Science.gov

Sample records for negative-index material design

  1. Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design.

    PubMed

    Kwon, Do-Hoon; Werner, Douglas H; Kildishev, Alexander V; Shalaev, Vladimir M

    2008-08-01

    A chiral optical negative-index metamaterial design of doubly periodic construction for the near-infrared spectrum is presented. The chirality is realized by incorporating sub-wavelength planar silver-aluminasilver resonators and arranging them in a left-handed helical (i.e., stair-step) configuration as a wave propagates through the metamaterial. An effective material parameter retrieval procedure is developed for general bi-isotropic metamaterials. A numerical design example is presented and the retrieved effective material parameters exhibiting a negative index of refraction are provided. PMID:18679454

  2. Modulation instability in nonlinear negative-index material.

    PubMed

    Wen, Shuangchun; Wang, Youwen; Su, Wenhua; Xiang, Yuanjiang; Fu, Xiquan; Fan, Dianyuan

    2006-03-01

    We investigate modulation instability (MI) in negative-index material (NIM) with a Kerr nonlinear polarization based on a derived (3+1)-dimensional nonlinear Schrödinger equation for ultrashort pulse propagation. By a standard linear stability analysis, we obtain the expression for instability gain, which unifies the temporal, spatial, and spatiotemporal MI. It is shown that negative refraction not only brings some new features to MI, but also makes MI possible in ordinary material in which it is otherwise impossible. For example, spatial MI can occur in the defocusing regime, while it only occurs in the focusing regime in ordinary material. Spatiotemporal MI can appear in NIM in the case of anomalous dispersion and defocusing nonlinearity, while it cannot appear in ordinary material in the same case. We believe that the difference between the MI in NIM and in ordinary material is due to the fact that negative refraction reverses the sign of the diffraction term, with the signs of dispersion and nonlinearity unchanged. The most notable property of MI in NIM is that it can be manipulated by engineering the self-steepening effect by choosing the size of split-ring resonator circuit elements. To sum up the MI in ordinary material and in NIM, MI may occur for all the combinations of dispersion and nonlinearity. PMID:16605687

  3. Simulations of ferrite-dielectric-wire composite negative index materials.

    PubMed

    Rachford, Frederic J; Armstead, Douglas N; Harris, Vincent G; Vittoria, Carmine

    2007-08-01

    We perform extensive finite difference time domain simulations of ferrite based negative index of refraction composites. A wire grid is employed to provide negative permittivity. The ferrite and wire grid interact to provide both negative and positive index of refraction transmission peaks in the vicinity of the ferrite resonance. Notwithstanding the extreme anisotropy in the index of refraction of the composite, negative refraction is seen at the composite air interface allowing the construction of a focusing concave lens with a magnetically tunable focal length. PMID:17930783

  4. Stability criterion for Gaussian pulse propagation through negative index materials

    SciTech Connect

    Joseph, Ancemma; Porsezian, K.

    2010-02-15

    We analyze the dynamics of propagation of a Gaussian light pulse through a medium having a negative index of refraction employing the recently reported projection operator technique. The governing modified nonlinear Schroedinger equation, obtained by taking into account the Drude dispersive model, is expressed in terms of the parameters of Gaussian pulse, called collective variables, such as width, amplitude, chirp, and phase. This approach yields a system of ordinary differential equations for the evolution of all the pulse parameters. We demonstrate the dependence of stability of the fixed-point solutions of these ordinary differential equations on the linear and nonlinear dispersion parameters. In addition, we validate the analytical approach numerically utilizing the method of split-step Fourier transform.

  5. On the resolution of lenses made of a negative-index material

    SciTech Connect

    Petrin, A B

    2013-09-30

    Resolution of the lenses made of a negative-index material is considered. It is shown that the super-resolution concept is untenable and the possibility of obtaining a perfect image on its own eventually contradicts Maxwell's equations in vacuum. It is also shown that known limitations of the diffraction theory on resolution of optical instruments hold true for the resolution of lenses of a negative-index material, in particular, the resolution of a Veselago lens. (nanogradient dielectric coatings and metamaterials)

  6. Nonlinear excitations in negative index materials: Modulational instability and solitary wave solutions

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek Kumar; Goyal, Amit

    2016-05-01

    We explore the modulational instability and existence of dark, bright solitary wave solutions in negative index-materials (NIMs) modeled by generalized nonlinear Schrödinger equation with competing cubic-quintic and higher-order nonlinearities with dispersive permittivity and permeability. Parameter domains are delineated in which these ultrashort pulses exist in NIMs. Unlike the ordinary materials, these novel excitations occur for different signs of dispersion, Kerr and non-Kerr nonlinearities.

  7. Modulation instability in a triangular three-core coupler with a negative-index material channel

    NASA Astrophysics Data System (ADS)

    Shafeeque Ali, A. K.; Nithyanandan, K.; Porsezian, K.; Maimistov, Andrei I.

    2016-03-01

    A theoretical investigation of the modulation instability (MI) in the three core triangular oppositely directed coupler with negative index material channel is presented. This class of couplers have an effective feedback mechanism due to the opposite directionality of the phase velocities in the negative and positive index channels. It is found that the MI in the nonlinear three core triangular oppositely directed coupler is significantly influenced by the ratio of the forward- to backward-propagating wave power and nonlinearity. Also, in the case of the normal dispersion regime a threshold-like behavior is observed, whereas this behavior is not identified in the anomalous dispersion regime. For the asymmetric case (h\

  8. Influence of birefringence in the instability spectra of oppositely directed coupler with negative index material channel

    NASA Astrophysics Data System (ADS)

    Shafeeque Ali, A. K.; Nithyanandan, K.; Porsezian, K.; Maimistov, Andrei I.

    2016-02-01

    A theoretical investigation on the influence of birefringence in the modulational instability (MI) spectra of an oppositely directed coupler (ODC) with a negative index material (NIM) channel is presented. We study the effect of birefringence on MI in linear and circular birefringent ODCs for both normal and anomalous dispersion regimes. It is found that besides the instability band due to nonlinear positive index material (PIM) and negative index material (NIM) channels, new symmetric instability regions are observed as a result of birefringent effects. Also defocusing nonlinearity suppresses the NIM band in the normal dispersion regime, but in the anomalous dispersion regime the defocusing nonlinearity enhances the gain of the NIM band. In contrast to the case of linear birefringence, in terms of MI gain from circular birefringence, only two birefringent bands dominate: the inherently PIM and NIM bands. This preponderance is attributed to the fact that the cross-phase modulation effect for the case of circular birefringence is stronger, thus allowing a better coupling between the beams, which results in the enhancement of the gain. Therefore, the manipulation of MI and solitons in an ODC is better performed when the birefringence is circular rather than linear. Here we report how to generate and manipulate MI and solitons in birefringent ODCs with a particular emphasis on a NIM channel.

  9. Dispersion, spatial growth rate, and start current of a Cherenkov free-electron laser with negative-index material

    SciTech Connect

    Wang, Yuanyuan; Wei, Yanyu; Jiang, Xuebing; Tang, Xianfeng; Shi, Xianbao; Gong, Yubin; Li, Dazhi; Takano, Keisuke; Nakajima, Makoto; Feng, Jinjun; Miyamoto, Shuji

    2015-08-15

    We present an analysis of a Cherenkov free-electron laser based on a single slab made from negative-index materials. In this system, a flat electron beam with finite thickness travelling close to the surface of the slab interacts with the copropagating electromagnetic surface mode. The dispersion equation for a finitely thick slab is worked out and solved numerically to study the dispersion relation of surface modes supported by negative-index materials, and the calculations are in good agreement with the simulation results from a finite difference time domain code. We find that under suitable conditions there is inherent feedback in such a scheme due to the characteristics of negative-index materials, which means that the system can oscillate without external reflectors when the beam current exceeds a threshold value, i.e., start current. Using the hydrodynamic approach, we setup coupled equations for this system, and solve these equations analytically in the small signal regime to obtain formulas for the spatial growth rate and start current.

  10. Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials.

    PubMed

    Scalora, Michael; Syrchin, Maxim S; Akozbek, Neset; Poliakov, Evgeni Y; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Zheltikov, Aleksei M

    2005-07-01

    A new generalized nonlinear Schrödinger equation describing the propagation of ultrashort pulses in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability is derived and used to characterize wave propagation in a negative index material. The equation has new features that are distinct from ordinary materials (mu=1): the linear and nonlinear coefficients can be tailored through the linear properties of the medium to attain any combination of signs unachievable in ordinary matter, with significant potential to realize a wide class of solitary waves. PMID:16090616

  11. Properties of Defect Modes in Periodic Lossy Multilayer with Negative-Index-Materials

    NASA Astrophysics Data System (ADS)

    Alireza, Aghajamali; Mahmood, Barati

    2013-07-01

    Employing the characteristic matrix method, this study investigates transmission properties of one-dimensional defective lossy photonic crystals composed of negative and positive refractive index layers with one lossless defect layer at the center of the crystal. The results of the study show that as the refractive index and thickness of the defect layer increase, the frequency of the defect mode decreases. In addition, the study shows that the frequency of the defect mode is sensitive to the incidence angle, polarization, and physical properties of the defect layer, but it is insensitive to the small lattice loss factor. The peak of the defect mode is very sensitive to the loss factor, incidence angle, polarization, refractive index, and thickness of the defect layer. This study also shows that the peak and the width of the defect mode are affected by the numbers of the lattice period and the loss factor. The results can lead to designing new types of narrow filter structures and other optical devices.

  12. Focus modulation of cylindrical vector beams through negative-index grating lenses

    NASA Astrophysics Data System (ADS)

    Wang, Shengming; Xu, Ji; Zhong, Yi; Ren, Rong; Lu, Yunqing; Wan, Hongdan; Wang, Jin; Ding, Jianping

    2016-08-01

    A cylindrically symmetric negative-index grating lens composed of unitary material is proposed as an effective method to modulate the focusing of cylindrical vector beams (CVBs). The grating parameters are designed to obtain an appropriate negative index, and the lens profile is tailored to realize the constructive interference. The plano-concave lens is parameterized to achieve desired focal length and the plano-cone lens is proposed to obtain large depth of focus. An optical needle is generated with radially polarized incidence, and an optical tube is achieved with incidence of azimuthal polarization. Moreover, the presented modulation methods can be applied for any arbitrary polarized CVBs. This work offers a more flexible and effective approach to design negative-index lenses for subwavelength focusing of CVBs, which has potential application value in related areas, such as optical trapping, and other nano-optics fields.

  13. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  14. Tamm plasmon-polariton with negative group velocity induced by a negative index meta-material capping layer at metal-Bragg reflector interface.

    PubMed

    Liu, Cunding; Kong, Mingdong; Li, Bincheng

    2014-05-01

    Influence of a negative refractive index meta-material (NIM) capping layer on properties of Tamm plasmon-polariton at the interface of metal-Bragg reflector structure is investigated. Conditions for excitation of the plasmon-polariton is determined from reflectivity mapping calculation and analyzed with cavity mode theory. For specific thicknesses of capping layers, Tamm plasmon-polariton with negative group velocity is revealed in a wide region of frequency. Different from backward optical propagation induced by negative effective-group-refractive-index in dispersive media, negative group velocity of Tamm plasmon-polariton results from opposite signs of cross-section-integrated field energy and Poynting vector. PMID:24921834

  15. Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes.

    PubMed

    Ahmadivand, Arash; Karabiyik, Mustafa; Pala, Nezih

    2015-05-01

    In this study, we investigated numerically the plasmon response of a dimer configuration composed of a couple of split and concentric Au nanoshells in a complex orientation. We showed that an isolated composition of two concentric split nanoshells could be tailored to support strong plasmon resonant modes in the visible wavelengths. After determining the accurate geometric dimensions for the presented antisymmetric nanostructure, we designed a dimer array that shows complex behavior during exposure to different incident polarizations. We verified that the examined dimer was able to support destructive interference between dark and bright plasmon modes, which resulted in a pronounced Fano-like dip. Observation of a Fano minimum in such a simple molecular orientation of subwavelength particles opens new avenues for employing this structure in designing various practical plasmonic devices. Depositing the final dimer in a strong coupling condition on a semiconductor metasurface and measuring the effective refractive index at certain wavelengths, we demonstrate that each one of dimer units can be considered a meta-atom due to the high aspect ratio in the geometric parameters. Using this method, by extending the number of dimers periodically and illuminating the structure, we examined the isotropic, polarization-dependent, and transmission behavior of the metamaterial configuration. Using numerical methods and calculating the effective refractive indices, we computed and sketched corresponding figure of merit over the transmission window, where the maximum value obtained was 42.3 for Si and 54.6 for gallium phosphide (GaP) substrates. PMID:25811974

  16. Negative-Index Metamaterials in the Visible Range

    NASA Astrophysics Data System (ADS)

    Shalaev, Vladimir

    2007-03-01

    In conventional materials, out of the two field components of light, electric and magnetic, only the electric one (``electric hand'') efficiently couples to and probes the atoms of a material while its ``magnetic hand'' remains almost unused because the interaction of atoms with the magnetic filed component of light is normally very week. Metamaterials, i.e. artificial materials with rationally designed properties, can enable the coupling of both field components of light to meta-atoms, enabling entirely new optical properties and exciting applications with such ``two-handed'' light. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. Negative-refractive index metamaterials create entirely new prospects for guiding light on the nanoscale, some of which may have revolutionary impact on present-day optical technologies. The extraordinary nonlinear optical properties of negative-index metamaterials are also discussed. We review this new emerging field of metamaterials and recent progress in demonstrating a negative refractive index in the optical and visible range, where applications can be particularly important, including sub-wavelength imaging and cloaking objects, i.e. making them invisible.

  17. Direct observation of negative-index microwave surface waves.

    PubMed

    Dockrey, J A; Horsley, S A R; Hooper, I R; Sambles, J R; Hibbins, A P

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  18. Direct observation of negative-index microwave surface waves

    NASA Astrophysics Data System (ADS)

    Dockrey, J. A.; Horsley, S. A. R.; Hooper, I. R.; Sambles, J. R.; Hibbins, A. P.

    2016-02-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon.

  19. Direct observation of negative-index microwave surface waves

    PubMed Central

    Dockrey, J. A.; Horsley, S. A. R.; Hooper, I. R.; Sambles, J. R.; Hibbins, A. P.

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  20. Gap solitons in a nonlinear quadratic negative-index cavity.

    PubMed

    Scalora, Michael; de Ceglia, Domenico; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Centini, Marco; Bloemer, Mark J

    2007-06-01

    We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index materials. This similarity also results in comparable field localization and enhancement properties that under appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conversion. We thus report that an intense, fundamental pump pulse is able to shift the band edge of a negative index cavity, and make it possible for a weak second harmonic pulse initially tuned inside the gap to be transmitted, giving rise to a gap soliton. The process is due to cascading, a well-known phenomenon that occurs far from phase matching conditions that limits energy conversion rates, it resembles a nonlinear third-order process, and causes pulse compression due to self-phase modulation. The symmetry of the equations of motion under the action of either an electric or a magnetic nonlinearity suggests that both nonlinear polarization and magnetization, or a combination of both, can lead to solitonlike pulses. More specifically, the antisymmetric localization properties of the electric and magnetic fields cause a nonlinear polarization to generate a dark soliton, while a nonlinear magnetization spawns a bright soliton. PMID:17677375

  1. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    SciTech Connect

    Lee, David A.; Vedral, L. James; Smith, David A.; Pinchuk, Anatoliy O.; Musselman, Randall L.

    2015-04-15

    Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  2. Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Garcia-Meca, Carlos

    2012-02-01

    Over the last decade, metamaterials have attracted a great interest thanks to their potential to expand the range of electromagnetic properties found in natural materials. In particular, the possibility of achieving negative refractive index media (NIM) enables us to implement superlenses and optical storing devices. Since the first experimental demonstration at microwave frequencies, much effort has been put in extending negative refraction to the visible spectrum, where we can take full advantage of NIM properties. For instance, the superior imaging ability of NIM would be essential for visible microscopy. The desired features for NIM are low loss and isotropy. This last property includes polarization independence and negative-index behavior in all spatial directions. None of these features have been attained in previous experiments. Thus, the current challenge is to improve such aspects in order to make NIM suitable for practical applications. In this work, we experimentally demonstrate a low-loss multilayer metamaterial exhibiting a double-negative index in the visible spectrum, while presenting polarization independence at normal incidence. This has been achieved by exploiting the properties of a second-order magnetic resonance of the so-called fishnet structure, in contrast to previous works that used first-order magnetic resonances, both related to gap surface plasmon polariton (SPP) modes. The low-loss nature of the employed magnetic resonance, together with the effect of the interacting adjacent layers, results in a figure of merit as high as 3.34. A wide spectral range of negative index is achieved, covering the wavelength region between 620 and 806 nm with only two different designs. The fabricated metamaterials are the first experimental multilayer NIM in the visible spectrum, which entails an important step towards homogeneous NIM in this range. Finally, we found that the SPP modes determining the permeability resonance display weak angular dispersion.

  3. A single-layer wide-angle negative-index metamaterial at visible freque

    SciTech Connect

    Burgos, Stanley P.; de Waele, Rene; Polman, Albert; Atwater, Harry A.

    2010-04-18

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a ±50° angular range, yielding a wide-angle NIM at visible frequencies.

  4. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    PubMed

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies. PMID:20400955

  5. Microwave Propagation in Negative Index and Artificial Dielectric Media

    NASA Astrophysics Data System (ADS)

    Parimi, Patanjali; Vodo, Plarenta; Lu, Wentao; Sridhar, Srinivas

    2003-03-01

    Negative index media (NIM) are fabricated by interleaving arrays of split ring resonators and wire strips. Microwave (X-band) waveguide measurements on the NIM yield quantitative information on the material parameters, % tilden(ω)=n^' +in^' ', tilde\\varepsilon% (ω )=\\varepsilon ^' +i\\varepsilon ^' ' and tilde% μ(ω )=μ ^' +iμ ^' ' . Typical NIM features such as passband in the NIM region expected from the theoretical analysis are observed in the measured data. The n^'(ω) determined from the waveguide transmission parameters (tildeS_11,tildeS_21) is found to vary from -4.8 to-0.3 in the passband region 9.6-10.5GHz. The results show that transmission is optimized for n^' (ω ) -1 and low n^' ' . A detailed investigation of several NIM materials suggests that the characteristic properties of the NIM are dependent on the length of the material, choice of the substrate material, and continuity in the wire strips. Artificial dielectric media fabricated with arrays of wire strips exhibit a characteristic microwave plasmon mode in the X-band region, below which \\varepsilon ^' (ω )<0. Work supported by the National Science Foundation and the Air Force Research Labs, Hanscom.

