously couples to an electric and a magnetic dipole transition, thus allowing one to test the permittivity and permeability of the material at the same time. Numerical simulations show that a negative index of refraction with low absorption can be obtained for a range of probemore » detunings while depending on number density and the ratio between the intensities of the control fields.« less

  13. Design of Miniaturized Double-Negative Material for Specific Absorption Rate Reduction in Human Head

    PubMed Central

    Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-01-01

    In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone. PMID:25350398

  14. Design of miniaturized double-negative material for specific absorption rate reduction in human head.

    PubMed

    Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2014-01-01

    In this study, a double-negative triangular metamaterial (TMM) structure, which exhibits a resounding electric response at microwave frequency, was developed by etching two concentric triangular rings of conducting materials. A finite-difference time-domain method in conjunction with the lossy-Drude model was used in this study. Simulations were performed using the CST Microwave Studio. The specific absorption rate (SAR) reduction technique is discussed, and the effects of the position of attachment, the distance, and the size of the metamaterials on the SAR reduction are explored. The performance of the double-negative TMMs in cellular phones was also measured in the cheek and the tilted positions using the COMOSAR system. The TMMs achieved a 52.28% reduction for the 10 g SAR. These results provide a guideline to determine the triangular design of metamaterials with the maximum SAR reducing effect for a mobile phone.

  15. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    PubMed Central

    Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A.

    2013-01-01

    Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements have no direct translation to the optical domain, without being burdened by technological and conceptual difficulties. Of particular importance within the realm of optical negative-index metamaterials (NIM), is the issue of simultaneously achieving strong electric and magnetic responses and low associated losses. Here, hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative index of refraction in the near-infrared, with values of the real part well below −1, and extremely low losses (an order of magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in the whole telecom spectrum. The design is proven in configurations such as prisms and slabs, directly observing negative refraction. PMID:23514968

  16. Superlensing effect for surface acoustic waves in a pillar-based phononic crystal with negative refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addouche, Mahmoud, E-mail: mamoud.addouche@femto-st.fr; Al-Lethawe, Mohammed A., E-mail: mohammed.abdulridha@femto-st.fr; Choujaa, Abdelkrim, E-mail: achoujaa@femto-st.fr

    2014-07-14

    We demonstrate super resolution imaging for surface acoustic waves using a phononic structure displaying negative refractive index. This phononic structure is made of a monolithic square lattice of cylindrical pillars standing on a semi-infinite medium. The pillars act as acoustic resonator and induce a surface propagating wave with unusual dispersion. We found, under specific geometrical parameters, one propagating mode that exhibits negative refraction effect with negative effective index close to −1. Furthermore, a flat lens with finite number of pillars is designed to allow the focusing of an acoustic point source into an image with a resolution of (λ)/3 ,more » overcoming the Rayleigh diffraction limit.« less

  17. Symmetry Breaking and Optical Negative Index of Closed Nanorings

    NASA Astrophysics Data System (ADS)

    Kante, Boubacar; Park, Yong-Shik; O'Brien, Kevin; Shuldman, Daniel; Lanzillotti-Kimura, Norberto; Wong, Zi; Yin, Xiaobo; Zhang, Xiang; UC Berkeley Team

    2013-03-01

    We report the first experimental demonstration of broadband negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite chess metamaterial. Our approach open avenues towards topological nanophotonics with on demand linear and non-linear responses.

  18. General Rule of Negative Effective Ueff System & Materials Design of High-Tc Superconductors by ab initio Calculations

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, Hiroshi; Nakanishi, Akitaka; Uede, Hiroki; Takawashi, Yuki; Fukushima, Tetsuya; Sato, Kazunori

    2014-03-01

    Based upon ab initio electronic structure calculation, I will discuss the general rule of negative effective U system by (1) exchange-correlation-induced negative effective U caused by the stability of the exchange-correlation energy in Hund's rule with high-spin ground states of d5 configuration, and (2) charge-excitation-induced negative effective U caused by the stability of chemical bond in the closed-shell of s2, p6, and d10 configurations. I will show the calculated results of negative effective U systems such as hole-doped CuAlO2 and CuFeS2. Based on the total energy calculations of antiferromagnetic and ferromagnetic states, I will discuss the magnetic phase diagram and superconductivity upon hole doping. I also discuss the computational materials design method of high-Tc superconductors by ab initio calculation to go beyond LDA and multi-scale simulations.

  19. Index change of chalcogenide materials from precision glass molding processes

    NASA Astrophysics Data System (ADS)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  20. Numerical simulations of negative-index refraction in wedge-shaped metamaterials.

    PubMed

    Dong, Z G; Zhu, S N; Liu, H; Zhu, J; Cao, W

    2005-07-01

    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's Law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's Law experiments.

  1. Design for approaching Cicada-wing reflectance in low- and high-index biomimetic nanostructures.

    PubMed

    Huang, Yi-Fan; Jen, Yi-Jun; Chen, Li-Chyong; Chen, Kuei-Hsien; Chattopadhyay, Surojit

    2015-01-27

    Natural nanostructures in low refractive index Cicada wings demonstrate ≤ 1% reflectance over the visible spectrum. We provide design parameters for Cicada-wing-inspired nanotip arrays as efficient light harvesters over a 300-1000 nm spectrum and up to 60° angle of incidence in both low-index, such as silica and indium tin oxide, and high-index, such as silicon and germanium, photovoltaic materials. Biomimicry of the Cicada wing design, demonstrating gradient index, onto these material surfaces, either by real electron cyclotron resonance microwave plasma processing or by modeling, was carried out to achieve a target reflectance of ∼ 1%. Design parameters of spacing/wavelength and length/spacing fitted into a finite difference time domain model could simulate the experimental reflectance values observed in real silicon and germanium or in model silica and indium tin oxide nanotip arrays. A theoretical mapping of the length/spacing and spacing/wavelength space over varied refractive index materials predicts that lengths of ∼ 1.5 μm and spacings of ∼ 200 nm in high-index and lengths of ∼ 200-600 nm and spacings of ∼ 100-400 nm in low-index materials would exhibit ≤ 1% target reflectance and ∼ 99% optical absorption over the entire UV-vis region and angle of incidence up to 60°.

  2. Switchable zero-index metamaterials by loading positive-intrinsic-negative diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Nan; Cheng, Qiang, E-mail: qiangcheng@emfield.org; Zhao, Jie

    2014-02-03

    We propose switchable zero-index metamaterials (ZIMs) implemented by split ring resonators (SRRs) loaded with positive-intrinsic-negative (PIN) diode switching elements. We demonstrate that ZIMs can be achieved at around 10 GHz when the PIN diode is switched off. When the PIN diode is switched on, however, the designed metamaterials have impedance matching to the free space, which is useful to reduce the reflections at the interface of two media. The switchable ZIMs are suitable for a wide variety of applications like the beam forming and directive radiation. Experimental results validate the switching ability of the proposed ZIMs.

  3. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration

    PubMed Central

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing

    2016-01-01

    We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090

  4. The Assessment of Positivity and Negativity in Social Networks: The Reliability and Validity of the Social Relationships Index

    ERIC Educational Resources Information Center

    Campo, Rebecca A.; Uchino, Bert N.; Holt-Lunstad, Julianne; Vaughn, Allison; Reblin, Maija; Smith, Timothy W.

    2009-01-01

    The Social Relationships Index (SRI) was designed to examine positivity and negativity in social relationships. Unique features of this scale include its brevity and the ability to examine relationship positivity and negativity at the level of the specific individual and social network. The SRI's psychometric properties were examined in three…

  5. Soft network materials with isotropic negative Poisson's ratios over large strains.

    PubMed

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  6. Optical negative refraction by four-wave mixing in thin metallic nanostructures.

    PubMed

    Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang

    2011-10-30

    The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

  7. Lossless acoustic half-bipolar cylindrical cloak with negative-index metamaterial

    NASA Astrophysics Data System (ADS)

    Lee, Yong Y.; Ahn, Doyeol

    2018-05-01

    A lossless acoustic half-bipolar cylindrical cloak that has an exposed bottom is considered. Here, we show that a cloak that includes a complementary region including a negative-index medium inside of the cloaking shell works in the illumination direction independently even in the presence of the exposed bottom of the structure. This is due to the fact that the phase velocity of the wave in the normal direction can be cancelled in the presence of a boundary containing a negative-index medium that reduces scattering significantly.

  8. Demonstration of a Three-dimensional Negative Index Medium Operated at Multiple-angle Incidences by Monolithic Metallic Hemispherical Shells

    NASA Astrophysics Data System (ADS)

    Yeh, Ting-Tso; Huang, Tsung-Yu; Tanaka, Takuo; Yen, Ta-Jen

    2017-04-01

    We design and construct a three-dimensional (3D) negative index medium (NIM) composed of gold hemispherical shells to supplant an integration of a split-ring resonator and a discrete plasmonic wire for both negative permeability and permittivity at THz gap. With the proposed highly symmetric gold hemispherical shells, the negative index is preserved at multiple incident angles ranging from 0° to 85° for both TE and TM waves, which is further evidenced by negative phase flows in animated field distributions and outweighs conventional fishnet structures with operating frequency shifts when varying incident angles. Finally, the fabrication of the gold hemispherical shells is facilitated via standard UV lithographic and isotropic wet etching processes and characterized by μ-FTIR. The measurement results agree the simulated ones very well.

  9. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor.

    PubMed

    Shuai, Binbin; Xia, Li; Liu, Deming

    2012-11-05

    We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of -5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.

  10. Enhancement and inhibition of second-harmonic generation and absorption in a negative index cavity.

    PubMed

    de Ceglia, Domenico; D'Orazio, Antonella; De Sario, Marco; Petruzzelli, Vincenzo; Prudenzano, Francesco; Centini, Marco; Cappeddu, Mirko G; Bloemer, Mark J; Scalora, Michael

    2007-02-01

    We study second-harmonic generation in a negative-index material cavity. The transmission spectrum shows a bandgap between the electric and magnetic plasma frequencies. The nonlinear process is made efficient by local phase-matching conditions between a forward-propagating pump and a backward-propagating second-harmonic signal. By simultaneously exciting the cavity with counterpropagating pulses, and by varying their relative phase difference, one is able to enhance or inhibit linear absorption and the second-harmonic conversion efficiency.

  11. Collective dynamics and entanglement of two distant atoms embedded into single-negative index material.

    PubMed

    Fang, Wei; Li, Gao-Xiang; Yang, Yaping; Ficek, Zbigniew

    2017-02-06

    We study the dynamics of two two-level atoms embedded near to the interface of paired meta-material slabs, one of negative permeability and the other of negative permittivity. This combination generates a strong surface plasmon field at the interface between the meta-materials. It is found that the symmetric and antisymmetric modes of the two-atom system couple to the plasmonic field with different Rabi frequencies. Including the Ohmic losses of the materials we find that the Rabi frequencies exhibit threshold behaviour which distinguish between the non-Markovian (memory preserving) and Markovian (memoryless) regimes of the evolution. Moreover, it is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasmon field to the atoms. In the case of the resonant coupling, the field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms coupled to the plasmon field are analogous to the dynamics of a four-atom system in a rectangular configuration. A large and long living entanglement mediated by the plasmonic field in both Markovian and non-Markovian regimes of the evolution is predicted. We also show that a simultaneous Markovian and non-Markovian regime of the evolution may occur in which the memory effects exist over a finite evolution time. In the case of an off-resonant coupling of the atoms to the plasmon field, the atoms interact with each other by exchanging virtual photons which results in the dynamics corresponding to those of two atoms coupled to a common reservoir. In addition, the entanglement is significantly enhanced.

  12. 29. TRACK LAYOUT, INDEX TO DRAWINGS AND INDEX TO MATERIALS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. TRACK LAYOUT, INDEX TO DRAWINGS AND INDEX TO MATERIALS, REED & STEM ARCHITECTS, ST. PAUL, NEW YORK, 1909 (Burlington Northern Collection, Seattle, Washington) - Union Passenger Station Concourse, 1713 Pacific Avenue, Tacoma, Pierce County, WA

  13. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.

    PubMed

    Ahmadivand, Arash; Pala, Nezih

    2015-02-01

    In this study, we investigated numerically the plasmon response of a planar negative-index metamaterial composed of symmetric molecular orientations of Au ring/disk nanocavities in a heptamer cluster. Using the plasmon hybridization theory and considering the optical response of an individual nanocluster, we determined the accurate geometrical sizes for a ring/disk nanocavity heptamer. It is shown that the proposed well-organized nanocluster can be tailored to support strong and sharp Fano resonances in the visible spectrum. Surrounding and filling the heptamer clusters by various metasurfaces with different chemical characteristics, and illuminating the structure with an incident light source, we proved that this configuration reflects low losses and isotropic features, including a pronounced Fano dip in the visible spectrum. Technically, employing numerical methods and tuning the geometrical sizes of the structure, we tuned and induced the Fano dip in the visible range, while the dark and bright plasmon resonance extremes are blueshifted to shorter wavelengths dramatically. Considering the calculated transmission window, we quantified the effective refractive index for the structure, while the substance of the substrate material was varied. Using Si, GaP, and InP semiconductors as substrate materials, we calculated and compared the corresponding figure of merit (FOM) for different regimes. The highest possible FOM was obtained for the GaP-Au-GaP negative-refractive-index metamaterial composed of ring/disk nanocavity heptamers as 62.4 at λ∼690  nm (arounnd the position of the Fano dip). Despite the outstanding symmetric nature of the suggested heptamer array, we provided sharp Fano dips by the appropriate tuning of the geometrical and chemical parameters. This study yields a method to employ ring/disk nanocavity heptamers as a negative-refractive-index metamaterial in designing highly accurate localization of surface plasmon resonance sensing devices and

  14. Textile inspired flexible metamaterial with negative refractive index

    NASA Astrophysics Data System (ADS)

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  15. Large enhancement of interface second-harmonic generation near the zero-n(-) gap of a negative-index Bragg grating.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael

    2006-03-01

    We predict a large enhancement of interface second-harmonic generation near the zero-n(-) gap of a Bragg grating made of alternating layers of negative- and positive-index materials. Field localization and coherent oscillations of the nonlinear dipoles located at the structure's interfaces conspire to yield conversion efficiencies at least an order of magnitude greater than those achievable in the same length of nonlinear, phase-matched bulk material. These findings thus point to a new class of second-harmonic-generation devices made of standard centrosymmetric materials.

  16. Space-coiling metamaterials with double negativity and conical dispersion

    PubMed Central

    Liang, Zixian; Feng, Tianhua; Lok, Shukin; Liu, Fu; Ng, Kung Bo; Chan, Chi Hou; Wang, Jinjin; Han, Seunghoon; Lee, Sangyoon; Li, Jensen

    2013-01-01

    Metamaterials are effectively homogeneous materials that display extraordinary dispersion. Negative index metamaterials, zero index metamaterials and extremely anisotropic metamaterials are just a few examples. Instead of using locally resonating elements that may cause undesirable absorption, there are huge efforts to seek alternative routes to obtain these unusual properties. Here, we demonstrate an alternative approach for constructing metamaterials with extreme dispersion by simply coiling up space with curled channels. Such a geometric approach also has an advantage that the ratio between the wavelength and the lattice constant in achieving a negative or zero index can be changed in principle. It allows us to construct for the first time an acoustic metamaterial with conical dispersion, leading to a clear demonstration of negative refraction from an acoustic metamaterial with airborne sound. We also design and realize a double-negative metamaterial for microwaves under the same principle. PMID:23563489

  17. Designed materials: what and how

    NASA Astrophysics Data System (ADS)

    Mazumder, Jyotirmoy; Dutta, Debasish; Ghosh, Amit K.; Kikuchi, Noboru

    2003-03-01

    Quest for a material to suit the service performance is almost as old as human civilization. So far materials engineers have developed a series of alloys, polymers, ceramics, and composites to serve many of the performance requirements in a modern society. However, challenges appear when one needs to satisfy more than one boundary condition. For example, a component with negative Coefficient of Thermal Expansion (CTE) using a ductile metal was almost impossible until recently. Synthesis of various technologies such as Direct Metal Deposition (DMD) Homogenization Design Method (HDM) and mutli material Computer Aided Design (CAD) was necessary to achieve this goal. Rapid fabrication of three-dimensional shapes of engineering materials such as H13 tool steel and nickel super alloys are now possible using Direct Materials Deposition (DMD) technique as well as similar techniques such as Light Engineered New Shaping (LENS) or Directed Light Fabrication (DLF). However, DMD has closed loop capability that enables better dimension and thermal cycle control. This enables one to deposit different material at different pixels with a given height directly from a CAD drawing. The feedback loop also controls the thermal cycle. H13 tool steel is one of the difficult alloys for deposition due to residual stress accumulation from martensitic transformation. However, it is the material of choice for the die and tool industry. DMD has demonstrated successful fabrication of complicated shapes and dies and tools, even with H13 alloys. This process also offers copper chill blocks and water-cooling channels as the integral part of the tool. On the other hand ZrO2 was co-deposited with nickel super alloys using DMD. Flexibility of the process is enormous and essentially it is an enabling technology to marterialize many a design. Using DMD in conjunction with HDM and multi-material CAD, one can produce components with predetermined performance such as negative co-efficient of expansion, by

  18. Broadband giant-refractive-index material based on mesoscopic space-filling curves

    NASA Astrophysics Data System (ADS)

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-08-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.

  19. Analysis of interferograms of refractive index inhomogeneities produced in optical materials

    NASA Astrophysics Data System (ADS)

    Tarjányi, N.

    2014-12-01

    Optical homogeneity of materials intended for optical applications is one of the criterions which decide on an appropriate application method for the material. The existence of a refractive index inhomogeneity inside a material may disqualify it from utilization or by contrary, provide an advantage. For observation of a refractive index inhomogeneity, even a weak one, it is convenient to use any of interferometric methods. They are very sensitive and provide information on spatial distribution of the refractive index, immediately. One can use them also in case when the inhomogeneity evolves in time, usually due to action of some external fields. Then, the stream of interferograms provides a dynamic evolution of a spatial distribution of the inhomogeneity. In the contribution, there are presented results of the analysis of interferograms obtained by observing the creation of a refractive index inhomogeneity due to illumination of thin layers of a polyvinyl-alcohol/acrylamide photopolymer and a plate of photorefractive crystal, lithium niobate, by light and a refractive index inhomogeneity originated at the boundary of two layers of polydimethylsiloxane. The obtained dependences can be used for studying of the mechanisms responsible for the inhomogeneity creation, designing various technical applications or for diagnostics of fabricated components.

  20. Numerical methods for the design of gradient-index optical coatings.

    PubMed

    Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana

    2012-12-01

    We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.

  1. Rolled-up nanotechnology for the fabrication of three-dimensional fishnet-type GaAs-metal metamaterials with negative refractive index at near-infrared frequencies

    NASA Astrophysics Data System (ADS)

    Rottler, Andreas; Harland, Malte; Bröll, Markus; Schwaiger, Stephan; Stickler, Daniel; Stemmann, Andrea; Heyn, Christian; Heitmann, Detlef; Mendach, Stefan

    2012-04-01

    We propose and demonstrate the fabrication of a three-dimensional fishnet metamaterial by utilizing rolled-up nanotechnology. It consists of 6 alternating layers of silver and (In)GaAs with an array of subwavelength holes "drilled" by focused ion beams. By means of finite-integration technique simulations, we show that the fabricated structure is a single-negative material possessing a negative real part of the refractive index in the near-infrared regime. We show that the fabricated material can be made double negative by slightly changing the size of the holes.

  2. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  3. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    PubMed

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-05-20

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.

  4. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation.

    PubMed

    Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul

    2016-10-13

    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size.

  5. A Materials Index--Its Storage, Retrieval, and Display

    ERIC Educational Resources Information Center

    Rosen, Carol Z.

    1973-01-01

    An experimental procedure for indexing physical materials based on simple syntactical rules was tested by encoding the materials in the journal, Applied Physics Letters,'' to produce a materials index. The syntax and numerous examples together with an indication of the method by which retrieval can be effected are presented. (5 references)…

  6. Design of ZnS/ZnSe Gradient-Index Lenses in the Mid-Wave Infrared and Design, Fabrication, and Thermal Metrology of Polymer Radial Gradient Index Lenses

    NASA Astrophysics Data System (ADS)

    Corsetti, James Anthony

    Gradient-index (GRIN) materials are ones for which the index of refraction varies as a function of spatial coordinate within an optical element. The radial GRIN is a specific instance where the isoindicial surfaces, or surface of constant index of refraction, exist as concentric cylinders centered upon the optical axis. The variation of the index of refraction as a function of lens aperture yields a second source of optical power in the element with the first coming from the lens' surface curvatures. This fact, coupled with the chromatic variation of the GRIN profile, provides the optical designer with additional degrees of freedom as compared to a traditional homogeneous lens, most notably in the pursuit of correcting chromatic aberration. This thesis explores a number of topics related to the design, manufacture, and testing of radial GRIN elements. Such elements are used in a series of design studies, the first on the application of the crystalline ZnS/ZnSe GRIN material to the mid-wave infrared (MWIR) waveband between 3 and 5 mum and the second to a copolymer GRIN of polymethyl methacrylate (PMMA) and polystyrene over the visible spectrum. In both cases, GRIN singlets are seen to act as achromats over their respective wavebands. A series of zoom lens design studies are presented in which the GRIN designs consistently offer superior color correction and imaging performance over homogeneous designs of the same number of elements. Efforts to fabricate the PMMA/polystyrene radial GRIN are presented. For this purpose, a centrifugal force method is employed whereby both MMA and styrene monomer are rapidly rotated in a temperature-controlled environment. As copolymerization occurs, the spinning of the sample causes the isoindicial surfaces to take on a cylindrical shape. Process challenges including monomer-to-polymer volume reduction and haze are both presented along with a discussion of the fabricated radial samples. A profile manufactured in this way is modeled as

  7. Traversal of electromagnetic pulses through dispersive media with negative refractive index

    NASA Astrophysics Data System (ADS)

    Nanda, L.; Ramakrishna, S. A.

    2017-05-01

    We investigate the traversal of electromagnetic pulses through dispersive media with negative refractive index in such a way that no resonant effects come into play. It has been verified that for evanescent waves, the definitions of the group delay and the reshaping delay times get interchanged in comparison to the propagating waves. We show that for a negative refractive index medium (NRM) with ɛ(ω)=μ(ω), the reshaping delay time identically vanishes for propagating waves. The total delay time in NRM is otherwise contributed by both the group and the reshaping delay times, whereas for the case of broadband pulses in NRM the total delay time is always subluminal.

  8. Negative index of refraction in metallic metamaterial comprising split-ring resonators.

    PubMed

    Dong, Zheng-Gao; Lei, Shuang-Ying; Xu, Ming-Xiang; Liu, Hui; Li, Tao; Wang, Fu-Ming; Zhu, Shi-Ning

    2008-05-01

    We numerically investigate the negative index of refraction in a metamaterial composed of metallic split-ring resonators, which exhibits simultaneously negative permittivity and permeability without resorting to additional metallic wires. It is confirmed that, in the left-handed band, negative permittivity is generated in analogy to the cut-wire metamaterial and negative permeability comes from the antisymmetric resonant mode, which occurs at a frequency band about 3 times higher than the fundamental magnetic resonance proposed by Pendry [IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)].

  9. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications

    PubMed Central

    Islam, Mohammad Tariqul; Islam, Md. Moinul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  10. Wave refraction in negative-index media: always positive and very inhomogeneous.

    PubMed

    Valanju, P M; Walser, R M; Valanju, A P

    2002-05-06

    We present the first treatment of the refraction of physical electromagnetic waves in newly developed negative index media (NIM), also known as left-handed media (LHM). The NIM dispersion relation implies that group fronts refract positively even when phase fronts refract negatively. This difference results in rapidly dispersing, very inhomogeneous waves. In fact, causality and finite signal speed always prevent negative wave signal (not phase) refraction. Earlier interpretations of phase refraction as "negative light refraction" and "light focusing by plane slabs" are therefore incorrect, and published NIM experiments can be explained without invoking negative signal refraction.

  11. A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation

    PubMed Central

    Hasan, Md. Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul

    2016-01-01

    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size. PMID:28773951

  12. Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models

    NASA Astrophysics Data System (ADS)

    Hsieh, Feng-Ju; Wang, Wei-Chih

    2012-09-01

    This paper discusses two improved methods in retrieving effective refractive indices, impedances, and material properties, such as permittivity (ɛ) and permeability (μ), of metamaterials. The first method modified from Kong's retrieval method allows effective constitutive parameters over all frequencies including the anti-resonant band, where imaginary parts of ɛ or μ are negative, to be solved. The second method is based on genetic algorithms and optimization of properly defined goal functions to retrieve parameters of the Drude and Lorentz dispersion models. Equations of effective refractive index and impedance at any reference planes are derived. Split ring resonator-rod based metamaterials operating in terahertz frequencies are designed and investigated with proposed methods. Retrieved material properties and parameters are used to regenerate S-parameters and compared with simulation results generated by cst microwave studio software.

  13. Double Negative Materials (DNM), Phenomena and Applications

    DTIC Science & Technology

    2009-07-01

    Nanoparticles Formed by Pairs Of Concentric Double-Negative (DNG), Single-Negative ( SNG ) and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl...material RRL Rapid Research Letters SHG second-harmonic generation SNG single-negative SSR split-ring resonator A-1 Appendix A. October 2008...Pairs of Concentric Double-Negative (DNG), Single-Negative ( SNG ), and/or Double-Positive (DPS) Metamaterial Layers.” J. Appl. Phys. 97, no. 9 (May

  14. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    NASA Astrophysics Data System (ADS)

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; de Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-09-01

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is “captured” and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also χ(3) processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part of

  15. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roppo, Vito; Centini, Marco; Sibilia, Concita

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not onlymore » second-harmonic generation, but also {chi}{sup (3)} processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to

  16. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, John, E-mail: j.mcdonald@lancaster.ac.uk

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ∼< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a largemore » value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.« less

  17. Left-handed materials and negative refraction: Transfer matrix and FDTD calculations

    NASA Astrophysics Data System (ADS)

    Soukoulis, Costas M.

    2004-03-01

    We will present transfer matrix calculations of metallic wires, split ring resonators (SRR) and left-handed materials (LHM). Our results [1] show that the transfer matrix method can capture all the details characteristics of the metamaterials. In particular the dependence of the resonance frequency and its width on the structural parameters of the SRR and the size of the unit cell is studied. Also the dependence of the imaginary part of effective permittivity of arrays of metallic wires is studied in detail. It is found [2,3] that the imaginary part of effective permittivity has small values even for wires as small as 20 micron in diameter. The transfer matrix is very useful in calculating both the amplitude and the phase of the transmission and reflection coefficient. These numerical data was used [4] in the determination of the effective parameters of the metamaterials. It was indeed found that the refractive index was unambiguously negative in the frequency region where both ɛ and μ were negative. Finally, we will show that SRR have a strong electric response, equivalent to that of cut wires [5], which dominates the response of LHM. A new criterion is introduced to clearly identify if an experimental expression peak is left- or right handed. Finite difference time domain (FDTD) simulations will be presented for the transmission of the EM wave through the interface of the positive and negative refraction index. It is found [6] that the wave is trapped temporarily at the interface and after a long time the wave front moves eventually in the direction of negative refraction. The differences between negative refraction in photonic crystals and left-handed materials will be also discussed. Work supported by US-DOE, DARPA, NSF and EU (DALHM project). References: [1] P. Markos and C. M. Soukoulis, Phys. Rev. B 65, 033401 (2002); Phys. Rev. E 65, 036622 (2002). [2] P. Markos, I. Rousochatzakis and C. M. Soukoulis, Phys. Rev. B 66, 045601 (2002). [3] P. Markos and C. M

  18. Thermally tunable broadband terahertz metamaterials with negative refractive index

    NASA Astrophysics Data System (ADS)

    Li, Weili; Meng, Qinglong; Huang, Renshuai; Zhong, Zheqiang; Zhang, Bin

    2018-04-01

    A thermally tunable broadband metamaterials with negative refractive index (NRI) is investigated in terahertz (THz) region theoretically. The metamaterials is designed by fabricating two stand-up opposite L shape metallic structures on fused quartz substrate, and the indium antimonide (InSb) is filled in the bottom gap of the two L shape structures. The tunability is attributed to the InSb because the InSb can changes the capacitance of the gap area by adjusting the temperature. The transmission characteristics and the retrieved electromagnetic parameters of the metamaterials are analyzed. Results indicate that the resonant frequency and amplitude modulation of the metamaterials can be tuned continuously in broadband range (about 0.62 THz), and the phase modulation from - 2 to 3 rad is also achieved within broadband range (about 0.8 THz). In addition, the metamaterials shows dual-band NRI behaviors at 0 . 4- 0 . 9 THz and 1 . 06- 1 . 15 THz when the temperature increases to 400 K. The wedge-shaped prism simulations are implemented to verify the NRI characteristics and indicate that the NRI of the metamaterials can be achieved.

  19. Multi-material Additive Manufacturing of Metamaterials with Giant, Tailorable Negative Poisson's Ratios.

    PubMed

    Chen, Da; Zheng, Xiaoyu

    2018-06-14

    Nature has evolved with a recurring strategy to achieve unusual mechanical properties through coupling variable elastic moduli from a few GPa to below KPa within a single tissue. The ability to produce multi-material, three-dimensional (3D) micro-architectures with high fidelity incorporating dissimilar components has been a major challenge in man-made materials. Here we show multi-modulus metamaterials whose architectural element is comprised of encoded elasticity ranging from rigid to soft. We found that, in contrast to ordinary architected materials whose negative Poisson's ratio is dictated by their geometry, these type of metamaterials are capable of displaying Poisson's ratios from extreme negative to zero, independent of their 3D micro-architecture. The resulting low density metamaterials is capable of achieving functionally graded, distributed strain amplification capabilities within the metamaterial with uniform micro-architectures. Simultaneous tuning of Poisson's ratio and moduli within the 3D multi-materials could open up a broad array of material by design applications ranging from flexible armor, artificial muscles, to actuators and bio-mimetic materials.

  20. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    NASA Astrophysics Data System (ADS)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  1. Design and experimental evidence of a flat graded-index photonic crystal lens

    NASA Astrophysics Data System (ADS)

    Gaufillet, F.; Akmansoy, É.

    2013-08-01

    We report on the design and the experimental evidence of a flat graded index photonic crystal lens. The gradient has been designed so that the flat slab focuses a plane wave and so that it converts the wave issued from a point source into a plane wave. This graded-index photonic crystal lens operates as a convex lens. The gradient of index results from varying the filling factor of the photonic crystal in the direction perpendicular to that of the propagation of the electromagnetic field. The shape of the gradient of index has been designed by engineering the iso-frequency curves of the photonic crystal. As only a few layers were necessary and as graded photonic crystals may be fabricated by a variety of processes, this shows the ability of graded photonic crystals to efficiently apply for various photonic devices, from microwave range to the optical domain. 42.70.Qs Photonic bandgap materials, 78.67.Pt Optical properties of photonic structures, 41.20.Jb Electromagnetic wave propagation; radiowave propagation 84.40.Ba Antennas.

  2. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  3. Design-for-manufacture of gradient-index optical systems using time-varying boundary condition diffusion

    NASA Astrophysics Data System (ADS)

    Harkrider, Curtis Jason

    2000-08-01

    The incorporation of gradient-index (GRIN) material into optical systems offers novel and practical solutions to lens design problems. However, widespread use of gradient-index optics has been limited by poor correlation between gradient-index designs and the refractive index profiles produced by ion exchange between glass and molten salt. Previously, a design-for- manufacture model was introduced that connected the design and fabrication processes through use of diffusion modeling linked with lens design software. This project extends the design-for-manufacture model into a time- varying boundary condition (TVBC) diffusion model. TVBC incorporates the time-dependent phenomenon of melt poisoning and introduces a new index profile control method, multiple-step diffusion. The ions displaced from the glass during the ion exchange fabrication process can reduce the total change in refractive index (Δn). Chemical equilibrium is used to model this melt poisoning process. Equilibrium experiments are performed in a titania silicate glass and chemically analyzed. The equilibrium model is fit to ion concentration data that is used to calculate ion exchange boundary conditions. The boundary conditions are changed purposely to control the refractive index profile in multiple-step TVBC diffusion. The glass sample is alternated between ion exchange with a molten salt bath and annealing. The time of each diffusion step can be used to exert control on the index profile. The TVBC computer model is experimentally verified and incorporated into the design- for-manufacture subroutine that runs in lens design software. The TVBC design-for-manufacture model is useful for fabrication-based tolerance analysis of gradient-index lenses and for the design of manufactureable GRIN lenses. Several optical elements are designed and fabricated using multiple-step diffusion, verifying the accuracy of the model. The strength of multiple-step diffusion process lies in its versatility. An axicon

  4. Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and Packaging Materials

    NASA Astrophysics Data System (ADS)

    Motaharifar, E.; Pierce, R. G.; Islam, R.; Henderson, R.; Hsu, J. W. P.; Lee, Mark

    2018-01-01

    In the effort to push the high-frequency performance of electronic circuits and signal interconnects from millimeter waves to beyond 1 THz, a quantitative knowledge of complex refraction index values and dispersion in potential dielectric substrate, encapsulation, waveguide, and packaging materials becomes critical. Here we present very broadband measurements of the real and imaginary index spectra of four polymeric dielectric materials considered for use in high-frequency electronics: benzocyclobutene (BCB), polyethylene naphthalate (PEN), the photoresist SU-8, and polydimethylsiloxane (PDMS). Reflectance and transmittance spectra from 3 to 75 THz were made using a Fourier transform spectrometer on freestanding material samples. These data were quantitatively analyzed, taking into account multiple partial reflections from front and back surfaces and molecular bond resonances, where applicable, to generate real and imaginary parts of the refraction index as a function of frequency. All materials showed signatures of infrared active organic molecular bond resonances between 10 and 50 THz. Low-loss transmission windows as well as anti-window bands of high dispersion and loss can be readily identified and incorporated into high-frequency design models.

