Science.gov

Sample records for negatively charged molecules

  1. Astronomers Discover First Negatively-charged Molecule in Space

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Cambridge, MA - Astronomers have discovered the first negatively charged molecule in space, identifying it from radio signals that were a mystery until now. While about 130 neutral and 14 positively charged molecules are known to exist in interstellar space, this is the first negative molecule, or anion, to be found. "We've spotted a rare and exotic species, like the white tiger of space," said astronomer Michael McCarthy of the Harvard-Smithsonian Center for Astrophysics (CfA). By learning more about the rich broth of chemicals found in interstellar space, astronomers hope to explain how the young Earth converted these basic ingredients into the essential chemicals for life. This new finding helps to advance scientists' understanding of the chemistry of the interstellar medium, and hence the birthplaces of planets. McCarthy worked with CfA colleagues Carl Gottlieb, Harshal Gupta (also from the Univ. of Texas), and Patrick Thaddeus to identify the molecular anion known as C6H-: a linear chain of six carbon atoms with one hydrogen atom at the end and an "extra" electron. Such molecules were thought to be extremely rare because ultraviolet light that suffuses space easily knocks electrons off molecules. The large size of C6H-, larger than most neutral and all positive molecules known in space, may increase its stability in the harsh cosmic environment. "The discovery of C6H- resolves a long-standing enigma in astrochemistry: the apparent lack of negatively charged molecules in space," stated Thaddeus. The team first conducted laboratory experiments to determine exactly what radio frequencies to use in their search. Then, they used the National Science Foundation's Robert C. Byrd Green Bank Telescope to hunt for C6H- in celestial objects. In particular, they targeted locations in which previous searches had spotted unidentified radio signals at the appropriate frequencies. They found C6H- in two very different locations-a shell of gas surrounding the evolved red giant star IRC +10216 in the constellation Leo, and the cold molecular cloud TMC-1 in Taurus. The presence of the anion in both regions shows that the chemical processes that form C6H- are ubiquitous. It also suggests that other molecular anions are present and will be found in the near future. "This finding is dramatic evidence that our understanding of interstellar chemistry is still quite rudimentary. It also implies that more molecular anions, perhaps many, may now be found in the laboratory and in space," said McCarthy. This research will appear in the December 1 issue of The Astrophysical Journal Letters. Note to editors: High-resolution photographs of the Green Bank Telescope are available at http://www.nrao.edu/imagegallery/php/level2a.php?class=Telescopes&subclass=GBT. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

  2. Negative ions of polyatomic molecules

    SciTech Connect

    Christophorou, LG.

    1980-11-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules are discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to hot molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules (electron affinity), and the basic and the applied significance of negative-ion studies.

  3. Negative ions of polyatomic molecules.

    PubMed Central

    Christophorou, L G

    1980-01-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies. PMID:7428744

  4. Increasing the Net Negative Charge by Replacement of DOTA Chelator with DOTAGA Improves the Biodistribution of Radiolabeled Second-Generation Synthetic Affibody Molecules.

    PubMed

    Westerlund, Kristina; Honarvar, Hadis; Norrström, Emily; Strand, Joanna; Mitran, Bogdan; Orlova, Anna; Eriksson Karlström, Amelie; Tolmachev, Vladimir

    2016-05-01

    A promising strategy to enable patient stratification for targeted therapies is to monitor the target expression in a tumor by radionuclide molecular imaging. Affibody molecules (7 kDa) are nonimmunoglobulin scaffold proteins with a 25-fold smaller size than intact antibodies. They have shown an apparent potential as molecular imaging probes both in preclinical and clinical studies. Earlier, we found that hepatic uptake can be reduced by the incorporation of negatively charged purification tags at the N-terminus of Affibody molecules. We hypothesized that liver uptake might similarly be reduced by positioning the chelator at the N-terminus, where the chelator-radionuclide complex will provide negative charges. To test this hypothesis, a second generation synthetic anti-HER2 ZHER2:2891 Affibody molecule was synthesized and labeled with (111)In and (68)Ga using DOTAGA and DOTA chelators. The chelators were manually coupled to the N-terminus of ZHER2:2891 forming an amide bond. Labeling DOTAGA-ZHER2:2891 and DOTA-ZHER2:2891 with (68)Ga and (111)In resulted in stable radioconjugates. The tumor-targeting and biodistribution properties of the (111)In- and (68)Ga-labeled conjugates were compared in SKOV-3 tumor-bearing nude mice at 2 h postinjection. The HER2-specific binding of the radioconjugates was verified both in vitro and in vivo. Using the DOTAGA chelator gave significantly lower radioactivity in liver and blood for both radionuclides. The (111)In-labeled conjugates showed more rapid blood clearance than the (68)Ga-labeled conjugates. The most pronounced influence of the chelators was found when they were labeled with (68)Ga. The DOTAGA chelator gave significantly higher tumor-to-blood (61 ± 6 vs 23 ± 5, p < 0.05) and tumor-to-liver (10.4 ± 0.6 vs 4.5 ± 0.5, p < 0.05) ratios than the DOTA chelator. This study demonstrated that chelators may be used to alter the uptake of Affibody molecules, and most likely other scaffold-based imaging probes, for improvement of imaging contrast. PMID:27010700

  5. Electrokinetic concentration of charged molecules

    DOEpatents

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  6. Charging of dust grains in a plasma with negative ions

    SciTech Connect

    Kim, Su-Hyun; Merlino, Robert L.

    2006-05-15

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended Q machine when SF{sub 6} is admitted into the vacuum system. The relatively cold Q machine electrons (T{sub e}{approx_equal}0.2 eV) readily attach to SF{sub 6} molecules to form SF{sub 6}{sup -} negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if {epsilon}, the ratio of the electron to positive ion density, is sufficiently small. The Q machine plasma is operated with K{sup +} positive ions (mass 39 amu) and SF{sub 6}{sup -} negative ions (mass 146 amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.

  7. Arabinogalactan proteins are incorporated in negatively charged coffee brew melanoidins.

    PubMed

    Bekedam, E Koen; De Laat, Marieke P F C; Schols, Henk A; Van Boekel, Martinus A J S; Smit, Gerrit

    2007-02-01

    The charge properties of melanoidins in high molecular weight (HMw) coffee brew fractions, isolated by diafiltration and membrane dialysis, were studied. Ion exchange chromatography experiments with the HMw fractions showed that coffee brew melanoidins were negatively charged whereas these molecules did not expose any positive charge at the pH of coffee brew. Fractions with different ionic charges were isolated and subsequently characterized by means of the specific extinction coefficient (K(mix 405nm)), sugar composition, phenolic group content, nitrogen content, and the arabinogalactan protein (AGP) specific Yariv gel-diffusion assay. The isolated fractions were different in composition and AGP was found to be present in one of the HMw fractions. The AGP accounted for 6% of the coffee brew dry matter and had a moderate negative charge, probably caused by the presence of uronic acids. As the fraction that precipitated with Yariv was brown (K(mix 405nm) = 1.2), compared to a white color in the green bean, it was concluded that these AGPs had undergone Maillard reaction resulting in an AGP-melanoidin complex. The presence of mannose (presumably from galactomannan) indicates the incorporation of galactomannans in the AGP-melanoidin complex. As the uronic acid content in the more negatively charged melanoidin-rich, AGP-poor HMw fractions decreased, it was hypothesized that acidic groups are formed or incorporated during melanoidin formation. PMID:17263472

  8. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  9. Interaction of yeast 3-phosphoglycerate kinase with negatively charged carriers.

    PubMed

    Roustan, C; Fattoum, A; Jeanneau, R; Pradel, L A; Schuhmann, D; Vanel, P

    1982-05-01

    The aim of this study was to investigate the possibility of an interaction of yeast 3-phosphoglycerate kinase with negatively charged carriers such as polyanionic agents or a polarized electrode. Various polyanions were found to promote enzyme aggregation as judged by ultracentrifugation measurements and chemical modification. The data obtained suggest that these interactions are mediated through the N-terminal domain of the protein. However, the most striking property of 3-phosphoglycerate kinase described here is concerned with its significant dipolar moment as evidenced by electrocapillary measurements, which allows an orientation of the macromolecule in an electric field. Further, the enzyme could be absorbed by a negatively charged surface, first by hydrophobic links and then oriented perpendicularly to the surface. Therefore, the intrinsic properties of yeast 3-phosphoglycerate kinase agree with the formation of an enzyme-membrane complex and afford the ability for a specific orientation of the molecule at the lipid bilayer surface or in the cytoplasm. PMID:6178443

  10. Positronium negative ion: Molecule or atom\\?

    NASA Astrophysics Data System (ADS)

    Rost, J. M.; Wintgen, D.

    1992-10-01

    A highly accurate calculation is supplemented by an adiabatic approximation to explore the resonance spectrum of positronium Ps-. Surprisingly, the spectrum can be understood and classified with H+2 quantum numbers by treating the interelectronic axis of Ps- as an adiabatic parameter. We report and interpret the existence of 1S shape resonances, a phenomenon so far unknown in three-body Coulomb systems. The new results on Ps- combined with previous results for H- suggest the existence of a resonance spectrum and its similarity for all ABA Coulomb systems with charges ||ZA/ZB||=1 and masses mA/mB>=1.

  11. Increasing the Negative Charge of a Macroanion in the Gas Phase via Sequential Charge Inversion Reactions

    PubMed Central

    He, Min; McLuckey, Scott A.

    2005-01-01

    Protonated and deprotonated biological molecules in the gas phase play an important role in life sciences research. The structural information accessible from the ions is highly dependent upon their charge states. Therefore, it is desirable to develop means for increasing absolute charge states, particularly for ionization methods, such as MALDI, that yield relatively low charge ions. The work presented here demonstrates the formation of a doubly deprotonated polypeptide or oligonucleotide ion (dianion) from a singly deprotonated analogue via two sequential ion/ion proton-transfer reactions involving charge inversion. The high exoergicity and the large cross section arising from the long-range attractive Coulomb potential of ion/ion reactions make this process plausible. In this example, an overall efficiency of conversion of singly charged ions to doubly charged ions of roughly 8% for polypeptide was noted while lower efficiency (roughly 2%) observed with an oligonucleotide is likely due to a greater degree of neutralization. No other approach to increasing the net negative charge of an anion in the gas phase has as yet been reported. PMID:15253662

  12. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. PMID:26057987

  13. Infrared Investigations of Negatively Charged Complexes and Clusters

    NASA Astrophysics Data System (ADS)

    Wild, D. A.; Bieske, E. J.

    The review describes recent progress in the characterization of size-selected negatively charged clusters in the gas phase using vibrational predissociation spectroscopy. Examples from the authors' laboratory are used to demonstrate the way in which spectra are obtained and interpreted to provide information on anion-neutral interactions. Infrared studies of simple dimer complexes consisting of hydrogen molecules attached to halide anions (Cl --H 2 , Br --H 2 , I --H 2 ) are described. From rotationally resolved spectra in the 2.5 μm H-H stretch region one can deduce that the complexes have linear equilibrium structures and can ascertain intermolecular separations. Corresponding spectra of the Cl --D 2 and Br --D 2 isotopomers display a series of clearly resolved doublets, highlighting the importance of hindered internal rotation of the D 2 subunit. Studies of Cl --(C 2 H 2 ) n , Br --(C 2 H 2 ) n and I --(C 2 H 2 ) n clusters containing up to nine C 2 H 2 molecules illustrate how infrared spectra can be used to explore the progressive 'solvation' of halide anions. The smaller clusters ( n ≤6) have morphologies in which equivalent acetylene molecules are hydrogen bonded to the interior halide anion. For n > 6 there is evidence for structures in which one or more acetylene molecules are situated in the second solvation shell and also for the existence of multiple isomeric forms. The article concludes by discussing prospects for extending spectroscopic studies to hitherto uncharacterized anion complexes.

  14. The formation of negatively charged particles in thermoemission plasmas

    SciTech Connect

    Vishnyakov, V. I. Dragan, G. S.; Florko, A. V.

    2008-01-15

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  15. Laboratory infrared spectroscopy of gaseous negatively charged polyaromatic hydrocarbons

    SciTech Connect

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]{sup –}) in the wavelength ranges between 6 and 16 μm and around 3 μm. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  16. Pseudoparticle approach for charge-transferring molecule-surface collisions

    NASA Astrophysics Data System (ADS)

    Marbach, Johannes; Bronold, Franz Xaver; Fehske, Holger

    2012-09-01

    Based on a semiempirical generalized Anderson-Newns model, we construct a pseudoparticle description for electron emission due to deexcitation of metastable molecules at surfaces. The pseudoparticle approach allows us to treat resonant charge-transfer and Auger processes on an equal footing, as it is necessary when both channels are open. This is, for instance, the case when a metastable N2(3Σu+) molecule hits a diamond surface. Using nonequilibrium Green functions and physically motivated approximations to the self-energies of the Dyson equations, we derive a system of rate equations for the probabilities with which the metastable N2(3Σu+) molecule, the molecular ground state N2(1Σg+), and the negative ion N2-(2Πg) can be found in the course of the scattering event. From the rate equations, we also obtain the spectrum of the emitted electron and the secondary electron emission coefficient. Our numerical results indicate the resonant tunneling process undermining the source of the Auger channel, which therefore contributes only a few percent to the secondary electron emission.

  17. Micro injector sample delivery system for charged molecules

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    1999-11-09

    A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.

  18. Mean field theory of charged dendrimer molecules

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Pryamitsyn, Victor; Ganesan, Venkat

    2011-11-01

    Using self-consistent field theory (SCFT), we study the conformational properties of polyelectrolyte dendrimers. We compare results for three different models of charge distributions on the polyelectrolytes: (1) a smeared, quenched charge distribution characteristic of strong polyelectrolytes; (2) a smeared, annealed charge distribution characteristic of weak polyelectrolytes; and (3) an implicit counterion model with Debye-Huckel interactions between the charged groups. Our results indicate that an explicit treatment of counterions is crucial for the accurate characterization of the conformations of polyelectrolyte dendrimers. In comparing the quenched and annealed models of charge distributions, annealed dendrimers were observed to modulate their charges in response to the density of polymer monomers, counterions, and salt ions. Such phenomena is not accommodated within the quenched model of dendrimers and is shown to lead to significant differences between the predictions of quenched and annealed model of dendrimers. In this regard, our results indicate that the average dissociated charge bar{α } inside the dendrimer serves as a useful parameter to map the effects of different parametric conditions and models onto each other. We also present comparisons to the scaling results proposed to explain the behavior of polyelectrolyte dendrimers. Inspired by the trends indicated by our results, we develop a strong segregation theory model whose predictions are shown to be in very good agreement with the numerical SCFT calculations.

  19. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes.

    PubMed

    Chen, Xiuwen; Zhao, Yiru; Moutinho, Jennifer; Shao, Jiahui; Zydney, Andrew L; He, Yiliang

    2015-03-01

    Recovery of reactive dyes from effluent streams is a growing environmental challenge. In this study, various charged regenerated cellulose (RC) ultrafiltration (UF) membranes were prepared and tested for removal of three model reactive dyes (reactive red ED-2B, reactive brilliant yellow K-6G, and reactive brilliant blue KN-R). Data were obtained with charged UF membranes having different spacer arm lengths between the base cellulose and the charge functionality. The effects of charge density of the dye molecules, ionic strength of the feed solution, spacer arm length of charged membranes and filtrate flux were studied. Results indicated that dye retention was greatest with the most negatively charged dye molecule. Higher rejection was also observed in low ionic strength solutions. Results were consistent with model calculations based on the partitioning of a charged sphere into a charged cylindrical pore. The membranes with longer spacer arm length had higher rejection coefficients, consistent with the greater negative charge on these membranes. This study confirms that charged UF membranes can effectively recover small reactive dye molecules at low pressures (below 100 kPa) under appropriate solution conditions due to the strong electrostatic repulsion from the membrane pores. PMID:25463218

  20. Contactless measurements of charge migration within single molecules

    NASA Astrophysics Data System (ADS)

    Nagaya, Kiyonobu; Iwayama, Hiroshi; Sugishima, Akinori; Ohmasa, Yoshinori; Yao, Makoto

    2010-06-01

    Contactless measurements of charge migration were carried out for three π-conjugated molecules in each of which a bromine atom and an oxygen atom are located on the opposite sides of the aromatic ring. A core hole was generated selectively in the Br atom by x-ray absorption, followed by the Auger cascade, and the subsequent charge migration within the molecule was examined by detecting an O+ ion by means of the coincidence momentum imaging measurements.

  1. Contactless measurements of charge migration within single molecules

    SciTech Connect

    Nagaya, Kiyonobu; Iwayama, Hiroshi; Sugishima, Akinori; Ohmasa, Yoshinori; Yao, Makoto

    2010-06-07

    Contactless measurements of charge migration were carried out for three pi-conjugated molecules in each of which a bromine atom and an oxygen atom are located on the opposite sides of the aromatic ring. A core hole was generated selectively in the Br atom by x-ray absorption, followed by the Auger cascade, and the subsequent charge migration within the molecule was examined by detecting an O{sup +} ion by means of the coincidence momentum imaging measurements.

  2. Is the negative glow plasma of a direct current glow discharge negatively charged?

    SciTech Connect

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-02-15

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.

  3. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.

  4. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed. PMID:25470772

  5. Electronic properties of atoms and molecules containing one and two negative muons

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Cruz, Daniel; Reyes, Andrés

    2013-05-01

    Any-Particle Molecular Orbital/Hartree-Fock (APMO/HF) calculations are performed for a variety of atoms and simple diatomic molecular systems containing one and two negative muons (μ). In these calculations electrons and muons are described quantum mechanically whereas nuclei are treated as point charges. Our results for atoms containing n = 1, 2 negative muons reveal that electronic properties such as electronic densities and ionization potentials shift to those of all-electron atoms with atomic numbers Z-n. In the case of diatomic molecules these muonic effects are more diverse ranging from transmutation of atomic properties to drastic changes in equilibrium geometries and energies.

  6. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    PubMed Central

    Lesouhaitier, Olivier; Veron, Wilfried; Chapalain, Annelise; Madi, Amar; Blier, Anne-Sophie; Dagorn, Audrey; Connil, Nathalie; Chevalier, Sylvie; Orange, Nicole; Feuilloley, Marc

    2009-01-01

    Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction mechanism involved in virulence factors regulation. Finally, we will discuss the consequence of the impact of host signal molecules on commensally or opportunistic pathogens associated with different human tissue. PMID:22399982

  7. Concepts on charge transfer through naturally vibrating DNA molecule.

    PubMed

    Abdalla, S; Marzouki, F

    2012-11-01

    Delocalization of charges thorough DNA occurs due to the natural and continuous movements of molecule which stimulates the charge transfer through the molecule. A model is presented showing that the mechanism of electrical conduction occurs mainly by thermally-activated drift motion of holes under control of the localized carriers; where electrons are localized in the conduction band. These localized (stationary-trapped) electrons control the movements of the positive charges and do not play an effective role in the electrical conduction itself. It is found that the localized charge-carriers in the bands have characteristic relaxation times at 5×10(^-2)s, 1.94×10(^-4)s, 5×10(^-7)s, and 2×10(^-11)s respectively which are corresponding to four intrinsic thermal activation energies 0.56eV, 0.33eV, 0.24eV, and 0.05eV respectively. The ac-conductivity of some published data are well fitted with the presented model and the total charge density in DNA molecule is calculated to be n=1.88×10(^19)cm(^-3) at 300K which is corresponding to a linear electron density n=8.66×10(^3)cm(^-1) at 300K. The model shed light on the role of transfer and/or localization of charges through DNA which has multiple applications in medical, nano-technical, bio-sensing and different domains. So, repair DNA by adjusting the charge transport through the molecule is future challenges to new medical applications. PMID:22959134

  8. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  9. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  10. Charge-sharing in fragmentation of nitrogen molecules in collision with highly charged ions

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.; Tezuka, H.; Shiromaru, H.

    2015-01-01

    An apparatus for low-energy collision of highly charged ions with molecules, comprising a position sensitive time-of-flight measurement devise for recoil ions and a charge state analyser for the scattered projectile, was newly constructed at a beam line of an electron cyclotron resonance ion source. Collision experiments of 120 keV Ar8+ with the target of nitrogen molecules were conducted as a test run of this apparatus. Focusing on the dissociation channels with asymmetric sharing of the charges by fragmentation, correlation between Auger electron emission of the projectile and Coulomb explosion of the target is discussed.

  11. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  12. Increased negatively charged nitrogen-vacancy centers in fluorinated diamond

    SciTech Connect

    Cui, Shanying; Hu, Evelyn L.

    2013-07-29

    We investigated the effect of fluorine-terminated diamond surface on the charged state of shallow nitrogen vacancy defect centers (NVs). Fluorination is achieved with CF{sub 4} plasma, and the surface chemistry is confirmed with x-ray photoemission spectroscopy. Photoluminescence of these ensemble NVs reveals that fluorine-treated surfaces lead to a higher and more stable negatively charged nitrogen vacancy (NV{sup −}) population than oxygen-terminated surfaces. NV{sup −} population is estimated by the ratio of negative to neutral charged NV zero-phonon lines. Surface chemistry control of NV{sup −} density is an important step towards improving the optical and spin properties of NVs for quantum information processing and magnetic sensing.

  13. The sheath structure around a negatively charged rocket payload

    NASA Technical Reports Server (NTRS)

    Neubert, T.; Gilchrist, B. E.; Banks, P. M.; Mandell, M. J.; Sasaki, S.

    1990-01-01

    The sheath structure around a rocket payload charged up to 460 V negative relative to the ambient ionospheric plasma is investigated experimentally and by computer simulations. The experimental results come from the Charge 2 sounding rocket experiment in which the payload was split into two separate sections (mother and daughter) connected with a conducting, insulated tether. In one of the experimental modes, the voltage between the payloads was increased linearly from 0 to 460 V in 2.5 s. A floating probe array was mounted on the mother with probes located 25, 50, 75, and 100 cm from the rocket surface. The internal impedance of the array was smaller than the probe/plasma impedance, which influenced the potential measurements. The measurements contain signatures, resulting from the outward expansion of the ion sheath with increasing negative mother potential. This conclusion is substantiated by computer simulations of space charge limited flow.

  14. Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance.

    PubMed

    Finger, Sebastian; Schwieger, Christian; Arouri, Ahmad; Kerth, Andreas; Blume, Alfred

    2014-07-01

    The binding of cationic polyamines to negatively charged lipid membranes is driven by electrostatic interactions and additional hydrophobic contributions. We investigated the effect of polyamines with different number of charges and charge separation on the phase transition behavior of vesicles of phosphatidylglycerols (dipalmitoylphosphatidylglycerol and dimyristoylphosphatidylglycerol) to differentiate between effects caused by the number of charges, the charge distance, and the hydrophobicity of the methylene spacer. Using differential scanning calorimetry and Fourier transform infrared spectroscopy complemented with monolayer experiments, we found that the binding constant of polyamines to negatively charged lipid vesicles depends as expected on the number of charges. However, for diamines, the effect of binding on the main phase transition of phosphatidylglycerols (PGs) is also strongly influenced by the charge distance between the ammonium groups in the backbone. Oligoamines with charges separated by two or three methylene groups bind more strongly and have larger stabilizing effects on the lipid gel phase of PGs. With multivalent polyamines, the appearance of several transition peaks points to effects of molecular crowding on the surface, i.e., binding of only two or three charges to the surface in the case of spermine, and possible concomitant domain formation. PMID:25003384

  15. The free solution mobility of DNA and other analytes varies as the logarithm of the fractional negative charge.

    PubMed

    Stellwagen, Nancy C; Peters, Justin P; Dong, Qian; Maher, L James; Stellwagen, Earle

    2014-07-01

    The free solution mobilities of ssDNA and dsDNA molecules with variable charge densities have been measured by CE. DNA charge density was modified either by appending positively or negatively charged groups to the thymine residues in a 98 bp DNA molecule, or by replacing some of the negatively charged phosphate internucleoside linkers in small ssDNA or dsDNA oligomers with positively charged phosphoramidate linkers. Mobility ratios were calculated for each dataset by dividing the mobility of a charge variant by the mobility of its unmodified parent DNA. Mobility ratios essentially eliminate the effect of the BGE on the observed mobility, making it possible to compare analytes measured under different experimental conditions. Neutral moieties attached to the thymine residues in the 98-bp DNA molecule had little or no effect on the mobility ratios, indicating that bulky substituents in the DNA major groove do not affect the mobility significantly. The mobility ratios observed for the thymine-modified and linker-modified DNA charge variants increased approximately linearly with the logarithm of the fractional negative charge of the DNA. Mobility ratios calculated from previous studies of linker-modified DNA charge variants and small multicharged organic molecules also increased approximately linearly with the logarithm of the fractional negative charge of the analyte. The results do not agree with the Debye-Hückel-Onsager theory of electrophoresis, which predicts that the mobility of an analyte should depend linearly on analyte charge, not the logarithm of the charge, when the frictional coefficient is held constant. PMID:24648187

  16. Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria.

    PubMed

    Winterhalter, Mathias; Ceccarelli, Matteo

    2015-09-01

    The development of antibiotics against Gram-negative bacteria is a challenge: any active compound must cross the outer cell envelope composed of a hydrophilic highly charged lipopolysaccharide layer followed by a tight hydrophobic layer containing water filled gates called porins to reach the hydrophilic periplasmic space and depending on the target with the further need to cross the hydrophobic inner membrane. In addition to a possible rapid enzymatic deactivation efflux pumps shuffle compounds back outside. The resulting low permeability of cell envelope requires high dose and leads therefore to toxicity problems. Despite its relevance the permeability barrier in Gram-negative bacteria is not well understood partially caused by the lack of appropriate direct assays. Here we give a brief introduction on current available techniques to quantify passive diffusion of small hydrophilic molecules into Gram-negative bacteria. PMID:26036449

  17. Positive/negative ion velocity mapping apparatus for electron-molecule reactions

    SciTech Connect

    Wu Bin; Xia Lei; Li Hongkai; Zeng Xianjin; Tian Shanxi

    2012-01-15

    In molecular dissociative ionization by electron collisions and dissociative electron attachment to molecule, the respective positively and negatively charged fragments are the important products. A compact ion velocity mapping apparatus is developed for the angular distribution measurements of the positive or negative fragments produced in the electron-molecule reactions. This apparatus consists of a pulsed electron gun, a set of ion velocity mapping optic lenses, a two-dimensional position detector including two pieces of micro-channel plates, and a phosphor screen, and a charge-coupled-device camera for data acquisition. The positive and negative ion detections can be simply realized by changing the voltage polarity of ion optics and detector. Velocity sliced images can be directly recorded using a narrow voltage pulse applied on the rear micro-channel plate. The efficient performance of this system is evaluated by measuring the angular distribution of O{sup -} from the electron attachments to NO at 7.3 and 8.3 eV and O{sup +} from the electron collision with CO at 40.0 eV.

  18. Capture of negative exotic particles by atoms, ions and molecules

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    2004-10-01

    This article describes the capture of heavy negative particles (mgr-, pgr-, K-, \\barp ) by normal atoms, ions and molecules to form exotic systems. Capture by even the hydrogen atom presents great challenges for theoretical treatment. The wide variety of methods used are reviewed, including perturbative, two-state adiabatic and diabatic, time-independent quantum mechanical, time-dependent semiclassical and quantum mechanical and quasi-classical treatments. A few of these methods, as well as the Fermi-Teller model, have also been applied to heavier atomic targets. Most of the methods, other than the quasi-classical formulations, are not yet up to treating the dynamical electron correlation and multiple ionization found to be important in capture by multi-electron atoms, or the vibronic coupling found to be important in capture by simple molecules. The essential elements of potentially more rigorous quantum mechanical theories are characterized. The experimental data on capture states and relative capture probabilities in mixtures are also discussed. The connection of this experimental data to the theoretical capture calculations is fairly tenuous, but forthcoming experiments with antiprotons promise direct tests of some of the recent theoretical findings.

  19. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  20. Study on space charge compensation in negative hydrogen ion beam

    NASA Astrophysics Data System (ADS)

    Zhang, A. L.; Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H- beam from a 2.45 GHz microwave driven H- ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  1. Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say. Molecule formation Formation Process of Large, Negatively-Charged Molecule in Interstellar Space CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and detailed information "This discovery continues to add to the diversity and complexity that is already seen in the chemistry of interstellar space," said Anthony J. Remijan of the National Radio Astronomy Observatory (NRAO). "It also adds to the number of paths available for making the complex organic molecules and other large molecular species that may be precursors to life in the giant clouds from which stars and planets are formed," he added. Two teams of scientists found negatively-charged octatetraynyl, a chain of eight carbon atoms and one hydrogen atom, in the envelope of gas around an old, evolved star and in a cold, dark cloud of molecular gas. In both cases, the molecule had an extra electron, giving it a negative charge. About 130 neutral and about a dozen positively-charged molecules have been discovered in space, but the first negatively-charged molecule was not discovered until late last year. The largest previously-discovered negative ion found in space has six carbon atoms and one hydrogen atom. "Until recently, many theoretical models of how chemical reactions evolve in interstellar space have largely neglected the presence of anions. This can no longer be the case, and this means that there are many more ways to build large organic molecules in cosmic environments than have been explored," said Jan M. Hollis of NASA's Goddard Space Flight Center (GSFC). Ultraviolet light from stars can knock an electron off a molecule, creating a positively-charged ion. Astronomers had thought that molecules would not be able to retain an extra electron, and thus a negative charge, in interstellar space for a significant time. "That obviously is not the case," said Mike McCarthy of the Harvard-Smithsonian Center for Astrophysics. "Anions are surprisingly abundant in these regions." Remijan and his colleagues found the octatetraynyl anions in the envelope of the evolved giant star IRC +10 216, about 550 light-years from Earth in the constellation Leo. They found radio waves emitted at specific frequencies characteristic of the charged molecule by searching archival data from the GBT, the largest fully-steerable radio telescope in the world. Another team from the Harvard-Smithsonian Center for Astrophysics (CfA) found the same characteristic emission when they observed a cold cloud of molecular gas called TMC-1 in the constellation Taurus. These observations also were done with the GBT. In both cases, preceding laboratory experiments by the CfA team showed which radio frequencies actually are emitted by the molecule, and thus told the astronomers what to look for. "It is essential that likely interstellar molecule candidates are first studied in laboratory experiments so that the radio frequencies they can emit are known in advance of an astronomical observation," said Frank Lovas of the National Institute of Standards and Technology (NIST). Both teams announced their results in the July 20 edition of the Astrophysical Journal Letters. "With three negatively-charged molecules now found in a short period of time, and in very different environments, it appears that many more probably exist. We believe that we can discover more new species using very sensitive and advanced radio telescopes such as the GBT, once they have been characterized in the laboratory," said Sandra Bruenken of the CfA. "Further detailed studies of anions, including astronomical observations, laboratory studies, and theoretical calculations, will allow us to use them to reveal new information about the physical and chemical processes going on in interstellar space," said Martin Cordiner, of Queen's University in Belfast, Northern Ireland. "The GBT continues to take a leading role in discovering, identifying and mapping the distribution of the largest molecules ever found in astronomical environments and will continue to do so for the next several decades," said Phil Jewell of NRAO. In addition to Hollis, Lovas, Cordiner and Jewell, Remijan worked with Tom Millar of Queen's University in Belfast, Northern Ireland, and Andrew Markwick-Kemper of the University of Manchester in the UK. Bruenken worked with McCarthy, Harshal Gupta, Carl Gottlieb, and Patrick Thaddeus, all of the Harvard-Smithsonian Center for Astrophysics. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

  2. Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems.

    PubMed

    Zhong, Linxin; Fu, Shiyu; Peng, Xinwen; Zhan, Huaiyu; Sun, Runcang

    2012-09-01

    Colloidal stability of negatively charged cellulose nanocrystalline (CNC) in the presence of inorganic and organic electrolytes was investigated by means of dynamic light scattering and atomic force microscopy. CNC could be well dispersed in distilled water due to the electrostatic repulsion among negatively charged sulfate ester groups. Increasing the concentration of inorganic cation ions (Na(+) and Ca(2+)) resulted in CNC aggregation. CNC in divalent cation ion Ca(2+) solution exhibited less stability than that in monovalent cation ion Na(+) solution. Organic low-molecular-weight electrolyte sodium dodecyl sulfate (SDS) favored the stability of CNC suspension, whereas organic high-molecular-weight electrolyte sodium carboxymethyl cellulose (CMC) induced CNC particle aggregation due to intermolecular bridging interaction or entanglement. Cationic polyacrylamide (CPAM) caused a serious aggregation of CNC particles even at low concentration of CPAM. At low ionic strength (Na(+), 1 mM), CNC were stable in aqueous solution at the pH range of 2-11. PMID:24751088

  3. Charge exchange of a polar molecule at its cation

    SciTech Connect

    Buslov, E. Yu. Zon, B. A.

    2011-01-15

    The Landau-Herring method is used to derive an analytic expression for the one-electron exchange interaction of a polar molecule with its positively charged ion, induced by a {sigma}-electron. Analogously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of the exchange potential on the orientation of the dipole moments relative to the molecular axis may change the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant charge exchange, from the resonance to the quasi-resonance dependence.

  4. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids

    NASA Astrophysics Data System (ADS)

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J.

    2014-12-01

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05987e

  5. Electron interactions with positively and negatively multiply charged biomolecular clusters

    NASA Astrophysics Data System (ADS)

    Feketeová, Linda

    2012-07-01

    Interactions of positively and negatively multiply charged biomolecular clusters with low-energy electrons, from ~ 0 up to 50 eV of electron energy, were investigated in a high resolution Fourier-Transform Ion Cyclotron Resonance mass spectrometer equipped with an electrospray ionisation source. Electron-induced dissociation reactions of these clusters depend on the energy of the electrons, the size and the charge state of the cluster. The positively charged clusters [Mn+2H]2+ of zwitterionic betaines, M = (CH3)2XCH2CO2 (X = NCH3 and S), do capture an electron in the low electron energy region (< 10 eV). At higher electron energies neutral evaporation from the cluster becomes competitive with Coulomb explosion. In addition, a series of singly charged fragments arise from bond cleavage reactions, including decarboxylation and CH3 group transfer, due to the access of electronic excited states of the precursor ions. These fragmentation reactions depend on the type of betaine (X = NCH3 or S). For the negative dianionic clusters of tryptophan [Trp9-2H]2-, the important channel at low electron energies is loss of a neutral. Coulomb explosion competes from 19.8 eV and dominates at high electron energies. A small amount of [Trp2-H-NH3]- is observed at 21.8 eV.