  6. Sub-picosecond optical switching with a negative index metamaterial

    SciTech Connect

    Dani, Keshav M; Upadhya, Prashant C; Zahyum, Ku

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  7. Symmetry breaking and optical negative index of closed nanorings

    NASA Astrophysics Data System (ADS)

    Kanté, Boubacar; Park, Yong-Shik; O'Brien, Kevin; Shuldman, Daniel; Lanzillotti-Kimura, Norberto D.; Jing Wong, Zi; Yin, Xiaobo; Zhang, Xiang

    2012-11-01

    Metamaterials have extraordinary abilities, such as imaging beyond the diffraction limit and invisibility. Many metamaterials are based on split-ring structures, however, like atomic orbital currents, it has long been believed that closed rings cannot produce negative refractive index. Here we report a low-loss and polarization-independent negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite ‘chess metamaterial’. The formation of an ultra-broad Fano-resonance-induced optical negative-index band, spanning wavelengths from 1.3 to 2.3 μm, is experimentally observed in this structure. This discrete and mono-particle negative-index approach opens exciting avenues towards symmetry-controlled topological nanophotonics with on-demand linear and nonlinear responses.

  8. Symmetry Breaking and Optical Negative Index of Closed Nanorings

    NASA Astrophysics Data System (ADS)

    Kante, Boubacar; Park, Yong-Shik; O'Brien, Kevin; Shuldman, Daniel; Lanzillotti-Kimura, Norberto; Wong, Zi; Yin, Xiaobo; Zhang, Xiang; UC Berkeley Team

    2013-03-01

    We report the first experimental demonstration of broadband negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite chess metamaterial. Our approach open avenues towards topological nanophotonics with on demand linear and non-linear responses.

  9. Modulation instability of structured-light beams in negative-index metamaterials

    NASA Astrophysics Data System (ADS)

    Silahli, Salih Z.; Walasik, Wiktor; Litchinitser, Natalia M.

    2016-05-01

    One of the most fundamental properties of isotropic negative-index metamaterials (NIMs), namely opposite directionality of the Poynting vector and the wavevector, enable many novel linear and nonlinear regimes of light–matter interactions. Here, we predict distinct characteristics of azimuthal modulation instability (MI) of optical vortices with different topological charges in NIMs with Kerr-type and saturable nonlinearity. We derive an analytical expression for the spatial modulation-instability gain for the Kerr-nonlinearity case and show that a specific condition relating the diffraction and the nonlinear lengths must be fulfilled for the azimuthal MI to occur. Finally, we investigate the rotation of the necklace beams due to the transfer of orbital angular momentum of the generating vortex on the movement of solitary necklace beams. We show that the direction of rotation is opposite in positive- and negative-index materials.

  10. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing

    NASA Astrophysics Data System (ADS)

    Chanda, Debashis; Shigeta, Kazuki; Gupta, Sidhartha; Cain, Tyler; Carlson, Andrew; Mihi, Agustin; Baca, Alfred J.; Bogart, Gregory R.; Braun, Paul; Rogers, John A.

    2011-07-01

    Negative-index metamaterials (NIMs) are engineered structures with optical properties that cannot be obtained in naturally occurring materials. Recent work has demonstrated that focused ion beam and layer-by-layer electron-beam lithography can be used to pattern the necessary nanoscale features over small areas (hundreds of µm2) for metamaterials with three-dimensional layouts and interesting characteristics, including negative-index behaviour in the optical regime. A key challenge is in the fabrication of such three-dimensional NIMs with sizes and at throughputs necessary for many realistic applications (including lenses, resonators and other photonic components). We report a simple printing approach capable of forming large-area, high-quality NIMs with three-dimensional, multilayer formats. Here, a silicon wafer with deep, nanoscale patterns of surface relief serves as a reusable stamp. Blanket deposition of alternating layers of silver and magnesium fluoride onto such a stamp represents a process for `inking' it with thick, multilayer assemblies. Transfer printing this ink material onto rigid or flexible substrates completes the fabrication in a high-throughput manner. Experimental measurements and simulation results show that macroscale, three-dimensional NIMs (>75 cm2) nano-manufactured in this way exhibit a strong, negative index of refraction in the near-infrared spectral range, with excellent figures of merit.

  11. All-semiconductor negative-index plasmonic absorbers.

    PubMed

    Law, S; Roberts, C; Kilpatrick, T; Yu, L; Ribaudo, T; Shaner, E A; Podolskiy, V; Wasserman, D

    2014-01-10

    We demonstrate epitaxially grown all-semiconductor thin-film midinfrared plasmonic absorbers and show that absorption in these structures is linked to the excitation of highly confined negative-index surface plasmon polaritons. Strong (>98%) absorption is experimentally observed, and the spectral position and intensity of the absorption resonances are studied by reflection and transmission spectroscopy. Numerical models as well as an analytical description of the excited guided modes in our structures are presented, showing agreement with experiment. The structures investigated demonstrate a wavelength-flexible, all-semiconductor, plasmonic architecture with potential for both sensing applications and enhanced interaction of midinfrared radiation with integrated semiconductor optoelectronic elements. PMID:24483930

  12. Tunable negative-index photonic crystals using colloidal magnetic fluids

    NASA Astrophysics Data System (ADS)

    Geng, Tao; Wang, Xin; Wang, Yan; Dong, Xiang-Mei

    2015-12-01

    The model of using colloidal magnetic fluid to build tunable negative-index photonic crystal is established. The effective permittivity ɛe and permeability μe of the two-dimensional photonic crystal are investigated in detail. For transverse magnetic polarization, both ɛe and μe exhibit a Lorentz-type anomalous dispersion, leading to a region where ɛe and μe are simultaneously negative. Then, considering a practical case, in which the thickness of photonic crystal is finite, the band structures for odd modes are calculated by the plane wave expansion method and the finite-difference time-domain method. The results suggest that reducing the external magnetic field strength or slab thickness will weaken the periodic modulation strength of the photonic crystal. Simulation results prove that the negative-index can be tuned by varying the external magnetic field strength or the slab thickness. The work presented in this paper gives a guideline for realizing the flat photonic crystal lens with tunable properties at optical frequencies, which may have potential applications in tunable near-field imaging systems. Project supported by the National Basic Research Program of China (Grant No. 2015CB352001), the Shanghai Rising-Star Program, China (Grant No. 12QA1402300), the China Scholarship Council (CSC) Program, and the Basic Research Program of Shanghai, China (Grant No. 14ZR1428500).

  13. Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

    SciTech Connect

    Guney, Durdu; Koschny, Thomas; Soukoulis, Costas

    2010-05-26

    Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.

  14. Natural media with negative index of refraction: Perspectives of complex transition metal oxides (Review Article)

    NASA Astrophysics Data System (ADS)

    Fertman, E. L.; Beznosov, A. B.

    2011-07-01

    The capabilities of perovskite-like compounds with the effect of colossal magnetoresistance (CMR) and some other complex oxides to have a negative index of refraction (NIR) are considered. Physical properties of these compounds are also analyzed from the standpoint of designing tunable metamaterials on their base. Of particular interest are temperature and magnetic field driven first-order transformations in oxides with perovskite structure and in spinels. These transformations give rise to nanophase separated states, using which the properties of negative refraction can be affected. The magnetic-field controlled metamaterials with CMR oxides as a boundary NIR media for a photonic crystal are discussed.

  15. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency. PMID:21231386

  16. Three-Dimensional Negative Index of Refraction at Optical Frequencies by Coupling Plasmonic Waveguides

    NASA Astrophysics Data System (ADS)

    Verhagen, Ewold; de Waele, René; Kuipers, L.; Polman, Albert

    2010-11-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  17. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents. PMID:24451343

  18. Negative index of refraction in a four-level system with magnetoelectric cross coupling and local field corrections

    SciTech Connect

    Bello, F.

    2011-07-15

    This research focuses on a coherently driven four-level atomic medium with the aim of inducing a negative index of refraction while taking into consideration local field corrections as well as magnetoelectric cross coupling (i.e.,chirality) within the material's response functions. Two control fields are used to render the medium transparent for a probe field which simultaneously couples to an electric and a magnetic dipole transition, thus allowing one to test the permittivity and permeability of the material at the same time. Numerical simulations show that a negative index of refraction with low absorption can be obtained for a range of probe detunings while depending on number density and the ratio between the intensities of the control fields.

  19. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    PubMed Central

    Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A.

    2013-01-01

    Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements have no direct translation to the optical domain, without being burdened by technological and conceptual difficulties. Of particular importance within the realm of optical negative-index metamaterials (NIM), is the issue of simultaneously achieving strong electric and magnetic responses and low associated losses. Here, hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative index of refraction in the near-infrared, with values of the real part well below −1, and extremely low losses (an order of magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in the whole telecom spectrum. The design is proven in configurations such as prisms and slabs, directly observing negative refraction. PMID:23514968

  20. Design a Sculpting Material

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    Artists have used a variety of materials over the years for sculpting. They have been quick to use unusual pieces of technology to make a vibrant and unique statement, just as painters have created and used a wide variety of colors and derived pigments for their canvases. In this article, the author discusses a design challenge that gives students…

  1. Soft 3D acoustic metamaterial with negative index.

    PubMed

    Brunet, Thomas; Merlin, Aurore; Mascaro, Benoit; Zimny, Kevin; Leng, Jacques; Poncelet, Olivier; Aristégui, Christophe; Mondain-Monval, Olivier

    2015-04-01

    Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of 'ultra-slow' Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices. PMID:25502100

  2. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration

    PubMed Central

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing

    2016-01-01

    We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090

  3. Looking for design in materials design.

    PubMed

    Eberhart, M E; Clougherty, D P

    2004-10-01

    Despite great advances in computation, materials design is still science fiction. The construction of structure-property relations on the quantum scale will turn computational empiricism into true design. PMID:15467684

  4. Looking for design in materials design

    NASA Astrophysics Data System (ADS)

    Eberhart, M. E.; Clougherty, D. P.

    2004-10-01

    Despite great advances in computation, materials design is still science fiction. The construction of structure-property relations on the quantum scale will turn computational empiricism into true design.

  5. Two-dimensional fluid-filled closed-cell cellular solid as an acoustic metamaterial with negative index

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, V.; Van Damme, B.

    2016-04-01

    A concept for acoustic metamaterials consisting of a cellular medium with fluid-filled cells is fabricated and studied experimentally. In such a system, the fluid and solid structure explicitly interact, and elastic wave propagation is coupled to both phases. Focusing here on shear wave behavior, we confirm previous numerical studies in three steps. We first measure the material deformations pertaining to three qualitatively different shear wave modes in the frequency range below 3.5 kHz. We then measure the group velocity and demonstrate that, within a certain frequency interval, the group and phase velocity have opposite signs. This shows that the system acts as a negative-index metamaterial. Finally, we confirm the presence of band gaps due to the locally resonant behavior of the cell walls. The demonstrated concept of a closed, fluid-filled cellular material as an acoustic metamaterial opens a wide space for applications.

  6. Specific absorption rate analysis of broadband mobile antenna with negative index metamaterial

    NASA Astrophysics Data System (ADS)

    Alam, Touhidul; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-03-01

    This paper presents a negative index metamaterial-inspired printed mobile wireless antenna that can support most mobile applications such as GSM, UMTS, Bluetooth and WLAN frequency bands. The antenna consists of a semi-circular patch, a 50Ω microstrip feed line and metamaterial ground plane. The antenna occupies a very small space of 37 × 47 × 0.508 mm3, making it suitable for mobile wireless application. The perceptible novelty shown in this proposed antenna is that reduction of specific absorption rate using the negative index metamaterial ground plane. The proposed antenna reduced 72.11 and 75.53 % of specific absorption rate at 1.8 and 2.4 GHz, respectively.

  7. Materials design for new superconductors

    NASA Astrophysics Data System (ADS)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  8. Materials by Design

    NASA Astrophysics Data System (ADS)

    Olson, Gregory B.

    As a new millennium unfolds, a Science Age of three centuries draws to a close, replaced by a Technology Age based not in scientific discovery but in a revolution in engineering design led by U.S. industry. The resulting New Economy, which we now strive to sustain, is based in technology not found in a laboratory, but deliberately created from the human mind in response to perceived needs. While we tend to be nostalgic about exploration ages, at this point in history humankind not only enjoys an unprecedented ability to create wealth from thought, but holds all the tools for a much-needed transformation from mere technology to responsible technology.

  9. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications.

    PubMed

    Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  10. A Negative Index Metamaterial-Inspired UWB Antenna with an Integration of Complementary SRR and CLS Unit Cells for Microwave Imaging Sensor Applications

    PubMed Central

    Islam, Mohammad Tariqul; Islam, Md. Moinul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah

    2015-01-01

    This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721

  11. Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect

    SciTech Connect

    Wang, Y.; Wang, X.; Rybczynski, J.; Wang, D.Z.; Kempa, K.; Ren, Z.F.

    2005-04-11

    Self-assembly of polystyrene microspheres has been utilized in a two-step masking technique to prepare triangular lattices of catalytic nanodots at low cost. Subsequent triangular lattices of aligned carbon nanotubes on a silicon substrate are achieved by plasma-enhanced chemical vapor deposition. Nickel is used both in the nanodots and in the secondary mask. The triangular lattices of carbon nanotube arrays as two-dimensional photonic crystals show higher geometrical symmetry than the hexagonal lattices previously reported, enabling broader applications including negative index of refraction and subwavelength lensing effect.

  12. Materials design for new superconductors.

    PubMed

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues. PMID:27214291

  13. Composite materials: Testing and design

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D. (Editor)

    1988-01-01

    The present conference discusses topics in the analysis of composite structures, composite materials' impact and compression behavior, composite materials characterization methods, composite failure mechanisms, NDE methods for composites, and filament-wound and woven composite materials' fabrication. Attention is given to the automated design of a composite plate for damage tolerance, the effects of adhesive layers on composite laminate impact damage, instability-related delamination growth in thermoset and thermoplastic composites, a simple shear fatigue test for unidirectional E-glass epoxy, the growth of elliptic delaminations in laminates under cyclic transverse shear, and the mechanical behavior of braided composite materials.

  14. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  15. The role of absorption and dispersion in resonant tunnelling through a negative index medium

    NASA Astrophysics Data System (ADS)

    Golla, D.; Deb, S.; Dutta Gupta, S.

    2011-01-01

    We study resonant tunneling through a layered medium with a passive negative index medium (NIM) slab as a constituent layer. Using a causal model for susceptibilities with the parameters of a recently reported metamaterial [G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 31, 1800 (2006)] we show that resonant tunnelling and the associated delay are mostly suppressed. This is in sharp contrast with the naive approach of retaining phase velocity dispersion with arbitrary low losses, predicting sharp resonances with large associated delays. This is shown to be a nontrivial issue because of the necessity of losses for NIM behaviour, while their presence spoils the quality factor of the resonant devices.

  16. Materials design - An undergraduate course

    NASA Technical Reports Server (NTRS)

    Olson, G. B.

    1991-01-01

    General principles of systems engineering are applied to the design of materials to meet specific performance objectives. Results of ongoing reseach on processing/structure and structure/property relations in ultrahigh-strength steels are used to illustrate the formulation of quantitative microstructural objectives to achieve required property combinations, and the computer thermodynamics-based design of compositions responding to prescribed processing conditions. A class project addresses the conceptual design of a 7-component stainless bearing steel for a critical Space Shuttle application.

  17. Designed materials: what and how

    NASA Astrophysics Data System (ADS)

    Mazumder, Jyotirmoy; Dutta, Debasish; Ghosh, Amit K.; Kikuchi, Noboru

    2003-03-01

    Quest for a material to suit the service performance is almost as old as human civilization. So far materials engineers have developed a series of alloys, polymers, ceramics, and composites to serve many of the performance requirements in a modern society. However, challenges appear when one needs to satisfy more than one boundary condition. For example, a component with negative Coefficient of Thermal Expansion (CTE) using a ductile metal was almost impossible until recently. Synthesis of various technologies such as Direct Metal Deposition (DMD) Homogenization Design Method (HDM) and mutli material Computer Aided Design (CAD) was necessary to achieve this goal. Rapid fabrication of three-dimensional shapes of engineering materials such as H13 tool steel and nickel super alloys are now possible using Direct Materials Deposition (DMD) technique as well as similar techniques such as Light Engineered New Shaping (LENS) or Directed Light Fabrication (DLF). However, DMD has closed loop capability that enables better dimension and thermal cycle control. This enables one to deposit different material at different pixels with a given height directly from a CAD drawing. The feedback loop also controls the thermal cycle. H13 tool steel is one of the difficult alloys for deposition due to residual stress accumulation from martensitic transformation. However, it is the material of choice for the die and tool industry. DMD has demonstrated successful fabrication of complicated shapes and dies and tools, even with H13 alloys. This process also offers copper chill blocks and water-cooling channels as the integral part of the tool. On the other hand ZrO2 was co-deposited with nickel super alloys using DMD. Flexibility of the process is enormous and essentially it is an enabling technology to marterialize many a design. Using DMD in conjunction with HDM and multi-material CAD, one can produce components with predetermined performance such as negative co-efficient of expansion, by

  18. Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials.