  5. Shear-mediated contributions to the effective properties of soft acoustic metamaterials including negative index

    PubMed Central

    Forrester, Derek Michael; Pinfield, Valerie J.

    2015-01-01

    Here we show that, for sub-wavelength particles in a fluid, viscous losses due to shear waves and their influence on neighbouring particles significantly modify the effective acoustic properties, and thereby the conditions at which negative acoustic refraction occurs. Building upon earlier single particle scattering work, we adopt a multiple scattering approach to derive the effective properties (density, bulk modulus, wavenumber). We show,through theoretical prediction, the implications for the design of “soft” (ultrasonic) metamaterials based on locally-resonant sub-wavelength porous rubber particles, through selection of particle size and concentration, and demonstrate tunability of the negative speed zones by modifying the viscosity of the suspending medium. For these lossy materials with complex effective properties, we confirm the use of phase angles to define the backward propagation condition in preference to “single-” and “double-negative” designations. PMID:26686414

  6. Designing a new three-dimensional periodic cellular auxetic material

    NASA Astrophysics Data System (ADS)

    Zhou, Yiyi; Chen, Lianmen

    2017-07-01

    Auxetics are materials showing a negative Poisson’s ratio. Early research found several categories of auxetic materials in the chemical field. Later research identified the fundamental mechanism generating this behavior is rotation; a variety of two-dimensional auxetic material have been generated accordingly. Nevertheless, the successful example of three-dimensional auxetic material is still rare. This paper introduces a new design of three-dimensional periodic cellular auxetic material based on geometrical and mechanical methodology. The projections of the optimized periodic modules in two horizontal directions are geometrically same with auxetic hexahedral poem, so that the optimized periodic material can perform auxetic in both two horizontal directions under vertical compression. Parametric model is simulated to prove the design.

  7. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  8. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi

    2011-12-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  9. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    PubMed Central

    Fudouzi, Hiroshi

    2011-01-01

    In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites. PMID:27877454

  10. Two-dimensional fluid-filled closed-cell cellular solid as an acoustic metamaterial with negative index

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, V.; Van Damme, B.

    2016-04-01

    A concept for acoustic metamaterials consisting of a cellular medium with fluid-filled cells is fabricated and studied experimentally. In such a system, the fluid and solid structure explicitly interact, and elastic wave propagation is coupled to both phases. Focusing here on shear wave behavior, we confirm previous numerical studies in three steps. We first measure the material deformations pertaining to three qualitatively different shear wave modes in the frequency range below 3.5 kHz. We then measure the group velocity and demonstrate that, within a certain frequency interval, the group and phase velocity have opposite signs. This shows that the system acts as a negative-index metamaterial. Finally, we confirm the presence of band gaps due to the locally resonant behavior of the cell walls. The demonstrated concept of a closed, fluid-filled cellular material as an acoustic metamaterial opens a wide space for applications.

  11. Evaluating the case-positive, control test-negative study design for influenza vaccine effectiveness for the frailty bias.

    PubMed

    Talbot, H Keipp; Nian, Hui; Chen, Qingxia; Zhu, Yuwei; Edwards, Kathryn M; Griffin, Marie R

    2016-04-04

    Previous influenza vaccine effectiveness studies were criticized for their failure to control for frailty. This study was designed to see if the test-negative study design overcomes this bias. Adults ≥ 50 years of age with respiratory symptoms were enrolled from November 2006 through May 2012 during the influenza season (excluding the 2009-2010 H1N1 pandemic season) to perform yearly test-negative control influenza vaccine effectiveness studies in Nashville, TN. At enrollment, both a nasal and throat swab sample were obtained and tested for influenza by RT-PCR. Frailty was calculated using a modified Rockwood Index that included 60 variables ascertained in a retrospective chart review giving a score of 0 to 1. Subjects were divided into three strata: non frail (≤ 0.08), pre-frail (> 0.08 to < 0.25), and frail (≥ 0.25). Vaccine effectiveness was calculated using the formula [1-adjusted odds ratio (OR)] × 100%. Adjusted ORs for individual years and all years combined were estimated by penalized multivariable logistic regression. Of 1023 hospitalized adults enrolled, 866 (84.7%) participants had complete immunization status, molecular influenza testing and covariates to calculate frailty. There were 83 influenza-positive cases and 783 test-negative controls overall, who were 74% white, 25% black, and 59% female. The median frailty index was 0.167 (Interquartile: 0.117, 0.267). The frailty index was 0.167 (0.100, 0.233) for the influenza positive cases compared to 0.183 (0.133, 0.267) for influenza negative controls (p = 0.07). Vaccine effectiveness estimates were 55.2% (95%CI: 30.5, 74.2), 60.4% (95%CI: 29.5, 74.4), and 54.3% (95%CI: 28.8, 74.0) without the frailty variable, including frailty as a continuous variable, and including frailty as a categorical variable, respectively. Using the case positive test negative study design to assess vaccine effectiveness, our measure of frailty was not a significant confounder as inclusion of this measure did not

  12. KSC Construction Cost Index

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1983-01-01

    Kennedy Space Center cost Index aids in conceptual design cost estimates. Report discusses development of KSC Cost Index since January 1974. Index since January 1974. Index provides management, design engineers, and estimators an up-to-data reference for local labor and material process. Also provides mount and rate of change in these costs used to predict future construction costs.

  13. Study of left-handed materials

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangfeng

    Left handed materials (LHMs) are artificial materials that have negative electrical permittivity, negative magnetic permeability, and negative index of refraction across a common frequency band. They possess electromagnetic (EM) properties not found in nature. LHMs have attracted tremendous attention because of their potential applications to build the perfect lens and cloaking devices. In the past few years there has been ample proof for the existence of LHMs in the microwave frequency range. Recently, researchers are trying hard to push the operating frequency of LHMs into terahertz and the optical regime. In this thesis, we start with the theoretical prediction of left handed materials made by Veselago 40 years ago, introducing the unique electromagnetic properties of the left handed materials. After discussing the realization of LHMs by the split ring resonators (SRRs) and wire designs, we briefly review the development of LHMs from microwave frequency to the optical regime. We discuss the chiral metamaterial, which provides an alternative approach to realize negative refractive index. In Chapter 2, we discuss the electromagnetic properties of the SRRs and the breakdown of linear scaling properties of SRRs at infrared and optical frequencies. By discussing the current modes, and the electric and magnetic moments, we study three resonance modes of SRR with respect to different polarizations of EM waves. Through numerical simulations, we find the breakdown of linear scaling, due to the free electron kinetic energy for frequencies above 100 THz. This result is important. It proves that researchers cannot push metamaterials into the optical regime by just scaling down the geometrical size of metamaterial designs used at low frequency. Due to the breakdown of the linear scaling property, a much smaller structure size of LHMs design is required in the optical regime, so new designs with simpler topology are needed. In Chapter 3, we discuss a short wire pair design

  14. Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties

    DOE PAGES

    Li, Tiantian; Chen, Yanyu; Hu, Xiaoyi; ...

    2018-02-03

    Auxetic materials exhibiting a negative Poisson's ratio are shown to have better indentation resistance, impact shielding capability, and enhanced toughness. Here, we report a class of high-performance composites in which auxetic lattice structures are used as the reinforcements and the nearly incompressible soft material is employed as the matrix. This coupled geometry and material design concept is enabled by the state-of-the-art additive manufacturing technique. Guided by experimental tests and finite element analyses, we systematically study the compressive behavior of the 3D printed auxetics reinforced composites and achieve a significant enhancement of their stiffness and energy absorption. This improved mechanical performancemore » is due to the negative Poisson's ratio effect of the auxetic reinforcements, which makes the matrix in a state of biaxial compression and hence provides additional support. This mechanism is further supported by the investigation of the effect of auxetic degree on the stiffness and energy absorption capability. The findings reported here pave the way for developing a new class of auxetic composites that significantly expand their design space and possible applications through a combination of rational design and 3D printing.« less

  15. Exploiting negative Poisson's ratio to design 3D-printed composites with enhanced mechanical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tiantian; Chen, Yanyu; Hu, Xiaoyi

    Auxetic materials exhibiting a negative Poisson's ratio are shown to have better indentation resistance, impact shielding capability, and enhanced toughness. Here, we report a class of high-performance composites in which auxetic lattice structures are used as the reinforcements and the nearly incompressible soft material is employed as the matrix. This coupled geometry and material design concept is enabled by the state-of-the-art additive manufacturing technique. Guided by experimental tests and finite element analyses, we systematically study the compressive behavior of the 3D printed auxetics reinforced composites and achieve a significant enhancement of their stiffness and energy absorption. This improved mechanical performancemore » is due to the negative Poisson's ratio effect of the auxetic reinforcements, which makes the matrix in a state of biaxial compression and hence provides additional support. This mechanism is further supported by the investigation of the effect of auxetic degree on the stiffness and energy absorption capability. The findings reported here pave the way for developing a new class of auxetic composites that significantly expand their design space and possible applications through a combination of rational design and 3D printing.« less

  16. Toxic Substances Registry System Index of Material Safety Data Sheets

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The July 1997 revision of the Index of Material Safety Data Sheets (MSDS) for the Kennedy Space Center (KSC) Toxic Substances Registry System (TSRS) is presented. The MSDS lists toxic substances by manufacturer, trade name, stock number, and distributor. The index provides information on hazards, use, and chemical composition of materials stored at KSC.

  17. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  18. Single-resonator double-negative metamaterial

    DOEpatents

    Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Johnson, William A.; Ihlefeld, Jon; Ginn, III, James C.; Clem, Paul G.; Sinclair, Michael B.

    2016-06-21

    Resonances can be tuned in dielectric resonators in order to construct single-resonator, negative-index metamaterials. For example, high-contrast inclusions in the form of metallic dipoles can be used to shift the first electric resonance down (in frequency) to the first magnetic resonance, or alternatively, air splits can be used to shift the first magnetic resonance up (in frequency) near the first electric resonance. Degenerate dielectric designs become especially useful in infrared- or visible-frequency applications where the resonator sizes associated with the lack of high-permittivity materials can become of sufficient size to enable propagation of higher-order lattice modes in the resulting medium.

  19. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.

    PubMed

    Chen, Yihang

    2010-09-13

    The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

  20. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  1. Invited Commentary: Beware the Test-Negative Design.

    PubMed

    Westreich, Daniel; Hudgens, Michael G

    2016-09-01

    In this issue of the Journal, Sullivan et al. (Am J Epidemiol. 2016;184(5):345-353) carefully examine the theoretical justification for use of the test-negative design, a common observational study design, in assessing the effectiveness of influenza vaccination. Using modern causal inference methods (in particular, directed acyclic graphs), they describe different threats to the validity of inferences drawn about the effect of vaccination from test-negative design studies. These threats include confounding, selection bias, and measurement error in either the exposure or the outcome. While confounding and measurement error are common in observational studies, the potential for selection bias inherent in the test-negative design brings into question the validity of inferences drawn from such studies. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Spin angular momentum transfer from TEM00 focused Gaussian beams to negative refractive index spherical particles

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM00 focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems. PMID:21833372

  3. Dimpled elastic sheets: a new class of non-porous negative Poisson’s ratio materials

    NASA Astrophysics Data System (ADS)

    Javid, Farhad; Smith-Roberge, Evelyne; Innes, Matthew C.; Shanian, Ali; Weaver, James C.; Bertoldi, Katia

    2015-12-01

    In this study, we report a novel periodic material with negative Poisson’s ratio (also called auxetic materials) fabricated by denting spherical dimples in an elastic flat sheet. While previously reported auxetic materials are either porous or comprise at least two phases, the material proposed here is non-porous and made of a homogeneous elastic sheet. Importantly, the auxetic behavior is induced by a novel mechanism which exploits the out-of-plane deformation of the spherical dimples. Through a combination of experiments and numerical analyses, we demonstrate the robustness of the proposed concept, paving the way for developing a new class of auxetic materials that significantly expand their design space and possible applications.

  4. Refractive-index profiling of embedded microstructures in optical materials

    NASA Astrophysics Data System (ADS)

    Dave, Digant P.; Milner, Thomas E.

    2002-04-01

    We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.

  5. The Effects of Different Drawing Materials on Children's Drawings of Positive and Negative Human Figures

    ERIC Educational Resources Information Center

    Burkitt, Esther; Barrett, Martyn

    2011-01-01

    Children tend to use certain drawing strategies differentially when asked to draw topics with positive and negative emotional characterisations. These effects have however only been established when children are asked to use standard drawing materials. The present study was designed to investigate whether the above pattern of children's response…

  6. Theoretical optimum of implant positional index design.

    PubMed

    Semper, W; Kraft, S; Krüger, T; Nelson, K

    2009-08-01

    Rotational freedom of the implant-abutment connection influences its screw joint stability; for optimization, influential factors need to be evaluated based on a previously developed closed formula. The underlying hypothesis is that the manufacturing tolerances, geometric pattern, and dimensions of the index do not influence positional stability. We used the dimensions of 5 commonly used implant systems with a clearance of 20 microm to calculate the extent of rotational freedom; a 3D simulation (SolidWorks) validated the analytical findings. Polygonal positional indices showed the highest degrees of rotational freedom. The polygonal profile displayed higher positional stability than the polygons, but less positional accuracy than the cam-groove connection. Features of a maximal rotation-safe positional index were determined. The analytical calculation of rotational freedom of implant positional indices is possible. Rotational freedom is dependent on the geometric design of the index and may be decreased by incorporating specific aspects into the positional index design.

  7. Negative Refractive Index Metasurfaces for Enhanced Biosensing

    PubMed Central

    Jakšić, Zoran; Vuković, Slobodan; Matovic, Jovan; Tanasković, Dragan

    2010-01-01

    In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional “wallpaper” geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor. PMID:28879974

  8. Saint-Venant end effects for materials with negative Poisson's ratios

    NASA Technical Reports Server (NTRS)

    Lakes, R. S.

    1992-01-01

    Results are presented from an analysis of Saint-Venant end effects for materials with negative Poisson's ratio. Examples are presented showing that slow decay of end stress occurs in circular cylinders of negative Poisson's ratio, whereas a sandwich panel containing rigid face sheets and a compliant core exhibits no anomalous effects for negative Poisson's ratio (but exhibits slow stress decay for core Poisson's ratios approaching 0.5). In sand panels with stiff but not perfectly rigid face sheets, a negative Poisson's ratio results in end stress decay, which is faster than it would be otherwise. It is suggested that the slow decay previously predicted for sandwich strips in plane deformation as a result of the geometry can be mitigated by the use of a negative Poisson's ratio material for the core.

  9. Toxic Substances Registry System: Index of Material Safety Data Sheets. Revised

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The January 1998 revision of the Index of Materials Safety Data Sheets (MSDS) for the Kennedy Space Center (KSC) Toxic Substances Registry System (TSRS) is presented. The MSDS lists toxic substances by manufacturer, trade name, stock number, and distributor. The index provides information on hazards, use, and chemical composition of materials stored at KSC.

  10. Color infrared film as a negative material

    USGS Publications Warehouse

    Pease, Robert W.

    1970-01-01

    Original problems encountered in endeavors to use color infraredfilm as a negative material have been overcome by a simple modification in processing. This makes more feasible the production of infrared color prints for field use and yields an infrared counterpart to Aero-Neg.

  11. Toxic Substances Registry System: Index of Material Safety Data Sheets. Revised

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The October 1997 revision of the Index of Material Safety Data Sheets (MSDS) for the Kennedy Space Center (KSC) Toxic Substances Registry System (TSRS) is presented. The MSDS lists toxic substances by manufacturer, trade name, stock number, and distributor. The index provides information on the hazards, use, and chemical composition of materials stored and used at KSC.

  12. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.

    PubMed

    Huang, Xueqin; Lai, Yun; Hang, Zhi Hong; Zheng, Huihuo; Chan, C T

    2011-05-29

    A zero-refractive-index metamaterial is one in which waves do not experience any spatial phase change, and such a peculiar material has many interesting wave-manipulating properties. These materials can in principle be realized using man-made composites comprising metallic resonators or chiral inclusions, but metallic components have losses that compromise functionality at high frequencies. It would be highly desirable if we could achieve a zero refractive index using dielectrics alone. Here, we show that by employing accidental degeneracy, dielectric photonic crystals can be designed and fabricated that exhibit Dirac cone dispersion at the centre of the Brillouin zone at a finite frequency. In addition to many interesting properties intrinsic to a Dirac cone dispersion, we can use effective medium theory to relate the photonic crystal to a material with effectively zero permittivity and permeability. We then numerically and experimentally demonstrate in the microwave regime that such dielectric photonic crystals with reasonable dielectric constants manipulate waves as if they had near-zero refractive indices at and near the Dirac point frequency.

  13. Search Interface Design Using Faceted Indexing for Web Resources.

    ERIC Educational Resources Information Center

    Devadason, Francis; Intaraksa, Neelawat; Patamawongjariya, Pornprapa; Desai, Kavita

    2001-01-01

    Describes an experimental system designed to organize and provide access to Web documents using a faceted pre-coordinate indexing system based on the Deep Structure Indexing System (DSIS) derived from POPSI (Postulate based Permuted Subject Indexing) of Bhattacharyya, and the facet analysis and chain indexing system of Ranganathan. (AEF)

  14. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    NASA Technical Reports Server (NTRS)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  15. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.

    PubMed

    Tsai, Yu-Ju; Larouche, Stéphane; Tyler, Talmage; Lipworth, Guy; Jokerst, Nan M; Smith, David R

    2011-11-21

    We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 μm. The grating, which operates at a wavelength of 10.6 μm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media. © 2011 Optical Society of America

  16. Salinity index determination of porous materials using open-ended probes

    NASA Astrophysics Data System (ADS)

    Szypłowska, Agnieszka; Kafarski, Marcin; Wilczek, Andrzej; Lewandowski, Arkadiusz; Skierucha, Wojciech

    2017-01-01

    The relations among soil water content, bulk electrical conductivity and electrical conductivity of soil solution can be described by a number of theoretical and empirical models. The aim of the paper is to examine the performance of open-ended coaxial probes with and without a short antenna in determination of complex dielectric permittivity spectra, moisture and salinity of porous materials using the salinity index approach. Glass beads of 0.26 and 1.24 mm average diameters moistened to various water contents with distilled water and KCl solutions were used to model the soil material. Due to the larger sensitivity zone, only the probe with the antenna enabled determination of bulk electrical conductivity and salinity index of the samples. The relations between bulk electrical conductivity and dielectric permittivity of the samples were highly linear, which was consistent with the salinity index model. The slope of the relation between salinity index and electrical conductivity of moistening solutions closely matched the value for 100 % sand presented in literature.

  17. Study on Antibacterial Property of PMMA Denture Base Materials with Negative Ion Powder

    NASA Astrophysics Data System (ADS)

    Liu, Meitian; Zhang, Xiaohui; Zhang, Jingting; Zheng, Qian; Liu, Bin

    2018-01-01

    To prepare the denture base resin with negative ion powder and evaluate the antibacterial effect of denture base resin with different contents of negative ion powder for clinical application. Method: Denture base material with negative ion powder was prepared by in-situ polymerization method, 50mm * 50mm * 2mm standard samples were prepared respectively. Antibacterial properties were tested with the film contact method. Experimental bacteria: Staphylococcus aureus (ATCC6538), Escherichia coli (ATCC8099).Result:With the increase of the amount of negative ion powder, the inhibition rate of the composite material to Escherichia coli and Staphylococcus aureus showed an increasing trend, and the number of residual bacteria on the surface showed a decreasing trend. When the content of negative ion powder was 2%, the composite material Staphylococcus aureus and Escherichia coli were 77.9% and 80.3% respectively. When the addition ratio was 5%, the bactericidal rate of the composite material to Staphylococcus aureus and Escherichia coli reached 98.2% and 99.1% respectively. Conclusion: The denture base material containing more than 2%wt negative ion powder has strong sterilization.

  18. The test-negative design for estimating influenza vaccine effectiveness.

    PubMed

    Jackson, Michael L; Nelson, Jennifer C

    2013-04-19

    The test-negative design has emerged in recent years as the preferred method for estimating influenza vaccine effectiveness (VE) in observational studies. However, the methodologic basis of this design has not been formally developed. In this paper we develop the rationale and underlying assumptions of the test-negative study. Under the test-negative design for influenza VE, study subjects are all persons who seek care for an acute respiratory illness (ARI). All subjects are tested for influenza infection. Influenza VE is estimated from the ratio of the odds of vaccination among subjects testing positive for influenza to the odds of vaccination among subjects testing negative. With the assumptions that (a) the distribution of non-influenza causes of ARI does not vary by influenza vaccination status, and (b) VE does not vary by health care-seeking behavior, the VE estimate from the sample can generalized to the full source population that gave rise to the study sample. Based on our derivation of this design, we show that test-negative studies of influenza VE can produce biased VE estimates if they include persons seeking care for ARI when influenza is not circulating or do not adjust for calendar time. The test-negative design is less susceptible to bias due to misclassification of infection and to confounding by health care-seeking behavior, relative to traditional case-control or cohort studies. The cost of the test-negative design is the additional, difficult-to-test assumptions that incidence of non-influenza respiratory infections is similar between vaccinated and unvaccinated groups within any stratum of care-seeking behavior, and that influenza VE does not vary across care-seeking strata. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Cybermaterials: materials by design and accelerated insertion of materials

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Olson, Gregory B.

    2016-02-01

    Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.

  20. Multi-band Microwave Antennas and Devices based on Generalized Negative-Refractive-Index Transmission Lines

    NASA Astrophysics Data System (ADS)

    Ryan, Colan Graeme Matthew

    Focused on the quad-band generalized negative-refractive-index transmission line (G-NRI-TL), this thesis presents a variety of novel printed G-NRI-TL multi-band microwave device and antenna prototypes. A dual-band coupled-line coupler, an all-pass G-NRI-TL bridged-T circuit, a dual-band metamaterial leaky-wave antenna, and a multi-band G-NRI-TL resonant antenna are all new developments resulting from this research. In addition, to continue the theme of multi-band components, negative-refractive-index transmission lines are used to create a dual-band circularly polarized transparent patch antenna and a two-element wideband decoupled meander antenna system. High coupling over two independently-specified frequency bands is the hallmark of the G-NRI-TL coupler: it is 0.35lambda0 long but achieves approximately -3 dB coupling over both bands with a maximum insertion loss of 1 dB. This represents greater design flexibility than conventional coupled-line couplers and less loss than subsequent G-NRI-TL couplers. The single-ended bridged-T G-NRI-TL offers a metamaterial unit cell with an all-pass magnitude response up to 8 GHz, while still preserving the quad-band phase response of the original circuit. It is shown how the all-pass response leads to wider bandwidths and improved matching in quad-band inverters, power dividers, and hybrid couplers. The dual-band metamaterial leaky-wave antenna presented here was the first to be reported in the literature, and it allows broadside radiation at both 2 GHz and 6 GHz without experiencing the broadside stopband common to conventional periodic antennas. Likewise, the G-NRI-TL resonant antenna is the first reported instance of such a device, achieving quad-band operation between 2.5 GHz and 5.6 GHz, with a minimum radiation efficiency of 80%. Negative-refractive-index transmission line loading is applied to two devices: an NRI-TL meander antenna achieves a measured 52% impedance bandwidth, while a square patch antenna incorporates

  1. Image transfer properties by photonic crystal slab with negative refractive index

    NASA Astrophysics Data System (ADS)

    Chen, Hongbo; Chen, Xiaoshuang; Zhou, Renlong; Lu, Wei

    2008-04-01

    We have studied the properties of image transferred by photonic crystal (PhC) slab with negative refractive index n=-1 and confirmed the negative refractive phonomenon, but not found the saturated image properties as expected. It is found that real images will not be formed when the source distance larger than the thickness of PhC, and the transferred images are virtual images. Furthermore, comparing the quality of images transferred by a PhC slab and a cascaded stack of photonic crystal slab (CSPS), we found that the transferred images are distorted in both situations. The image resolution is good along the direction parallel to the slab interface, but bad along the direction normal to the slab interface. Simulation results show that the image formed by a CSPS is no better than a PhC slab.

  2. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.

  3. Long period grating refractive-index sensor: optimal design for single wavelength interrogation.

    PubMed

    Kapoor, Amita; Sharma, Enakshi K

    2009-11-01

    We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).

  4. Design of a terahertz photonic crystal transmission filter containing ferroelectric material.

    PubMed

    King, Tzu-Chyang; Chen, Jian-Jie; Chang, Kai-Chun; Wu, Chien-Jang

    2016-10-10

    The ferroelectric material KTaO3 (KTO) has a very high refractive index, which is advantageous to the photonic crystal (PC) design. KTO polycrystalline crystal has a high extinction coefficient. In this work, we perform a theoretical study of the transmission properties of a PC bandpass filter made of polycrystalline KTO at terahertz (THz) frequencies. Our results show that the defect modes of usual PC narrowband filters no longer exist because of the existence of the high loss. We provide a new PC structure for the high-extinction materials and show that it has defect modes in its transmittance spectra, providing a possible bandpass filter design in the THz region.

  5. Broadband All-angle Negative Refraction by Optimized Phononic Crystals.

    PubMed

    Li, Yang Fan; Meng, Fei; Zhou, Shiwei; Lu, Ming-Hui; Huang, Xiaodong

    2017-08-07

    All-angle negative refraction (AANR) of phononic crystals and its frequency range are dependent on mechanical properties of constituent materials and their spatial distribution. So far, it is impossible to achieve the maximum operation frequency range of AANR theoretically. In this paper, we will present a numerical approach for designing a two-dimensional phononic crystal with broadband AANR without negative index. Through analyzing the mechanism of AANR, a topology optimization problem aiming at broadband AANR is established and solved by bi-directional evolutionary structural optimization method. The optimal steel/air phononic crystal exhibits a record AANR range over 20% and its refractive properties and focusing effects are further investigated. The results demonstrate the multifunctionality of a flat phononic slab including superlensing effect near upper AANR frequencies and self-collimation at lower AANR frequencies.

  6. Non-linear Mechanics of Three-dimensional Architected Materials; Design of Soft and Functional Systems and Structures

    NASA Astrophysics Data System (ADS)

    Babaee, Sahab

    In the search for materials with new properties, there have been significant advances in recent years aimed at the construction of architected materials whose behavior is governed by structure, rather than composition. Through careful design of the material's architecture, new mechanical properties have been demonstrated, including negative Poisson's ratio, high stiffness to weight ratio and mechanical cloaking. However, most of the proposed architected materials (also known as mechanical metamaterials) have a unique structure that cannot be recon figured after fabrication, making them suitable only for a specific task. This thesis focuses on the design of architected materials that take advantage of the applied large deformation to enhance their functionality. Mechanical instabilities, which have been traditionally viewed as a failure mode with research focusing on how to avoid them, are exploited to achieve novel and tunable functionalities. In particular I demonstrate the design of mechanical metamaterials with tunable negative Poisson ratio, adaptive phononic band gaps, acoustic switches, and reconfigurable origami-inspired waveguides. Remarkably, due to large deformation capability and full reversibility of soft materials, the responses of the proposed designs are reversible, repeatable, and scale independent. The results presented here pave the way for the design of a new class of soft, active, adaptive, programmable and tunable structures and systems with unprecedented performance and improved functionalities.

  7. Material Structure of a Graded Refractive Index Lens in Decapod Squid

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Heiney, Paul; Sweeney, Alison

    2013-03-01

    Underwater vision with a camera-type eye that is simultaneously acute and sensitive requires a spherical lens with a graded distribution of refractive index. Squids have this type of lens, and our previous work has shown that its optical properties are likely achieved with radially variable densities of a single protein with multiple isoforms. Here we measure the spatial organization of this novel protein material in concentric layers of the lens and use these data to suggest possible mechanisms of self-assembly of the proteins into a graded refractive index structure. First, we performed small angle x-ray scattering (SAXS) to study how the protein is spatially organized. Then, molecular dynamic simulation allowed us to correlate structure to the possible dynamics of the system in different regions of the lens. The combination of simulation and SAXS data in this system revealed the likely protein-protein interactions, resulting material structure and its relationship to the observed and variable optical properties of this graded index system. We believe insights into the material properties of the squid lens system will inform the invention of self-assembling graded index devices.

  8. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completingmore » gaps in the available information on the performance of macrofoam swab sampling at low concentrations.« less

  9. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Hutchison, Janine R.

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gapsmore » in the available information on the performance of macrofoam-swab sampling at low concentrations.« less

  10. Negative dysphotopsia: A perfect storm.

    PubMed

    Henderson, Bonnie An; Geneva, Ivayla I

    2015-10-01

    The objective of this review was to provide a summary of the peer-reviewed literature on the etiologies of negative dysphotopsia that occurs after routine cataract surgery. A search of PubMed, Google Scholar, and Retina Medical identified 59 reports. Negative dysphotopsia has been associated with many types of intraocular lenses (IOLs), including hydrophobic and hydrophilic acrylic, silicone, and 1-piece and 3-piece designs. Proposed etiologies include edge design, edge smoothness, edge thickness, index of refraction of the IOL, pupil size, amount of functional nasal retina, edema from the clear corneal incision, distance between the iris and IOL, amount of pigmentation of the eye, corneal shape, prominent globe and shallow orbit, and interaction between the anterior capsulorhexis and IOL. Treatments include a piggyback IOL, reverse optic capture, dilation of the pupil, constriction of the pupil, neodymium:YAG capsulotomy of the nasal portion of the anterior capsule, IOL exchange with round-edged optics, and time alone. This review summarizes the findings. Dr. Henderson is a consultant to Alcon Laboratories, Inc., Abbott Medical Optics, Inc., Bausch & Lomb, and Genzyme Corp. Neither author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  11. Analysis of wave propagation in a two-dimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes.

    PubMed

    Martínez, Alejandro; Míguez, Hernán; Sánchez-Dehesa, José; Martí, Javier

    2005-05-30

    This work presents a comprehensive analysis of electromagnetic wave propagation inside a two-dimensional photonic crystal in a spectral region in which the crystal behaves as an effective medium to which a negative effective index of refraction can be associated. It is obtained that the main plane wave component of the Bloch mode that propagates inside the photonic crystal has its wave vector k' out of the first Brillouin zone and it is parallel to the Poynting vector ( S' ? k'> 0 ), so light propagation in these composites is different from that reported for left-handed materials despite the fact that negative refraction can take place at the interface between air and both kinds of composites. However, wave coupling at the interfaces is well explained using the reduced wave vector ( k' ) in the first Brillouin zone, which is opposed to the energy flow, and agrees well with previous works dealing with negative refraction in photonic crystals.

  12. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains

    NASA Astrophysics Data System (ADS)

    Wang, Fengwen

    2018-05-01

    This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.

  13. High reliability solid refractive index matching materials for field installable connections in FTTH network

    NASA Astrophysics Data System (ADS)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio

    2015-06-01

    We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.

  14. Toxic Substances Registry System: Index of Material Safety Data Sheets. Volume 1; Manufacturer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The April 1998 revision of the Index of Materials Safety Data Sheets (MSDS) for the Kennedy Space Center (KSC) Toxic Substances Registry System (TSRS) is presented. The MSDS lists toxic substances by manufacturer, trade name, stock number, and distributor. The index provides information on hazards, use, and chemical composition of materials stored at KSC.

  15. A prognostic factor index for overall survival in patients receiving first-line chemotherapy for HER2-negative advanced breast cancer: an analysis of the ATHENA trial.

    PubMed

    Llombart-Cussac, Antonio; Pivot, Xavier; Biganzoli, Laura; Cortes-Funes, Hernan; Pritchard, Kathleen I; Pierga, Jean-Yves; Smith, Ian; Thomssen, Christoph; Srock, Stefanie; Sampayo, Miguel; Cortes, Javier

    2014-10-01

    Evidence-based definitions of 'poor-prognosis' or 'aggressive' advanced breast cancer are lacking. We developed a prognostic factor index using data from 2203 patients treated with first-line chemotherapy plus bevacizumab for HER2-negative advanced breast cancer. The risk factors most closely associated with worse OS were: disease-free interval ≤24 months; liver metastases or ≥3 involved organ sites; prior anthracycline and/or taxane therapy; triple-negative breast cancer (TNBC); and performance status 2 or prior analgesic/corticosteroid treatment. Risk of death was increased threefold in patients with ≥3 versus ≤1 risk factors (hazard ratio 3.0 [95% CI 2.6-3.4; p < 0.001]; median 16.0 vs 38.8 months, respectively). This prognostic index may enable identification of patients with a poorer prognosis in whom more intensive systemic regimens may be appropriate. The index may also be considered in designing new trials, although it requires validation in other datasets before extrapolation to non-bevacizumab-containing therapy. ClinicalTrials.gov identifier: NCT00448591. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Transient establishment of the wavefronts for negative, zero, and positive refraction.

    PubMed

    Zhao, Wenjuan; Wu, Qiang; Wang, Ride; Gao, Jianshun; Lu, Yao; Zhang, Qi; Qi, Jiwei; Zhang, Chunling; Pan, Chongpei; Rupp, Romano; Xu, Jingjun

    2018-01-22

    We quantitatively demonstrate transient establishment of wavefronts for negative, zero, and positive refraction through a wedge-shaped metamaterial consisting of periodically arranged split-ring resonators and metallic wires. The wavefronts for the three types of refractions propagate through the second interface of the wedge along positive refraction angles at first, then reorganize, and finally propagate along the effective refraction angles after a period of establishment time respectively. The establishment time of the wavefronts prevents violating causality or superluminal propagation for negative and zero refraction. The establishment time for negative or zero refraction is longer than that for positive refraction. For all three refraction processes, transient establishment processes precede the establishment of steady propagation. Moreover, some detailed characters are proven in our research, including infinite wavelength, uniform phase inside the zero-index material, and the phase velocity being antiparallel to the group velocity in the negative-index material.

  17. Retrospective indexing (RI) - A computer-aided indexing technique

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1990-01-01

    An account is given of a method for data base-updating designated 'computer-aided indexing' (CAI) which has been very efficiently implemented at NASA's Scientific and Technical Information Facility by means of retrospective indexing. Novel terms added to the NASA Thesaurus will therefore proceed directly into both the NASA-RECON aerospace information system and its portion of the ESA-Information Retrieval Service, giving users full access to material thus indexed. If a given term appears in the title of a record, it is given special weight. An illustrative graphic representation of the CAI search strategy is presented.