  6. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 μm for Titan aerosols, is ∼628 charges/radius (in μm). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  7. Charge transfer and charge localization in extended radical cations: Investigation of model molecules for peptides

    NASA Astrophysics Data System (ADS)

    Weinkauf, Rainer; Lehrer, Florian

    1998-12-01

    Molecules consisting of a flexible tail and an aromatic chromophore are used as model systems to understand the situation of a single chromophore in a small peptide. Their S0-S1 resonant multiphoton ionization (REMPI) spectra show, that in neutral molecules the tail-chromophore interaction is weak and electronic excitation is localized at the chromophore. For molecules, where the ionization energy of the tail is considerable higher than that of the chromophore, by high resolution REMPI photoelectron spectroscopy we find the charge to be localized on the aromatic chromophore. This scheme also in suitable peptides allows local ionization at the aromatic chromophore. An estimate for various charge positions in peptide chains, however, shows, that for most of the amino acids electron hole positions in the nitrogen and oxygen "lone pair" orbitals of the peptide bond are nearly degenerate. REMPI photoelectron spectra of phenylethylamine, which as a model system contains such two degenerate charge positions, show small energetic shift of the ionization energy but strong geometry changes upon electron removal. This result is interpreted as direct ionization into a mixed charge delocalized state. Consequences for the charge transfer mechanism in peptides are discussed.

  8. Negative ion beam space charge compensation by residual gas

    NASA Astrophysics Data System (ADS)

    Valerio-Lizarraga, Cristhian A.; Leon-Monzon, Ildefonso; Scrivens, Richard

    2015-08-01

    The space charge of intense unbunched ion beams can be compensated by the ions created when the beam ionizes the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to expel the electrons to the beam pipe walls, while the positive ions are trapped and start to be accumulated. In this paper, we report on experiments to study this space charge compensation (SCC) in a 45 keV H- unbunched beam in the CERN Linac4 low-energy beam transport. Beam size and emittance were measured for different gases injected into the beam region to control the degree and speed of the SCC. These results are compared with beam simulations that include the generation and tracking of secondary ions leading to a unique understanding of the transport of the ion beam in some specific cases.

  9. Formation of Negative Ions upon Dissociative Electron Attachment to the Astrochemically Relevant Molecule Aminoacetonitrile.

    PubMed

    Pelc, Andrzej; Huber, Stefan E; Matias, Carolina; Czupyt, Zbigniew; Denifl, Stephan

    2016-02-18

    Aminoacetonitrile (NH2CH2CN, AAN) is a molecule relevant for interstellar chemistry and the chemical evolution of life. It is a very important molecule in the Strecker diagram explaining the formation of amino acids. In the present investigation, dissociative electron attachment to NH2CN was studied in a crossed electron-molecular beams experiment in the electron energy range from about 0 to 17 eV. In this electron energy range, the following six anionic species were detected: C2H3N2(-), C2H2N2(-), C2H2N(-), C2HN(-), CN(-), and NH2(-). Possible reaction channels for all the measured negative ions are discussed, and the experimental results are compared with calculated thermochemical thresholds of the observed anions. Similar to other nitrile and aminonitrile compounds, the main anions detected were the negatively charged nitrile group, the dehydrogenated parent molecule, and the amino group. No parent anion was observed. Low anion yields were observed indicating that AAN is less prone to electron capture. Therefore, AAN can be considered to exhibit a relatively long lifetime under typical conditions in outer space. PMID:26810336

  10. Toward charging free plasma etching; Insitu measurement of negative charge injection and charge reduction in a contact hole

    NASA Astrophysics Data System (ADS)

    Ohmori, Takeshi; Makabe, Toshiaki

    2003-10-01

    It will be essential to develop in-situ diagnostics for damage free plasma etching in the interface under close and complementary cooperation between optical and electric procedure in a top-down nanoscale etching. In our previous paper[1], we have applied an emission selected omputerized tomography close to the wafer exposed to plasma etching, in order to investigate the polarity and the phase of high energy charged particles incident on the wafer, biased deeply by a low frequency source in RIE. A reduction in charging voltage on a contact hole bottom of SiO2 was validated in the pulsed plasma power source in the 2f-CCP in CF_4/Ar, by using a dual measurement system onsisting of a temporal emission CT and a contact hole charging voltage. In the present work, detailed correlational results of the reduction in the charging voltage are shown as a function of phase and amplitude of the single bias pulse at 500 kHz. Discussion is focused both on the injection mechanism of energetic negative charges to the wafer and on the magnitude of the negative charges. As a result, during the off-period 10 us of VHF power source in the dual pulsed 2f-CCP, it is confirmed that; 1)the magnitude of the injected negative charge increases with increasing the on-time of the single bias pulse, and a strong reduction in the charging voltage is performed, 2)a strong negative self-bias-voltage is always kept to have an efficient RIE under energetic positive ion impact on the wafer except for the period of the single bias pulse. Some of predictive story will be also introduced by VicAddress. 1)T.Ohmori, T.K.Goto, T.Kitajima, and T.Makabe, Proc.of Dry Process Symposium 165(2002)Tokyo, and Appl.Phys.Lett.(submitted).

  11. Negative Ion Fragmentation of Cysteic Acid Containing Peptides: Cysteic Acid as a Fixed Negative Charge

    NASA Astrophysics Data System (ADS)

    Williams, Brad J.; Barlow, Christopher K.; Kmiec, Kevin L.; Russell, William K.; Russell, David H.

    2011-09-01

    We present here a study of the collision induced dissociation (CID) of deprotonated cysteic acid containing peptides produced by MALDI. The effect of cysteic acid (Cox) position is interrogated by considering the positional isomers, CoxLVINVLSQG, LVINVLSQGCox, and LVINVCoxLSQG. Although considerable variation between the CID spectra is observed, the mechanistic picture that emerges involves charge retention at the deprotonated cysteic acid side chain. Fragmentation occurs in the proximity of the cysteic acid group by charge directed mechanisms as well as remote from this group to form ions, which may be rationalized by charge remote mechanisms. Additionally, the formation of the SO{3/-•} ion is observed in all cases. Fragmentation of CoxLVINVLSQCox provides both N- and C-terminal, y and b ions, respectively indicating that the negative charge may be retained at either of the cysteic acids; however, there is some evidence that charge retention at the C-terminal cysteic acid may be preferred. Fragmentation of tryptic type peptides containing a C-terminal arginine or lysine residue is considered through comparison of three peptides CoxLVINKLSQG, CoxLVINVLSQK, and CoxLVINVLSQR. Lastly, we rationalize the formation of b n-1 + H2O and a n-1 ions through a mechanism involving rearrangement of the C-terminal residue to form a mixed anhydride intermediate.

  12. Charged supramolecular assemblies of surfactant molecules in gas phase.

    PubMed

    Bongiorno, David; Ceraulo, Leopoldo; Indelicato, Sergio; Turco Liveri, Vincenzo; Indelicato, Serena

    2016-01-01

    The aim of this review is to critically analyze recent literature on charged supramolecular assemblies formed by surfactant molecules in gas phase. Apart our specific interest on this research area, the stimuli to undertake the task arise from the widespread theoretical and applicative benefits emerging from a comprehensive view of this topic. In fact, the study of the formation, stability, and physicochemical peculiarities of non-covalent assemblies of surfactant molecules in gas phase allows to unveil interesting aspects such as the role of attractive, repulsive, and steric intermolecular interactions as driving force of supramolecular organization in absence of interactions with surrounding medium and the size and charge state dependence of aggregate structural and dynamical properties. Other interesting aspects worth to be investigated are joined to the ability of these assemblies to incorporate selected solubilizates molecules as well as to give rise to chemical reactions within a single organized structure. In particular, the incorporation of large molecules such as proteins has been of recent interest with the objective to protect their structure and functionality during the transition from solution to gas phase. Exciting fall-out of the study of gas phase surfactant aggregates includes mass and energy transport in the atmosphere, origin of life and simulation of supramolecular aggregation in the interstellar space. Moreover, supramolecular assemblies of amphiphilic molecules in gas phase could find remarkable applications as atmospheric cleaning agents, nanosolvents and nanoreactors for specialized chemical processes in confined space. Mass spectrometry techniques have proven to be particularly suitable to generate these assemblies and to furnish useful information on their size, size polydispersity, stability, and structural organization. On the other hand molecular dynamics simulations have been very useful to rationalize many experimental findings and to furnish a vivid picture of the structural and dynamic features of these aggregates. Thus, in this review, we will focus on the most important achievements gained in recent years by both these investigative tools. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35: 170-187, 2016. PMID:26113001

  13. Negatively charged nanoparticles produced by splashing of water

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Hõrrak, U.; Kulmala, M.

    2009-01-01

    The production of splashing-generated balloelectric intermediate ions was studied by means of mobility spectrometry in the atmosphere during the rain and in a laboratory experiment simulating the heavy rain. The partial neutralization of intermediate ions with cluster ions generated by beta rays suppressed the space charge of intermediate ions but preserved the shape of the mobility distribution. The balloelectric ions produced from the waterworks water of high TDS (Total Dissolved Solids) had about the same mobilities as the ions produced from the rainwater of low TDS. This suggests that the balloelectric ions can be considered as singly charged water nanoparticles. By different measurements, the diameter mode of these particles was 2.2-2.7 nm, which is close to the diameter of 2.5 nm of the Chaplin's 280-molecule magic icosahedron superclusters. The measurements can be explained by a hypothesis that the pressure of saturated vapor over the nanoparticle surface is suppressed by a number of magnitudes due to the internal structure of the particles near the size of 2.5 nm. The records of the concentration bursts of balloelectric ions in the atmosphere are formally similar to the records of the nucleation bursts but they cannot be qualified as nucleation bursts because the particles are not growing but shrinking.

  14. Negatively charged nanoparticles produced by splashing of water

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Hõrrak, U.; Kulmala, M.

    2008-09-01

    The production of splashing-generated balloelectric intermediate ions was studied by means of mobility spectrometry in the atmosphere during the rain and in a laboratory experiment simulating the heavy rain. The partial neutralization of intermediate ions with cluster ions generated by beta rays suppressed the space charge of intermediate ions but preserved the shape of the mobility distribution. The balloelectric ions produced from the waterworks water of high TDS (Total Dissolved Solids) had about the same mobilities as the ions produced from the rainwater of low TDS. This suggests that the balloelectric ions can be considered as singly charged water nanodroplets. By different measurements, the diameter mode of these droplets was 2.2 2.7 nm, which is close to the diameter of 2.5 nm of the Chaplin's 280-molecule magic icosahedron superclusters. The measurements can be explained by a hypothesis that the pressure of saturated vapor over the nanodroplet surface is suppressed by a number of magnitudes due to the internal structure of the droplets near the size of 2.5 nm. The records of the concentration bursts of balloelectric ions in the atmosphere are formally similar to the records of the nucleation bursts but they cannot be qualified as nucleation bursts because the particles are not growing but shrinking.

  15. Charge neutralization of dust particles in a plasma with negative ions

    SciTech Connect

    Merlino, Robert L.; Kim, Su-Hyun

    2006-08-28

    Charging of dust grains in a plasma with negative ions is studied experimentally. When the relatively mobile electrons are attached to heavy negative ions, their tendency to charge the grains negatively is reduced. In a plasma in which a substantial fraction of the electrons are eliminated (positive ion/negative ion plasma), the grain charge can be reduced in magnitude nearly to zero ('decharging' or charge neutralization). If the positive ions are lighter than the negative ions, dust grains having a small net positive charge can be produced.

  16. Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes.

    PubMed

    Wang, Bo; Li, Shaohong L; Truhlar, Donald G

    2014-12-01

    Partial atomic charges are widely used for the description of charge distributions of molecules and solids. These charges are useful to indicate the extent of charge transfer and charge flow during chemical reactions in batteries, fuel cells, and catalysts and to characterize charge distributions in capacitors, liquid-phase electrolytes, and solids and at electrochemical interfaces. However, partial atomic charges given by various charge models differ significantly, especially for systems containing metal atoms. In the present study, we have compared various charge models on both molecular systems and extended systems, including Hirshfeld, CM5, MK, ChElPG, Mulliken, MBS, NPA, DDEC, LoProp, and Bader charges. Their merits and drawbacks are compared. The CM5 charge model is found to perform well on the molecular systems, with a mean unsigned percentage deviation of only 9% for the dipole moments. We therefore formulated it for extended systems and applied it to study charge flow during the delithiation process in lithium-containing oxides used as cathodes. Our calculations show that the charges given by the CM5 charge model are reasonable and that during the delithiation process, the charge flow can occur not only on the transition metal but also on the anions. The oxygen atoms can lose a significant density of electrons, especially for deeply delithiated materials. We also discuss other methods in current use to analyze the charge transfer and charge flow in batteries, in particular the use of formal charge, spin density, and orbital occupancy. We conclude that CM5 charges provide useful information in describing charge distributions in various materials and are very promising for the study of charge transfer and charge flows in both molecules and solids. PMID:26583247

  17. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  18. Controllable transition from positive space charge to negative space charge in an inverted cylindrical magnetron

    NASA Astrophysics Data System (ADS)

    Rane, R.; Bandyopadhyay, M.; Ranjan, M.; Mukherjee, S.

    2016-01-01

    The combined effect of magnetic field (B), gas pressure (P), and the corresponding discharge voltage on the discharge properties of argon in inverted cylindrical magnetron has been investigated. In the experiment, anode is biased with continuous 10 ms sinusoidal half wave. It is observed that at a comparatively higher magnetic field (i.e., >200 gauss) and lower operating pressure (i.e., <1 × 10-3 mbar), the discharge extinguishes and demands a high voltage to reignite. Discharge current increases with increase in magnetic field and starts reducing at sufficiently higher magnetic field for a particular discharge voltage due to restricted electron diffusion towards the anode. It is observed that B/P ratio plays an important role in sustaining the discharge and is constant for a discharge voltage. The discharge is transformed to negative space charge regime from positive space charge regime at certain B/P ratio and this ratio varies linearly with the discharge voltage. The space charge reversal is indicated by the radial profile of the floating potential and plasma potential in between two electrodes for different magnetic fields. At a particular higher magnetic field (beyond 100 gauss), the floating potential increases gradually with the radial distance from cathode, whereas it remains almost constant at lower magnetic field.

  19. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge

    SciTech Connect

    Boulfrad, Yacine Lindroos, Jeanette; Yli-Koski, Marko; Savin, Hele; Wagner, Matthias; Wolny, Franziska

    2014-11-03

    In addition to boron and oxygen, copper is also known to cause light-induced degradation (LID) in silicon. We have demonstrated previously that LID can be prevented by depositing negative corona charge onto the wafer surfaces. Positively charged interstitial copper ions are proposed to diffuse to the negatively charged surface and consequently empty the bulk of copper. In this study, copper out-diffusion was confirmed by chemical analysis of the near surface region of negatively/positively charged silicon wafer. Furthermore, LID was permanently removed by etching the copper-rich surface layer after negative charge deposition. These results demonstrate that (i) copper can be effectively removed from the bulk by negative charge, (ii) under illumination copper forms a recombination active defect in the bulk of the wafer causing severe light induced degradation.

  20. An analysis of five negative sprite-parent discharges and their associated thunderstorm charge structures

    NASA Astrophysics Data System (ADS)

    Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.

    2016-01-01

    In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.

  1. Self-Optimized Biological Channels in Facilitating the Transmembrane Movement of Charged Molecules.

    PubMed

    Huyen, V T N; Ho, Le Bin; Lap, Vu Cong; Nguyen, V Lien

    2016-01-01

    We consider an anisotropically two-dimensional diffusion of a charged molecule (particle) through a large biological channel under an external voltage. The channel is modeled as a cylinder of three structure parameters: radius, length, and surface density of negative charges located at the channel interior-lining. These charges induce inside the channel a potential that plays a key role in controlling the particle current through the channel. It was shown that to facilitate the transmembrane particle movement the channel should be reasonably self-optimized so that its potential coincides with the resonant one, resulting in a large particle current across the channel. Observed facilitation appears to be an intrinsic property of biological channels, regardless of the external voltage or the particle concentration gradient. This facilitation is very selective in the sense that a channel of definite structure parameters can facilitate the transmembrane movement of only particles of proper valence at corresponding temperatures. Calculations also show that the modeled channel is nonohmic with the ion conductance which exhibits a resonance at the same channel potential as that identified in the current. PMID:27022394

  2. Self-Optimized Biological Channels in Facilitating the Transmembrane Movement of Charged Molecules

    PubMed Central

    Huyen, V. T. N.; Lap, Vu Cong; Nguyen, V. Lien

    2016-01-01

    We consider an anisotropically two-dimensional diffusion of a charged molecule (particle) through a large biological channel under an external voltage. The channel is modeled as a cylinder of three structure parameters: radius, length, and surface density of negative charges located at the channel interior-lining. These charges induce inside the channel a potential that plays a key role in controlling the particle current through the channel. It was shown that to facilitate the transmembrane particle movement the channel should be reasonably self-optimized so that its potential coincides with the resonant one, resulting in a large particle current across the channel. Observed facilitation appears to be an intrinsic property of biological channels, regardless of the external voltage or the particle concentration gradient. This facilitation is very selective in the sense that a channel of definite structure parameters can facilitate the transmembrane movement of only particles of proper valence at corresponding temperatures. Calculations also show that the modeled channel is nonohmic with the ion conductance which exhibits a resonance at the same channel potential as that identified in the current. PMID:27022394

  3. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    SciTech Connect

    Teyssedre, G. Laurent, C.; Vu, T. T. N.

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  4. Mass Spectrometry Study of Multiply Negatively Charged, Gas-Phase NaAOT Micelles: How Does Charge State Affect Micellar Structure and Encapsulation?

    NASA Astrophysics Data System (ADS)

    Fang, Yigang; Liu, Fangwei; Liu, Jianbo

    2013-01-01

    We report the formation and characterization of multiply negatively charged sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) aggregates in the gas phase, by electrospray ionization of methanol/water solution of NaAOT followed by detection using a guided-ion-beam tandem mass spectrometer. Singly and doubly charged aggregates dominate the mass spectra with the compositions of [Nan-zAOTn]z- ( n = 1-18 and z = 1-2). Solvation by water was detected only for small aggregates [Nan-1AOTnH2O]- of n = 3-9. Incorporation of glycine and tryptophan into [Nan-zAOTn]z- aggregates was achieved, aimed at identifying effects of guest molecule hydrophobicity on micellar solubilization. Only one glycine molecule could be incorporated into each [Nan-zAOTn]z- of n ≥ 7, and at most two glycine molecules could be hosted in that of n ≥ 13. In contrast to glycine, up to four tryptophan molecules could be accommodated within single aggregates of n ≥ 6. However, deprotonation of tryptophan significantly decrease its affinity towards aggregates. Collision-induced dissociation (CID) was carried out for mass-selected aggregate ions, including measurements of product ion mass spectra for both empty and amino acid-containing aggregates. CID results provide a probe for aggregate structures, surfactant-solute interactions, and incorporation sites of amino acids. The present data was compared with mass spectrometry results of positively charged [Nan+zAOTn]z+ aggregates. Contrary to their positive analogues, which form reverse micelles, negatively charged aggregates may adopt a direct micelle-like structure with AOT polar heads exposed and amino acids being adsorbed near the micellar outer surface.

  5. Mass spectrometry study of multiply negatively charged, gas-phase NaAOT micelles: how does charge state affect micellar structure and encapsulation?

    PubMed

    Fang, Yigang; Liu, Fangwei; Liu, Jianbo

    2013-01-01

    We report the formation and characterization of multiply negatively charged sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) aggregates in the gas phase, by electrospray ionization of methanol/water solution of NaAOT followed by detection using a guided-ion-beam tandem mass spectrometer. Singly and doubly charged aggregates dominate the mass spectra with the compositions of [Na(n-z)AOT(n)](z-) (n = 1-18 and z = 1-2). Solvation by water was detected only for small aggregates [Na(n-1)AOT(n)H(2)O](-) of n = 3-9. Incorporation of glycine and tryptophan into [Na(n-z)AOT(n)](z-) aggregates was achieved, aimed at identifying effects of guest molecule hydrophobicity on micellar solubilization. Only one glycine molecule could be incorporated into each [Na(n-z)AOT(n)](z-) of n ≥ 7, and at most two glycine molecules could be hosted in that of n ≥ 13. In contrast to glycine, up to four tryptophan molecules could be accommodated within single aggregates of n ≥ 6. However, deprotonation of tryptophan significantly decrease its affinity towards aggregates. Collision-induced dissociation (CID) was carried out for mass-selected aggregate ions, including measurements of product ion mass spectra for both empty and amino acid-containing aggregates. CID results provide a probe for aggregate structures, surfactant-solute interactions, and incorporation sites of amino acids. The present data was compared with mass spectrometry results of positively charged [Na(n+z)AOT(n)](z+) aggregates. Contrary to their positive analogues, which form reverse micelles, negatively charged aggregates may adopt a direct micelle-like structure with AOT polar heads exposed and amino acids being adsorbed near the micellar outer surface. PMID:23247969

  6. Binding of monovalent alkali metal ions with negatively charged phospholipid membranes.

    PubMed

    Maity, Pabitra; Saha, Baishakhi; Kumar, Gopinatha Suresh; Karmakar, Sanat

    2016-04-01

    We have systematically investigated the effect of various alkali metal ions with negatively charged phospholipid membranes. Size distributions of large unilamellar vesicles have been confirmed using dynamic light scattering. Zeta potential and effective charges per vesicle in the presence of various alkali metal ions have been estimated from the measured electrophoretic mobility. We have determined the intrinsic binding constant from the zeta potential using electrostatic double layer theory. The reasonable and consistent value of the intrinsic binding constant of Na(+), found at moderate NaCl concentration (10-100mM), indicates that the Gouy-Chapman theory cannot be applied for very high (>100mM) and very low (<10mM) electrolyte concentrations. The isothermal titration calorimetry study has revealed that the net binding heat of interaction of the negatively charged vesicles with monovalent alkali metal ions is small and comparable to those obtained from neutral phosphatidylcholine vesicles. The overall endothermic response of binding heat suggests that interaction is primarily entropy driven. The entropy gain might arise due to the release of water molecules from the hydration layer vicinity of the membranes. Therefore, the partition model which does not include the electrostatic contribution suffices to describe the interaction. The binding constant of Na(+) (2.4±0.1M(-1)), obtained from the ITC, is in agreement with that estimated from the zeta potential (~2.0M(-1)) at moderate salt concentrations. Our results suggest that hydration dynamics may play a vital role in the membrane solution interface which strongly affects the ion-membrane interaction. PMID:26802251

  7. Positively and negatively surface-charged chondroitin sulfate-trimethylchitosan nanoparticles as protein carriers.

    PubMed

    Young, Jenn-jong; Chen, Cheng-cheung; Chen, Ying-chuan; Cheng, Kuang-ming; Yen, Hui-Ju; Huang, Yu-chuan; Tsai, Tsung-Neng

    2016-02-10

    Positively and negatively surface-charged nanoparticles (NPs) were prepared with chondroitin sulfate (ChS) and trimethylchitosan (TMC). NP size, surface charge, formation yield, and water content were investigated as a function of weight ratio and concentration. Size and zeta potential were controlled by varying the ChS/TMC mass ratio. FTIR spectra revealed interactions among composite NP constituents. TEM images showed that the NPs were nearly spherical, with an average size of ∼ 300 nm. Encapsulation efficiency increased in positively charged NPs with increases in fluorescein isothiocyanate-bovine serum albumin concentration. Negatively charged NPs had only 10-20% encapsulation efficiency. The release profile, release kinetics and mechanism of positively charged ChS-TMC NPs were studied in vitro. NP cytocompatibility and uptake were verified ex vivo. Both types of NPs were taken up and retained in cells. A549 cells took up more positively charged (49.4%) than negatively charged (35.5%) NPs. PMID:26686160

  8. Probing the charge-transfer dynamics in DNA at the single-molecule level.

    PubMed

    Kawai, Kiyohiko; Matsutani, Eri; Maruyama, Atsushi; Majima, Tetsuro

    2011-10-01

    Photoinduced charge-transfer fluorescence quenching of a fluorescent dye produces the nonemissive charge-separated state, and subsequent charge recombination makes the reaction reversible. While the information available from the photoinduced charge-transfer process provides the basis for monitoring the microenvironment around the fluorescent dyes and such monitoring is particularly important in live-cell imaging and DNA diagnosis, the information obtainable from the charge recombination process is usually overlooked. When looking at fluorescence emitted from each single fluorescent dye, photoinduced charge-transfer, charge-migration, and charge recombination cause a "blinking" of the fluorescence, in which the charge-recombination rate or the lifetime of the charge-separated state (τ) is supposed to be reflected in the duration of the off time during the single-molecule-level fluorescence measurement. Herein, based on our recently developed method for the direct observation of charge migration in DNA, we utilized DNA as a platform for spectroscopic investigations of charge-recombination dynamics for several fluorescent dyes: TAMRA, ATTO 655, and Alexa 532, which are used in single-molecule fluorescence measurements. Charge recombination dynamics were observed by transient absorption measurements, demonstrating that these fluorescent dyes can be used to monitor the charge-separation and charge-recombination events. Fluorescence correlation spectroscopy (FCS) of ATTO 655 modified DNA allowed the successful measurement of the charge-recombination dynamics in DNA at the single-molecule level. Utilizing the injected charge just like a pulse of sound, such as a "ping" in active sonar systems, information about the DNA sequence surrounding the fluorescent dye was read out by measuring the time it takes for the charge to return. PMID:21875061

  9. Lightning morphology and impulse charge moment change of high peak current negative strokes

    NASA Astrophysics Data System (ADS)

    Lu, Gaopeng; Cummer, Steven A.; Blakeslee, Richard J.; Weiss, Stephanie; Beasley, William H.

    2012-02-01

    We have analyzed very high frequency lightning mapping observations and remote magnetic field measurements to investigate connections between lightning morphology and impulse charge moment change (iCMC) of negative cloud-to-ground (CG) strokes with high estimated peak currents. Four lightning morphologies are identified for a total of 2126 strokes within optimum detection range of the North Alabama Lightning Mapping Array, and statistical iCMC distributions are given for each of these types. Almost all (>90%) of the largest impulse charge moments (greater than -200 C km in this data set) are not produced by strokes in ordinary negative CG flashes. Instead, negative strokes with the largest iCMCs are almost exclusively associated with two unusual flash types that both initially develop as positive (normal) intracloud lightning. In the first type the negative stroke with high iCMCs results from a negative leader that descends from the midlevel negative charge region after the upper level negative leader ceases propagating. In the second type, the upper level negative leader of the intracloud lightning progresses toward ground as a so-called bolt from the blue to generate the negative stroke. Measurements of strokes associated with four negative polarity sprites suggest that all four were most likely produced in the first unusual lightning type. Our results highlight that estimated peak current and impulse charge transfer are not always well correlated and that the in-cloud lightning structure strongly influences charge transfer on short time scales in negative CG strokes.

  10. Calculating Henry’s Constants of Charged Molecules Using SPARC

    EPA Science Inventory

    SPARC Performs Automated Reasoning in Chemistry is a computer program designed to model physical and chemical properties of molecules solely based on thier chemical structure. SPARC uses a toolbox of mechanistic perturbation models to model intermolecular interactions. SPARC has ...

  11. Temperature dependence of charge transport in conjugated single molecule junctions

    NASA Astrophysics Data System (ADS)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  12. Negative differential conductance and super-Poissonian shot noise in single-molecule magnet junctions

    PubMed Central

    Xue, Hai-Bin; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-01-01

    Molecular spintroinic device based on a single-molecule magnet is one of the ultimate goals of semiconductor nanofabrication technologies. It is thus necessary to understand the electron transport properties of a single-molecule magnet junction. Here we study the negative differential conductance and super-Poissonian shot noise properties of electron transport through a single-molecule magnet weakly coupled to two electrodes with either one or both of them being ferromagnetic. We predict that the negative differential conductance and super-Poissonian shot noise, which can be tuned by a gate voltage, depend sensitively on the spin polarization of the source and drain electrodes. In particular, the shot noise in the negative differential conductance region can be enhanced or decreased originating from the different formation mechanisms of negative differential conductance. The effective competition between fast and slow transport channels is responsible for the observed negative differential conductance and super-Poissonian shot noise. In addition, we further discuss the skewness and kurtosis properties of transport current in the super-Poissonian shot noise regions. Our findings suggest a tunable negative differential conductance molecular device, and the predicted properties of high-order current cumulants are very interesting for a better understanding of electron transport through single-molecule magnet junctions. PMID:25736094

  13. Electromagnetic plane waves with negative phase velocity in charged black strings

    SciTech Connect

    Sharif, M. Manzoor, R.

    2013-02-15

    We investigate the propagation regions of electromagnetic plane waves with negative phase velocity in the ergosphere of static charged black strings. For such a propagation, some conditions for negative phase velocity are established that depend on the metric components and the choice of the octant. We conclude that these conditions remain unaffected by the negative values of the cosmological constant.

  14. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2005-01-25

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  15. Maximizing ion current by space-charge neutralization using negative ions and dust particles

    SciTech Connect

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-05-15

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space-charge neutralization are introduced. Space-charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space-charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  16. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    SciTech Connect

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-11-15

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  17. Nonlinear charge transport in the helicoidal DNA molecule.

    PubMed

    Dang Koko, A; Tabi, C B; Ekobena Fouda, H P; Mohamadou, A; Kofané, T C

    2012-12-01

    Charge transport in the twist-opening model of DNA is explored via the modulational instability of a plane wave. The dynamics of charge is shown to be governed, in the adiabatic approximation, by a modified discrete nonlinear Schrödinger equation with next-nearest neighbor interactions. The linear stability analysis is performed on the latter and manifestations of the modulational instability are discussed according to the value of the parameter α, which measures hopping interaction correction. In so doing, increasing α leads to a reduction of the instability domain and, therefore, increases our chances of choosing appropriate values of parameters that could give rise to pattern formation in the twist-opening model. Our analytical predictions are verified numerically, where the generic equations for the radial and torsional dynamics are directly integrated. The impact of charge migration on the above degrees of freedom is discussed for different values of α. Soliton-like and localized structures are observed and thus confirm our analytical predictions. We also find that polaronic structures, as known in DNA charge transport, are generated through modulational instability, and hence reinforces the robustness of polaron in the model we study. PMID:23278045

  18. Surfactin-Triggered Small Vesicle Formation of Negatively Charged Membranes: A Novel Membrane-Lysis Mechanism

    PubMed Central

    Buchoux, Sbastien; Lai-Kee-Him, Josphine; Garnier, Marie; Tsan, Pascale; Besson, Franoise; Brisson, Alain; Dufourc, Erick J.

    2008-01-01

    The molecular mode of action of the lipopeptide SF with zwitterionic and negatively charged model membranes has been investigated with solid-state NMR, light scattering, and electron microscopy. It has been found that this acidic lipopeptide (negatively charged) induces a strong destabilization of negatively charged micrometer-scale liposomes, leading to the formation of small unilamellar vesicles of a few 10s of nanometers. This transformation is detected for very low doses of SF (Ri = 200) and is complete for Ri = 50. The phenomenon has been observed for several membrane mixtures containing phosphatidylglycerol or phosphatidylserine. The vesicularization is not observed when the lipid negative charges are neutralized and a cholesterol-like effect is then evidenced, i.e., increase of gel membrane dynamics and decrease of fluid membrane microfluidity. The mechanism for small vesicle formation thus appears to be linked to severe changes in membrane curvature and could be described by a two-step action: 1), peptide insertion into membranes because of favorable van der Waals forces between the rather rigid cyclic and lipophilic part of SF and lipid chains and 2), electrostatic repulsion between like charges borne by lipid headgroups and the negatively charged SF amino acids. This might provide the basis for a novel mode of action of negatively charged lipopeptides. PMID:18515378

  19. Negative Electrospray Droplet Exposure to Gaseous Bases for the Manipulation of Protein Charge State Distributions

    PubMed Central

    Kharlamova, Anastasia; McLuckey, Scott A.

    2010-01-01

    The exposure of electrospray droplets to vapors of reagents of various base strengths affects protein negative charge state distributions independent of initial solution conditions. Volatile bases are introduced into the counter-current nitrogen drying gas of an electrospray interface to interact with charged droplets as they undergo desolvation/disintegration, shifting charge state distributions of proteins to higher, more negative, charge states. Alterations of charge state distributions can implicate protein folding/unfolding phenomena. Species bound by relatively weak interactions can be preserved, at least to some extent, allowing for the observation of high charge states of protein-ligand complexes, such as high negative charge states of holomyoglobin. The binding of carbonic anhydrase with its Zn2+ co-factor is apparently preserved when the holo-form of the protein is exposed to basic vapors (i.e., the Zn2+ ion remains associated with the protein), but this prevents the appearance of charge states higher than −17. Charge state distributions of proteins containing disulfide bonds shift slightly with the leak-in of basic vapors, but when these disulfide bonds are reduced with dithiothreitol in solution, charge states higher than the number of acidic sites (Asp, Glu and C-terminus) are observed. Since there is no observed change in the distributions of buffered proteins exposed to these reagent vapors, the charge state changes are attributed largely to a pH affect. High pKa and highly volatile reagents have been found to be the most effective in terms of observing the maximum negative charge state of the biomolecule of interest. PMID:21141935

  20. Ionization of water molecules by fast charged projectiles

    SciTech Connect

    Dubois, A.; Carniato, S.; Fainstein, P. D.; Hansen, J. P.

    2011-07-15

    Single-ionization cross sections of water molecules colliding with fast protons are calculated from lowest-order perturbation theory by taking all electrons and molecular orientations consistently into account. Explicit analytical formulas based on the peaking approximation are obtained for differential ionization cross sections with the partial contribution from the various electron orbitals accounted for. The results, which are in very good agreement with total and partial cross sections at high electron and projectile energies, display a strong variation on molecular orientation and molecular orbitals.

  1. Periodic Charging of Individual Molecules Coupled to the Motion of an Atomic Force Microscopy Tip.

    PubMed

    Kocić, N; Weiderer, P; Keller, S; Decurtins, S; Liu, S-X; Repp, J

    2015-07-01

    Individual molecules at the edges of self-assembled islands grown on Ag(111) can be deliberately switched in their charge state with the electric field from a scanning-probe tip. Close to the threshold voltage for a charge state transition, periodic switching of the charge is directly driven by the cantilever motion in frequency-modulated atomic force microscopy (AFM), as can be deduced from the signature in the measured frequency shift. In this regime, the integrated frequency shift yields the tip-sample force that is due to a single additional electron. Further, the signature of the dynamic charging response provides information on the electronic coupling of the molecule to the substrate. In analogy to previous experiments on quantum dots, this may also be used in the future to access excited state properties of single molecules from AFM experiments. PMID:26039575

  2. Gold plasmonic effects on charge transport through single molecule junctions

    NASA Astrophysics Data System (ADS)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  3. Interactions of PAMAM dendrimers with negatively charged model biomembranes.