    PubMed

    Justice, Bryan J; Mock, Jack J; Guo, Liheng; Degiron, Aloyse; Schurig, David; Smith, David R

    2006-09-18

    We perform an experimental study of the phase and amplitude of microwaves interacting with and scattered by two-dimensional negative index metamaterials. The measurements are performed in a parallel plate waveguide apparatus at X-band frequencies (8-12 GHz), thus constraining the electromagnetic fields to two dimensions. A detection antenna is fixed to one of the plates, while a second plate with a fixed source antenna or waveguide is translated relative to the first plate. The detection antenna is inserted into, but not protruding below, the stationary plate so that fields internal to the metamaterial samples can be mapped. From the measured mappings of the electric field, the interplay between the microstructure of the metamaterial lattice and the macroscopic averaged response is revealed. For example, the mapped phase fronts within a metamaterial having a negative refractive index are consistent with a macroscopic phase-in accordance with the effective medium predictions-which travels in a direction opposite to the direction of propagation. The field maps are in excellent agreement with finite element numerical simulations performed assuming homogeneous metamaterial structures. PMID:19529250

  19. Surface polaritons in a negative-index metamaterial with active Raman gain

    NASA Astrophysics Data System (ADS)

    Tan, Chaohua; Huang, Guoxiang

    2015-02-01

    We propose a scheme to realize stable propagation of linear and nonlinear surface polaritons (SPs) by placing a N -type four-level quantum emitters at the interface between a dielectric and a negative-index metamaterial (NIMM). We show that in linear propagation regime SPs can acquire an active Raman gain (ARG) from a pump field and a gain doublet appears in the gain spectrum of a signal field induced by the quantum interference effect from a control field. The ARG can be used not only to completely compensate the Ohmic loss in the NIMM but also to acquire a superluminal group velocity for the SPs. We also show that in the nonlinear propagation regime a huge enhancement of the Kerr nonlinearity of the SPs can be obtained. As a result, ARG-assisted (1 + 1 )- and (2 + 1 )- dimensional superluminal surface polaritonic solitons with extremely low generation power may be produced based on the strong confinement of the electric field at the dielectric-NIMM interface.

  20. Shear-mediated contributions to the effective properties of soft acoustic metamaterials including negative index

    PubMed Central

    Forrester, Derek Michael; Pinfield, Valerie J.

    2015-01-01

    Here we show that, for sub-wavelength particles in a fluid, viscous losses due to shear waves and their influence on neighbouring particles significantly modify the effective acoustic properties, and thereby the conditions at which negative acoustic refraction occurs. Building upon earlier single particle scattering work, we adopt a multiple scattering approach to derive the effective properties (density, bulk modulus, wavenumber). We show,through theoretical prediction, the implications for the design of “soft” (ultrasonic) metamaterials based on locally-resonant sub-wavelength porous rubber particles, through selection of particle size and concentration, and demonstrate tunability of the negative speed zones by modifying the viscosity of the suspending medium. For these lossy materials with complex effective properties, we confirm the use of phase angles to define the backward propagation condition in preference to “single-” and “double-negative” designations. PMID:26686414

  1. Designer Nanocrystal Materials for Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kagan, Cherie

    Advances in synthetic methods allow a wide range of semiconductor nanocrystals (NCs) to be tailored in size and shape and to be used as building blocks in the design of NC solids. However, the long, insulating ligands commonly employed in the synthesis of colloidal NCs inhibit strong interparticle coupling and charge transport once NCs are assembled into the solids state as NC arrays. We will describe the range of short, compact ligand chemistries we employ to exchange the long, insulating ligands used in synthesis and to increase interparticle coupling. These ligand exchange processes can have a dramatic influence on NC surface chemistry as well as NC organization in the solids, showing examples of short-range order. Synergistically, we use 1) thermal evaporation and diffusion and 2) wet-chemical methods to introduce extrinsic impurities and non-stoichiometry to passivate surface traps and dope NC solids. NC coupling and doping provide control over the density of states and the carrier type, concentration, mobility, and lifetime, which we characterize by a range of electronic and spectroscopic techniques. We will describe the importance of engineering device interfaces to design NC materials for solar photovoltaics.

  2. Development of Negative Index of Refraction Metamaterials with Split Ring Resonators and Wires for RF Lens Applications

    NASA Astrophysics Data System (ADS)

    Parazzoli, Claudio G.; Greegor, Robert B.; Tanielian, M. H.

    Metamaterials are engineered ring and wire composites whose response to an incident electromagnetic wave can be described by an effective negative dielectric permittivity ɛ and magnetic permeability μ. Simultaneous negative ɛ and μ within a given frequency band of a metamaterial gives rise to a negative index of refraction n. This has been demonstrated via a Snell's law experiment. The electromagnetic properties of many metamaterial structures in the microwave region are investigated through numerical simulations and experiments. A negative index of refraction, n, allows lenses with reduced primary (Seidel) aberrations compared to equivalent positive index lens. This is demonstrated both for cylindrical lenses and spherical lenses, as well as for the gradient index lenses. Detailed field maps of the focal region of the metamaterials lenses are made and compared to a comparable positive index of refraction lens.

  3. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions. PMID:27292550

  4. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  5. Some Thoughts on DIY Materials Design.

    ERIC Educational Resources Information Center

    Block, David

    1991-01-01

    Discusses the reasons that are often given against teacher-generated English-as-a-Foreign-Language materials and presents arguments in favor of DIY (Do It Yourself) materials design. (23 references) (GLR)

  6. OLED microdisplay design and materials

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ali, Tariq; Khayrullin, Ilyas; Ghosh, Amalkumar

    2010-04-01

    AMOLED microdisplays from eMagin Corporation are finding growing acceptance within the military display market as a result of their excellent power efficiency, wide operating temperature range, small size and weight, good system flexibility, and ease of use. The latest designs have also demonstrated improved optical performance including better uniformity, contrast, MTF, and color gamut. eMagin's largest format display is currently the SXGA design, which includes features such as a 30-bit wide RGB digital interface, automatic luminance regulation from -45 to +70°C, variable gamma control, and a dynamic range exceeding 50:000 to 1. This paper will highlight the benefits of eMagin's latest microdisplay designs and review the roadmap for next generation devices. The ongoing development of reduced size pixels and larger format displays (up to WUXGA) as well as new OLED device architecture (e.g. high-brightness yellow) will be discussed. Approaches being explored for improved performance in next generation designs such as lowpower serial interfaces, high frame rate operation, and new operational modes for reduction of motion artifacts will also be described. These developments should continue to enhance the appeal of AMOLED microdisplays for a broad spectrum of near-to-the-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming.

  7. Managing Training Materials with Structured Text Design.

    ERIC Educational Resources Information Center

    Streit, Les D.; And Others

    1986-01-01

    Describes characteristics of structured text design; benefits of its use in training; benefits for developers of training materials and steps in preparing training materials. A case study illustrating how the structured text design process solved the sales training needs of the Mercedes-Benz Truck Company is presented. (MBR)

  8. Computational design and optimization of energy materials

    NASA Astrophysics Data System (ADS)

    Chan, Maria

    The use of density functional theory (DFT) to understand and improve energy materials for diverse applications - including energy storage, thermal management, catalysis, and photovoltaics - is widespread. The further step of using high throughput DFT calculations to design materials and has led to an acceleration in materials discovery and development. Due to various limitations in DFT, including accuracy and computational cost, however, it is important to leverage effective models and, in some cases, experimental information to aid the design process. In this talk, I will discuss efforts in design and optimization of energy materials using a combination of effective models, DFT, machine learning, and experimental information.

  9. Topology Optimization for Architected Materials Design

    NASA Astrophysics Data System (ADS)

    Osanov, Mikhail; Guest, James K.

    2016-07-01

    Advanced manufacturing processes provide a tremendous opportunity to fabricate materials with precisely defined architectures. To fully leverage these capabilities, however, materials architectures must be optimally designed according to the target application, base material used, and specifics of the fabrication process. Computational topology optimization offers a systematic, mathematically driven framework for navigating this new design challenge. The design problem is posed and solved formally as an optimization problem with unit cell and upscaling mechanics embedded within this formulation. This article briefly reviews the key requirements to apply topology optimization to materials architecture design and discusses several fundamental findings related to optimization of elastic, thermal, and fluidic properties in periodic materials. Emerging areas related to topology optimization for manufacturability and manufacturing variations, nonlinear mechanics, and multiscale design are also discussed.

  10. Role of phase matching in pulsed second-harmonic generation: Walk-off and phase-locked twin pulses in negative-index media

    SciTech Connect

    Roppo, Vito; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; De Ceglia, Domenico; Scalora, Michael; Akozbek, Neset; Bloemer, Mark J.; Haus, Joseph W.; Kosareva, Olga G.; Kandidov, Valery P.

    2007-09-15

    The present investigation is concerned with the study of pulsed second-harmonic generation under conditions of phase and group velocity mismatch, and generally low conversion efficiencies and pump intensities. In positive-index, nonmetallic materials, we generally find qualitative agreement with previous reports regarding the presence of a double-peaked second harmonic signal, which comprises a pulse that walks off and propagates at the nominal group velocity one expects at the second-harmonic frequency, and a second pulse that is 'captured' and propagates under the pump pulse. We find that the origin of the double-peaked structure resides in a phase-locking mechanism that characterizes not only second-harmonic generation, but also {chi}{sup (3)} processes and third-harmonic generation. The phase-locking mechanism that we describe occurs for arbitrarily small pump intensities, and so it is not a soliton effect, which usually relies on a threshold mechanism, although multicolor solitons display similar phase locking characteristics. Thus, in second harmonic generation a phase-matched component is always generated, even under conditions of material phase mismatch: This component is anomalous, because the material does not allow energy exchange between the pump and the second-harmonic beam. On the other hand, if the material is phase matched, phase locking and phase matching are indistinguishable, and the conversion process becomes efficient. We also report a similar phase-locking phenomenon in negative index materials. A spectral analysis of the pump and the generated signals reveals that the phase-locking phenomenon causes the forward moving, phase-locked second-harmonic pulse to experience the same negative index as the pump pulse, even though the index of refraction at the second-harmonic frequency is positive. Our analysis further shows that the reflected second-harmonic pulse generated at the interface and the forward-moving, phase-locked pulse appear to be part

  11. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  12. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema

    Duoss, Eric

    2014-05-30

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  13. Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials.

    PubMed

    Sadatgol, Mehdi; Özdemir, Şahin K; Yang, Lan; Güney, Durdu Ö

    2015-07-17

    Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose a fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or Π) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to an arbitrary form of incident waves. The Π scheme is fundamentally different from major optical amplification schemes. It does not require a gain medium, interaction with phonons, or any nonlinear medium. The Π scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These findings open the possibility of reviving the early dreams of making "magical" metamaterials from scratch. PMID:26230802

  14. Plasmon Injection to Compensate and Control Losses in Negative Index Metamaterials

    NASA Astrophysics Data System (ADS)

    Sadatgol, Mehdi; Ã-zdemir, Şahin K.; Yang, Lan; Güney, Durdu Ã.-.

    2015-07-01

    Metamaterials have introduced a whole new world of unusual materials with functionalities that cannot be attained in naturally occurring material systems by mimicking and controlling the natural phenomena at subwavelength scales. However, the inherent absorption losses pose a fundamental challenge to the most fascinating applications of metamaterials. Based on a novel plasmon injection (PI or Π ) scheme, we propose a coherent optical amplification technique to compensate losses in metamaterials. Although the proof of concept device here operates under normal incidence only, our proposed scheme can be generalized to an arbitrary form of incident waves. The Π scheme is fundamentally different from major optical amplification schemes. It does not require a gain medium, interaction with phonons, or any nonlinear medium. The Π scheme allows for loss-free metamaterials. It is ideally suited for mitigating losses in metamaterials operating in the visible spectrum and is scalable to other optical frequencies. These findings open the possibility of reviving the early dreams of making "magical" metamaterials from scratch.

  15. Computationally Designed Molecularly Imprinted Materials

    NASA Astrophysics Data System (ADS)

    Pavel, Dumitru; Lagowski, Jolanta; Faid, Karim

    2004-03-01

    Molecular dynamics simulations were carried out for different molecular systems in order to predict the binding affinities, binding energies, binding distances and the active site groups between the simulated molecular systems and different bio-ligands (theophylline and its derivatives), which have been designed and minimized using molecular simulation techniques. The first simulated molecular systems consisted of a ligand and functional monomer, such as methacrylic acid and its derivatives. For each pair of molecular systems, (10 monomers with a ligand and 10 monomers without a ligand) a total energy difference was calculated in order to estimate the binding energy between a ligand and the corresponding monomers. The analysis of the simulated functional monomers with ligands indicates that the functional group of monomers interacting with ligands tends to be either COOH or CH2=CH. The distances between the ligand and monomer, in the most stable cases as indicated above, are between 2.0-4.5 Å. The second simulated molecular systems consisted of a ligand and a polymer. The polymers were obtained from monomers that were simulated above. And similar to monomer study, for each pair of molecular systems, (polymer with a ligand and polymer without a ligand) a total energy difference was calculated in order to estimate the binding energy between ligand and the corresponding polymer. The binding distance between the active site of a polymer and a ligand will also be discussed.

  16. Reestablishing Design in the Materials Curriculum

    ERIC Educational Resources Information Center

    Larsen, William L.

    1975-01-01

    Outlines one approach to the teaching of materials engineering design within the context of metallurgical engineering. This approach uses a problem solving situation and criteria for an appropriate problem are presented. (GS)

  17. Design principles for therapeutic angiogenic materials

    NASA Astrophysics Data System (ADS)

    Briquez, Priscilla S.; Clegg, Lindsay E.; Martino, Mikaël M.; Gabhann, Feilim Mac; Hubbell, Jeffrey A.

    2016-01-01

    Despite extensive research, pro-angiogenic drugs have failed to translate clinically, and therapeutic angiogenesis, which has potential in the treatment of various cardiovascular diseases, remains a major challenge. Physiologically, angiogenesis — the process of blood-vessel growth from existing vasculature — is regulated by a complex interplay of biophysical and biochemical cues from the extracellular matrix (ECM), angiogenic factors and multiple cell types. The ECM can be regarded as the natural 3D material that regulates angiogenesis. Here, we leverage knowledge of ECM properties to derive design rules for engineering pro-angiogenic materials. We propose that pro-angiogenic materials should be biomimetic, incorporate angiogenic factors and mimic cooperative interactions between growth factors and the ECM. We highlight examples of material designs that demonstrate these principles and considerations for designing better angiogenic materials.

  18. Design of materials with prescribed nonlinear properties

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sigmund, O.; Jensen, J. S.

    2014-09-01

    We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests under finite deformation, i.e. stress-strain relations and Poissons ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties. The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poissons ratio for axial strain intervals of εi∈[0.00, 0.30].

  19. Material design using surrogate optimization algorithm

    NASA Astrophysics Data System (ADS)

    Khadke, Kunal R.

    Nanocomposite ceramics have been widely studied in order to tailor desired properties at high temperatures. Methodologies for development of material design are still under effect . While finite element modeling (FEM) provides significant insight on material behavior, few design researchers have addressed the design paradox that accompanies this rapid design space expansion. A surrogate optimization model management framework has been proposed to make this design process tractable. In the surrogate optimization material design tool, the analysis cost is reduced by performing simulations on the surrogate model instead of high density finite element model. The methodology is incorporated to find the optimal number of silicon carbide (SiC) particles, in a silicon-nitride Si3N 4 composite with maximum fracture energy [2]. Along with a deterministic optimization algorithm, model uncertainties have also been considered with the use of robust design optimization (RDO) method ensuring a design of minimum sensitivity to changes in the parameters. These methodologies applied to nanocomposites design have a signicant impact on cost and design cycle time reduced.

  20. Designing Jammed Materials from the Particle Up

    NASA Astrophysics Data System (ADS)

    Miskin, Marc

    2015-03-01

    Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new challenges have emerged from tailoring packings of particles jammed into a rigid state. For these materials, particle shape is a key parameter by which the response of a packing can be tuned. Yet designing via shape faces two unique complications: first there is no general theory that calculates the response of an aggregate given a particle shape, and second, there is no straightforward way to explore the space of all particle geometries. This talk summarizes recent results that address these challenges to design jammed materials from the particle up. It shows how simulations, experiments, and state-of-the-art optimization engines come together to form a complete system that identifies extreme materials. As examples, it will show how this system can create particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. Finally, it will discuss the how these results relate to the general task of materials design and the exciting possibilities associated with optimizing, tuning and rationally constructing new breeds of jammed materials.

  1. Thermophotovoltaic emitter material selection and design

    SciTech Connect

    Saxton, P.C.; Moran, A.L.; Harper, M.J.; Lindler, K.W.

    1997-07-01

    Thermophotovoltaics (TPV) is a potentially attractive direct energy conversion technology. It reduces the need for complex machinery with moving parts and maintenance. TPV generators can be run from a variety of heat sources including waste heat for smaller scale operations. The US Naval Academy`s goal was to build a small experimental thermophotovoltaic generator powered by combustion gases from a General Electric T-58 helicopter gas turbine. The design of the generator imposes material limitations that directly affect emitter and structural materials selection. This paper details emitter material goals and requirements, and the methods used to select suitable candidate emitter materials for further testing.

  2. Computational design of fused heterocyclic energetic materials

    NASA Astrophysics Data System (ADS)

    Tsyshevskiy, Roman; Pagoria, Philip; Batyrev, Iskander; Kuklja, Maija

    A continuous traditional search for effective energetic materials is often based on a trial and error approach. Understanding of fundamental correlations between the structure and sensitivity of the materials remains the main challenge for design of novel energetics due to the complexity of the behavior of energetic materials. State of the art methods of computational chemistry and solid state physics open new compelling opportunities in simulating and predicting a response of the energetic material to various external stimuli. Hence, theoretical and computational studies can be effectively used not only for an interpretation of sensitivity mechanisms of widely used explosives, but also for identifying criteria for material design prior to its synthesis and experimental characterization. We report here, how knowledge on thermal stability of recently synthesized materials of LLM series is used for design of novel fused heterocyclic energetic materials, including DNBTT (2,7-dinitro-4H,9H-bis([1, 2, 4"]triazolo)[1,5-b:1',5'-e][1, 2, 4, 5]tetrazine), compound with high thermal stability, which is on par or better than that of TATB. This research is supported by ONR (Grant N00014-12-1-0529), NSF XSEDE resources (Grant DMR-130077) and DOE NERSC resources (Contract DE-AC02-05CH11231).

  3. Materials design for electrocatalytic carbon capture

    NASA Astrophysics Data System (ADS)

    Tan, Xin; Tahini, Hassan A.; Smith, Sean C.

    2016-05-01

    We discuss our philosophy for implementation of the Materials Genome Initiative through an integrated materials design strategy, exemplified here in the context of electrocatalytic capture and separation of CO2 gas. We identify for a group of 1:1 X-N graphene analogue materials that electro-responsive switchable CO2 binding behavior correlates with a change in the preferred binding site from N to the adjacent X atom as negative charge is introduced into the system. A reconsideration of conductive N-doped graphene yields the discovery that the N-dopant is able to induce electrocatalytic binding of multiple CO2 molecules at the adjacent carbon sites.

  4. Adaptive Strategies for Materials Design using Uncertainties

    NASA Astrophysics Data System (ADS)

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab

    2016-01-01

    We compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.