  18. Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beaskoetxea, U., E-mail: unai.beaskoetxea@unavarra.es

    2014-03-28

    A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presentedmore » and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.« less

  19. Toxic substances registry system: Index of material safety data sheets

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Material Safety Data Sheets (MSDSs) listed in this index reflect product inventories and associated MSDSs which have been submitted to the Toxic Substance Registry database maintained by the Base Operations Contractor at the Kennedy Space Center. The purpose of this index is to provide a means to access information on the hazards associated with the toxic and otherwise hazardous chemicals stored and used at the Kennedy Space Center.

  20. Index of Free and Inexpensive Food and Nutrition Information Materials.

    ERIC Educational Resources Information Center

    Gordon, Kathleen, Comp.; And Others

    This annotated index contains approximately 2,000 free or inexpensive pamphlets or brochures about food and nutrition. The prime criterion for inclusion of materials was that they be easily available and inexpensive; the cut-off cost was set at $3.00. The majority of materials listed were produced in either Canada or the United States. These…

  1. Basic principles of test-negative design in evaluating influenza vaccine effectiveness.

    PubMed

    Fukushima, Wakaba; Hirota, Yoshio

    2017-08-24

    Based on the unique characteristics of influenza, the concept of "monitoring" influenza vaccine effectiveness (VE) across the seasons using the same observational study design has been developed. In recent years, there has been a growing number of influenza VE reports using the test-negative design, which can minimize both misclassification of diseases and confounding by health care-seeking behavior. Although the test-negative designs offer considerable advantages, there are some concerns that widespread use of the test-negative design without knowledge of the basic principles of epidemiology could produce invalid findings. In this article, we briefly review the basic concepts of the test-negative design with respect to classic study design such as cohort studies or case-control studies. We also mention selection bias, which may be of concern in some countries where rapid diagnostic testing is frequently used in routine clinical practices, as in Japan. Copyright © 2017. Published by Elsevier Ltd.

  2. Connecting drug delivery reality to smart materials design.

    PubMed

    Grainger, David W

    2013-09-15

    Inflated claims to both design and mechanistic novelty in drug delivery and imaging systems, including most nanotechnologies, are not supported by the generally poor translation of these systems to clinical efficacy. The "form begets function" design paradigm is seductive but perhaps over-simplistic in translation to pharmaceutical efficacy. Most innovations show few clinically important distinctions in their therapeutic benefits in relevant preclinical disease and delivery models, despite frequent claims to the contrary. Long-standing challenges in drug delivery issues must enlist more realistic, back-to-basics approaches to address fundamental materials properties in complex biological systems, preclinical test beds, and analytical methods to more reliably determine fundamental pharmaceutical figures of merit, including drug carrier purity and batch-batch variability, agent biodistribution, therapeutic index (safety), and efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Refractive-index-matched hydrogel materials for measuring flow-structure interactions

    NASA Astrophysics Data System (ADS)

    Byron, Margaret L.; Variano, Evan A.

    2013-02-01

    In imaging-based studies of flow around solid objects, it is useful to have materials that are refractive-index-matched to the surrounding fluid. However, materials currently in use are usually rigid and matched to liquids that are either expensive or highly viscous. This does not allow for measurements at high Reynolds number, nor accurate modeling of flexible structures. This work explores the use of two hydrogels (agarose and polyacrylamide) as refractive-index-matched models in water. These hydrogels are inexpensive, can be cast into desired shapes, and have flexibility that can be tuned to match biological materials. The use of water as the fluid phase allows this method to be implemented immediately in many experimental facilities and permits investigation of high-Reynolds-number phenomena. We explain fabrication methods and present a summary of the physical and optical properties of both gels, and then show measurements demonstrating the use of hydrogel models in quantitative imaging.

  4. Design and Fabrication of Large Diameter Gradient-Index Lenses for Dual-Band Visible to Short-Wave Infrared Imaging Applications

    NASA Astrophysics Data System (ADS)

    Visconti, Anthony Joseph

    The fabrication of gradient-index (GRIN) optical elements is quite challenging, which has traditionally restricted their use in many imaging systems; consequently, commercial-level GRIN components usually exist in one particular market or niche application space. One such fabrication technique, ion exchange, is a well-known process used in the chemical strengthening of glass, the fabrication of waveguide devices, and the production of small diameter GRIN optical relay systems. However, the manufacturing of large diameter ion-exchanged GRIN elements has historically been limited by long diffusion times. For example, the diffusion time for a 20 mm diameter radial GRIN lens in commercially available ion exchange glass for small diameter relays, is on the order of a year. The diffusion time can be dramatically reduced by addressing three key ion exchange process parameters; the composition of the glass, the diffusion temperature, and the composition of the salt bath. Experimental work throughout this thesis aims to (1) scale up the ion exchange diffusion process to 20 mm diameters for a fast-diffusing titania silicate glass family in both (2) sodium ion for lithium ion (Na+ for Li+) and lithium ion for sodium ion (Li+ for Na+) exchange directions, while (3) utilizing manufacturing friendly salt bath compositions. In addition, optical design studies have demonstrated that an important benefit of gradient-index elements in imaging systems is the added degree of freedom introduced with a gradient's optical power. However, these studies have not investigated the potential usefulness of GRIN materials in dual-band visible to short-wave infrared (vis-SWIR) imaging systems. The unique chromatic properties of the titania silicate ion exchange glass become a significant degree of freedom in the design process for these color-limited, broadband imaging applications. A single GRIN element can replace a cemented doublet or even a cemented triplet, without loss in overall system

  5. Electron-trapping polycrystalline materials with negative electron affinity.

    PubMed

    McKenna, Keith P; Shluger, Alexander L

    2008-11-01

    The trapping of electrons by grain boundaries in semiconducting and insulating materials is important for a wide range of physical problems, for example, relating to: electroceramic materials with applications as sensors, varistors and fuel cells, reliability issues for solar cell and semiconductor technologies and electromagnetic seismic phenomena in the Earth's crust. Surprisingly, considering their relevance for applications and abundance in the environment, there have been few experimental or theoretical studies of the electron trapping properties of grain boundaries in highly ionic materials such as the alkaline earth metal oxides and alkali halides. Here we demonstrate, by first-principles calculations on MgO, LiF and NaCl, a qualitatively new type of electron trapping at grain boundaries. This trapping is associated with the negative electron affinity of these materials and is unusual as the electron is confined in the empty space inside the dislocation cores.

  6. All-angle negative refraction and active flat lensing of ultraviolet light.

    PubMed

    Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J

    2013-05-23

    Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago

  7. Negative induced absorption and negative index of refraction for iron doped potash-alumina-borate glasses subjected to thermal-radiation treatment

    NASA Astrophysics Data System (ADS)

    Salakhitdinov, Amritdin; Ibragimova, Elvira; Salakhitdinova, Maysara

    2018-02-01

    This work experimentally revealed, that 60Co-gamma-irradiation of potash-alumina-borate glasses doped with 1 and 2 mass% of iron oxide to the dose of 1.7 MR in the temperature range of 150-300 °C induced differential optical density changes within - 6 ≤ Δ D ≤ 0 in the wave length range of 300-350 nm, which is characteristic for meta-material. Calculations have shown that variation of optical refraction index within - 0.05 ≤ Δ n ω ≤ 0.05 due to microstructure transformation causes changes in the differential absorption index of the glass - 0.5 < Δ α ω < 0.55.

  8. 43 CFR 2.5 - Does DOI maintain an index of its reading room materials?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Does DOI maintain an index of its reading room materials? 2.5 Section 2.5 Public Lands: Interior Office of the Secretary of the Interior RECORDS... a FOIA Request § 2.5 Does DOI maintain an index of its reading room materials? Each bureau will...

  9. Material design of negative-tone polyphenol resist for EUV and EB lithography

    NASA Astrophysics Data System (ADS)

    Kojima, Kyoko; Mori, Shigeki; Shiono, Daiju; Hada, Hideo; Onodera, Junichi

    2007-03-01

    In order to enable design of a negative-tone polyphenol resist using polarity-change reaction, five resist compounds (3M6C-MBSA-BLs) with different number of functional group of γ-hydroxycarboxyl acid were prepared and evaluated by EB lithography. The resist using mono-protected compound (3M6C-MBSA-BL1a) showed 40-nm hp resolution at an improved dose of 52 μC/cm2 probably due to removal of a non-protected polyphenol while the sensitivity of the resist using a compound of protected ratio of 1.1 on average with distribution of different protected ratio was 72 μC/cm2. For evaluation of the di-protected compound based resist, a di-protected polyphenol was synthesized by a newly developed synthetic route of 3-steps reaction, which is well-suited for mass production. The resist using di-protected compound (3M6C-MBSA-BL2b) also showed 40-nm hp resolution at a dose of 40 μC/cm2, which was faster than that of mono-protected resist. Fundamental EUV lithographic evaluation of the resist using 3M6C-MBSA-BL2b by an EUV open frame exposure tool (EUVES-7000) gave its estimated optimum sensitivity of 7 mJ/cm2 and a proof of fine development behavior without any swelling.

  10. Toxic substances registry system: Index of material safety data sheets

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Material Safety Data Sheets (MSDS's) listed in this index reflect product inventories and associated MSDS's which were submitted to the Toxic Substances Registry database maintained by the Base Operations Contractor at the Kennedy Space Center. The purpose of this index is to provide KSC government, contractor, and tenant organizations a means to access information on the hazards associated with these chemicals. The Toxic Substance Registry Service (TSRS) was established to manage information dealing with the storage and use of toxic and otherwise hazardous materials at KSC. As a part of this service, the BOC Environmental Health Services maintains a central repository of MSDS's which were provided to TSRS. The data on the TSRS are obtained from NASA, contractor, and tenant organizations who use or store hazardous materials at KSC. It is the responsibility of these organizations to conduct inventories, obtain MSDS's, distribute Hazard Communication information to their employees, and otherwise implement compliance with appropriate Federal, State, and NASA Hazard Communication and Worker Right-to-Know regulations and policies.

  11. Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating.

    PubMed

    Binfeng, Yun; Guohua, Hu; Ruohu, Zhang; Yiping, Cui

    2014-11-17

    A nanometric and high sensitive refractive index sensor based on the metal-insulator-metal plasmonic Bragg grating is proposed. The wavelength encoded sensing characteristics of the refractive index sensor were investigated by analyzing its transmission spectrum. The numerical results show that a good linear relationship between the Bragg wavelength and the refractive index of the sensing material can be obtained, which is in accordance with the analytical results very well. A high refractive index sensitivity of 1,488 nm/RIU around Bragg resonance wavelength of 1,550 nm was obtained. Besides, the simulation results show that the sensitivity is depended on the Bragg resonance wavelength and the longer the Bragg resonance wavelength, the higher sensitivity can be obtained. Furthermore, the figure of merit of the refractive index sensor can be greatly increased by introducing a nano-cavity in the proposed plasmonic Bragg grating structure. This work pave the way for high sensitive nanometric refractive index sensor design and application.

  12. Problem of image superresolution with a negative-refractive-index slab.

    PubMed

    Nieto-Vesperinas, Manuel

    2004-04-01

    By means of the angular spectrum representation of wave fields, a discussion is given on the propagation and restoration of the wave-front structure in a slab of a left-handed medium (or negative-index medium) whose surface impedance matches that of vacuum, namely, one whose effective optical parameters are n = epsilon = mu = -1. This restoration was previously discussed [Phys. Rev. Lett. 85, 3866 (2000)] in regard to whether it may yield superresolved images. The divergence of the wave field in the slab, and its equivalence with that of the inverse diffraction propagator in free space, is addressed. Further, the existence of absorption, its regularization of this divergence, and the trade-off of a resulting limited superresolution are analyzed in detail in terms of its effect on the evanescent components of the wave field and hence on the transfer function width.

  13. Optical Coatings With Graded Index Layers For High Power Laser Applications: Design

    NASA Astrophysics Data System (ADS)

    Zukic, Muamer; Guenther, Karl H.

    1988-06-01

    Graded index layers provide a greater flexibility for the design of optical coatings than "homogeneous" layers. A graded index layer can replace the whole or a part of a traditional multilayer stack of alternating thin films of high and low refractive index. This paper presents design examples for broadband antireflection coatings, narrowband high reflectors (also referred to as minus filters or rejection line filters), and non-polarizing beam splitters. Optimized refractive index profiles are derived for broadband antireflection coatings for various combinations of incident medium and substrate. The rejection line filter example uses a sinusoidal (rugate) index profile. The non-polarizing beamsplitter summarizes the topical contents of a paper presented in another conference at the same symposium.

  14. Transmutation of singularities and zeros in graded index optical instruments: a methodology for designing practical devices.

    PubMed

    Hooper, I R; Philbin, T G

    2013-12-30

    We describe a design methodology for modifying the refractive index profile of graded-index optical instruments that incorporate singularities or zeros in their refractive index. The process maintains the device performance whilst resulting in graded profiles that are all-dielectric, do not require materials with unrealistic values, and that are impedance matched to the bounding medium. This is achieved by transmuting the singularities (or zeros) using the formalism of transformation optics, but with an additional boundary condition requiring the gradient of the co-ordinate transformation be continuous. This additional boundary condition ensures that the device is impedance matched to the bounding medium when the spatially varying permittivity and permeability profiles are scaled to realizable values. We demonstrate the method in some detail for an Eaton lens, before describing the profiles for an "invisible disc" and "multipole" lenses.

  15. [Design of plant leaf bionic camouflage materials based on spectral analysis].

    PubMed

    Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian

    2011-06-01

    The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.

  16. Design and analysis of gradient index metamaterial-based cloak with wide bandwidth and physically realizable material parameters

    NASA Astrophysics Data System (ADS)

    Bisht, Mahesh Singh; Rajput, Archana; Srivastava, Kumar Vaibhav

    2018-04-01

    A cloak based on gradient index metamaterial (GIM) is proposed. Here, the GIM is used, for conversion of propagating waves into surface waves and vice versa, to get the cloaking effect. The cloak is made of metamaterial consisting of four supercells with each supercell possessing the linear spatial variation of permittivity and permeability. The spatial variation of material parameters in supercells allows the conversion of propagating waves into surface waves and vice versa, hence results in reduction of electromagnetic signature of the object. To facilitate the practical implementation of the cloak, continuous spatial variation of permittivity and/or permeability, in each supercell, is discretized into seven segments and it is shown that there is not much deviation in cloaking performance of discretized cloak as compared to its continuous counterpart. The crucial advantage, of the proposed cloaks, is that the material parameters are isotropic and in physically realizable range. Furthermore, the proposed cloaks have been shown to possess bandwidth of the order of 190% which is a significantly improved performance compared to the recently published literature.

  17. New model performance index for engineering design of control systems

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Performance index includes a model representing linear control-system design specifications. Based on a geometric criterion for approximation of the model by the actual system, the index can be interpreted directly in terms of the desired system response model without actually having the model's time response.

  18. Toxic substances registry system: Index of material safety data sheets

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Jul. 1992 Revision of the KSC Toxic Substances Registry System (TSRS) Index of Material Safety Data Sheets (MSDS's) is presented. The listed MSDS's reflect product inventories and associated MSDS's which were submitted to the Toxic Substance Registry Data Base maintained by the Base Operations Contractors of the Biomedical Operations and Research Office of KSC. The purpose of the index is to provide a means of accessing information on the hazards associated with the toxic and otherwise hazardous chemicals stored and used at KSC. Indices are provided for manufacturers, trademarks, and stock numbers.

  19. Multi-parameter optimization of monolithic high-index contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Marciniak, Magdalena; Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Czyszanowski, Tomasz

    2016-03-01

    Conventional High-index Contrast Gratings (HCG) consist of periodically distributed high refractive index stripes surrounded by low index media. Practically, such low/high index stack can be fabricated in several ways however low refractive index layers are electrical insulators of poor thermal conductivities. Monolithic High-index Contrast Gratings (MHCGs) overcome those limitations since they can be implemented in any material with a real refractive index larger than 1.75 without the need of the combination of low and high refractive index materials. The freedom of use of various materials allows to provide more efficient current injection and better heat flow through the mirror, in contrary to the conventional HCGs. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. We present numerical analysis of MHCGs using a three-dimensional, fully vectorial optical model. We investigate possible designs of MHCGs using multidimensional optimization of grating parameters for different refractive indices.

  20. Sadder and less accurate? False memory for negative material in depression.

    PubMed

    Joormann, Jutta; Teachman, Bethany A; Gotlib, Ian H

    2009-05-01

    Previous research has demonstrated that induced sad mood is associated with increased accuracy of recall in certain memory tasks; the effects of clinical depression, however, are likely to be quite different. The authors used the Deese-Roediger-McDermott paradigm to examine the impact of clinical depression on erroneous recall of neutral and/or emotional stimuli. Specifically, they presented Deese-Roediger-McDermott lists that were highly associated with negative, neutral, or positive lures and compared participants diagnosed with major depressive disorder and nondepressed control participants on the accuracy of their recall of presented material and their false recall of never-presented lures. Compared with control participants, major depressive disorder participants recalled fewer words that had been previously presented but were more likely to falsely recall negative lures; there were no differences between major depressive disorder and control participants in false recall of positive or neutral lures. These findings indicate that depression is associated with false memories of negative material.

  1. Left Handed Materials Based on Magnetic Nanocomposites

    DTIC Science & Technology

    2006-10-18

    theory that unifies DNMs and SNMs as a function of two flmdamental material parameters: quality factors for permittivity (Qe=e’/e") and permeability (Qu...simultaneously negative effective permeability/uff and permittivity Seff to form LHM or only single negative parameter (SNM) to form negative indexed...developed a theory that unifies DNMs and SNMs as a function of two fundamental material parameters: quality factors for permittivity (Q, = -’/ 6") and

  2. Grindability determination of torrefied biomass materials using the Hybrid Work index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Essendelft, D.T.; Zhou, X.; Kang, B.S.-J.

    2012-01-01

    The grindability of torrefied biomass materials is a difficult parameter to evaluate due to its inhomogeneous character and non-uniform morphology. However, it is necessary to develop a grinding test that is representative of the wide ranging character of biomass and torrefied biomass materials. Previous research has shown that Resistance to Impact Milling (RIM) can be linearly correlated to thermally driven weight loss in biomass. In particular, the RIM equipment was found to supply the right energy level to physically break down structurally deficient biomass materials while leaving the un-touched material relatively intact [1–3]. However, the RIM procedure was not designedmore » to extract the comminution energy. Alternatively, the Bond Work Index (BWI) procedure was developed to accurately assess the grinding energy of brittle materials [4,5]. However, the milling energy is too low to be effective for biomass comminution. In this research, the BWI procedure was utilized with the ball–mill approach in the RIM test to evaluate torrefied biomass materials. The hybridized procedure has been shown to be both highly correlated to energy consumption and sensitive to degree of torrefaction. The proposed Hybrid Work Index (HWI) is certainly useful for assessing torrefaction in a laboratory environment, but it may also be correlated to grinding energy at industrial scales.« less

  3. Using the Clear Communication Index to Improve Materials for a Behavioral Intervention.

    PubMed

    Porter, Kathleen J; Alexander, Ramine; Perzynski, Katelynn M; Kruzliakova, Natalie; Zoellner, Jamie M

    2018-02-08

    Ensuring that written materials used in behavioral interventions are clear is important to support behavior change. This study used the Clear Communication Index (CCI) to assess the original and revised versions of three types of written participant materials from the SIPsmartER intervention. Materials were revised based on original scoring. Scores for the entire index were significantly higher among revised versions than originals (57% versus 41%, p < 0.001); however, few revised materials (n = 2 of 53) achieved the benchmark of ≥90%. Handouts scored higher than worksheets and slide sets for both versions. The proportion of materials scored as having "a single main message" significantly increased between versions for worksheets (7% to 57%, p = 0.003) and slide sets (33% to 67%, p = 0.004). Across individual items, most significant improvements were in Core, with four-items related to the material having a single main message. Findings demonstrate that SIPsmartER's revised materials improved after CCI-informed edits. They advance the evidence and application of the CCI, suggesting it can be effectively used to support improvement in clarity of different types of written materials used in behavioral interventions. Implications for practical considerations of using the tool and suggestions for modifications for specific types of materials are presented.

  4. Self-Assembled Soft Optical Negative Index Materials

    DTIC Science & Technology

    2008-08-05

    within the MURI indicated that anodization of aluminum films provides hexagonal nano-hole arrays, which, when backfilled with e.g. silver via...bath determine pore size and spacing. Then AAO is removed with chromic and phosphoric acid at 70°C for 6 hrs. A 2nd anodization results in hexagonal...array of pores. Anodization time sets membrane thickness. Pores widened in acid such as phosphoric acid. The barrier layer is thinned by gradually

  5. A new accurate and flexible index to assess the contribution of building materials to indoor gamma exposure.

    PubMed

    Nuccetelli, Cristina; Leonardi, Federica; Trevisi, Rosabianca

    2015-05-01

    The role of building materials as a source of gamma radiation has been recognized in the new EU Basic Safety Standards Directive which introduces an index I to screen building materials of radiological concern. This index was developed to account for average concrete values of thickness and density, the main structural characteristics of building materials that have an effect on gamma irradiation. Consequently, this screening procedure could be unfit in case of significantly different density and/or thickness of the building materials under examination. The paper proposes a more accurate and flexible activity concentration index, accounting for the actual density and thickness of building materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  7. Qualitative identification of food materials by complex refractive index mapping in the terahertz range.

    PubMed

    Shin, Hee Jun; Choi, Sung-Wook; Ok, Gyeongsik

    2018-04-15

    We investigated the feasibility of qualitative food analysis using complex refractive index mapping of food materials in the terahertz (THz) frequency range. We studied optical properties such as the refractive index and absorption coefficient of food materials, including insects as foreign substances, from 0.2 to 1.3 THz. Although some food materials had a complex composition, their refractive indices were approximated with effective medium values, and therefore, they could be discriminated on the complex refractive index map. To demonstrate food quality inspection with THz imaging, we obtained THz reflective images and time-of-flight imaging of hidden defects in a sugar and milk powder matrix by using time domain THz pulses. Our results indicate that foreign substances can be clearly classified and detected according to the optical parameters of the foods and insects by using THz pulses. Copyright © 2017. Published by Elsevier Ltd.

  8. The influence of actuator materials and nozzle designs on electrostatic charge of pressurised metered dose inhaler (pMDI) formulations.

    PubMed

    Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela

    2014-05-01

    To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.

  9. Special Education Master Key and Index for Environmental Curriculum Materials.

    ERIC Educational Resources Information Center

    Garowski, Robert; And Others

    Prepared for teachers working with disadvantaged students, this booklet contains keys and indexes for activities in the out-of-doors. It should be used in conjunction with field trip activity sheets and follow-up materials currently available through the Southeastern Pennsylvania Outdoor Education Center and described in the following documents:…

  10. A Quantum Electronics Approach to Optical Negative Index Metamaterials (NIMs): Homogeneous NIMs in the Solid State

    DTIC Science & Technology

    2012-03-12

    index effect at ~ 27.8 µm. This effect was theoretically predicted earlier, and it is based on coexistence of the spin wave ( magnon ) mode with the...refractive index at ~ 150 GHz, based on analogous plasmon- magnon excitation mechanism. 2.1 Fabrication of Cr doped IO material system...film, that the non-magnetic film possesses no maximum in region 27-28 µm. Such behavior is expected, since the spin waves ( magnons ) which are

  11. Mismatch Negativity (MMN) as an Index of Cognitive Dysfunction

    PubMed Central

    Näätänen, Risto; Sussman, Elyse S.; Salisbury, Dean; Shafer, Valerie L.

    2014-01-01

    Cognition is often affected in a variety of neuropsychiatric, neurological, and neurodevelopmental disorders. The neural discriminative response, reflected in mismatch negativity (MMN) and its magnetoencephalographic equivalent (MMNm), has been used as a tool to study a variety of disorders involving auditory cognition. MMN/MMNm is an involuntary brain response to auditory change or, more generally, to pattern regularity violation. For a number of disorders, MMN/MMNm amplitude to sound deviance has been shown to be attenuated or the peak-latency of the component prolonged compared to controls. This general finding suggests that while not serving as a specific marker to any particular disorder, MMN may be useful for understanding factors of cognition in various disorders, and has potential to serve as an indicator of risk. This review presents a brief history of the MMN, followed by a description of how MMN has been used to index auditory processing capability in a range of neuropsychiatric, neurological, and neurodevelopmental disorders. Finally, we suggest future directions for research to further enhance our understanding of the neural substrate of deviance detection that could lead to improvements in the use of MMN as a clinical tool. PMID:24838819

  12. Negative refraction in molybdenum disulfide.

    PubMed

    Wang, Wenhui; Cui, Xudong; Yang, Erchan; Fan, Quanping; Xiang, Bin

    2015-08-24

    Recently, negative refractions have been demonstrated in uniaxial crystals with no necessary of negative permittivity and permeability. However, the small anisotropy parameterγin the uniaxial crystals limits the negative refraction occurrence only in a small range of the incident light angle, retarding its practical applications. In this paper, we report negative refraction induced by a pronounced anisotropic behavior in the bulk MoS(2). Using the first-principles, the dielectric function and refractive index calculations confirm a uniaxial trait of MoS(2) with a calculated anisotropy parameterγlarger than 2.5 in the entire range of visible wavelength. The critical incident angle to trigger a negative refraction in the bulk MoS(2) is calculated up to 90°. The finite-difference time-domain simulations prove that the incident light with a density of 59.5% can be negatively refracted in a MoS(2) slab with a thickness of 0.1 µm. Our results open up a new pathway for MoS(2)-like materials to a novel field of optical integration.

  13. Negative correlation between body mass index category and physical activity perceptions in children.

    PubMed

    Van Zant, R Scott; Toney, Julie

    2012-10-01

    Children's physical activity (PA) choices are influenced by their perceived ability (adequacy) and inclination toward (predilection) PA. The study's purpose was to determine the association of body mass index (BMI) category with PA perceptions in sixth-grade children. A total of 267 children (119 boys, 148 girls; age 11+ y; ht 1.53 SD 0.08 m; wt 49.0 SD 13.5 kg; BMI 20.7 SD 4.8) provided informed consent and completed the study. All were measured for body weight and height and completed the Children's Self-perceptions of Adequacy in and Predilection for Physical Activity (CSAPPA) scale. Spearman rank-order correlation analysis was conducted between total CSAPPA score (and three factor scores of adequacy, predilection, and enjoyment) and BMI category relative to gender, body weight classification and for all children. A significant negative correlation was identified between BMI category (p<0.01) and CSAPPA total, adequacy, and predilection score for all children. Girls (but not boys) showed significant negative correlation between BMI category and all CSAPPA scores. A significant negative correlation in BMI category and PA perceptions exists in children, with the relationship being stronger in girls. Children with increased BMI may have adverse perceptions of PA and risks for sedentary behavior.

  14. [Designing dental manpower index to evaluate dental manpower resources].

    PubMed

    Li, Gang; Ni, Zong-zan

    2004-06-01

    The purpose of this investigation is to find out a method to evaluate dental manpower resources. We selected population, GDP, number of dentist and number of different oral health professionals from certain internet stations, published books and journals from 1996 to 2000 as our investigating data. Data was collected from 100 countries. Our investigation found that the design of dental manpower index to evaluate dental manpower resources was effective and convenient. Dental manpower index is a good method to evaluate dental manpower resources.

  15. Designing Printed Instructional Materials.

    ERIC Educational Resources Information Center

    Burbank, Lucille; Pett, Dennis

    1986-01-01

    Discusses the importance of identifying the audience and determining specific objectives when designing printed instructional materials that will communicate effectively and provides detailed guidelines for dealing with such design factors as content, writing style, typography, illustrations, and page organization. (MBR)

  16. Materials design for new superconductors

    DOE PAGES

    Norman, M. R.

    2016-05-23

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed in this paper,more » with a focus on surveying the periodic table in an attempt to identify cuprate analogues.« less

  17. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  18. Designing Instructional Materials: Some Guidelines.

    ERIC Educational Resources Information Center

    Burbank, Lucille; Pett, Dennis

    Guidelines for the design of instructional materials are outlined in this paper. The principles of design are presented in five major categories: (1) general design (structural appeal and personal appeal); (2) instructional design (attention, memory, concept learning, and attitude change); (3) visual design (media considerations, pictures, graphs…

  19. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties

    DOE PAGES

    Sougrati, Moulay T.; Darwiche, Ali; Liu, Xiaohiu; ...

    2016-03-16

    Here we report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as a negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on 57Fe M ssbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe NCN into Li/Na NCN bonds during discharge and charge. These new electrode materials exhibit higher capacity compared to well-established negative electrode references such as graphite or hard carbon. Contrary to its oxide analogue, iron carbodiimide does not requiremore » heavy treatments (nanoscale tailoring, sophisticated textures, coating etc.) to obtain long cycle life with density current as high as 9 A/g -1 for hundreds of charge/discharge cycles. Similar to the iron compound, several other transition-metal carbodiimides M x(NCN) y with M = Mn, Cr, Zn can cycle successfully versus lithium and sodium. Ultimately, their electrochemical activity and performances open the way to the design of a novel family of anode materials.« less

  20. Characterization of a novel ultra low refractive index material for biosensor application

    PubMed Central

    Memisevic, Jasenka; Korampally, Venumadhav; Gangopadhyay, Shubhra; Grant, Sheila A.

    2009-01-01

    Nanoporous materials can provide significant benefits to the field of biosensors. Their size and porous structure makes them an ideal tool for improving sensor performance. This study characterized a novel ultra low index of refraction nanoporous organosilicate (NPO) material for use as an optical platform for fluorescence-based optical biosensors. While serving as the low index cladding material, the novel coating based on organosilicate nanoparticles also provides an opportunity for a high surface area coating that can be utilized for immobilizing biological probes. Biological molecules were immobilized onto NPO, which was spin-coated on silicon and glass substrates. The biological molecule was composed of Protein A conjugated to AlexaFluor 546 fluorophore and then immobilized onto the NPO substrate via silanization. Sample analysis consisted of spectrofluorometry, FT-IR spectroscopy, scanning electron microscopy, contact angle measurement and ellipsometry. The results showed the presence of emission peaks at 574 nm, indicating that the immobilization of Protein A to the NPO material is possible. When compared to Si and glass substrates not coated with NPO, the results showed a 100X and 10X increase in packing density with the NPO coated films respectively. Ellipsometric analysis, FT-IR, contact angle, and SEM imaging of the surface immobilized NPO films suggested that while the surface modifications did induce some damage, it did not incur significant changes to its unique characteristics, i.e., pore structure, wettability and index of refraction. It was concluded that NPO films would be a viable sensor substrate to enhance sensitivity and improve sensor performance. PMID:20161155

  1. Safety assessment in plant layout design using indexing approach: implementing inherent safety perspective. Part 2-Domino Hazard Index and case study.

    PubMed

    Tugnoli, Alessandro; Khan, Faisal; Amyotte, Paul; Cozzani, Valerio

    2008-12-15

    The design of layout plans requires adequate assessment tools for the quantification of safety performance. The general focus of the present work is to introduce an inherent safety perspective at different points of the layout design process. In particular, index approaches for safety assessment and decision-making in the early stages of layout design are developed and discussed in this two-part contribution. Part 1 (accompanying paper) of the current work presents an integrated index approach for safety assessment of early plant layout. In the present paper (Part 2), an index for evaluation of the hazard related to the potential of domino effects is developed. The index considers the actual consequences of possible escalation scenarios and scores or ranks the subsequent accident propagation potential. The effects of inherent and passive protection measures are also assessed. The result is a rapid quantification of domino hazard potential that can provide substantial support for choices in the early stages of layout design. Additionally, a case study concerning selection among various layout options is presented and analyzed. The case study demonstrates the use and applicability of the indices developed in both parts of the current work and highlights the value of introducing inherent safety features early in layout design.

  2. Index to Bibliographies and Resource Materials--Project MEDIA, Summer 1975.

    ERIC Educational Resources Information Center

    National Indian Education Association, Minneapolis, Minn.

    Information presented in this index includes citations ano descriptions of print and nonprint media by, for, or about Native Americans and represents some of the resource materials to be included in the functioning computer-housed data base now being constructed by Project MEDIA. As the precursor of a print catalogue to be published as more data…

  3. Integrated design of structures, controls, and materials

    NASA Technical Reports Server (NTRS)

    Blankenship, G. L.

    1994-01-01

    In this talk we shall discuss algorithms and CAD tools for the design and analysis of structures for high performance applications using advanced composite materials. An extensive mathematical theory for optimal structural (e.g., shape) design was developed over the past thirty years. Aspects of this theory have been used in the design of components for hypersonic vehicles and thermal diffusion systems based on homogeneous materials. Enhancement of the design methods to include optimization of the microstructure of the component is a significant innovation which can lead to major enhancements in component performance. Our work is focused on the adaptation of existing theories of optimal structural design (e.g., optimal shape design) to treat the design of structures using advanced composite materials (e.g., fiber reinforced, resin matrix materials). In this talk we shall discuss models and algorithms for the design of simple structures from composite materials, focussing on a problem in thermal management. We shall also discuss methods for the integration of active structural controls into the design process.

  4. Designing a generalized soil-adjusted vegetation index (GESAVI)

    NASA Astrophysics Data System (ADS)

    Gilabert, M. A.; Gonzalez Piqueras, Jose; Garcia-Haro, Joan; Melia, J.