    PubMed

    Yanez Arteta, Marianna; Ainalem, Marie-Louise; Porcar, Lionel; Martel, Anne; Coker, Helena; Lundberg, Dan; Chang, Debby P; Soltwedel, Olaf; Barker, Robert; Nylander, Tommy

    2014-11-13

    We have investigated the interactions between cationic poly(amidoamine) (PAMAM) dendrimers of generation 4 (G4), a potential gene transfection vector, with net-anionic model biomembranes composed of different ratios of zwitterionic phosphocholine (PC) and anionic phospho-L-serine (PS) phospholipids. Two types of model membranes were used: solid-supported bilayers, prepared with lipids carrying palmitoyl-oleoyl (PO) and diphytanoyl (DPh) acyl chains, and free-standing bilayers, formed at the interface between two aqueous droplets in oil (droplet interface bilayers, DIBs) using the DPh-based lipids. G4 dendrimers were found to translocate through POPC:POPS bilayers deposited on silica surfaces. The charge density of the bilayer affects translocation, which is reduced when the ionic strength increases. This shows that the dendrimer-bilayer interactions are largely controlled by their electrostatic attraction. The structure of the solid-supported bilayers remains intact upon translocation of the dendrimer. However, the amount of lipids in the bilayer decreases and dendrimer/lipid aggregates are formed in bulk solution, which can be deposited on the interfacial layers upon dilution of the system with dendrimer-free solvent. Electrophysiology measurements on DIBs confirm that G4 dendrimers cross the lipid membranes containing PS, which then become more permeable to ions. The obtained results have implications for PAMAM dendrimers as delivery vehicles to cells. PMID:25310456

  4. Isotropic-nematic transition and dynamics of rigid charged molecules

    NASA Astrophysics Data System (ADS)

    Karatrantos, Argyrios

    2016-03-01

    Using molecular dynamics, an isotropic-nematic transition was found in bulk salt-free solutions of charged rods with their counterions in the semidilute regime. This phase transition is driven primarily by electrostatics, rather than by excluded volume. The counterion condensation effect, which is controlled by the Manning parameter, leads to liquid crystalline phases of rods. For elevated values of the Manning parameter, an attraction is obtained between the rods, and the nematic phase appears. For small values of the Manning parameter the counterions de-condense, and the nematic phase disappears. Instead, in a neutral system of rods and spheres there is no appearance of nematic phase. The diffusivity of both rods and counterions is reduced with the Manning parameter.

  5. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  6. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Zhao, Gongpu; Sun, Kai; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2014-05-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles and bionic combination of properties as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle.

  7. Measurement of positively and negatively charged particles inside PMSE during MIDAS SOLSTICE 2001

    NASA Astrophysics Data System (ADS)

    Smiley, B.; Robertson, S.; HoráNyi, M.; Blix, T.; Rapp, M.; Latteck, R.; Gumbel, J.

    2003-04-01

    A magnetically shielded, charge collecting rocket probe was used on two flights in the MIddle Atmosphere Dynamics and Structure (MIDAS) Studies of Layered STructures and ICE (SOLSTICE) 2001 rocket campaign over Andøya, Norway. The probe was a graphite collection surface with a permanent magnet underneath to deflect electrons. The first MIDAS was launched 17 June 2001 into a strong, multiply layered PMSE. The probe measured negative particles inside an electron biteout within the PMSE, having a peak charge number density of -1500 charges per cubic centimeter. The second MIDAS was launched 24 June 2001 into another strong, multiply layered PMSE. The probe saw a band of positive particles centered in the lowest radar echo maximum, and a negative particle layer accompanied by a positive ion excess. The charge number densities for the positive and negative PMSE particles were several thousand charges per cubic centimeter. Unexpectedly, 2 km beneath the PMSE, the probe also found a very pronounced negative layer, which was probably an NLC. Computer simulations of incoming, negatively charged ice grains were performed using a rarefied flow field representative of the MIDAS payload at zero angle of attack. Ice grains ≤1 nm in radius were diverted by the leading shock front, indicating the smallest detectable ice particle by this probe.

  8. The chemical hardness of molecules and the band gap of solids within charge equilibration formalisms. Toward force field-based simulations of redox reactions

    NASA Astrophysics Data System (ADS)

    Müser, M. H.

    2012-04-01

    This work finds that different charge equilibration methods lead to qualitatively different responses of molecules and solids to an excess charge. The investigated approaches are the regular charge equilibration (QE), the atom-atom-charge transfer (AACT), and the split-charge equilibration (SQE) method. In QE, the hardness of molecules and the band gap of solids approaches zero at large particle numbers, affirming the claim that QE induces metallic behavior. AACT suffers from producing negative values of the hardness; moreover valence and conduction bands of solids cross. In contrast to these methods, SQE can reproduce the generic behavior of dielectric molecules or solids. Moreover, first quantitative results for the NaCl molecule are promising. The results derived in this work may have beneficial implications for the modeling of redox reactions. They reveal that by introducing formal oxidation states into force field-based simulations it will become possible to simulate redox reactions including non-equilibrium contact electrification, voltage-driven charging of galvanic cells, and the formation of zwitterionic molecules.

  9. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    NASA Astrophysics Data System (ADS)

    Ohmura, Satoshi; Tsuruta, Kenji; Shimojo, Fuyuki; Nakano, Aiichiro

    2016-01-01

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)-C60 molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D+ and A-) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  10. The Role of Negative Charge in the Delivery of Quantum Dots to Neurons.

    PubMed

    Walters, Ryan; Medintz, Igor L; Delehanty, James B; Stewart, Michael H; Susumu, Kimihiro; Huston, Alan L; Dawson, Philip E; Dawson, Glyn

    2015-01-01

    Despite our extensive knowledge of the structure of negatively charged cell surface proteoglycans and sialoglycoconjugates in the brain, we have little understanding of how their negative charge contributes to brain function. We have previously shown that intensely photoluminescent 9-nm diameter quantum dots (QDs) with a CdSe core, a ZnS shell, and a negatively charged compact molecular ligand coating (CL4) selectively target neurons rather than glia. We now provide an explanation for this selective neuronal delivery. In this study, we compared three zwitterionic QD coatings differing only in their regions of positive or negative charge, as well as a positively charged (NH2) polyethylene glycol (PEG) coat, for their ability to deliver the cell-membrane-penetrating chaperone lipopeptide JB577 (WG(Palmitoyl)VKIKKP9G2H6) to individual cells in neonatal rat hippocampal slices. We confirm both that preferential uptake in neurons, and the lack of uptake in glia, is strongly associated with having a region of greater negative charge on the QD coating. In addition, the role of negatively charged chondroitin sulfate of the extracellular matrix (ECM) in restricting uptake was further suggested by digesting neonatal rat hippocampal slices with chondroitinase ABC and showing increased uptake of QDs by oligodendrocytes. Treatment still did not affect uptake in astrocytes or microglia. Finally, the future potential of using QDs as vehicles for trafficking proteins into cells continues to show promise, as we show that by administering a histidine-tagged green fluorescent protein (eGFP-His6) to hippocampal slices, we can observe neuronal uptake of GFP. PMID:26243591

  11. Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules.

    PubMed

    Zhong, Jian-Qiang; Wang, Zhunzhun; Zhang, Jia Lin; Wright, Christopher A; Yuan, Kaidi; Gu, Chengding; Tadich, Anton; Qi, Dongchen; Li, He Xing; Lai, Min; Wu, Kai; Xu, Guo Qin; Hu, Wenping; Li, Zhenyu; Chen, Wei

    2015-12-01

    The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics. PMID:26528623

  12. Influence of bismuth on the charging ability of negative plates in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Manders, J. E.

    To examine the influence of bismuth on the charging ability of negative plates in lead-acid batteries, plates are made from three types of oxides: (i) leady oxide of high quality which contains virtually no bismuth (termed 'control oxide'); (ii) control oxide in which bismuth oxide is blended at bismuth levels from 0.01 to 0.12 wt.%; (iii) leady oxide produced from Pasminco VRLA Refined™ lead (0.05-0.06 wt.%Bi). An experimental tool—the 'conversion indicator'—is developed to assess the charging ability of the test negative plates when cycling under either zero percent state-of-charge (SoC)/full-charge or partial state-of-charge (PSoC) duty. Although the conversion indicator is not the true charging efficiency, the two parameters have a close relationship, namely, the higher the conversion indicator, the greater the charging efficiency. Little difference is found in the charging ability, irrespective of bismuth content and discharge rate, when the plates are subjected to zero percent SoC/full-charge duty; the conversion indicator lies in the range 81-84%. By contrast, there is a marked difference when the negative plates are subjected to PSoC duty, i.e. consecutive cycling through 90-60, 70-40, 80-40 and 90-40% SoC windows. Up to 0.06 wt.%Bi improves the charging ability, especially with a low and narrow PSoC window (40-70% SoC) of the type that will be experienced in 42 V powernet automobile and hybrid electric duties. To maximize this beneficial effect, bismuth must be distributed uniformly in the plates. This is best achieved by using VRLA Refined™ lead for oxide production.

  13. Process for preparing negative plates for use in a dry charge battery

    SciTech Connect

    Wegner, P.C.

    1986-02-11

    This patent describes a process for the production of lead-containing negative plates for use in a dry charge battery. The process cnsists of drying wet negative plates while protecting them from oxidation. This improvement is accomplished by treating the wet negative plates prior to the drying operation with an aqueous soluton of an oxidation inhibiting agent selected from salicylic acid, and 2-naphtol. The plates are then protected against oxidation during drying; and dry negative plates are obtained which are resistant to the absorption of water from the atmosphere on storage but are wet immediately by battery acid in use.

  14. Dust acoustic solitary wave with variable dust charge: Role of negative ions

    SciTech Connect

    Ghosh, Samiran

    2005-09-15

    The role of negative ions on small but finite amplitude dust acoustic solitary wave including the effects of high and low charging rates of dust grains compared to the dust oscillation frequency in electronegative dusty plasma is investigated. In the case of high charging rate, the solitary wave is governed by Korteweg-de Vries (KdV) equation, but in the case of low charging rate, it is governed by KdV equation with a linear damping term. Numerical investigations reveal that in both cases dust acoustic soliton sharpens (flatens) and soliton width decreases (increases) with the increase of negative-ion number density (temperature). Also, the negative ions reduce the damping rate.

  15. Negative correlation between charge carrier density and mobility fluctuations in graphene

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Lu, Jianming; Sheng, Ping; Institute of Physics and Department of Electrophysics, National Chiao Tung University, Taiwan Collaboration

    2014-03-01

    By carrying out simultaneous longitudinal and Hall measurements in graphene, we find that the 1/f noise for the charge carrier density is negatively correlated to that of mobility, with a governing behavior that differs significantly from the relation between their mean values. The correlation in the noise data can be quantitatively explained by a single parameter theory whose underlying physics is the trapping and de-trapping of the fluctuating charge carriers by the oppositely charged Coulomb scattering centers. This can alter the effective density of long-range scattering centers in a transient manner, with the consequent fluctuating effect on the mobility. The longitudinal noise turns out to be dominated by the remaining component of the mobility fluctuations, and display no correlation to the Hall noise. Due to the negative correlation between charge carrier density and mobility fluctuations, the normalized PSD is smaller than that of the Hall noise. Research Grants Council of Hong Kong Grant HKUST9/CRF/08.

  16. Cell proliferation and cell sheet detachment from the positively and negatively charged nanocomposite hydrogels.

    PubMed

    Liu, Dan; Wang, Tao; Liu, Xinxing; Tong, Zhen

    2014-01-01

    The charged nanocomposite hydrogels (NC gels) were synthesized by copolymerization of positively or negatively chargeable monomer with N-isopropylacrylamide (NIPAm) in the aqueous suspension of hectorite clay. The ionic NC gels preserved the thermo-responsibility with the phase-transition temperature below 37°C. The L929 cell proliferation was sensitive to charge polarity and charge density. As compared to the PNIPAm NC gel, the cationic NC gels with <5 mol % of 2-(dimethylamino)ethyl methacrylate (DMAEMA) showed improved cell proliferation, whereas the cells grew slowly on the gels with negatively charged 2-acrylamido-2-methylpropane sulfonic acid (AMPSNa). By lowering temperature, rapid cell sheet detachment was observed from the surface of ionic NC gels with 1 mol % of ionizable monomers. However, lager amount of AMPSNa or DMAEMA did not support rapid cell sheet detachment, probably owing to the adverse swelling effects and/or enhanced electrostatic attraction. PMID:23640767

  17. A Model of Ball Lightning as a Formation of Water Molecules Confining an Electric Charge and the Classical Theory of the Electron

    NASA Astrophysics Data System (ADS)

    Tennakone, K.

    2012-04-01

    Ball lightning or faintly luminous floating spheres with radii of the order of ten centimeters appearing transiently in air notably during stormy weather continue to remain an unresolved phenomenon. It is suggested that these objects are organized structures constituted of an electrically charged spherical thin shell of electro-frozen dipole oriented water molecules carrying an electric charge, balanced by the internal negative pressure and outward electrostatic stress. A model presented, resembling the classical theory of the electron with Poincare stresses explain almost all observed attributes of this phenomenon. The possibility of realizing macroscopic spherical surface charge distributions in the vacuum and their implication on the problem of electron are commented.

  18. Gating of single molecule junction conductance by charge transfer complex formation.

    PubMed

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J; Xu, Bingqian; Nichols, Richard J; Higgins, Simon J

    2015-12-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. PMID:26510687

  19. Selective charge asymmetric distribution in heteronuclear diatomic molecules in strong laser fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei; Guo, Chunlei

    2015-07-01

    In this paper we study double-ionization-induced charge asymmetric dissociation (CAD) in heteronuclear diatomic molecules. In CO we find a selective charge distribution in two CAD channels, i.e., C2 ++O is abundantly produced but C +O2 + is nearly nonexistent. This cannot be explained by the ionization energy difference between the two channels alone. Our study shows that the C2 ++O channel is sequentially formed through an intermediate state C++O and the selective charge distribution is the result of electron distribution in CO when exposed to intense laser fields.

  20. Negative space charge effects in photon-enhanced thermionic emission solar converters

    SciTech Connect

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.

  1. Negative space charge effects in photon-enhanced thermionic emission solar converters

    NASA Astrophysics Data System (ADS)

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-01

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.

  2. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. PMID:26616926

  3. Negative correlation between charge carrier density and mobility fluctuations in graphene

    NASA Astrophysics Data System (ADS)

    Lu, Jianming; Pan, Jie; Yeh, Sheng-Shiuan; Zhang, Haijing; Zheng, Yuan; Chen, Qihong; Wang, Zhe; Zhang, Bing; Lin, Juhn-Jong; Sheng, Ping

    2014-08-01

    By carrying out simultaneous longitudinal and Hall measurements in graphene, we find that the 1/f noise for the charge carrier density is negatively correlated to that of mobility, with a governing behavior that differs significantly from the relation between their mean values. The correlation in the noise data can be quantitatively explained by a single-parameter theory whose underlying physics is the trapping and detrapping of the fluctuating charge carriers by the oppositely charged Coulomb scattering centers. This can alter the effective density of long-range scattering centers in a transient manner, with the consequent fluctuating effect on the mobility.

  4. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge

    PubMed Central

    Li, Bing; Tesar, Devin; Boswell, C Andrew; Cahaya, Hendry S; Wong, Anne; Zhang, Jianhuan; Meng, Y Gloria; Eigenbrot, Charles; Pantua, Homer; Diao, Jinyu; Kapadia, Sharookh B; Deng, Rong; Kelley, Robert F

    2014-01-01

    Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development. PMID:25517310

  5. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    DOEpatents

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  6. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    PubMed Central

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  7. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces

    NASA Astrophysics Data System (ADS)

    Cappel, Ute B.; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A.; Barnes, Piers R. F.

    2016-02-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures.

  8. Spin-boson theory for charge photogeneration in organic molecules: Role of quantum coherence

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2015-01-01

    The charge photogeneration process in organic molecules is investigated by a quantum heat engine model, in which two molecules are modeled by a two-spin system sandwiched between two bosonic baths. The two baths represent the high-temperature photon emission source and the low-temperature phonon environment, respectively. We utilize the time-dependent density matrix renormalization group algorithm to investigate the quantum dynamics of the model. It is found that the transient energy current flowing through the two molecules exhibits two stages. In the first stage the energy current is of a coherent feature and represents the ultrafast delocalization of the charge-transfer state, and in the second stage a steady incoherent current is established. The power conversion efficiency is significantly high and may reach the maximum value of 93 % with optimized model parameters. The long-lived quantum entanglement between the two spins is found to be primarily responsible for the hyperefficiency.

  9. Single molecule detection using charge-coupled device array technology. Technical progress report

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  10. Charge Manipulation in Molecules Encapsulated Inside Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yanagi, Kazuhiro; Moriya, Rieko; Cuong, Nguyen Thanh; Otani, Minoru; Okada, Susumu

    2013-02-01

    We report clear experimental evidence for the charge manipulation of molecules encapsulated inside single-wall carbon nanotubes (SWCNTs) using electrochemical doping techniques. We encapsulated β-carotene (Car) inside SWCNTs and clarified electrochemical doping characteristics of their Raman spectra. C=C streching modes of encapsulated Car and a G band of SWCNTs showed clearly different doping behaviors as the electrochemical potentials were shifted. Electron extraction from encapsulated Car was clearly achieved. However, electrochemical characteristics of Car inside SWCNTs and doping mechanisms elucidated by calculations based on density-functional theory indicate the difficulty of charge manipulation of molecules inside SWCNTs due to the presence of strong on-site Coulomb repulsion energy at the molecules.

  11. Evidence for photo-induced charge separation between dye molecules adsorbed to aluminium oxide surfaces.

    PubMed

    Cappel, Ute B; Moia, Davide; Bruno, Annalisa; Vaissier, Valerie; Haque, Saif A; Barnes, Piers R F

    2016-01-01

    Excited state dynamics and photo-induced charge transfer of dye molecules have been widely studied due to their relevance for organic and dye-sensitised solar cells. Herein, we present a femtosecond transient absorption spectroscopy study of the indolene dye D131 when adsorbed to inert Al2O3 substrates for different surface concentration of the dye. Surprisingly, we find that at high surface concentrations, the first singlet excited state of the dye is converted into a new state with an efficiency of about 80%. We assign the absorption features of this state to the oxidised dye and discuss the possibility of photo-induced charge separation between neighboring dye molecules. Our study is the first to show that this process can be highly efficient without the use of donor and acceptor molecules of different chemical structures. PMID:26891851

  12. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases.

    PubMed

    Negrini, Renata; Sánchez-Ferrer, Antoni; Mezzenga, Raffaele

    2014-04-22

    The release of positive, negative, and neutral hydrophilic drugs from pH responsive bicontinuous cubic phases was investigated under varying conditions of electrostatic interactions. A weak acid, linoleic acid (LA), or a weak base, pyridinylmethyl linoleate (PML), were added to the neutral monolinolein (ML) in order to form lyotropic liquid-crystalline (LLC) phases, which are negatively charged at neutral pH and positively charged at acidic pH. Release studies at low ionic strength (I = 20 mM) and at different pH values (3 and 7) revealed that electrostatic attraction between a positive drug, proflavine (PF), and the negatively charged LLC at pH = 7 or between a negative drug, antraquinone 2-sulfonic acid sodium salt (AQ2S), and the positively charged LLC at pH = 3 did delay the release behavior, while electrostatic repulsion affects the transport properties only to some extent. Release profiles of a neutral drug, caffeine, were not affected by the surface charge type and density in the cubic LLCs. Moreover, the influence of ionic strength was also considered up to 150 mM, corresponding to a Debye length smaller than the LLC water channels radius, which showed that efficient screening of electrostatic attractions occurring within the LLC water domains results in an increased release rate. Four transport models were applied to fit the release data, providing an exhaustive, quantitative insight on the role of electrostatic interactions in transport properties from pH responsive bicontinuous cubic phases. PMID:24673189

  13. Small molecules for interference with cell-cell-communication systems in Gram-negative bacteria.

    PubMed

    Janssens, Joost C A; De Keersmaecker, Sigrid C J; De Vos, Dirk E; Vanderleyden, Jos

    2008-01-01

    Quorum sensing (QS) systems are bacterial cell-to-cell communication systems that use small molecules as signals. Since QS is involved in the regulation of virulence and biofilm formation in several pathogenic bacteria, it has been suggested as a new target for the development of novel antibacterial therapies. As such, interference with the signal receptors by using chemical compounds has been proposed as an alternative strategy for treatment of bacterial infections and has already shown promising results in combination with traditional antibiotic treatments. In Gram-negative bacteria, the best studied QS systems use N-acyl homoserine lactones (AHLs) as signal molecules. This review provides an overview of all new chemical structure types that inhibit AHL-mediated QS systems as reported during the last three years in scientific journals and in the patent literature. The compounds were classified into three main groups depending on their structure: AHL analogues, 2(5H)-furanones, and compounds that are not structurally related to AHLs. We discuss the biological assays used and the different strategies applied to discover these molecules, including new approaches such as molecular docking for in silico identification of lead structures and random high-throughput screening of large libraries of chemicals. Finally, we elaborate on structure-activity relationships and on the new insights in the mechanisms of action of the identified inhibitors, highlighting the potential of these small molecules in medicine. PMID:18781941

  14. Dynamic secondary electron emission characteristics of polymers in negative charging process

    NASA Astrophysics Data System (ADS)

    Weng, Ming; Hu, Tian-Cun; Zhang, Na; Cao, Meng

    2016-04-01

    We studied the dynamic secondary electron emission (SEE) characteristics of a polyimide sample in negative charging process under electron bombardment. The time evolution of secondary electron yield (SEY) has been measured with a pulsed electron gun. The dynamic SEY, as well as the surface potential have been analyzed using a capacitance model. The shift in surface potential caused by the negative charge accumulation on the sample reduces the landing energy of the primary electrons (PEs), which in turn alters the SEY. The charging process tends to be stable when the landing energy of PEs reaches the secondary crossover energy where the corresponding SEY is 1. The surface potential has an approximately negative exponential relationship with the irradiation time. The total accumulated charge at the stable state is found to be proportional to the product of the sample capacitance and the difference between initial incident energy and the secondary crossover energy. The time constant of the exponential function is proportional to the ratio of final accumulated charge to the incident current.

  15. Charged particle flows in the beam extraction region of a negative ion source for NBI

    NASA Astrophysics Data System (ADS)

    Geng, S.; Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Takeiri, Y.; Shibuya, M.; Kaneko, O.

    2016-02-01

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV.

  16. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments. PMID:26256920

  17. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    SciTech Connect

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  18. Negative Ion CID Fragmentation of O-linked Oligosaccharide Aldoses—Charge Induced and Charge Remote Fragmentation

    NASA Astrophysics Data System (ADS)

    Doohan, Roisin A.; Hayes, Catherine A.; Harhen, Brendan; Karlsson, Niclas Göran

    2011-06-01

    Collision induced dissociation (CID) fragmentation was compared between reducing and reduced sulfated, sialylated, and neutral O-linked oligosaccharides. It was found that fragmentation of the [M - H]- ions of aldoses with acidic residues gave unique Z-fragmentation of the reducing end GalNAc containing the acidic C-6 branch, where the entire C-3 branch was lost. This fragmentation pathway, which is not seen in the alditols, showed that the process involved charge remote fragmentation catalyzed by a reducing end acidic anomeric proton. With structures containing sialic acid on both the C-3 and C-6 branch, the [M - H]- ions were dominated by the loss of sialic acid. This fragmentation pathway was also pronounced in the [M - 2H]2- ions revealing both the C-6 Z-fragment plus its complementary C-3 C-fragment in addition to glycosidic and cross ring fragmentation. This generation of the Z/C-fragment pairs from GalNAc showed that the charges were not participating in their generation. Fragmentation of neutral aldoses showed pronounced Z-fragmentation believed to be generated by proton migration from the C-6 branch to the negatively charged GalNAc residue followed by charge remote fragmentation similar to the acidic oligosaccharides. In addition, A-type fragments generated by charge induced fragmentation of neutral oligosaccharides were observed when the charge migrated from C-1 of the GalNAc to the GlcNAc residue followed by rearrangement to accommodate the 0,2A-fragmentation. LC-MS also showed that O-linked aldoses existed as interchangeable α/β pyranose anomers, in addition to a third isomer (25% of the total free aldose) believed to be the furanose form.

  19. Ionization Efficiency of Doubly Charged Ions Formed from Polyprotic Acids in Electrospray Negative Mode

    NASA Astrophysics Data System (ADS)

    Liigand, Piia; Kaupmees, Karl; Kruve, Anneli

    2016-04-01

    The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low pK a1 and pK a2) and to have high hydrophobicity (logP ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.

  20. Effect of Interlayer Coupling on Ultrafast Charge Transfer from Semiconducting Molecules to Mono- and Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ti; Liu, Qingfeng; Caraiani, Claudiu; Zhang, Yupeng; Wu, Judy; Chan, Wai-Lun

    2015-07-01

    Graphene is used as flexible electrodes in various optoelectronic devices. In these applications, ultrafast charge transfer from semiconducting light absorbers to graphene can impact the overall device performance. Here, we propose a mechanism in which the charge-transfer rate can be controlled by varying the number of graphene layers and their stacking. Using an organic semiconducting molecule as a light absorber, the charge-transfer rate to graphene is measured by using time-resolved photoemission spectroscopy. Compared to graphite, the charge transfer to monolayer graphene is about 2 times slower. Surprisingly, the charge transfer to A -B -stacked bilayer graphene is slower than that to both monolayer graphene and graphite. This anomalous behavior disappears when the two graphene layers are randomly stacked. The observation is explained by a charge-transfer model that accounts for the band-structure difference in mono- and bilayer graphene, which predicts that the charge-transfer rate depends nonintuitively on both the layer number and stacking of graphene.

  1. Simulation of space charge compensation in a multibeamlet negative ion beam

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Maceina, T. J.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H- ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H- beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H2+ ions) or by stripping of the beam ions (electrons, H, and H+). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions.

  2. Simulation of space charge compensation in a multibeamlet negative ion beam.

    PubMed

    Sartori, E; Maceina, T J; Veltri, P; Cavenago, M; Serianni, G

    2016-02-01

    Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H(-) ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H(-) beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H2 (+) ions) or by stripping of the beam ions (electrons, H, and H(+)). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions. PMID:26932089

  3. Ultrafast charge rearrangement and nuclear dynamics upon inner-shell multiple ionization of small polyatomic molecules.

    PubMed

    Erk, B; Rolles, D; Foucar, L; Rudek, B; Epp, S W; Cryle, M; Bostedt, C; Schorb, S; Bozek, J; Rouzee, A; Hundertmark, A; Marchenko, T; Simon, M; Filsinger, F; Christensen, L; De, S; Trippel, S; Küpper, J; Stapelfeldt, H; Wada, S; Ueda, K; Swiggers, M; Messerschmidt, M; Schröter, C D; Moshammer, R; Schlichting, I; Ullrich, J; Rudenko, A

    2013-02-01

    Ionization and fragmentation of methylselenol (CH(3)SeH) molecules by intense (>10(17) W/cm(2)) 5 fs x-ray pulses (ħω=2 keV) are studied by coincident ion momentum spectroscopy. We contrast the measured charge state distribution with data on atomic Kr, determine kinetic energies of resulting ionic fragments, and compare them to the outcome of a Coulomb explosion model. We find signatures of ultrafast charge redistribution from the inner-shell ionized Se atom to its molecular partners, and observe significant displacement of the atomic constituents in the course of multiple ionization. PMID:23414017

  4. Ultrafast Charge Rearrangement and Nuclear Dynamics upon Inner-Shell Multiple Ionization of Small Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Erk, B.; Rolles, D.; Foucar, L.; Rudek, B.; Epp, S. W.; Cryle, M.; Bostedt, C.; Schorb, S.; Bozek, J.; Rouzee, A.; Hundertmark, A.; Marchenko, T.; Simon, M.; Filsinger, F.; Christensen, L.; De, S.; Trippel, S.; Küpper, J.; Stapelfeldt, H.; Wada, S.; Ueda, K.; Swiggers, M.; Messerschmidt, M.; Schröter, C. D.; Moshammer, R.; Schlichting, I.; Ullrich, J.; Rudenko, A.

    2013-02-01

    Ionization and fragmentation of methylselenol (CH3SeH) molecules by intense (>1017W/cm2) 5 fs x-ray pulses (ℏω=2keV) are studied by coincident ion momentum spectroscopy. We contrast the measured charge state distribution with data on atomic Kr, determine kinetic energies of resulting ionic fragments, and compare them to the outcome of a Coulomb explosion model. We find signatures of ultrafast charge redistribution from the inner-shell ionized Se atom to its molecular partners, and observe significant displacement of the atomic constituents in the course of multiple ionization.

  5. Bond-forming reactions of small triply charged cations with neutral molecules.

    PubMed

    Fletcher, James D; Parkes, Michael A; Price, Stephen D

    2013-08-12

    Time-of-flight mass spectrometry reveals that atomic and small molecular triply charged cations exhibit extensive bond-forming chemistry, following gas-phase collisions with neutral molecules. These experiments show that at collision energies of a few eV, I(3+) reacts with a variety of small molecules to generate molecular monocations and molecular dications containing iodine. Xe(3+) and CS2(3+) react in a similar manner to I(3+), undergoing bond-forming reactions with neutrals. A simple model, involving relative product energetics and electrostatic interaction potentials, is used to account for the observed reactivity. PMID:23843367

  6. Coulomb excitation of highly charged projectile ions in relativistic collisions with diatomic molecules

    SciTech Connect

    Artemyev, A. N.; McConnell, S. R.; Surzhykov, A.; Najjari, B.; Voitkiv, A. B.

    2011-10-15

    We investigate the Coulomb excitation of highly charged ions colliding with diatomic molecules. In this process, the coherent interaction between the projectile electron and two molecular centers may cause clear interference patterns in the (collision) energy dependencies of the total cross sections and alignment parameters. We discuss such a Young-type interference for the particular case of the K{yields}L excitation of hydrogen- and helium-like projectile ions. Calculations, performed for the scattering of these ions on nitrogen molecules, indicate that the interference effects are extremely sensitive to the collisional geometry and are pronounced only if the molecular axis is aligned almost parallel to the incident beam trajectory.

  7. Poisson-Boltzmann theory for membranes with mobile charged lipids and the pH-dependent interaction of a DNA molecule with a membrane.

    PubMed Central

    Fleck, Christian; Netz, Roland R; von Grünberg, Hans Hennig

    2002-01-01

    We consider a planar stiff model membrane consisting of mobile surface groups whose state of charge depends on the pH and the ionic composition of the adjacent electrolyte solution. To calculate the mean-field interaction potential between a charged object and such a model membrane, one needs to solve a Poisson-Boltzmann boundary value problem. We here derive and discuss the boundary condition at the membrane surface, a condition that is generally appropriate for biological membranes where two charge-regulating mechanisms are present at the same time: the pH-dependent chemical charge regulation and a regulation through the in-plane mobility of the surface groups. As an application of this general formalism, we consider the specific example of a single DNA molecule, approximated by a cylinder with smeared-out surface charges, interacting with such a model membrane. We study the effect that the two competing charge-regulating mechanisms have on the DNA/membrane interaction and the distribution of surface ions in the plane of the membrane. We find that, at short DNA-membrane distances, membrane fluidity can have a considerable impact on the DNA adsorption behavior and can lead to such counterintuitive phenomena as the adsorption of a negatively charged DNA onto a (on average) negatively charged membrane. PMID:11751297

  8. The dynamics of charged particles in the near wake of a very negatively charged body - Laboratory experiment and numerical simulation

    NASA Technical Reports Server (NTRS)

    Morgan, M. Alvin; Chan, Chung; Cooke, David L.; Tautz, Maurice F.

    1989-01-01

    A numerical simulation that is cylindrical in configuration space and three-dimensional in velocity space has been initiated to test a model for the near-wake dynamics of a very negatively charged body, with reference to the plasma environment around spacecraft. The simulation parameters were closely matched to those of a laboratory experiment so that the results can be compared directly. The laboratory study showed that the electrons and ions can display different temporal features in the filling-in of the wake; and that they can both be found within one body diameter of an object with a highly negative body potential. It was also found that the temperature of the electrons in the very near wake could be somewhat colder than the ambient value, suggesting the possibility of a filtering mechanism being operative there. The simulation results to date largely corroborate the density findings.

  9. Dust negative ion acoustic shock waves in a dusty multi-ion plasma with positive dust charging current

    SciTech Connect

    Duha, S. S.

    2009-11-15

    Recent analysis of Mamun et al.[ Phys. Lett. A 373, 2355 (2009)], who considered electrons, light positive ions, heavy negative ions, and extremely massive (few micron size) charge fluctuating dust, has been extended by positive dust charging current, i.e., considering the charging currents for positively charged dust grains. A dusty multi-ion plasma system consisting of electrons, light positive ions, negative ions, and extremely massive (few micron size) charge fluctuating stationary dust have been considered. The electrostatic shock waves associated with negative ion dynamics and dust charge fluctuation have been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and is responsible for the formation of dust negative ion acoustic (DNIA) shock structures. The basic features of such DNIA shock structures have been identified. The findings of this investigation may be useful in understanding the laboratory phenomena and space dusty plasmas.

  10. Glutamic acid 181 is negatively charged in the bathorhodopsin photointermediate of visual rhodopsin

    PubMed Central

    Sandberg, Megan N.; Amora, Tabitha L.; Ramos, Lavoisier S.; Chen, Min-Hsuan; Knox, Barry E.; Birge, Robert R.

    2011-01-01

    Assignment of the protonation state of the residue Glu-181 is important to our understanding of the primary event, activation processes and wavelength selection in rhodopsin. Despite extensive study, there is no general agreement on the protonation state of this residue in the literature. Electronic assignment is complicated by the location of Glu-181 near the nodal point in the electrostatic charge shift that accompanies excitation of the chromophore into the low-lying, strongly allowed ππ* state. Thus, the charge on this residue is effectively hidden from electronic spectroscopy. This situation is resolved in bathorhodopsin, because photoisomerization of the chromophore places Glu-181 well within the region of negative charge shift following excitation. We demonstrate that Glu-181 is negatively charged in bathorhodopsin based on the shift in the batho absorption maxima at 10K [λmax band (native)= 544±2 nm, λmax band (E181Q)= 556±3 nm] and the decrease in the λmax band oscillator strength (0.069±0.004) of E181Q relative to the native protein. Because the primary event in rhodopsin does not include a proton translocation or disruption of the hydrogen-bonding network within the binding pocket, we may conclude that the Glu-181 residue in rhodopsin is also charged. PMID:21319741

  11. Discharges on a negatively biased solar array in a charged particle environment

    NASA Technical Reports Server (NTRS)

    Snyder, D. B.

    1983-01-01

    The charging behavior of a negatively biased solar cell array when subjected to a charged particle environment is studied in the ion density range from 200 to 12 000 ions/sq cm with the applied bias range of -500 to -1400 V. The profile of the surface potentials across the array is related to the presence of discharges. At the low end of the ion density range the solar cell cover slides charge to from 0 to +5 volts independent of the applied voltage. No discharges are seen at bias voltages as large as -1400 V. At the higher ion densities the cover slide potential begins to fluctuate, and becomes significantly negative. Under these conditions discharges can occur. The threshold bias voltage for discharges decreases with increasing ion density. A condition for discharges emerging from the experimental observations is that the average coverslide potential must be more negative than -4 V. The observations presented suggest that the plasma potential near the array becomes negative before a discharge occurs. This suggests that discharges are driven by an instability in the plasma.