  5. Adaptive strategies for materials design using uncertainties

    DOE PAGESBeta

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab

    2016-01-21

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  6. Adaptive Strategies for Materials Design using Uncertainties

    PubMed Central

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; Hogden, John; Lookman, Turab

    2016-01-01

    We compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties. PMID:26792532

  7. A Bridge for Accelerating Materials by Design

    SciTech Connect

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; Kalinin, Sergei V.

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges. In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.

  8. A Bridge for Accelerating Materials by Design

    DOE PAGESBeta

    Sumpter, Bobby G.; Vasudevan, Rama K.; Potok, Thomas E.; Kalinin, Sergei V.

    2015-11-25

    Recent technical advances in the area of nanoscale imaging, spectroscopy, and scattering/diffraction have led to unprecedented capabilities for investigating materials structural, dynamical and functional characteristics. In addition, recent advances in computational algorithms and computer capacities that are orders of magnitude larger/faster have enabled large-scale simulations of materials properties starting with nothing but the identity of the atomic species and the basic principles of quantum- and statistical-mechanics and thermodynamics. Along with these advances, an explosion of high-resolution data has emerged. This confluence of capabilities and rise of big data offer grand opportunities for advancing materials sciences but also introduce several challenges.more » In this editorial we identify challenges impeding progress towards advancing materials by design (e.g., the design/discovery of materials with improved properties/performance), possible solutions, and provide examples of scientific issues that can be addressed by using a tightly integrated approach where theory and experiments are linked through big-deep data.« less

  9. Progress in material design for biomedical applications

    PubMed Central

    Tibbitt, Mark W.; Rodell, Christopher B.; Burdick, Jason A.; Anseth, Kristi S.

    2015-01-01

    Biomaterials that interface with biological systems are used to deliver drugs safely and efficiently; to prevent, detect, and treat disease; to assist the body as it heals; and to engineer functional tissues outside of the body for organ replacement. The field has evolved beyond selecting materials that were originally designed for other applications with a primary focus on properties that enabled restoration of function and mitigation of acute pathology. Biomaterials are now designed rationally with controlled structure and dynamic functionality to integrate with biological complexity and perform tailored, high-level functions in the body. The transition has been from permissive to promoting biomaterials that are no longer bioinert but bioactive. This perspective surveys recent developments in the field of polymeric and soft biomaterials with a specific emphasis on advances in nano- to macroscale control, static to dynamic functionality, and biocomplex materials. PMID:26598696

  10. Ureteral Stents. New Materials and Designs

    NASA Astrophysics Data System (ADS)

    Monga, Manoj

    2008-09-01

    Issues of stent migration and challenges of stent placement can be addressed adequately with current stent designs and materials, and an emphasis on precision in technique. Future changes in ureteral stents will need to maintain the current standard that has been set with existing devices in these regards. In contrast, new advances are sorely needed in encrustation and infection associated with ureteral stents. The main target for future development in ureteral stent materials lies in a biodegradable stent that degrades either on demand or degrades reliably within one-month with predictable degradation patterns that do not predispose to urinary obstruction, discomfort or need for secondary procedures. The main target for future development in ureteral stent design is improved patient comfort.

  11. Material constraints on high-speed design

    NASA Astrophysics Data System (ADS)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  12. Computational Materials Program for Alloy Design

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo

    2005-01-01

    The research program sponsored by this grant, "Computational Materials Program for Alloy Design", covers a period of time of enormous change in the emerging field of computational materials science. The computational materials program started with the development of the BFS method for alloys, a quantum approximate method for atomistic analysis of alloys specifically tailored to effectively deal with the current challenges in the area of atomistic modeling and to support modern experimental programs. During the grant period, the program benefited from steady growth which, as detailed below, far exceeds its original set of goals and objectives. Not surprisingly, by the end of this grant, the methodology and the computational materials program became an established force in the materials communitiy, with substantial impact in several areas. Major achievements during the duration of the grant include the completion of a Level 1 Milestone for the HITEMP program at NASA Glenn, consisting of the planning, development and organization of an international conference held at the Ohio Aerospace Institute in August of 2002, finalizing a period of rapid insertion of the methodology in the research community worlwide. The conference, attended by citizens of 17 countries representing various fields of the research community, resulted in a special issue of the leading journal in the area of applied surface science. Another element of the Level 1 Milestone was the presentation of the first version of the Alloy Design Workbench software package, currently known as "adwTools". This software package constitutes the first PC-based piece of software for atomistic simulations for both solid alloys and surfaces in the market.Dissemination of results and insertion in the materials community worldwide was a primary focus during this period. As a result, the P.I. was responsible for presenting 37 contributed talks, 19 invited talks, and publishing 71 articles in peer-reviewed journals, as

  13. Application of New Materials in the Household Appliances Design

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ren, Y.

    The widespread use of new materials in household appliances industry, not only help those products to get rid of the appearance shackles caused by original materials, but also gave the designers the freedom to open up the world of product design. This paper aims to analyze the impact of new materials for home appliances design through relevant research, to explore the application of new material in household appliances functional design, shape design, color design and emotional design, etc., so as to reveal the impact and promoting effects of new material in household appliances world, as well as the prospects of new material in future household appliances design.

  14. Computational design of microvascular biomimetic materials

    NASA Astrophysics Data System (ADS)

    Aragon, Alejandro Marcos

    Biomimetic microvascular materials are increasingly considered for a variety of autonomic healing, cooling and sensing applications. The microvascular material of interest in this work consists of a network of hollow microchannels, with diameters as small as 10 mum, embedded in a polymeric matrix. Recent advances in the manufacturing of this new class of materials have allowed for the creation of very complex 2D and 3D structures. The computational design of such network structures, which is the focus of this work, involves a set of particular challenges, including a large number of design variables (e.g., topology of the network, number of diameters to consider and their sizes) that define the network, and a large number of multidisciplinary objective functions and constraints that drive the optimization process. The computational design tool to be developed must be capable of capturing the trade-off between the different objective and constraint functions, as, for example, networks designed for flow efficiency are likely to have a topology that is very different from those designed for structural integrity or thermal control. In this work, we propose to design these materials using Genetic Algorithms (GAs), the most common methodology within a broader category of Evolutionary Algorithms (EAs). GAs can be combined with a Pareto-selection mechanism to create Multi-Objective Genetic Algorithms (MOGAs), which enable the optimization of an arbitrary number of objective functions. As a result, a Pareto-optimal front is obtained, where all candidates are optimal solutions to the optimization problem. Adding a procedure to deal with constraints results in a powerful tool for multi-objective constrained optimization. The method allows the use of discrete variable problems and it does not require any a priori knowledge of the optimal solution. Furthermore, GAs search the entire decision space so the optimal solutions found are likely to be global. The

  15. Materials by Design: Merging Proteins and Music

    PubMed Central

    Wong, Joyce Y.; McDonald, John; Taylor-Pinney, Micki; Spivak, David I.; Kaplan, David L.; Buehler, Markus J.

    2013-01-01

    Tailored materials with tunable properties are crucial for applications as biomaterials, for drug delivery, as functional coatings, or as lightweight composites. An emerging paradigm in designing such materials is the construction of hierarchical assemblies of simple building blocks into complex architectures with superior properties. We review this approach in a case study of silk, a genetically programmable and processable biomaterial, which, in its natural role serves as a versatile protein fiber with hierarchical organization to provide structural support, prey procurement or protection of eggs. Through an abstraction of knowledge from the physical system, silk, to a mathematical model using category theory, we describe how the mechanism of spinning fibers from proteins can be translated into music through a process that assigns a set of rules that governs the construction of the system. This technique allows one to express the structure, mechanisms and properties of the ‘material’ in a very different domain, ‘music’. The integration of science and art through categorization of structure-property relationships presents a novel paradigm to create new bioinspired materials, through the translation of structures and mechanisms from distinct hierarchical systems and in the context of the limited number of building blocks that universally governs these systems. PMID:23997808

  16. Design education in metallurgical and materials engineering

    NASA Astrophysics Data System (ADS)

    Schlesinger, Mark E.; Mikkola, Donald E.

    1993-12-01

    In general, the attendance level and interest in the discussions that took place following the presentations at each of the four sessions of the symposium suggest that educational programming at future TMS meetings has a very solid constituency. The organization of the symposium Powder Processing Education for the Year 2000 by the Materials Design & Manufacturing Division's Powder Metallurgy Committee for the 1994 TMS Annual Meeting is likely to provide further demonstration of this level of interest. As our profession continues to evolve, TMS has the opportunity to play a signal role as a conduit of information among professionals and educators wishing to improve their "product" and between educators wishing to share with others the best means of obtaining such improvement.

  17. Tools for Material Design and Selection

    NASA Astrophysics Data System (ADS)

    Wehage, Kristopher

    The present thesis focuses on applications of numerical methods to create tools for material characterization, design and selection. The tools generated in this work incorporate a variety of programming concepts, from digital image analysis, geometry, optimization, and parallel programming to data-mining, databases and web design. The first portion of the thesis focuses on methods for characterizing clustering in bimodal 5083 Aluminum alloys created by cryomilling and powder metallurgy. The bimodal samples analyzed in the present work contain a mixture of a coarse grain phase, with a grain size on the order of several microns, and an ultra-fine grain phase, with a grain size on the order of 200 nm. The mixing of the two phases is not homogeneous and clustering is observed. To investigate clustering in these bimodal materials, various microstructures were created experimentally by conventional cryomilling, Hot Isostatic Pressing (HIP), Extrusion, Dual-Mode Dynamic Forging (DMDF) and a new 'Gradient' cryomilling process. Two techniques for quantitative clustering analysis are presented, formulated and implemented. The first technique, the Area Disorder function, provides a metric of the quality of coarse grain dispersion in an ultra-fine grain matrix and the second technique, the Two-Point Correlation function, provides a metric of long and short range spatial arrangements of the two phases, as well as an indication of the mean feature size in any direction. The two techniques are implemented on digital images created by Scanning Electron Microscopy (SEM) and Electron Backscatter Detection (EBSD) of the microstructures. To investigate structure--property relationships through modeling and simulation, strategies for generating synthetic microstructures are discussed and a computer program that generates randomized microstructures with desired configurations of clustering described by the Area Disorder Function is formulated and presented. In the computer program, two

  18. Learning from systems biology: An ``Omics'' approach to materials design

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2008-03-01

    An understanding of systems biology provides an excellent paradigm for the materials scientist. Ultimately one would like to take an “atoms-applications” approach to materials design. This paper describes how the concepts of genomics, proteomics, and other biological behavior which form the foundations of modern biology can be applied to materials design through materials informatics.

  19. Materials Design for Block Copolymer Lithography

    NASA Astrophysics Data System (ADS)

    Sweat, Daniel Patrick

    Block copolymers (BCPs) have attracted a great deal of scientific and technological interest due to their ability to spontaneously self-assemble into dense periodic nanostructures with a typical length scale of 5 to 50 nm. The use of self-assembled BCP thin-films as templates to form nanopatterns over large-area is referred to as BCP lithography. Directed self-assembly of BCPs is now viewed as a viable candidate for sub-20 nm lithography by the semiconductor industry. However, there are multiple aspects of assembly and materials design that need to be addressed in order for BCP lithography to be successful. These include substrate modification with polymer brushes or mats, tailoring of the block copolymer chemistry, understanding thin-film assembly and developing epitaxial like methods to control long range alignment. The rational design, synthesis and self-assembly of block copolymers with large interaction parameters (chi) is described in the first part of this dissertation. Two main blocks were chosen for introducing polarity into the BCP system, namely poly(4-hydroxystyrene) and poly(2-vinylpyridine). Each of these blocks are capable of ligating Lewis acids which can increase the etch contrast between the blocks allowing for facile pattern transfer to the underlying substrate. These BCPs were synthesized by living anionic polymerization and showed excellent control over molecular weight and dispersity, providing access to sub 5-nm domain sizes. Polymer brushes consist of a polymer chain with one end tethered to the surface and have wide applicability in tuning surface energy, forming responsive surfaces and increasing biocompatibility. In the second part of the dissertation, we present a universal method to grow dense polymer brushes on a wide range of substrates and combine this chemistry with BCP assembly to fabricate nanopatterned polymer brushes. This is the first demonstration of introducing additional functionality into a BCP directing layer and opens up

  20. Mass of materials: the impact of designers on construction ergonomics.

    PubMed

    Smallwood, John

    2012-01-01

    Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries. PMID:22317574

  1. Nanoscale material design for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Bao, Hua

    /nanowire array solar cells. Phonon-assisted electron decay in semiconductor quantum dots is also investigated in this work. In semiconductor solar cell, a large portion of energy loss is by the fast hot electron cooling, in which a high energy electron decays to the electronic band gap by creating a series of phonons. The excessive electrical energy is then converted to heat and wasted, so that the total photovoltaic energy conversion efficiency is limited. The electron decay rate reduces in semiconductor quantum dots, due to the discrete electron energy levels created by quantum confinement. To design quantum dots with the slowest decay rate, we use the non-adiabatic molecular dynamics to perform real-time simulations of the phonon-assisted electron decay process. This method is based on time-dependent density functional theory, and can directly predict the phonon-assisted electron decay time using the initial quantum dot structure as the only input. The numerical simulation shows that the phonon-induced electron decay can be slowed down in a small PbSe quantum dot. The temperature-dependent relaxation in this quantum dot is also studied, which helps us to propose a multi-channel relaxation mechanism. This mechanism provides new insights to the understanding of electron decay process in quantum dots. The results from this study have potentially important applications in solar energy harvesting and radiative thermal management. It offers a new perspective of nanoscale engineering of materials to achieve more efficient photovoltaic energy conversion.

  2. Material for Point Design (final summary of DIME material)

    SciTech Connect

    Bradley, Paul A.

    2014-02-25

    These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.

  3. Acquisition of Instructional Material Information as a Function of Manual Design and Material Complexity.

    ERIC Educational Resources Information Center

    Altman, Reuben; And Others

    The study, with 52 preservice special education teachers, focused on effects of two types of teacher manual design and two levels of material complexity on comprehension of instructional materials utilization. Two materials were selected from an instructional materials collection for less complex material and for more complex material,…

  4. FOREWORD: Computational methodologies for designing materials Computational methodologies for designing materials

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2009-02-01

    It would be fair to say that in the past few decades, theory and computer modeling have played a major role in elucidating the microscopic factors that dictate the properties of functional novel materials. Together with advances in experimental techniques, theoretical methods are becoming increasingly capable of predicting properties of materials at different length scales, thereby bringing in sight the long-sought goal of designing material properties according to need. Advances in computer technology and their availability at a reasonable cost around the world have made tit all the more urgent to disseminate what is now known about these modern computational techniques. In this special issue on computational methodologies for materials by design we have tried to solicit articles from authors whose works collectively represent the microcosm of developments in the area. This turned out to be a difficult task for a variety of reasons, not the least of which is space limitation in this special issue. Nevertheless, we gathered twenty articles that represent some of the important directions in which theory and modeling are proceeding in the general effort to capture the ability to produce materials by design. The majority of papers presented here focus on technique developments that are expected to uncover further the fundamental processes responsible for material properties, and for their growth modes and morphological evolutions. As for material properties, some of the articles here address the challenges that continue to emerge from attempts at accurate descriptions of magnetic properties, of electronically excited states, and of sparse matter, all of which demand new looks at density functional theory (DFT). I should hasten to add that much of the success in accurate computational modeling of materials emanates from the remarkable predictive power of DFT, without which we would not be able to place the subject on firm theoretical grounds. As we know and will also

  5. 15 CFR 922.22 - Development of designation materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Development of designation materials. 922.22 Section 922.22 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade... Sanctuaries § 922.22 Development of designation materials. (a) In designating a National Marine Sanctuary,...

  6. 15 CFR 922.22 - Development of designation materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Development of designation materials... Sanctuaries § 922.22 Development of designation materials. (a) In designating a National Marine Sanctuary, the... Sanctuary includes waters within the exclusive economic zone, the Secretary shall notify the...

  7. Design and analysis of novel photocatalytic materials

    NASA Astrophysics Data System (ADS)

    Boppana, Venkata Bharat Ram

    The development of sustainable sources of energy to decrease our dependence on non-renewable fossil fuels and the reduction of emissions causing global warming are important technological challenges of the 21st century. Production of solar fuels by photocatalysis is one potential route to reduce the impact of those problems. The most widely applied photocatalyst is TiO2 because it is stable, non-toxic and inexpensive. Still, it cannot utilize the solar spectrum efficiently as its band gap is 3.2 eV thus able to absorb only 3% of sun light. This thesis therefore explores multiple avenues towards improving the light absorption capability of semiconductor materials without loss in activity. To achieve this objective, the valence band hybridization method of band gap reduction was utilized. This technique is based on introducing new orbitals at the top of valence band of the semiconductor that can then hybridize with existing orbitals. The hybridization then raises the maximum of the valence band thereby reducing the band gap. This technique has the added advantage of increasing the mobility of oxidizing holes in the now dispersed valence band. In practice, this can be achieved by introducing N 2p or Sn 5s orbitals in the valence band of an oxide. We initially designed novel zinc gallium oxy-nitrides, with the spinel structure and band gaps in the visible region of the solar spectrum, by nitridation of a zinc gallate precursor produced by sol-gel synthesis. These spinel oxy-nitrides have band gaps of 2.5 to 2.7 eV, surface areas of 16 to 36 m 2/g, and nitrogen content less than 1.5%. They are active towards degradation of organic molecules in visible light. Density functional theory calculations show that this band gap reduction in part is associated with hybridization between the dopant N 2p states with Zn 3d orbitals at the top of the valence band. While spinel oxy-nitrides are produced under nitridation at 550°C, at higher temperatures they are consumed to form

  8. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  9. Design for containment of hazardous materials

    SciTech Connect

    Murray, R.C. ); McDonald, J.R. )

    1991-03-01

    Department of Energy, (DOE), facilities across the United States, use wind and tornado design and evaluation criteria based on probabilistic performance goals. In addition, other programs such as Advanced Light Water Reactors, New Production Reactors, and Individual Plant Examinations for External Events for commercial nuclear power plants utilize design and evaluation criteria based on probabilistic performance goals. The use of probabilistic performance goals is a departure from design practice for commercial nuclear power plants which have traditionally been designed utilizing a conservative specification of wind and tornado loading combined with deterministic response evaluation methods and permissible behavior limits. Approaches which utilize probabilistic wind and tornado hazard curves for specification of loading and deterministic response evaluation methods and permissible behavior limits are discussed in this paper. Through the use of such design/evaluation approaches, it may be demonstrated that there is high likelihood that probabilistic performance goals can be achieved. 14 refs., 1 fig., 5 tabs.