    1998-12-01

    Operational monitoring of vegetative cover by remote sensing currently involves the utilization of vegetation indices (VIs), most of them being functions of the reflectance in red (R) and near-infrared (NIR) spectral bands. A generalized soil-adjusted vegetation index (GESAVI), theoretically based on a simple vegetation canopy model, is introduced. It is defined in terms of the soil line parameters (A and B) as: GESAVI equals (NIR-BR-A)/(R + Z), where Z is related to the red reflectance at the cross point between the soil line and vegetation isolines. Z can be considered as a soil adjustment coefficient which let this new index be considered as belonging to the SAVI family. In order to analyze the GESAVI sensitivity to soil brightness and soil color, both high resolution reflectance data from two laboratory experiments and data obtained by applying a radiosity model to simulate heterogeneous vegetation canopy scenes were used. VIs (including GESAVI, NDVI, PVI and SAVI family VIs) were computed and their correlation with LAI for the different soil backgrounds was analyzed. Results confirmed the lower sensitivity of GESAVI to soil background in most of the cases, thus becoming the most efficient index. This good index performance results from the fact that the isolines in the NIR-R plane are neither parallel to the soil line (as required by the PVI) nor convergent at the origin (as required by the NDVI) but they converge somewhere between the origin and infinity in the region of negative values of both NIR and R. This convergence point is not necessarily situated on the bisectrix, as required by other SAVI family indices.

  5. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab.

    PubMed

    Chau, Kenneth J; Lezec, Henri J

    2012-04-23

    We propose a set of postulates to describe the mechanical interaction between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign. The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model for absorption-driven mass transfer from the pulse to the medium. These opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain algorithm that solves Maxwell's equations and calculates the instantaneous force densities exerted by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories of the slab and system center-of-mass. We show that the postulates are consistent with conservation of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the refractive index of the slab is negative or zero. Consistency between the set of postulates and well-established conservation laws reinforces the Abraham momentum density as the one true electromagnetic momentum density and enables, for the first time, identification of the correct form of the electromagnetic mass density distribution and development of an explicit model for mass transfer due to absorption, for the most general case of a ponderable medium that is both dispersive and dissipative. © 2012 Optical Society of America

  6. A proposed performance index for galactic cosmic ray shielding materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Wood, J. S.; Shinn, Judy L.; Cucinotta, Francis A.; Nealy, John E.

    1993-01-01

    In past studies, the reductions in absorbed dose and dose equivalent due to choice of material composition have been used to indicate shield effectiveness against exposure to galactic cosmic rays. However, these quantities are highly inaccurate in assessing shield effectiveness for protection against the biological effects of long-term exposure to the galactic heavy ions. A new quantity for shield performance is defined that correlates well with cell killing and cell transformation behind various shield thicknesses and materials. In addition, a relative performance index is identified that is inversely related to biological injury for different materials at a fixed shield mass and is directly related to the ratio of the fourth- and the second-order linear energy transfer (LET) moments.

  7. Design principles for therapeutic angiogenic materials

    NASA Astrophysics Data System (ADS)

    Briquez, Priscilla S.; Clegg, Lindsay E.; Martino, Mikaël M.; Gabhann, Feilim Mac; Hubbell, Jeffrey A.

    2016-01-01

    Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and therapeutic angiogenesis, which has potential in the treatment of various cardiovascular diseases, remains a major challenge. Physiologically, angiogenesis — the process of blood-vessel growth from existing vasculature — is regulated by a complex interplay of biophysical and biochemical cues from the extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the natural 3D material that regulates angiogenesis. Here, we leverage knowledge of ECM properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between growth factors and the ECM. We highlight examples of material designs that demonstrate these principles and considerations for designing better angiogenic materials.

  8. Sensory memory during physiological aging indexed by mismatch negativity (MMN).

    PubMed

    Ruzzoli, Manuela; Pirulli, Cornelia; Brignani, Debora; Maioli, Claudio; Miniussi, Carlo

    2012-03-01

    Physiological aging affects early sensory-perceptual processes. The aim of this experiment was to evaluate changes in auditory sensory memory in physiological aging using the Mismatch Negativity (MMN) paradigm as index. The MMN is a marker recorded through the electroencephalogram and is used to evaluate the integrity of the memory system. We adopted a new, faster paradigm to look for differences between 3 groups of subjects of different ages (young, middle age and older adults) as a function of short or long intervals between stimuli. We found that older adults did not show MMN at long interval condition and that the duration of MMN varied according to the participants' age. The current study provides electrophysiological evidence supporting the theory that the encoding of stimuli is preserved during normal aging, whereas the maintenance of sensory memory is impaired. Considering the advantage offered by the MMN paradigm used here, these data might be a useful reference point for the assessment of auditory sensory memory in pathological aging (e.g., in neurodegenerative diseases). Copyright © 2012 Elsevier Inc. All rights reserved.

  9. A pressure-amplifying framework material with negative gas adsorption transitions.

    PubMed

    Krause, Simon; Bon, Volodymyr; Senkovska, Irena; Stoeck, Ulrich; Wallacher, Dirk; Többens, Daniel M; Zander, Stefan; Pillai, Renjith S; Maurin, Guillaume; Coudert, François-Xavier; Kaskel, Stefan

    2016-04-21

    Adsorption-based phenomena are important in gas separations, such as the treatment of greenhouse-gas and toxic-gas pollutants, and in water-adsorption-based heat pumps for solar cooling systems. The ability to tune the pore size, shape and functionality of crystalline porous coordination polymers--or metal-organic frameworks (MOFs)--has made them attractive materials for such adsorption-based applications. The flexibility and guest-molecule-dependent response of MOFs give rise to unexpected and often desirable adsorption phenomena. Common to all isothermal gas adsorption phenomena, however, is increased gas uptake with increased pressure. Here we report adsorption transitions in the isotherms of a MOF (DUT-49) that exhibits a negative gas adsorption; that is, spontaneous desorption of gas (methane and n-butane) occurs during pressure increase in a defined temperature and pressure range. A combination of in situ powder X-ray diffraction, gas adsorption experiments and simulations shows that this adsorption behaviour is controlled by a sudden hysteretic structural deformation and pore contraction of the MOF, which releases guest molecules. These findings may enable technologies using frameworks capable of negative gas adsorption for pressure amplification in micro- and macroscopic system engineering. Negative gas adsorption extends the series of counterintuitive phenomena such as negative thermal expansion and negative refractive indices and may be interpreted as an adsorptive analogue of force-amplifying negative compressibility transitions proposed for metamaterials.

  10. Nodal failure index approach to groundwater remediation design

    USGS Publications Warehouse

    Lee, J.; Reeves, H.W.; Dowding, C.H.

    2008-01-01

    Computer simulations often are used to design and to optimize groundwater remediation systems. We present a new computationally efficient approach that calculates the reliability of remedial design at every location in a model domain with a single simulation. The estimated reliability and other model information are used to select a best remedial option for given site conditions, conceptual model, and available data. To evaluate design performance, we introduce the nodal failure index (NFI) to determine the number of nodal locations at which the probability of success is below the design requirement. The strength of the NFI approach is that selected areas of interest can be specified for analysis and the best remedial design determined for this target region. An example application of the NFI approach using a hypothetical model shows how the spatial distribution of reliability can be used for a decision support system in groundwater remediation design. ?? 2008 ASCE.

  11. Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak

    NASA Astrophysics Data System (ADS)

    Wong, Zi Jing; Wang, Yuan; O'Brien, Kevin; Rho, Junsuk; Yin, Xiaobo; Zhang, Shuang; Fang, Nicholas; Yen, Ta-Jen; Zhang, Xiang

    2017-08-01

    Metamaterials are artificially engineered materials that exhibit novel properties beyond natural materials. By carefully designing the subwavelength unit cell structures, unique effective properties that do not exist in nature can be attained. Our metamaterial research aims to develop new subwavelength structures with unique physics and experimentally demonstrate unprecedented properties. Here we review our research efforts in optical and acoustic metamaterials in the past 15 years which may lead to exciting applications in communications, sensing and imaging.

  12. Medium-Index Mixed-Oxide Layers for Use in AR-Coatings

    NASA Astrophysics Data System (ADS)

    Ganner, Peter

    1986-10-01

    Ttedesign philosophy of MC-AR-Coatings can be divided into two categories: a) Restriction to two film materials, namely one high-index and one low-index material and b) Use of medium-index layers in addition to high- and low-index layers. Both philosophies have advan-tages and drawbacks. In case a) the total number of layers necessary to obtain a required reflectance curve has to be higher. Thus in case of production errors it can be a problem to find out which layer was responsible for a deviation of the measured reflectance from the nominal one. In case b) using more than two materials reduces the total number of layers and consequently, pinpointing the cause of even small production errors is made simpler. Unfortunately there are not many materials commercially available which can be used to make hard, durable and robust films in the medium-index range namely between n=1.65 and n=2.00. In this paper the results of homogeneous mixtures of Alumina (Al203) and Tantala (Ta205) used for EB-gun evaporated medium-index films in AR-coatings is presented. It is shown that by proper adjustment of the weight percentages of the oxide mixture one can get homogeneous films in this index range. A number of design examples show the favourable application of such layers in AR-coatings. Among the most important ones is the well known QHQ-design for BBAR-coatings as well as AR-designs of the multiple half wave type with extended bandwidth. Further applications of the mixed-oxide layers are AR-coatings for cemented optical elements and beam splitters.

  13. Monolithic subwavelength high refractive-index-contrast grating VCSELs

    NASA Astrophysics Data System (ADS)

    Gebski, Marcin; Dems, Maciej; Lott, James A.; Czyszanowski, Tomasz

    2016-03-01

    In this paper we present optical design and simulation results of vertical-cavity surface-emitting lasers (VCSELs) that incorporate monolithic subwavelength high refractive-index-contrast grating (MHCG) mirrors - a new variety of HCG mirror that is composed of high index material surrounded only on one side by low index material. We show the impact of an MHCG mirror on the performance of 980 nm VCSELs designed for high bit rate and energy-efficient optical data communications. In our design, all or part of the all-semiconductor top coupling distributed Bragg reflector mirror is replaced by an undoped gallium-arsenide MHCG. We show how the optical field intensity distribution of the VCSEL's fundamental mode is controlled by the combination of the number of residual distributed Bragg reflector (DBR) mirror periods and the physical design of the topmost gallium-arsenide MHCG. Additionally, we numerically investigate the confinement factors of our VCSELs and show that this parameter for the MHCG DBR VCSELs may only be properly determined in two or three dimensions due to the periodic nature of the grating mirror.

  14. Use of General-purpose Negation Detection to Augment Concept Indexing of Medical Documents

    PubMed Central

    Mutalik, Pradeep G.; Deshpande, Aniruddha; Nadkarni, Prakash M.

    2001-01-01

    Objectives: To test the hypothesis that most instances of negated concepts in dictated medical documents can be detected by a strategy that relies on tools developed for the parsing of formal (computer) languages—specifically, a lexical scanner (“lexer”) that uses regular expressions to generate a finite state machine, and a parser that relies on a restricted subset of context-free grammars, known as LALR(1) grammars. Methods: A diverse training set of 40 medical documents from a variety of specialties was manually inspected and used to develop a program (Negfinder) that contained rules to recognize a large set of negated patterns occurring in the text. Negfinder's lexer and parser were developed using tools normally used to generate programming language compilers. The input to Negfinder consisted of medical narrative that was preprocessed to recognize UMLS concepts: the text of a recognized concept had been replaced with a coded representation that included its UMLS concept ID. The program generated an index with one entry per instance of a concept in the document, where the presence or absence of negation of that concept was recorded. This information was used to mark up the text of each document by color-coding it to make it easier to inspect. The parser was then evaluated in two ways: 1) a test set of 60 documents (30 discharge summaries, 30 surgical notes) marked-up by Negfinder was inspected visually to quantify false-positive and false-negative results; and 2) a different test set of 10 documents was independently examined for negatives by a human observer and by Negfinder, and the results were compared. Results: In the first evaluation using marked-up documents, 8,358 instances of UMLS concepts were detected in the 60 documents, of which 544 were negations detected by the program and verified by human observation (true-positive results, or TPs). Thirteen instances were wrongly flagged as negated (false-positive results, or FPs), and the program missed

  15. Computational materials design of crystalline solids.

    PubMed

    Butler, Keith T; Frost, Jarvist M; Skelton, Jonathan M; Svane, Katrine L; Walsh, Aron

    2016-11-07

    The modelling of materials properties and processes from first principles is becoming sufficiently accurate as to facilitate the design and testing of new systems in silico. Computational materials science is both valuable and increasingly necessary for developing novel functional materials and composites that meet the requirements of next-generation technology. A range of simulation techniques are being developed and applied to problems related to materials for energy generation, storage and conversion including solar cells, nuclear reactors, batteries, fuel cells, and catalytic systems. Such techniques may combine crystal-structure prediction (global optimisation), data mining (materials informatics) and high-throughput screening with elements of machine learning. We explore the development process associated with computational materials design, from setting the requirements and descriptors to the development and testing of new materials. As a case study, we critically review progress in the fields of thermoelectrics and photovoltaics, including the simulation of lattice thermal conductivity and the search for Pb-free hybrid halide perovskites. Finally, a number of universal chemical-design principles are advanced.

  16. Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru

    2015-07-01

    Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.

  17. Study on Brewster angle thin film polarizer using hafnia-silica mixture as high-refractive-index material

    NASA Astrophysics Data System (ADS)

    Xu, Nuo; Zhu, Meiping; Sun, Jian; Chai, Yingjie; Kui, Yi; Zhao, Yuanan; Shao, Jianda

    2018-02-01

    Two kinds of polarizer coatings were prepared by electron beam evaporation, using HfO2-SiO2 mixture and HfO2 as the high-refractive-index materials, respectively. The HfO2-SiO2 mixture layer was implemented by coevaporating SiO2 and metal Hf, the materials were deposited at an oxygen atmosphere to achieve stoichiometric coatings. The certain HfO2 and SiO2 content ratio is controlled by adjusting the deposition rate of HfO2 and SiO2 using individual quartz crystal monitor. The spectral performance, surface and interfacial properties, as well as the laser-induced damage performance were studied and compared. Comparing with polarizer coating using HfO2 as high-refractive-index material, the polarizer coating using HfO2-SiO2 mixture as high-refractive-index material shows better performance with broader polarizing bandwidth, lower surface roughness, better interfacial property while maintaining high laser-induced damage threshold.

  18. IR GRIN optics: design and fabrication

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; McClain, Collin; Deegan, John; Lindberg, George; Unger, Blair; Vizgaitis, Jay

    2017-06-01

    Infrared (IR) transmitting gradient index (GRIN) materials have been developed for broad-band IR imaging. This material is derived from the diffusion of homogeneous chalcogenide glasses has good transmission for all IR wavebands. The optical properties of the IR-GRIN materials are presented and the fabrication and design methodologies are discussed. Modeling and optimization of the diffusion process is exploited to minimize the deviation of the index profile from the design profile. Fully diffused IR-GRIN blanks with Δn of 0.2 are demonstrated with deviation errors of +/-0.01 refractive index units.

  19. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula

    2011-05-01

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method.more » A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge

  20. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula

    2010-12-16

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 - PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5)more » sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination

  1. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-06-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  2. Maskless Lithography Using Negative Photoresist Material: Impact of UV Laser Intensity on the Cured Line Width

    NASA Astrophysics Data System (ADS)

    Mohammed, Mohammed Ziauddin; Mourad, Abdel-Hamid I.; Khashan, Saud A.

    2018-04-01

    The application of maskless lithography technique on negative photoresist material is investigated in this study. The equipment used in this work is designed and built especially for maskless lithography applications. The UV laser of 405 nm wavelength with 0.85 Numerical Aperture is selected for direct laser writing. All the samples are prepared on a glass substrate. Samples are tested at different UV laser intensities and different stage velocities in order to study the impact on patterned line width. Three cases of spin coated layers of thickness 90 μm, 40 μm, and 28 μm on the substrate are studied. The experimental results show that line width has a generally increasing trend with intensity. However, a decreasing trend was observed for increasing velocity. The overall performance shows that the mr-DWL material is suitable for direct laser writing systems.

  3. Band structure of comb-like photonic crystals containing meta-materials

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  4. Application of New Materials in the Household Appliances Design

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ren, Y.

    The widespread use of new materials in household appliances industry, not only help those products to get rid of the appearance shackles caused by original materials, but also gave the designers the freedom to open up the world of product design. This paper aims to analyze the impact of new materials for home appliances design through relevant research, to explore the application of new material in household appliances functional design, shape design, color design and emotional design, etc., so as to reveal the impact and promoting effects of new material in household appliances world, as well as the prospects of new material in future household appliances design.

  5. Development of AIM-Based Fast Solver for Efficient Design and Synthesis of Negative Index Materials

    DTIC Science & Technology

    2007-12-06

    N∑ n=1 Dn < fn/ε̂ > = N∑ n=1 Dn [ 1 ε̂+n ∫ T+m fn · fmdv + 1 ε̂−n ∫ T−m fn · fmdv ] (A.34) (Recall that fm, is zero outside of T±m These integrals...the centroid of Tm. The scalar potential term of (A.32) can be written as < ∇Φ,fm >= ∫ S Φfm · n̂ds− ∫ V Φ∇ · fmdv (A.37) where Sis the boundary of V

  6. Computational materials design of negative effective U system in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka; Fukushima, Tetsuya; Uede, Hiroki; Katayama-Yoshida, Hiroshi

    2015-03-01

    In order to realize the super-high-TC superconductors (TC>1,000K) based on the general design rules for the negative Ueff system, we have performed computational materials design for theUeff<0 system in the hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 from the first principles. We find the interesting chemical trend of TC in 2D and 3D systems; where the TC increases exponentially in the weak coupling regime (|Ueff (-0.44eV)|< W(2eV), W is the band width) for hole-doped CuFeS2, then the TC goes through a maximum when |Ueff (-4.88eV, -4.14eV)| ~ W (2.8eV, 3.5eV) for hole-doped AgAlO2 and AuAlO2, and the TC decreases with increasing |Ueff|in strong coupling regime, where |Ueff (-4.53eV)|> W(1.7eV) for hole-doped CuAlO2

  7. Efficiency of Cs-free materials for negative ion production in H2 and D2 plasmas

    NASA Astrophysics Data System (ADS)

    Friedl, R.; Kurutz, U.; Fantz, U.

    2017-08-01

    High power negative ion sources use caesium to reduce the work function of the converter surface which significantly increases the negative ion yield. Caesium, however, is a very reactive alkali-metal and shows complex redistribution dynamics in consequence of plasma-surface-interaction. Thus, maintaining a stable and homogenous low work function surface is a demanding task, which is not easily compatible with the RAMI issues (reliability, availability, maintainability, inspectability) for a future DEMO fusion reactor. Hence, Cs-free alternative materials for efficient negative ion formation are desirable. At the laboratory experiment HOMER materials which are referred to as promising are investigated under identical and ion source relevant parameters: the refractory metals Ta and W, non-doped and boron-doped diamond as well as materials with inherent low work function (lanthanum-doped molybdenum, MoLa and lanthanum hexaboride, LaB6). The results are compared to the effect of in-situ caesiation, which at HOMER leads to a maximal increase of the negative ion density by a factor of 2.5. Among the examined samples low work function materials are most efficient. In particular, MoLa leads to an increase of almost 50 % compared to pure volume formation. The difference to a caesiated surface can be attributed to the still higher work function of MoLa, which is expected to be slightly below 3 eV. Using deuterium instead of hydrogen leads to increased atomic and positive ion densities, while comparable negative ion densities are achieved. In contrast to the low work function materials, bulk samples of the refractory metals as well as carbon based materials have no enhancing effect on H-, where the latter materials furthermore show severe erosion due to the hydrogen plasma.

  8. A new biphasic osteoinductive calcium composite material with a negative Zeta potential for bone augmentation

    PubMed Central

    Smeets, Ralf; Kolk, Andreas; Gerressen, Marcus; Driemel, Oliver; Maciejewski, Oliver; Hermanns-Sachweh, Benita; Riediger, Dieter; Stein, Jamal M

    2009-01-01

    The aim of the present study was to analyze the osteogenic potential of a biphasic calcium composite material (BCC) with a negative surface charge for maxillary sinus floor augmentation. In a 61 year old patient, the BCC material was used in a bilateral sinus floor augmentation procedure. Six months postoperative, a bone sample was taken from the augmented regions before two titanium implants were inserted at each side. We analyzed bone neoformation by histology, bone density by computed tomography, and measured the activity of voltage-activated calcium currents of osteoblasts and surface charge effects. Control orthopantomograms were carried out five months after implant insertion. The BCC was biocompatible and replaced by new mineralized bone after being resorbed completely. The material demonstrated a negative surface charge (negative Zeta potential) which was found to be favorable for bone regeneration and osseointegration of dental implants. PMID:19523239

  9. Studies in Wave-Material Interaction and Design of Composite Materials

    DTIC Science & Technology

    1990-08-10

    to Coating Design In two- and four- flux models of radiative transfer theory, the scattering coefficients or efficiencies of non -emitting media are...0, (5b) rangement of problem 1 acts somewhat like a beam splitter ; with CL and C? being the transmission coefficients. an incident LCP (RCP) plane...This contract supports theoretical research in "Wave Material Interaction and Design of Composite Materials: and is complemented by ongoing

  10. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic

  11. Rational design of reconfigurable prismatic architected materials.

    PubMed

    Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia

    2017-01-18

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  12. Rational design of reconfigurable prismatic architected materials

    NASA Astrophysics Data System (ADS)

    Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia

    2017-01-01

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  13. Microwave experiments with left-handed materials

    NASA Astrophysics Data System (ADS)

    Shelby, Richard Allen

    It has previously been predicted that materials that have a simultaneous negative permittivity and negative permeability, called left-handed materials (LHM), will possess very unusual properties, such as negative refraction, inverse Doppler effect, and reversed Cherenkov radiation. In this dissertation I present results from microwave experiments designed to confirm that LHMs will exhibit negative refraction. I also present a discussion about the LHM design, and numerical, electromagnetic simulations. The experiments presented here include transmission experiments, refraction experiments, and surface plasmon experiments. The refraction experiments in Chapter 4 directly observe negative refraction for the first time. The results from the other experiments are consistent with theoretical models and support the claim that negative refraction has been observed. The materials used in the experiments presented here are fabricated, structured materials that contain fiberglass and copper with unit cell parameters on the order of millimeters. Metamaterials have been defined as being composite materials whose bulk properties are different than those of the constituent materials. By this definition, the LHMs used here are metamaterials, so long as the wavelength of the electromagnetic waves being used to probe the LHM are longer than the unit cell parameter.

  14. The automated design of materials far from equilibrium

    NASA Astrophysics Data System (ADS)

    Miskin, Marc Z.

    Automated design is emerging as a powerful concept in materials science. By combining computer algorithms, simulations, and experimental data, new techniques are being developed that start with high level functional requirements and identify the ideal materials that achieve them. This represents a radically different picture of how materials become functional in which technological demand drives material discovery, rather than the other way around. At the frontiers of this field, materials systems previously considered too complicated can start to be controlled and understood. Particularly promising are materials far from equilibrium. Material robustness, high strength, self-healing and memory are properties displayed by several materials systems that are intrinsically out of equilibrium. These and other properties could be revolutionary, provided they can first be controlled. This thesis conceptualizes and implements a framework for designing materials that are far from equilibrium. We show how, even in the absence of a complete physical theory, design from the top down is possible and lends itself to producing physical insight. As a prototype system, we work with granular materials: collections of athermal, macroscopic identical objects, since these materials function both as an essential component of industrial processes as well as a model system for many non-equilibrium states of matter. We show that by placing granular materials in the context of design, benefits emerge simultaneously for fundamental and applied interests. As first steps, we use our framework to design granular aggregates with extreme properties like high stiffness, and softness. We demonstrate control over nonlinear effects by producing exotic aggregates that stiffen under compression. Expanding on our framework, we conceptualize new ways of thinking about material design when automatic discovery is possible. We show how to build rules that link particle shapes to arbitrary granular packing

  15. Octonacci photonic crystals with negative refraction index materials

    NASA Astrophysics Data System (ADS)

    Brandão, E. R.; Vasconcelos, M. S.; Anselmo, D. H. A. L.

    2016-12-01

    We investigate the optical transmission spectra for s-polarized (TE) and p-polarized (TM) waves in one-dimensional photonic quasicrystals on a quasiperiodic multilayer structure made up by alternate layers of SiO2 and metamaterials, organized by following the Octonacci sequence. Maxwell's equations and the transfer-matrix technique are used to derive the transmission spectra for the propagation of normally and obliquely incident optical fields. We assume Drude-Lorentz-type dispersive response for the dielectric permittivity and magnetic permeability of the metamaterials. For normally incident waves, we observe that the spectra does not have self-similar behavior or mirror symmetry and it also features the absence of optical band gap. Also for normally incident waves, we show regions of full transmittance when the incident angle θC = 0° in a particular frequency range.

  16. Design of materials with prescribed nonlinear properties

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sigmund, O.; Jensen, J. S.

    2014-09-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].

  17. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity

    PubMed Central

    Lee, Myoung-Jae; Ahn, Ji-Hoon; Sung, Ji Ho; Heo, Hoseok; Jeon, Seong Gi; Lee, Woo; Song, Jae Yong; Hong, Ki-Ha; Choi, Byeongdae; Lee, Sung-Hoon; Jo, Moon-Ho

    2016-01-01

    In general, in thermoelectric materials the electrical conductivity σ and thermal conductivity κ are related and thus cannot be controlled independently. Previously, to maximize the thermoelectric figure of merit in state-of-the-art materials, differences in relative scaling between σ and κ as dimensions are reduced to approach the nanoscale were utilized. Here we present an approach to thermoelectric materials using tin disulfide, SnS2, nanosheets that demonstrated a negative correlation between σ and κ. In other words, as the thickness of SnS2 decreased, σ increased whereas κ decreased. This approach leads to a thermoelectric figure of merit increase to 0.13 at 300 K, a factor ∼1,000 times greater than previously reported bulk single-crystal SnS2. The Seebeck coefficient obtained for our two-dimensional SnS2 nanosheets was 34.7 mV K−1 for 16-nm-thick samples at 300 K. PMID:27323662

  18. Powder based superdielectric materials for novel Capacitor design

    DTIC Science & Technology

    2017-06-01

    SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN by Clayton W. Petty June 2017 Thesis Advisor: Jonathan Phillips Second Reader: Anthony...thesis 4. TITLE AND SUBTITLE POWDER-BASED SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN 5. FUNDING NUMBERS 6. AUTHOR(S) Clayton W...unlimited. POWDER-BASED SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN Clayton W. Petty Lieutenant, Junior Grade, United States Navy B.S

  19. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness

    PubMed Central

    Sullivan, Sheena G.; Tchetgen Tchetgen, Eric J.; Cowling, Benjamin J.

    2016-01-01

    Influenza viruses undergo frequent antigenic changes. As a result, the viruses circulating change within and between seasons, and the composition of the influenza vaccine is updated annually. Thus, estimation of the vaccine's effectiveness is not constant across seasons. In order to provide annual estimates of the influenza vaccine's effectiveness, health departments have increasingly adopted the “test-negative design,” using enhanced data from routine surveillance systems. In this design, patients presenting to participating general practitioners with influenza-like illness are swabbed for laboratory testing; those testing positive for influenza virus are defined as cases, and those testing negative form the comparison group. Data on patients' vaccination histories and confounder profiles are also collected. Vaccine effectiveness is estimated from the odds ratio comparing the odds of testing positive for influenza among vaccinated patients and unvaccinated patients, adjusting for confounders. The test-negative design is purported to reduce bias associated with confounding by health-care-seeking behavior and misclassification of cases. In this paper, we use directed acyclic graphs to characterize potential biases in studies of influenza vaccine effectiveness using the test-negative design. We show how studies using this design can avoid or minimize bias and where bias may be introduced with particular study design variations. PMID:27587721

  20. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  1. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the

  2. Design with brittle materials - An interdisciplinary educational program

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.; Bollard, R. J. H.; Hartz, B. J.; Kobayashi, A. S.; Love, W. J.; Scott, W. D.; Taggart, R.; Whittemore, O. J.

    1980-01-01

    A series of interdisciplinary design courses being offered to senior and graduate engineering students at the University of Washington is described. Attention is given to the concepts and some of the details on group design projects that have been undertaken during the past two years. It is noted that ceramic materials normally demonstrate a large scatter in strength properties. As a consequence, when designing with these materials, the conventional 'mil standards' design stresses with acceptable margins of safety cannot by employed and the designer is forced to accept a probable number of failures in structures of a given brittle material. It is this prediction of the probability of failure for structures of given, well-characterized materials that forms the basis for this series of courses.

  3. Some Thoughts on DIY Materials Design.

    ERIC Educational Resources Information Center

    Block, David

    1991-01-01

    Discusses the reasons that are often given against teacher-generated English-as-a-Foreign-Language materials and presents arguments in favor of DIY (Do It Yourself) materials design. (23 references) (GLR)

  4. Toxic Substances Registry System. Index of Material Safety Data Sheets

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The October 1994 revision of the KSC Toxic Substances Registry System (TSRS) Material Safety Data Sheets (MSD's) is presented. The listed MSD's which were submitted to the TSRS are maintained by the Base Operations Contractors of the Biomedical Operations and Research Office of KSC. The purpose of the index is to provide a means of accessing information on the hazards associated with the toxic and otherwise hazardous chemicals stored and used at KSC. Indices are provided for manufacturers, trademarks, and stock numbers.

  5. Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes.

    PubMed

    Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih

    2015-05-01

    In this study, we investigated numerically the plasmon response of a dimer configuration composed of a couple of split and concentric Au nanoshells in a complex orientation. We showed that an isolated composition of two concentric split nanoshells could be tailored to support strong plasmon resonant modes in the visible wavelengths. After determining the accurate geometric dimensions for the presented antisymmetric nanostructure, we designed a dimer array that shows complex behavior during exposure to different incident polarizations. We verified that the examined dimer was able to support destructive interference between dark and bright plasmon modes, which resulted in a pronounced Fano-like dip. Observation of a Fano minimum in such a simple molecular orientation of subwavelength particles opens new avenues for employing this structure in designing various practical plasmonic devices. Depositing the final dimer in a strong coupling condition on a semiconductor metasurface and measuring the effective refractive index at certain wavelengths, we demonstrate that each one of dimer units can be considered a meta-atom due to the high aspect ratio in the geometric parameters. Using this method, by extending the number of dimers periodically and illuminating the structure, we examined the isotropic, polarization-dependent, and transmission behavior of the metamaterial configuration. Using numerical methods and calculating the effective refractive indices, we computed and sketched corresponding figure of merit over the transmission window, where the maximum value obtained was 42.3 for Si and 54.6 for gallium phosphide (GaP) substrates.

  6. Chromatic Properties of Index of Refraction Gradients in Glass.

    NASA Astrophysics Data System (ADS)

    Ryan-Howard, Danette Patrice

    The chromatic properties of index of refraction gradients have been predicted theoretically and verified experimentally. The use of these materials in the design of color corrected optical systems has been investigated and confirmed by the evaluation of two fabricated lenses. A model for the chromatic properties of gradient index materials has been developed. The index of refraction is calculated based on the composition of the material. Since the index of refraction and the conventional Abbe number change as a function of the composition of the glass, a gradient Abbe number and a partial dispersion are defined. Analysis of combinations of ion exchange pairs and glasses result in a wide range of gradient Abbe numbers and partial dispersions. These ranges can be further extended by using glasses which contain more than one exchange ion or by using mixed salt baths. The chromatic properties were measured with a multiple wavelength A.C. interferometer. The gradient Abbe numbers and partial dispersions for a number of samples were calculated. Evaluation of the samples showed that the index and dispersion data correlated well with that predicted by the model. Thin lens formulae for the paraxial axial color and secondary spectrum of a radial gradient singlet with curves were examined. The design of a single element 10x microscope objective verified the applicability of these formulae. The design of a two element 40x microscope objective showed that a six element diffraction limited 40x objective can be replaced with a two element system composed of one homogeneous lens and one gradient lens without sacrificing either monochromatic performance or color correction. A previously fabricated axial gradient collimator and a fabricated Wood element were evaluated. Correlation of the directly measured quantities, paraxial axial color, secondary spectrum and spherochromatism with the values predicted by the model verified that the predicted superior performance of gradient-index

  7. Index of Non-Government Standards on Human Engineering Design Criteria and Program Requirements/Guidelines. Version 3

    DTIC Science & Technology

    2002-10-01

    the Seated Operator of Off-Highway Work Machines ♦ SAE J1013 1992 http://www.sae.org/servlets/ index http://standards.nasa.gov/NPTS/login.taf...Public Access permits users to view the NASA Preferred Technical Standards index , with the capability to download free of charge the NASA- Developed ...www.sae.org/servlets/ index http://www.techstreet.com/ Design of Ergonomic Requirements for the Design of Displays and Control Actuators -

  8. Attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm.

    PubMed

    Zhang, Jie; Wang, Yuping; Feng, Junhong

    2013-01-01

    In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.

  9. Attribute Index and Uniform Design Based Multiobjective Association Rule Mining with Evolutionary Algorithm

    PubMed Central

    Wang, Yuping; Feng, Junhong

    2013-01-01

    In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption. PMID:23766683

  10. Managing Training Materials with Structured Text Design.

    ERIC Educational Resources Information Center

    Streit, Les D.; And Others

    1986-01-01

    Describes characteristics of structured text design; benefits of its use in training; benefits for developers of training materials and steps in preparing training materials. A case study illustrating how the structured text design process solved the sales training needs of the Mercedes-Benz Truck Company is presented. (MBR)

  11. Mass of materials: the impact of designers on construction ergonomics.

    PubMed

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.

  12. Frontal negativity: An electrophysiological index of interpersonal guilt.

    PubMed

    Leng, Bingbing; Wang, Xiangling; Cao, Bihua; Li, Fuhong

    2017-12-01

    The present study aimed to reveal the temporal course and electrophysiological correlates of interpersonal guilt. Human participants were asked to perform multiple rounds of a dot-estimation task with their partners, while event-related potential being recorded. The paired participants were informed that they would win money if both responded correctly; otherwise, both of them would lose money. The feeling of guilt in Self-Wrong condition (SW) was significantly higher than that in Both-Wrong and Partner-Wrong conditions. At approximately 350 ms after the onset of feedback presentation, greater negativities were observed in the frontal regions in the guilt condition (i.e., SW) than those in the non-guilt condition. The guilt-modulated frontal negativity might reflect the interactions of self-reflection, condemnation, and negative emotion.