  12. Probing Dynamics from Within in Negative Ions, Neutral Molecules and van der Waals Clusters

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2006-05-01

    We have investigated with unprecedented levels of detail, processes and phenomena involving photodetachment of negative ions and photoionization of molecules and van der Waals clusters using the brightness, spectral resolution, tunability and polarization of the Advanced Light Source at Lawrence Berkeley National Laboratory. Photodetachment of negative ions exhibit structure and processes differing substantially from corresponding processes in neutral and positive ions, owing to the dominance of correlation in both the initial and final states. We will report on investigations carried out in inner-valence CN^- molecules giving rise to absolute double photodetachment cross sections as well as on fragmentation of negative ions clusters. We will also present absolute inner-shell photodetachment of atoms leading to multi-Auger decay [1] and discuss threshold laws [2] and PCI effects [3]. The measurements were conducted using collinear photon-ion spectroscopy. The evolution of inner-shell photoionization of clusters, as a function of photon energy, will be presented and compared to analogous measurements in atoms. The measurements were conducted using angle resolved two-dimensional photoelectron spectroscopy. Molecular fragmentation results using an ion imaging detector will briefly be presented. [1] R. C. Bilodeau, J. D. Bozek, G. D. Ackerman, N. D. Gibson, C. W.Walter, A. Aguilar, G. Turri, I. Dumitriu and N. Berrah, PRA 72, 050701(R), 2005. [2] R. C. Bilodeau, J. D. Bozek, N. D. Gibson, C. W. Walter, G. D. Ackerman, I. Dumitriu, and N. Berrah, Phys. Rev. Lett. 95, 083001 (2005). [3] R. C. Bilodeau, J. D. Bozek, A. Agular, G. D. Ackerman, and N. Berrah, (in press PRA brief report).

  13. Gating of single molecule junction conductance by charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J.; Xu, Bingqian; Nichols, Richard J.; Higgins, Simon J.

    2015-11-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference.The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. Electronic supplementary information (ESI) available: Synthesis of 1c; experimental details of conductance measurements, formation of charge transfer complexes of 1c and 2 in solution; further details of theoretical methods. See DOI: 10.1039/c5nr04420k

  14. Characteristics of EMI generated by negative metal-positive dielectric voltage stresses due to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Chaky, R. C.; Inouye, G. T.

    1985-01-01

    Charging of spacecraft surfaces by the environmental plasma can result in differential potentials between metallic structure and adjacent dielectric surfaces in which the relative polarity of the voltage stress is either negative dielectric/positive metal or negative metal/positive dielectric. Negative metal/positive dielectric is a stress condition that may arise if relatively large areas of spacecraft surface metals are shadowed from solar UV and/or if the UV intensity is reduced as in the situation in which the spacecraft is entering into or leaving eclipse. The results of experimental studies of negative metal/positive dielectric systems are given. Information is given on: enhanced electron emission I-V curves; e(3) corona noise vs e(3) steady-state current; the localized nature of e(3) and negative metal arc discharge currents; negative metal arc discharges at stress thresholds below 1 kilovolt; negative metal arc discharge characteristics; dependence of blowoff arc discharge current on spacecraft capacitance to space (linear dimension); and damage to second surface mirrors due to negative metal arcs.

  15. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses.

    PubMed

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-07-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I(21+). The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  16. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    PubMed Central

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D.; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R.; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-01-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  17. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport

    PubMed Central

    Muren, Natalie B.; Olmon, Eric D.; Barton, Jacqueline K.

    2012-01-01

    The structural core of DNA, a continuous stack of aromatic heterocycles, the base pairs, which extends down the helical axis, gives rise to the fascinating electronic properties of this molecule that is so critical for life. Our laboratory and others have developed diverse experimental platforms to investigate the capacity of DNA to conduct charge, termed DNA-mediated charge transport (DNA CT). Here, we present an overview of DNA CT experiments in solution, on surfaces, and with single molecules that collectively provide a broad and consistent perspective on the essential characteristics of this chemistry. DNA CT can proceed over long molecular distances but is remarkably sensitive to perturbations in base pair stacking. We discuss how this foundation, built with data from diverse platforms, can be used both to inform a mechanistic description of DNA CT and to inspire the next platforms for its study: living organisms and molecular electronics. PMID:22850865

  18. Highly Charged Ion -- Molecule Collisions: a probe and a tool for studying complex systems

    NASA Astrophysics Data System (ADS)

    Adoui, L.; Rousseau, P.; Capron, M.; Maisonny, R.; Lawicki, A.; Domaracka, A.; Manil, B.; Mery, A.; Poully, J.-C.; Rangama, J.; Huber, B. A.; Lattouf, E.; Zettergren, H.; Johansson, H. A. B.; Seitz, F.; Rosen, S.; Schmidt, H. T.; Holm, A. I. S.; Cederquist, H.; Bari, S.; Hoekstra, R.; Schlatholter, T.; Alvarado, F.; Postma, J.

    2011-05-01

    It has already been demonstrated that collision with low energy Highly Charged Ions (HCI) provide a soft and efficient way to study the stability of complex systems. Indeed, such ions are known to remove electrons at large impact parameters resulting in a fast and gentle ionisation. We will present at this conference the different applications of these ions as: - they can be used to enlighten collision mechanisms viacompleteexperiments on fragmentation dynamics of small molecules; - they can act as a probe of the stability of the resulting charged species. We will illustrate this feature in the case of molecular clusters (for example in the case of Polycyclic Aromatic Hydrocarbons); - they can also be used, in a less conventional way, as a tool to form new bonds and induce the formation of even more complex molecules. Perspectives of this work will be discussed at the conference.

  19. Anomalous charge and negative-charge-transfer insulating state in cuprate chain compound KCuO2

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y.; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-11-01

    Using a combination of x-ray absorption spectroscopy (XAS) experiments and first-principles calculations, we demonstrate that insulating KCuO2 contains Cu in an unusually high formal 3+ valence state, and the ligand-to-metal (O-to-Cu) charge-transfer energy is intriguingly negative (Δ ˜-1.5 eV) and has a dominant (˜60 % ) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu3 + compounds, the Cu 2 p XAS spectra of KCuO2 exhibit pronounced 3 d8 (Cu3 +) multiplet structures, which account for ˜40 % of its ground state wave function. Ab initio calculations elucidate the origin of the band gap in KCuO2 as arising primarily from strong intracluster Cu 3 d -O 2 p hybridizations (tpd); the value of the band gap decreases with a reduced value of tpd. Further, unlike conventional negative-charge-transfer insulators, the band gap in KCuO2 persists even for vanishing values of Coulomb repulsion U , underscoring the importance of single-particle band-structure effects connected to the one-dimensional nature of the compound.

  20. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions.

    PubMed

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios. PMID:26571004

  1. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N.; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

  2. Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks.

    PubMed

    Kärkäs, Markus D; Åkermark, Björn

    2016-04-01

    Artificial photosynthesis represents an attractive way of converting solar energy into storable chemical energy. The H2 O oxidation half-reaction, which is essential for producing the necessary reduction equivalents, is an energy-demanding transformation associated with a high kinetic barrier. Herein we present a couple of efficient Ru-based catalysts capable of mediating this four-proton-four-electron oxidation. We have focused on the incorporation of negatively charged ligands, such as carboxylate, phenol, and imidazole, into the catalysts to decrease the redox potentials. This account describes our work in designing Ru catalysts based on this idea. The presence of the negatively charged ligands is crucial for stabilizing the metal centers, allowing for light-driven H2 O oxidation. Mechanistic details associated with the designed catalysts are also presented. PMID:26991306

  3. Optimizing charge neutralization for a magnetic sector SIMS instrument in negative mode

    SciTech Connect

    Pivovarov, Alexander L.; Guryanov, Georgiy M.

    2012-07-15

    Successful self-adjusted charge compensation was demonstrated for a CAMECA magnetic-sector secondary ion mass spectrometer applied in negative mode. Operation with the normal-incidence electron gun (NEG) potential positively biased relative to a sample potential enables substantial broadening of the Cs primary-ion-current density range available for analysis of insulators. The decrease of the negative NEG potential by 30 V allows the highest value of primary current density used for the analysis of a silica sample to increase by a factor of more than 6. By applying the improved charge neutralization technique, accurate Na depth profiles for SiO{sub 2} samples were obtained within detection limits of {approx}3 Multiplication-Sign 10{sup 15} atoms/cm{sup 3}.

  4. Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules

    NASA Astrophysics Data System (ADS)

    Ha, Dong-Gwang; Kim, Jang-Joo; Baldo, Marc A.

    2016-04-01

    Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs). Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) :1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPb) mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.

  5. Anisotropic charge transport in large single crystals of ?-conjugated organic molecules

    NASA Astrophysics Data System (ADS)

    Hourani, Wael; Rahimi, Khosrow; Botiz, Ioan; Vinzenz Koch, Felix Peter; Reiter, Gnter; Lienerth, Peter; Heiser, Thomas; Bubendorff, Jean-Luc; Simon, Laurent

    2014-04-01

    The electronic properties of organic semiconductors depend strongly on the nature of the molecules, their conjugation and conformation, their mutual distance and the orientation between adjacent molecules. Variations of intramolecular distances and conformation disturb the conjugation and perturb the delocalization of charges. As a result, the mobility considerably decreases compared to that of a covalently well-organized crystal. Here, we present electrical characterization of large single crystals made of the regioregular octamer of 3-hexyl-thiophene (3HT)8 using a conductive-atomic force microscope (C-AFM) in air. We find a large anisotropy in the conduction with charge mobility values depending on the crystallographic orientation of the single crystal. The smaller conduction is in the direction of ?-? stacking (along the long axis of the single crystal) with a mobility value in the order of 10-3 cm2 V-1 s-1, and the larger one is along the molecular axis (in the direction normal to the single crystal surface) with a mobility value in the order of 0.5 cm2 V-1 s-1. The measured current-voltage (I-V) curves showed that along the molecular axis, the current followed an exponential dependence corresponding to an injection mode. In the ?-? stacking direction, the current exhibits a space charge limited current (SCLC) behavior, which allows us to estimate the charge carrier mobility.

  6. Anisotropic charge transport in large single crystals of π-conjugated organic molecules.

    PubMed

    Hourani, Wael; Rahimi, Khosrow; Botiz, Ioan; Koch, Felix Peter Vinzenz; Reiter, Günter; Lienerth, Peter; Heiser, Thomas; Bubendorff, Jean-Luc; Simon, Laurent

    2014-05-01

    The electronic properties of organic semiconductors depend strongly on the nature of the molecules, their conjugation and conformation, their mutual distance and the orientation between adjacent molecules. Variations of intramolecular distances and conformation disturb the conjugation and perturb the delocalization of charges. As a result, the mobility considerably decreases compared to that of a covalently well-organized crystal. Here, we present electrical characterization of large single crystals made of the regioregular octamer of 3-hexyl-thiophene (3HT)8 using a conductive-atomic force microscope (C-AFM) in air. We find a large anisotropy in the conduction with charge mobility values depending on the crystallographic orientation of the single crystal. The smaller conduction is in the direction of π-π stacking (along the long axis of the single crystal) with a mobility value in the order of 10(-3) cm(2) V(-1) s(-1), and the larger one is along the molecular axis (in the direction normal to the single crystal surface) with a mobility value in the order of 0.5 cm(2) V(-1) s(-1). The measured current-voltage (I-V) curves showed that along the molecular axis, the current followed an exponential dependence corresponding to an injection mode. In the π-π stacking direction, the current exhibits a space charge limited current (SCLC) behavior, which allows us to estimate the charge carrier mobility. PMID:24658783

  7. Isotope-Resolved and Charge-Sensitive Force Imaging Using Scanned Single Molecules

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Rastawicki, Dominik; Liu, Yang; Mar, Warren; Manoharan, Hari; Miglio, Anna; Melinte, Sorin; Charlier, Jean-Christophe; Rignanese, Gian-Marco; He, Lianhua; Liu, Fang; Zhou, Aihui

    Originally conceived as surface imaging instruments, the scanning tunnelling microscope (STM) and the atomic force microscope (AFM) were recently used to probe molecular chemical bonds with exquisite sensitivity. Remarkably, molecule-functionalized scanning tips can also provide direct access to the inelastic electron tunneling spectrum (IETS) of the terminal molecule. Here we report atomic manipulation experiments addressing carbon monoxide (CO) isotopes at low temperatures. The unique and quantifiable dependence of the CO vibrational modes offers insight into tip-controlled force and charge sensing of surface adsorbates, subsurface defects, and quantum nanostructures. The specific behavior of the monitored vibrational modes originates from the interplay of interaction forces between the top electrode--a scanned tip functionalized with a single molecule--and the atomic scale force field surrounding the target atomically-assembled nanostructure. We also present density functional theory (DFT) computations that have been performed in order to scrutinize and visualize the vibrational spectroscopic fingerprints and local force fields.

  8. Long-range charge transport in single G-quadruplex DNA molecules

    NASA Astrophysics Data System (ADS)

    Livshits, Gideon I.; Stern, Avigail; Rotem, Dvir; Borovok, Natalia; Eidelshtein, Gennady; Migliore, Agostino; Penzo, Erika; Wind, Shalom J.; di Felice, Rosa; Skourtis, Spiros S.; Cuevas, Juan Carlos; Gurevich, Leonid; Kotlyar, Alexander B.; Porath, Danny

    2014-12-01

    DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits.

  9. Surface modification of poly(ether sulfone) membrane with a synthesized negatively charged copolymer.

    PubMed

    Zou, Wen; Qin, Hui; Shi, Wenbin; Sun, Shudong; Zhao, Changsheng

    2014-11-18

    In this study, we provide a new method to modify poly(ether sulfone) (PES) membrane with good biocompatibility, for which diazotized PES (PES-N2(+)) membrane is covalently coated by a negatively charged copolymer of sodium sulfonated poly(styrene-alt-maleic anhydride) (NaSPS-MA). First, aminated PES (PES-NH2) is synthesized by nitro reduction reaction of nitro-PES (PES-NO2), and then blends with pristine PES to prepare PES/PES-NH2 membrane; then the membrane is treated with NaNO2 aqueous solution at acid condition; after surface diazo reaction, surface positively charged PES/PES-N2(+) membrane is prepared. Second, poly(styrene-alt-maleic anhydride) (PS-alt-MA) is synthesized, then sulfonated and treated by sodium hydroxide solution to obtain sodium sulfonated (PS-alt-MA) (NaSPS-MA). Finally, the negatively charged NaSPS-MA copolymer is coated onto the surface positively charged PES/PES-N2(+) membrane via electrostatic interaction; after UV-cross-linking, the linkage between the PES-N2(+) and NaSPS-MA changes to a covalent bond. The surface-modified PES membrane is characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) analyses, and surface zeta potential analyses. The modified membrane exhibits good hemocompatibility and cytocompatibility, and the improved biocompatibility might have resulted from the existence of the hydrophilic groups (sodium carboxylate (-COONa) and sodium sulfonate (-SO3Na)). Moreover, the stability of the modified membrane is also investigated. The results indicated that the modified PES membrane using negatively charged copolymers had a lot of potential in blood purification fields and bioartificial liver supports for a long time. PMID:25347292

  10. Pure negatively charged state of the NV center in n -type diamond

    NASA Astrophysics Data System (ADS)

    Doi, Yuki; Fukui, Takahiro; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Tashima, Toshiyuki; Morishita, Hiroki; Miwa, Shinji; Jelezko, Fedor; Suzuki, Yoshishige; Mizuochi, Norikazu

    2016-02-01

    Optical illumination on negatively charged nitrogen-vacancy (N V-) centers inevitably causes stochastic charge-state transitions between the N V- and the neutral charge state of the NV center. It limits the steady-state population of N V- to 5% at minimum (˜610 nm) and 80% (˜532 nm) at maximum in intrinsic diamond depending on the wavelength. Here, we show Fermi-level control by phosphorus doping generates 99.4 ± 0.1% N V- under 1-μW and 593-nm excitation which is close to maximum absorption of N V- . The pure N V- shows a fivefold increase in luminescence and a fourfold enhancement of an optically detected magnetic resonance under 593-nm excitation compared with those in intrinsic diamond.

  11. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  12. Is the unique negatively charged polypeptide of crayfish yolk HDL a component of crustacean vitellin?

    PubMed

    Abdu, U; Yehezkel, G; Weil, S; Ziv, T; Sagi, A

    2001-08-01

    The yolk protein of Cherax quadricarinatus contains six major high-density lipoprotein (HDL) subunits with the approximate molecular masses of 177, 155, 106, 95, 86, and 75 kDa, of which only the 106-kDa polypeptide is negatively charged. On the basis of their molecular weights, time of appearance and disappearance, their floating density and susceptibility to enzyme degradation (by a serine proteinase), these six HDL polypeptides were classified into two subgroups. One group comprises the higher-molecular-weight compounds above 106 kDa, and the other includes the lower-molecular-weight compounds up to 95 kDa. Other than being different from the lower-molecular-weight polypeptides, the negatively charged 106-kDa polypeptide was significantly different from members of its higher-molecular-weight group belonging to a different, less abundant, yolk protein as shown by HPLC separation. Immunological studies and peptide mapping in which the 106-kDa polypeptide did not show similarity to any of the other HDL components confirmed these differences. Moreover, the amino acid composition of the 106-kDa polypeptide was different from that of known vitellin from other crustacean species. This unique negatively charged polypeptide presents an enigma as it is known to be a secondary vitellogenic-related HDL polypeptide, immunolocalized in yolk globules; however, it is different to all the other HDL polypeptides, thus presenting the question whether it is indeed a component of "classical" crustacean vitellin. PMID:11479901

  13. Evaluating the Effect of Ionic Strength on Duplex Stability for PNA Having Negatively or Positively Charged Side Chains

    PubMed Central

    De Costa, N. Tilani S.; Heemstra, Jennifer M.

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  14. Imaging charge and energy transfer in molecules using free-electron lasers

    NASA Astrophysics Data System (ADS)

    Rudenko, Artem

    2014-05-01

    Charge and energy transfer reactions drive numerous important processes in physics, chemistry and biology, with applications ranging from X-ray astrophysics to artificial photosynthesis and molecular electronics. Experimentally, the central goal in studies of transfer phenomena is to trace the spatial localization of charge at a given time. Because of their element and site sensitivity, ultrafast X-rays provide a promising tool to address this goal. In this talk I will discuss several experiments where free-electron lasers were employed to study charge and energy transfer dynamics in fragmenting molecules. In a first example, we used intense, 70 femtosecond 1.5 keV pulses from the Linac Coherent Light Source (LCLS) to study distance dependence of electron transfer in laser-dissociated methyl iodide molecules. Inducing well-localized positive charge on the heavy iodine atom, we observe signature of electron transition from the separated methyl group up to the distances of 35 atomic units. In a complementary experiment, we studied charge exchange between two partners in a dissociating molecular iodine employing a pump-probe arrangement with two identical 90 eV pulses from the Free-Electron LASer in Hamburg (FLASH). In both cases, the effective spatial range of the electron transfer can be reasonably described by a classical over-the-barrier model developed for ion-atom collisions. Finally, I will discuss a time-resolved measurement on non-local relaxation mechanism based on a long-range energy transfer, the so-called interatomic Coulombic decay. This work was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy and by the Kansas NSF ``First Award'' program.

  15. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    SciTech Connect

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an electrochemical cell. For example, we are able to use this technique to track electroluminescence of single Au NPs, and the electrodeposition of individual Ag NPs in-situ. These metallic NPs are useful to enhance light harvesting in organic photovoltaic systems. The scattering at the surface of an indium tin oxide (ITO) working electrode was measured during a potential sweep. Utilizing Mie scattering theory and high resolution scanning electron microscopy (SEM), the scattering data were used to calculate current-potential curves depicting the electrodeposition of individual Ag NPs. The oxidation of individual presynthesized and electrodeposited Ag NPs was also investigated using fluorescence and DFS microscopies. Our work has produced 1 US provisional patent, 15 published manuscripts, 1 submitted and two additional in-writing manuscripts. 5 graduate students, 1 postdoctoral student, 1 visiting professor, and two undergraduate students have received research training in the area of electrochemistry and optical spectroscopy under support of this award.

  16. Single molecule electron transport junctions: charging and geometric effects on conductance.

    PubMed

    Andrews, David Q; Cohen, Revital; Van Duyne, Richard P; Ratner, Mark A

    2006-11-01

    A p-benzenedithiolate (BDT) molecule covalently bonded between two gold electrodes has become one of the model systems utilized for investigating molecular transport junctions. The plethora of papers published on the BDT system has led to varying conclusions with respect to both the mechanism and the magnitude of transport. Conductance variations have been attributed to difficulty in calculating charge transfer to the molecule, inability to locate the Fermi energy accurately, geometric dispersion, and stochastic switching. Here we compare results obtained using two transport codes, TRANSIESTA-C and HUCKEL-IV, to show that upon Au-S bond lengthening, the calculated low bias conductance initially increases by up to a factor of 30. This increase in highest occupied molecular orbital (HOMO) mediated conductance is attributed to charging of the terminal sulfur atom and a corresponding decrease in the energy gap between the Fermi level and the HOMO. Addition of a single Au atom to each terminal of the extended BDT molecule is shown to add four molecular states near the Fermi energy, which may explain the varying results reported in the literature. PMID:17100472

  17. Single molecule electron transport junctions: Charging and geometric effects on conductance

    NASA Astrophysics Data System (ADS)

    Andrews, David Q.; Cohen, Revital; Van Duyne, Richard P.; Ratner, Mark A.

    2006-11-01

    A p-benzenedithiolate (BDT) molecule covalently bonded between two gold electrodes has become one of the model systems utilized for investigating molecular transport junctions. The plethora of papers published on the BDT system has led to varying conclusions with respect to both the mechanism and the magnitude of transport. Conductance variations have been attributed to difficulty in calculating charge transfer to the molecule, inability to locate the Fermi energy accurately, geometric dispersion, and stochastic switching. Here we compare results obtained using two transport codes, TRANSIESTA-C and HÜCKEL-IV, to show that upon Au-S bond lengthening, the calculated low bias conductance initially increases by up to a factor of 30. This increase in highest occupied molecular orbital (HOMO) mediated conductance is attributed to charging of the terminal sulfur atom and a corresponding decrease in the energy gap between the Fermi level and the HOMO. Addition of a single Au atom to each terminal of the extended BDT molecule is shown to add four molecular states near the Fermi energy, which may explain the varying results reported in the literature.

  18. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres.

    PubMed

    Xu, Qingguo; Crossley, Alison; Czernuszka, Jan

    2009-07-01

    Negatively charged poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulated with hydrophilic drugs have been successfully prepared by a solid-in-oil-in-water (s/o/w) solvent evaporation method in the presence of anionic surfactants, sodium dodecyl sulfate (SDS), and dioctyl sodium sulfosuccinate (DSS), and nonionic surfactant polyvinyl alcohol (PVA). The effects of microencapsulation methods, surfactants types, and surfactant concentrations on the properties of microspheres were studied. Amoxicillin (AMX) was chosen as a hydrophilic model drug, and its encapsulation efficiency (EE) and in vitro release profiles were measured. The s/o/w method achieved higher EE of 40% in PLGA microspheres using surfactant SDS compared with the conventional water-in-oil-in-water (w/o/w) method (about 2%). Triphasic release profiles were observed for all PLGA microspheres (s/o/w) with slight drug burst, a slow diffusion-controlled release within the period of about 7 days and followed by the degradation-controlled sustained release for further 30 days. Smaller particle size and surface charge were achieved for s/o/w method than w/o/w method using the same anionic surfactants, and smooth surface and less porous interior matrix. The s/o/w method effectively encapsulated AMX into anionic PLGA microspheres using anionic surfactants, and these negatively charged PLGA microspheres represented an attractive approach for the controlled release of hydrophilic drugs. PMID:19009589

  19. Ferrocenylundecanethiol self-assembled monolayer charging correlates with negative differential resistance measured by conducting probe atomic force microscopy.

    PubMed

    Tivanski, Alexei V; Walker, Gilbert C

    2005-05-25

    Electrical and mechanical properties of metal-molecule-metal junctions formed between Au-supported self-assembled monolayers (SAMs) of electroactive 11-ferrocenylundecanethiol (FcC(11)SH) and a Pt-coated atomic force microscope (AFM) tip have been measured using a conducting probe (CP) AFM in insulating alkane solution. Simultaneous and independent measurements of currents and bias-dependent adhesion forces under different applied tip biases between the conductive AFM probe and the FcC(11)SH SAMs revealed reversible peak-shaped current-voltage (I-V) characteristics and correlated maxima in the potential-dependent adhesion force. Trapped positive charges in the molecular junction correlate with high conduction in a feature showing negative differential resistance. Similar measurements on an electropassive 1-octanethiol SAM did not show any peaks in either adhesion force or I-V curves. A mechanism involving two-step resonant hole transfer through the occupied molecular orbitals (MOs) of ferrocene end groups via sequential oxidation and subsequent reduction, where a hole is trapped by the phonon relaxation, is proposed to explain the observed current-force correlation. These results suggest a new approach to probe charge-transfer involving electroactive groups on the nanoscale by measuring the adhesion forces as a function of applied bias in an electrolyte-free environment. PMID:15898817

  20. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer

    PubMed Central

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G.; Shimakawa, Yuichi; Attfield, J. Paul

    2011-01-01

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion <−10−4 K−1 over a temperature range ~100 K) is accessible in perovskite oxides showing charge-transfer transitions. BiNiO3 shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi0.95La0.05NiO3 is −137×10−6 K−1 and a value of −82×10−6 K−1 is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders. PMID:21673668

  1. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  2. Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface.

    PubMed

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-07-28

    We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target surfaces. PMID:26135325

  3. Charge carrier dynamics of vapor-deposited small-molecule/fullerene organic solar cells.

    PubMed

    Chang, Angela Y; Chen, Yi-Hong; Lin, Hao-Wu; Lin, Li-Yen; Wong, Ken-Tsung; Schaller, Richard D

    2013-06-19

    Although small-molecule organic solar cells (SMOSCs) have shown increasingly promising prospects as a source of solar power, there have been few studies concerning the photophysics of these systems. Here, we report the time scale and efficiency of charge separation and recombination in a vapor-deposited SMOSC material that produces 5.81% power conversion efficiency. Transient absorption and time-resolved photoluminescence (trPL) studies of thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor show that charge separation occurs in ~100 fs, while charge recombination takes place over sub-ns and ns time scales. trPL indicates a donor electron-hole pair lifetime of ~33 ps in the neat film and reveals that ~20% of donors fail to charge separate in donor-acceptor mixed films, likely owing to some spatially extended donor-rich regions that interact poorly with acceptors. Our results suggest that morphological manipulations of this material could further improve device efficiency. PMID:23718234

  4. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.

    PubMed

    Saeki, Akinori; Koizumi, Yoshiko; Aida, Takuzo; Seki, Shu

    2012-08-21

    Si-based inorganic electronics have long dominated the semiconductor industry. However, in recent years conjugated polymers have attracted increasing attention because such systems are flexible and offer the potential for low-cost, large-area production via roll-to-roll processing. The state-of-the-art organic conjugated molecular crystals can exhibit charge carrier mobilities (μ) that nearly match or even exceed that of amorphous silicon (1-10 cm(2) V(-1) s(-1)). The mean free path of the charge carriers estimated from these mobilities corresponds to the typical intersite (intermolecular) hopping distances in conjugated organic materials, which strongly suggests that the conduction model for the electronic band structure only applies to μ > 1 cm(2) V(-1) s(-1) for the translational motion of the charge carriers. However, to analyze the transport mechanism in organic electronics, researchers conventionally use a disorder formalism, where μ is usually less than 1 cm(2) V(-1) s(-1) and dominated by impurities, disorders, or defects that disturb the long-range translational motion. In this Account, we discuss the relationship between the alternating-current and direct-current mobilities of charge carriers, using time-resolved microwave conductivity (TRMC) and other techniques including field-effect transistor, time-of-flight, and space-charge limited current. TRMC measures the nanometer-scale mobility of charge carriers under an oscillating microwave electric field with no contact between the semiconductors and the metals. This separation allows us to evaluate the intrinsic charge carrier mobility with minimal trapping effects. We review a wide variety of organic electronics in terms of their charge carrier mobilities, and we describe recent studies of macromolecules, molecular crystals, and supramolecular architecture. For example, a rigid poly(phenylene-co-ethynylene) included in permethylated cyclodextrin shows a high intramolecular hole mobility of 0.5 cm(2) V(-1) s(-1), based on a combination of flash-photolysis TRMC and transient absorption spectroscopy (TAS) measurements. Single-crystal rubrene showed an ambipolarity with anisotropic charge carrier transport along each crystal axis on the nanometer scale. Finally, we describe the charge carrier mobility of a self-assembled nanotube consisting of a large π-plane of hexabenzocoronene (HBC) partially appended with an electron acceptor. The local (intratubular) charge carrier mobility reached 3 cm(2) V(-1) s(-1) for the nanotubes that possessed well-ordered π-stacking, but it dropped to 0.7 cm(2) V(-1) s(-1) in regions that contained greater amounts of the electron acceptor because those molecules reduced the structural integrity of π-stacked HBC arrays. Interestingly, the long-range (intertubular) charge carrier mobility was on the order of 10(-4) cm(2) V(-1) s(-1) and monotonically decreased when the acceptor content was increased. These results suggest the importance of investigating charge carrier mobilities by frequency-dependent charge carrier motion for the development of more efficient organic electronic devices. PMID:22676381

  5. Manipulating the charge state and conductance of a single molecule on a semiconductor surface by electrostatic gating

    NASA Astrophysics Data System (ADS)

    Martinez-Blanco, Jesus; Nacci, Christophe; Erwin, Steven C.; Kanisawa, Kiyoshi; Locane, Elina; Thomas, Mark; von Oppen, Felix; Brouwer, Piet; Foelsch, Stefan

    2015-03-01

    We studied the charge state and tunneling conductance of single phthalocyanine molecules adsorbed on InAs(111)A using scanning tunneling microscopy (STM) at 5 K. On the InAs(111)A surface, native +1 charged indium adatoms can be repositioned by the STM tip using atom manipulation. This allows us to electrostatically gate an individual adsorbed molecule by placing charged adatoms nearby or, alternatively, by repositioning the molecule within the electrostatic potential landscape created by an STM-engineered adatom corral. By stepwise increasing the gating potential, the molecular charge state can be tuned from neutral to -1, as well as to bistable intermediate states. We find that the molecule changes its orientational conformation when the charge state is switched. Scanning tunneling spectroscopy measurements reveal that the conductance gap of the single-molecule tunneling junction can be precisely controlled by the electrostatic gating. We discuss the observed gating-dependent single-molecule tunneling conductance in terms of charge transport through a gated quantum dot. Granted by the German Research Foundation (FO 362/4-1; SFB 658).

  6. Optical spectra and intensities of graphene magnetic dot bound to a negatively charged Coulomb impurity

    SciTech Connect

    Lee, C. M. E-mail: apkschan@cityu.edu.hk; Chan, K. S. E-mail: apkschan@cityu.edu.hk

    2014-07-28

    Employing numerical diagonalization, we study the optical properties of an electron in a monolayer-graphene magnetic dot bound to an off-center negatively charged Coulomb impurity based on the massless Dirac-Weyl model. Numerical results show that, since the electron-hole symmetry is broken by the Coulomb potential, the optical absorption spectra of the magnetic dot in the presence of a Coulomb impurity are different between the electron states and the hole states. Effects of both the magnetic field and the dot size on the absorption coefficient are presented as functions of the incident photon energies.

  7. Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Song, Y. L.; Huang, F.; Chen, Z. Y.; Liu, Y. H.; Yu, M. Y.

    2016-02-01

    Negatively charged dust particles immersed in 2-dimensional dusty plasma system are investigated by molecular dynamics simulations. The effects of the confinement potential and attraction interaction potential on dust particle self-organization are studied in detail and two typical dust particle distributions are obtained when the system reaches equilibrium. The average radial velocity (ARV), average radial force (ARF) and radial mean square displacement are employed to analyze the dust particles' dynamics. Both ARVs and ARFs exhibit oscillation behaviors when the simulation system reaches equilibrium state. The relationships between the oscillation and confinement potential and attraction potential are studied in this paper. The simulation results are qualitatively similar to experimental results.

  8. Electronic structure of the negatively charged silicon-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Rogers, Lachlan J.; Jahnke, Kay D.; Doherty, Marcus W.; Dietrich, Andreas; McGuinness, Liam P.; Müller, Christoph; Teraji, Tokuyuki; Sumiya, Hitoshi; Isoya, Junichi; Manson, Neil B.; Jelezko, Fedor

    2014-06-01

    The negatively charged silicon-vacancy (SiV-) center in diamond is a promising single-photon source for quantum communications and information processing. However, the center's implementation in such quantum technologies is hindered by contention surrounding its fundamental properties. Here we present optical polarization measurements of single centers in bulk diamond that resolve this state of contention and establish that the center has a <111 > aligned split-vacancy structure with D3 d symmetry. Furthermore, we identify an additional electronic level and evidence for the presence of dynamic Jahn-Teller effects in the center's 738-nm optical resonance.

  9. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization

    PubMed Central

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring. PMID:26870947

  10. Transient performance estimation of charge plasma based negative capacitance junctionless tunnel FET

    NASA Astrophysics Data System (ADS)

    Singh, Sangeeta; Kondekar, P. N.; Pal, Pawan

    2016-02-01

    We investigate the transient behavior of an n-type double gate negative capacitance junctionless tunnel field effect transistor (NC-JLTFET). The structure is realized by using the work-function engineering of metal electrodes over a heavily doped n+ silicon channel and a ferroelectric gate stack to get negative capacitance behavior. The positive feedback in the electric dipoles of ferroelectric materials results in applied gate bias boosting. Various device transient parameters viz. transconductance, output resistance, output conductance, intrinsic gain, intrinsic gate delay, transconductance generation factor and unity gain frequency are analyzed using ac analysis of the device. To study the impact of the work-function variation of control and source gate on device performance, sensitivity analysis of the device has been carried out by varying these parameters. Simulation study reveals that it preserves inherent advantages of charge-plasma junctionless structure and exhibits improved transient behavior as well.

  11. Charge trapping at organic/self-assembly molecule interfaces studied by electrical switching behaviour in a crosspoint structure

    NASA Astrophysics Data System (ADS)

    Li, Yun; Liu, Chuan; Pan, Lijia; Pu, Lin; Tsukagoshi, Kazuhito; Shi, Yi

    2012-01-01

    Charge trapping at organic/self-assembly molecule (SAM) interfaces is studied by the electrical switching behaviour in a crosspoint structure, where interfacial charge trapping tunes the potential barrier of the SAM layer. The sample with rubrene exhibits the write-once read-many-times memory effect, which is due to the interfacial charges trapped at deep states. On the other hand, the sample with 2-amino-4,5-dicyanoimidazole presents recyclable conduction transition, which results from the trapped charges distributed at shallow states. Moreover, the percentage of the charges trapped at shallow states can be estimated from electrical transition levels.

  12. Characterization of oil-free and oil-loaded liquid-crystalline particles stabilized by negatively charged stabilizer citrem.