  10. Materials Design On-the-Fly.

    PubMed

    Cerqueira, Tiago F T; Sarmiento-Pérez, Rafael; Amsler, Maximilian; Nogueira, F; Botti, Silvana; Marques, Miguel A L

    2015-08-11

    The dream of any solid-state theorist is to be able to predict new materials with tailored properties from scratch, i.e., without any input from experiment. Over the past decades, we have steadily approached this goal. Recent developments in the field of high-throughput calculations focused on finding the best material for specific applications. However, a key input for these techniques still had to be obtained experimentally, namely, the crystal structure of the materials. Here, we give a step further and show that one can indeed optimize material properties using as a single starting point the knowledge of the periodic table and the fundamental laws of quantum mechanics. This is done by combining state-of-the-art methods of global structure prediction that allow us to obtain the ground-state crystal structure of arbitrary materials, with an evolutionary algorithm that optimizes the chemical composition for the desired property. As a first showcase demonstration of our method, we perform an unbiased search for superhard materials and for transparent conductors. We stress that our method is completely general and can be used to optimize any property (or combination of properties) that can be calculated in a computer. PMID:26574474

  11. Synthesis and design of silicide intermetallic materials

    SciTech Connect

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  12. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  13. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  14. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  15. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  16. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  17. Material, process, and product design of thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Dai, Heming

    Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

  18. Thermal Characterization of Functionally Graded Materials: Design of Optimum Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    This paper is a study of optimal experiment design applied to the measure of thermal properties in functionally graded materials. As a first step, a material with linearly-varying thermal properties is analyzed, and several different tran- sient experimental designs are discussed. An optimality criterion, based on sen- sitivity coefficients, is used to identify the best experimental design. Simulated experimental results are analyzed to verify that the identified best experiment design has the smallest errors in the estimated parameters. This procedure is general and can be applied to design of experiments for a variety of materials.

  19. Solar optical materials for innovative window design

    SciTech Connect

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  20. Computer-Aided Design Of Sheet-Material Parts

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Paternoster, Vincent Y.; Levitt, Maureen L.; Osterloh, Mark R.

    1991-01-01

    Computer-aided-design system partly automates tedious process of designing and guiding assembly of small pieces of flat sheet material into large surfaces that approximate smoothly curved surfaces having complicated three-dimensional shapes. Capability provides for flexibility enabling designer to assess quickly and easily effects of changes in design in making engineering compromises among various sizes and shapes. Saves time and money in both design and fabrication. Used in rocket-engine application and other applications requiring design of sheet-material parts.

  1. Designing Training Materials for Developing Countries.

    ERIC Educational Resources Information Center

    Rosenweig, Fred

    1984-01-01

    Describes four training guides developed by the Water and Sanitation for Health Project for use in rural water supply and sanitation projects in developing countries, explains the development process, offers insights gained from the process, and presents five considerations for designing training in third world countries. (MBR)

  2. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  3. Evaluating Course Design Principles for Multimedia Learning Materials

    ERIC Educational Resources Information Center

    Scott, Bernard; Cong, Chunyu

    2010-01-01

    Purpose: This paper aims to report on evaluation studies of principles of course design for interactive multimedia learning materials. Design/methodology/approach: At the Defence Academy of the UK, Cranfield University has worked with military colleagues to produce multimedia learning materials for courses on "Military Knowledge". The courses are…

  4. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... equivalent to the standards established by the ABS Steel Vessel Rules (incorporated by reference, see 46 CFR... 46 Shipping 2 2012-10-01 2012-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design...

  5. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... equivalent to the standards established by the ABS Steel Vessel Rules (incorporated by reference, see 46 CFR... 46 Shipping 2 2010-10-01 2010-10-01 false Material, design and construction. 58.05-1 Section 58.05... AUXILIARY MACHINERY AND RELATED SYSTEMS Main Propulsion Machinery § 58.05-1 Material, design...

  6. Designing and modeling doubly porous polymeric materials

    NASA Astrophysics Data System (ADS)

    Ly, H.-B.; Le Droumaguet, B.; Monchiet, V.; Grande, D.

    2015-07-01

    Doubly porous organic materials based on poly(2-hydroxyethyl methacrylate) are synthetized through the use of two distinct types of porogen templates, namely a macroporogen and a nanoporogen. Two complementary strategies are implemented by using either sodium chloride particles or fused poly(methyl methacrylate) beads as macroporogens, in conjunction with ethanol as a porogenic solvent. The porogen removal respectively allows for the generation of either non-interconnected or interconnected macropores with an average diameter of about 100-200 μm and nanopores with sizes lying within the 100 nm order of magnitude, as evidenced by mercury intrusion porosimetry and scanning electron microscopy. Nitrogen sorption measurements evidence the formation of materials with rather high specific surface areas, i.e. higher than 140 m2.g-1. This paper also addresses the development of numerical tools for computing the permeability of such doubly porous materials. Due to the coexistence of well separated scales between nanopores and macropores, a consecutive double homogenization approach is proposed. A nanoscopic scale and a mesoscopic scale are introduced, and the flow is evaluated by means of the Finite Element Method to determine the macroscopic permeability. At the nanoscopic scale, the flow is described by the Stokes equations with an adherence condition at the solid surface. At the mesoscopic scale, the flow obeys the Stokes equations in the macropores and the Darcy equation in the permeable polymer in order to account for the presence of the nanopores.

  7. Concurrent materials and process selection in conceptual design

    SciTech Connect

    Kleban, S.D.

    1998-07-01

    The sequential manner in which materials and processes for a manufactured product are selected is inherently less than optimal. Designers` tendency to choose processes and materials with which they are familiar exacerbate this problem. A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach is presented.

  8. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  9. Computational materials design for energy applications

    NASA Astrophysics Data System (ADS)

    Ozolins, Vidvuds

    2013-03-01

    General adoption of sustainable energy technologies depends on the discovery and development of new high-performance materials. For instance, waste heat recovery and electricity generation via the solar thermal route require bulk thermoelectrics with a high figure of merit (ZT) and thermal stability at high-temperatures. Energy recovery applications (e.g., regenerative braking) call for the development of rapidly chargeable systems for electrical energy storage, such as electrochemical supercapacitors. Similarly, use of hydrogen as vehicular fuel depends on the ability to store hydrogen at high volumetric and gravimetric densities, as well as on the ability to extract it at ambient temperatures at sufficiently rapid rates. We will discuss how first-principles computational methods based on quantum mechanics and statistical physics can drive the understanding, improvement and prediction of new energy materials. We will cover prediction and experimental verification of new earth-abundant thermoelectrics, transition metal oxides for electrochemical supercapacitors, and kinetics of mass transport in complex metal hydrides. Research has been supported by the US Department of Energy under grant Nos. DE-SC0001342, DE-SC0001054, DE-FG02-07ER46433, and DE-FC36-08GO18136.

  10. New design strategy for realizing multiferroic materials

    NASA Astrophysics Data System (ADS)

    Puggioni, Danilo; Giovannetti, Gianluca; Capone, Massimo; Rondinelli, James

    Ferroelectricity is a property that only insulating materials can exhibit. For this reason, nearly all searches for new multiferroic compounds, those simultaneously exhibiting ferroelectric and magnetic order, have focused on insulating magnetic oxides. Here, we propose a different approach: Start from a conducting oxide with broken inversion symmetry and search for routes to induce long-range magnetic order. Using density-functional and dynamical mean-field theories, we investigate the electronic properties of the polar metallic oxide LiOsO3. We show that a multiferroic state can be engineered by enclosing LiOsO3 between an insulating material, LiNbO3. We predict that the 1/1 superlattice of LiOsO3 and LiNbO3 exhibits strong coupling between magnetic and ferroelectric degrees of freedom with a ferroelectric polarization of 41.2 μCcm-2, Curie temperature of 927 K, and Néel temperature of 379 K. Our results show that one can start with polar metallic oxides to make multiferroics.

  11. Material Compatibility with Space Storable Propellants. Design Guidebook

    NASA Technical Reports Server (NTRS)

    Uney, P. E.; Fester, D. A.

    1972-01-01

    An important consideration in the design of spacecraft for interplanetary missions is the compatibility of storage materials with the propellants. Serious problems can arise because many propellants are either extremely reactive or subject to catalytic decomposition, making the selection of proper materials of construction for propellant containment and control a critical requirement for the long-life applications. To aid in selecting materials and designing and evaluating various propulsion subsystems, available information on the compatibility of spacecraft materials with propellants of interest was compiled from literature searches and personal contacts. The compatibility of both metals and nonmetals with hydrazine, monomethyl hydrazine, nitrated hydrazine, and diborance fuels and nitrogen tetroxide, fluorine, oxygen difluoride, and Flox oxidizers was surveyed. These fuels and oxidizers encompass the wide variety of problems encountered in propellant storage. As such, they present worst case situations of the propellant affecting the material and the material affecting the propellant. This includes material attack, propellant decomposition, and the formation of clogging materials.

  12. Designing Educative Curriculum Materials: A Theoretically and Empirically Driven Process

    ERIC Educational Resources Information Center

    Davis, Elizabeth A.; Palincsar, Annemarie Sullivan; Arias, Anna Maria; Bismack, Amber Schultz; Marulis, Loren M.; Iwashyna, Stefanie K.

    2014-01-01

    In this article, the authors argue for a design process in the development of educative curriculum materials that is theoretically and empirically driven. Using a design-based research approach, they describe their design process for incorporating educative features intended to promote teacher learning into existing, high-quality curriculum…

  13. Cultivating Design Thinking in Students through Material Inquiry

    ERIC Educational Resources Information Center

    Renard, Helene

    2014-01-01

    Design thinking is a way of understanding and engaging with the world that has received much attention in academic and business circles in recent years. This article examines a hands-on learning model as a vehicle for developing design thinking capacity in students. An overview of design thinking grounds the discussion of the material-based…

  14. Intelligent decision support for polymer composite material design in an integrated design environment

    SciTech Connect

    Lenz, T.; McDowell, J.K.; Moy, D.; Sticklen, J.; Hawley, M.C.

    1994-12-31

    Previously used routine design systems which generate multiple designs for composite materials have had a strong focus on thermosets. A natural evolution of the material designer involved an expansion of the domain knowledge for possible composite material designs, as well as a re-engineering of the problem-solving structure. This was guided by an in-depth analysis of the existing material designer. The results of these analyses enabled decisions to be made regarding the adequacy of the existing problem-solving structure and identified avenues to pursue for the re-engineering of the knowledge structuring and decision processes. This reengineering and expansion to a third generation of the material designer has been completed. The third generation material designer, COMADE (Composite Material Designer), now includes an expanded thermoset and fiber material coverage; in addition, thermoplastics and discontinuous fibers have been introduced into the knowledge base. As a result, both the variables input to the system and the outputted material designs have been modified. The inclusion of this information has substantially increased the domain coverage of possible composite material designs.

  15. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  16. Characterization of elastomeric materials with application to design

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1986-01-01

    Redesign of the Space Shuttle Solid Booster has necessitated re-evaluation of the material used in the field joint O-ring seals. The viscoelastic characteristics of five candidate materials were determined. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  17. Computational Discovery, Characterization, and Design of Single-Layer Materials

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Hennig, Richard G.

    2014-03-01

    Single-layer materials open up tremendous opportunities for applications in nanoelectronic devices and energy technologies. We first review the four components of a materials science tetrahedron for single-layer materials. We then provide a theoretical perspective of characterizing single-layer materials. This leads to a general data-mining process to predict and computationally characterize emerging single-layer materials. Finally, we comment on limitations and possible improvements of current computational procedures for the discovery, characterization, and design of single-layer materials.

  18. Center for Intelligent Fuel Cell Materials Design

    SciTech Connect

    Santurri, P.R.,; Hartmann-Thompson, C.; Keinath, S.E.

    2008-08-26

    The goal of this work was to develop a composite proton exchange membrane utilizing 1) readily available, low cost materials 2) readily modified and 3) easily processed to meet the chemical, mechanical and electrical requirements of high temperature PEM fuel cells. One of the primary goals was to produce a conducting polymer that met the criteria for strength, binding capability for additives, chemical stability, dimensional stability and good conductivity. In addition compatible, specialty nanoparticles were synthesized to provide water management and enhanced conductivity. The combination of these components in a multilayered, composite PEM has demonstrated improved conductivity at high temperatures and low humidity over commercially available polymers. The research reported in this final document has greatly increased the knowledge base related to post sulfonation of chemically and mechanically stable engineered polymers (Radel). Both electrical and strength factors for the degree of post sulfonation far exceed previous data, indicating the potential use of these materials in suitable proton exchange membrane architectures for the development of fuel cells. In addition compatible, hydrophilic, conductive nano-structures have been synthesized and incorporated into unique proton exchange membrane architectures. The use of post sulfonation for the engineered polymer and nano-particle provide cost effective techniques to produce the required components of a proton exchange membrane. The development of a multilayer proton exchange membrane as described in our work has produced a highly stable membrane at 170°C with conductivities exceeding commercially available proton exchange membranes at high temperatures and low humidity. The components and architecture of the proton exchange membrane discussed will provide low cost components for the portable market and potentially the transportation market. The development of unique components and membrane architecture

  19. The automated design of materials far from equilibrium

    NASA Astrophysics Data System (ADS)

    Miskin, Marc Z.

    Automated design is emerging as a powerful concept in materials science. By combining computer algorithms, simulations, and experimental data, new techniques are being developed that start with high level functional requirements and identify the ideal materials that achieve them. This represents a radically different picture of how materials become functional in which technological demand drives material discovery, rather than the other way around. At the frontiers of this field, materials systems previously considered too complicated can start to be controlled and understood. Particularly promising are materials far from equilibrium. Material robustness, high strength, self-healing and memory are properties displayed by several materials systems that are intrinsically out of equilibrium. These and other properties could be revolutionary, provided they can first be controlled. This thesis conceptualizes and implements a framework for designing materials that are far from equilibrium. We show how, even in the absence of a complete physical theory, design from the top down is possible and lends itself to producing physical insight. As a prototype system, we work with granular materials: collections of athermal, macroscopic identical objects, since these materials function both as an essential component of industrial processes as well as a model system for many non-equilibrium states of matter. We show that by placing granular materials in the context of design, benefits emerge simultaneously for fundamental and applied interests. As first steps, we use our framework to design granular aggregates with extreme properties like high stiffness, and softness. We demonstrate control over nonlinear effects by producing exotic aggregates that stiffen under compression. Expanding on our framework, we conceptualize new ways of thinking about material design when automatic discovery is possible. We show how to build rules that link particle shapes to arbitrary granular packing

  20. Photovoltaic module encapsulation design and materials selection, volume 1

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  1. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  2. Photovoltaic-module encapsulation design and materials selection: Volume 1

    SciTech Connect

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R.

    1982-06-01

    Encapsulation-material system requirements, material-selection criteria, and the status and properties of encapsulation materials and processes available to the module manufacturer are presented in detail. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described for material suppliers to assist them in assessing the suitability of materials in their product lines and the potential of new-material products. A comprehensive discussion of available encapsulation technology and data is presented to facilitate design and material selection for silicon flat-plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. A basis is provided for specifying the operational and environmental loads that encapsulation material systems must resist. Potential deployment sites for which cost effectiveness may be achieved at a module price much greater than $0.70/W/sub p/, are also considered; data on higher-cost encapsulant materials and processes that may be in use and other material candidates that may be justified for special application are discussed. Described are encapsulation-system functional requirements and candidate design concepts and materials that have been identified and analyzed as having the best potential to meet the cost and performance goals for the Flat-Plate Solar Array Project. The available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  3. FOREWORD: Computational methodologies for designing materials Computational methodologies for designing materials

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2009-02-01

    It would be fair to say that in the past few decades, theory and computer modeling have played a major role in elucidating the microscopic factors that dictate the properties of functional novel materials. Together with advances in experimental techniques, theoretical methods are becoming increasingly capable of predicting properties of materials at different length scales, thereby bringing in sight the long-sought goal of designing material properties according to need. Advances in computer technology and their availability at a reasonable cost around the world have made tit all the more urgent to disseminate what is now known about these modern computational techniques. In this special issue on computational methodologies for materials by design we have tried to solicit articles from authors whose works collectively represent the microcosm of developments in the area. This turned out to be a difficult task for a variety of reasons, not the least of which is space limitation in this special issue. Nevertheless, we gathered twenty articles that represent some of the important directions in which theory and modeling are proceeding in the general effort to capture the ability to produce materials by design. The majority of papers presented here focus on technique developments that are expected to uncover further the fundamental processes responsible for material properties, and for their growth modes and morphological evolutions. As for material properties, some of the articles here address the challenges that continue to emerge from attempts at accurate descriptions of magnetic properties, of electronically excited states, and of sparse matter, all of which demand new looks at density functional theory (DFT). I should hasten to add that much of the success in accurate computational modeling of materials emanates from the remarkable predictive power of DFT, without which we would not be able to place the subject on firm theoretical grounds. As we know and will also

  4. Design of meta-materials with novel thermoelastic properties

    NASA Astrophysics Data System (ADS)

    Watts, Seth

    The development of new techniques in micro-manufacturing in recent years has enabled the fabrication of material microstructures with essentially arbitrary designs, including those with multiple constituent materials and void space in nearly any geometry. With an essentially open design space, the onus is now on the engineer to design composite materials which are optimal for their purpose. These new materials, called meta-materials or materials with architected microstructures, offer the potential to mix and match properties in a way that exceeds that of traditional composites. We concentrate on the thermal and elastic properties of isotropic meta-materials, and design microstructures with combinations of Young's modulus, Poisson's ratio, thermal conductivity, thermal expansion, and mass density which are not found among naturally-occurring or traditional composite materials. We also produce designs with thermal expansion far below other materials. We use homogenization theory to predict the material properties of a bulk meta-material comprised of a periodic lattice of unit cells, then use topology optimization to rearrange two constituent materials and void space within the unit cell in order to extremize an objective function which yields the combinations of properties we seek. This method is quite general and can be extended to consider additional properties of interest. We constrain the design space to satisfy material isotropy directly (2D), or to satisfy cubic symmetry (3D), from which point an isotropy constraint function is easily applied. We develop and use filtering, nonlinear interpolation, and thresholding methods to render the design problem well-posed, and as a result ensure our designs are manufacturable. We have written two computer implementations of this design methodology. The first is for creating two-dimensional designs, which can run on a serial computer in approximately half an hour. The second is a parallel implementation to allow

  5. Designing high-performance layered thermoelectric materials through orbital engineering

    PubMed Central

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  6. Designing high-performance layered thermoelectric materials through orbital engineering.