  13. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    PubMed Central

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-01-01

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance. PMID:29039749

  14. Bionic Design, Materials and Performance of Bone Tissue Scaffolds.

    PubMed

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-10-17

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  15. Design concepts for pressurized lunar shelters utilizing indigenous materials

    NASA Technical Reports Server (NTRS)

    Happel, John Amin; Willam, Kaspar; Shing, Benson

    1991-01-01

    The objective is to design a pressurized shelter build of indigenous lunar material. The topics are presented in viewgraph form and include the following: lunar conditions which impact design; secondary factors; review of previously proposed concepts; cross section of assembly facility; rationale for indigenous materials; indigenous material choices; cast basalt properties; design variables; design 1, cylindrical segments; construction sequence; design 2, arch-slabs with post-tensioned ring girders; and future research.

  16. Explaining negative refraction without negative refractive indices.

    PubMed

    Talalai, Gregory A; Garner, Timothy J; Weiss, Steven J

    2018-03-01

    Negative refraction through a triangular prism may be explained without assigning a negative refractive index to the prism by using array theory. For the case of a beam incident upon the wedge, the array theory accurately predicts the beam transmission angle through the prism and provides an estimate of the frequency interval at which negative refraction occurs. The hypotenuse of the prism has a staircase shape because it is built of cubic unit cells. The large phase delay imparted by each unit cell, combined with the staircase shape of the hypotenuse, creates the necessary conditions for negative refraction. Full-wave simulations using the finite-difference time-domain method show that array theory accurately predicts the beam transmission angle.

  17. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  18. Automatic design of basin-specific drought indexes for highly regulated water systems

    NASA Astrophysics Data System (ADS)

    Zaniolo, Marta; Giuliani, Matteo; Castelletti, Andrea Francesco; Pulido-Velazquez, Manuel

    2018-04-01

    Socio-economic costs of drought are progressively increasing worldwide due to undergoing alterations of hydro-meteorological regimes induced by climate change. Although drought management is largely studied in the literature, traditional drought indexes often fail at detecting critical events in highly regulated systems, where natural water availability is conditioned by the operation of water infrastructures such as dams, diversions, and pumping wells. Here, ad hoc index formulations are usually adopted based on empirical combinations of several, supposed-to-be significant, hydro-meteorological variables. These customized formulations, however, while effective in the design basin, can hardly be generalized and transferred to different contexts. In this study, we contribute FRIDA (FRamework for Index-based Drought Analysis), a novel framework for the automatic design of basin-customized drought indexes. In contrast to ad hoc empirical approaches, FRIDA is fully automated, generalizable, and portable across different basins. FRIDA builds an index representing a surrogate of the drought conditions of the basin, computed by combining all the relevant available information about the water circulating in the system identified by means of a feature extraction algorithm. We used the Wrapper for Quasi-Equally Informative Subset Selection (W-QEISS), which features a multi-objective evolutionary algorithm to find Pareto-efficient subsets of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and optimizing relevance and redundancy of the subset. The preferred variable subset is selected among the efficient solutions and used to formulate the final index according to alternative model structures. We apply FRIDA to the case study of the Jucar river basin (Spain), a drought-prone and highly regulated Mediterranean water resource system, where an advanced drought management plan relying on the formulation of an ad hoc state index is

  19. Adaptive strategies for materials design using uncertainties

    DOE PAGES

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; ...

    2016-01-21

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  20. Adaptive strategies for materials design using uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  1. Theoretical study of polarization dependence of carrier-induced refractive index change of quantum dot.

    PubMed

    Miao, Qingyuan; Yang, Ziyi; Dong, Jianji; He, Ping-An; Huang, Dexiu

    2018-02-05

    The influences of dot material component, barrier material component, aspect ratio and carrier density on the refractive index changes of TE mode and TM mode of columnar quantum dot are analyzed, and a multiparameter adjustment method is proposed to realize low polarization dependence of refractive index change. Then the quantum dots with low polarization dependence of refractive index change (<1.5%) within C-band (1530 nm - 1565 nm) are designed, and it shows that quantum dots with different material parameters are anticipated to have similar characteristics of low polarization dependence.

  2. Modularization of gradient-index optical design using wavefront matching enabled optimization.

    PubMed

    Nagar, Jogender; Brocker, Donovan E; Campbell, Sawyer D; Easum, John A; Werner, Douglas H

    2016-05-02

    This paper proposes a new design paradigm which allows for a modular approach to replacing a homogeneous optical lens system with a higher-performance GRadient-INdex (GRIN) lens system using a WaveFront Matching (WFM) method. In multi-lens GRIN systems, a full-system-optimization approach can be challenging due to the large number of design variables. The proposed WFM design paradigm enables optimization of each component independently by explicitly matching the WaveFront Error (WFE) of the original homogeneous component at the exit pupil, resulting in an efficient design procedure for complex multi-lens systems.

  3. Invited Article: Refractive index matched scanning of dense granular materials

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua A.; Rietz, Frank; Lőrincz, Kinga A.; van Hecke, Martin; Losert, Wolfgang

    2012-01-01

    We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then visualized by exciting, layer by layer, the fluorescent dye in the fluid phase. We collect references and unreported experimental know-how to provide a solid background for future development of the technique, both for new and experienced users.

  4. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness.

    PubMed

    Sullivan, Sheena G; Tchetgen Tchetgen, Eric J; Cowling, Benjamin J

    2016-09-01

    Influenza viruses undergo frequent antigenic changes. As a result, the viruses circulating change within and between seasons, and the composition of the influenza vaccine is updated annually. Thus, estimation of the vaccine's effectiveness is not constant across seasons. In order to provide annual estimates of the influenza vaccine's effectiveness, health departments have increasingly adopted the "test-negative design," using enhanced data from routine surveillance systems. In this design, patients presenting to participating general practitioners with influenza-like illness are swabbed for laboratory testing; those testing positive for influenza virus are defined as cases, and those testing negative form the comparison group. Data on patients' vaccination histories and confounder profiles are also collected. Vaccine effectiveness is estimated from the odds ratio comparing the odds of testing positive for influenza among vaccinated patients and unvaccinated patients, adjusting for confounders. The test-negative design is purported to reduce bias associated with confounding by health-care-seeking behavior and misclassification of cases. In this paper, we use directed acyclic graphs to characterize potential biases in studies of influenza vaccine effectiveness using the test-negative design. We show how studies using this design can avoid or minimize bias and where bias may be introduced with particular study design variations. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by

  6. Negative stiffness honeycombs as tunable elastic metamaterials

    NASA Astrophysics Data System (ADS)

    Goldsberry, Benjamin M.; Haberman, Michael R.

    2018-03-01

    Acoustic and elastic metamaterials are media with a subwavelength structure that behave as effective materials displaying atypical effective dynamic properties. These material systems are of interest because the design of their sub-wavelength structure allows for direct control of macroscopic wave dispersion. One major design limitation of most metamaterial structures is that the dynamic response cannot be altered once the microstructure is manufactured. However, the ability to modify wave propagation in the metamaterial with an external stimulus is highly desirable for numerous applications and therefore remains a significant challenge in elastic metamaterials research. In this work, a honeycomb structure composed of a doubly periodic array of curved beams, known as a negative stiffness honeycomb (NSH), is analyzed as a tunable elastic metamaterial. The nonlinear static elastic response that results from large deformations of the NSH unit cell leads to a large variation in linear elastic wave dispersion associated with infinitesimal motion superposed on the externally imposed pre-strain. A finite element model is utilized to model the static deformation and subsequent linear wave motion at the pre-strained state. Analysis of the slowness surface and group velocity demonstrates that the NSH exhibits significant tunability and a high degree of anisotropy which can be used to guide wave energy depending on static pre-strain levels. In addition, it is shown that partial band gaps exist where only longitudinal waves propagate. The NSH therefore behaves as a meta-fluid, or pentamode metamaterial, which may be of use for applications of transformation elastodynamics such as cloaking and gradient index lens devices.

  7. ARO-YIP (Materials By Design): Organic Photovoltaic Multiferroics

    DTIC Science & Technology

    Materials-by- design and self-assembly principles are applied to organic functional materials to control their morphology, interface, and crystalline...multifunctional properties, such as dielectric, magnetic, optoelectronic, and magnetoelectric coupling behaviors. The control of organic crystallization and...electronics. In this project, we aim at utilizing the material design and assembly strategies to rationally develop organic multiferroic-photovoltaics

  8. Doubly negative isotropic elastic metamaterial for sub-wavelength focusing: Design and realization

    NASA Astrophysics Data System (ADS)

    Oh, Joo Hwan; Seung, Hong Min; Kim, Yoon Young

    2017-12-01

    In spite of much progress in elastic metamaterials, tuning the effective density and stiffness to desired values ranging from negatives to large positives is still difficult. In particular, simultaneous realization of double negativity and isotropy, critical in sub-wavelength focusing, is very challenging since anisotropy is usually unavoidable in resonance-based metamaterials. The main difficulty is that there is no established systematic design method for simultaneous achieving of double negativity and isotropy. Thus, we propose a unique elastic metamaterial unit cell with which simultaneous realization can be achieved by an explicit step-by-step approach. The unit cell of the proposed metamaterial can be accurately modeled as an equivalent mass-spring system so that the effective properties can be easily controlled with the design parameters. The actual realization was carried out by acquiring the desired properties in sequential steps which is in detail. The specific application for this study is on sub-wavelength focusing, which will be demonstrated by waves from a single point source focused on a region smaller than half the wavelength. Actual experiments were performed on an aluminum plate where the designed metamaterial flat lens was imbedded. The results acquired through simulations and experiments suggest potential applications of the proposed metamaterial and the systematic design approach in advanced acoustic surgery or non-destructive testing.

  9. Neural responses to negative feedback are related to negative emotionality in healthy adults

    PubMed Central

    Santesso, Diane L.; Bogdan, Ryan; Birk, Jeffrey L.; Goetz, Elena L.; Holmes, Avram J.

    2012-01-01

    Prior neuroimaging and electrophysiological evidence suggests that potentiated responses in the anterior cingulate cortex (ACC), particularly the rostral ACC, may contribute to abnormal responses to negative feedback in individuals with elevated negative affect and depressive symptoms. The feedback-related negativity (FRN) represents an electrophysiological index of ACC-related activation in response to performance feedback. The purpose of the present study was to examine the FRN and underlying ACC activation using low resolution electromagnetic tomography source estimation techniques in relation to negative emotionality (a composite index including negative affect and subclinical depressive symptoms). To this end, 29 healthy adults performed a monetary incentive delay task while 128-channel event-related potentials were recorded. We found that enhanced FRNs and increased rostral ACC activation in response to negative—but not positive—feedback was related to greater negative emotionality. These results indicate that individual differences in negative emotionality—a putative risk factor for emotional disorders—modulate ACC-related processes critically implicated in assessing the motivational impact and/or salience of environmental feedback. PMID:21917847

  10. Gamma index evaluation of IMRT technique using gafchromic film EBT3 for homogeneous and inhomogeneous material

    NASA Astrophysics Data System (ADS)

    Nisauf, T. A.; Wibowo, W. E.; Pawiro, S. A.

    2017-07-01

    This study was done to evaluate the gamma index for registering between the planar of dose planning and the measurement of EBT film. The treatment plan was simulated for 5 patients using Fan Beam Computerized Tomography (FBCT) modality, Philips Pinnacle planning system, 6 MV photon energy, 50 segments IMRT technique, and calculation grid resolution (CGR) of 0.2 cm. Gamma Index (GI) evaluation was done with criteria of dose difference (DD) of 2 %, dose to agreement (DTA) of 2 mm and dose difference (DD) of 5 % DTA of 3 mm, SAD 100 cm, depth of 5 cm and 10 cm of the phantom. The result shows that GI for homogeneous material is greater than for inhomogeneous material with discrepancy to previous work is about 1.98 % for homogeneous material (depth 5 cm) and 2.05 % (depth 10 cm) while it was found of 2.98 % for inhomogeneous material (equivalent depth 5 cm) and 4.59 % (equivalent depth 10 cm).

  11. Newton's Apple 13th Season. Free Educational Materials.

    ERIC Educational Resources Information Center

    Twin Cities Public Television, St. Paul, MN.

    This educational materials packet was designed to help teachers use the Public Broadcasting Service's (PBS) program called "Newton's Apple" in the classroom. This book contains information on how these materials support the latest science standards; an index to the 13th season lesson pages and an index to the past three seasons; a…

  12. Auxetic materials in design and architecture

    NASA Astrophysics Data System (ADS)

    Papadopoulou, Athina; Laucks, Jared; Tibbits, Skylar

    2017-12-01

    Auxetic materials deform in an unusual way when stretched or compressed; they are flexible and adaptable, and, if made from responsive materials, can react to their environment. The opportunities they offer for innovative applications in fashion, design and architecture are just starting to be explored.

  13. Materials Experience as a Foundation for Materials and Design Education

    ERIC Educational Resources Information Center

    Pedgley, Owain; Rognoli, Valentina; Karana, Elvin

    2016-01-01

    An important body of research has developed in recent years, explaining ways in which product materials influence user experiences. A priority now is to ensure that the research findings are adopted within an educational context to deliver contemporary curricula for students studying the subject of materials and design. This paper reports on an…

  14. De novo self-assembling collagen heterotrimers using explicit positive and negative design.

    PubMed

    Xu, Fei; Zhang, Lei; Koder, Ronald L; Nanda, Vikas

    2010-03-23

    We sought to computationally design model collagen peptides that specifically associate as heterotrimers. Computational design has been successfully applied to the creation of new protein folds and functions. Despite the high abundance of collagen and its key role in numerous biological processes, fibrous proteins have received little attention as computational design targets. Collagens are composed of three polypeptide chains that wind into triple helices. We developed a discrete computational model to design heterotrimer-forming collagen-like peptides. Stability and specificity of oligomerization were concurrently targeted using a combined positive and negative design approach. The sequences of three 30-residue peptides, A, B, and C, were optimized to favor charge-pair interactions in an ABC heterotrimer, while disfavoring the 26 competing oligomers (i.e., AAA, ABB, BCA). Peptides were synthesized and characterized for thermal stability and triple-helical structure by circular dichroism and NMR. A unique A:B:C-type species was not achieved. Negative design was partially successful, with only A + B and B + C competing mixtures formed. Analysis of computed versus experimental stabilities helps to clarify the role of electrostatics and secondary-structure propensities determining collagen stability and to provide important insight into how subsequent designs can be improved.

  15. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and

  16. Design of LED projector based on gradient-index lens

    NASA Astrophysics Data System (ADS)

    Qian, Liyong; Zhu, Xiangbing; Cui, Haitian; Wang, Yuanhang

    2018-01-01

    In this study, a new type of projector light path is designed to eliminate the deficits of existing projection systems, such as complex structure and low collection efficiency. Using a three-color LED array as the lighting source, by means of the special optical properties of a gradient-index lens, the complex structure of the traditional projector is simplified. Traditional components, such as the color wheel, relay lens, and mirror, become unnecessary. In this way, traditional problems, such as low utilization of light energy and loss of light energy, are solved. With the help of Zemax software, the projection lens is optimized. The optimized projection lens, LED, gradient-index lens, and digital micromirror device are imported into Tracepro. The ray tracing results show that both the utilization of light energy and the uniformity are improved significantly.

  17. Rational design of reconfigurable prismatic architected materials

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia; Overvelde, Johannes; Hoberman, Chuck; Weaver, James

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. While most of these materials are characterized by a fixed geometry,an intriguing avenue is to incorporate internal mechanisms capable of recon_guring their spatial architecture, therefore enabling tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami-technique, here we introduce a robust design strategy based on space-filling polyhedra to create 3D reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively di_erent deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to design the next generation of reconfigurable structures and materials, ranging from transformable meter-scale architectures to nanoscale tunable photonic systems..

  18. Temperature-dependent refractive index measurements of L-BBH2 glass for the Subaru CHARIS integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-09-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 μm. We report absolute refractive index (n), dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  19. Temperature-Dependent Refractive Index Measurements of L-BBH2 Glass for the Subaru CHARIS Integral Field Spectrograph

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Groff, Tyler D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have made the first cryogenic measurements of absolute refractive index for Ohara L-BBH2 glass to enable the design of a prism for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) at the Subaru telescope. L-BBH2 is employed in CHARIS's prism design for improving the spectrograph's dispersion uniformity. Index measurements were made at temperatures from 110 to 305 K at wavelengths from 0.46 to 3.16 micron. We report absolute refractive index (n), dispersion (dn/d(lambda), and thermo-optic coefficient (dn/dT) for this material along with estimated single measurement uncertainties as a function of wavelength and temperature. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures within applicable ranges. This paper also speaks of the challenges in measuring index for a material which is not available in sufficient thickness to fabricate a typical prism for measurement in CHARMS, the tailoring of the index prism design that allowed these index measurements to be made, and the remarkable results obtained from that prism for this practical infrared material.

  20. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    PubMed Central

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  1. Rotavirus vaccine effectiveness in low-income settings: An evaluation of the test-negative design.

    PubMed

    Schwartz, Lauren M; Halloran, M Elizabeth; Rowhani-Rahbar, Ali; Neuzil, Kathleen M; Victor, John C

    2017-01-03

    The test-negative design (TND), an epidemiologic method currently used to measure rotavirus vaccine (RV) effectiveness, compares the vaccination status of rotavirus-positive cases and rotavirus-negative controls meeting a pre-defined case definition for acute gastroenteritis. Despite the use of this study design in low-income settings, the TND has not been evaluated to measure rotavirus vaccine effectiveness. This study builds upon prior methods to evaluate the use of the TND for influenza vaccine using a randomized controlled clinical trial database. Test-negative vaccine effectiveness (VE-TND) estimates were derived from three large randomized placebo-controlled trials (RCTs) of monovalent (RV1) and pentavalent (RV5) rotavirus vaccines in sub-Saharan Africa and Asia. Derived VE-TND estimates were compared to the original RCT vaccine efficacy estimates (VE-RCTs). The core assumption of the TND (i.e., rotavirus vaccine has no effect on rotavirus-negative diarrhea) was also assessed. TND vaccine effectiveness estimates were nearly equivalent to original RCT vaccine efficacy estimates. Neither RV had a substantial effect on rotavirus-negative diarrhea. This study supports the TND as an appropriate epidemiologic study design to measure rotavirus vaccine effectiveness in low-income settings. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Thermal design of composite materials high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.

  3. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers.

    PubMed

    Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey

    2014-05-21

    Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Properties of material in the submillimeter wave region (instrumentation and measurement of index of refraction)

    NASA Technical Reports Server (NTRS)

    Lally, J.; Meister, R.

    1983-01-01

    The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.

  5. Evaluating Course Design Principles for Multimedia Learning Materials

    ERIC Educational Resources Information Center

    Scott, Bernard; Cong, Chunyu

    2010-01-01

    Purpose: This paper aims to report on evaluation studies of principles of course design for interactive multimedia learning materials. Design/methodology/approach: At the Defence Academy of the UK, Cranfield University has worked with military colleagues to produce multimedia learning materials for courses on "Military Knowledge". The…

  6. Evaluation of resistant starch, glycemic index and fortificants content of premix rice coated with various concentrations and types of edible coating materials

    NASA Astrophysics Data System (ADS)

    Yulianto, W. A.; Susiati, A. M.; Adhini, H. A. N.

    2018-01-01

    The incidence of diabetes in Indonesia has been increasing year by year. Diets with a low glycemic index and high resistant starch foods can assist diabetics in controlling their blood glucose levels. Diabetics are known to have micro-nutrient deficiencies of chromium, magnesium and vitamin D that can be overcome by consuming parboiled rice fortified by use of a coating method. The fortification of parboiled rice (premix rice) can be achieved by coating with HPMC (hydroxypropyl methyl cellulose), MC (methyl cellulose), CMC (carboxyl methyl cellulose), gum arabic and rice starch. This research aimed to evaluate the levels of resistant starch, glycemic index and fortificants of premix rice coated with different concentrations and types of edible coating materials. This research used completely randomized design, with treatments to the concentrations and the types of edible coating (HPMC, CMC, MC, gum arabic and rice starch). The concentrations of edible coating were 0.15%, 0.2% and 0.25% for cellulose derivative coatings; 25%, 30%, 35% for gum arabic and 2%, 3.5% and 5% for rice starch. This research shows that fortified premix rice coated with various concentrations and types of edible coating materials is high in resistant starch and has a low glycemic index. The coating treatment affects the levels of magnesium and vitamin D, but does not affect the levels of chromium in parboiled rice. The premix rice with a low glycemic index and high nutrient content (chromium, magnesium and vitamin D) was premix rice coated by CMC 0.25% and HPMC 0.25% with glycemic indeces of 39.34 and 38.50, respectively.

  7. Design and mechanisms of antifouling materials for surface plasmon resonance sensors.

    PubMed

    Liu, Boshi; Liu, Xia; Shi, Se; Huang, Renliang; Su, Rongxin; Qi, Wei; He, Zhimin

    2016-08-01

    Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Indirect effect of financial strain on daily cortisol output through daily negative to positive affect index in the Coronary Artery Risk Development in Young Adults Study.

    PubMed

    Puterman, Eli; Haritatos, Jana; Adler, Nancy E; Sidney, Steve; Schwartz, Joseph E; Epel, Elissa S

    2013-12-01

    Daily affect is important to health and has been linked to cortisol. The combination of high negative affect and low positive affect may have a bigger impact on increasing HPA axis activity than either positive or negative affect alone. Financial strain may both dampen positive affect as well as increase negative affect, and thus provides an excellent context for understanding the associations between daily affect and cortisol. Using random effects mixed modeling with maximum likelihood estimation, we examined the relationship between self-reported financial strain and estimated mean daily cortisol level (latent cortisol variable), based on six salivary cortisol assessments throughout the day, and whether this relationship was mediated by greater daily negative to positive affect index measured concurrently in a sample of 776 Coronary Artery Risk Development in Young Adults (CARDIA) Study participants. The analysis revealed that while no total direct effect existed for financial strain on cortisol, there was a significant indirect effect of high negative affect to low positive affect, linking financial strain to elevated cortisol. In this sample, the effects of financial strain on cortisol through either positive affect or negative affect alone were not significant. A combined affect index may be a more sensitive and powerful measure than either negative or positive affect alone, tapping the burden of chronic financial strain, and its effects on biology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The great contribution: Index Medicus, Index-Catalogue, and IndexCat

    PubMed Central

    Greenberg, Stephen J.; Gallagher, Patricia E.

    2009-01-01

    Objective: The systematic indexing of medical literature by the Library of the Surgeon-General's Office (now the National Library of Medicine) has been called “America's greatest contribution to medical knowledge.” In the 1870s, the library launched two indexes: the Index Medicus and the Index-Catalogue of the Library of the Surgeon-General's Office. Index Medicus is better remembered today as the forerunner of MEDLINE, but Index Medicus began as the junior partner of what the library saw as its major publication, the Index-Catalogue. However, the Index-Catalogue had been largely overlooked by many medical librarians until 2004, when the National Library of Medicine released IndexCat, the online version of Index-Catalogue. Access to this huge amount of material raised new questions: What was the coverage of the Index-Catalogue? How did it compare and overlap with the Index Medicus? Method: Over 1,000 randomly generated Index Medicus citations were cross-referenced in IndexCat. Results: Inclusion, form, content, authority control, and subject headings were evaluated, revealing that the relationship between the two publications was neither simple nor static through time. In addition, the authors found interesting anomalies that shed light on how medical literature was selected and indexed in “America's greatest contribution to medical knowledge.” PMID:19404501

  10. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion machinery...

  11. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion machinery...

  12. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion machinery...

  13. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion machinery...

  14. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design and construction. (a) The material, design, construction, workmanship, and arrangement of main propulsion machinery...

  15. Focus modulation of cylindrical vector beams by using 1D photonic crystal lens with negative refraction effect.

    PubMed

    Xu, Ji; Zhong, Yi; Wang, Shengming; Lu, Yunqing; Wan, Hongdan; Jiang, Jian; Wang, Jin

    2015-10-19

    Sub-wavelength focusing of cylindrical vector beams (CVBs) has attracted great attention due to the specific physical effects and the applications in many areas. More powerful, flexible and effective ways to modulate the focus transversally and also longitudinally are always being pursued. In this paper, cylindrically symmetric lens composed of negative-index one-dimensional photonic crystal is proposed to make a breakthrough. By revealing the relationship between focal length and the exit surface shape of the lens, a quite simple and effective principle of designing the lens structure is presented to realize specific focus modulation. Plano-concave lenses are parameterized to modulate the focal length and the number of focuses. An axicon constructed by one-dimensional photonic crystal is proposed for the first time to obtain a large depth of focus and an optical needle focal field with almost a theoretical minimum FWHM of 0.362λ is achieved under radially polarized incident light. Because of the almost identical negative refractive index for TE and TM polarization states, all the modulation methods can be applied for any arbitrary polarized CVBs. This work offers a promising methodology for designing negative-index lenses in related application areas.

  16. Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions

    NASA Astrophysics Data System (ADS)

    Henari, F. Z.; Al-Saie, A.

    2006-12-01

    We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10-4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.

  17. A unified statistical approach to non-negative matrix factorization and probabilistic latent semantic indexing

    PubMed Central

    Wang, Guoli; Ebrahimi, Nader

    2014-01-01

    Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H, such that V ∼ W H. It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H. In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data. PMID:25821345

  18. A unified statistical approach to non-negative matrix factorization and probabilistic latent semantic indexing.

    PubMed

    Devarajan, Karthik; Wang, Guoli; Ebrahimi, Nader

    2015-04-01

    Non-negative matrix factorization (NMF) is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into the product of two nonnegative matrices, W and H , such that V ∼ W H . It has been shown to have a parts-based, sparse representation of the data. NMF has been successfully applied in a variety of areas such as natural language processing, neuroscience, information retrieval, image processing, speech recognition and computational biology for the analysis and interpretation of large-scale data. There has also been simultaneous development of a related statistical latent class modeling approach, namely, probabilistic latent semantic indexing (PLSI), for analyzing and interpreting co-occurrence count data arising in natural language processing. In this paper, we present a generalized statistical approach to NMF and PLSI based on Renyi's divergence between two non-negative matrices, stemming from the Poisson likelihood. Our approach unifies various competing models and provides a unique theoretical framework for these methods. We propose a unified algorithm for NMF and provide a rigorous proof of monotonicity of multiplicative updates for W and H . In addition, we generalize the relationship between NMF and PLSI within this framework. We demonstrate the applicability and utility of our approach as well as its superior performance relative to existing methods using real-life and simulated document clustering data.

  19. Focusing light in a bianisotropic slab with negatively refracting materials.

    PubMed

    Liu, Yan; Guenneau, Sebastien; Gralak, Boris; Ramakrishna, S Anantha

    2013-04-03

    We investigate the electromagnetic response of a pair of complementary bianisotropic media, which consist of a medium with positive refractive index (+ε, +μ, +ξ) and a medium with negative refractive index(-ε, -μ, -ξ). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a 1D photonic crystal (PC) consisting of 2n layers of bianisotropic complementary media. Using coordinate transformations, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them into 1D PCs with heterogeneous bianisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shifting parameters, which satisfy a new version of the generalized lens theorem of Pendry and Ramakrishna. This theorem can be derived using Fourier series solutions of the Maxwell-Tellegen equations, or from space-time symmetry arguments. Also of interest are 2D periodic checkerboards consisting of alternating rectangular cells of complementary media which are such that one point source in one cell gives rise to an infinite set of images with an image in every other cell. Such checkerboards can themselves be mapped into a class of 3D corner lenses of complementary bianisotropic media. These theoretical results are illustrated by finite element computations.

  20. A Tunable Laser Source for the Validation of Homogeneous Negative Refractive Index Materials in the Optical Regime

    DTIC Science & Technology

    2012-03-01

    theoretically predicted earlier, and it is based on coexistence of the spin wave ( magnon ) mode with the plasmonic mode, with simultaneous negative...region 27-28 µm. Such behavior is expected, since the spin waves ( magnons ) which are responsible for the maximum are not presented in this specific...the magnon -plasmon resonance in magnetic semiconductors. 22 24 26 28 0.65 0.70 0.75 0.80 0.85 R 22 24 26 28 0.65 0.70 0.75 0.80 0.85 R

  1. State rumination enhances elaborative processing of negative material as evidenced by the late positive potential.

    PubMed

    Lewis, Kimberly L; Taubitz, Lauren E; Duke, Michael W; Steuer, Elizabeth L; Larson, Christine L

    2015-12-01

    Rumination has been shown to increase negative affect and is highly associated with increased duration of depressive episodes. Previous research has shown that enhanced elaborative processing of negative stimuli is often associated with depression and trait rumination. We hypothesized that engaging in rumination would result in sustained elaborative processing of negative information, as measured by late positive potential (LPP) asymmetry, regardless of depression. Participants were experimentally induced to engage in ruminative- or distraction-oriented thoughts and subsequently viewed negative, positive, and neutral images. Our results showed a very specific right-dominant frontal and parietal LPP to negative, but not neutral or positive, pictures in the rumination condition only that was not correlated with any measures of trait rumination or depression symptoms. This suggests that state rumination alone may lead to an enhanced, sustained processing of negative material that is typically associated with depression. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  2. A Bridge for Accelerating Materials by Design

    DOE PAGES

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; ...

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges.more » In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.« less

  3. Structure-Based Design of Functional Amyloid Materials

    DOE PAGES

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; ...

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In amore » second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.« less

  4. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  5. Facet‐Engineered Surface and Interface Design of Photocatalytic Materials

    PubMed Central

    Wang, Lili; Li, Zhengquan

    2016-01-01

    The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398

  6. Chemically Responsive Elastomers Exhibiting Unity-Order Refractive Index Modulation.

    PubMed

    Wu, Di M; Solomon, Michelle L; Naik, Gururaj V; García-Etxarri, Aitzol; Lawrence, Mark; Salleo, Alberto; Dionne, Jennifer A

    2018-02-01

    Chameleons are masters of light, expertly changing their color, pattern, and reflectivity in response to their environment. Engineered materials that share this tunability can be transformative, enabling active camouflage, tunable holograms, and novel colorimetric medical sensors. While progress has been made in creating artificial chameleon skin, existing schemes often require external power, are not continuously tunable, and may prove too stiff or bulky for applications. Here, a chemically tunable, large-area metamaterial is demonstrated that accesses a wide range of colors and refractive indices. An ordered monolayer of nanoresonators is fabricated, then its optical response is dynamically tuned by infiltrating its polymer substrate with solvents. The material shows a strong magnetic response with a dependence on resonator spacing that leads to a highly tunable effective permittivity, permeability, and refractive index spanning negative and positive values. The unity-order index tuning exceeds that of traditional electro-optic and photochromic materials and is robust to cycling, providing a path toward programmable optical elements and responsive light routing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ion optical design of a collinear laser-negative ion beam apparatus.

    PubMed

    Diehl, C; Wendt, K; Lindahl, A O; Andersson, P; Hanstorp, D

    2011-05-01

    An apparatus for photodetachment studies on atomic and molecular negative ions of medium up to heavy mass (M ≃ 500) has been designed and constructed. Laser and ion beams are merged in the apparatus in a collinear geometry and atoms, neutral molecules and negative ions are detected in the forward direction. The ion optical design and the components used to optimize the mass resolution and the transmission through the extended field-free interaction region are described. A 90° sector field magnet with 50 cm bending radius in combination with two slits is used for mass dispersion providing a resolution of M∕ΔM≅800 for molecular ions and M∕ΔM≅400 for atomic ions. The difference in mass resolution for atomic and molecular ions is attributed to different energy distributions of the sputtered ions. With 1 mm slits, transmission from the source through the interaction region to the final ion detector was determined to be about 0.14%.

  8. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity.

    PubMed

    Jansson-Verkasalo, Eira; Eggers, Kurt; Järvenpää, Anu; Suominen, Kalervo; Van den Bergh, Bea; De Nil, Luc; Kujala, Teija

    2014-09-01

    Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are affected in children who stutter (CWS). Participants were 10 CWS, and 12 typically developing children with fluent speech (TDC). Event-related potentials (ERPs) for syllables and syllable changes [consonant, vowel, vowel-duration, frequency (F0), and intensity changes], critical in speech perception and language development of CWS were compared to those of TDC. There were no significant group differences in the amplitudes or latencies of the P1 or N2 responses elicited by the standard stimuli. However, the Mismatch Negativity (MMN) amplitude was significantly smaller in CWS than in TDC. For TDC all deviants of the linguistic multifeature paradigm elicited significant MMN amplitudes, comparable with the results found earlier with the same paradigm in 6-year-old children. In contrast, only the duration change elicited a significant MMN in CWS. The results showed that central auditory speech-sound processing was typical at the level of sound encoding in CWS. In contrast, central speech-sound discrimination, as indexed by the MMN for multiple sound features (both phonetic and prosodic), was atypical in the group of CWS. Findings were linked to existing conceptualizations on stuttering etiology. The reader will be able (a) to describe recent findings on central auditory speech-sound processing in individuals who stutter, (b) to describe the measurement of auditory reception and central auditory speech-sound discrimination, (c) to describe the findings of central auditory speech-sound discrimination, as indexed by the mismatch negativity (MMN), in children who stutter. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Competency Index for Building Trades Programs in Missouri. A Crosswalk of Selected Instructional Materials against Missouri's Competency Profile.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This index was developed to help building trades instructors in Missouri use existing instructional materials and keep track of student progress on the VAMS system. The list was compiled by a committee of instructors who selected appropriate references and identified areas that pertained to Missouri competencies. The index lists competencies in…

  10. Material Compatibility with Space Storable Propellants. Design Guidebook

    NASA Technical Reports Server (NTRS)

    Uney, P. E.; Fester, D. A.