    PubMed

    Nilsson, Christa; Edwards, Katarina; Eriksson, Jonny; Larsen, Susan Weng; Østergaard, Jesper; Larsen, Claus; Urtti, Arto; Yaghmur, Anan

    2012-08-14

    The present study was designed to evaluate the effect of the negatively charged food-grade emulsifier citrem on the internal nanostructures of oil-free and oil-loaded aqueous dispersions of phytantriol (PHYT) and glyceryl monooleate (GMO). To our knowledge, this is the first report in the literature on the utilization of this charged stabilizing agent in the formation of aqueous dispersions consisting of well-ordered interiors (either inverted-type hexagonal (H(2)) phases or inverted-type microemulsion systems). Synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to characterize the dispersed and the corresponding nondispersed phases of inverted-type nonlamellar liquid-crystalline phases and microemulsions. The results suggest a transition between different internal nanostructures of the aqueous dispersions after the addition of the stabilizer. In addition to the main function of citrem as a stabilizer that adheres to the surface of the dispersed particles, it has a significant impact on the internal nanostructures, which is governed by the following factors: (1) its penetration between the hydrophobic tails of the lipid molecules and (2) its degree of incorporation into the lipid-water interfacial area. In the presence of citrem, the formation of aqueous dispersions with functionalized hydrophilic domains by the enlargement of the hydrophilic nanochannels of the internal H(2) phase in hexosomes and the hydrophilic core of the L(2) phase in emulsified microemulsions (EMEs) could be particularly attractive for solubilizing and controlling the release of positively charged drugs. PMID:22831645

  13. Excitation of Kelvin Helmholtz instability by an ion beam in a plasma with negatively charged dust grains

    SciTech Connect

    Rani, Kavita; Sharma, Suresh C.

    2015-02-15

    An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.

  14. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness

    PubMed Central

    Masuda, Tetsuya; Ohta, Keisuke; Ojiro, Naoko; Murata, Kazuki; Mikami, Bunzo; Tani, Fumito; Temussi, Piero Andrea; Kitabatake, Naofumi

    2016-01-01

    Thaumatin is an intensely sweet-tasting protein that elicits sweet taste at a concentration of 50 nM, a value 100,000 times larger than that of sucrose on a molar basis. Here we attempted to produce a protein with enhanced sweetness by removing negative charges on the interacting side of thaumatin with the taste receptor. We obtained a D21N mutant which, with a threshold value 31 nM is much sweeter than wild type thaumatin and, together with the Y65R mutant of single chain monellin, one of the two sweetest proteins known so far. The complex model between the T1R2-T1R3 sweet receptor and thaumatin, derived from tethered docking in the framework of the wedge model, confirmed that each of the positively charged residues critical for sweetness is close to a receptor residue of opposite charge to yield optimal electrostatic interaction. Furthermore, the distance between D21 and its possible counterpart D433 (located on the T1R2 protomer of the receptor) is safely large to avoid electrostatic repulsion but, at the same time, amenable to a closer approach if D21 is mutated into the corresponding asparagine. These findings clearly confirm the importance of electrostatic potentials in the interaction of thaumatin with the sweet receptor. PMID:26837600

  15. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model.

    PubMed

    Kloet, Samantha K; Walczak, Agata P; Louisse, Jochem; van den Berg, Hans H J; Bouwmeester, Hans; Tromp, Peter; Fokkink, Remco G; Rietjens, Ivonne M C M

    2015-10-01

    To obtain insight in translocation of nanoparticles across the placental barrier, translocation was studied for one positively and two negatively charged polystyrene nanoparticles (PS-NPs) of similar size in an in vitro model. The model consisted of BeWo b30 cells, derived from a human choriocarcinoma grown on a transwell insert forming a cell layer that separates an apical from a basolateral compartment. PS-NPs were characterized with respect to size, surface charge, morphology and protein corona. Translocation of PS-NPs was not related to PS-NP charge. Two PS-NPs were translocated across the BeWo transwell model to a lower extent than amoxicillin, a model compound known to be translocated over the placental barrier to only a limited extent, whereas one PS-NP showed a slightly higher translocation. Studies on the effect of transporter inhibitors on the translocation of the PS-NPs indicated that their translocation was not mediated by known transporters and mainly dependent on passive diffusion. It is concluded that the BeWo b30 model can be used as an efficient method to get an initial qualitative impression about the capacity of NPs to translocate across the placental barrier and set priorities in further in vivo studies on translocation of NPs to the fetus. PMID:26145586

  16. Long-range charge transport in single G-quadruplex DNA molecules.

    PubMed

    Livshits, Gideon I; Stern, Avigail; Rotem, Dvir; Borovok, Natalia; Eidelshtein, Gennady; Migliore, Agostino; Penzo, Erika; Wind, Shalom J; Di Felice, Rosa; Skourtis, Spiros S; Cuevas, Juan Carlos; Gurevich, Leonid; Kotlyar, Alexander B; Porath, Danny

    2014-12-01

    DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits. PMID:25344689

  17. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.

    PubMed

    Zhou, Changjie; Yang, Weihuang; Zhu, Huili

    2015-06-01

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides. PMID:26049513

  18. Mitigation of charged impurity effects in graphene field-effect transistors with polar organic molecules (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Worley, Barrett C.; Kim, Seohee; Akinwande, Deji; Rossky, Peter J.; Dodabalapur, Ananth

    2015-09-01

    Recent developments in monolayer graphene production allow its use as the active layer in field-effect transistor technology. Favorable electrical characteristics of monolayer graphene include high mobility, operating frequency, and good stability. These characteristics are governed by such key transport physical phenomena as electron-hole transport symmetry, Dirac point voltage, and charged impurity effects. Doping of graphene occurs during device fabrication, and is largely due to charged impurities located at or near the graphene/substrate interface. These impurities cause scattering of charge carriers, which lowers mobility. Such scattering is detrimental to graphene transistor performance, but our group has shown that coating with fluoropolymer thin films or exposure to polar organic vapors can restore favorable electrical characteristics to monolayer graphene. By partially neutralizing charged impurities and defects, we can improve the mobility by approximately a factor of 2, change the Dirac voltage by fairly large amounts, and reduce the residual carrier density significantly. We hypothesize that this phenomena results from screening of charged impurities by the polar molecules. To better understand such screening interactions, we performed computational chemistry experiments to observe interactions between polar organic molecules and monolayer graphene. The molecules interacted more strongly with defective graphene than with pristine graphene, and the electronic environment of graphene was altered. These computational observations correlate well with our experimental results to support our hypothesis that polar molecules can act to screen charged impurities on or near monolayer graphene. Such screening favorably mitigates charge scattering, improving graphene transistor performance.

  19. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J.

    2014-05-02

    Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destruction reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.

  20. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  1. Cluster ions and multiply charged ions formed in frozen CO sub 2 molecules under heavy ion impact

    SciTech Connect

    Tawara, H. ); Tonuma, T.; Kumagai, H. , Wako-shi 351-01, ); Matsuo, T. ); Shibata, H. )

    1991-02-15

    A variety of cluster ions, positive or negative, as well as multiply charged atomic ions have been observed from the frozen CO{sub 2} targets under (MeV/amu) energetic, highly charged projectile ion impact. Their spectra are found to be quite different from those produced in the cooled expanding CO{sub 2} gas targets.

  2. Moving towards strong-field femtosecond control of bond cleavage and charge localization in triatomic molecules

    NASA Astrophysics Data System (ADS)

    Jochim, Bethany; Ablikim, U.; Zohrabi, M.; Gaire, B.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2012-06-01

    A 3-D momentum imaging technique is employed to study intense ultrafast laser-induced dissociation of triatomic molecular ions from an ion beam. Utilizing our measured kinetic energy release and angular distribution spectra along with the calculated electronic structure of these molecules, we elucidate possible dissociation pathways and anticipate and explore various laser parameters that could be used to drive transitions to specific final products. For example, we have studied N2O^+, in which we find that for typical intense IR laser pulses (˜30 fs, transform-limited, 800 nm, ˜10^15 W/cm^2 pulses), the preferred bond cleavage (i.e., breaking the N-N bond vs. the N-O bond) and charge localization patterns are those that are the most energetically favorable. We investigate laser parameters that could be used to steer this and other systems to less likely outcomes.

  3. Single charge exchange in collision of fast protons with hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, Ebrahim; Sattarpour, Seyedeh Hedyeh

    2015-11-01

    Single charge transfer process in collision of energetic protons with molecular hydrogens is theoretically studied using a first-order two-effective-center Born approximation. The correct boundary conditions are incorporated in the formalism and the Hartree-Fock molecular wave function for molecular targets and the residual ions are used to calculate the transition amplitude. The interference patterns in the capture differential cross-sections (DCSs) for a given fixed orientation of the molecule, due to the scattering from the two-atomic centers in the molecular targets, are examined. The dependence of the DCSs upon the angle between the molecular axis and the direction of the incident velocity is theoretically investigated. Both average differential and integral cross-sections are calculated. The obtained results are compared with the available experimental data.

  4. Effect of Charge Recombination on the Fill Factor of Small Molecule Bulk Heterojunction Solar Cells

    SciTech Connect

    Zhang, Yuan; Dang, Xuan-Dung; Kim, Chunki; Nguyen, Thuc-Quyen

    2011-06-09

    Solution-processed organic BHJ solar cells based on 3,6-bis[5-(benzofuran-2-yl)thiophen-2-yl]-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP(TBFu)₂) or poly(3-hexylthiophene) blended with [6,6]-phenyl-C60(70)-butyric acid methyl ester (PC60(70)BM) behave differently under various irradiation intensities. Small molecule-based DPP(TBFu)₂:PC₆₀ BM solar cells show up to 5.2% power conversion efficiency and a high fill factor at low light intensity. At 100 mW cm-2 illumination, the efficiency and fill factor decrease, resulting in stronger power losses. Impedance spectroscopy at various light intensities reveals that high charge recombination is the cause of the low fill factor in DPP(TBFu)₂:PC₆₀ BM.

  5. Communication: Charge-population based dispersion interactions for molecules and materials

    NASA Astrophysics Data System (ADS)

    Stöhr, Martin; Michelitsch, Georg S.; Tully, John C.; Reuter, Karsten; Maurer, Reinhard J.

    2016-04-01

    We introduce a system-independent method to derive effective atomic C6 coefficients and polarizabilities in molecules and materials purely from charge population analysis. This enables the use of dispersion-correction schemes in electronic structure calculations without recourse to electron-density partitioning schemes and expands their applicability to semi-empirical methods and tight-binding Hamiltonians. We show that the accuracy of our method is en par with established electron-density partitioning based approaches in describing intermolecular C6 coefficients as well as dispersion energies of weakly bound molecular dimers, organic crystals, and supramolecular complexes. We showcase the utility of our approach by incorporation of the recently developed many-body dispersion method [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012)] into the semi-empirical density functional tight-binding method and propose the latter as a viable technique to study hybrid organic-inorganic interfaces.

  6. Many-body calculation for charge transport through triangular quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Chang, Yia-Chung; Kuo, David M. T.

    2015-03-01

    We study the many-body effect of electron tunneling through the coupled quantum dots systems in the Coulomb blockade regime. Using the equation of motion method for the non-equilibrium Green's function, we calculate the charge current and conductance of junctions consisting of metallic electrodes and a few quantum dots. Many-particle correlation functions are explicitly solved numerically. Quantum phenomena like quantum interference, Coulomb blockade and spin blockade for the triangular quantum dot molecules are discussed. Our work suggests a new method for the modeling of the mesoscopic transport. This work was supported in part by the Ministry of Science and Technology, Taiwan under Contract Nos. NSC 101-2112-M-001-024-MY3 and NSC 103-2112-M-008-009-MY3.

  7. Higher stabilities of positive and negative charge on tetrafluoroethylene-hexafluoropropylene copolymer (FEP) electrets treated with titanium-tetrachloride vapor

    NASA Astrophysics Data System (ADS)

    Rychkov, D.; Rychkov, A.; Efimov, N.; Malygin, A.; Gerhard, R.

    2013-08-01

    Tetrafluoroethylene-hexafluoropropylene copolymer (FEP) films were treated with titanium-tetrachloride vapor in a molecular-layer deposition process. As a result of the surface treatment, significant improvements of the thermal and temporal charge stability were observed. Charge-decay measurements revealed enhancements of the half-value temperatures and the relaxation times of positively charged FEP electrets by at least 120 °C and two orders of magnitude, respectively. Beyond previous publications on fluoropolymer electrets with surface modification, we here report enhanced charge stabilities of the FEP films charged in negative as well as in positive corona discharges. Even though the improvement for negatively charged FEP films is moderate (half-value temperature about 20 °C higher), our experiments show that the asymmetry in positive and negative charge stability that is typical for FEP electrets can be overcome by means of chemical surface treatments. The results are discussed in the context of the formation of modified surface layers with enhanced charge-trapping properties.

  8. Polymerization on the rocks: negatively-charged alpha-amino acids

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Bohler, C.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  9. Transient negative photoconductance in a charge transfer double quantum well under optical intersubband excitation

    NASA Astrophysics Data System (ADS)

    Rfenacht, M.; Tsujino, S.; Sakaki, H.

    1998-06-01

    Recently, it was shown that an electron-hole radiative recombination is induced by a mid-infrared light exciting an intersubband transition in a charge transfer double quantum well (CTDQW). This recombination was attributed to an upstream transfer of electrons from an electron-rich well to a hole-rich well. In this study, we investigated the electrical response of a CTDQW under intersubband optical excitation, and found that a positive photocurrent, opposite in sign and proportional to the applied electric field, accompanies the intersubband-transition-induced luminescence (ITIL) signal. A negative photocurrent component was also observed and attributed to heating processes. This work brings a further evidence of the ITIL process and shows that an important proportion of the carriers are consumed by the transfer of electrons.

  10. Dynamic Jahn-Teller Effect in Negatively Charged Nitrogen-Vacancy Center in Diamond

    NASA Astrophysics Data System (ADS)

    Abtew, Tesfaye; Zhang, Peihong

    2011-03-01

    The negatively charged nitrogen-vacancy (NV) center in diamond has attracted much research interest recently owing to its desirable optical properties and long spin coherent lifetime. The ground state of NV- center has a 3 A2 symmetry, which can be optically excited, to a 3 E state. The excited state is orbitally degenerate therefore should experience either static or dynamic Jahn-Teller (JT) effects. We use accurate first-principles methods to study structural and electronic properties of the NV- center in diamond both in the ground and excited states. Our results indicate that the excited state of the NV- center is indeed a dynamic JT system. We acknowledge the Center for Computational Research at the University at Buffalo, SUNY. This work is supported by the National Science Foundation under Grant No. DMR-0946404 and by the Department of Energy under GrantNo. DE-SC0002623.

  11. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    DOE PAGESBeta

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, uponmore » CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less

  12. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    SciTech Connect

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, upon CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.

  13. Negatively Charged Carbon Nanohorn Supported Cationic Liposome Nanoparticles: A Novel Delivery Vehicle for Anti-Nicotine Vaccine.

    PubMed

    Zheng, Hong; Hu, Yun; Huang, Wei; de Villiers, Sabina; Pentel, Paul; Zhang, Jianfei; Dorn, Harry; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Tobacco addiction is the second-leading cause of death in the world. Due to the nature of nicotine (a small molecule), finding ways to combat nicotine's deleterious effects has been a constant challenge to the society and the medical field. In the present work, a novel anti-nicotine vaccine based on nanohorn supported liposome nanoparticles (NsL NPs) was developed. The nano-vaccine was constructed by using negatively charged carbon nanohorns as a scaffold for the assembly of cationic liposomes, which allow the conjugation of hapten conjugated carrier proteins. The assembled bio-nanoparticles are stable. Mice were immunized subcutaneously with the nano-vaccine, which induced high titer and high affinity of nicotine specific antibodies in mice. Furthermore, no evidence of clinical signs or systemic toxicity followed multiple administrations of NsL-based anti-nicotine vaccine. These results suggest that NsL-based anti-nicotine vaccine is a promising candidate in treating nicotine dependence and could have potential to significantly contribute to smoking cessation. PMID:26510313

  14. Ultrastructural, physico-chemical and conformational study of the interactions of gentamicin and bis(beta-diethylaminoethylether) hexestrol with negatively-charged phospholipid layers.

    PubMed

    Mingeot-Leclercq, M P; Schanck, A; Ronveaux-Dupal, M F; Deleers, M; Brasseur, R; Ruysschaert, J M; Laurent, G; Tulkens, P M

    1989-03-01

    Aminoglycoside antibiotics such as gentamicin, which are fully hydrophilic, and cationic amphiphilic drugs such as bis(beta-diethylaminoethylether)hexestrol (DEH), are both known to inhibit lysosomal phospholipases and induce phospholipidosis. This enzymatic inhibition is probably related to the neutralization of the surface negative charges on which the lysosomal phospholipases A1 and A2 are dependent to express fully their activities (Mingeot-Leclerq et al., Biochem Pharmacol 37: 591-599, 1988). Using negatively charged liposomes, we show by 31P NMR spectroscopy that both gentamicin and DEH cause a significant restriction in the phosphate head mobility and, in sonicated vesicles, the appearance of larger bilayer structures. Both DEH and gentamicin increased the apparent size of sonicated negatively charged liposomes (but not of neutral liposomes) as measured by quasi-elastic light scattering spectroscopy. Examination of replicas from freeze-etched samples, however, revealed that gentamicin caused aggregation of liposomes, whereas DEH induced their fusion and the formation of intramembranous roundly shaped structures. Only DEH caused a significant decrease of the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, a fluorescent lipid-soluble probe. In addition, DEH, but not gentamicin, interfered with the bilayer to hexagonal phase transition occurring in dioleoyl- and dielaidoylphosphatidylethanolamine liposomes upon warming, and caused the appearance of an isotropic signal suggestive of the formation of inverted micelles. In computer-aided conformational analysis of the molecules at a simulated air-water interface, gentamicin was shown to display a largely-open crescent shape. When surrounded by phosphatidylinositol molecules, it remained as such at the interface which it locally mis-shaped, establishing close contact with the negatively charged phospho groups. In contrast, DEH could be oriented perpendicularly to the interface, with its two cationic groups associated with the phospho groups, and its phenyl- and diethylethandiyl moieties deeply inserted between and interacting with the aliphatic chains. Thus, although both agents cause lysosomal phospholipases inhibition, the differences in their interactions with negatively-charged bilayers is likely to result in a different organization of the phospholipids accumulated in vivo, which could lead to different toxicities. PMID:2539158

  15. Gap state charge induced spin-dependent negative differential resistance in tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Zhang, X.-G.; Han, X. F.

    2016-04-01

    We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1‑x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.

  16. Synthesis of positively and negatively charged silver nanoparticles and their deposition on the surface of titanium

    NASA Astrophysics Data System (ADS)

    Sharonova, A.; Loza, K.; Surmeneva, M.; Surmenev, R.; Prymak, O.; Epple, M.

    2016-02-01

    Bacterial infections related to dental implants are currently a significant complication. A good way to overcome this challenge is functionalization of implant surface with Ag nanoparticles (NPs) as antibacterial agent. This article aims at review the synthesis routes, size and electrical properties of AgNPs. Polyvinyl pyrrolidone (PVP) and polyethyleneimine (PEI) were used as stabilizers. Dynamic Light Scattering, Nanoparticle Tracking Analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) have been used to characterize the prepared AgNPs. Two types of NPs were synthesized in aqueous solutions: PVP-stabilized NPs with a diameter of the metallic core of 70 ± 20 nm, and negative charge of -20 mV, PEI-stabilized NPs with the size of the metallic core of 50 ± 20 nm and positive charge of +55 mV. According to SEM results, all the NPs have a spherical shape. Functionalization of the titanium substrate surface with PVP and PEI-stabilized AgNPs was carried out by dropping method. XRD patterns revealed that the AgNPs are crystalline with the crystallite size of 14 nm.

  17. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    PubMed

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. PMID:26630043

  18. The charge transfer problem in density functional theory calculations of aqueously solvated molecules.

    PubMed

    Isborn, Christine M; Mar, Brendan D; Curchod, Basile F E; Tavernelli, Ivano; Martínez, Todd J

    2013-10-10

    Recent advances in algorithms and computational hardware have enabled the calculation of excited states with time-dependent density functional theory (TDDFT) for large systems of O(1000) atoms. Unfortunately, the aqueous charge transfer problem in TDDFT (whereby many spuriously low-lying charge transfer excited states are predicted) seems to become more severe as the system size is increased. In this work, we concentrate on the common case where a chromophore is embedded in aqueous solvent. We examine the role of exchange-correlation functionals, basis set effects, ground state geometries, and the treatment of the external environment in order to assess the root cause of this problem. We conclude that the problem rests largely on water molecules at the boundary of a finite cluster model, i.e., "edge waters." We also demonstrate how the TDDFT problem can be related directly to ground state problems. These findings demand caution in the commonly employed strategy that rests on "snapshot" cutout geometries taken from ground state dynamics with molecular mechanics. We also find that the problem is largely ameliorated when the range-separated hybrid functional LC-ωPBEh is used. PMID:23964865

  19. Dispersion interactions with linear scaling DFT: a study of planar molecules on charged polar surfaces

    NASA Astrophysics Data System (ADS)

    Andrinopoulos, Lampros; Hine, Nicholas; Haynes, Peter; Mostofi, Arash

    2010-03-01

    The placement of organic molecules such as CuPc (copper phthalocyanine) on wurtzite ZnO (zinc oxide) charged surfaces has been proposed as a way of creating photovoltaic solar cellsfootnotetextG.D. Sharma et al., Solar Energy Materials & Solar Cells 90, 933 (2006) ; optimising their performance may be aided by computational simulation. Electronic structure calculations provide high accuracy at modest computational cost but two challenges are encountered for such layered systems. First, the system size is at or beyond the limit of traditional cubic-scaling Density Functional Theory (DFT). Second, traditional exchange-correlation functionals do not account for van der Waals (vdW) interactions, crucial for determining the structure of weakly bonded systems. We present an implementation of recently developed approachesfootnotetextP.L. Silvestrelli, P.R.L. 100, 102 (2008) to include vdW in DFT within ONETEPfootnotetextC.-K. Skylaris, P.D. Haynes, A.A. Mostofi and M.C. Payne, J.C.P. 122, 084119 (2005) , a linear-scaling package for performing DFT calculations using a basis of localised functions. We have applied this methodology to simple planar organic molecules, such as benzene and pentacene, on ZnO surfaces.

  20. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis.

    PubMed

    Wasielewski, Michael R

    2006-07-01

    Electron transfer in biological molecules provides both insight and inspiration for developing chemical systems having similar functionality. Photosynthesis is an example of an integrated system in which light harvesting, photoinduced charge separation, and catalysis combine to carry out two thermodynamically demanding processes, the oxidation of water and the reduction of carbon dioxide. The development of artificial photosynthetic systems for solar energy conversion requires a fundamental understanding of electron-transfer reactions between organic molecules. Since these reactions most often involve single-electron transfers, the spin dynamics of photogenerated radical ion pairs provide important information on how the rates and efficiencies of these reactions depend on molecular structure. Given this knowledge, the design and synthesis of large integrated structures to carry out artificial photosynthesis is moving forward. An important approach to achieving this goal is the development of small, functional building blocks, having a minimum number of covalent bonds, which also have the appropriate molecular recognition sites to facilitate self-assembly into a complete, functional artificial photosynthetic system. PMID:16808492

  1. Positively-charged, porous, polysaccharide nanoparticles loaded with anionic molecules behave as 'stealth' cationic nanocarriers

    PubMed Central

    Paillard, Archibald; Passirani, Catherine; Saulnier, Patrick; Kroubi, Maya; Garcion, Emmanuel; Benoît, Jean-Pierre; Betbeder, Didier

    2010-01-01

    PURPOSE Stealth nanoparticles are generally obtained after modifying their surface with hydrophilic polymers such as PEG. In this study we analysed the effect of a phospholipid (DG) or protein (BSA) inclusion in porous cationic polysaccharide (NP+) on their physico-chemical structure and the effect on complement activation. METHODS NP+s were characterised in terms of size, zeta potential (ζ) and static light-scattering (SLS). Complement consumption was assessed in normal human serum (NHS) by measuring the residual haemolytic capacity of the complement system. RESULTS DG-loading did not change their size or ζ whereas progressive BSA loading decreased lightly their ζ. An electrophoretic mobility analysis study showed the presence of 2 differently-charged sublayers at the NP+ surface which are not affected by DG-loading. Complement system activation, studied via a CH50 test, was suppressed by DG- or BSA-loading. We also demonstrated that NP+s could be loaded by a polyanionic molecule such as BSA, after their preliminary filling by a hydrophobic molecule such as DG. CONCLUSION These nanoparticles are able to absorb large amounts of phospholipids or proteins without change in their size or zeta potential. Complement studies showed that stealth behaviour is observed when they are loaded and saturated either with anionic phospholipid or proteins. PMID:19851846

  2. Cross sections for inelastic collisions of fast charged particles with atoms and molecules

    SciTech Connect

    Inokuti, Mitio

    1985-01-01

    A large volume of data of these cross sections are required for solving problems of radiological physics and dosimetry, as well as for detailed analysis of the earliest stage of radiation actions on matter (including the biological cell and substances constituting it). Current experimental data of the cross sections are far from being complete or even satisfactory for tentative applications. One practical approach to the cross-section determination is to test experimental data with general criteria. For example, the Bethe theory indicates a close connection between photoabsorption and energy absorption by glancing collisions. Development and use of these data constraints, first put forth by Platzman, can now be demonstrated in many examples. More recent studies concern the determination of the analytic expression most suitable for fitting the data on the oscillator-strength distribution or the energy distribution of secondary electrons from ionizing collisions of charged particles. There are three areas to which major efforts should be directed. First, methods of absolute cross-section measurements both for electron and ionic collisions must be thoroughly reviewed so that sources of systematic errors may be identified and corrected. Second, efforts should be devoted to the understanding of the data systematics, viz., the trends of cross sections for a series of molecules. Finally, electron and ionic collisions with molecules in condensed phases will be an important topic of study for years to come; initial reports on efforts toward this direction are encouraging. 46 refs.

  3. Exploration of Porphyrin-based Semiconductors for Negative Charge Transport Applications Using Synthetic, Spectroscopic, Potentiometric, Magnetic Resonance, and Computational Methods

    NASA Astrophysics Data System (ADS)

    Rawson, Jeffrey Scott

    Organic pi-conjugated materials are emerging as commercially relevant components in electronic applications that include transistors, light-emitting diodes, and solar cells. One requirement common to all of these functions is an aptitude for accepting and transmitting charges. It is generally agreed that the development of organic semiconductors that favor electrons as the majority carriers (n-type) lags behind the advances in hole transporting (p-type) materials. This shortcoming suggests that the design space for n-type materials is not yet well explored, presenting researchers with the opportunity to develop unconventional architectures. In this regard, it is worth noting that discrete molecular materials are demonstrating the potential to usurp the preeminent positions that pi-conjugated polymers have held in these areas of organic electronics research. This dissertation describes how an extraordinary class of molecules, meso-to-meso ethyne-bridged porphyrin arrays, has been bent to these new uses. Chapter one describes vis-NIR spectroscopic and magnetic resonance measurements revealing that these porphyrin arrays possess a remarkable aptitude for the delocalization of negative charge. In fact, the miniscule electron-lattice interactions exhibited in these rigid molecules allow them to host the most vast electron-polarons ever observed in a pi-conjugated material. Chapter two describes the development of an ethyne-bridged porphyrin-isoindigo hybrid chromophore that can take the place of fullerene derivatives in the conventional thin film solar cell architecture. Particularly noteworthy is the key role played by the 5,15-bis(heptafluoropropyl)porphyrin building block in the engineering of a chromophore that, gram for gram, is twice as absorptive as poly(3-hexyl)thiophene, exhibits a lower energy absorption onset than this polymer, and yet possesses a photoexcited singlet state sufficiently energetic to transfer a hole to this polymer. Chapter three describes synthetic efforts that expand the repertoire of readily available meso-heptafluoropropyl porphyrin building blocks. The findings suggest that the remaining challenges to the exploitation of these pigments will be overcome by a sufficiently firm grasp of their subtle electronic structures, and a willingness to eschew the customary strategies of chromophore assembly.

  4. Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by Gram-negative pathogens

    PubMed Central

    Krachler, Anne Marie; Ham, Hyeilin; Orth, Kim

    2011-01-01

    The initial binding of bacteria to host cells is crucial to the delivery of virulence factors and thus is a key determinant of the pathogen's success. We report a multivalent adhesion molecule (MAM) that enables a wide range of Gram-negative pathogens to establish high-affinity binding to host cells during the early stages of infection. MAM7 binds to the host by engaging in both protein–protein (with fibronectin) and protein–lipid (with phosphatidic acid) interactions with the host cell membrane. We find that MAM7 expression on the outer membrane of a Gram-negative pathogen is necessary for virulence in a nematode infection model and for efficient killing of cultured mammalian host cells. Expression of MAM7 on nonpathogenic strains produced a tool that can be used to impede infection by Gram-negative bacterial pathogens. Targeting or exploiting MAM7 might prove to be important in combating Gram-negative bacterial infections. PMID:21709226

  5. Interaction of positively and negatively charged aromatic hydrocarbons with benzene and triphenylene: Towards a model of pure organic insulators

    NASA Astrophysics Data System (ADS)

    Quiñonero, David; Frontera, Antonio; Deyà, Pere M.; Alkorta, Ibon; Elguero, José

    2008-07-01

    A theoretical study of the complexes formed by two aromatic charged hydrocarbons, cyclopropenyl cation and phenalenyl anion, with benzene and triphenylene has been carried out. The binary complexes between the charged molecules and the neutral ones have been characterized as well as the ternary systems with the neutral systems acting as insulators of the charged ones. In the ternary complex a cooperative effect is observed both in the energy and in the geometry. In general, the interaction with ions reduces the aromaticity of the insulators.

  6. Analysis of thermal stress slip flow and negative thermophoresis using the Boltzmann equation for hard-sphere molecules

    NASA Astrophysics Data System (ADS)

    Ohwada, T.; Sone, Y.

    The thermal stress slip flow is analyzed on the basis of the standard Boltzmann equation for hard-sphere molecules. For this purpose, the explicit form of the Grad-Hilbert expansion of the Boltzmann equation is obtained up to the second order in the Knudsen number. The results suggest that negative thermophoresis occurs for a hard-sphere molecular gas under the Maxwell-type boundary condition as well as for the Boltzmann-Krook-Welander model under the same boundary condition.

  7. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)═O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)═O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system. PMID:26131964

  8. Cationic Cell-Penetrating Peptide Binds to Planar Lipid Bilayers Containing Negatively Charged Lipids but does not Induce Conductive Pores

    PubMed Central

    Gurnev, Philip A.; Yang, Sung-Tae; Melikov, Kamran C.; Chernomordik, Leonid V.; Bezrukov, Sergey M.

    2013-01-01

    Using a cation-selective gramicidin A channel as a sensor of the membrane surface charge, we studied interactions of oligoarginine peptide R9C, a prototype cationic cell-penetrating peptide (CPP), with planar lipid membranes. We have found that R9C sorption to the membrane depends strongly on its lipid composition from virtually nonexistent for membranes made of uncharged lipids to very pronounced for membranes containing negatively charged lipids, with charge overcompensation at R9C concentrations exceeding 1 μM. The sorption was reversible as it was removed by addition of polyanionic dextran sulfate to the membrane bathing solution. No membrane poration activity of R9C (as would be manifested by increased bilayer conductance) was detected in the charged or neutral membranes, including those with asymmetric negative/neutral and negative/positive lipid leaflets. We conclude that interaction of R9C with planar lipid bilayers does not involve pore formation in all studied lipid combinations up to 20 μM peptide concentration. However, R9C induces leakage of negatively charged but not neutral liposomes in a process that involves lipid mixing between liposomes. Our findings suggest that direct traversing of CPPs through the uncharged outer leaflet of the plasma membrane bilayer is unlikely and that permeabilization necessarily involves both anionic lipids and CPP-dependent fusion between opposing membranes. PMID:23663836

  9. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  10. Interaction of Bee Venom Melittin with Zwitterionic and Negatively Charged Phospholipid Bilayers

    PubMed Central

    Kleinschmidt, Jörg H.; Mahaney, James E.; Thomas, David D.; Marsh, Derek

    1997-01-01

    Electron spin resonance (ESR) spectroscopy was used to study the penetration and interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) and ditetradecylphosphatidylglycerol (DTPG) bilayer membranes. Melittin is a surface-active, amphipathic peptide and serves as a useful model for a variety of membrane interactions, including those of presequences and signal peptides, as well as the charged subdomain of the cardiac regulatory protein phospholamban. Derivatives of phosphatidylcholine and phosphatidylglycerol spin-labeled at various positions along the sn-2 acyl chain were used to establish the chain flexibility gradient for the two membranes in the presence and absence of melittin. Negatively charged DTPG bilayer membranes showed a higher capacity for binding melittin without bilayer disruption than did membranes formed by the zwitterionic DMPC, demonstrating the electrostatic neutralization of bound melittin by DTPG. The temperature dependence of the ESR spectra showed that the gel-to-liquid crystalline phase transition is eliminated by binding melittin to DTPG bilayers, whereas a very broad transition remains in the case of DMPC bilayers. None of the spin labels used showed a two-component spectrum characteristic of a specific restriction of their chain motion by melittin, but the outer hyperfine splittings and effective chain order parameters were increased for all labels upon binding melittin. This indicates a reduced flexibility of the lipid chains induced by a surface orientation of the bound melittin. Whereas the characteristic shape of the chain flexibility gradient was maintained upon melittin addition to DMPC bilayers, the chain flexibility profile in DTPG bilayers was much more strongly perturbed. It was found that the steepest change in segmental flexibility was shifted toward the bilayer interior when melittin was bound to DTPG membranes, indicating a greater depth of penetration than in DMPC membranes. pH titration of stearic acid labeled at the C-5 position, used as a probe of interfacial interactions, showed net downward shifts in interfacial pK of 0.8 and 1.2 pH units contributed from the positive charge of melittin, outweighing upward shifts from interfacial dehydration, when melittin was bound to DTPG and DMPC, respectively. The perturbation of the outer hyperfine splitting was used to determine the interactions of melittin with spin-labeled lipids of different polar headgroups in DTPG and DMPC. Anionic lipids (phosphatidylserine, phosphatidylglycerol, and stearic acid) and zwitterionic lipids (phosphatidylethanolamine and phosphatidylcholine) had the largest outer splittings in the presence of melittin. Neutral lipids (protonated stearic acid and diacylglycerol) displayed the largest increase in outer splitting on binding melittin, which was attributed to a change in the vertical location of these lipids in the bilayer. Both effects were more pronounced in DTPG than in DMPC. PMID:9017202

  11. A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules.

    PubMed

    Zhu, Yibo; Hao, Yufeng; Adogla, Enoch A; Yan, Jing; Li, Dachao; Xu, Kexin; Wang, Qian; Hone, James; Lin, Qiao

    2016-03-10

    This paper presents a graphene nanosensor for affinity-based detection of low-charge, low-molecular-weight molecules, using glucose as a representative. The sensor is capable of measuring glucose concentration in a practically relevant range of 2 μM to 25 mM, and can potentially be used in noninvasive glucose monitoring. PMID:26912374

  12. Statistical mechanics of dust charging in a multi-ion plasma with negative and positive ionic species

    SciTech Connect

    Mishra, S. K.; Misra, Shikha

    2015-02-15

    On the basis of statistical mechanics and charging kinetics, the charge distribution over uniform size spherical dust particles in a multi-ion plasma comprising of multiple charged negative and positive ions is investigated. Two specific situations where the complex plasma is viz., (i) dark (no emission from dust) and (ii) irradiated by laser light (causing photoemission from dust) have been taken into account. The analytical formulation includes the population balance equation for the charged dust particles along with number and energy balance of the complex plasma constituents. The departure of the results for multi-ion plasma from that in case of usual singly charged positive ion plasma is graphically illustrated and discussed. In contrast to electron-ion plasma, significant number of particles is seen to acquire opposite charge in case of pure positive-negative ion plasma, even in the absence of electron emission from the dust grains. The effects of various plasma parameters viz., number density, particle size, and work function of dust on charge distribution have also been examined.