    PubMed

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  7. Designing high-performance layered thermoelectric materials through orbital engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  8. Designing synthetic materials to control stem cell phenotype

    PubMed Central

    Saha, Krishanu; Pollock, Jacob F.; Schaffer, David V.; Healy, Kevin E.

    2007-01-01

    Summary The microenvironment in which stem cells reside regulates their fate, and synthetic materials have recently been designed to emulate these regulatory processes for various medical applications. Ligands inspired by the natural extracellular matrix, cell-cell contacts, and growth factors have been incorporated into synthetic materials with precisely engineered density and presentation. Furthermore, material architecture and mechanical properties are material design parameters that provide a context for receptor-ligand interactions and thereby contribute to fate determination of uncommitted stem cells. While significant progress has been made in biomaterials development for cellular control, the design of more sophisticated and robust synthetic materials can address future challenges in achieving spatiotemporally control of cellular phenotype and in implementing histocompatible clinical therapies. PMID:17669680

  9. Evaluation of materials and design modifications for aircraft brakes

    NASA Technical Reports Server (NTRS)

    Ho, T. L.; Kennedy, F. E.; Peterson, M. B.

    1975-01-01

    A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.

  10. The composite materials handbook (MIL handbook 17). Volume 3: Materials usage, design, and analysis

    SciTech Connect

    Not Available

    1999-01-01

    The Composite Materials Handbook (MIL Handbook 17) is THE source for data and usage guidelines for current and emerging polymer matrix composite materials. It provides you with the tools you will need to design and fabricate end items from polymer matrix composite materials and offers guidelines for how these data should be generated and used. The Handbook is a comprehensive guide of composites technology and engineering, an area that is advancing and changing rapidly. Volume 3 discusses usage of the data for material procurement, quality control, design, structural analysis, and reliability. The material scope is continuous-fiber-reinforced polymer matrix composites for all applications.

  11. Designing Radiation Resistance in Materials for Fusion Energy

    SciTech Connect

    Zinkle, Steven J; Snead, Lance Lewis

    2014-01-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  12. Current Materials on Barrier-Free Design. Revised.

    ERIC Educational Resources Information Center

    National Easter Seal Society for Crippled Children and Adults, Chicago, IL.

    An eight-page annotated bibliography contains material available from the National Easter Seal Society and current material available from other sources. The annotations are grouped under design, guides, planning resources, standards/legislation, and general. Ordering information is provided. (MLF)

  13. Implications of material selection on the design of packaging machinery.

    PubMed

    Merritt, J P

    2009-01-01

    Material selection has significant implications on the design and cost of horizontal-form-fill-seal packaging machinery. To avoid excessive costs, machine redesigns and project delays, material selection must be reconciled early in the project and revisited throughout the construction of the machine. PMID:19405337

  14. Sculpture: Creative Designs with Modern Materials (Tentative Course Outline).

    ERIC Educational Resources Information Center

    Dubocq, Edward R.

    This document reports on a course in comprehension and application of various techniques of sculpture and collage, using a contemporary point of view. Students will work with contemporary materials such as wood, metals, plaster, plastics, styrofoam, and many other cardboard basic materials suitable for creative design products. This unit will…

  15. Design Guidelines for Digital Learning Material for Food Chemistry Education.

    ERIC Educational Resources Information Center

    Diederen, Julia; Gruppen, Harry; Voragen, Alphons G. J.; Hartog, Rob; Mulder, Martin; Biemans, Harm

    This paper describes the first stage of a 4-year research project on the design, development and use of Web-based digital learning material for food chemistry education. The paper discusses design guidelines, based on principles that were selected from theories on learning and instruction, and illustrates in detail how these guidelines were used…

  16. Structure-Based Design of Functional Amyloid Materials

    SciTech Connect

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; Eisenberg, David S.

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In a second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.

  17. Structure-Based Design of Functional Amyloid Materials

    DOE PAGESBeta

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; et al

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In amore » second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.« less

  18. Rational design of inorganic dielectric materials with expected permittivity

    PubMed Central

    Xie, Congwei; Oganov, Artem R.; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-01-01

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up. PMID:26617342

  19. Rational design of inorganic dielectric materials with expected permittivity.

    PubMed

    Xie, Congwei; Oganov, Artem R; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-01-01

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up. PMID:26617342

  20. Rational design of inorganic dielectric materials with expected permittivity

    NASA Astrophysics Data System (ADS)

    Xie, Congwei; Oganov, Artem R.; Dong, Dong; Liu, Ning; Li, Duan; Debela, Tekalign Terfa

    2015-11-01

    Techniques for rapid design of dielectric materials with appropriate permittivity for many important technological applications are urgently needed. It is found that functional structure blocks (FSBs) are helpful in rational design of inorganic dielectrics with expected permittivity. To achieve this, coordination polyhedra are parameterized as FSBs and a simple empirical model to evaluate permittivity based on these FSB parameters is proposed. Using this model, a wide range of examples including ferroelectric, high/low permittivity materials are discussed, resulting in several candidate materials for experimental follow-up.

  1. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab.

    PubMed

    Chau, Kenneth J; Lezec, Henri J

    2012-04-23

    We propose a set of postulates to describe the mechanical interaction between a plane-wave electromagnetic pulse and a dispersive, dissipative slab having a refractive index of arbitrary sign. The postulates include the Abraham electromagnetic momentum density, a generalized Lorentz force law, and a model for absorption-driven mass transfer from the pulse to the medium. These opto-mechanical mechanisms are incorporated into a one-dimensional finite-difference time-domain algorithm that solves Maxwell's equations and calculates the instantaneous force densities exerted by the pulse onto the slab, the momentum-per-unit-area of the pulse and slab, and the trajectories of the slab and system center-of-mass. We show that the postulates are consistent with conservation of global energy, momentum, and center-of-mass velocity at all times, even for cases in which the refractive index of the slab is negative or zero. Consistency between the set of postulates and well-established conservation laws reinforces the Abraham momentum density as the one true electromagnetic momentum density and enables, for the first time, identification of the correct form of the electromagnetic mass density distribution and development of an explicit model for mass transfer due to absorption, for the most general case of a ponderable medium that is both dispersive and dissipative. PMID:22535106

  2. Structural and Machine Design Using Piezoceramic Materials: A Guide for Structural Design Engineers

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Cudney, Harley H.

    2000-01-01

    Using piezoceramic materials is one way the design engineer can create structures which have an ability to both sense and respond to their environment. Piezoceramic materials can be used to create structural sensors and structural actuators. Because piezoceramic materials have transduction as a material property, their sensing or actuation functions are a result of what happens to the material. This is different than discrete devices we might attach to the structure. For example, attaching an accelerometer to a structure will yield an electrical signal proportional to the acceleration at the attachment point on the structure. Using a electromagnetic shaker as an actuator will create an applied force at the attachment point. Active material elements in a structural design are not easily modeled as providing transduction at a point, but rather they change the physics of the structure in the areas where they are used. Hence, a designer must not think of adding discrete devices to a structure to obtain an effect, but rather must design a structural system which accounts for the physical principles of all the elements in the structure. The purpose of this manual is to provide practicing engineers the information necessary to incorporate piezoelectric materials in structural design and machine design. First, we will review the solid-state physics of piezoelectric materials. Then we will discuss the physical characteristics of the electrical-active material-structural system. We will present the elements of this system which must be considered as part of the design task for a structural engineer. We will cover simple modeling techniques and review the features and capabilities of commercial design tools that are available. We will then cover practical how-to elements of working with piezoceramic materials. We will review sources of piezoceramic materials and built-up devices, and their characteristics. Finally, we will provide two design examples using piezoceramic

  3. Evolution of heavy duty engine valves - materials and design

    SciTech Connect

    Schaefer, S.K.; Larson, J.M.; Jenkins, L.F.; Wang, Y.

    1997-12-31

    Engine poppet valves control gas flow in internal combustion engines. The combustion event and the flow of the gases formed past the valve during the intake or exhaust portion of the combustion cycle, expose heavy duty diesel valves to high temperatures, oxidizing or corroding atmospheres and high stresses from firing and seating. This paper is a review of heavy duty diesel engine valve material and design evolution over the last fifty years in North America. The primary driving forces behind the evolution have historically been the need for improved durability and more cost effective designs. However, in recent years engine emission regulatory requirements have become an equally important influence on valve material selection and design. The paper also endeavors to predict how heavy duty diesel engine valve materials and designs may change in response to these driving forces in the foreseeable future.

  4. Microstructural design of cellular materials I: Honeycomb beams and plates

    SciTech Connect

    Huang, J.S.; Gibson, L.J.

    1992-06-01

    Performance indices for materials describe the mechanical efficiency of a component under a given mode of loading: The higher the performance index, the lower the mass of the component for a given mechanical requirement. Material selection charts (Ashby, 1989) offer a graphical means of comparing performance indices for a wide range of materials. Performance indices are described. Micromechanical models for behaviour of cellular materials are used to suggest novel microstructural designs for cellular materials with improved performance. Three novel microstructural designs, described in companion papers, have been fabricated and tested. Results of the tests indicate that the new microstructures have higher values of some performance indices than those of the solids from which they are made.

  5. Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective

    NASA Astrophysics Data System (ADS)

    Ouyang, ChuYing; Chen, LiQuan

    2013-12-01

    The physics that associated with the performance of lithium secondary batteries (LSB) are reviewed. The key physical problems in LSB include the electronic conduction mechanism, kinetics and thermodynamics of lithium ion migration, electrode/ electrolyte surface/interface, structural (phase) and thermodynamics stability of the electrode materials, physics of intercalation and deintercalation. The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed. A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems. In order to fasten the progress of the new materials discovery and design for the next generation LSB, the Materials Genome Initiative (MGI) for LSB materials is a promising strategy and the related requirements are highlighted.

  6. Optimal shielding design for minimum materials cost or mass

    DOE PAGESBeta

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very smallmore » changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.« less

  7. Optimal shielding design for minimum materials cost or mass

    SciTech Connect

    Woolley, Robert D.

    2015-12-02

    The mathematical underpinnings of cost optimal radiation shielding designs based on an extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the resulting optimal design equations is suggested, and computational results for a simple test case are discussed. A typical radiation shielding design problem can have infinitely many solutions, all satisfying the problem's specified set of radiation attenuation requirements. Each such design has its own total materials cost. For a design to be optimal, no admissible change in its deployment of shielding materials can result in a lower cost. This applies in particular to very small changes, which can be restated using the calculus of variations as the Euler-Lagrange equations. Furthermore, the associated Hamiltonian function and application of Pontryagin's theorem lead to conditions for a shield to be optimal.

  8. Perspective: Role of structure prediction in materials discovery and design

    NASA Astrophysics Data System (ADS)

    Needs, Richard J.; Pickard, Chris J.

    2016-05-01

    Materials informatics owes much to bioinformatics and the Materials Genome Initiative has been inspired by the Human Genome Project. But there is more to bioinformatics than genomes, and the same is true for materials informatics. Here we describe the rapidly expanding role of searching for structures of materials using first-principles electronic-structure methods. Structure searching has played an important part in unraveling structures of dense hydrogen and in identifying the record-high-temperature superconducting component in hydrogen sulfide at high pressures. We suggest that first-principles structure searching has already demonstrated its ability to determine structures of a wide range of materials and that it will play a central and increasing part in materials discovery and design.

  9. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  10. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  11. Segmented molecular design of self-healing proteinaceous materials.

    PubMed

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  12. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  13. High-throughput theoretical design of lithium battery materials

    NASA Astrophysics Data System (ADS)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  14. Segmented molecular design of self-healing proteinaceous materials

    NASA Astrophysics Data System (ADS)

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  15. Segmented molecular design of self-healing proteinaceous materials

    PubMed Central

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  16. Computational Design of 2D materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2015-03-01

    Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.

  17. Concurrent materials and process selection in conceptual design

    SciTech Connect

    Kleban, Stephen D.; Knorovsky, Gerald A.

    2000-08-16

    A method for concurrent selection of materials and a joining process based on product requirements using a knowledge-based, constraint satisfaction approach facilitates the product design and manufacturing process. Using a Windows-based computer video display and a data base of materials and their properties, the designer can ascertain the preferred composition of two parts based on various operating/environmental constraints such as load, temperature, lifetime, etc. Optimum joinder of the two parts may simultaneously be determined using a joining process data base based upon the selected composition of the components as well as the operating/environmental constraints.

  18. Reticular synthesis and the design of new materials.

    PubMed

    Yaghi, Omar M; O'Keeffe, Michael; Ockwig, Nathan W; Chae, Hee K; Eddaoudi, Mohamed; Kim, Jaheon

    2003-06-12

    The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized. PMID:12802325

  19. Designer disordered materials with large, complete photonic band gaps

    PubMed Central

    Florescu, Marian; Torquato, Salvatore; Steinhardt, Paul J.

    2009-01-01

    We present designs of 2D, isotropic, disordered, photonic materials of arbitrary size with complete band gaps blocking all directions and polarizations. The designs with the largest band gaps are obtained by a constrained optimization method that starts from a hyperuniform disordered point pattern, an array of points whose number variance within a spherical sampling window grows more slowly than the volume. We argue that hyperuniformity, combined with uniform local topology and short-range geometric order, can explain how complete photonic band gaps are possible without long-range translational order. We note the ramifications for electronic and phononic band gaps in disordered materials. PMID:19918087

  20. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  1. Optimum weight design of functionally graded material gears

    NASA Astrophysics Data System (ADS)

    Jing, Shikai; Zhang, He; Zhou, Jingtao; Song, Guohua

    2015-11-01

    Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials (FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization (GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.

  2. The Cam Shell: An Innovative Design With Materials and Manufacturing

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Larsen, Frank M.; Kornienko, Rob

    2003-01-01

    Most of the personal audio and video recording devices currently sold on the open market all require hands to operate. Little consideration was given to designing a hands-free unit. Such a system once designed and made available to the public could greatly benefit mobile police officers, bicyclists, adventurers, street and dirt motorcyclists, horseback riders and many others. With a few design changes water sports and skiing activities could be another large area of application. The cam shell is an innovative design in which an audio and video recording device (such as palm camcorder) is housed in a body-mounted protection system. This system is based on the concept of viewing and recording at the same time. A view cam is attached to a helmet wired to a recording unit encased in a transparent body-mounted protection system. The helmet can also be controlled by remote. The operator will have full control in recording everything. However, the recording unit will be operated completely hands-free. This project will address the design considerations and their effects on material selection and manufacturing. It will enhance the understanding of the structure of materials, and how the structure affects the behavior of the material, and the role that processing play in linking the relationship between structure and properties. A systematic approach to design feasibility study, cost analysis and problem solving will also be discussed.

  3. Designing Silk-silk Protein Alloy Materials for Biomedical Applications

    PubMed Central

    Hu, Xiao; Duki, Solomon; Forys, Joseph; Hettinger, Jeffrey; Buchicchio, Justin; Dobbins, Tabbetha; Yang, Catherine

    2014-01-01

    Fibrous proteins display different sequences and structures that have been used for various applications in biomedical fields such as biosensors, nanomedicine, tissue regeneration, and drug delivery. Designing materials based on the molecular-scale interactions between these proteins will help generate new multifunctional protein alloy biomaterials with tunable properties. Such alloy material systems also provide advantages in comparison to traditional synthetic polymers due to the materials biodegradability, biocompatibility, and tenability in the body. This article used the protein blends of wild tussah silk (Antheraea pernyi) and domestic mulberry silk (Bombyx mori) as an example to provide useful protocols regarding these topics, including how to predict protein-protein interactions by computational methods, how to produce protein alloy solutions, how to verify alloy systems by thermal analysis, and how to fabricate variable alloy materials including optical materials with diffraction gratings, electric materials with circuits coatings, and pharmaceutical materials for drug release and delivery. These methods can provide important information for designing the next generation multifunctional biomaterials based on different protein alloys. PMID:25145602

  4. Turning statistical physics models into materials design engines.

    PubMed

    Miskin, Marc Z; Khaira, Gurdaman; de Pablo, Juan J; Jaeger, Heinrich M

    2016-01-01

    Despite the success statistical physics has enjoyed at predicting the properties of materials for given parameters, the inverse problem, identifying which material parameters produce given, desired properties, is only beginning to be addressed. Recently, several methods have emerged across disciplines that draw upon optimization and simulation to create computer programs that tailor material responses to specified behaviors. However, so far the methods developed either involve black-box techniques, in which the optimizer operates without explicit knowledge of the material's configuration space, or require carefully tuned algorithms with applicability limited to a narrow subclass of materials. Here we introduce a formalism that can generate optimizers automatically by extending statistical mechanics into the realm of design. The strength of this approach lies in its capability to transform statistical models that describe materials into optimizers to tailor them. By comparing against standard black-box optimization methods, we demonstrate how optimizers generated by this formalism can be faster and more effective, while remaining straightforward to implement. The scope of our approach includes possibilities for solving a variety of complex optimization and design problems concerning materials both in and out of equilibrium. PMID:26684770

  5. Technology-Enhanced EFL Syllabus Design and Materials Development

    ERIC Educational Resources Information Center

    Nguyen, Long V.

    2008-01-01

    In this paper, I am going to look at the issues of TESOL from one major critical point of view: How the use of the Internet technology might influence TESOL syllabus design and materials development. The article attempts to investigate some possibilities and opportunities provided by the Internet, focusing on the World Wide Web (WWW) as credible…

  6. Force field development from first principles for materials design

    NASA Astrophysics Data System (ADS)

    Chan, Maria; Kinaci, Alper; Narayanan, Badri; Sen, Fatih; Gray, Stephen; Davis, Michael; Sankaranaryanan, Subramanian

    2015-03-01

    The ability to perform accurate calculations efficiently is crucial for computational materials design. In this talk, we will discuss a stream-lined approach to force field development using first principles density functional theory training data and machine learning algorithms. We will also discuss the validation of this approach on precious metal nanoparticles.