    1972-01-01

    An important consideration in the design of spacecraft for interplanetary missions is the compatibility of storage materials with the propellants. Serious problems can arise because many propellants are either extremely reactive or subject to catalytic decomposition, making the selection of proper materials of construction for propellant containment and control a critical requirement for the long-life applications. To aid in selecting materials and designing and evaluating various propulsion subsystems, available information on the compatibility of spacecraft materials with propellants of interest was compiled from literature searches and personal contacts. The compatibility of both metals and nonmetals with hydrazine, monomethyl hydrazine, nitrated hydrazine, and diborance fuels and nitrogen tetroxide, fluorine, oxygen difluoride, and Flox oxidizers was surveyed. These fuels and oxidizers encompass the wide variety of problems encountered in propellant storage. As such, they present worst case situations of the propellant affecting the material and the material affecting the propellant. This includes material attack, propellant decomposition, and the formation of clogging materials.

  11. Current Materials on Barrier-Free Design. Revised.

    ERIC Educational Resources Information Center

    National Easter Seal Society for Crippled Children and Adults, Chicago, IL.

    An eight-page annotated bibliography contains material available from the National Easter Seal Society and current material available from other sources. The annotations are grouped under design, guides, planning resources, standards/legislation, and general. Ordering information is provided. (MLF)

  12. Saving Material with Systematic Process Designs

    NASA Astrophysics Data System (ADS)

    Kerausch, M.

    2011-08-01

    Global competition is forcing the stamping industry to further increase quality, to shorten time-to-market and to reduce total cost. Continuous balancing between these classical time-cost-quality targets throughout the product development cycle is required to ensure future economical success. In today's industrial practice, die layout standards are typically assumed to implicitly ensure the balancing of company specific time-cost-quality targets. Although die layout standards are a very successful approach, there are two methodical disadvantages. First, the capabilities for tool design have to be continuously adapted to technological innovations; e.g. to take advantage of the full forming capability of new materials. Secondly, the great variety of die design aspects have to be reduced to a generic rule or guideline; e.g. binder shape, draw-in conditions or the use of drawbeads. Therefore, it is important to not overlook cost or quality opportunities when applying die design standards. This paper describes a systematic workflow with focus on minimizing material consumption. The starting point of the investigation is a full process plan for a typical structural part. All requirements are definedaccording to a predefined set of die design standards with industrial relevance are fulfilled. In a first step binder and addendum geometry is systematically checked for material saving potentials. In a second step, blank shape and draw-in are adjusted to meet thinning, wrinkling and springback targets for a minimum blank solution. Finally the identified die layout is validated with respect to production robustness versus splits, wrinkles and springback. For all three steps the applied methodology is based on finite element simulation combined with a stochastical variation of input variables. With the proposed workflow a well-balanced (time-cost-quality) production process assuring minimal material consumption can be achieved.

  13. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2018-01-16

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  14. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  15. Materials for Digital Optical Design:. a Survey Study

    NASA Astrophysics Data System (ADS)

    Ismail, Ayman Abdel Khader; Ismail, Imane Aly Saroit; Ahmed, S. H.

    2010-04-01

    In the last few years digital optical design had major attention in research fields. Many researches were published in the fields of optical materials, instruments, circuit design and devices. This is considered to be the most multidisciplinary field and requires for its success collaborative efforts of many disciplines, ranging from device and optical engineers to computer architects, chemists, material scientists, and optical physicists. In this study we will introduce a survey of the latest papers in the field of optical materials and its properties for light; this paper is organized in three major sections, optical glasses, compound materials and nonlinear absorption (multi photon absorption) and up-conversion.

  16. Predicting fiber refractive index from a measured preform index profile

    NASA Astrophysics Data System (ADS)

    Kiiveri, P.; Koponen, J.; Harra, J.; Novotny, S.; Husu, H.; Ihalainen, H.; Kokki, T.; Aallos, V.; Kimmelma, O.; Paul, J.

    2018-02-01

    When producing fiber lasers and amplifiers, silica glass compositions consisting of three to six different materials are needed. Due to the varying needs of different applications, substantial number of different glass compositions are used in the active fiber structures. Often it is not possible to find material parameters for theoretical models to estimate thermal and mechanical properties of those glass compositions. This makes it challenging to predict accurately fiber core refractive index values, even if the preform index profile is measured. Usually the desired fiber refractive index value is achieved experimentally, which is expensive. To overcome this problem, we analyzed statistically the changes between the measured preform and fiber index values. We searched for correlations that would help to predict the Δn-value change from preform to fiber in a situation where we don't know the values of the glass material parameters that define the change. Our index change models were built using the data collected from preforms and fibers made by the Direct Nanoparticle Deposition (DND) technology.

  17. Battery designs with high capacity anode materials and cathode materials

    DOEpatents

    Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.

    2017-10-03

    Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.

  18. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  19. Designing ECM-mimetic Materials Using Protein Engineering

    PubMed Central

    Cai, Lei; Heilshorn, Sarah C.

    2014-01-01

    The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704

  20. Mechanical Metamaterials with Negative Compressibility Transitions

    NASA Astrophysics Data System (ADS)

    Motter, Adilson

    2015-03-01

    When tensioned, ordinary materials expand along the direction of the applied force. In this presentation, I will explore network concepts to design metamaterials exhibiting negative compressibility transitions, during which the material undergoes contraction when tensioned (or expansion when pressured). Such transitions, which are forbidden in thermodynamic equilibrium, are possible during the decay of metastable, super-strained states. I will introduce a statistical physics theory for negative compressibility transitions, derive a first-principles model to predict these transitions, and present a validation of the model using molecular dynamics simulations. Aside from its immediate mechanical implications, our theory points to a wealth of analogous inverted responses, such as inverted susceptibility or heat-capacity transitions, allowed when considering realistic scales. This research was done in collaboration with Zachary Nicolaou, and was supported by the National Science Foundation and the Alfred P. Sloan Foundation.

  1. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  2. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials.

    PubMed

    Argyropoulos, Christos; Estakhri, Nasim Mohammadi; Monticone, Francesco; Alù, Andrea

    2013-06-17

    The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices.

  3. Estimates of 2012/13 influenza vaccine effectiveness using the case test-negative control design with different influenza negative control groups.

    PubMed

    Nunes, Baltazar; Machado, Ausenda; Guiomar, Raquel; Pechirra, Pedro; Conde, Patrícia; Cristovão, Paula; Falcão, Isabel

    2014-07-31

    In recent years several reports of influenza vaccine effectiveness (VE) have been made early for public health decision. The majority of these studies use the case test-negative control design (TND), which has been showed to provide, under certain conditions, unbiased estimates of influenza VE. Nevertheless, discussions have been taken on the best influenza negative control group to use. The present study aims to contribute to the knowledge on this field by comparing influenza VE estimates using three test-negative controls: all influenza negative, non-influenza respiratory virus and pan-negative. Incident ILI patients were prospectively selected and swabbed by a sample of general practitioners. Cases were ILI patients tested positive for influenza and controls ILI patients tested negative for influenza. The influenza negative control group was divided into non-influenza virus control group and pan-negative control group. Data were collected on vaccination status and confounding factors. Influenza VE was estimated as one minus the odds ratio of been vaccinated in cases versus controls adjusted for confounding effect by logistic regression. Confounder adjusted influenza VE against medically attended laboratory-confirmed influenza was 68.4% (95% CI: 20.7-87.4%) using all influenza negatives controls, 82.1% (95% CI: 47.6-93.9%) using non-influenza controls and 49.4% (95% CI: -44.7% to 82.3%) using pan-negative controls. Influenza VE estimates differed according to the influenza negative control group used. These results are in accordance with the expected under the hypothesis of differential viral interference between influenza vaccinated and unvaccinated individuals. Given the wide importance of TND study further studies should be conducted in order to clarify the observed differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Ureteral Stents. New Materials and Designs

    NASA Astrophysics Data System (ADS)

    Monga, Manoj

    2008-09-01

    Issues of stent migration and challenges of stent placement can be addressed adequately with current stent designs and materials, and an emphasis on precision in technique. Future changes in ureteral stents will need to maintain the current standard that has been set with existing devices in these regards. In contrast, new advances are sorely needed in encrustation and infection associated with ureteral stents. The main target for future development in ureteral stent materials lies in a biodegradable stent that degrades either on demand or degrades reliably within one-month with predictable degradation patterns that do not predispose to urinary obstruction, discomfort or need for secondary procedures. The main target for future development in ureteral stent design is improved patient comfort.

  5. Microwave Nondestructive Evaluation of Dielectric Materials with a Metamaterial Lens

    NASA Technical Reports Server (NTRS)

    Shreiber, Daniel; Gupta, Mool; Cravey, Robin L.

    2008-01-01

    A novel microwave Nondestructive Evaluation (NDE) sensor was developed in an attempt to increase the sensitivity of the microwave NDE method for detection of defects small relative to a wavelength. The sensor was designed on the basis of a negative index material (NIM) lens. Characterization of the lens was performed to determine its resonant frequency, index of refraction, focus spot size, and optimal focusing length (for proper sample location). A sub-wavelength spot size (3 dB) of 0.48 lambda was obtained. The proof of concept for the sensor was achieved when a fiberglass sample with a 3 mm diameter through hole (perpendicular to the propagation direction of the wave) was tested. The hole was successfully detected with an 8.2 cm wavelength electromagnetic wave. This method is able to detect a defect that is 0.037 lambda. This method has certain advantages over other far field and near field microwave NDE methods currently in use.

  6. Photovoltaic module encapsulation design and materials selection, volume 1

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  7. Design Issues for Using Magnetic Materials in Radiation Environments at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2013-01-01

    One of the challenges of designing motors and alternators for use in nuclear powered space missions is accounting for the effects of radiation. Terrestrial reactor power plants use distance and shielding to minimize radiation damage but space missions must economize volume and mass. Past studies have shown that sufficiently high radiation levels can affect the magnetic response of hard and soft magnetic materials. Theoretical models explaining the radiation-induced degradation have been proposed but not verified. This paper reviews the literature and explains the cumulative effects of temperature, magnetic-load, and radiation-level on the magnetic properties of component materials. Magnetic property degradation is very specific to alloy choice and processing history, since magnetic properties are very much entwined with specific chemistry and microstructural features. However, there is basic theoretical as well as supportive experimental evidence that the negative impact to magnetic properties will be minimal if the bulk temperature of the material is less than fifty percent of the Curie temperature, the radiation flux is low, and the demagnetization field is small. Keywords: Magnets, Permanent Magnets, Power Converters, Nuclear Electric Power Generation, Radiation Tolerance.

  8. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2010-01-01

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised. PMID:21258549

  9. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.

    PubMed

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-04

    Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

  10. Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material.

    PubMed

    Cai, Weizhao; Gładysiak, Andrzej; Anioła, Michalina; Smith, Vincent J; Barbour, Leonard J; Katrusiak, Andrzej

    2015-07-29

    A soft porous material [Zn(L)2(OH)2]n·Guest (where L is 4-(1H-naphtho[2,3-d]imidazol-1-yl)benzoate, and Guest is water or methanol) exhibits the strongest ever observed negative area compressibility (NAC), an extremely rare property, as at hydrostatic pressure most materials shrink in all directions and few expand in one direction. This is the first NAC reported in metal-organic frameworks (MOFs), and its magnitude, clearly visible and by far the highest of all known materials, can be reversibly tuned by exchanging guests adsorbed from hydrostatic fluids. This counterintuitive strong NAC of [Zn(L)2(OH)2]n·Guest arises from the interplay of flexible [-Zn-O(H)-]n helices with layers of [-Zn-L-]4 quadrangular puckered rings comprising large channel voids. The compression of helices and flattening of puckered rings combine to give a giant piezo-mechanical response, applicable in ultrasensitive sensors and actuators. The extrinsic NAC response to different hydrostatic fluids is due to varied host-guest interactions affecting the mechanical strain within the range permitted by exceptionally high flexibility of the framework.

  11. Innovation in drought risk management: exploring the potential of weather index insurance

    NASA Astrophysics Data System (ADS)

    Iglesias, E.; Baez, K.

    2012-04-01

    Many family farming and indigenous communities depend on grazing livestock activities and are particularly prone to drought risks. Vulnerability to drought limits the ability of these households to exit poverty and in many cases leads to environmental degradation. It is well known that uninsured exposure exacerbates income inequality in farming systems and eventually results in welfare losses for rural families. The advantages of farmers who have access to financial tools have been widely acknowledged. However, high administrative costs of traditional insurance hinder small farmers' access to risk management tools. One of the main problems in insurance design relates to the lack of quality data to estimate the risk premium. In rural areas where there are no historical records of farm production data on adverse events such as drought. New technologies such as remote sensing help to overcome this problem and generate information from these areas that otherwise would be impossible or too expensive to obtain. In this paper, we use a satellite based vegetation index (NDVI) and develop a stochastic model to analyse the potential of index insurance to address the risk of drought in Chilean grazing lands. Our results suggest that contract design is a key issue to improve the correlation of the index with individual farm losses, thus reducing basis risk. In particular, we find that the definition of homogeneous areas and the selection of the triggering index threshold are critical issues and show the incidence of different contract designs on (i) the probability that the farmer experience losses but does not receive compensation (false negative) and (ii) the probability that the index triggers compensation but the farmer does not experience drought losses (false negative). Both aspects are key issues to offer the farmer an adequate protection against droughts and guarantee the affordability of the risk premium.

  12. European DEMO design strategy and consequences for materials

    NASA Astrophysics Data System (ADS)

    Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.

    2017-09-01

    Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.

  13. Design of embedded system to determine liquid refractive index based on ultrasonic sensor using an ATMega328

    NASA Astrophysics Data System (ADS)

    Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.

    2018-05-01

    The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.

  14. 15 CFR 922.22 - Development of designation materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RESOURCE MANAGEMENT NATIONAL MARINE SANCTUARY PROGRAM REGULATIONS Designation of National Marine Sanctuaries § 922.22 Development of designation materials. (a) In designating a National Marine Sanctuary, the... Sanctuary includes waters within the exclusive economic zone, the Secretary shall notify the appropriate...

  15. CubeSat Material Limits For Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with reentry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with reentry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for reentry survivability analysis tool comparison will be discussed.

  16. CubeSat Material Limits for Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  17. Design of Multifunctional Materials: Chalcogenides and Chalcopyrites

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching Hua; Arnold, Brad; Choa, Fow-Sen

    2017-01-01

    There is a strong need for developing multifunctional materials to reduce the cost of applied material without compromising the performance of the detectors, devices and sensors. The materials design, processing, growth and fabrication of bulk and nanocrystals and fabrication into devices and sensors involve huge cost and resources including a multidisciplinary team of experts. Because of this reason, prediction of multifunctionality of materials before design and development should be evaluated. Chalcogenides and chalcopyrites are a very exciting class of materials for developing multifunctionality. Materials such as Gallium selenide GaSe and zinc selenide ZnSe have been proven to be excellent examples. GaSe is a layered material and very difficult to grow in large crystal. However, it's ternary and quaternary analogs such as thallium gallium selenide TlGaSe2, thallium gallium selenide sulfide TlGaSe2-xSs, thallium arsenic selenide Tl3AsSe3, silver gallium selenide AgGaGe3Se8, AgGaGe5Se12 and several others have shown great promise for multifunctionality. Several of these materials have shown good efficiency for frequency conversion (nonlinear optical NLO), electro-optic modulation, and acousto-optic tunable filters and imagers suitable for the visible, near-infrared wavelength, mid wave infrared (MWIR), long wave infrared (LWIR) and even up to Tera hertz wavelength (THW) regions. In addition, this class of materials have demonstrated low absorption coefficients and power handling capability in the systems. Also, these crystals do not require post growth annealing, show very large transparency range and fabricability.

  18. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  19. Thermal design of composite material high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.

  20. Negative thermal expansion near two structural quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.

    2017-12-01

    Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions. We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of new materials exhibiting negative thermal expansion.

  1. Designing high-performance layered thermoelectric materials through orbital engineering

    PubMed Central

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  2. A Newtonian approach to extraordinarily strong negative refraction.

    PubMed

    Yoon, Hosang; Yeung, Kitty Y M; Umansky, Vladimir; Ham, Donhee

    2012-08-02

    Metamaterials with negative refractive indices can manipulate electromagnetic waves in unusual ways, and can be used to achieve, for example, sub-diffraction-limit focusing, the bending of light in the 'wrong' direction, and reversed Doppler and Cerenkov effects. These counterintuitive and technologically useful behaviours have spurred considerable efforts to synthesize a broad array of negative-index metamaterials with engineered electric, magnetic or optical properties. Here we demonstrate another route to negative refraction by exploiting the inertia of electrons in semiconductor two-dimensional electron gases, collectively accelerated by electromagnetic waves according to Newton's second law of motion, where this acceleration effect manifests as kinetic inductance. Using kinetic inductance to attain negative refraction was theoretically proposed for three-dimensional metallic nanoparticles and seen experimentally with surface plasmons on the surface of a three-dimensional metal. The two-dimensional electron gas that we use at cryogenic temperatures has a larger kinetic inductance than three-dimensional metals, leading to extraordinarily strong negative refraction at gigahertz frequencies, with an index as large as -700. This pronounced negative refractive index and the corresponding reduction in the effective wavelength opens a path to miniaturization in the science and technology of negative refraction.

  3. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitarin, G., E-mail: chitarin@igi.cnr.it; University of Padova, Dept. of Management and Engineering, Strad. S. Nicola 3, 36100 Vicenza; Agostinetti, P.

    2015-04-08

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids withinmore » tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids.« less

  4. Indexes of severity: conceptual development.

    PubMed Central

    Krischer, J P

    1979-01-01

    A discussion of severity index development is presented in relation to conceptual issues in index definition, analytic issues in index formulation and validation issues in index application. The CHOP index is discussed along with six severity indexes described in an earlier paper dealing with underlying concepts to illustrate the material presented. Replies are provided to specific questions raised in an accompanying paper discussing the Injury Severity Score. This conceptual material is presented to provide a foundation for severity index development, to suggest criteria to be used in their formulation and testing, and to identify analyses that can lead to the successful selection and application of an index for a defined purpose. PMID:468553

  5. Technology update: Tethered aerostat structural design and material developments

    NASA Technical Reports Server (NTRS)

    Witherow, R. G.

    1975-01-01

    Requirements exist for an extremely stable, high performance, all-weather tethered aerostat system. This requirement has been satisfied by a 250,000 cubic foot captive buoyant vehicle as demonstrated by over a year of successful field operations. This achievement required significant advancements in several technology areas including composite materials design, aerostatics and aerodynamics, structural design, electro-mechanical design, vehicle fabrication and mooring operations. This paper specifically addresses the materials and structural design aspects of pressurized buoyant vehicles as related to the general class of Lighter Than Air vehicles.

  6. 43 CFR 2.5 - Does DOI maintain an index of its reading room materials?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Does DOI maintain an index of its reading room materials? 2.5 Section 2.5 Public Lands: Interior Office of the Secretary of the Interior RECORDS AND TESTIMONY; FREEDOM OF INFORMATION ACT Information Routinely Available to the Public without Filing a FOIA Request § 2.5 Does DOI maintain an...

  7. 43 CFR 2.5 - Does DOI maintain an index of its reading room materials?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Does DOI maintain an index of its reading room materials? 2.5 Section 2.5 Public Lands: Interior Office of the Secretary of the Interior RECORDS AND TESTIMONY; FREEDOM OF INFORMATION ACT Information Routinely Available to the Public without Filing a FOIA Request § 2.5 Does DOI maintain an...

  8. VIEWCACHE: An incremental pointer-base access method for distributed databases. Part 1: The universal index system design document. Part 2: The universal index system low-level design document. Part 3: User's guide. Part 4: Reference manual. Part 5: UIMS test suite

    NASA Technical Reports Server (NTRS)

    Kelley, Steve; Roussopoulos, Nick; Sellis, Timos

    1992-01-01

    The goal of the Universal Index System (UIS), is to provide an easy-to-use and reliable interface to many different kinds of database systems. The impetus for this system was to simplify database index management for users, thus encouraging the use of indexes. As the idea grew into an actual system design, the concept of increasing database performance by facilitating the use of time-saving techniques at the user level became a theme for the project. This Final Report describes the Design, the Implementation of UIS, and its Language Interfaces. It also includes the User's Guide and the Reference Manual.

  9. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials.

    PubMed

    Long, Conglai; Wei, Tong; Yan, Jun; Jiang, Lili; Fan, Zhuangjun

    2013-12-23

    We report a facile strategy to prepare iron nanosheets directly grown on graphene sheets nanocomposite (C-PGF) through the carbonization of iron ions adsorbed onto polyaniline nanosheet/graphene oxide hybrid material. Because of the synergistic effect of iron nanosheets and graphene sheets, the as-obtained C-PGF exhibits an ultrahigh capacitance of ca. 720 F g(-1) in 6 M KOH aqueous solution. Additionally, the assembled asymmetric supercapacitor (C-PGF//Ni(OH)2/CNTs) delivers a remarkable high power density and a noticeable ultrahigh energy density of ca. 140 Wh kg(-1) (based on the total mass of active materials) and an acceptable cycling performance of 78% retention after 2000 cycles. Therefore, the designed supercapacitors with high energy density, comparable to rechargeable lithium-ion batteries (LIBs), offer an important guideline for future design of advanced next-generation supercapacitors for both industrial and consumer applications.

  10. A "Layers of Negotiation" Model for Designing Constructivist Learning Materials.

    ERIC Educational Resources Information Center

    Cennamo, Katherine S.; And Others

    In designing materials for use in a contructivist learning environment, instructional designers still have a role in selecting the situations that may provide a stimulus for knowledge construction and providing features that support students and teachers in using these materials. This paper describes the process of designing a series of case-based…

  11. Time for pulse traversal through slabs of dispersive and negative ({epsilon}, {mu}) materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanda, Lipsa; Ramakrishna, S. Anantha

    2007-12-15

    The traversal times for an electromagnetic pulse traversing a slab of dispersive and dissipative material with negative dielectric permittivity ({epsilon}) and magnetic permeability ({mu}) have been calculated by using the average flow of electromagnetic energy in the medium. The effects of bandwidth of the pulse and dissipation in the medium have been investigated. While both large bandwidth and large dissipation have similar effects in smoothening out the resonant features that appear due to Fabry-Perot resonances, large dissipation can result in very small or even negative traversal times near the resonant frequencies. We have also investigated the traversal times and Wignermore » delay times for obliquely incident pulses and evanescent pulses. The coupling to slab plasmon-polariton modes in frequency ranges with negative {epsilon} or {mu} is shown to result in large traversal times at the resonant conditions. We also find that the group velocity mainly contributes to the delay times for pulses propagating across a slab with n=-1. We have checked that the traversal times are positive and subluminal for pulses with sufficiently large bandwidths.« less

  12. Taxonomic indexing--extending the role of taxonomy.

    PubMed

    Patterson, David J; Remsen, David; Marino, William A; Norton, Cathy

    2006-06-01

    Taxonomic indexing refers to a new array of taxonomically intelligent network services that use nomenclatural principles and elements of expert taxonomic knowledge to manage information about organisms. Taxonomic indexing was introduced to help manage the increasing amounts of digital information about biology. It has been designed to form a near basal layer in a layered cyberinfrastructure that deals with biological information. Taxonomic Indexing accommodates the special problems of using names of organisms to index biological material. It links alternative names for the same entity (reconciliation), and distinguishes between uses of the same name for different entities (disambiguation), and names are placed within an indefinite number of hierarchical schemes. In order to access all information on all organisms, Taxonomic indexing must be able to call on a registry of all names in all forms for all organisms. NameBank has been developed to meet that need. Taxonomic indexing is an area of informatics that overlaps with taxonomy, is dependent on the expert input of taxonomists, and reveals the relevance of the discipline to a wide audience.

  13. Local Material as a Character of Contemporary Interior Design in Indonesia

    NASA Astrophysics Data System (ADS)

    Susanto, Dalhar; Puti Angelia, Dini; Ningsih, Tria Amalia

    2017-12-01

    Excellent design needs to fulfill universal requirements (utility, aesthetic, ergonomic, durability, and safe). Besides of all the requirements, an excellent design has to be shown its distinctiveness, uniqueness, and identity. To create an excellent design, we can use one of locality approach, it means local material utilization. From time to time, the material is linking each other in unity with environment context, human, knowledge, culture, social, economy, user needs and material availability. The aspects are the important part to get the reflective identity and local values in architecture and interior design work in Indonesia. It can be proofed by some of the architecture and interior work precedent, like traditional or vernacular in Nusantara or contemporary interior design work from Indonesian designer who has recognized to promote the locality value. However interior design works in Indonesia cannot be shown the characteristic of Indonesia identity and locality currently, it is different than another country work, like Japan, Italy, or Scandinavia. Interior design work from these countries can be easily known with accentuating of characteristic their places, such as material, color, detail, or geometry pattern in the product that has been produced. Meanwhile, some of the region in Indonesia are tropical climate and brought about much of local material and it has potential to make a unique work which has the local identity. This paper will discuss the result of a searching potential of local material usefulness as interior design identity in Indonesia. This research is done by typology method, which means discover the presence of some of the architecture elements appears to be related material. The elements are the pattern, color, craftsmanship, building element, object, and type of material in some of the contemporary interior design work in Indonesia were considered superior and capable of lifting elements recognized locality.

  14. The Effect of Body Mass Index, Negative Affect, and Disordered Eating on Health-Related Quality of Life in Preadolescent Youth.

    PubMed

    Mitchell, Tarrah B; Steele, Ric G

    2016-08-01

    To examine the indirect effect of body mass index z-score (BMIz) on health-related quality of life (HRQOL) through disordered eating attitudes and behaviors in a community sample of preadolescent children, and the degree to which negative affect moderated the association between BMIz and disordered eating attitudes and behaviors. Participants included 165 children between 8 and 12 years of age (M = 9.41). HRQOL, disordered eating attitudes and behaviors, and negative affect were assessed using self-report measures. Height and weight were collected by research staff. Consistent with previous research in treatment-seeking and adolescent samples, the indirect effect of BMIz on HRQOL through disordered eating attitudes and behaviors was significant. Negative affect did not moderate the relationship between BMIz and disordered eating attitudes and behaviors. Intervening on disordered eating attitudes and behaviors in preadolescents with higher weight status is critical to prevent the risk for poor HRQOL. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    NASA Astrophysics Data System (ADS)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  16. Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material.

    PubMed

    Dalarsson, Mariana; Tassin, Philippe

    2009-04-13

    We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results obtained by accurate numerical simulations. Our model straightforwardly allows for arbitrary spectral dispersion.

  17. Tunability of temperature dependent THz photonic band gaps in 1-D photonic crystals composed of graded index materials and semiconductor InSb

    NASA Astrophysics Data System (ADS)

    Singh, Bipin K.; Pandey, Praveen C.; Rastogi, Vipul

    2018-05-01

    Tunable temperature dependent terahertz photonic band gaps (PBGs) in one-dimensional (1-D) photonic crystal composed of alternating layers of graded index and semiconductor materials are demonstrated. Results show the influence of temperature, geometrical parameters, grading profile and material damping factor on the PBGs. Number of PBG increases with increasing the layer thickness and their bandwidth can be tuned with external temperature and grading parameters. Lower order band gap is more sensitive to the temperature which shows increasing trend with temperature, and higher order PBGs can also be tuned by controlling the external temperature. Band edges of PBGs are shifted toward higher frequency side with increasing the temperature. Results show that the operational frequencies of PBGs are unaffected when loss involved. This work enables to design tunable Temperature dependent terahertz photonic devices such as reflectors, sensors and filters etc.

  18. Competencies for Materials Design and Production Specialists.

    ERIC Educational Resources Information Center

    Instructional Innovator, 1980

    1980-01-01

    Lists proposed competencies to be used in a certification program for material design and production professionals. Six production areas are presented, within which skill must be demonstrated in at least one, as well as activities to be performed in the areas of communication problems, message design, and media production facility administration.…

  19. Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model.

    PubMed

    Nuccetelli, C; Risica, S; D'Alessandro, M; Trevisi, R

    2012-09-01

    Using a wide database collected in the last 10 years, the authors have calculated the activity concentration index I for many building materials in the European Union. Suggested by a European technical guidance document, the index I has recently been adopted as a screening tool in the proposal for the new Euratom basic safety standards directive. The paper analyses the possible implications of the choice of different parameters for the computation of index I, i.e. background to be subtracted, dose criteria, etc. With the collected data an independent assessment of gamma doses was also made with an ISS room model, choosing reasonable hypotheses on the use of materials. The results of the two approaches, i.e. index I and a room model, were compared.

  20. Computational Materials Program for Alloy Design

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  1. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  2. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  3. Structured Light-Matter Interactions Enabled By Novel Photonic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litchinitser, Natalia; Feng, Liang

    The synergy of complex materials and complex light is expected to add a new dimension to the science of light and its applications [1]. The goal of this program is to investigate novel phenomena emerging at the interface of these two branches of modern optics. While metamaterials research was largely focused on relatively “simple” linearly or circularly polarized light propagation in “complex” nanostructured, carefully designed materials with properties not found in nature, many singular optics studies addressed “complex” structured light transmission in “simple” homogeneous, isotropic, nondispersive transparent media, where both spin and orbital angular momentum are independently conserved. However, ifmore » both light and medium are complex so that structured light interacts with a metamaterial whose optical materials properties can be designed at will, the spin or angular momentum can change, which leads to spin-orbit interaction and many novel optical phenomena that will be studied in the proposed project. Indeed, metamaterials enable unprecedented control over light propagation, opening new avenues for using spin and quantum optical phenomena, and design flexibility facilitating new linear and nonlinear optical properties and functionalities, including negative index of refraction, magnetism at optical frequencies, giant optical activity, subwavelength imaging, cloaking, dispersion engineering, and unique phase-matching conditions for nonlinear optical interactions. In this research program we focused on structured light-matter interactions in complex media with three particularly remarkable properties that were enabled only with the emergence of metamaterials: extreme anisotropy, extreme material parameters, and magneto-electric coupling–bi-anisotropy and chirality.« less

  4. Influenza vaccine effectiveness by test-negative design - Comparison of inpatient and outpatient settings.

    PubMed

    Feng, Shuo; Cowling, Benjamin J; Sullivan, Sheena G

    2016-03-29

    Observational studies of influenza vaccine effectiveness (VE) are increasingly using the test-negative design. Studies are typically based in outpatient or inpatient settings, but these two approaches are rarely compared directly. The aim of our study was to assess whether influenza VE estimates differ between inpatient and outpatient settings. We searched the literature from Medline, PubMed and Web of Science using a combination of keywords to identify published studies of influenza VE using the test-negative design. Studies assessing any type of influenza vaccine among any population in any setting were considered, while interim studies or re-analyses were excluded. Retrieved articles were reviewed, screened and categorized based on study setting, location and influenza season. We searched for parallel studies in inpatient and outpatient settings that were done in the same influenza season, in the same location, and in the same or similar age groups. For each of the pairs identified, we estimated the difference in VE estimates between settings, and we tested whether the average difference was significant using a paired t-test. In total 25 pairs of estimates were identified that permitted comparisons between VE estimates in inpatient and outpatient study settings. Within pairs, the prevalence of influenza was generally higher among patients enrolled in the outpatient studies, while influenza vaccination coverage among the test-negative control groups was generally higher in the inpatient studies. There was no heterogeneity in the paired differences in VE, and the pooled difference in VE between inpatient and outpatient studies was -2% (95% confidence interval: -12%, 10%). We found no differences in VE estimates between inpatient and outpatient settings by studies using the test-negative design. Further research involving direct comparisons of VE estimates from the two settings in the same populations and years would be valuable. Copyright © 2016 Elsevier Ltd. All

  5. The ATLAS EventIndex: architecture, design choices, deployment and first operation experience

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Cranshaw, J.; Favareto, A.; Fernández Casaní, Á.; Gallas, E. J.; Glasman, C.; González de la Hoz, S.; Hřivnáč, J.; Malon, D.; Prokoshin, F.; Salt Cairols, J.; Sánchez, J.; Többicke, R.; Yuan, R.

    2015-12-01

    The EventIndex is the complete catalogue of all ATLAS events, keeping the references to all files that contain a given event in any processing stage. It replaces the TAG database, which had been in use during LHC Run 1. For each event it contains its identifiers, the trigger pattern and the GUIDs of the files containing it. Major use cases are event picking, feeding the Event Service used on some production sites, and technical checks of the completion and consistency of processing campaigns. The system design is highly modular so that its components (data collection system, storage system based on Hadoop, query web service and interfaces to other ATLAS systems) could be developed separately and in parallel during LSI. The EventIndex is in operation for the start of LHC Run 2. This paper describes the high-level system architecture, the technical design choices and the deployment process and issues. The performance of the data collection and storage systems, as well as the query services, are also reported.

  6. Semi automatic indexing of PostScript files using Medical Text Indexer in medical education.

    PubMed

    Mollah, Shamim Ara; Cimino, Christopher

    2007-10-11

    At Albert Einstein College of Medicine a large part of online lecture materials contain PostScript files. As the collection grows it becomes essential to create a digital library to have easy access to relevant sections of the lecture material that is full-text indexed; to create this index it is necessary to extract all the text from the document files that constitute the originals of the lectures. In this study we present a semi automatic indexing method using robust technique for extracting text from PostScript files and National Library of Medicine's Medical Text Indexer (MTI) program for indexing the text. This model can be applied to other medical schools for indexing purposes.

  7. Design of a cavity ring-down spectroscopy diagnostic for negative ion rf source SPIDER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualotto, R.; Alfier, A.; Lotto, L.

    2010-10-15

    The rf source test facility SPIDER will test and optimize the source of the 1 MV neutral beam injection systems for ITER. Cavity ring-down spectroscopy (CRDS) will measure the absolute line-of-sight integrated density of negative (H{sup -} and D{sup -}) ions, produced in the extraction region of the source. CRDS takes advantage of the photodetachment process: negative ions are converted to neutral hydrogen atoms by electron stripping through absorption of a photon from a laser. The design of this diagnostic is presented with the corresponding simulation of the expected performance. A prototype operated without plasma has provided CRDS reference signals,more » design validation, and results concerning the signal-to-noise ratio.« less

  8. Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing.