  13. Photoluminescence Studies of Both the Neutral and Negatively Charged Nitrogen-Vacancy Center in Diamond.

    PubMed

    Wang, Kaiyue; Steeds, John W; Li, Zhihong; Tian, Yuming

    2016-02-01

    In this study low temperature micro-photoluminescence technology was employed to investigate effects of the irradiation and nitrogen concentration on nitrogen-vacancy (NV) luminescence, with the photochromic and vibronic properties of the NV defects. Results showed that the NV luminescence was weakened due to recombination of self-interstitials created by electron irradiation in diamond and the vacancies within the structure of NV centers. For very pure diamond, the vacancies migrated the long distance to get trapped by N atoms only after sufficient high temperature annealing. As with the increase in nitrogen content, the migration distance of vacancies got smaller. The nitrogen also favored the formation of negatively charged NV centers with the donating electrons. Under the high-energy ultraviolet laser excitation, the photochromic property of the NV- center was also observed, though it was not stable. Besides, the NV centers showed very strong broad sidebands, and the vibrations involved one phonon with energy of ~42 meV and another with ~67 meV energy. PMID:26758647

  14. Negatively charged nano-grains at 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Burch, J. L.; Horányi, M.

    2015-11-01

    Shortly after the Rosetta mission's rendezvous with 67P/Churyumov-Gerasimenko the RPC/IES instrument intermittently detected negative particles that were identified as singly charged nano-dust grains. These grains were recorded as a nearly mono-energetic beam of particles in the 200-500 eV range arriving from the direction of the comet. Occasionally, another population of particles in the energy range of 1-20 keV were also noticed arriving from the approximate direction of the Sun. In this paper we review the processes that can explain the energization and the directionality of the observed nano-dust populations. We show that the observations are consistent with gas-drag acceleration of the outflowing particles with radii of 3-4 nm, and with the returning fragments of bigger particles accelerated by radiation pressure with approximate radii of 30-80 nm. In addition to gas drag and radiation pressure, we also examine the role of the solar wind induced motional electric field, and its possible role in explaining the intermittency of the detection of a nano-grain population arriving from the solar direction.

  15. New RGD-peptide amphiphile mixtures containing a negatively charged diluent.

    PubMed

    Castelletto, Valeria; Gouveia, Ricardo M; Connon, Che J; Hamley, Ian W

    2013-01-01

    Here, we studied the self-assembly of two peptide amphiphiles, C16-Gly-Gly-Gly-Arg-Gly-Asp (PA 1: C16-GGG-RGD) and C16-Gly-Gly-Gly-Arg-Gly-Asp-Ser (PA 2: C16-GGG-RGDS). We showed that PA 1 and PA 2 self-assemble into nanotapes with an internal bilayer structure. C16 chains were highly interdigitated within the nanotape cores, while the peptide blocks formed water-exposed 13-sheets too. PA 1 nanotapes were characterized by one spacing distribution, corresponding to a more regular internal structure than that of PA 2 nanotapes, which presented two different spacing distributions. We showed that it is possible to obtain homogeneous nanotapes in water by co-assembling PA 1 or PA 2 with the negatively charged diluent C,16-Glu-Thr-Thr-Glu-Ser (PA 3: C16-ETTES). The homogeneous tapes formed by PA 1-PA 3 or PA 2-PA 3 mixtures presented a structure similar to that observed for the corresponding pure PA 1 or PA 2 nanotapes. The mixed nanotapes, which were able to form a stabilized matrix containing homogeneously distributed cell adhesive RGD groups, represent promising materials for designing new cell adhesion substrates. PMID:24611289

  16. Charge symmetric dissociation of doubly ionized N{sub 2} and CO molecules

    SciTech Connect

    Pandey, A. Bapat, B.; Shamasundar, K. R.

    2014-01-21

    We report a comparative study of the features in dissociative double ionization by high energy electron impact of N{sub 2} and CO molecules. The ratio of cross-section of charge symmetric dissociative ionization to non-dissociative ionization (CSD-to-ND ratio) and the kinetic energy release (KER) spectra of dissociation are experimentally measured and carefully corrected for various ion transmission losses and detector inefficiencies. Given that the double ionization cross sections of these iso-electronic diatomics are very similar, the large difference in the CSD-to-ND ratios must be attributable to the differences in the evolution dynamics of the dications. To understand these differences, potential energy curves (PECs) of dications have been computed using multi-reference configuration interaction method. The Franck-Condon factors and tunneling life times of vibrational levels of dications have also been computed. While the KER spectrum of N{sub 2}{sup ++} can be readily explained by considering dissociation via repulsive states and tunneling of meta-stable states, indirect dissociation processes such as predissociation and autoionization have to be taken into account to understand the major features of the KER spectrum of CO{sup ++}. Direct and indirect processes identified on the basis of the PECs and experimental KER spectra also provide insights into the differences in the CSD-to-ND ratios.

  17. Charge symmetric dissociation of doubly ionized N2 and CO molecules.

    PubMed

    Pandey, A; Bapat, B; Shamasundar, K R

    2014-01-21

    We report a comparative study of the features in dissociative double ionization by high energy electron impact of N2 and CO molecules. The ratio of cross-section of charge symmetric dissociative ionization to non-dissociative ionization (CSD-to-ND ratio) and the kinetic energy release (KER) spectra of dissociation are experimentally measured and carefully corrected for various ion transmission losses and detector inefficiencies. Given that the double ionization cross sections of these iso-electronic diatomics are very similar, the large difference in the CSD-to-ND ratios must be attributable to the differences in the evolution dynamics of the dications. To understand these differences, potential energy curves (PECs) of dications have been computed using multi-reference configuration interaction method. The Franck-Condon factors and tunneling life times of vibrational levels of dications have also been computed. While the KER spectrum of N2 (++) can be readily explained by considering dissociation via repulsive states and tunneling of meta-stable states, indirect dissociation processes such as predissociation and autoionization have to be taken into account to understand the major features of the KER spectrum of CO(++). Direct and indirect processes identified on the basis of the PECs and experimental KER spectra also provide insights into the differences in the CSD-to-ND ratios. PMID:25669391

  18. Both Positive and Negative Effects on Immune Responses by Expression of a Second Class II MHC Molecule

    PubMed Central

    Ni, Peggy P.; Wang, Yaming; Allen, Paul M.

    2014-01-01

    It is perplexing why vertebrates express a limited number of Major Histocompatibility Complex (MHC) molecules when theoretically, having a greater repertoire of MHC molecules would increase the number of epitopes presented, thereby enhancing thymic selection and T cell response to pathogens. It is possible that any positive effects would either be neutralized or outweighed by negative selection restricting the T cell repertoire. We hypothesize that the limit on MHC number is due to negative consequences arising from expressing additional MHC. We compared T cell responses between B6 mice (I-A+) and B6.E+ mice (I-A+, I-E+), the latter expressing a second class II MHC molecule, I-Eb, due to a monomorphic Eαk transgene that pairs with the endogenous I-Eβb chain. First, the naive T cell Vβ repertoire was altered in B6.E+ thymi and spleens, potentially mediating different outcomes in T cell reactivity. Although the B6 and B6.E+ responses to hen egg-white lysozyme (HEL) protein immunization remained similar, other immune models yielded differences. For viral infection, the quality of the T cell response was subtly altered, with diminished production of certain cytokines by B6.E+ CD4+ T cells. In alloreactivity, the B6.E+ T cell response was significantly dampened. Finally, we observed markedly enhanced susceptibility to experimental autoimmune encephalomyelitis (EAE) in B6.E+ mice. This correlated with decreased percentages of nTreg cells, supporting the concept of Tregs exhibiting differential susceptibility to negative selection. Altogether, our data suggest that expressing an additional class II MHC can produce diverse effects, with more severe autoimmunity providing a compelling explanation for limiting the expression of MHC molecules. PMID:25016574

  19. STUDIES OF X-RAY PRODUCTION FOLLOWING CHARGE EXCHANGE RECOMBINATION BETWEEN HIGHLY CHARGED IONS AND NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Chen, H; Clementson, J; Frankel, M; Gu, M F; Kelley, R L; Kilbourne, C A; Porter, F S; Thorn, D B; Wargelin, B J

    2008-08-28

    We have used microcalorimeters built by the NASA/Goddard Space Flight Center and the Lawrence Livermore National Laboratory Electron Beam Ion Trap to measure X-ray emission produced by charge exchange reactions between highly charged ions colliding with neutral helium, hydrogen, and nitrogen gas. Our measurements show the spectral dependence on neutral species and also show the distinct differences between spectra produced by charge exchange reactions and those produced by direct impact excitation. These results are part of an ongoing experimental investigation at the LLNL EBIT facility of charge exchange spectral signatures and can be used to interpret X-ray spectra produced by a variety of laboratory and celestial sources including cometary and planetary atmospheres, the Earth's magnetosheath, the heliosphere, and tokamaks.

  20. Linear free energy relationships for metal-ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms

    NASA Astrophysics Data System (ADS)

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-05-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO( αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand p Ka values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for five and six membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.

  1. Linear Free Energy Relationships for Metal-Ligand Complexation: Bidentate Binding to Negatively-Charged Oxygen Donor Atoms

    PubMed Central

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-01-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = χOO(αO log KHL,1 + αO log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand pKa values), and αO is the Irving-Rossotti slope. The parameter χOO is metal specific and has slightly different values for 5 and 6 membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, α-hydroxycarboxylic acids, and α-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of χOO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems. PMID:21833149

  2. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  3. Charge transfer in biologically important molecules: Comparison of high-level ab initio and semiempirical methods

    SciTech Connect

    Vaart, A. van der; Merz, K.M. Jr.

    2000-03-05

    Recent observations in both experimental and theoretical chemistry indicate the importance of charge transfer on the energetics and charge distribution of biomolecular systems. Here the authors present a detailed analysis of hydrogen-bonded complexes to assess the quality of Hartree-Fock (HF) and semiempirical methods in predicting the amount of charge transferred. The authors find that both HF and semiempirical methods systematically overestimate charge transfer when compared to MP2/6-311++G** calculations. Although inclusion of electron correlation is important for a proper assessment of charge transfer, both HG/6-311++G** and AM1 can serve as good approximations to charge transfer in biomolecular systems.

  4. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    SciTech Connect

    Wan, Yimao Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negative fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  5. Designing Non-charging Surfaces from Non-conductive Polymers.

    PubMed

    Zhang, Xuan; Huang, Xu; Kwok, Sen Wai; Soh, Siowling

    2016-04-01

    Polymers that prevent the generation of static charge by contact electrification can be fabricated by copolymerizing an appropriate proportion of a molecule that has the tendency to charge positively, and a molecule that has the tendency to charge negatively, against a reference material. These non-conductive polymers resist charging by contact or rubbing, and prevent the adhesion of microscopic particles. PMID:26923196

  6. Role of negatively charged ions in plasma on the growth and field emission properties of spherical carbon nanotube tip

    SciTech Connect

    Tewari, Aarti; Walia, Ritu; Sharma, Suresh C.

    2012-01-15

    The role of negatively charged ions in plasma on growth (without catalyst) and field emission properties of spherical carbon nanotube (CNT) tip has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, negatively and positively charged ions, neutral atoms, and the energy balance of various species has been developed. Numerical calculations of the spherical CNT tip radius for different relative density of negatively charged ions {epsilon}{sub r}(=n{sub SF{sub 6{sup -}}}/n{sub C{sup +}}, where n{sub SF{sub 6{sup -}}} and n{sub C}{sup +} are the equilibrium densities of sulphur hexafluoride and carbon ions, respectively) have been carried out for the typical glow discharge plasma parameters. It is found that the spherical CNT tip radius decreases with {epsilon}{sub r} and hence the field emission of electrons from the spherical CNT tip increases. Some of our theoretical results are in accordance with the existing experimental observations.

  7. Control of ion flux and selectivity by negatively charged residues in the outer mouth of rat sodium channels.

    PubMed Central

    Chiamvimonvat, N; Pérez-García, M T; Tomaselli, G F; Marban, E

    1996-01-01

    1. The sodium channel has a ring of negatively charged amino acids on its external face. This common structural feature of cation-selective channels has been proposed to optimize conduction by electrostatic attraction of permeant cations into the channel mouth. We tested this idea by mutagenesis of mu1 rat skeletal sodium channels expressed in Xenopus oocytes. 2. Replacement of the external glutamate residue in domain II by cysteine reduces sodium current by decreasing single-channel conductance. While this effect can be reversed by the negatively charged sulfhydryl modifying reagent methanethiosulphonate ethylsulphonate (MTSES), the flux saturation behaviour cannot be rationalized simply by changes in the surface charge. 3. The analogous mutations in domains I, III and IV affect not only conductance but also selectivity. These changes in selectivity are only partially reversed by exposure to MTSES. 4. Our findings necessitate revision of prevailing concepts regarding the role of superficial negatively charged residues in the process of ion permeation. These residues do not act solely by electrostatic attraction of permeant ions, but instead may help to form ion-specific binding sites within the pore. Images Figure 1 PMID:9011621

  8. Direct single-molecule observations of local denaturation of a DNA double helix under a negative supercoil state.

    PubMed

    Takahashi, Shunsuke; Motooka, Shinya; Usui, Tomohiro; Kawasaki, Shohei; Miyata, Hidefumi; Kurita, Hirofumi; Mizuno, Takeshi; Matsuura, Shun-ichi; Mizuno, Akira; Oshige, Masahiko; Katsura, Shinji

    2015-03-17

    Effects of a negative supercoil on the local denaturation of the DNA double helix were studied at the single-molecule level. The local denaturation in λDNA and λDNA containing the SV40 origin of DNA replication (SV40ori-λDNA) was directly observed by staining single-stranded DNA regions with a fusion protein comprising the ssDNA binding domain of a 70-kDa subunit of replication protein A and an enhanced yellow fluorescent protein (RPA-YFP) followed by staining the double-stranded DNA regions with YOYO-1. The local denaturation of λDNA and SV40ori-λDNA under a negative supercoil state was observed as single bright spots at the single-stranded regions. When negative supercoil densities were gradually increased to 0, -0.045, and -0.095 for λDNA and 0, -0.047, and -0.1 for SV40ori-λDNA, single bright spots at the single-stranded regions were frequently induced under higher negative supercoil densities of -0.095 for λDNA and -0.1 for SV40ori-λDNA. However, single bright spots of the single-stranded regions were rarely observed below a negative supercoil density of -0.045 and -0.047 for λDNA and SV40ori-λDNA, respectively. The probability of occurrence of the local denaturation increased with negative superhelicity for both λDNA and SV40ori-λDNA. PMID:25697222

  9. Chemical Interaction, Space-charge Layer and Molecule Charging Energy for a TiO2/TCNQ Interface

    PubMed Central

    Martínez, José I.; Flores, Fernando; Ortega, José; Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert

    2015-01-01

    Three driving forces control the energy level alignment between transition-metal oxides and organic materials: the chemical interaction between the two materials, the organic electronegativity and the possible space charge layer formed in the oxide. This is illustrated in this study by analyzing experimentally and theoretically a paradigmatic case, the TiO2(110) / TCNQ interface: due to the chemical interaction between the two materials, the organic electron affinity level is located below the Fermi energy of the n-doped TiO2. Then, one electron is transferred from the oxide to this level and a space charge layer is developed in the oxide inducing an important increase in the interface dipole and in the oxide work-function. PMID:26877826

  10. A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules

    NASA Astrophysics Data System (ADS)

    Zhu, Yibo; Hao, Yufeng; Adogla, Enoch A.; Yan, Jing; Li, Dachao; Xu, Kexin; Wang, Qian; Hone, James; Lin, Qiao

    2016-03-01

    This paper presents a graphene nanosensor for affinity-based detection of low-charge, low-molecular-weight molecules, using glucose as a representative. The sensor is capable of measuring glucose concentration in a practically relevant range of 2 μM to 25 mM, and can potentially be used in noninvasive glucose monitoring.This paper presents a graphene nanosensor for affinity-based detection of low-charge, low-molecular-weight molecules, using glucose as a representative. The sensor is capable of measuring glucose concentration in a practically relevant range of 2 μM to 25 mM, and can potentially be used in noninvasive glucose monitoring. Electronic supplementary information (ESI) available: Further details on experiments, materials, fabrication, and data analysis. See DOI: 10.1039/c5nr08866f

  11. Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries.

    PubMed

    Haruta, Masakazu; Shiraki, Susumu; Suzuki, Tohru; Kumatani, Akichika; Ohsawa, Takeo; Takagi, Yoshitaka; Shimizu, Ryota; Hitosugi, Taro

    2015-03-11

    In this paper, we report the surprisingly low electrolyte/electrode interface resistance of 8.6 Ω cm(2) observed in thin-film batteries. This value is an order of magnitude smaller than that presented in previous reports on all-solid-state lithium batteries. The value is also smaller than that found in a liquid electrolyte-based batteries. The low interface resistance indicates that the negative space-charge layer effects at the Li3PO(4-x)N(x)/LiCoO2 interface are negligible and demonstrates that it is possible to fabricate all-solid state batteries with faster charging/discharging properties. PMID:25710500

  12. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    SciTech Connect

    Sodha, M. S.; Mishra, S. K.

    2011-04-15

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  13. Fixed negative charge and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema

    PubMed Central

    Elkin, Benjamin S.; Shaik, Mohammed A.; Morrison, Barclay

    2010-01-01

    Cerebral oedema or brain tissue swelling is a significant complication following traumatic brain injury or stroke that can increase the intracranial pressure (ICP) and impair blood flow. Here, we have identified a potential driver of oedema: the negatively charged molecules fixed within cells. This fixed charge density (FCD), once exposed, could increase ICP through the Donnan effect. We have shown that metabolic processes and membrane integrity are required for concealing this FCD as slices of rat cortex swelled immediately (within 30 min) following dissection if treated with 2 deoxyglucose + cyanide (2DG+CN) or Triton X-100. Slices given ample oxygen and glucose, however, did not swell significantly. We also found that dead brain tissue swells and shrinks in response to changes in ionic strength of the bathing medium, which suggests that the Donnan effect is capable of pressurizing and swelling brain tissue. As predicted, a non-ionic osmolyte, 1,2 propanediol, elicited no volume change at 2000×10−3 osmoles l−1 (Osm). Swelling data were well described by triphasic mixture theory with the calculated reference state FCD similar to that measured with a 1,9 dimethylmethylene blue assay. Taken together, these data suggest that intracellular fixed charges may contribute to the driving forces responsible for brain swelling. PMID:20047940

  14. Diagnosis of negative hydrogen ions and rovibrational distribution of H2 molecule in non-thermal plasmas

    NASA Astrophysics Data System (ADS)

    Wang, W. G.; Xu, Y.; Yang, X. F.; Zhu, A. M.; Liu, Z. W.; Liu, X.

    2008-01-01

    Rovibrational excited hydrogen molecule plays an important role for the production of H- ions. The correlation between H- ion density and rovibrational distribution of H2 molecules has been investigated in dielectric barrier discharge hydrogen plasmas via optical emission spectrometry and molecular beam mass spectrometry. The relative vibrational distribution of molecular hydrogen in the electronic ground state has been determined by the best fitting to the Fulcher-α band emission lines. It is shown that the ratio of the Q(0-0)(1) to Q(1-1)(1) line is very suitable and simple for the diagnosis of vibrational temperature in the range of 1500 to 7500 K. At certain discharge conditions (ac 40 kHz, 14 kV), the vibrational temperature decreases from 3600 to 2400 K as the pressure increases from 100 to 200 Pa and the negative ions density near the ground electrode also decreases as the pressure increases. Both the hydrogen ions density and the vibrational temperature increase with the increasing of discharge voltage. It is found that the evolution of negative atomic hydrogen ions density greatly depends on the vibrational temperature.

  15. N-(1-Naphthyl) Ethylenediamine Dinitrate: A New Matrix for Negative Ion MALDI-TOF MS Analysis of Small Molecules

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Chen, Suming; Xiong, Caiqiao; Ding, Xunlei; Wu, Chih-Che; Chang, Huan-Cheng; Xiong, Shaoxiang; Nie, Zongxiu

    2012-09-01

    An organic salt, N-(1-naphthyl) ethylenediamine dinitrate (NEDN), with rationally designed properties of a strong UV absorbing chromophore, hydrogen binding and nitrate anion donors, has been employed as a matrix to analyze small molecules ( m/z < 1000) such as oligosaccharides, peptides, metabolites and explosives using negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Compared with conventional matrixes such as α-cyano-4-hydroxycinnamic acid (CCA) and 2,5-dihydroxybenzoic acid (DHB), NEDN provides a significant improvement in detection sensitivity and yields very few matrix-associated fragment and cluster ions interfering with MS analysis. For low-molecular-weight saccharides, the lowest detection limit achieved ranges from 500 amol to 5 pmol, depending on the molecular weight and the structure of the analytes. Additionally, the mass spectra in the lower mass range ( m/z < 200) consist of only nitrate and nitric acid cluster ions, making the matrix particularly useful for structural identification of oligosaccharides by post-source decay (PSD) MALDI-MS. Such a characteristic is illustrated by using maltoheptaose as a model system. This work demonstrates that NEDN is a novel negative ion-mode matrix for MALDI-MS analysis of small molecules with nitrate anion attachment.

  16. Understanding the charge-transfer state and singlet exciton emission from solution-processed small-molecule organic solar cells.

    PubMed

    Ran, Niva A; Kuik, Martijn; Love, John A; Proctor, Christopher M; Nagao, Ikuhiro; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2014-11-19

    Electroluminescence (EL) from the charge-transfer state and singlet excitons is observed at low applied voltages from high-performing small-molecule bulk-heterojunction solar cells. Singlet emission from the blends emerges upon altering the processing conditions, such as thermal annealing and processing with a solvent additive, and correlates with improved photovoltaic performance. Low-temperature EL measurements are utilized to access the physics behind the singlet emission. PMID:25212949

  17. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    PubMed Central

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  18. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    PubMed

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  19. Positive and negative singly charged ion production of a laser induced plasma using a capillary graphite target

    NASA Astrophysics Data System (ADS)

    Saquilayan, G. Q.; Wada, M.

    2016-02-01

    A new type of laser ion source is being developed aiming at the production of positive and negative singly charged ions using a capillary graphite target structure. The initial results of the laser plasma produced inside of the 10 mm diameter conduit indicated the formation of the secondary charged particle production inside the target. A high speed camera clearly recorded the plasma plume expansion inside the target. The time-of-flight spectrum of the laser produced plasma in vacuum showed that the signal of the positive ions formed two peaks as the laser power density exceeded 10 GW/cm2. The addition of neutral gas to the system produced a signal corresponding to negative ions after the positive signal.

  20. CHARGE MEASUREMENTS ON INDIVIDUAL PARTICLES EXITING LABORATORY PRECIPITATORS WITH POSITIVE AND NEGATIVE CORONA AT VARIOUS TEMPERATURES

    EPA Science Inventory

    The paper reports measurements of charge values on individual particles exiting three different laboratory electrostatic precipitators (ESPs) in an experimental apparatus containing a Millikan cell. Dioctylphthalate (DOP) droplets and fly ash particles were measured at temperatur...

  1. Energy straggling of low-energy ion beam in a charge exchange cell for negative ion production

    SciTech Connect

    Takeuchi, S.; Sasao, M.; Sugawara, H.; Tanaka, N.; Kisaki, M.; Okamoto, A.; Shinto, K.; Kitajima, S.; Nishiura, M.; Wada, M.

    2008-02-15

    Energy straggling in a charge exchange cell, which is frequently used for negative ion production, was studied experimentally and compared with the results of theoretical evaluation. The change of the energy spectrum of a He{sup +} beam due to charge exchange processes in argon gas was measured in the energy range of 2-6 keV. Energy straggling by multiple collisions is expressed by the energy loss formula due to inelastic and elastic processes. The impact parameter is related to the elastic scattering angle, and the geometry of the charge exchange cell and other components of the beam transportation system determines the maximum acceptable scattering angle. The energy spread was evaluated taking the integral limit over the impact parameter into consideration. The theoretical results showed good agreement with those of actual measurement.

  2. Calculation of escape currents of electrons emitted from negatively charged spacecraft surfaces in a magnetic field

    NASA Astrophysics Data System (ADS)

    Laframboise, J. G.

    1988-03-01

    In low Earth orbit, the geomagnetic field B is strong enough that secondary electrons or photoelectrons emitted from spacecraft surfaces have an average gyroradius much smaller than typical dimensions of large spacecraft. This implies that escape of these electrons will be strongly inhibited on surfaces which are nearly parallel to B, even if a repelling electric field exists outside them. This effect is likely to make an important contribution to the current balance and hence the equilibrium potential of such surfaces, making high-voltage charging of them more likely. We present numerically-calculated escaping electron fluxes for these conditions, based on the approximations of uniform fields and Maxwellian emission-velocity distributions. We also present an analytic curve-fit to the results for the important case of normal electric field (uniformly-charged surfaces). For strong normal electric fields, escape is effectively suppressed only when a surface is parallel to B within a few degrees or less, and this leads to ``sensitivity effects'' in attempts to predict auroral-zone spacecraft charging. A nonzero tangential component in the surface electric field can greatly enlarge the range of surface orientations for which excape is suppressed, and can also produce large surface currents. We also propose a simple approximate method for calculating the space-charge-density distribution of escaping electrons. Our results imply that on a mostly dielectric large spacecraft such as a Shuttle, local charging, especially on surfaces nearly parallel to B, may occur in ionospheric conditions which do not produce overall charging.

  3. Spatial distribution of the charged particles and potentials during beam extraction in a negative-ion source

    SciTech Connect

    Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Shibuya, M.; Asano, E.; Kondo, T.; Sato, M.; Komada, S.; Sekiguchi, H.; Kameyama, N.; Fukuyama, T.; Wada, S.; Hatayama, A.

    2012-02-15

    We report on the characteristics of the electronegative plasma in a large-scale hydrogen negative ion (H{sup -}) source. The measurement has been made with a time-resolved Langmuir probe installed in the beam extraction region. The H{sup -} density is monitored with a cavity ring-down system to identify the electrons in the negative charges. The electron-saturation current decreases rapidly after starting to seed Cs, and ion-ion plasma is observed in the extraction region. The H{sup -} density steps down during the beam extraction and the electron density jumps up correspondingly. The time integral of the decreasing H{sup -} charge density agrees well with the electron charge collected with the probe. The agreement of the charges is interpreted to indicate that the H{sup -} density decreasing at the beam extraction is compensated by the electrons diffusing from the driver region. In the plasmas with very low electron density, the pre-sheath of the extraction field penetrates deeply inside the plasmas. That is because the shielding length in those plasmas is longer than that in the usual electron-ion plasmas, and furthermore the electrons are suppressed to diffuse to the extraction region due to the strong magnetic field.

  4. Positive and negative ion formation in deep-core excited molecules: S 1s excitation in dimethyl sulfoxide

    SciTech Connect

    Coutinho, L. H.; Gardenghi, D. J.; Schlachter, A. S.; Souza, G. G. B. de; Stolte, W. C.; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2014-01-14

    The photo-fragmentation of the dimethyl sulfoxide (DMSO) molecule was studied using synchrotron radiation and a magnetic mass spectrometer. The total cationic yield spectrum was recorded in the photon energy region around the sulfur K edge. The sulfur composition of the highest occupied molecular orbital's and lowest unoccupied molecular orbital's in the DMSO molecule has been obtained using both ab initio and density functional theory methods. Partial cation and anion-yield measurements were obtained in the same energy range. An intense resonance is observed at 2475.4 eV. Sulfur atomic ions present a richer structure around this resonant feature, as compared to other fragment ions. The yield curves are similar for most of the other ionic species, which we interpret as due to cascade Auger processes leading to multiply charged species which then undergo Coulomb explosion. The anions S{sup −}, C{sup −}, and O{sup −} are observed for the first time in deep-core-level excitation of DMSO.

  5. Consecutive Charging of a Molecule-on-Insulator Ensemble Using Single Electron Tunnelling Methods.

    PubMed

    Rahe, Philipp; Steele, Ryan P; Williams, Clayton C

    2016-02-10

    We present the local charge state modification at room temperature of small insulator-supported molecular ensembles formed by 1,1'-ferrocenedicarboxylic acid on calcite. Single electron tunnelling between the conducting tip of a noncontact atomic force microscope (NC-AFM) and the molecular islands is observed. By joining NC-AFM with Kelvin probe force microscopy, successive charge build-up in the sample is observed from consecutive experiments. Charge transfer within the islands and structural relaxation of the adsorbate/surface system is suggested by the experimental data. PMID:26713686

  6. Enhancement of charge transport in DNA molecules induced by the next nearest-neighbor effects

    NASA Astrophysics Data System (ADS)

    Malakooti, Sadeq; Hedin, Eric R.; Kim, Young D.; Joe, Yong S.

    2012-11-01

    An advanced two-dimensional tight-binding model including the next nearest-neighbor effects for quantum mechanical electron transport through double-stranded DNA molecules is proposed. Considering the next nearest-neighbor hopping strengths between sites gives a more rational and realistic model for the electron path-way through DNA molecules. We show higher overall transmission and enhanced current for a 30 base-pair poly(G)-poly(C) DNA molecule with the inclusion of diagonal electron hopping between the sites. In addition, an optimum condition of the contact hopping strength and Fermi energy to obtain the maximum current for the system is demonstrated. Finally, we present the current-voltage characteristics showing a transition from a semiconductor-like to a metal-like DNA molecule with the variation of the Fermi energy.

  7. Percolation, tie-molecules, and microstructural origins of charge transport in semicrystalline conjugated polymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Mollinger, Sonya A.; Krajina, Brad; Noriega-Manez, Rodrigo J.; Salleo, Alberto; Spakowitz, Andrew J.

    2015-10-01

    Semiconducting polymers play an important role in a wide range of optical and electronic material applications. Polymer thin films that result in the highest performance typically have a complex semicrystalline morphology, indicating that considerable device improvement can be achieved through optimization of microstructural properties. However, the connection between molecular ordering and device performance is difficult to predict due to the current need for a mathematical theory of the physics that dictates charge transport in semiconducting polymers. It is experimentally suggested that efficient transport in such films occurs via connected networks of crystallites. We present an analytical and computational description of semicrystalline conjugated polymer materials that captures the impact of polymer conformation on charge transport in heterogeneous thin films. We first develop an analytical theory for the statistical behavior of a polymer emanating from a crystallite and predict the average distance to the first kink in the chain that traps a charge. We use this analysis to define the conditions for percolation and the consequent efficient transport through a semicrystalline material. We then establish a charge transport model using Monte Carlo simulations that predicts the multi-scale charge transport and crystallite connections. We approximate the thin film as a two-dimensional grid of crystallites embedded in amorphous polymer. The chain conformations in the amorphous region are determined by the wormlike chain model, and the crystallites are assigned fixed mobilities. We use this model to identify limits of charge transport at various time scales for varying fraction of crystallinity.

  8. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules

    PubMed Central

    Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.

    2014-01-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059

  9. Nearly perfect spin filter, spin valve and negative differential resistance effects in a Fe4-based single-molecule junction.

    PubMed

    Zu, Fengxia; Liu, Zuli; Yao, Kailun; Gao, Guoying; Fu, Huahua; Zhu, Sicong; Ni, Yun; Peng, Li

    2014-01-01

    The spin-polarized transport in a single-molecule magnet Fe4 sandwiched between two gold electrodes is studied, using nonequilibrium Green's functions in combination with the density-functional theory. We predict that the device possesses spin filter effect (SFE), spin valve effect (SVE), and negative differential resistance (NDR) behavior. Moreover, we also find that the appropriate chemical ligand, coupling the single molecule to leads, is a key factor for manipulating spin-dependent transport. The device containing the methyl ligand behaves as a nearly perfect spin filter with efficiency approaching 100%, and the transport is dominated by transmission through the Fe4 metal center. However, in the case of phenyl ligand, the spin filter effect seems to be reduced, but the spin valve effect is significantly enhanced with a large magnetoresistance ratio, reaching 1800%. This may be attributed to the blocking effect of the phenyl ligands in mediating transport. Our findings suggest that such a multifunctional molecular device, possessing SVE, NDR and high SFE simultaneously, would be an excellent candidate for spintronics of molecular devices. PMID:24787446

  10. Study of Small-Molecule-Membrane Protein Binding Kinetics with Nanodisc and Charge-Sensitive Optical Detection.

    PubMed

    Ma, Guangzhong; Guan, Yan; Wang, Shaopeng; Xu, Han; Tao, Nongjian

    2016-02-16

    Nanodisc technology provides membrane proteins with a nativelike lipid bilayer and much-needed solubility and enables in vitro quantification of membrane protein binding with ligands. However, it has been a challenge to measure interaction between small-molecule ligands and nanodisc-encapsulated membrane proteins, because the responses of traditional mass-based detection methods scale with the mass of the ligands. We have developed a charge-sensitive optical detection (CSOD) method for label-free measurement of the binding kinetics of low molecular mass ligands with nanodisc-encapsulated membrane proteins. This microplate-compatible method is sensitive to the charge instead of the mass of a ligand and is able to measure both large and small molecules in a potentially high-throughput format. Using CSOD, we measured the binding kinetics between peptide and small-molecule ligands and a nanodisc-encapsulated potassium ion channel protein, KcsA-Kv1.3. Both association and dissociation rate constants for these ligands are obtained for the first time. The CSOD results were validated by the consistency of the values with reported binding affinities. In addition, we found that CSOD can tolerate up to 3.9% dimethyl sulfoxide (DMSO) and up to 10% serum, which shows its compatibility with realistic sample conditions. PMID:26752355

  11. Roles of negatively-charged heavy ions and nonextensivity in cylindrical and spherical dust-ion-acoustic shock waves

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-06-01

    A rigorous theoretical investigation has been carried out on the propagation of nonplanar (cylindrical and spherical) dust-ion-acoustic (DIA) waves in an unmagnetized dusty multi-ion plasma system containing nonextensive electrons, inertial negatively-charged heavy ions, positively-charged Maxwellian light ions, and negatively-charged stationary dust. The well-known reductive perturbation technique has been used to derive the modified Burgers-type equation (which describes the shock wave's properties), and its numerical solution is obtained. The basic features (viz. polarity, amplitude, width, etc.) of the cylindrical and the spherical DIA shock waves are investigated. The basic features of the cylindrical and the spherical DIA shock waves are found to have been significantly modified in a way that depends on the intrinsic parameters (viz. electron nonextensivity, heavy-ion's kinematic viscosity, heavy-to-light-ion number density ratio, electron-to-light-ion temperature ratio, etc.) of the considered plasma system. The characteristics of the cylindrical and the spherical DIA shock waves are observed to be qualitatively different from those of planar ones.