  7. Designing ICT Training Material for Chinese Language Arts Teachers.

    ERIC Educational Resources Information Center

    Lin, Janet Mei-Chuen; Wu, Cheng-Chih; Chen, Hsiu-Yen

    The purpose of this research is to tailor the design of information and communications technology (ICT) training material to the needs of Chinese language arts teachers such that the training they receive will be conducive to effective integration of ICT into instruction. Eighteen experienced teachers participated in a Delphi-like survey that…

  8. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... equivalent to the standards established by the ABS Steel Vessel Rules (incorporated by reference, see 46 CFR... 46 Shipping 2 2011-10-01 2011-10-01 false Material, design and construction. 58.05-1 Section 58.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN...

  9. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... equivalent to the standards established by the ABS Steel Vessel Rules (incorporated by reference, see 46 CFR... 46 Shipping 2 2014-10-01 2014-10-01 false Material, design and construction. 58.05-1 Section 58.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN...

  10. 46 CFR 58.05-1 - Material, design and construction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equivalent to the standards established by the ABS Steel Vessel Rules (incorporated by reference, see 46 CFR... 46 Shipping 2 2013-10-01 2013-10-01 false Material, design and construction. 58.05-1 Section 58.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN...

  11. Design of nanoporous materials with optimal sorption capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Urita, Koki; Moriguchi, Isamu; Tartakovsky, Daniel M.

    2015-06-01

    Modern technological advances have enabled one to manufacture nanoporous materials with a prescribed pore structure. This raises a possibility of using controllable pore-scale parameters (e.g., pore size and connectivity) to design materials with desired macroscopic properties (e.g., diffusion coefficient and adsorption capacity). By relating these two scales, the homogenization theory (or other upscaling techniques) provides a means of guiding the experimental design. To demonstrate this approach, we consider a class of nanoporous materials whose pore space consists of nanotunnels interconnected by nanotube bridges. Such hierarchical nanoporous carbons with mesopores and micropores have shown high specific electric double layer capacitances and high rate capability in an organic electrolyte. We express the anisotropic diffusion coefficient and adsorption coefficient of such materials in terms of the tunnels' properties (pore radius and inter-pore throat width) and their connectivity (spacing between the adjacent tunnels and nanotube-bridge density). Our analysis is applicable for solutes that undergo a non-equilibrium Langmuir adsorption reaction on the surfaces of fluid-filled pores, but other homogeneous and heterogeneous reactions can be handled in a similar fashion. The presented results can be used to guide the design of nanoporous materials with optimal permeability and sorption capacity.

  12. Materials design data for reduced activation martensitic steel type EUROFER

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  13. Neural-network-biased genetic algorithms for materials design

    NASA Astrophysics Data System (ADS)

    Patra, Tarak; Meenakshisundaram, Venkatesh; Simmons, David

    Machine learning tools have been progressively adopted by the materials science community to accelerate design of materials with targeted properties. However, in the search for new materials exhibiting properties and performance beyond that previously achieved, machine learning approaches are frequently limited by two major shortcomings. First, they are intrinsically interpolative. They are therefore better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require the availability of large datasets, which in some fields are not available and would be prohibitively expensive to produce. Here we describe a new strategy for combining genetic algorithms, neural networks and other machine learning tools, and molecular simulation to discover materials with extremal properties in the absence of pre-existing data. Predictions from progressively constructed machine learning tools are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct molecular dynamics simulation. We survey several initial materials design problems we have addressed with this framework and compare its performance to that of standard genetic algorithm approaches. We acknowledge the W. M. Keck Foundation for support of this work.

  14. Turning statistical physics models into materials design engines

    PubMed Central

    Miskin, Marc Z.; Khaira, Gurdaman; de Pablo, Juan J.; Jaeger, Heinrich M.

    2016-01-01

    Despite the success statistical physics has enjoyed at predicting the properties of materials for given parameters, the inverse problem, identifying which material parameters produce given, desired properties, is only beginning to be addressed. Recently, several methods have emerged across disciplines that draw upon optimization and simulation to create computer programs that tailor material responses to specified behaviors. However, so far the methods developed either involve black-box techniques, in which the optimizer operates without explicit knowledge of the material’s configuration space, or require carefully tuned algorithms with applicability limited to a narrow subclass of materials. Here we introduce a formalism that can generate optimizers automatically by extending statistical mechanics into the realm of design. The strength of this approach lies in its capability to transform statistical models that describe materials into optimizers to tailor them. By comparing against standard black-box optimization methods, we demonstrate how optimizers generated by this formalism can be faster and more effective, while remaining straightforward to implement. The scope of our approach includes possibilities for solving a variety of complex optimization and design problems concerning materials both in and out of equilibrium. PMID:26684770

  15. CubeSat Material Limits For Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with reentry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with reentry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for reentry survivability analysis tool comparison will be discussed.

  16. CubeSat Material Limits for Design for Demise

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.

    2014-01-01

    The CubeSat form factor of nano-satellite (a satellite with a mass between one and ten kilograms) has grown in popularity due to their ease of construction and low development and launch costs. In particular, their use as student led payload design projects has increased due to the growing number of launch opportunities. CubeSats are often deployed as secondary or tertiary payloads on most US launch vehicles or they may be deployed from the ISS. The focus of this study will be on CubeSats launched from the ISS. From a space safety standpoint, the development and deployment processes for CubeSats differ significantly from that of most satellites. For large satellites, extensive design reviews and documentation are completed, including assessing requirements associated with re-entry survivability. Typical CubeSat missions selected for ISS deployment have a less rigorous review process that may not evaluate aspects beyond overall design feasibility. CubeSat design teams often do not have the resources to ensure their design is compliant with re-entry risk requirements. A study was conducted to examine methods to easily identify the maximum amount of a given material that can be used in the construction of a CubeSats without posing harm to persons on the ground. The results demonstrate that there is not a general equation or relationship that can be used for all materials; instead a limiting value must be defined for each unique material. In addition, the specific limits found for a number of generic materials that have been previously used as benchmarking materials for re-entry survivability analysis tool comparison will be discussed.

  17. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  18. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  19. Design of electro-active polymer gels as actuator materials

    NASA Astrophysics Data System (ADS)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as

  20. Design of a Compact Fatigue Tester for Testing Irradiated Materials

    SciTech Connect

    Hartsell, Brian; Campbell, Michael; Fitton, Michael; Hurh, Patrick; Ishida, Taku; Nakadaira, Takeshi

    2015-06-01

    A compact fatigue testing machine that can be easily inserted into a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use has been carefully considered by limiting the size and weight of the machine, simplifying sample loading and test setup for operation via master-slave manipulator, and utilizing an efficient design to minimize maintenance. Funded from a US-Japan collaborative effort, the machine has been specifically designed to help characterize titanium material specimens. These specimens are flat cantilevered beams for initial studies, possibly utilizing samples irradiated at other sources of beam. The option to test spherically shaped samples cut from the T2K vacuum window is also available. The machine is able to test a sample to $10^7$ cycles in under a week, with options to count cycles and sense material failure. The design of this machine will be presented along with current status.

  1. Designer Nanocellular Materials for Laser Targets and Other DNT Applications

    SciTech Connect

    Satcher, Jr, J H; Hsiung, L M; Baumann, T F; Maxwell, R S; Chinn, S C; Hodge, A M; Biener, J; Landingham, R L

    2005-01-07

    Overview. This document and the accompanying manuscripts summarize the technical accomplishments of our one-year LDRD-ER effort, a project that has since been incorporated into a larger LDRD-SI for FY05. The objective of this effort was to develop a predictive synthetic capability for the preparation of materials with cellular architectures (sub-micron pore or cell sizes and relative densities less than 10% of full density) not attainable by conventional methods. The ability to reliably prepare these nanocellular materials and control their bulk physical properties (e.g. mechanical strength) would be a considerable advance in the areas of porous materials and its impact would cut across many existing LLNL investments. One significant area related to the Laboratory mission that would benefit is the design of new materials for high energy density physics (HEDP) targets. Current synthetic techniques do not allow for the preparation of foams that meet all of the current and projected compositional and mechanical requirements of these experiments. This project focused on two main types of materials: inorganic sol-gel materials and nanocellular metal foams. The following sections describe the project goals for these two types of materials as well as the progress made towards these goals in FY04. These sections also provide context for the three publications that have been included in this final report.

  2. Gradient-index ophthalmic lens design and polymer material studies

    NASA Astrophysics Data System (ADS)

    Fischer, David Joel

    Unifocal ophthalmic lenses are conventionally designed using homogeneous glass or plastic materials and aspheric surfaces. The desired power and aberration correction are provided by selection of surface shape and refractive index. This thesis studies the design of ophthalmic lenses utilizing gradient-index (GRIN) materials for both the optical power and aberration control. This is done using geometrical optical theory and ray-tracing simulations. Progressive addition lenses (PALS) are vision correction lenses with a continuous change in power used to treat presbyopia. The power variation is typically located in the lower half of the lens. Progressive addition lenses are currently made with aspheric surfaces to achieve the focal power transition and aberration control. These surfaces have at most, mirror symmetry about the vertical axis. The possible design of progressive addition lenses with GRIN materials has not been well studied. This thesis studies PALS and identifies how gradient-index materials can be used to provide both the power progression and aberration control. The optical theory for rotationally symmetric and asymmetric power additions is given. Analytical and numerical methods for calculating the index profile are used, and the results examined using ray-tracing simulations. The theory developed for ophthalmic lenses is applied to the design of GRIN axicon. This is the first GRIN axicon manufactured, and is fabricated using ion-exchanged GRIN glass. Experimental measurements of its performance are compared and found to match theoretical predictions. This demonstrates the generality of the theory developed: it may be applied to non-visual applications, and even to non-imaging applications. Realistic implementation of GRIN technology to ophthalmic application requires the fabrication of large scale refractive index gradients in polymer material systems. The methyl-methacrylate/styrene copolymer system is studied to develop an empirical model of its

  3. Rational material design for ultrafast rechargeable lithium-ion batteries.

    PubMed

    Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong

    2015-10-01

    Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future. PMID:25857819

  4. Bioinspiration from fish for smart material design and function

    NASA Astrophysics Data System (ADS)

    Lauder, G. V.; Madden, P. G. A.; Tangorra, J. L.; Anderson, E.; Baker, T. V.

    2011-09-01

    Fish are a potentially rich source of inspiration for the design of smart materials. Fish exemplify the use of flexible materials to generate forces during locomotion, and a hallmark of fish functional design is the use of body and fin deformation to power propulsion and maneuvering. As a result of nearly 500 million years of evolutionary experimentation, fish design has a number of interesting features of note to materials engineers. In this paper we first provide a brief general overview of some key features of the mechanical design of fish, and then focus on two key properties of fish: the bilaminar mechanical design of bony fish fin rays that allows active muscular control of curvature, and the role of body flexibility in propulsion. After describing the anatomy of bony fish fin rays, we provide new data on their mechanical properties. Three-point bending tests and measurement of force inputs to and outputs from the fin rays show that these fin rays are effective displacement transducers. Fin rays in different regions of the fin differ considerably in their material properties, and in the curvature produced by displacement of one of the two fin ray halves. The mean modulus for the proximal (basal) region of the fin rays was 1.34 GPa, but this varied from 0.24 to 3.7 GPa for different fin rays. The distal fin region was less stiff, and moduli for the different fin rays measured varied from 0.11 to 0.67 GPa. These data are similar to those for human tendons (modulus around 0.5 GPa). Analysis of propulsion using flexible foils controlled using a robotic flapping device allows investigation of the effect of altering flexural stiffness on swimming speed. Flexible foils with the leading edge moved in a heave show a distinct peak in propulsive performance, while the addition of pitch input produces a broad plateau where the swimming speed is relatively unaffected by the flexural stiffness. Our understanding of the material design of fish and the control of tissue

  5. Photovoltaic module encapsulation design and materials selection. Volume II

    SciTech Connect

    Cuddihy, E.

    1984-06-01

    This is Volume II of Photovoltaic Module Encapsulation Design and Materials Selection: a periodically updated handbook of encapsulation technology, developed with the support of the Flat-Plate Solar Array Project (FSA), managed for the Department of Energy (DOE) by the Jet Propulsion Laboratory. Volume II describes FSA encapsulation technology developed between June 1, 1982, and January 1, 1984. Emphasis during this period shifted from materials development to demonstration of reliability and durability in an outdoor environment; the updated information in this volume reflects the developing technology base related to both reliability and encapsulation process improvements.

  6. Design of Material Strength Test in Lead-Bismuth Flow

    SciTech Connect

    Masatoshi Kondo; Minoru Takahashi; Koji Hata

    2002-07-01

    Liquid lead and lead-bismuth have drawn the attention as one of the candidate coolants of the fast breeder reactors (FBRs), and the accelerator driven transmutation systems (ADSs). In order to use the coolant to the systems, the physical and chemical characteristics of the heavy metals are necessary. This plan has been proposed for the strength test of materials in the liquid metal surroundings. The lead-bismuth circulation loop with the strength test has been designed, and the strength test of candidate materials has been planned. (authors)

  7. Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    NASA Astrophysics Data System (ADS)

    Ulery, Bret D.; Petersen, Latrisha K.; Phanse, Yashdeep; Kong, Chang Sun; Broderick, Scott R.; Kumar, Devender; Ramer-Tait, Amanda E.; Carrillo-Conde, Brenda; Rajan, Krishna; Wannemuehler, Michael J.; Bellaire, Bryan H.; Metzger, Dennis W.; Narasimhan, Balaji

    2011-12-01

    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens.

  8. Exascale Co-design for Modeling Materials in Extreme Environments

    SciTech Connect

    Germann, Timothy C.

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  9. Thermo-magnetic materials for use in designing intelligent actuators

    SciTech Connect

    Ohtani, Yoshimutsu; Yoshimura, Fumikatsu; Hatakeyama, Iwao; Ishii, Yoshikazu

    1994-12-31

    The authors present the concept of an intelligent thermal actuator designed by using thermally sensitive magnetic materials. The use of the magnetic transition of FeRh alloy is very effective in increasing the actuator functions. These functions are freedom of direction, tuning temperature, and increasing both sensitivity and power. Two new types of actuator, a remote controlled optical driven thermo-magnetic motor and a temperature sensitive spring-less valve, are proposed and experimental results are shown.

  10. Module Design, Materials, and Packaging Research Team: Activities and Capabilities

    SciTech Connect

    McMahon, T. J.; del Cueto, J.; Glick, S.; Jorgensen, G.; Kempe, M.; Kennedy, C.; Pern, J.; Terwilliger, K

    2005-01-01

    Our team activities are directed at improving PV module reliability by incorporating new, more effective, and less expensive packaging materials and techniques. New and existing materials or designs are evaluated before and during accelerated environmental exposure for the following properties: (1) Adhesion and cohesion: peel strength and lap shear. (2) Electrical conductivity: surface, bulk, interface and transients. (3) Water vapor transmission: solubility and diffusivity. (4) Accelerated weathering: ultraviolet, temperature, and damp heat tests. (5) Module and cell failure diagnostics: infrared imaging, individual cell shunt characterization, coring. (6) Fabrication improvements: SiOxNy barrier coatings and enhanced wet adhesion. (7) Numerical modeling: Moisture ingress/egress, module and cell performance, and cell-to-frame leakage current. (8) Rheological properties of polymer encapsulant and sheeting materials. Specific examples will be described.

  11. Macroscopic shock plasticity of brittle material through designed void patterns

    NASA Astrophysics Data System (ADS)

    Jiang, Tailong; Yu, Yin; He, Hongliang; Li, Yongqiang; Huan, Qiang; Wu, Jiankui

    2016-03-01

    The rapid propagation and coalescence of cracks and catastrophic fractures, which occur often under shock compression, compromise a brittle material's design function and restrict its scope of practical application. The shock plasticity of brittle materials can be improved significantly by introducing and designing its microstructure, which can help reduce or delay failure. We used a lattice-spring model, which can describe elastic deformation and brittle fracture of modeled material accurately, to study the influence of void distributions (random, square, hexagonal, and triangular void patterns) on the macroscopic shock response and the mesoscopic deformation feature of brittle materials. Calculated results indicate that the void patterns dominate two inelastic deformation stages on the Hugoniot stress-strain curves (the collapse deformation stage and the slippage deformation stage). It shows that the strain localization is not strong and that the broken media are closer to a round bulk when the samples exist in random and triangular void patterns. This favors an increase in deformation during the slippage deformation stage. For the samples with square and hexagonal void patterns, the strain localization is strong and the broken media are closer to columnar bulks, which favors an increase in deformation during the collapse deformation stage.

  12. Design of Functional Materials based on Liquid Crystalline Droplets

    PubMed Central

    Miller, Daniel S.; Wang, Xiaoguang; Abbott, Nicholas L.

    2014-01-01

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems. PMID:24882944

  13. Design of Responsive and Active (Soft) Materials Using Liquid Crystals.

    PubMed

    Bukusoglu, Emre; Bedolla Pantoja, Marco; Mushenheim, Peter C; Wang, Xiaoguang; Abbott, Nicholas L

    2016-06-01

    Liquid crystals (LCs) are widely known for their use in liquid crystal displays (LCDs). Indeed, LCDs represent one of the most successful technologies developed to date using a responsive soft material: An electric field is used to induce a change in ordering of the LC and thus a change in optical appearance. Over the past decade, however, research has revealed the fundamental underpinnings of potentially far broader and more pervasive uses of LCs for the design of responsive soft material systems. These systems involve a delicate interplay of the effects of surface-induced ordering, elastic strain of LCs, and formation of topological defects and are characterized by a chemical complexity and diversity of nano- and micrometer-scale geometry that goes well beyond that previously investigated. As a reflection of this evolution, the community investigating LC-based materials now relies heavily on concepts from colloid and interface science. In this context, this review describes recent advances in colloidal and interfacial phenomena involving LCs that are enabling the design of new classes of soft matter that respond to stimuli as broad as light, airborne pollutants, bacterial toxins in water, mechanical interactions with living cells, molecular chirality, and more. Ongoing efforts hint also that the collective properties of LCs (e.g., LC-dispersed colloids) will, over the coming decade, yield exciting new classes of driven or active soft material systems in which organization (and useful properties) emerges during the dissipation of energy. PMID:26979412

  14. Textile Materials for the Design of Wearable Antennas: A Survey

    PubMed Central

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-01-01

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235

  15. Textile materials for the design of wearable antennas: a survey.

    PubMed

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-01-01

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235

  16. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  17. Designs and Materials for Better Coronagraph Occulting Masks

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham

    2010-01-01

    New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical

  18. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  19. New approach to design of ceramic/polymer material compounds

    NASA Astrophysics Data System (ADS)

    Todt, A.; Nestler, D.; Trautmann, M.; Wagner, G.