    PubMed

    Chen, Tian; Mueller, Jochen; Shea, Kristina

    2017-03-31

    Multi-material 3D printing has created new opportunities for fabricating deployable structures. We design reversible, deployable structures that are fabricated flat, have defined load bearing capacity, and multiple, predictable activated geometries. These structures are designed with a hierarchical framework where the proposed bistable actuator serves as the base building block. The actuator is designed to maximise its stroke length, with the expansion ratio approaching one when serially connected. The activation force of the actuator is parameterised through its joint material and joint length. Simulation and experimental results show that the bistability triggering force can be tuned between 0.5 and 5.0 N. Incorporating this bistable actuator, the first group of hierarchical designs demonstrate the deployment of space frame structures with a tetrahedron module consisting of three active edges, each containing four serially connected actuators. The second group shows the design of flat structures that assume either positive or negative Gaussian curvature once activated. By flipping the initial configuration of the unit actuators, structures such as a dome and an enclosure are demonstrated. A modified Dynamic Relaxation method is used to simulate all possible geometries of the hierarchical structures. Measured geometries differ by less than 5% compared to simulation results.

  9. Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically with Multi-Material 3D Printing

    PubMed Central

    Chen, Tian; Mueller, Jochen; Shea, Kristina

    2017-01-01

    Multi-material 3D printing has created new opportunities for fabricating deployable structures. We design reversible, deployable structures that are fabricated flat, have defined load bearing capacity, and multiple, predictable activated geometries. These structures are designed with a hierarchical framework where the proposed bistable actuator serves as the base building block. The actuator is designed to maximise its stroke length, with the expansion ratio approaching one when serially connected. The activation force of the actuator is parameterised through its joint material and joint length. Simulation and experimental results show that the bistability triggering force can be tuned between 0.5 and 5.0 N. Incorporating this bistable actuator, the first group of hierarchical designs demonstrate the deployment of space frame structures with a tetrahedron module consisting of three active edges, each containing four serially connected actuators. The second group shows the design of flat structures that assume either positive or negative Gaussian curvature once activated. By flipping the initial configuration of the unit actuators, structures such as a dome and an enclosure are demonstrated. A modified Dynamic Relaxation method is used to simulate all possible geometries of the hierarchical structures. Measured geometries differ by less than 5% compared to simulation results. PMID:28361891

  10. How time delay and network design shape response patterns in biochemical negative feedback systems.

    PubMed

    Börsch, Anastasiya; Schaber, Jörg

    2016-08-24

    Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.

  11. Photonic metamaterials: a new class of materials for manipulating light waves

    PubMed Central

    Iwanaga, Masanobu

    2012-01-01

    A decade of research on metamaterials (MMs) has yielded great progress in artificial electromagnetic materials in a wide frequency range from microwave to optical frequencies. This review outlines the achievements in photonic MMs that can efficiently manipulate light waves from near-ultraviolet to near-infrared in subwavelength dimensions. One of the key concepts of MMs is effective refractive index, realizing values that have not been obtained in ordinary solid materials. In addition to the high and low refractive indices, negative refractive indices have been reported in some photonic MMs. In anisotropic photonic MMs of high-contrast refractive indices, the polarization and phase of plane light waves were efficiently transformed in a well-designed manner, enabling remarkable miniaturization of linear optical devices such as polarizers, wave plates and circular dichroic devices. Another feature of photonic MMs is the possibility of unusual light propagation, paving the way for a new subfield of transfer optics. MM lenses having super-resolution and cloaking effects were introduced by exploiting novel light-propagating modes. Here, we present a new approach to describing photonic MMs definitely by resolving the electromagnetic eigenmodes. Two representative photonic MMs are addressed: the so-called fishnet MM slabs, which are known to have effective negative refractive index, and a three-dimensional MM based on a multilayer of a metal and an insulator. In these photonic MMs, we elucidate the underlying eigenmodes that induce unusual light propagations. Based on the progress of photonic MMs, the future potential and direction are discussed. PMID:27877512

  12. Competency Index for Air Conditioning and Refrigeration Programs in Missouri. A Crosswalk of Selected Instructional Materials against Missouri's Competency Profile.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This index was developed to help air conditioning and refrigeration instructors in Missouri use existing instructional materials and keep track of student progress on the VAMS system. The list was compiled by a committee of instructors who selected appropriate references and identified areas that pertained to Missouri competencies. The index lists…

  13. Segmented molecular design of self-healing proteinaceous materials

    PubMed Central

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  14. Segmented molecular design of self-healing proteinaceous materials

    NASA Astrophysics Data System (ADS)

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  15. Segmented molecular design of self-healing proteinaceous materials.

    PubMed

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  16. Wave propagation in and around negative-dielectric-constant discharge plasma

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu; Iwai, Akinori; Omura, Yoshiharu; Iio, Satoshi; Naito, Teruki

    2018-03-01

    The modes of wave propagation in media with a negative dielectric constant are not simple, unlike those for electromagnetic waves in media with a positive dielectric constant (where modes propagate inside the media with positive phase velocity since the refractive index is usually positive). Instead, they depend on the permeability sign, either positive or negative, and exhibit completely different features. In this report, we investigated a wave confined on the surface of a negative-dielectric-constant and a positive-permeability plasma medium for which the refractive index is imaginary. The propagation mode is similar to surface plasmon polaritons on the metal containing free electrons, but its frequency band is different due to the significant spatial gradient of the dielectric constant and a different pressure term. We also studied a wave with a negative dielectric constant and negative permeability, where the refractive index is negative. This wave can propagate inside the media, but its phase velocity is negative. It also shares similar qualities with waves in plasmonic devices with negative permeability in the photon range.

  17. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  18. Cultivating Design Thinking in Students through Material Inquiry

    ERIC Educational Resources Information Center

    Renard, Helene

    2014-01-01

    Design thinking is a way of understanding and engaging with the world that has received much attention in academic and business circles in recent years. This article examines a hands-on learning model as a vehicle for developing design thinking capacity in students. An overview of design thinking grounds the discussion of the material-based…

  19. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.

    2016-10-01

    Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.

  20. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance

    PubMed Central

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-01-01

    Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials. PMID:29642555

  1. A Novel Design Framework for Structures/Materials with Enhanced Mechanical Performance.

    PubMed

    Liu, Jie; Fan, Xiaonan; Wen, Guilin; Qing, Qixiang; Wang, Hongxin; Zhao, Gang

    2018-04-09

    Abstract : Structure/material requires simultaneous consideration of both its design and manufacturing processes to dramatically enhance its manufacturability, assembly and maintainability. In this work, a novel design framework for structural/material with a desired mechanical performance and compelling topological design properties achieved using origami techniques is presented. The framework comprises four procedures, including topological design, unfold, reduction manufacturing, and fold. The topological design method, i.e., the solid isotropic material penalization (SIMP) method, serves to optimize the structure in order to achieve the preferred mechanical characteristics, and the origami technique is exploited to allow the structure to be rapidly and easily fabricated. Topological design and unfold procedures can be conveniently completed in a computer; then, reduction manufacturing, i.e., cutting, is performed to remove materials from the unfolded flat plate; the final structure is obtained by folding out the plate from the previous procedure. A series of cantilevers, consisting of origami parallel creases and Miura-ori (usually regarded as a metamaterial) and made of paperboard, are designed with the least weight and the required stiffness by using the proposed framework. The findings here furnish an alternative design framework for engineering structures that could be better than the 3D-printing technique, especially for large structures made of thin metal materials.

  2. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials.more » Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.« less

  3. Theoretical and experimental investigation of architected core materials incorporating negative stiffness elements

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Keefe, Andrew; Carter, William B.; Henry, Christopher P.; McKnight, Geoff P.

    2014-04-01

    Structural assemblies incorporating negative stiffness elements have been shown to provide both tunable damping properties and simultaneous high stiffness and damping over prescribed displacement regions. In this paper we explore the design space for negative stiffness based assemblies using analytical modeling combined with finite element analysis. A simplified spring model demonstrates the effects of element stiffness, geometry, and preloads on the damping and stiffness performance. Simplified analytical models were validated for realistic structural implementations through finite element analysis. A series of complementary experiments was conducted to compare with modeling and determine the effects of each element on the system response. The measured damping performance follows the theoretical predictions obtained by analytical modeling. We applied these concepts to a novel sandwich core structure that exhibited combined stiffness and damping properties 8 times greater than existing foam core technologies.

  4. Design and experimental verification of a water-like pentamode material

    NASA Astrophysics Data System (ADS)

    Zhao, Aiguo; Zhao, Zhigao; Zhang, Xiangdong; Cai, Xuan; Wang, Lei; Wu, Tao; Chen, Hong

    2017-01-01

    Pentamode materials approximate tailorable artificial liquids. Recently, microscopic versions of these intricate structures have been fabricated, and the static mechanical experiments reveal that the ratio of bulk modulus to shear modulus as large as 1000 can be obtained. However, no direct acoustic experimental characterizations have been reported yet. In this paper, a water-like two-dimensional pentamode material sample is designed and fabricated with a single metallic material, which is a hollow metallic foam-like structure at centimeter scale. Acoustic simulation and experimental testing results indicate that the designed pentamode material mimics water in acoustic properties over a wide frequency range, i.e., it exhibits transparency when surrounded by water. This work contributes to the development of microstructural design of materials with specific modulus and density distribution, thus paving the way for the physical realization of special acoustic devices such as metamaterial lenses and vibration isolation.

  5. Designing Web-Based Educative Curriculum Materials for the Social Studies

    ERIC Educational Resources Information Center

    Callahan, Cory; Saye, John; Brush, Thomas

    2013-01-01

    This paper reports on a design experiment of web-based curriculum materials explicitly created to help social studies teachers develop their professional teaching knowledge. Web-based social studies curriculum reform efforts, human-centered interface design, and investigations into educative curriculum materials are reviewed, as well as…

  6. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  7. Development of manufacturing systems for nanocrystalline and ultra-fine grain materials employing indexing equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hester, Michael Wayne

    Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece

  8. A design pathfinder with material correlation points for inflatable systems

    NASA Astrophysics Data System (ADS)

    Fulcher, Jared Terrell

    The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the

  9. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangbo; Chen, Yanyu; Li, Tiantian

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  10. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE PAGES

    Li, Yangbo; Chen, Yanyu; Li, Tiantian; ...

    2018-02-02

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  11. Contextual Risk, Maternal Negative Emotionality, and the Negative Emotion Dysregulation of Preschool Children from Economically Disadvantaged Families

    ERIC Educational Resources Information Center

    Brown, Eleanor D.; Ackerman, Brian P.

    2011-01-01

    Research Findings: This study examined relations between contextual risk, maternal negative emotionality, and preschool teacher reports of the negative emotion dysregulation of children from economically disadvantaged families. Contextual risk was represented by cumulative indexes of family and neighborhood adversity. The results showed a direct…

  12. Tunable and Reconfigurable Optical Negative-Index Materials with Low Losses

    DTIC Science & Technology

    2012-01-21

    to study metric signature transitions and the cosmological “Big Bang”. • A theory for basic nonlinear optical processes in NIMs and in double...h-MMs) can be used to study metric signature transitions and the cosmological “Big Bang”. • A theory for basic nonlinear optical processes in NIMs

  13. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  14. 46 CFR 160.076-17 - Approval of design or material changes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... approval before changing PFD production methods. (b) Determinations of equivalence of design, construction... 46 Shipping 6 2010-10-01 2010-10-01 false Approval of design or material changes. 160.076-17... Flotation Devices § 160.076-17 Approval of design or material changes. (a) The manufacturer must submit any...

  15. Computational materials design of attractive Fermion system with large negative effective Ueff in the hole-doped Delafossite of CuAlO2, AgAlO2 and AuAlO2: Charge-excitation induced Ueff < 0

    NASA Astrophysics Data System (ADS)

    Nakanishi, A.; Fukushima, T.; Uede, H.; Katayama-Yoshida, H.

    2015-12-01

    On the basis of general design rules for negative effective U(Ueff) systems by controlling purely-electronic and attractive Fermion mechanisms, we perform computational materials design (CMD®) for the negative Ueff system in hole-doped two-dimensional (2D) Delafossite CuAlO2, AgAlO2 and AuAlO2 by ab initio calculations with local density approximation (LDA) and self-interaction corrected-LDA (SIC-LDA). It is found that the large negative Ueff in the hole-doped attractive Fermion systems for CuAlO2 (UeffLDA = - 4.53 eV and UeffSIC-LDA = - 4.20 eV), AgAlO2 (UeffLDA = - 4.88 eV and UeffSIC-LDA = - 4.55 eV) and AuAlO2 (UeffLDA = - 4.14 eV and UeffSIC-LDA = - 3.55 eV). These values are 10 times larger than that in hole-doped three-dimensional (3D) CuFeS2 (Ueff = - 0.44 eV). For future calculations of Tc and phase diagram by quantum Monte Carlo simulations, we propose the negative Ueff Hubbard model with the anti-bonding single π-band model for CuAlO2, AgAlO2 and AuAlO2 using the mapped parameters obtained from ab initio electronic structure calculations. Based on the theory of negative Ueff Hubbard model (Noziéres and Schmitt-Rink, 1985), we discuss |Ueff| dependence of superconducting critical temperature (Tc) in the 2D Delafossite of CuAlO2, AgAlO2 and AuAlO2 and 3D Chalcopyrite of CuFeS2, which shows the interesting chemical trend, i.e., Tc increases exponentially (Tc ∝ exp [ - 1 / | Ueff | ]) in the weak coupling regime | Ueff(- 0.44 eV) | < W(∼ 2 eV) (where W is the band width of the negative Ueff Hubbard model) for the hole-doped CuFeS2, and then Tc goes through a maximum when | Ueff(- 4.88 eV , - 4.14 eV) | ∼ W(2.8 eV , 3.5 eV) for the hole-doped AgAlO2 and AuAlO2, and finally Tc decreases with increasing |Ueff| in the strong coupling regime, where | Ueff(- 4.53 eV) | > W(1.7 eV) , for the hole-doped CuAlO2.

  16. Near-infrared left-handed metamaterials made of arrays of upright split-ring pairs

    NASA Astrophysics Data System (ADS)

    Chan, Hsun-Chi; Sun, Shulin; Guo, Guang-Yu

    2018-07-01

    Electromagnetic metamaterials are man-made structures that have novel properties such as a negative refraction index, not attainable in naturally occurring materials. Although negative index materials (NIMs) in microwave frequencies were demonstrated in 2001, it is still challenging to design NIMs for optical frequencies especially those with both negative permittivity and negative permeability (known as left-handed metamaterials (LHMs)). Here, by going beyond the traditional concept of the combination of artificial electronic and magnetic meta-atoms to design NIMs, we propose a novel LHM composed of an array of upright split-ring pairs working in the near-infrared region. Our electromagnetic simulations reveal the underlying mechanism that the coupling of the two rings can stimulate simultaneously both the electric and magnetic resonances. The proposed structure has a highest refractive index of  ‑2, a highest figure of merit of 21, good air-matched impedance and 180 nm double negative bandwidth, which excel the performances of many previous proposals. We also numerically demonstrate the negative refraction of this metamaterial in both the single-layer form and wedge-shaped lens.

  17. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  18. Design and Application of Drought Indexes in Highly Regulated Mediterranean Water Systems

    NASA Astrophysics Data System (ADS)

    Castelletti, A.; Zaniolo, M.; Giuliani, M.

    2017-12-01

    Costs of drought are progressively increasing due to the undergoing alteration of hydro-meteorological regimes induced by climate change. Although drought management is largely studied in the literature, most of the traditional drought indexes fail in detecting critical events in highly regulated systems, which generally rely on ad-hoc formulations and cannot be generalized to different context. In this study, we contribute a novel framework for the design of a basin-customized drought index. This index represents a surrogate of the state of the basin and is computed by combining the available information about the water available in the system to reproduce a representative target variable for the drought condition of the basin (e.g., water deficit). To select the relevant variables and combinatione thereof, we use an advanced feature extraction algorithm called Wrapper for Quasi Equally Informative Subset Selection (W-QEISS). W-QEISS relies on a multi-objective evolutionary algorithm to find Pareto-efficient subsets of variables by maximizing the wrapper accuracy, minimizing the number of selected variables, and optimizing relevance and redundancy of the subset. The accuracy objective is evaluated trough the calibration of an extreme learning machine of the water deficit for each candidate subset of variables, with the index selected from the resulting solutions identifying a suitable compromise between accuracy, cardinality, relevance, and redundancy. The approach is tested on Lake Como, Italy, a regulated lake mainly operated for irrigation supply. In the absence of an institutional drought monitoring system, we constructed the combined index using all the hydrological variables from the existing monitoring system as well as common drought indicators at multiple time aggregations. The soil moisture deficit in the root zone computed by a distributed-parameter water balance model of the agricultural districts is used as target variable. Numerical results show that

  19. Formation of bulk refractive index structures

    DOEpatents

    Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.

    2003-07-15

    A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.

  20. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  1. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera.

    PubMed

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  2. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera

    NASA Astrophysics Data System (ADS)

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  3. Composite material hollow antiresonant fibers.

    PubMed

    Belardi, Walter; De Lucia, Francesco; Poletti, Francesco; Sazio, Pier J

    2017-07-01

    We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization and characterization of a composite silicon/glass-based hollow antiresonant fiber.

  4. Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.

    2018-03-01

    This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.

  5. Optimal shielding design for minimum materials cost or mass

    DOE PAGES

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  6. Microbial fuel cells: recent developments in design and materials

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Venu, V.; Renganathan, S.

    2018-03-01

    Microbial Fuel Cells (MFCs) are the promising devices which can produce electricity by anaerobic fermentation of organic / inorganic matter from easily metabolized biomass to complex wastewater using microbes as biocatalysts. MFC technology has been found as a potential technology for electricity generation and concomitant wastewater treatment. However, the high cost of the components and low efficiency are barricading the commercialization of MFC when compared with other energy generating systems. The performance of an MFC is largely relying on the reactor design and electrode materials. On the way to improve the efficiency of an MFC, tremendous exercises have been carried out to explore new electrode materials and reactor designs in recent decades. The current review is excogitated to amass the progress in design and electrode materials, which could bolster further investigations on MFCs to improve their performance, mitigate the cost and successful implementation of technology in field applications as well.

  7. Control of Xiphinema index populations by fallow plants under greenhouse and field conditions.

    PubMed

    Villate, Laure; Morin, Elisa; Demangeat, Gérard; Van Helden, Maarten; Esmenjaud, Daniel

    2012-06-01

    The dagger nematode Xiphinema index has a high economic impact in vineyards by direct pathogenicity and above all by transmitting the Grapevine fanleaf virus (GFLV). Agrochemicals have been largely employed to restrict the spread of GFLV by reducing X. index populations but are now banned. As an alternative to nematicides, the use of fallow plants between two successive vine crops was assessed. We selected plant species adapted to vineyard soils and exhibiting negative impact on nematodes and we evaluated their antagonistic effect on X. index in greenhouse using artificially infested soil, and in naturally infested vineyard conditions. The screening was conducted with plants belonging to the families Asteraceae (sunflower, marigold, zinnia, and nyjer), Poaceae (sorghum and rye), Fabaceae (white lupin, white melilot, hairy vetch, and alfalfa), Brassicaceae (rapeseed and camelina), and Boraginaceae (phacelia). In the greenhouse controlled assay, white lupin, nyjer, and marigold significantly reduced X. index populations compared with that of bare soil. The vineyard assay, designed to take into account the aggregative pattern of X. index distribution, revealed that marigold and hairy vetch are good candidates as cover crops to reduce X. index populations in vineyard. Moreover, this original experimental design could be applied to manage other soilborne pathogens.

  8. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.

    PubMed

    Yin, Jiao; Qi, Li; Wang, Hongyu

    2012-05-01

    The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.

  9. Measurement of the complex refractive index and complex dielectric permittivity of T.P.S. Space Shuttle tile materials at millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Nurul; Chi, Hua; Li, Xiaohui

    1990-01-01

    Complex refractive index and dielectric permittivity studies of presently used Space Shuttle tile materials at millimeter wavelengths reveal these tiles to exhibit similar absorption characteristics to those of fused silica materials. This absorption is mainly related to the water content in the specimen. A strong birefringence is observed at least in one of these fibrous refractory composite materials.

  10. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  11. Negative Impact and Positive Value in Caregiving: Validation of the COPE Index in a Six-Country Sample of Carers

    ERIC Educational Resources Information Center

    Balducci, Cristian; Mnich, Eva; McKee, Kevin J.; Lamura, Giovanni; Beckmann, Anke; Krevers, Barbro; Wojszel, Z. Beata; Nolan, Mike; Prouskas, Constantinos; Bien, Barbara; Oberg, Birgitta

    2008-01-01

    Purpose: The present study attempts to further validate the COPE Index on a large sample of carers drawn from six European countries. Design and Methods: We used a cross-sectional survey, with approximately 1,000 carers recruited in each of six countries by means of a common standard evaluation protocol. Our saturation recruitment of a designated…

  12. Inverse problems in complex material design: Applications to non-crystalline solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  13. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  14. The Nurses' Well-Being Index and Factors Influencing This Index among Nurses in Central China: A Cross-Sectional Study.

    PubMed

    Meng, Runtang; Luo, Yi; Liu, Bing; Hu, Ying; Yu, Chuanhua

    2015-01-01

    A discussion and analysis of factors that contribute to nurses' happiness index can be useful in developing effective interventions to improve nurses' enthusiasm, sense of honor and pride and to improve the efficiency and quality of medical services. In this study, 206 registered nurses at the 2011 annual encounter for 12 Hanchuan hospitals completed a questionnaire survey that covered three aspects of the well-being index and thus served as a comprehensive well-being and general information tool. Based on their index score, the nurses' overall happiness level was moderate. The dimensions of the happiness index are listed in descending order of their contribution to the nurses' comprehensive happiness levels: health concerns, friendly relationships, self-worth, altruism, vitality, positive emotions, personality development, life satisfaction and negative emotions. Four variables (positive emotion, life satisfaction, negative emotions, and friendly relationships) jointly explained 47.80% of the total variance of the happiness index; positive emotions had the greatest impact on the happiness index. Appropriate nursing interventions can improve nurses' happiness index scores, thereby increasing nurses' motivation and promoting the development of their nursing practice.

  15. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

    PubMed

    Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

    2014-08-01

    The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

  16. Nano-scale optical circuits and self-organized lightwave network (SOLNET) fabricated using sol-gel materials with photo-induced refractive index increase

    NASA Astrophysics Data System (ADS)

    Ono, Shigeru; Yoshimura, Tetsuzo; Sato, Tetsuo; Oshima, Juro

    2009-02-01

    Recently, Nissan Chemical Industries, LTD, developed the photo-induced refractive index variation sol-gel materials, in which the refractive index increases from 1.65 to 1.85 by ultra-violet (UV) light exposure and baking. The materials enable us to fabricate high-index-contract waveguides without developing/etching processes and strong-lightconfinement self-organized lightwave network (SOLNET). Therefore, the materials are expected promising for nanoscale optical circuits with self-alignment capability. Nano-scale optical circuits with core thickness of ~230 nm and core width of ~1 μm were fabricated. Propagation loss was 1.86 dB/cm for TE mode and 1.89 dB/cm for TM mode at 633 nm in wavelength, indicating that there were small polarization dependences. Spot sizes of guided beams along core width direction and along core thickness direction were respectively 0.6 μm and 0.3 μm for both TE and TM mode. Bending loss of S-bending waveguides was reduced from 0.44 dB to 0.24 dB for TE mode with increasing the bending curvature radius from 5 μm to 60 μm. Difference in bending loss between TM and TE mode was less than 10%. Branching loss of Y-branching waveguides was reduced from 1.33 dB to 0.08 dB for TE mode, and from 1.34 dB to 0.12 dB for TM mode with decreasing the branching angle from 80° to 20°. These results indicate that the photoinduced refractive index variation sol-gel materials can realize miniaturized optical circuits with sizes of several tens μm and guided beam confinement within a cross-section area less than 1.0 μm2 with small polarization dependences, suggesting potential applications to intra-chip optical interconnects. In addtion, we fabricated self-organized lightwave network (SOLNET) using the photo-induced refractive index variation sol-gel materials. When write beams of 405 nm in wavelength were introduced into the sol-gel thin film under baking at 200°C, self-focusing was induced, and SOLNET was formed. SOLNET fabricated by low write

  17. Analysis and design of negative resistance oscillators using surface transverse wave-based single port resonators.

    PubMed

    Avramov, Ivan D

    2003-03-01

    This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.

  18. Transitioning Rationally Designed Catalytic Materials to Real 'Working' Catalysts Produced at Commercial Scale: Nanoparticle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.

    Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up ofmore » nano-structured materials are overcome.« less

  19. Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size

    NASA Astrophysics Data System (ADS)

    Barthelat, Francois

    2014-12-01

    Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.

  20. New Materials and Device Designs for Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    O'Brien, Barry Patrick

    /green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.

  1. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  2. Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Leviton, Doug; Frey, Brad

    2013-01-01

    First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.

  3. Big–deep–smart data in imaging for guiding materials design

    DOE PAGES

    Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.

    2015-09-23

    Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.

  4. Big-deep-smart data in imaging for guiding materials design.

    PubMed

    Kalinin, Sergei V; Sumpter, Bobby G; Archibald, Richard K

    2015-10-01

    Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.

  5. Big-deep-smart data in imaging for guiding materials design

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.

    2015-10-01

    Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.

  6. Big–deep–smart data in imaging for guiding materials design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.

    Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.

  7. Designing scattering-free isotropic index profiles using phase-amplitude equations

    NASA Astrophysics Data System (ADS)

    King, C. G.; Horsley, S. A. R.; Philbin, T. G.

    2018-05-01

    The Helmholtz equation can be written as coupled equations for the amplitude and phase. By considering spatial phase distributions corresponding to reflectionless wave propagation in the plane and solving for the amplitude in terms of this phase, we designed two-dimensional graded-index media which do not scatter light. We give two illustrative examples, the first of which is a periodic grating for which diffraction is completely suppressed at a single frequency at normal incidence to the periodicity. The second example is a medium which behaves as a "beam shifter" at a single frequency; acting to laterally shift a plane wave, or sufficiently wide beam, without reflection.

  8. Designing persuasive health materials using processing fluency: a literature review.

    PubMed

    Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro

    2017-06-08

    Health materials to promote health behaviors should be readable and generate favorable evaluations of the message. Processing fluency (the subjective experience of ease with which people process information) has been increasingly studied over the past decade. In this review, we explore effects and instantiations of processing fluency and discuss the implications for designing effective health materials. We searched seven online databases using "processing fluency" as the key word. In addition, we gathered relevant publications using reference snowballing. We included published records that were written in English and applicable to the design of health materials. We found 40 articles that were appropriate for inclusion. Various instantiations of fluency have a uniform effect on human judgment: fluently processed stimuli generate positive judgments (e.g., liking, confidence). Processing fluency is used to predict the effort needed for a given task; accordingly, it has an impact on willingness to undertake the task. Physical perceptual, lexical, syntactic, phonological, retrieval, and imagery fluency were found to be particularly relevant to the design of health materials. Health-care professionals should consider the use of a perceptually fluent design, plain language, numeracy with an appropriate degree of precision, a limited number of key points, and concrete descriptions that make recipients imagine healthy behavior. Such fluently processed materials that are easy to read and understand have enhanced perspicuity and persuasiveness.

  9. Negative running can prevent eternal inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, William H.; Freese, Katherine, E-mail: whkinney@buffalo.edu, E-mail: ktfreese@umich.edu

    Current data from the Planck satellite and the BICEP2 telescope favor, at around the 2 σ level, negative running of the spectral index of curvature perturbations from inflation. We show that for negative running α < 0, the curvature perturbation amplitude has a maximum on scales larger than our current horizon size. A condition for the absence of eternal inflation is that the curvature perturbation amplitude always remain below unity on superhorizon scales. For current bounds on n{sub S} from Planck, this corresponds to an upper bound of the running α < −9 × 10{sup −5}, so that even tiny running of the scalar spectral index ismore » sufficient to prevent eternal inflation from occurring, as long as the running remains negative on scales outside the horizon. In single-field inflation models, negative running is associated with a finite duration of inflation: we show that eternal inflation may not occur even in cases where inflation lasts as long as 10{sup 4} e-folds.« less

  10. Wide band design on the scaled absorbing material filled with flaky CIPs

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  11. The Nature of Indexing: How Humans and Machines Analyze Messages and Texts for Retrieval. Part II: Machine Indexing, and the Allocation of Human versus Machine Effort.

    ERIC Educational Resources Information Center

    Anderson, James D.; Perez-Carballo, Jose

    2001-01-01

    Discussion of human intellectual indexing versus automatic indexing focuses on automatic indexing. Topics include keyword indexing; negative vocabulary control; counting words; comparative counting and weighting; stemming; words versus phrases; clustering; latent semantic indexing; citation indexes; bibliographic coupling; co-citation; relevance…

  12. Rational material design for ultrafast rechargeable lithium-ion batteries.

    PubMed

    Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong

    2015-10-07

    Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future.

  13. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  14. 46 CFR 160.176-6 - Procedure for approval of design or material revision.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Procedure for approval of design or material revision... Lifejackets § 160.176-6 Procedure for approval of design or material revision. (a) Each change in design, material, or construction must be approved by the Commandant before being used in lifejacket production. (b...

  15. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.

    2016-02-15

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less

  16. Causality, Nonlocality, and Negative Refraction.

    PubMed

    Forcella, Davide; Prada, Claire; Carminati, Rémi

    2017-03-31

    The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.

  17. Brittle Materials Design, High Temperature Gas Turbine

    DTIC Science & Technology

    1975-10-01

    White Army Material and Mechanics Research Center E. M. Lenoe, R. N. Katz, D. R. Messier, H. Priest m ’■ V ..W.*.il.’■.■,:;.-M V -^.’ -i.-■..::.■ f.:irjU...Stator Vane Development 6.1.1 Design and Analysis v 6.1.2 Static Rig Testing 6.1.3 Vane Fabrication 6.1.4 Heat Transfer Tests Progress on Materials...Oxidation on the Strengths of Hot- Pressed Silicon Nitride and Silicon Carbide Properties of Yttria Hot-Pressed Silicon Nitride i ii iii iv v x 1

  18. Design of Functional Materials based on Liquid Crystalline Droplets.

    PubMed

    Miller, Daniel S; Wang, Xiaoguang; Abbott, Nicholas L

    2014-01-14

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems.

  19. California Nitrogen Index

    USDA-ARS?s Scientific Manuscript database

    The California N Index User Manual is designed to help you become accustomed to the software environment in which the N Index runs. This manual will use an example scenario to demonstrate how to use the N Index to assess nitrogen losses. The objective of this theoretical example is to guide you towa...

  20. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  1. Teaching English Using Video Materials: Design and Delivery of a Practical Course

    ERIC Educational Resources Information Center

    Lopez-Alvarado, Julio

    2017-01-01

    In this paper, a practical course for listening, speaking, reading and writing was designed using authentic video material. The aim of this paper is to offer tools to the TEFL teacher in order to design new course materials using video material. The development procedure is explained in detail, and the underpinning main theories are also…

  2. The Nurses’ Well-Being Index and Factors Influencing This Index among Nurses in Central China: A Cross-Sectional Study

    PubMed Central

    Liu, Bing; Hu, Ying; Yu, Chuanhua

    2015-01-01

    Backgrounds/Objectives A discussion and analysis of factors that contribute to nurses’ happiness index can be useful in developing effective interventions to improve nurses’ enthusiasm, sense of honor and pride and to improve the efficiency and quality of medical services. Methods In this study, 206 registered nurses at the 2011 annual encounter for 12 Hanchuan hospitals completed a questionnaire survey that covered three aspects of the well-being index and thus served as a comprehensive well-being and general information tool. Results Based on their index score, the nurses’ overall happiness level was moderate. The dimensions of the happiness index are listed in descending order of their contribution to the nurses’ comprehensive happiness levels: health concerns, friendly relationships, self-worth, altruism, vitality, positive emotions, personality development, life satisfaction and negative emotions. Four variables (positive emotion, life satisfaction, negative emotions, and friendly relationships) jointly explained 47.80% of the total variance of the happiness index; positive emotions had the greatest impact on the happiness index. Conclusions Appropriate nursing interventions can improve nurses’ happiness index scores, thereby increasing nurses’ motivation and promoting the development of their nursing practice. PMID:26680594

  3. Engineering solutions to ureteral stents: material, coating and design

    PubMed Central

    Mosayyebi, Ali; Vijayakumar, Aravinthan; Yue, Qi Y.; Bres-Niewada, Ewa; Manes, Costantino; Carugo, Dario

    2017-01-01

    Introduction An ideal stent would offer simple insertion and removal with no discomfort and/or migration, it would have no biofilm formation or encrustation and would also maintain the patient's quality of life. Material and methods In this mini-review, we outlined the engineering developments related to stent material, design and coating. Results There have been a wide variety of in-vitro, model-based, animal-based and clinical studies using a range of commercial and non-commercial stents. Ureteric stents have evolved since their first usage with a wider range of stent design, material and coating available for laboratory and clinical use. Conclusions While engineering innovations have led to the evolution of stents, more work needs to be done to address the issues relating to stent encrustation and biofilm formation. PMID:29104790

  4. Design and fabrication of a multi-focusing artificial compound eyes with negative meniscus substrate

    NASA Astrophysics Data System (ADS)

    Luo, Jiasai; Guo, Yongcai; Wang, Xin; Fan, Fenglian

    2017-04-01

    Miniaturized artificial compound eyes with a large field of view (FOV) have potential application in the area of micro-optical-electro-mechanical-system (MOEMS). A new non-uniform microlens array (MLA) on a negative meniscus substrate, fabricated by the melting photoresist method, was proposed in this paper. The multi-focusing MLA reduced the defocus effectively, which was caused by the uniform array on a spherical substrate. Moreover, like most ommatidia in compound eyes, each microlens of the multi-focusing MLA was arranged in one of the eleven concentric circles. In order to match with the multi-focusing MLA and avoid the total reflection, the negative meniscus substrate was fabricated by a homebuilt mold with a micro-hole array and polydimethylsiloxane coelomic compartment attached. The coelomic compartment is capable of offering an excellent injection environment without bubbles and impurities. Due to the direct 3D implementation of the MLA, rich available materials can be used by this method without substrate reshaping. As the molding material, the ultraviolet curing adhesive NOA81 can be cured within ten few seconds under ultraviolet which relieve intensive labor and protect the stereolithography apparatus effectively. The experimental results show that this new MLA has a better imaging performance, higher light usage efficiency and larger FOV because of the negative meniscus and multi-focusing MLA. Moreover, due to the homebuilt mold, more accurate geometrical parameters and shorter processing cycle were realized. Accordingly, together with an appropriate hardware, this MLA has diverse potential applications in medical imaging, military and machine vision.