  12. Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses.

    PubMed

    Motomura, Koji; Kukk, Edwin; Fukuzawa, Hironobu; Wada, Shin-ichi; Nagaya, Kiyonobu; Ohmura, Satoshi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Koga, Ryosuke; Sakai, Tsukasa; Matsunami, Kenji; Rudenko, Artem; Nicolas, Christophe; Liu, Xiao-Jing; Miron, Catalin; Zhang, Yizhu; Jiang, Yuhai; Chen, Jianhui; Anand, Mailam; Kim, Dong Eon; Tono, Kensuke; Yabashi, Makina; Yao, Makoto; Ueda, Kiyoshi

    2015-08-01

    In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed. PMID:26267186

  13. Mechanism of How Salt-Gradient-Induced Charges Affect the Translocation of DNA Molecules through a Nanopore

    PubMed Central

    He, Yuhui; Tsutsui, Makusu; Scheicher, RalphH.; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2013-01-01

    Experiments using nanopores demonstrated that a salt gradient enhances the capture rate of DNA and reduces its translocation speed. These two effects can help to enable electrical DNA sequencing with nanopores. Here, we provide a quantitative theoretical evaluation that shows the positive net charges, which accumulate around the pore entrance due to the salt gradient, are responsible for the two observed effects: they reinforce the electric capture field, resulting in promoted molecule capture rate; and they induce cationic electroosmotic flow through the nanopore, thus significantly retarding the motion of the anionic DNA through the nanopore. Our multiphysical simulation results show that, during the polymer trapping stage, the former effect plays the major role, thus resulting in promoted DNA capture rate, while during the nanopore-penetrating stage the latter effect dominates and consequently reduces the DNA translocation speed significantly. Quantitative agreement with experimental results has been reached by further taking nanopore wall surface charges into account. PMID:23931325

  14. Bianthrone at a metal surface: Conductance switching with a bistable molecule made feasible by image charge effects

    SciTech Connect

    Geskin, Victor; Bouzakraoui, Saïd; Cornil, Jérôme; Lara-Avila, Samuel; Danilov, Andrey; Kubatkin, Sergey; Bjornholm, Thomas

    2015-01-22

    Bianthrone is a sterically hindered compound that exists in the form of two non-planar isomers. Our experimental study of single-molecule junctions with bianthrone reveals persistent switching of electric conductance at low temperatures, which can be reasonably associated to molecular isomerization events. Temperature dependence of the switching rate allows for an estimate of the activation energy of the process, on the order of 35–90 meV. Quantum-chemical calculations of the potential surface of neutral bianthrone and its anion, including identification of transition states, yields the isolated molecule isomerization barriers too high vs. the previous estimate, though in perfect agreement with previous experimental studies in solution. Nevertheless, we show that the attraction of the anion in the vicinity of the metal surface by its image charge can significantly alter the energetic landscape, in particular, by reducing the barrier to the values compatible with the observed switching behavior.

  15. Fully numerical soluti ons of molecular Dirac equations for highly charged one-electron homonuclear diatomic molecules

    NASA Astrophysics Data System (ADS)

    Sundholm, Dage

    1994-07-01

    The two-centre four-component Dirac equations for the homonuclear one-electron systems H 2+, Ne 219+, Ca 239+, Zn 259+, Zr 279+, Sn 299+, Nd 2119+, Yb 2139+, Hg 2159+, Th 2179+, and Fm 2199+ are solved numerically by a finite-difference approach. Accurate values for the non-relativistic and relativistic orbital energies are given as benchmarks for these molecules. The assumed bond lengths are 2/ Z au where Z is the nuclear charge. For the lowest ? g orbital of the Th 2179+ molecule, the orbital energy is 14.6 au above the global basis-set result while for the lowest orbital of ? u symmetry the present orbital energy is 19.1 au below the global basis-set results. The relativistic corrections to the quadrupole moment of the ? g orbital are given.

  16. Atomistic simulations of negatively charged donor states probed in STM experiments

    NASA Astrophysics Data System (ADS)

    Tankasala, Archana; Salfi, Joe; Rogge, Sven; Klimeck, Gerhard; Rahman, Rajib

    A single donor in silicon binding two electrons (D-) is important for electron spin readout and two-qubit operations in a donor based silicon (Si) quantum computer, and has recently been probed in Scanning Tunneling Microscope (STM) experiments for sub-surface dopants. In this work, atomistic configuration interaction technique is used to compute the two-electron states of the donor taking into account the geometry of the STM-vacuum-silicon-reservoir device. While 45 meV charging energy is obtained for D- in bulk Si, the electrostatics of the device reduces the charging energy to 30 meVs. It is also shown that the reduced charging energy enables spin triplet states to be bound to the donor. The exchange splitting between the singlet and triplet states can be tuned by an external electric field. The computed wavefunctions of the D- state helps to understand how the contribution of the momentum space valley states change with donor depth and electric field.

  17. Negative Compressibility and Charge Partitioning Between Graphene and MoS2 Two-Dimensional Electron Gases

    NASA Astrophysics Data System (ADS)

    Tolsma, John; Larentis, Stefano; Tutuc, Emanuel; MacDonald, Allan

    2014-03-01

    Electron-electron interactions often have opposite influences on thermodynamic properties of electrons in graphene compared to conventional two-dimensional electron gases (2DEGs), for example by lowering charge and spin-susceptibilities in the graphene case and enhancing them in the ordinary 2DEG case. In ordinary 2DEGs the charge susceptibility diverges at a finite carrier density, below which the compressibility becomes negative. We theoretically explore the influence of this qualitative difference on how charge is partitioned between a MoS2 and a graphene sheet 2DEG when they act as a compound capacitor electrode. Our theory is based on a random phase approximation for charge fluctuations in the 2DEGS and the coupling constant formulation for the ground state energy. We find that in the ideal case the MoS2 2DEG carrier density jumps immediately to a finite value when it is initially populated and discuss how this effect is moderated by disorder. Work supported by the Welch Foundation grant TBF1473 and the DOE Division of Materials Sciences Engineering grant DE-FG03-02ER45958.

  18. Preparation and chromatographic evaluation of zwitterionic stationary phases with controllable ratio of positively and negatively charged groups.

    PubMed

    Cheng, Xiao-Dong; Hao, Yan-Hong; Peng, Xi-Tian; Yuan, Bi-Feng; Shi, Zhi-Guo; Feng, Yu-Qi

    2015-08-15

    The present study described the preparation and application of zwitterionic stationary phases (ACS) with controllable ratio of positively charged tertiary amine groups and negatively charged carboxyl groups. Various parameters, including water content, pH values and ionic strength of the mobile phase, were investigated to study the chromatographic characteristics of ACS columns. The prepared ACS columns demonstrated a mix-mode retention mechanism composed of surface adsorption, partitioning and electrostatic interactions. The elemental analysis of different batches of the ACS phases demonstrated good reproducibility of the preparation strategy. Additionally, various categories of compounds, including nucleosides, water-soluble vitamins, benzoic acid derivatives and basic compounds were successively employed to evaluate the separation selectivity of the prepared ACS stationary phases. These ACS phases exhibited entirely different selectivity and retention behavior from each other for various polar analytes, demonstrating the excellent application potential in the analysis of polar compounds in HILIC. PMID:25966373

  19. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes.

    PubMed

    Rønnest, A K; Peters, G H; Hansen, F Y; Taub, H; Miskowiec, A

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10(8)-10(9) V m(-1), which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10(8) V m(-1)) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10(8) V m(-1)) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) membranes but comparable to the number inferred for 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) membranes. Some of the properties of the DMPG membrane are compared with those of the neutral zwitterionic DMPC bilayer membrane at 303 K and 1 atm, which is the same reduced temperature with respect to the gel-to-fluid transition temperature as 310 K is for the DMPG bilayer membrane. PMID:27083749

  20. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-04-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 108-109 V m-1, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ˜1 V (˜2 ṡ 108 V m-1) when in the fluid phase with a monovalent counter-ion and ˜1.4 V (˜2.8 ṡ 108 V m-1) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) membranes but comparable to the number inferred for 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) membranes. Some of the properties of the DMPG membrane are compared with those of the neutral zwitterionic DMPC bilayer membrane at 303 K and 1 atm, which is the same reduced temperature with respect to the gel-to-fluid transition temperature as 310 K is for the DMPG bilayer membrane.

  1. The effect of polymer size and charge of molecules on permeation through synovial membrane and accumulation in hyaline articular cartilage.

    PubMed

    Sterner, B; Harms, M; Wöll, S; Weigandt, M; Windbergs, M; Lehr, C M

    2016-04-01

    The treatment of joint related diseases often involves direct intra-articular injections. For rational development of novel delivery systems with extended residence time in the joint, detailed understanding of transport and retention phenomena within the joint is mandatory. This work presents a systematic study on the in vitro permeation, penetration and accumulation of model polymers with differing charges and molecular weights in bovine joint tissue. Permeation experiments with bovine synovial membrane were performed with PEG polymers (6-200kDa) and methylene blue in customized diffusion chambers. For polyethylene glycol, 2-fold (PEG 6kDa), 3-fold (PEG 10kDa) and 13-fold (PEG 35kDa) retention by the synovial membrane in reference to the small molecule methylene blue was demonstrated. No PEG 200kDa was found in the acceptor in detectable amounts after 48h. This showed the potential for a distinct extension of joint residence times by increasing molecular weights. In addition, experiments with bovine cartilage tissue were conducted. The ability for positively charged, high molecular weight chitosans and HEMA-Co-TMAP (HCT) polymers (up to 233kDa) to distribute throughout the entire cartilage matrix was demonstrated. In contrast, a distribution into cartilage was not observed for neutral PEG polymers (6-200kDa). Furthermore, the positive charge density of different compounds (chitosan, HEMA-Co-TMAP, methylene blue, MSC C1 (neutral NCE) and MSC D1 (positively charged NCE) was found to correlate with their accumulation in bovine cartilage tissue. In summary, the results offer pre-clinical in vitro data, indicating that the modification of molecular size and charge of a substance has the potential to decelerate its clearance through the synovial membrane and to promote accumulation inside the cartilage matrix. PMID:26876928

  2. A time of flight mass spectrometer with field free interaction region for low energy charged particle-molecule collision studies

    SciTech Connect

    Rao, K. C.; Prabhudesai, V. S.; Kumar, S. V. K.

    2011-11-15

    A new design of a linear time of flight mass spectrometer (ToFMS) is implemented that gives nearly field-free interaction region without compromising on the mass resolution. The design addresses problems that would arise in a conventional Wiley-McLaren type of ToFMS: (i) field leakages into the charged particle-molecule interaction region from various components of the mass spectrometer, including that through the high transparency mesh used to obtain evenly distributed electric fields; (ii) complete collection and transportation of the ions produced in the interaction region to the detector, which is essential for high sensitivity and cross section measurements. This ToFMS works over a wide range of masses from H{sup +} to a few hundred Daltons and would be the most suitable for low energy charged particle-molecule interaction studies. Performance of the ToFMS has been tested by measuring the partial ionization cross sections for electron impact on CF{sub 4}.

  3. A time of flight mass spectrometer with field free interaction region for low energy charged particle-molecule collision studies.

    PubMed

    Rao, K C; Prabhudesai, V S; Kumar, S V K

    2011-11-01

    A new design of a linear time of flight mass spectrometer (ToFMS) is implemented that gives nearly field-free interaction region without compromising on the mass resolution. The design addresses problems that would arise in a conventional Wiley-McLaren type of ToFMS: (i) field leakages into the charged particle-molecule interaction region from various components of the mass spectrometer, including that through the high transparency mesh used to obtain evenly distributed electric fields; (ii) complete collection and transportation of the ions produced in the interaction region to the detector, which is essential for high sensitivity and cross section measurements. This ToFMS works over a wide range of masses from H(+) to a few hundred Daltons and would be the most suitable for low energy charged particle-molecule interaction studies. Performance of the ToFMS has been tested by measuring the partial ionization cross sections for electron impact on CF(4). PMID:22128960

  4. Structural influences on charge carrier dynamics for small-molecule organic photovoltaics

    SciTech Connect

    Wang, Zhiping Shibata, Yosei; Yamanari, Toshihiro; Matsubara, Koji; Yoshida, Yuji; Miyadera, Tetsuhiko; Saeki, Akinori; Seki, Shu; Zhou, Ying

    2014-07-07

    We investigated the structural influences on the charge carrier dynamics in zinc phthalocyanine/fullerene (ZnPc/C{sub 60}) photovoltaic cells by introducing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and 2,5-bis(4-biphenylyl)-bithiophene (BP2T) between indium tin oxide and ZnPc layers. ZnPc films can be tuned to be round, long fiber-like, and short fiber-like structure, respectively. Time-resolved microwave conductivity measurements reveal that charge carrier lifetime in ZnPc/C{sub 60} bilayer films is considerably affected by the intra-grain properties. Transient photocurrent of ZnPc single films indicated that the charge carriers can transport for a longer distance in the long fiber-like grains than that in the round grains, due to the greatly lessened grain boundaries. By carefully controlling the structure of ZnPc films, the short-circuit current and fill factor of a ZnPc/C{sub 60} heterojunction solar cell with BP2T are significantly improved and the power conversion efficiency is increased to 2.6%, which is 120% larger than the conventional cell without BP2T.

  5. Exciton formation as a rate limiting step for charge recombination in disordered organic molecules or polymers

    SciTech Connect

    Preezant, Yevgeni; Tessler, Nir

    2011-01-01

    The exciton formation (direct charge recombination) is studied and quantified as a function of material physical-properties such as the exciton binding energy, the exciton lifetime, and the mechanism causing the electronic disorder. By using a model that is an extension of a charge transport model [Y. Preezant and N. Tessler, Phys. Rev. B 74, 235202 (2006)] we are able to compare the direct exciton formation rate with the one predicted by the Langevin model. Using reasonable material parameters we find that in many cases the overall balance between free charge carrier and excitons is significantly affected by the exciton formation rate with its values being significantly low compared to the Langevin rate. We also find that in order to describe the complete recombination process it is important to introduce an intermediate state which we term exciton-precursor. This is in contrast to the common practice of using the Langevin model which embeds the assumption that the exciton formation rate is negligibly fast. The relations found between the physical-properties and the recombination rate can explain why certain materials exhibit Langevin rate while others exhibit significantly suppressed rates. This would eventually lead to the design of new materials better suited for either photocells or light-emitting diodes.

  6. Structural influences on charge carrier dynamics for small-molecule organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Miyadera, Tetsuhiko; Saeki, Akinori; Zhou, Ying; Seki, Shu; Shibata, Yosei; Yamanari, Toshihiro; Matsubara, Koji; Yoshida, Yuji

    2014-07-01

    We investigated the structural influences on the charge carrier dynamics in zinc phthalocyanine/fullerene (ZnPc/C60) photovoltaic cells by introducing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and 2,5-bis(4-biphenylyl)-bithiophene (BP2T) between indium tin oxide and ZnPc layers. ZnPc films can be tuned to be round, long fiber-like, and short fiber-like structure, respectively. Time-resolved microwave conductivity measurements reveal that charge carrier lifetime in ZnPc/C60 bilayer films is considerably affected by the intra-grain properties. Transient photocurrent of ZnPc single films indicated that the charge carriers can transport for a longer distance in the long fiber-like grains than that in the round grains, due to the greatly lessened grain boundaries. By carefully controlling the structure of ZnPc films, the short-circuit current and fill factor of a ZnPc/C60 heterojunction solar cell with BP2T are significantly improved and the power conversion efficiency is increased to 2.6%, which is 120% larger than the conventional cell without BP2T.

  7. The role of multiparticle correlations and Cooper pairing in the formation of molecules in an ultracold gas of Fermi atoms with a negative scattering length

    SciTech Connect

    Babichenko, V. S. Kagan, Yu.

    2012-11-15

    The influence of multiparticle correlation effects and Cooper pairing in an ultracold Fermi gas with a negative scattering length on the formation rate of molecules is investigated. Cooper pairing is shown to cause the formation rate of molecules to increase, as distinct from the influence of Bose-Einstein condensation in a Bose gas on this rate. This trend is retained in the entire range of temperatures below the critical one.

  8. Light emission spectra of molecules in negative and positive back discharges in nitrogen with carbon dioxide mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Czech, Tadeusz; Sobczyk, Arkadiusz Tomasz; Jaworek, Anatol

    2015-10-01

    Results of spectroscopic investigations and current-voltage characteristics of back discharge generated in point-plane electrode geometry with plate covered fly ash layer in a mixture of N2 + CO2 at atmospheric pressure, for positive and negative polarity of the discharge electrode are presented in this paper. Point-plane electrode configuration was chosen in these studies in order to simulate the physical processes occurring in electrostatic precipitator. Three forms of back discharge for both polarities were investigated: glow, streamers and low-current back-arc. Diatomic reactions and dissociation products of N2 and CO2 (OH, NO, CN), atoms from fly ash layer (N, Ti, Na), free radicals, molecules or ions, which have unpaired valence electrons, and other active species, e.g., N2 (in C,B,A-state), N 2 + (B) were identified in the discharges by the method of optical emission spectroscopy (OES). The measurements shown that atomic and molecular optical emission spectral lines from back discharge depend on the forms of discharge and the discharge current. In normal electrical discharges, the emission spectra are dominated by gaseous components, but in the case of back discharge, atomic lines belonging to chemical compounds of fly ash were also recorded and identified.

  9. Comparison of chiral separation of basic drugs in capillary electrophoresis and liquid chromatography using neutral and negatively charged cyclodextrins.

    PubMed

    Kwaterczak, Arkadiusz; Duszczyk, Kazimiera; Bielejewska, Anna

    2009-07-10

    Liquid chromatography (LC) and capillary electrophoresis (CE) are very widely used as chiral separation methods. In this publication we try to find if the results obtained in CE and LC with the chiral selector added to the electrolyte and the mobile phase, respectively, can be used as tools for studying weak stereoselective interactions, and how this information can be useful for optimizing chiral separation processes. The manuscript presents a systematic comparison of chiral discrimination of model compounds in HPLC and CE using neutral and negatively charged cyclodextrins. The enantiomeric separation of basic chiral pharmaceuticals such as pheniramine, brompheniramine, metoxyphenamine, cyclopentolate, doxylamine and ketamine was investigated in capillary electrophoresis (CE) and liquid chromatography (HPLC) using negatively charged sulfated-beta-cyclodextrin (S-beta-CD) and neutral cyclodextrins (CDs). The apparent stability constants between the model compounds and cyclodextrins were estimated in both techniques. We discuss the influence of the stability constant and K1/K2 ratio of the investigated complexes on chiral separation obtained in both techniques. PMID:19481637

  10. Base-dependent electron photodetachment from negatively charged DNA strands upon 260-nm laser irradiation.

    PubMed

    Gabelica, Valrie; Rosu, Frdric; Tabarin, Thibault; Kinet, Catherine; Antoine, Rodolphe; Broyer, Michel; De Pauw, Edwin; Dugourd, Philippe

    2007-04-18

    DNA multiply charged anions stored in a quadrupole ion trap undergo one-photon electron ejection (oxidation) when subjected to laser irradiation at 260 nm (4.77 eV). Electron photodetachment is likely a fast process, given that photodetachment is able to compete with internal conversion or radiative relaxation to the ground state. The DNA [6-mer]3- ions studied here show a marked sequence dependence of electron photodetachment yield. Remarkably, the photodetachment yield (dG6 > dA6 > dC6 > dT6) is inversely correlated with the base ionization potentials (G < A < C < T). Sequences with guanine runs show increased photodetachment yield as the number of guanine increases, in line with the fact that positive holes are the most stable in guanine runs. This correlation between photodetachment yield and the stability of the base radical may be explained by tunneling of the electron through the repulsive Coulomb barrier. Theoretical calculations on dinucleotide monophosphates show that the HOMO and HOMO-1 orbitals are localized on the bases. The wavelength dependence of electron detachment yield was studied for dG63-. Maximum electron photodetachment is observed in the wavelength range corresponding to base absorption (260-270 nm). This demonstrates the feasibility of gas-phase UV spectroscopy on large DNA anions. The calculations and the wavelength dependence suggest that the electron photodetachment is initiated at the bases and not at the phosphates. This also indicates that, although direct photodetachment could also occur, autodetachment from excited states, presumably corresponding to base excitation, is the dominant process at 260 nm. Excited-state dynamics of large DNA strands still remains largely unexplored, and photo-oxidation studies on trapped DNA multiply charged anions can help in bridging the gap between gas-phase studies on isolated bases or base pairs and solution-phase studies on full DNA strands. PMID:17378565

  11. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: bridging classical electrodynamics and quantum dynamics.

    PubMed

    Hu, Zixuan; Ratner, Mark A; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement. PMID:25494729

  12. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    SciTech Connect

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  13. On the role of charge transfer in the stabilization of weakly bound complexes involving water and hydrogen sulphide molecules

    NASA Astrophysics Data System (ADS)

    Pirani, F.; Candori, P.; Pedrosa Mundim, M. S.; Belpassi, L.; Tarantelli, F.; Cappelletti, D.

    2012-04-01

    Integral cross section data for collisions of water and hydrogen sulphide molecules with noble gas atoms, measured with the same apparatus under identical conditions and analyzed by exploiting the same potential model, provided a set of internally consistent potential parameters. Their critical comparison is exploited not only to identify those systems where the intermolecular bond is not simply due to the balancing of size repulsion with dispersion and induction attraction, but also to establish the amount of bond stabilization by charge-transfer effects. Such experimental findings are analyzed through extensive and accurate ab initio calculations, addressed at discovering the relevant differences in the basic features of the potential energy surfaces. In particular, we have analyzed in detail the prototype H2S, H2O-Kr systems and found pronounced differences in the dependence of the interaction nature and energy on the relative orientation of the colliding systems. Using the recently proposed charge-displacement analysis we have been able to quantitatively assess charge-transfer effects, which differ significantly in the two systems and exhibit different stereoselectivity. This casts further light on the specificity of water interactions.

  14. Bias changing molecule-lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles study

    NASA Astrophysics Data System (ADS)

    Min, Y.; Fang, J. H.; Zhong, C. G.; Dong, Z. C.; Zhao, Z. Y.; Zhou, P. X.; Yao, K. L.

    2015-10-01

    A first-principles study of the transport properties of 3,13-dimercaptononacene-6,21-dione molecule sandwiched between two gold leads is reported. The strong effect of negative differential resistance with large peak-to-valley ratio of 710% is present under low bias. We found that bias can change molecule-lead couple and induce low bias negative differential resistance for electrons acceptor, which may promise the potential applications in molecular devices with low-power dissipation in the future.

  15. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS{sub 2}

    SciTech Connect

    Zhou, Changjie; Zhu, Huili; Yang, Weihuang

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS{sub 2} upon adsorption of various gas molecules (H{sub 2}, O{sub 2}, H{sub 2}O, NH{sub 3}, NO, NO{sub 2}, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS{sub 2} with a low degree of charge transfer and accept charge from the monolayer, except for NH{sub 3}, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS{sub 2} are not significantly altered upon adsorption of H{sub 2}, H{sub 2}O, NH{sub 3}, and CO, whereas the lowest unoccupied molecular orbitals of O{sub 2}, NO, and NO{sub 2} are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS{sub 2}. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS{sub 2}. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  16. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  17. Voltage-induced conformational changes and current control in charge transfer through molecules

    NASA Astrophysics Data System (ADS)

    Kecke, Lars; Ankerhold, Joachim

    2012-06-01

    Transport through molecular contacts with a sluggish intramolecular vibrational mode strongly coupled to excess charges is studied far from equilibrium. A Born-Oppenheimer approximation in steady state reveals voltage-dependent energy surfaces, which cause abrupt conformational changes of the molecular backbone. These are directly related to transitions between current plateaus, which are relatively robust against thermal fluctuations. In a regime accessible in experiments this allows the operation of a molecular junction as a current switch or as a molecular machine in form of a valve controlled by time-dependent bias and gate voltages.

  18. Charge-transfer photodissociation of adsorbed molecules via electron image states

    SciTech Connect

    Jensen, E. T.

    2008-01-28

    The 248 and 193 nm photodissociations of submonolayer quantities of CH{sub 3}Br and CH{sub 3}I adsorbed on thin layers of n-hexane indicate that the dissociation is caused by dissociative electron attachment from subvacuum level photoelectrons created in the copper substrate. The characteristics of this photodissociation-translation energy distributions and coverage dependences show that the dissociation is mediated by an image potential state which temporarily traps the photoelectrons near the n-hexane-vacuum interface, and then the charge transfers from this image state to the affinity level of a coadsorbed halomethane which then dissociates.

  19. Electron emission in collisions of highly charged ions with atoms and diatomic molecules

    NASA Astrophysics Data System (ADS)

    Rivarola, R. D.; Fainstein, P. D.

    2003-05-01

    A short review of theoretical models previously used to study single and multiple electron ionization in collisions of bare fast highly charged ions with atomic and diatomic molecular targets is given. Electron emission with simultaneous electron capture by the projectile is also considered. The principal mechanisms producing the different reactions are revisited. It is emphasized that two-center descriptions are necessary for an adequate description of the existing experimental data. The role of electron correlation in the initial bound state and during the collision process is analyzed as well as the presence of effects associated with the two-center character of diatomic molecular targets.

  20. The Combining Sites of Anti-lipid A Antibodies Reveal a Widely Utilized Motif Specific for Negatively Charged Groups.

    PubMed

    Haji-Ghassemi, Omid; Müller-Loennies, Sven; Rodriguez, Teresa; Brade, Lore; Grimmecke, Hans-Dieter; Brade, Helmut; Evans, Stephen V

    2016-05-01

    Lipopolysaccharide dispersed in the blood by Gram-negative bacteria can be a potent inducer of septic shock. One research focus has been based on antibody sequestration of lipid A (the endotoxic principle of LPS); however, none have been successfully developed into a clinical treatment. Comparison of a panel of anti-lipid A antibodies reveals highly specific antibodies produced through distinct germ line precursors. The structures of antigen-binding fragments for two homologous mAbs specific for lipid A, S55-3 and S55-5, have been determined both in complex with lipid A disaccharide backbone and unliganded. These high resolution structures reveal a conserved positively charged pocket formed within the complementarity determining region H2 loops that binds the terminal phosphates of lipid A. Significantly, this motif occurs in unrelated antibodies where it mediates binding to negatively charged moieties through a range of epitopes, including phosphorylated peptides used in diagnostics and therapeutics. S55-3 and S55-5 have combining sites distinct from anti-lipid A antibodies previously described (as a result of their separate germ line origin), which are nevertheless complementary both in shape and charge to the antigen. S55-3 and S55-5 display similar avidity toward lipid A despite possessing a number of different amino acid residues in their combining sites. Binding of lipid A occurs independent of the acyl chains, although the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains their inability to recognize LPS. Despite their lack of therapeutic potential, the observed motif may have significant immunological implications as a tool for engineering recombinant antibodies. PMID:26933033

  1. Negative Ion MALDI Mass Spectrometry of Polyoxometalates (POMs): Mechanism of Singly Charged Anion Formation and Chemical Properties Evaluation

    NASA Astrophysics Data System (ADS)

    Boulicault, Jean E.; Alves, Sandra; Cole, Richard B.

    2016-05-01

    MALDI-MS has been developed for the negative ion mode analysis of polyoxometalates (POMs). Matrix optimization was performed using a variety of matrix compounds. A first group of matrixes offers MALDI mass spectra containing abundant intact singly charged anionic adduct ions, as well as abundant in-source fragmentations at elevated laser powers. A relative ranking of the ability to induce POM fragmentation is found to be: DAN > CHCA > CNA > DIT> HABA > DCTB > IAA. Matrixes of a second group provide poorer quality MALDI mass spectra without observable fragments. Sample preparation, including the testing of salt additives, was performed to optimize signals for a model POM, POMc12, the core structure of which bears four negative charges. The matrix 9-cyanoanthracene (CNA) provided the best signals corresponding to singly charged intact POMc12 anions. Decompositions of these intact anionic species were examined in detail, and it was concluded that hydrogen radical-induced mechanisms were not prevalent, but rather that the observed prompt fragments originate from transferred energy derived from initial electronic excitation of the CNA matrix. Moreover, in obtained MALDI mass spectra, clear evidence of electron transfer to analyte POM species was found: a manifestation of the POMs ability to readily capture electrons. The affinity of polyanionic POMc12 toward a variety of cations was evaluated and the following affinity ranking was established: Fe3+ > Al3+ > Li+ > Ga3+ > Co2+ > Cr3+ > Cu2+ > [Mn2+, Mg2+] > [Na+, K+]. Thus, from the available cationic species, specific adducts are preferentially formed, and evidence is given that these higher affinity POM complexes are formed in the gas phase during the early stages of plume expansion.

  2. Charge Exchange and Fragmentation in Slow Collisions of He2+ with Water Molecules

    NASA Astrophysics Data System (ADS)

    Stolterfoht, N.; Cabrera-Trujillo, R.; Hellhammer, R.; Pesic, Z.; Deumens, E.; hrn, Y.; Sabin, J. R.

    Cross sections for charge exchange and fragmentation in the collision system He2+ + H2O are investigated experimentally and theoretically at projectile energies of a few keV. Different experimental methods analyzing scattered projectiles, fragment ions and ejected photons are reviewed. Scattered and fragment ions were measured in the angular range from 25 to 135 with respect to the incident beam direction. The spectra provide evidence for the fragmentation mechanisms of Coulomb explosion and binary collisions. Emphasis is given to protons originating from collisions at large impact parameters involving the Coulomb explosion mechanism. Cross sections for proton ejections, differential in the observation angle d[sigma]/d[Omega], are found to be anisotropic with a maximum near 90. The theoretical investigation is carried out within the Electron-Nuclear Dynamics approach to take into account the coupling of the electrons and nuclei. The method is based on the evolution of a coherent state representation of the supermolecule wavefunction within the time-dependent variational principle. We calculate differential and total cross sections for the scattering of the projectile, charge transfer, and fragmentation of the system products. We find good agreement with the experimental data. In particular, we find that double electron capture occurs for impact parameters below 3.0 a.u. and produces full fragmentation of H2O independent of the target orientation.

  3. Relation between Nonlinear Optical Properties of Push-Pull Molecules and Metric of Charge Transfer Excitations.

    PubMed

    List, Nanna Holmgaard; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Bartkowiak, Wojciech; Ågren, Hans

    2015-09-01

    We establish the relationships between the metric of charge transfer excitation (Δr) for the bright ππ* state and the two-photon absorption probability as well as the first hyperpolarizability for two families of push-pull π-conjugated systems. As previously demonstrated by Guido et al. (J. Chem. Theory Comput. 2013, 9, 3118-3126), Δr is a measure for the average hole-electron distance upon excitation and can be used to discriminate between short- and long-range electronic excitations. We indicate two new benefits from using this metric for the analyses of nonlinear optical properties of push-pull systems. First, the two-photon absorption probability and the first hyperpolarizability are found to be interrelated through Δr; if β ∼ (Δr)(k), then roughly, δ(TPA) ∼ (Δr)(k+1). Second, a simple power relation between Δr and the molecular hyperpolarizabilities of push-pull systems offers the possibility of estimating properties for longer molecular chains without performing calculations of high-order response functions explicitly. We further demonstrate how to link the hyperpolarizabilities with the chain length of the push-pull π-conjugated systems through the metric of charge transfer. PMID:26575913

  4. Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Karkare, Siddharth; Dimitrov, Dimitre; Schaff, William; Cultrera, Luca; Bartnik, Adam; Liu, Xianghong; Sawyer, Eric; Esposito, Teresa; Bazarov, Ivan

    2013-03-01

    High quantum yield, low transverse energy spread, and prompt response time make GaAs activated to negative electron affinity an ideal candidate for a photocathode in high brightness photoinjectors. Even after decades of investigation, the exact mechanism of electron emission from GaAs is not well understood. Here, photoemission from such photocathodes is modeled using detailed Monte Carlo electron transport simulations. Simulations show a quantitative agreement with the experimental results for quantum efficiency, energy distributions of emitted electrons, and response time without the assumption of any ad hoc parameters. This agreement between simulation and experiment sheds light on the mechanism of electron emission and provides an opportunity to design novel semiconductor photocathodes with optimized performance.

  5. Assessing the formation of weak sodium complexes with negatively charged ligands.

    PubMed

    Berto, S; Chiavazza, E; Canepa, P; Prenesti, E; Daniele, P G

    2016-05-14

    The stability of sodium complexes with poly-carboxylic and polyamino-carboxylic acids is investigated with ion-selective electrode-Na(+) potentiometry, working at strictly constant ionic strength. It is observed that the formation constants of the Na(+) complexes with monoligand stoichiometry (ML) increase with the number of charges on the ligand. For example, in poly-carboxylic acids this dependency is linear and is well captured by an experimental equation. A different behaviour is observed for the poly-amino carboxylic acids, which show higher complexation capabilities reaching a plateau of the binding energy past a specific ligand size. The experimental results are discussed qualitatively using ab initio calculations based on DFT B3LYP, and the principal electronic characteristics of the ligands under investigation are identified. As a result of the flexibility imparted by the long chains of polyamino-carboxylic ligands, both experimental and theoretical models demonstrate that nitrogen atoms in proximity of Na(+) ions can participate in the metal coordination, thus providing further stabilization for the complexes. Moreover, by increasing the ligand size the stabilization gained in terms of ΔG reached a plateau for EDTA, in agreement with experimental observations. PMID:27113137

  6. Preparation of C{sub 60} charge transfer complexes with organic donor molecules and alkali doping

    SciTech Connect

    Otsuka, A.; Saito, G.; Hirate, S.; Pac, S.; Ishida, T.; Zakhidov, A.A.; Yakushi, K.

    1998-07-01

    Solid charge transfer (CT) complexes of C{sub 60} with TseC{sub 1}-TTF, EDT-TTF, EOET-TTF, and TDAP (1, 3, 6, 8-tetrakis(dimethylamino)pyrene) were newly prepared. All the obtained black crystals were proved to be neutral despite their rather strong electron donor ability. Lattice parameters of them except for EOET-TTF complex were determined together with those of HMTTeF{center_dot}C{sub 60}, which had been reported with different values. Rubidium doping under a mild condition was examined on the complexes of TDAP, EOET-TTF, HMTTeF, BEDT-TTF, hydroquinone and ferrocene to search for the superconductors of new crystal and electronic structures. Among them, the rubidium-doped ferrocene complex easily showed an apparent superconducting signal in SQUID magnetization measurements. The doping effect on these CT complexes is compared to that on OMTTF complex.