    2016-03-01

    The damage tolerance of carbon fibre-reinforced ceramic-matrix composite materials depends on their porosity and can be rather significant. Complex structures are difficult to produce. The integration of simple geometric structures of ceramic-matrix composite materials in complex polymer-based hybrid structures is a possible approach of realising those structures. These hybrid material compounds, produced in a cost-efficient way, combine the different advantages of the individual components in one hybrid material compound. In addition the individual parts can be designed to fit a specific application and the resulting forces. All these different advantages result in a significant reduction of not only the production costs and the production time, but also opens up new areas of application, such as the large-scale production of wear-resistant and chemically inert, energy dampening components for reactors or in areas of medicine. The low wettability of the ceramic component however is a disadvantage of this approach. During the course of this contribution, different C/C composite materials with a specific porosity were produced, while adjusting the resin/hardening agent-ratio, as well as the processing parameters. After the production, different penetration tests were conducted with a polymer component. The final part of the article is comprised of the microstructural analysis and the explanation of the mechanical relationships.

  20. Materials, design and processing of air encapsulated MEMS packaging

    NASA Astrophysics Data System (ADS)

    Fritz, Nathan T.

    This work uses a three-dimensional air cavity technology to improve the fabrication, and functionality of microelectronics devices, performance of on-board transmission lines, and packaging of micro-electromechanical systems (MEMS). The air cavity process makes use of the decomposition of a patterned sacrificial polymer followed by the diffusion of its by-products through a curing polymer overcoat to obtain the embedded air structure. Applications and research of air cavities have focused on simple designs that concentrate on the size and functionality of the particular device. However, a lack of guidelines for fabrication, materials used, and structural design has led to mechanical stability issues and processing refinements. This work investigates improved air gap cavities for use in MEMS packaging processes, resulting in fewer fabrication flaws and lower cost. The identification of new materials, such as novel photo-definable organic/inorganic hybrid polymers, was studied for increased strength and rigidity due to their glass-like structure. A novel epoxy polyhedral oligomeric silsesquioxane (POSS) material was investigated and characterized for use as a photodefineable, permanent dielectrics with improved mechanical properties. The POSS material improved the air gap fabrication because it served as a high-selectivity etch mask for patterning sacrificial materials as well as a cavity overcoat material with improved rigidity. An investigation of overcoat thickness and decomposition kinetics provided a fundamental understanding of the properties that impart mechanical stability to cavities of different shape and volume. Metallization of the cavities was investigated so as to provide hermetic sealing and improved cavity strength. The improved air cavity, wafer-level packages were tested using resonator-type devices and chip-level lead frame packaging. The air cavity package was molded under traditional lead frame molding pressures and tested for mechanical

  1. System design for safe robotic handling of nuclear materials

    SciTech Connect

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-03-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability.

  2. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  3. Design Molecular Recognition Materials for Chiral Sensors, Separtations and Catalytic Materials

    SciTech Connect

    Jia, S.; Nenoff, T.M.; Provencio, P.; Qiu, Y.; Shelnutt, J.A.; Thoma, S.G.; Zhang, J.

    1998-11-01

    The goal is the development of materials that are highly sensitive and selective for chid chemicals and biochemical (such as insecticides, herbicides, proteins, and nerve agents) to be used as sensors, catalysts and separations membranes. Molecular modeling methods are being used to tailor chiral molecular recognition sites with high affinity and selectivity for specified agents. The work focuses on both silicate and non-silicate materials modified with chirally-pure fictional groups for the catalysis or separations of enantiomerically-pure molecules. Surfactant and quaternary amine templating is being used to synthesize porous frameworks, containing mesopores of 30 to 100 angstroms. Computer molecukw modeling methods are being used in the design of these materials, especially in the chid surface- modi~ing agents. Molecular modeling is also being used to predict the catalytic and separations selectivities of the modified mesoporous materials. The ability to design and synthesize tailored asymmetric molecular recognition sites for sensor coatings allows a broader range of chemicals to be sensed with the desired high sensitivity and selectivity. Initial experiments target the selective sensing of small molecule gases and non-toxic model neural compounds. Further efforts will address designing sensors that greatly extend the variety of resolvable chemical species and forming a predictive, model-based method for developing advanced sensors.

  4. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  5. Porous materials with high negative Poisson’s ratios—a mechanism based material design

    NASA Astrophysics Data System (ADS)

    Kim, Kwangwon; Ju, Jaehyung; Kim, Doo-Man

    2013-08-01

    In an effort to tailor functional materials with customized anisotropic properties—stiffness and yield strain, we propose porous materials consisting of flexible mesostructures designed from the deformation of a re-entrant auxetic honeycomb and compliant mechanisms. Using an analogy between compliant mechanisms and a cellular material’s deformation, we can tailor the in-plane properties of mesostructures; low stiffness and high strain in one direction and high stiffness and low strain in the other direction. An analytical model is developed to obtain the effective moduli and yield strains of the porous materials by combining the kinematics of a rigid link mechanism and deformation of flexure hinges. A numerical technique is implemented with the analytical model for the nonlinear constitutive relations of the mesostructures and their strain-dependent Poisson’s ratios. A finite element analysis (FEA) is used to validate the analytical and numerical models. The designed moduli and yield strain of porous materials with an aluminum alloy are 2 GPa and 0.28% in one direction and 0.2 MPa and 28% in the other direction. These porous materials with mesostructures have high negative Poisson’s ratios, {\

  6. Testing and design life analysis of polyurea liner materials

    NASA Astrophysics Data System (ADS)

    Ghasemi Motlagh, Siavash

    Certainly, water pipes, as part of an underground infrastructure system, play a key role in maintaining quality of life, health, and wellbeing of human kind. As these potable water pipes reach the end of their useful life, they create high maintenance costs, loss of flow capacity, decreased water quality, and increased dissatisfaction. There are several different pipeline renewal techniques available for different applications, among which linings are most commonly used for the renewal of water pipes. Polyurea is a lining material applied to the interior surface of the deteriorated host pipe using spray-on technique. It is applied to structurally enhance the host pipe and provide a barrier coating against further corrosion or deterioration. The purpose of this study was to establish a relationship between stress, strain and time. The results obtained from these tests were used in predicting the strength of the polyurea material during its planned 50-year design life. In addition to this, based on the 10,000 hours experimental data, curve fitting and Findley power law models were employed to predict long-term behavior of the material. Experimental results indicated that the tested polyurea material offers a good balance of strength and stiffness and can be utilized in structural enhancement applications of potable water pipes.

  7. Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials.

    PubMed

    Yao, Huifeng; Ye, Long; Zhang, Hao; Li, Sunsun; Zhang, Shaoqing; Hou, Jianhui

    2016-06-22

    Advances in the design and application of highly efficient conjugated polymers and small molecules over the past years have enabled the rapid progress in the development of organic photovoltaic (OPV) technology as a promising alternative to conventional solar cells. Among the numerous OPV materials, benzodithiophene (BDT)-based polymers and small molecules have come to the fore in achieving outstanding power conversion efficiency (PCE) and breaking 10% efficiency barrier in the single junction OPV devices. Remarkably, the OPV device featured by BDT-based polymer has recently demonstrated an impressive PCE of 11.21%, indicating the great potential of this class of materials in commercial photovoltaic applications. In this review, we offered an overview of the organic photovoltaic materials based on BDT from the aspects of backbones, functional groups, alkyl chains, and device performance, trying to provide a guideline about the structure-performance relationship. We believe more exciting BDT-based photovoltaic materials and devices will be developed in the near future. PMID:27251307

  8. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  9. Design of materials configurations for enhanced phononic and electronic properties

    NASA Astrophysics Data System (ADS)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  10. Computational materials design for bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Xi; Shin, Yongwoo

    2013-03-01

    The adapted Su-Schrieffer-Heeger Hamiltonian is further developed in this work to predict the optical bandgaps of more than 200 different π-conjugated systems. Insights on the structure-property relationship of these π-conjugated systems lead to guiding rules for new photovoltaic materials design. A copolymer of parallel and perpendicular benzodithiophenes, differing only in sulfur atom locations, is proposed as a candidate to achieve the optimal 1.2 eV donor optical gap for organic photovoltaics. The charge transfer mechanisms and the exciton and charge carrier mobilities are computed and compared for various bulk-heterojunction structures to improve the overall power convention efficiency.

  11. Designing thin film materials — Ternary borides from first principles

    PubMed Central

    Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    Exploiting the mechanisms responsible for the exceptional properties of aluminum based nitride coatings, we apply ab initio calculations to develop a recipe for designing functional thin film materials based on ternary diborides. The combination of binary diborides, preferring different structure types, results in supersaturated metastable ternary systems with potential for phase transformation induced effects. For the exemplary cases of MxW1 − xB2 (with M = Al, Ti, V) we show by detailed ab initio calculations that the respective ternary solid solutions are likely to be experimentally accessible by modern depositions techniques. PMID:26082562

  12. ATRP in the design of functional materials for biomedical applications

    PubMed Central

    Siegwart, Daniel J.; Oh, Jung Kwon; Matyjaszewski, Krzysztof

    2013-01-01

    Atom Transfer Radical Polymerization (ATRP) is an effective technique for the design and preparation of multifunctional, nanostructured materials for a variety of applications in biology and medicine. ATRP enables precise control over macromolecular structure, order, and functionality, which are important considerations for emerging biomedical designs. This article reviews recent advances in the preparation of polymer-based nanomaterials using ATRP, including polymer bioconjugates, block copolymer-based drug delivery systems, cross-linked microgels/nanogels, diagnostic and imaging platforms, tissue engineering hydrogels, and degradable polymers. It is envisioned that precise engineering at the molecular level will translate to tailored macroscopic physical properties, thus enabling control of the key elements for realized biomedical applications. PMID:23525884

  13. Taguchi method of experimental design in materials education

    NASA Technical Reports Server (NTRS)

    Weiser, Martin W.

    1993-01-01

    Some of the advantages and disadvantages of the Taguchi Method of experimental design as applied to Materials Science will be discussed. This is a fractional factorial method that employs the minimum number of experimental trials for the information obtained. The analysis is also very simple to use and teach, which is quite advantageous in the classroom. In addition, the Taguchi loss function can be easily incorporated to emphasize that improvements in reproducibility are often at least as important as optimization of the response. The disadvantages of the Taguchi Method include the fact that factor interactions are normally not accounted for, there are zero degrees of freedom if all of the possible factors are used, and randomization is normally not used to prevent environmental biasing. In spite of these disadvantages it is felt that the Taguchi Method is extremely useful for both teaching experimental design and as a research tool, as will be shown with a number of brief examples.

  14. Molecular design of aminopolynitroazole-based high-energy materials.

    PubMed

    Ghule, Vikas D; Srinivas, Dharavath; Sarangapani, Radhakrishnan; Jadhav, Pandurang M; Tewari, Surya P

    2012-07-01

    The density functional theory (DFT) was employed to calculate the energetic properties of several aminopolynitroazoles. The calculations were performed to study the effect of amino and nitro substituents on the heats of formation, densities, detonation performances, thermal stabilities, and sensitivity characteristics of azoles. DFT-B3LYP, DFT-B3PW91, and MP2 methods utilizing the basis sets 6-31 G* and 6-311 G (2df, 3p) were adopted to predict HOFs via designed isodesmic reactions. All of the designed aminopolynitroazoles had heats of formation of >220 kJ mol(-1). The crystal densities of the aminopolynitroazoles were predicted with the cvff force field. All of the energetic azoles had densities of >1.83 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and heats of formation. It was found that aminopolynitroazoles have a detonation velocity of about 9.1 km/s and detonation pressure of 36 GPa. The bond dissociation energies for the C-NO(2) and N-NO(2) bonds were analyzed to investigate the stabilities of the designed molecules. The charge on the nitro group was used to assess impact sensitivity in the present study. The results obtained imply that the designed molecules are stable and are expected to be candidates for high-energy materials (HEMs). PMID:22160794

  15. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented. PMID:24866174

  16. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  17. Advances in design and modeling of porous materials

    NASA Astrophysics Data System (ADS)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  18. From molecular design and materials construction to organic nanophotonic devices.

    PubMed

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  19. Materials Design for Joinable, High Performance Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  20. Designing Meaningful Density Functional Theory Calculations in Materials Science

    NASA Astrophysics Data System (ADS)

    Mattsson, A. E.

    2005-07-01

    Density functional theory (DFT) methods for calculating the quantum mechanical ground states of condensed matter systems are now a common and significant component of materials research. These methods are also increasingly used in Equation of State work, in particular in the warm dense matter regime. The growing importance of DFT reflects the development of sufficiently accurate functionals, efficient algorithms, and continuing improvements in computing capabilities. As the materials problems to which DFT is applied have become large and complex, so have the sets of calculations necessary to investigate a given problem. Highly versatile, powerful codes exist to serve the practitioner, but designing useful simulations is a complicated task, involving intricate manipulation of many variables, with many pitfalls for the unwary and the inexperienced. We give an overview of DFT and discuss several of the most important issues that go into designing a meaningful DFT calculation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Failure modes and materials design for biomechanical layer structures

    NASA Astrophysics Data System (ADS)

    Deng, Yan

    ) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.

  2. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  3. Harvesting bioenergy with rationally designed complex functional materials

    NASA Astrophysics Data System (ADS)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  4. Optimal Design of Honeycomb Material Used to Mitigate Head Impact

    PubMed Central

    Caccese, Vincent; Ferguson, James R.; Edgecomb, Michael

    2013-01-01

    This paper presents a study of the impact resistance of honeycomb structure with the purpose to mitigate impact forces. The objective is to aid in the choice of optimal parameters to minimize the thickness of the honeycomb structure while providing adequate protection to prevent injury due to head impact. Studies are presented using explicit finite element analysis representing the case of an unprotected drop of a rigid impactor onto a simulated floor consisting of vinyl composition tile and concrete. Analysis of honeycomb material to reduce resulting accelerations is also presented where parameters such as honeycomb material modulus, wall thickness, cell geometry and structure depth are compared to the unprotected case. A simplified analysis technique using a genetic algorithm is presented to demonstrate the use of this method to select a minimum honeycomb depth to achieve a desired acceleration level at a given level of input energy. It is important to select a minimum material depth in that smaller dimensions lead toward more aesthetic design that increase the likelihood of that the device is used. PMID:23976812

  5. Designing functionally graded materials with superior load-bearing properties

    PubMed Central

    Zhang, Yu; Sun, Ming-jie; Zhang, Denzil

    2011-01-01

    Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidlines for designing FGM with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (Eb/Es) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15 < n < 0.5), coupled with a relatively small modulus ratio (3 < Eb/Es < 6), is most desirable for reducing the maximum stress and transferring it into the interior, while keeping the surface stress low. Experimentally, we demonstrate that elastically graded materials with various n values and Eb/Es ratios can be fabricated by infiltrating alumina and zirconia with a low-modulus glass. Flexural tests show that graded alumina and zirconia with suitable values of these parameters exhibit superior load-bearing capacity, 20% to 50% higher than their homogeneous counterparts. Improving load-bearing capacity of ceramic materials could have broad impacts on biomedical, civil, structural, and an array of other engineering applications. PMID:22178651

  6. Materials for Consideration in Standardized Canister Design Activities.

    SciTech Connect

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  7. Evaluation and design considerations of woven composite flywheel materials constructions

    SciTech Connect

    Sapowith, A.D.; Handy, W.E.; Gurson, A.L.; Lerner, G.R.

    1981-06-15

    Work performed from November 1979 to June 1981 on projects for evaluating the specific energy density capability of bidirectional woven flywheel materials and for developing design approaches for the optimization of those materials is reported. After demonstrating the basic geometry needed to construct a constant stress composite flywheel, a method of construction that can integrate radial and hoop fibers, control the relative stiffness in these two principal directions, and offer low cost in production is explained. Such a construction can be accomplished by weaving the radial fibers with the hoop fibers to form a cloth with a circular or spiral configuration. In this design, the warp fibers become the hoops and the pick fibers become the radials. The varying of radial stiffness is controlled by the choice of the pick pattern. In order to evaluate the circular weave, 0.2-in.-thick discs of approximately 20 in.-dia. were molded using S-glass weave and an epoxy matrix. Tensile specimens cut from the discs in both the radial and hoop directions were tested to failure. Further analyses and tests were performed to determine the optimum weave arrangement and the percent of fiber volume needed to optimize the specific material strength. These analyses show that there is a relatively wide range of pick to warp ratios which achieve optimum specific energy densities and that this range includes ratios that are relatively simple to fabricate. The tensile test data show that specific strengths of the fiberglass circular weave approximate 2.5 x 10/sup 6/ in. which results in energy densities at burst of 35 to 40 W-h/lb. A percent of active composite encompassed by the OD for the composite of 78% has been demonstrated. Fiberglass data suggest that the circular weave flywheel can operate over a life cycle equivalent to 10/sup 6/ deep cycles at the energy density level of 15 W-h/lb. (LCL)

  8. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  9. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  10. A new design concept for multifunctional fasteners using smart materials

    NASA Astrophysics Data System (ADS)

    Yoon, Hwan-Sik

    2009-03-01

    In this paper, a new design concept for multifunctional fasteners using smart materials is presented. The proposed piezoelectric devices, named 'smart fasteners,' can be fabricated by modifying the design of ordinary fasteners such that they have a piezoelectric element and a control unit embedded in their body. These smart fasteners can not only clamp structural members like ordinary fasteners but also measure the response of the structure and generate forces to enhance the dynamic performance of the structure. Due to their fastener-type design, they are more convenient to install onto or remove from structures compared to conventional piezoceramic patch actuators for which a bonding epoxy layer needs to be applied. In order to demonstrate their applicability in active vibration controls, a simulation study was conducted on a fixed-fixed beam structure. Since the control force is applied at the boundary of the structure where the smart fasteners are attached, a new control algorithm called Active Boundary Control (ABC) was developed using the Lyapunov's direct method. The simulation results show that smart fasteners can be used to suppress vibration of the beam by applying the Lyapunov-based Active Boundary Control algorithm.