  5. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  6. Photo-oxidation-modulated refractive index in Bi2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Yue, Zengji; Chen, Qinjun; Sahu, Amit; Wang, Xiaolin; Gu, Min

    2017-12-01

    We report on an 800 nm femtosecond laser beam induced giant refractive index modulation and enhancement of near-infrared transparency in topological insulator material Bi2Te3 thin films. An ultrahigh refractive index of up to 5.9 was observed in the Bi2Te3 thin film in near-infrared frequency. The refractive index dramatically decreases by a factor of ~3 by an exposure to the 800 nm femtosecond laser beam. Simultaneously, the transmittance of the Bi2Te3 thin films markedly increases to ~96% in the near-infrared frequency. The Raman spectra provides strong evidences that the observed both refractive index modulation and transparency enhancement result from laser beam induced photooxidation effects in the Bi2Te3 thin films. The Bi2Te3 compound transfers into Bi2O3 and TeO2 under the laser beam illumination. These experimental results pave the way towards the design of various optical devices, such as near-infrared flat lenses, waveguide and holograms, based on topological insulator materials.

  7. Material orientation design of planar structures with prescribed anisotropy classes. Study of rhombic systems

    NASA Astrophysics Data System (ADS)

    Czubacki, Radosław

    2018-01-01

    The paper deals with the minimum compliance problem of 2D structures made of a non-homogeneous elastic material. In the first part of the paper a comparison between solutions of Free Material Design (FMD), Cubic Material Design (CMD) and Isotropic Material Design (IMD) is shown for a simply supported plate in a shape of a deep beam, subjected to a concentrated in-plane force at its upper face. The isoperimetric condition fixes the value of the cost of the design expressed as the integral of the trace of the Hooke tensor. In the second part of the paper the material design approaches are extended to rhombic system in 2D. For the rhombic system the material properties of the structures are set, the design variables being the trajectories of anisotropy directions which in 2D are described by one parameter. In the Orthotropic Orientation Design (OOD) no isoperimetric condition is used.

  8. Effective group index of refraction in non-thermal plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Mousavi, A.; Sadegzadeh, S.

    2015-11-01

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum).

  9. Sculpture: Creative Designs with Modern Materials (Tentative Course Outline).

    ERIC Educational Resources Information Center

    Dubocq, Edward R.

    This document reports on a course in comprehension and application of various techniques of sculpture and collage, using a contemporary point of view. Students will work with contemporary materials such as wood, metals, plaster, plastics, styrofoam, and many other cardboard basic materials suitable for creative design products. This unit will…

  10. Engineering a Functional Small RNA Negative Autoregulation Network with Model-Guided Design.

    PubMed

    Hu, Chelsea Y; Takahashi, Melissa K; Zhang, Yan; Lucks, Julius B

    2018-05-22

    RNA regulators are powerful components of the synthetic biology toolbox. Here, we expand the repertoire of synthetic gene networks built from these regulators by constructing a transcriptional negative autoregulation (NAR) network out of small RNAs (sRNAs). NAR network motifs are core motifs of natural genetic networks, and are known for reducing network response time and steady state signal. Here we use cell-free transcription-translation (TX-TL) reactions and a computational model to design and prototype sRNA NAR constructs. Using parameter sensitivity analysis, we design a simple set of experiments that allow us to accurately predict NAR function in TX-TL. We transfer successful network designs into Escherichia coli and show that our sRNA transcriptional network reduces both network response time and steady-state gene expression. This work broadens our ability to construct increasingly sophisticated RNA genetic networks with predictable function.

  11. Brittleness index of machinable dental materials and its relation to the marginal chipping factor.

    PubMed

    Tsitrou, Effrosyni A; Northeast, Simon E; van Noort, Richard

    2007-12-01

    The machinability of a material can be measured with the calculation of its brittleness index (BI). It is possible that different materials with different BI could produce restorations with varied marginal integrity. The degree of marginal chipping of a milled restoration can be estimated by the calculation of the marginal chipping factor (CF). The aim of this study is to investigate any possible correlation between the BI of machinable dental materials and the CF of the final restorations. The CEREC system was used to mill a wide range of materials used with that system; namely the Paradigm MZ100 (3M/ESPE), Vita Mark II (VITA), ProCAD (Ivoclar-Vivadent) and IPS e.max CAD (Ivoclar-Vivadent). A Vickers Hardness Tester was used for the calculation of BI, while for the calculation of CF the percentage of marginal chipping of crowns prepared with bevelled marginal angulations was estimated. The results of this study showed that Paradigm MZ100 had the lowest BI and CF, while IPS e.max CAD demonstrated the highest BI and CF. Vita Mark II and ProCAD had similar BI and CF and were lying between the above materials. Statistical analysis of the results showed that there is a perfect positive correlation between BI and CF for all the materials. The BI and CF could be both regarded as indicators of a material's machinability. Within the limitations of this study it was shown that as the BI increases so does the potential for marginal chipping, indicating that the BI of a material can be used as a predictor of the CF.

  12. A domain-specific design architecture for composite material design and aircraft part redesign

    NASA Technical Reports Server (NTRS)

    Punch, W. F., III; Keller, K. J.; Bond, W.; Sticklen, J.

    1992-01-01

    Advanced composites have been targeted as a 'leapfrog' technology that would provide a unique global competitive position for U.S. industry. Composites are unique in the requirements for an integrated approach to designing, manufacturing, and marketing of products developed utilizing the new materials of construction. Numerous studies extending across the entire economic spectrum of the United States from aerospace to military to durable goods have identified composites as a 'key' technology. In general there have been two approaches to composite construction: build models of a given composite materials, then determine characteristics of the material via numerical simulation and empirical testing; and experience-directed construction of fabrication plans for building composites with given properties. The first route sets a goal to capture basic understanding of a device (the composite) by use of a rigorous mathematical model; the second attempts to capture the expertise about the process of fabricating a composite (to date) at a surface level typically expressed in a rule based system. From an AI perspective, these two research lines are attacking distinctly different problems, and both tracks have current limitations. The mathematical modeling approach has yielded a wealth of data but a large number of simplifying assumptions are needed to make numerical simulation tractable. Likewise, although surface level expertise about how to build a particular composite may yield important results, recent trends in the KBS area are towards augmenting surface level problem solving with deeper level knowledge. Many of the relative advantages of composites, e.g., the strength:weight ratio, is most prominent when the entire component is designed as a unitary piece. The bottleneck in undertaking such unitary design lies in the difficulty of the re-design task. Designing the fabrication protocols for a complex-shaped, thick section composite are currently very difficult. It is in

  13. Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jerry; Wu, Kesheng

    2011-04-18

    Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific datamore » formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.« less

  14. Waves in microstructured solids and negative group velocity

    NASA Astrophysics Data System (ADS)

    Peets, T.; Kartofelev, D.; Tamm, K.; Engelbrecht, J.

    2013-07-01

    Waves with negative group velocity (NGV) were discovered in optics by Sommerfeld and Brillouin, and experimentally verified in many cases, for example in left-handed media. For waves in solids, such an effect is described mostly in layered media. In this paper, it is demonstrated that in microstructured solids, waves with NGV may also exist leading to backwards pulse propagation. Two physical cases are analysed: a Mindlin-type hierarchical (a scale within a scale) material and a felt-type (made of fibres) material. For both cases, the dispersion analysis of one-dimensional waves shows that there exists certain ranges of physical parameters which lead to NGV. The results can be used in dispersion engineering for designing materials with certain properties.

  15. Design Difficulties in Stand Density Studies

    Treesearch

    Frank A. Bennett

    1969-01-01

    Designing unbiased stand density studies is difficult. An acceptable sample requires stratification of the plots of age, site, and density. When basal area, percent stocking, or Reineke's stand density index is used as the density measure, this stratification forces a high negative correlation between site and number of trees per acre. Mortality in trees per acre...

  16. Homogeneous and inhomogeneous material effect in gamma index evaluation of IMRT technique based on fan beam and Cone Beam CT patient images

    NASA Astrophysics Data System (ADS)

    Wibowo, W. E.; Waliyyulhaq, M.; Pawiro, S. A.

    2017-05-01

    Patient-specific Quality Assurance (QA) technique in lung case Intensity-Modulated Radiation Therapy (IMRT) is traditionally limited to homogeneous material, although the fact that the planning is carried out with inhomogeneous material present. Moreover, the chest area has many of inhomogeneous material, such as lung, soft tissue, and bone, which inhomogeneous material requires special attention to avoid inaccuracies in dose calculation in the Treatment Planning System (TPS). Recent preliminary studies shown that the role of Cone Beam CT (CBCT) can be used not only to position the patient at the time prior to irradiation but also to serve as planning modality. Our study presented the influence of a homogeneous and inhomogeneous materials using Fan Beam CT and Cone Beam CT modalities in IMRT technique on the Gamma Index (GI) value. We used a variation of the segment and Calculation Grid Resolution (CGR). The results showed the deviation of averaged GI value to be between CGR 0.2 cm and 0.4 cm with homogeneous material ranging from -0.44% to 1.46%. For inhomogeneous material, the value was range from -1.74% to 0.98%. In performing patient-specific IMRT QA techniques for lung cancer, homogeneous material can be implemented in evaluating the gamma index.

  17. Operationally efficient propulsion system study (OEPSS) data book. Volume 7; Launch Operations Index (LOI) Design Features and Options

    NASA Technical Reports Server (NTRS)

    Ziese, James M.

    1992-01-01

    A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.

  18. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    PubMed

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  19. Mothers’ Negative Affectivity During Pregnancy and Food Choices for Their Infants

    PubMed Central

    Hampson, Sarah E.; Tonstad, Serena; Irgens, Lorentz M.; Meltzer, Helle Margrete; Vollrath, Margarete

    2009-01-01

    Objective To investigate whether maternal negative affectivity assessed in pregnancy is related to subsequent infant food choices. Design Cohort study. Subjects Mothers (N = 37, 919) and their infants participating in the Norwegian Mother and Child Cohort Study conducted by the Norwegian Institute of Public Health. Measurements Maternal negative affectivity assessed pre-partum (SCL-5 at week 17 and 30 of pregnancy), introduction of solid foods by month 3, and feeding of sweet drinks by month 6 (by mothers’ reports). Results Mothers with higher negative affectivity were 64% more likely (95% CI 1.5–1.8) to feed sweet drinks by month 6, and 79% more likely (95% CI 1.6–2.0) to introduce solid foods by month 3. These odds decreased to 41% and 30%, respectively, after adjusting for mother’s age, body mass index, and education. Conclusion The maternal trait of negative affectivity is an independent predictor of infant feeding practices that may be related to childhood weight gain, overweight, and obesity. PMID:19918247

  20. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    PubMed

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Regression approaches in the test-negative study design for assessment of influenza vaccine effectiveness.

    PubMed

    Bond, H S; Sullivan, S G; Cowling, B J

    2016-06-01

    Influenza vaccination is the most practical means available for preventing influenza virus infection and is widely used in many countries. Because vaccine components and circulating strains frequently change, it is important to continually monitor vaccine effectiveness (VE). The test-negative design is frequently used to estimate VE. In this design, patients meeting the same clinical case definition are recruited and tested for influenza; those who test positive are the cases and those who test negative form the comparison group. When determining VE in these studies, the typical approach has been to use logistic regression, adjusting for potential confounders. Because vaccine coverage and influenza incidence change throughout the season, time is included among these confounders. While most studies use unconditional logistic regression, adjusting for time, an alternative approach is to use conditional logistic regression, matching on time. Here, we used simulation data to examine the potential for both regression approaches to permit accurate and robust estimates of VE. In situations where vaccine coverage changed during the influenza season, the conditional model and unconditional models adjusting for categorical week and using a spline function for week provided more accurate estimates. We illustrated the two approaches on data from a test-negative study of influenza VE against hospitalization in children in Hong Kong which resulted in the conditional logistic regression model providing the best fit to the data.

  2. The Cam Shell: An Innovative Design With Materials and Manufacturing

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Larsen, Frank M.; Kornienko, Rob

    2003-01-01

    Most of the personal audio and video recording devices currently sold on the open market all require hands to operate. Little consideration was given to designing a hands-free unit. Such a system once designed and made available to the public could greatly benefit mobile police officers, bicyclists, adventurers, street and dirt motorcyclists, horseback riders and many others. With a few design changes water sports and skiing activities could be another large area of application. The cam shell is an innovative design in which an audio and video recording device (such as palm camcorder) is housed in a body-mounted protection system. This system is based on the concept of viewing and recording at the same time. A view cam is attached to a helmet wired to a recording unit encased in a transparent body-mounted protection system. The helmet can also be controlled by remote. The operator will have full control in recording everything. However, the recording unit will be operated completely hands-free. This project will address the design considerations and their effects on material selection and manufacturing. It will enhance the understanding of the structure of materials, and how the structure affects the behavior of the material, and the role that processing play in linking the relationship between structure and properties. A systematic approach to design feasibility study, cost analysis and problem solving will also be discussed.

  3. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to

  4. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  5. Recyclable automobiles. (Latest citations from Engineered Materials Abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  6. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly.

    PubMed

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-09-29

    The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

  7. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    PubMed Central

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-01-01

    The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

  8. Designing Educative Curriculum Materials: A Theoretically and Empirically Driven Process

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Arias, Anna Maria; Bismack, Amber Schultz; Marulis, Loren M.; Iwashyna, Stefanie K.

    2014-01-01

    In this article, the authors argue for a design process in the development of educative curriculum materials that is theoretically and empirically driven. Using a design-based research approach, they describe their design process for incorporating educative features intended to promote teacher learning into existing, high-quality curriculum…

  9. FOREWORD: Computational methodologies for designing materials Computational methodologies for designing materials

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2009-02-01

    It would be fair to say that in the past few decades, theory and computer modeling have played a major role in elucidating the microscopic factors that dictate the properties of functional novel materials. Together with advances in experimental techniques, theoretical methods are becoming increasingly capable of predicting properties of materials at different length scales, thereby bringing in sight the long-sought goal of designing material properties according to need. Advances in computer technology and their availability at a reasonable cost around the world have made tit all the more urgent to disseminate what is now known about these modern computational techniques. In this special issue on computational methodologies for materials by design we have tried to solicit articles from authors whose works collectively represent the microcosm of developments in the area. This turned out to be a difficult task for a variety of reasons, not the least of which is space limitation in this special issue. Nevertheless, we gathered twenty articles that represent some of the important directions in which theory and modeling are proceeding in the general effort to capture the ability to produce materials by design. The majority of papers presented here focus on technique developments that are expected to uncover further the fundamental processes responsible for material properties, and for their growth modes and morphological evolutions. As for material properties, some of the articles here address the challenges that continue to emerge from attempts at accurate descriptions of magnetic properties, of electronically excited states, and of sparse matter, all of which demand new looks at density functional theory (DFT). I should hasten to add that much of the success in accurate computational modeling of materials emanates from the remarkable predictive power of DFT, without which we would not be able to place the subject on firm theoretical grounds. As we know and will also

  10. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  11. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  12. Design requirements for plasma facing materials in ITER

    NASA Astrophysics Data System (ADS)

    Matera, R.; Federici, G.; ITER Joint Central Team

    1996-10-01

    After the official approval of the Interim Design Report, the ITER project enters the final phase of the EDA. With the definition of the design requirements of the high heat flux components, the structural and armor materials' working domain is better specified, allowing to focus the R & D program on the most critical issues and to orient the design of divertor and first wall components towards those concepts which potentially have a better chance to withstand normal and off-normal operating conditions. Among the latter, slow, high-power, high recycling transient are at present driving the design of high heat flux components. Examples of possible design solution under experimental validation in the R & D program are presented and discussed in this paper.

  13. Refractive index measurement based on confocal method

    NASA Astrophysics Data System (ADS)

    An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang

    2017-10-01

    The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.

  14. Learning from data to design functional materials without inversion symmetry

    PubMed Central

    Balachandran, Prasanna V.; Young, Joshua; Lookman, Turab; Rondinelli, James M.

    2017-01-01

    Accelerating the search for functional materials is a challenging problem. Here we develop an informatics-guided ab initio approach to accelerate the design and discovery of noncentrosymmetric materials. The workflow integrates group theory, informatics and density-functional theory to uncover design guidelines for predicting noncentrosymmetric compounds, which we apply to layered Ruddlesden-Popper oxides. Group theory identifies how configurations of oxygen octahedral rotation patterns, ordered cation arrangements and their interplay break inversion symmetry, while informatics tools learn from available data to select candidate compositions that fulfil the group-theoretical postulates. Our key outcome is the identification of 242 compositions after screening ∼3,200 that show potential for noncentrosymmetric structures, a 25-fold increase in the projected number of known noncentrosymmetric Ruddlesden-Popper oxides. We validate our predictions for 19 compounds using phonon calculations, among which 17 have noncentrosymmetric ground states including two potential multiferroics. Our approach enables rational design of materials with targeted crystal symmetries and functionalities. PMID:28211456

  15. O the Determination of the Complex Refractive Index of Powdered Materials in the 9 TO 11 Micrometer Spectral Region Utilizing AN Attenuated Total Reflectance Technique.

    NASA Astrophysics Data System (ADS)

    Gillespie, James Bryce

    1982-03-01

    A specific method of determining the complex refractive index of powdered materials using attenuated total reflectance (ATR) spectroscopy was investigated. A very precise laser/goniometric ATR system was assembled and applied to powdered samples of carbon blacks, graphite, kaolin clay, quartz, calcite, and sodalime glass beads. The reflectivity data fell into two categories: (1) data representative of a medium having a unique effective refractive index and (2) data representative of a scattering medium having no unique refractive index. Data of the first kind were obtained from all the carbon black, graphite, and kaolin clay samples. The Fahrenfort-Visser solution of the Fresnel equations was applied to the goniometric reflectivity data for these samples to obtain the complex refractive index of these effective media. The complex refractive index obtained in this manner is not that of the bulk material but is instead a value which may be related to the bulk material value through some refractive index mixing rule. A systematic experiment using carbon black of particle size 0.0106 mm diameter was conducted to determine the applicability of several mixture rules for the volume packing fraction range of .2 to .6 which is most often encountered. The Bruggemann effective medium theory produced credible results while the Lorentz-Lorenz rule and the empirical Biot-Arago rule were invalid in this volume packing region. The Bruggemann rule was applied to lampblack, Mogul-L carbon black, graphite, and kaolin clay to obtain the complex refractive indices of these materials from the ATR spectroscopy data. Goniometric reflectivity data representative of an inhomogeneous scattering medium were obtained from all the powdered quartz, powdered calcite, and sodalime glass beads samples. These samples all contained particles with diameters nearly as large as the wavelength. These data demonstrate that the ATR technique, coupled with an effective medium analysis, may be used to obtain

  16. Negative thermal expansion materials related to cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Lind, Cora

    2001-12-01

    A non-hydrolytic sol-gel method for the preparation of ZrW2O 8 was developed. A new trigonal polymorph was discovered, which is structurally related to trigonal ZrMO2O8 and MnRe2O 8 as evidenced by powder x-ray diffraction and EXAFS studies. Seeding of the starting mixtures with cubic ZrW2O8 promoted crystallization of the cubic phase instead of trigonal material. Dehydration of ZrW2O7(OH)2·2H 2O gave cubic ZrW2O8 at 650°C, and a modification of this route led to the discovery of the new NTE materials cubic ZrMo 2O8 and HfMo2O8. These compounds crystallize in the same temperature range as the more stable trigonal AMo2O 8 polymorphs. To facilitate preparation of phase pure cubic molybdates, the influence of precursor chemistry on the crystallization behavior was investigated. The synthesis was extended to the solid solution system ZrxHf 1-xMoyW2-yO8 (0 ≤ x ≤ 1, 0 ≤ y ≤ 2). All compounds showed negative thermal expansion between 77 and 573 K. High-pressure in situ diffraction experiments were conducted on several AM2O8 polymorphs. With the exception of monoclinic ZrMo2O8, all materials underwent at least one pressure induced phase transition. Quasi-hydrostatic experiments on cubic AMo 2O8 led to a reversible transition to a new high-pressure structure, while low-pressure amorphization was observed under non-hydrostatic conditions. Isothermal kinetic studies of the cubic to trigonal transformation for ZrMo2O8 were carried out on four samples. Apparent activation energies of 170--290 kJ/mol were obtained using an Avrami model in combination with an Arrhenius analysis. This corresponds to 5% conversion levels after one year at temperatures between 220 and 315°C. Ex situ studies showed that the conversion at lower temperatures was considerably slower than what would be expected from extrapolation of the kinetic data. Drop solution calorimetry was carried out on several polymorphs of ZrMo 2O8, HfMo2O8 and ZrW2O 8. Only monoclinic ZrMo2O8 was enthalpically

  17. Design Considerations of Help Options in Computer-Based L2 Listening Materials Informed by Participatory Design

    ERIC Educational Resources Information Center

    Cárdenas-Claros, Mónica Stella

    2015-01-01

    This paper reports on the findings of two qualitative exploratory studies that sought to investigate design features of help options in computer-based L2 listening materials. Informed by principles of participatory design, language learners, software designers, language teachers, and a computer programmer worked collaboratively in a series of…

  18. 7 CFR 412.3 - Index.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Index. 412.3 Section 412.3 Agriculture Regulations of... AGRICULTURE PUBLIC INFORMATION-FREEDOM OF INFORMATION § 412.3 Index. 5 U.S.C. 552(a)(2) requires that each agency publish, or otherwise make available, a current index of all materials available for public...

  19. First-Principles Design of Novel Catalytic and Chemoresponsive Materials

    NASA Astrophysics Data System (ADS)

    Roling, Luke T.

    An emerging trend in materials design is the use of computational chemistry tools to accelerate materials discovery and implementation. In particular, the parallel nature of computational models enables high-throughput screening approaches that would be laborious and time-consuming with experiments alone, and can be useful for identifying promising candidate materials for experimental synthesis and evaluation. Additionally, atomic-scale modeling allows researchers to obtain a detailed understanding of phenomena invisible to many current experimental techniques. In this thesis, we highlight mechanistic studies and successes in catalyst design for heterogeneous electrochemical reactions, discussing both anode and cathode chemistries. In particular, we evaluate the properties of a new class of Pd-Pt core-shell and hollow nanocatalysts toward the oxygen reduction reaction. We do not limit our study to electrochemical reactivity, but also consider these catalysts in a broader context by performing in-depth studies of their stability at elevated temperatures as well as investigating the mechanisms by which they are able to form. We also present fundamental surface science studies, investigating graphene formation and H2 dissociation, which are processes of both fundamental and practical interest in many catalytic applications. Finally, we extend our materials design paradigm outside the field of catalysis to develop and apply a model for the detection of small chemical analytes by chemoresponsive liquid crystals, and offer several predictions for improving the detection of small chemicals. A close connection between computation, synthesis, and experimental evaluation is essential to the work described herein, as computations are used to gain fundamental insight into experimental observations, and experiments and synthesis are in turn used to validate predictions of material activities from computational models.

  20. Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration

    PubMed Central

    Ohtsuki, Chikara; Kamitakahara, Masanobu; Miyazaki, Toshiki

    2009-01-01

    Bioactive ceramics have been used clinically to repair bone defects owing to their biological affinity to living bone; i.e. the capability of direct bonding to living bone, their so-called bioactivity. However, currently available bioactive ceramics do not satisfy every clinical application. Therefore, the development of novel design of bioactive materials is necessary. Bioactive ceramics show osteoconduction by formation of biologically active bone-like apatite through chemical reaction of the ceramic surface with surrounding body fluid. Hence, the control of their chemical reactivity in body fluid is essential to developing novel bioactive materials as well as biodegradable materials. This paper reviews novel bioactive materials designed based on chemical reactivity in body fluid. PMID:19158015

  1. MDTS: automatic complex materials design using Monte Carlo tree search.

    PubMed

    M Dieb, Thaer; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-01-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  2. MDTS: automatic complex materials design using Monte Carlo tree search

    NASA Astrophysics Data System (ADS)

    Dieb, Thaer M.; Ju, Shenghong; Yoshizoe, Kazuki; Hou, Zhufeng; Shiomi, Junichiro; Tsuda, Koji

    2017-12-01

    Complex materials design is often represented as a black-box combinatorial optimization problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree Search). Our algorithm employs a Monte Carlo tree search approach, which has shown exceptional performance in computer Go game. Unlike evolutionary algorithms that require user intervention to set parameters appropriately, MDTS has no tuning parameters and works autonomously in various problems. In comparison to a Bayesian optimization package, our algorithm showed competitive search efficiency and superior scalability. We succeeded in designing large Silicon-Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.

  3. Raman imaging of pharmaceutical materials: refractive index effects on contrast at buried interfaces.

    PubMed

    Mecker-Pogue, Laura C; Kauffman, John F

    2015-02-01

    Resolution targets composed of bilayer polydimethylsiloxane (PDMS) devices with buried polyethylene glycol (PEG) channels have been fabricated using traditional photolithographic and micromolding techniques to develop resolution targets that mimic pharmaceutical materials. Raman chemical images of the resulting PEG-in-PDMS devices composed of varying parallel line widths were investigated by imaging the PEG lines through a thin overlayer of PDMS. Additionally, a scattering agent, Al2O3, was introduced at varying concentrations to each layer of the device to explore the effects of scattering materials on Raman images. Features in the resulting chemical images of the PEG lines suggest that reflection at the PEG/PDMS interface contributes to the Raman signal. A model based on geometric optics was developed to simulate the observed image functions of the targets. The results emphasize the influence of refractive index discontinuities at the PEG/PDMS interface on the apparent size and shape of the PEG features. Such findings have an impact on interpretation of Raman images of nonabsorbing, opaque pharmaceutical samples. Published by Elsevier B.V.

  4. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.

    PubMed

    Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R

    2009-11-09

    Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.

  5. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    PubMed Central

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  6. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design.

    PubMed

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Jiang, Hao; Li, Chunzhong; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2018-01-01

    Tremendous efforts have been dedicated into the development of high-performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery-like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery-like behavior are discussed. Furthermore, guidelines for material selection, the state-of-the-art materials, and the electrode design rules to advanced electrode are proposed.

  7. Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handunkanda, Sahan U.; Occhialini, Connor A.; Said, Ayman H.

    We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic inhomogeneities and its application to recent and existing experimental data suggest an intricate link between the nanometer correlation length scale, the energy scalemore » for octahedral tilt fluctuations, and the coefficient of thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an outstanding debate concerning the role of molecular rigidity in strong NTE materials.« less

  8. Far-ultraviolet refractive index of optical materials for solar blind channel (SBC) filters for the HST advanced camera for surveys (ACS)

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-10-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse yet critical. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC) used to implement a minimum deviation method refractometer. Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  9. Performance evaluation of seal coat materials and designs.

    DOT National Transportation Integrated Search

    2011-01-01

    "This project presents an evaluation of seal coat materials and design method. The primary objectives of this research are 1) to evaluate seal coat performance : from various combinations of aggregates and emulsions in terms of aggregate loss; 2) to ...

  10. Research on energy efficiency design index for sea-going LNG carriers

    NASA Astrophysics Data System (ADS)

    Lin, Yan; Yu, Yanyun; Guan, Guan

    2014-12-01

    This paper describes the characteristics of liquefied natural gas (LNG) carriers briefly. The LNG carrier includes power plant selection, vapor treatment, liquid cargo tank type, etc. Two parameters—fuel substitution rate and recovery of boil of gas (BOG) volume to energy efficiency design index (EEDI) formula are added, and EEDI formula of LNG carriers is established based on ship EEDI formula. Then, based on steam turbine propulsion device of LNG carriers, mathematical models of LNG carriers' reference line value are established in this paper. By verification, the EEDI formula of LNG carriers described in this paper can provide a reference for LNG carrier EEDI calculation and green shipbuilding.

  11. 7 CFR 798.3 - Index.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Index. 798.3 Section 798.3 Agriculture Regulations of... RECORDS AVAILABILITY OF INFORMATION TO THE PUBLIC § 798.3 Index. 5 U.S.C. 552(a)(2) requires that each agency publish or otherwise make available a current index of all materials required to be made available...

  12. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Cluster Randomized Test-Negative Design (CR-TND) Trials: A Novel and Efficient Method to Assess the Efficacy of Community Level Dengue Interventions.

    PubMed

    Anders, Katherine L; Cutcher, Zoe; Kleinschmidt, Immo; Donnelly, Christl A; Ferguson, Neil M; Indriani, Citra; O'Neill, Scott L; Jewell, Nicholas P; Simmons, Cameron P

    2018-05-07

    Cluster randomized trials are the gold standard for assessing efficacy of community-level interventions, such as vector control strategies against dengue. We describe a novel cluster randomized trial methodology with a test-negative design, which offers advantages over traditional approaches. It utilizes outcome-based sampling of patients presenting with a syndrome consistent with the disease of interest, who are subsequently classified as test-positive cases or test-negative controls on the basis of diagnostic testing. We use simulations of a cluster trial to demonstrate validity of efficacy estimates under the test-negative approach. This demonstrates that, provided study arms are balanced for both test-negative and test-positive illness at baseline and that other test-negative design assumptions are met, the efficacy estimates closely match true efficacy. We also briefly discuss analytical considerations for an odds ratio-based effect estimate arising from clustered data, and outline potential approaches to analysis. We conclude that application of the test-negative design to certain cluster randomized trials could increase their efficiency and ease of implementation.

  14. 46 CFR 160.077-7 - Procedure for approval of design or material revision.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... being used in any production of PFDs. (b) Determinations of equivalence of design, construction, and... 46 Shipping 6 2010-10-01 2010-10-01 false Procedure for approval of design or material revision... Personal Flotation Devices § 160.077-7 Procedure for approval of design or material revision. (a) Each...

  15. How does negative emotion cause false memories?

    PubMed

    Brainerd, C J; Stein, L M; Silveira, R A; Rohenkohl, G; Reyna, V F

    2008-09-01

    Remembering negative events can stimulate high levels of false memory, relative to remembering neutral events. In experiments in which the emotional valence of encoded materials was manipulated with their arousal levels controlled, valence produced a continuum of memory falsification. Falsification was highest for negative materials, intermediate for neutral materials, and lowest for positive materials. Conjoint-recognition analysis produced a simple process-level explanation: As one progresses from positive to neutral to negative valence, false memory increases because (a) the perceived meaning resemblance between false and true items increases and (b) subjects are less able to use verbatim memories of true items to suppress errors.

  16. Independent processing of changes in auditory single features and feature conjunctions in humans as indexed by the mismatch negativity.

    PubMed

    Takegata, R; Paavilainen, P; Näätänen, R; Winkler, I

    1999-05-07

    The mismatch negativity (MMN), an event-related potential component of the EEG, is elicited by violations of auditory regularities In the present study, the stimulus blocks contained two types of standard tones, differing from each other in frequency and intensity. MMNs were recorded to three different types of deviant stimuli: (a) feature deviants, differing from standards in their perceived locus of origin; (b) conjunction deviants, having the frequency of one of the standards and the intensity of the other; (c) double deviants, differing from standards in both (a) and (b). The MMN to double deviants was similar to the sum of the MMNs to feature and conjunction deviants. This result indicates that changes in simple stimulus features and conjunction of features are processed independently by the automatic sound change detection system indexed by MMN.

  17. Computationally Driven Two-Dimensional Materials Design: What Is Next?

    DOE PAGES

    Pan, Jie; Lany, Stephan; Qi, Yue

    2017-07-17

    Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. Additionally, we discuss challenges and opportunities to boost the power of computation formore » the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.« less

  18. Reducing Production Basis Risk through Rainfall Intensity Frequency (RIF) Indexes: Global Sensitivity Analysis' Implication on Policy Design

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, Chitsomanus; Huffaker, Ray; Munoz-Carpena, Rafael

    2016-04-01

    The weather index insurance promises financial resilience to farmers struck by harsh weather conditions with swift compensation at affordable premium thanks to its minimal adverse selection and moral hazard. Despite these advantages, the very nature of indexing causes the presence of "production basis risk" that the selected weather indexes and their thresholds do not correspond to actual damages. To reduce basis risk without additional data collection cost, we propose the use of rain intensity and frequency as indexes as it could offer better protection at the lower premium by avoiding basis risk-strike trade-off inherent in the total rainfall index. We present empirical evidences and modeling results that even under the similar cumulative rainfall and temperature environment, yield can significantly differ especially for drought sensitive crops. We further show that deriving the trigger level and payoff function from regression between historical yield and total rainfall data may pose significant basis risk owing to their non-unique relationship in the insured range of rainfall. Lastly, we discuss the design of index insurance in terms of contract specifications based on the results from global sensitivity analysis.

  19. Harnessing the Big Data Paradigm for ICME: Shifting from Materials Selection to Materials Enabled Design

    NASA Astrophysics Data System (ADS)

    Broderick, Scott R.; Santhanam, Ganesh Ram; Rajan, Krishna

    2016-08-01

    As the size of databases has significantly increased, whether through high throughput computation or through informatics-based modeling, the challenge of selecting the optimal material for specific design requirements has also arisen. Given the multiple, and often conflicting, design requirements, this selection process is not as trivial as sorting the database for a given property value. We suggest that the materials selection process should minimize selector bias, as well as take data uncertainty into account. For this reason, we discuss and apply decision theory for identifying chemical additions to Ni-base alloys. We demonstrate and compare results for both a computational array of chemistries and standard commercial superalloys. We demonstrate how we can use decision theory to select the best chemical additions for enhancing both property and processing, which would not otherwise be easily identifiable. This work is one of the first examples of introducing the mathematical framework of set theory and decision analysis into the domain of the materials selection process.

  20. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    PubMed Central

    Vichery, Charlotte; Nedelec, Jean-Marie

    2016-01-01

    Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented. PMID:28773412