  7. Spontaneous charge transfer from indium tin oxide to organic molecules for effective hole injection

    NASA Astrophysics Data System (ADS)

    Koo, Young-Mo; Song, Ok-Keun

    2009-04-01

    Naphthalene tetracaboxylic dianhydride (NTCDA) shows strong chemical interaction with metal atoms in an indium tin oxide (ITO) substrate to form charge transfer (CT) complexes. The CT complex at the ITO/NTCDA interface can lower the energy barrier height for hole injection from ITO into the hole transporting layer of N,N'-diphenyl-N, N'-bis(1-naphthyl)(1,1'-biphenyl)-4,4' diamine (NPB). The operational voltage of an emissive device at a current density of 100 mA/cm2 was significantly reduced from 12.2 to 9.2 V by simply inserting a thin layer of NTCDA between the ITO and NPB. The results enable the achievement of organic light-emitting diodes that consume relatively less power.

  8. Charge transfer states appear in the π-conjugated pure hydrocarbon molecule on Cu(111)

    NASA Astrophysics Data System (ADS)

    Yonezawa, Keiichirou; Suda, Yosuke; Yanagisawa, Susumu; Hosokai, Takuya; Kato, Kengo; Yamaguchi, Takuma; Yoshida, Hiroyuki; Ueno, Nobuo; Kera, Satoshi

    2016-04-01

    We report on the results of experimental and theoretical studies on the electronic structure of gas-phase diindenoperylene (DIP) and DIP-monolayer (ML) on Cu(111). Vapor-phase ultraviolet photoelectron spectroscopy (UPS) was realized for 11.3 mg of DIP, giving reference orbital energies of isolated DIP, and UPS and inverse photoemission spectroscopy of DIP-ML/graphite were performed to obtain DIP-ML electronic states at a weak interfacial interaction. Furthermore, first-principles calculation clearly demonstrates the interfacial rearrangement. These results provide evidence that the rearrangement of orbital energies, which is realized in HOMO-LUMO and HOMO-HOMO-1 gaps, brings partially occupied LUMO through the surface-induced aromatic stabilization of DIP, a pure hydrocarbon molecule, on Cu(111).

  9. Intense X-ray FEL-molecule physics: Highly charged ions

    SciTech Connect

    Murphy, B. F.; Fang, L.; Osipov, T. Y.; Hoener, M.; Berrah, N.

    2012-05-25

    We report on sequential multiphoton ionization of N{sub 2}, H{sub 2}S and SF{sub 6} by intense, femtosecond duration pulses of x-rays from the LCLS free electron laser. Following either K- or L-shell excitation, we observe ionization and fragmentation of the molecule by Auger electron, photoelectron, and ion time-of-flight spectroscopy. Intense excitation of the K-shell leads to depletion and double core hole effects, observed in N{sub 2}. For L-shell excitation, additional relaxation channels suppress depletion, allowing ionization to continue until energetically forbidden. The investigation of multiphoton ionization has produced a better understanding of molecular plasmas created by intense ultrafast x-ray exposure.

  10. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  11. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Gao, Jining; Ran, Xinze; Shi, Chunmeng; Cheng, Humin; Cheng, Tianmin; Su, Yongping

    2013-07-01

    Highly charged hydrophilic superparamagnetic Fe3O4 colloidal nanocrystal clusters with an average diameter of 195 nm have been successfully synthesized using a modified one-step solvothermal method. Anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt containing both sulfonate and carboxylate groups was used as the stabilizer. The clusters synthesized under different experimental conditions were characterized with transmission electron microscopy and dynamic light scattering; it was found that the size distribution and water dispersity were significantly affected by the concentration of the polyelectrolyte stabilizer and iron sources in the reaction mixtures. A possible mechanism involving novel gel-like large molecular networks that confined the nucleation and aggregation process was proposed and discussed. The colloidal nanocrystal clusters remained negatively charged in the experimental pH ranges from 2 to 11, and also showed high colloidal stability in phosphate buffered saline (PBS) and ethanol. These highly colloidal stable superparamagnetic Fe3O4 clusters could find potential applications in bioseparation, targeted drug delivery, and photonics.Highly charged hydrophilic superparamagnetic Fe3O4 colloidal nanocrystal clusters with an average diameter of 195 nm have been successfully synthesized using a modified one-step solvothermal method. Anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt containing both sulfonate and carboxylate groups was used as the stabilizer. The clusters synthesized under different experimental conditions were characterized with transmission electron microscopy and dynamic light scattering; it was found that the size distribution and water dispersity were significantly affected by the concentration of the polyelectrolyte stabilizer and iron sources in the reaction mixtures. A possible mechanism involving novel gel-like large molecular networks that confined the nucleation and aggregation process was proposed and discussed. The colloidal nanocrystal clusters remained negatively charged in the experimental pH ranges from 2 to 11, and also showed high colloidal stability in phosphate buffered saline (PBS) and ethanol. These highly colloidal stable superparamagnetic Fe3O4 clusters could find potential applications in bioseparation, targeted drug delivery, and photonics. Electronic supplementary information (ESI) available: Fitted XPS results, Raman spectra, XRD patterns, typical intensity particle size distribution and TEM images of Fe3O4 MCNCs synthesized under different conditions, and digital photograph of the reaction mixtures with different reaction times. See DOI: 10.1039/c3nr00931a

  12. Using light-switching molecules to modulate charge mobility in a quantum dot array

    NASA Astrophysics Data System (ADS)

    Chu, Iek-Heng; Trinastic, Jonathan; Wang, Lin-Wang; Cheng, Hai-Ping

    2014-03-01

    We have studied the electron hopping in a two-CdSe quantum dot (QD) system linked by an azobenzene-derived light-switching molecule. This system can be considered as a prototype of a QD supercrystal. Following the computational strategies given in our recent work [I.-H. Chu et al., J. Phys. Chem. C 115, 21409 (2011), 10.1021/jp206526s], we have investigated the effects of molecular attachment, molecular isomer (trans and cis), and QD size on the electron hopping rate using Marcus theory. Our results indicate that molecular attachment has a large impact on the system for both isomers. In the most energetically favorable attachment, the cis isomer provides significantly greater coupling between the two QDs and hence the electron hopping rate is greater compared to the trans isomer. As a result, the carrier mobility of the QD array in the low carrier density, weak external electric-field regime is several orders of magnitude higher in the cis compared to the trans configuration. This demonstration of mobility modulation using QDs and azobenzene could lead to an alternative type of switching device.

  13. Observation of relaxation time of surface charge limit for InGaN photocathodes with negative electron affinity

    NASA Astrophysics Data System (ADS)

    Sato, Daiki; Nishitani, Tomohiro; Honda, Yoshio; Amano, Hiroshi

    2016-05-01

    A thin p-type InGaN with a negative electron affinity (NEA) surface was used to measure the relaxation time of a surface charge limit (SCL) by irradiating rectangular laser beam pulses at changing time interval. The p-type InGaN film was grown by metal organic vapor phase epitaxy and the NEA activation was performed after the sample was heat cleaned. 13 nC per pulse with 10 ms width was obtained from the InGaN photocathode. The current decreased exponentially from the beginning of the pulse. The initial current value after the laser irradiation decreased with the time interval. As a result, the SCL relaxation time was estimated through the InGaN photocathode measurements at 100 ms.

  14. Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3

    NASA Astrophysics Data System (ADS)

    Hoex, B.; Schmidt, J.; Bock, R.; Altermatt, P. P.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2007-09-01

    From lifetime measurements, including a direct experimental comparison with thermal SiO2, a-Si :H, and as-deposited a-SiNx:H, it is demonstrated that Al2O3 provides an excellent level of surface passivation on highly B-doped c-Si with doping concentrations around 1019cm-3. The Al2O3 films, synthesized by plasma-assisted atomic layer deposition and with a high fixed negative charge density, limit the emitter saturation current density of B-diffused p +-emitters to ˜10 and ˜30fA/cm2 on >100 and 54Ω/sq sheet resistance p+-emitters, respectively. These results demonstrate that highly doped p-type Si surfaces can be passivated as effectively as highly doped n-type surfaces.

  15. Exchange-induced negative- U charge order in N-doped WO3 : A spin-Peierls-like system

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Yan, Yanfa; Wei, Su-Huai; Al-Jassim, Mowafak M.

    2009-09-01

    An unconventional spin-Peierls-type distortion was found in a nonmagnetic atom N doped pseudo-one-dimensional WO3 system. The periodicity of the initial ferromagnetic WO3:N is doubled in one direction, and the band gap opens up due to this distortion. The magnetic moment at the N site is asymmetric in the distorted system, and the interaction between the localized spin is very weak. We show that the large exchange interaction of the nitrogen 2p atomic orbital and the pseudo-one-dimensional W-O-W chain in monoclinic WO3 structure is the origin of this spin-Peierls-like transition that leads to the stabilization of an unusual negative- U charge-ordered system.

  16. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    PubMed

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. PMID:26076630

  17. Exposure to negatively charged-particle dominant air-conditions on human lymphocytes in vitro activates immunological responses.

    PubMed

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-12-01

    Indoor air-conditions may play an important role in human health. Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NAC) induced immune stimulation. NAC was established using fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during 2.5 h stay, and an increase of natural killer (NK) cell cytotoxicity, when examining human subjects after a two-week night stay under these conditions. In the present study, we investigated whether exposure to NAC in vitro affects immune conditions. Although the concentrations of particles were different, an incubator for cell culture with NAC was set and cellular compositions and functions of various freshly isolated human lymphocytes derived from healthy donors were assayed in the NAC incubator and compared with those of cultures in a standard (STD) incubator. Results showed that NAC cultivation caused an increase of CD25 and PD-1 expressing cells in the CD4 positive fraction, enhancement of NK cell cytotoxicity, production of interferon-y (IFNγ), and slight enhancement of regulatory T cell function. In addition, the formula designated as the "immune-index" clearly differed between STD and NAC culture conditions. Thus, NAC conditions may promote human health through slight activation of the immune system against cancer cells and virus infection as shown by this in vitro study and our previously reported human studies. PMID:26213096

  18. Hapticity-dependent charge transport through carbodithioate-terminated [5,15-bis(phenylethynyl)porphinato]zinc(II) complexes in metal-molecule-metal junctions.

    PubMed

    Li, Zhihai; Smeu, Manuel; Park, Tae-Hong; Rawson, Jeff; Xing, Yangjun; Therien, Michael J; Ratner, Mark A; Borguet, Eric

    2014-10-01

    Single molecule break junction experiments and nonequilibrium Green's function calculations using density functional theory (NEGF-DFT) of carbodithioate- and thiol-terminated [5,15-bis(phenylethynyl)-10,20-diarylporphinato]zinc(II) complexes reveal the impact of the electrode-linker coordination mode on charge transport at the single-molecule level. Replacement of thiolate (-S(-)) by the carbodithioate (-CS2(-)) anchoring motif leads to an order of magnitude increase of single molecule conductance. In contrast to thiolate-terminated structures, metal-molecule-metal junctions that exploit the carbodithioate linker manifest three distinct conductance values. We hypothesize that the magnitudes of these conductances depend upon carbodithoate linker hapticity with measured conductances across Au-[5,15-bis(4'-(dithiocarboxylate)phenylethynyl)-10,20-diarylporphinato]zinc(II)-Au junctions the greatest when both anchoring groups attach to the metal surface in a bidentate fashion. We support this hypothesis with NEGF-DFT calculations, which consider the electron transport properties for specific binding geometries. These results provide new insights into the origin of molecule-to-molecule conductance heterogeneity in molecular charge transport measurements and the factors that optimize electrode-molecule-electrode electronic coupling and maximize the conductance for charge transport. PMID:25255444

  19. Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells

    PubMed Central

    Yin, Hongmei; Chen, Naifei; Guo, Rui; Wang, Hong; Li, Wei; Wang, Guanjun; Cui, Jiuwei; Jin, Haofan; Hu, Ji-Fan

    2015-01-01

    Pancreatic cancer is the most aggressive malignant disease, ranking as the fourth leading cause of cancer-related death among men and women in the United States. Interferon alpha (IFNα) has been used to treat pancreatic cancer, but its clinical application has been significantly hindered due to the low antitumor activity. We used a “cDNA in-frame fragment library” screening approach to identify short peptides that potentiate the antitumor activity of interferons. A short positively charged peptide derived from the C-terminus of placental growth factor-2 (PLGF-2) was selected to enhance the activity of IFNα. For this, we constructed a synthetic interferon hybrid molecule (SIFα) by fusing the positively charged PLGF-2 peptide to the C-terminus of the human IFNα. Using human pancreatic cell lines (ASPC and CFPAC1) as a model system, we found that SIFα exhibited a significantly higher activity than did the wild-type IFNα in inhibiting the tumor cell growth. The enhanced activity of the synthetic SIFα was associated with the activation of interferon pathway target genes and the increased binding of cell membrane receptor. This study demonstrates the potential of a synthetic SIFα as a novel antitumor agent. PMID:26584517

  20. Charge competition with oxygen molecules determines the growth of gold particles on doped CaO films.

    PubMed

    Cui, Yi; Huang, Kai; Nilius, Niklas; Freund, Hans-Joachim

    2013-01-01

    The influence of gas-phase oxygen on the growth of Au nanoparticles on Mo-doped CaO films has been investigated by means of low temperature scanning tunnelling microscopy and X-ray photoelectron spectroscopy. Whereas at ideal vacuum conditions, only 2D Au islands develop on the oxide surface, the fraction of 3D deposits increases with increasing O2 pressure until they become the dominant species in 106 mbar oxygen. The morphology crossover arises from changes in the interfacial electron flow between Mo donors in the CaO lattice and different ad-species on the oxide surface. In the absence of 02 molecules, the donor electrons are predominately transferred to the Au ad-atoms, which consequently experience enhanced binding to the oxide surface and agglomerate into 2D islands. In an oxygen atmosphere, on the other hand, a substantial fraction of the excess electrons is trapped by adsorbed O2 molecules, while the Au atoms remain neutral and assemble into tall 3D particles that are typical for non-doped oxides. Our experiments demonstrate how the competition for charge between different adsorbates governs the physical and chemical properties of doped oxides, so widely used in heterogeneous catalysis. PMID:24015581

  1. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  2. Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery.

    PubMed

    Wang, Juan; Xu, Mengxue; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-01-20

    To develop insulin delivery system for the treatment of diabetes, two insulin-loaded nanogels with opposite zeta potential (-15.94 ± 0.449 mV for insulin:CMCS/CS-NGs(-) and +17.15 ± 0.492 mV for insulin:CMCS/CS-NGs(+)) were obtained. Ex vivo results showed that the nanogels with opposite surface charge exhibited different adhesion and permeation in specific intestinal segments. There was no significant differences in adhesion and permeation in rat duodenum, but in rat jejunum, insulin:CMCS/CS-NGs(-) exhibited enhanced adhesion and permeation, which were about 3 folds (adhesion) and 1.7 folds (permeation) higher than insulin:CMCS/CS-NGs(+). These results demonstrated that the surface charge property of nanogels determined the absorption sites of CMCS/CS-NGs in small intestine. In vivo study, the blood glucose level in insulin:CMCS/CS-NGs(-) group had 3 mmol/L lower than insulin:CMCS/CS-NGs(+) group during 1h to 11h after the oral administration, which demonstrated that negative insulin:CMCS/CS-NGs had a better management of blood glucose than positive ones. PMID:26572423

  3. Comparison of Positively and Negatively Charged Achiral Co-Monomers Added to Cyclodextrin Monolith: Improved Chiral Separations in Capillary Electrochromatography

    PubMed Central

    Lu, Yang; Shamsi, Shahab A.

    2014-01-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate β-cyclodextrin (GMA/β-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/β-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/β-CD, GMA/β-CD-VBTA and GMA/β-CD-AMPS monolithic columns. PMID:24108813

  4. Quantum effects in electron emission from and accretion on negatively charged spherical particles in a complex plasma

    SciTech Connect

    Mishra, S. K.; Sodha, M. S.; Misra, Shikha

    2012-07-15

    The authors have investigated the electron emissions (thermionic, electric field, photoelectric, and light induced field) from and electron accretion on a charged particle in a complex plasma, on the basis of a three region electrical potential model in and around a charged spherical particle in a complex plasma, characterized by Debye shielding. A continuous variation of the transmission coefficient across the surface of a particle (corresponding to emission and accretion) with the radial electron energy {epsilon}{sub r} has been obtained. It is seen that the numerical values of the emission and accretion transmission coefficients [D({epsilon}{sub r})] are almost the same. This is the necessary and sufficient condition for the validity of Saha's equation for thermal equilibrium of a system of dust and electrons. This is in contrast to the earlier condition, which limited the range of validity of Saha's equation to the range of the applicability of Born approximation. It is seen that D({epsilon}{sub r}) increases with increasing {epsilon}{sub r}, increasing negative electric potential on the surface, decreasing radius, and deceasing Debye length. The electron currents, corresponding to thermionic, electric field, photoelectric and light induced field emission increase with increasing surface potential; this fact may have significant repercussions in complex plasma kinetics. Since numerically D({epsilon}{sub r}) is significantly different from unity in the range of {epsilon}{sub r} of interest, it is necessary to take into account the D({epsilon}{sub r})-{epsilon}{sub r} dependence in complex plasma theory.

  5. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters.

    PubMed

    Gao, Jining; Ran, Xinze; Shi, Chunmeng; Cheng, Humin; Cheng, Tianmin; Su, Yongping

    2013-08-01

    Highly charged hydrophilic superparamagnetic Fe3O4 colloidal nanocrystal clusters with an average diameter of 195 nm have been successfully synthesized using a modified one-step solvothermal method. Anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt containing both sulfonate and carboxylate groups was used as the stabilizer. The clusters synthesized under different experimental conditions were characterized with transmission electron microscopy and dynamic light scattering; it was found that the size distribution and water dispersity were significantly affected by the concentration of the polyelectrolyte stabilizer and iron sources in the reaction mixtures. A possible mechanism involving novel gel-like large molecular networks that confined the nucleation and aggregation process was proposed and discussed. The colloidal nanocrystal clusters remained negatively charged in the experimental pH ranges from 2 to 11, and also showed high colloidal stability in phosphate buffered saline (PBS) and ethanol. These highly colloidal stable superparamagnetic Fe3O4 clusters could find potential applications in bioseparation, targeted drug delivery, and photonics. PMID:23803791

  6. Comparison of positively and negatively charged achiral co-monomers added to cyclodextrin monolith: improved chiral separations in capillary electrochromatography.

    PubMed

    Lu, Yang; Shamsi, Shahab A

    2014-10-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate β-cyclodextrin (GMA/β-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/β-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/β-CD, GMA/β-CD-VBTA and GMA/β-CD-AMPS monolithic columns. PMID:24108813

  7. Negatively charged silver nanoparticles cause retinal vascular permeability by activating plasma contact system and disrupting adherens junction.

    PubMed

    Long, Yan-Min; Zhao, Xing-Chen; Clermont, Allen C; Zhou, Qun-Fang; Liu, Qian; Feener, Edward P; Yan, Bing; Jiang, Gui-Bin

    2016-05-01

    Silver nanoparticles (AgNPs) have been extensively used as antibacterial component in numerous healthcare, biomedical and consumer products. Therefore, their adverse effects to biological systems have become a major concern. AgNPs have been shown to be absorbed into circulation and redistributed into various organs. It is thus of great importance to understand how these nanoparticles affect vascular permeability and uncover the underlying molecular mechanisms. A negatively charged mecaptoundeonic acid-capped silver nanoparticle (MUA@AgNP) was investigated in this work. Ex vivo experiments in mouse plasma revealed that MUA@AgNPs caused plasma prekallikrein cleavage, while positively charged or neutral AgNPs, as well as Ag ions had no effect. In vitro tests revealed that MUA@AgNPs activated the plasma kallikrein-kinin system (KKS) by triggering Hageman factor autoactivation. By using specific inhibitors aprotinin and HOE 140, we demonstrated that KKS activation caused the release of bradykinin, which activated B2 receptors and induced the shedding of adherens junction protein, VE-cadherin. These biological perturbations eventually resulted in endothelial paracellular permeability in mouse retina after intravitreal injection of MUA@AgNPs. The findings from this work provided key insights for toxicity modulation and biomedical applications of AgNPs. PMID:26399585

  8. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates.

    PubMed

    Martins, André F; Oliveira, Alexandre C; Morfin, Jean-François; Laurents, Douglas V; Tóth, Éva; Geraldes, Carlos F G C

    2016-03-01

    We have conjugated the tetraazacyclododecane-tetraacetate (DOTA) chelator to Pittsburgh compound B (PiB) forming negatively charged lanthanide complexes, Ln(L4), with targeting capabilities towards aggregated amyloid peptides. The amphiphilic Gd(L4) chelate undergoes micellar aggregation in aqueous solution, with a critical micellar concentration of 0.68 mM, lower than those for the neutral complexes of similar structure. A variable temperature (17)O NMR and NMRD study allowed the assessment of the water exchange rate, k ex (298)  = 9.7 × 10(6) s(-1), about the double of GdDOTA, and for the description of the rotational dynamics for both the monomeric and the micellar forms of Gd(L4). With respect to the analogous neutral complexes, the negative charge induces a significant rigidity of the micelles formed, which is reflected by slower and more restricted local motion of the Gd(3+) centers as evidenced by higher relaxivities at 20-60 MHz. Surface Plasmon Resonance results indicate that the charge does not affect significantly the binding strength to Aβ1-40 [K d = 194 ± 11 μM for La(L4)], but it does enhance the affinity constant to human serum albumin [K a = 6530 ± 68 M(-1) for Gd(L4)], as compared to neutral counterparts. Protein-based NMR points to interaction of Gd(L4) with Aβ1-40 in the monomer state as well, in contrast to neutral complexes interacting only with the aggregated form. Circular dichroism spectroscopy monitored time- and temperature-dependent changes of the Aβ1-40 secondary structure, indicating that Gd(L4) stabilizes the random coil relative to the α-helix and β-sheet. TEM images confirm that the Gd(L4) complex reduces the formation of aggregated fibrils. PMID:26613605

  9. The reactions of the molecular nitrogen doubly charged ion with neutral molecules of relevance to planetary ionospheres

    NASA Astrophysics Data System (ADS)

    Ricketts, Claire Louise

    Diatomic dications (e.g. C02+) have been known to exist for several decades and are believed to be important components of energised media. Molecular dications possess significant internal energy due to the Coulombic repulsion of their two positive charges, meaning that many possible reaction channels are available to dications in a collision with a neutral molecule. Modellers have recently predicted that N22+ is present in the ionosphere of Earth and Titan as well as the dications C>22+ and 02+ in the ionosphere of Earth and CC>22+ in the ionosphere of Mars. These recent predictions, of dications in planetary ionospheres, imply that dications, and processes involving dication-neutral collisions, may have more significance than previously thought in the upper atmospheres of planets. Therefore this thesis describes a study of the reactions between N2 dications and neutrals, potentially of relevance to the ionosphere of Earth and Titan. A position sensitive coincidence (PSCO) time-of flight (TOF) mass spectrometer is used to probe the reactivity, energetics and dynamics of the bimolecular reactions of N22 . Dication-neutrals reactions often result in a pair of singly charged ions. The PSCO experiment is used to collect these pairs of singly-charged ions in coincidence. From the position-sensitive data we extract the velocity vectors of the product ions, and if the reaction of interest involves the formation of a third, undetected, neutral species, its velocity can be determined via conservation of momentum. The electron transfer reactions between dications and neutrals have been well rationalized 2+ previously, so only the electron transfer reactions of N2 with Ne and NO are discussed in this thesis. This thesis concentrates on probing the less well rationalized, bond- forming reactions between dications and neutrals. The bond-forming reactions of N22+ with O2, CO2, H2O, C2H2, CH4, H2 and Ar have been investigated and discussed. Several new bond-forming reactions mechanisms are derived for example, the bond-forming reactions of N22+ with O2 proceed via a 'long' lived complex which dissociates via loss of a neutral and then charge separation, a mechanism which is also operating for one of the bond-forming reactions of N2 with CO2 and N2 with H2O. Additional bond-forming reactions are detected for N22+ with CO2 and H2O, which proceed via shorter lived collision complexes. The reactions of N22+ with C2H2, CH4, H2 and Ar all proceed via a variety of mechanisms involving short-lived collision complexes or H and electron stripping.

  10. Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ.

    PubMed

    García, Raúl; Herranz, M Ángeles; Leary, Edmund; González, M Teresa; Bollinger, Gabino Rubio; Bürkle, Marius; Zotti, Linda A; Asai, Yoshihiro; Pauly, Fabian; Cuevas, Juan Carlos; Agraït, Nicolás; Martín, Nazario

    2015-01-01

    We describe the synthesis and single-molecule electrical transport properties of a molecular wire containing a π-extended tetrathiafulvalene (exTTF) group and its charge-transfer complex with F4TCNQ. We form single-molecule junctions using the in situ break junction technique using a homebuilt scanning tunneling microscope with a range of conductance between 10 G0 down to 10(-7) G0. Within this range we do not observe a clear conductance signature of the neutral parent molecule, suggesting either that its conductance is too low or that it does not form a stable junction. Conversely, we do find a clear conductance signature in the experiments carried out on the charge-transfer complex. Due to the fact we expected this species to have a higher conductance than the neutral molecule, we believe this supports the idea that the conductance of the neutral molecule is very low, below our measurement sensitivity. This idea is further supported by theoretical calculations. To the best of our knowledge, these are the first reported single-molecule conductance measurements on a molecular charge-transfer species. PMID:26199662

  11. Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ

    PubMed Central

    García, Raúl; Herranz, M Ángeles; González, M Teresa; Bollinger, Gabino Rubio; Bürkle, Marius; Zotti, Linda A; Asai, Yoshihiro; Pauly, Fabian; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-01-01

    Summary We describe the synthesis and single-molecule electrical transport properties of a molecular wire containing a π-extended tetrathiafulvalene (exTTF) group and its charge-transfer complex with F4TCNQ. We form single-molecule junctions using the in situ break junction technique using a homebuilt scanning tunneling microscope with a range of conductance between 10 G0 down to 10−7 G0. Within this range we do not observe a clear conductance signature of the neutral parent molecule, suggesting either that its conductance is too low or that it does not form a stable junction. Conversely, we do find a clear conductance signature in the experiments carried out on the charge-transfer complex. Due to the fact we expected this species to have a higher conductance than the neutral molecule, we believe this supports the idea that the conductance of the neutral molecule is very low, below our measurement sensitivity. This idea is further supported by theoretical calculations. To the best of our knowledge, these are the first reported single-molecule conductance measurements on a molecular charge-transfer species. PMID:26199662

  12. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  13. Non-adiabatic processes in the charge transfer reaction of O{sub 2} molecules with potassium surfaces without dissociation

    SciTech Connect

    Krix, David; Nienhaus, Hermann

    2014-08-21

    Thin potassium films grown on Si(001) substrates are used to measure internal chemicurrents and the external emission of exoelectrons simultaneously during adsorption of molecular oxygen on K surfaces at 120 K. The experiments clarify the dynamics of electronic excitations at a simple metal with a narrow valence band. X-ray photoemission reveals that for exposures below 5 L almost exclusively peroxide K{sub 2}O{sub 2} is formed, i.e., no dissociation of the molecule occurs during interaction. Still a significant chemicurrent and a delayed exoelectron emission are detected due to a rapid injection of unoccupied molecular levels below the Fermi level. Since the valence band width of potassium is approximately equal to the potassium work function (2.4 eV) the underlying mechanism of exoemission is an Auger relaxation whereas chemicurrents are detected after resonant charge transfer from the metal valence band into the injected level. The change of the chemicurrent and exoemission efficiencies with oxygen coverage can be deduced from the kinetics of the reaction and the recorded internal and external emission currents traces. It is shown that the non-adiabaticity of the reaction increases with coverage due to a reduction of the electronic density of states at the surface while the work function does not vary significantly. Therefore, the peroxide formation is one of the first reaction systems which exhibits varying non-adiabaticity and efficiencies during the reaction. Non-adiabatic calculations based on model Hamiltonians and density functional theory support the picture of chemicurrent generation and explain the rapid injection of hot hole states by an intramolecular motion, i.e., the expansion of the oxygen molecule on the timescale of a quarter of a vibrational period.

  14. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (<600 Da) hydrophobic molecules, cationic malachite green (MG) and neutral bromocresol purple (BCP), were investigated. While it was observed that the MG cation adsorbs onto the surface of the MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) μm(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) μm(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. PMID:25660095

  15. The interplay of thermally activated delayed fluorescence (TADF) and room temperature organic phosphorescence in sterically-constrained donor-acceptor charge-transfer molecules.

    PubMed

    Ward, Jonathan S; Nobuyasu, Roberto S; Batsanov, Andrei S; Data, Przemyslaw; Monkman, Andrew P; Dias, Fernando B; Bryce, Martin R

    2016-02-11

    A series of phenothiazine-dibenzothiophene-S,S-dioxide charge-transfer molecules have been synthesized. Increasing steric restriction around the donor-acceptor bond significantly alters contributions from TADF and phosphorescence. Bulky substituents on the 1-(and 9) position(s) of the phenothiazine result in no TADF in the solid state; instead strong phosphorescence is observed at ambient temperature. PMID:26750426

  16. Excitation of atoms and molecules in collisions with highly charged ions. [Cyclotron Inst. , Texas A M Univ. , College Station, Texas

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N[sup 7+] ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N[sub 2], O[sub 2], and CO molecular ions produced in collisions with 97-MeV Ar[sup 14+] ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO[sup 2+] and CO[sup 3+] from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO[sup 1+] and CO[sup 2+] molecular ions, and the branching ratios for the most prominent charge division channels of CO[sup 2+] through CO[sup 7+] were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  17. Excitation of atoms and molecules in collisions with highly charged ions. Progress report, January 1, 1990--December 1, 1992

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N{sup 7+} ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N{sub 2}, O{sub 2}, and CO molecular ions produced in collisions with 97-MeV Ar{sup 14+} ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO{sup 2+} and CO{sup 3+} from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO{sup 1+} and CO{sup 2+} molecular ions, and the branching ratios for the most prominent charge division channels of CO{sup 2+} through CO{sup 7+} were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  18. Bid binding to negatively charged phospholipids may not be required for its pro-apoptotic activity in vivo

    PubMed Central

    Manara, Anna; Lindsay, Jennefer; Marchioretto, Marta; Astegno, Alessandra; Gilmore, Andrew P.; Esposti, Mauro Degli; Crimi, Massimo

    2010-01-01

    Bid is a ubiquitous pro-apoptotic member of the Bcl-2 family that has been involved in a variety of pathways of cell death. Unique among pro-apoptotic proteins, Bid is activated after cleavage by the apical caspases of the extrinsic pathway; subsequently it moves to mitochondria, where it promotes the release of apoptogenic proteins in concert with other Bcl-2 family proteins like Bak. Diverse factors appear to modulate the pro-apoptotic action of Bid, from its avid binding to mitochondrial lipids (in particular, cardiolipin) to multiple phosphorylations at sites that can modulate its caspase cleavage. This work addresses the question of how the lipid interactions of Bid that are evident in vitro actually impact on its pro-apoptotic action within cells. Using site-directed mutagenesis, we identified mutations that reduced mouse Bid lipid binding in vitro. Mutation of the conserved residue Lys157 specifically decreased the binding to negatively charged lipids related to cardiolipin and additionally affected the rate of caspase cleavage. However, this lipid-binding mutant had no discernable effect on Bid pro-apoptotic function in vivo. The results are interpreted in relation to an underlying interaction of Bid with lysophosphatidylcholine, which is not disrupted in any mutant retaining pro-apoptotic function both in vitro and in vivo. PMID:19463967

  19. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.

    PubMed

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Hyun, Jinho

    2015-06-01

    Nanofibrous 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO)-oxidized bacterial cellulose (TOBC) was used as a dispersant of hydroxyapatite (HA) nanoparticles in aqueous solution. The surfaces of TOBC nanofibers were negatively charged after the reaction with the TEMPO/NaBr/NaClO system at pH 10 and room temperature. HA nanoparticles were simply adsorbed on the TOBC nanofibers (HA-TOBC) and dispersed well in DI water. The well-dispersed HA-TOBC colloidal solution formed a hydrogel after the addition of gelatin, followed by crosslinking with glutaraldehyde (HA-TOBC-Gel). The chemical modification of the fiber surfaces and the colloidal stability of the dispersion solution confirmed TOBC as a promising HA dispersant. Both the Young's modulus and maximum tensile stress increased as the amount of gelatin increased due to the increased crosslinking of gelatin. In addition, the well-dispersed HA produced a denser scaffold structure resulting in the increase of the Young's modulus and maximum tensile stress. The well-developed porous structures of the HA-TOBC-Gel composites were incubated with Calvarial osteoblasts. The HA-TOBC-Gel significantly improved cell proliferation as well as cell differentiation confirming the material as a potential candidate for use in bone tissue engineering scaffolds. PMID:25910635

  20. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles.

    PubMed

    Shen, Hao; Hu, Xiaoyu; Szymusiak, Magdalena; Wang, Zaijie Jim; Liu, Ying

    2013-12-01

    We have formulated hydrophobic curcurmin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] into stable nanoparticle suspensions (nanocurcumin) to overcome its relatively low bioavailability, high rate of metabolism, and rapid elimination and clearance from the body. Employing the curcumin nanoformulations as the platform, we discovered that curcumin has the potential to alleviate morphine tolerance. The two types of stable polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA), and the hybrid of the two were generated using flash nanoprecipitation integrated with spray drying. The optimized formulations have high drug loading (>45%), small particles size with narrow distribution, and controlled surface properties. Mice behavioral studies (tail-flick and hot-plate tests) were conducted to verify the effects of nanocurcumin on attenuating morphine tolerance. Significant analgesia was observed in mice during both tail-flick and hot-plate tests using orally administered nanocurcumin following subcutaneous injections of morphine. However, unformulated curcumin at the same dose showed no effect. Compared with PEGylated nanocurcumin, negatively charged PLGA nanoparticles showed better functionality. PMID:24195658

  1. Manufacturing and characterization of bent silicon crystals for studies of coherent interactions with negatively charged particles beams

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Bandiera, L.; Bagli, E.; Guidi, V.

    2015-07-01

    Efficient steering of GeV-energy negatively charged particle beams was demonstrated to be possible with a new generation of thin bent silicon crystals. Suitable crystals were produced at the Sensor Semiconductor Laboratory of Ferrara starting from Silicon On Insulator wafers, adopting proper revisitation of silicon micromachining techniques such as Low Pressure Chemical Vapor Deposition, photolithography and anisotropic chemical etching. Mechanical holders, which allow to properly bend the crystal and to reduce unwanted torsions, were employed. Crystallographic directions and crystal holder design were optimized in order to excite quasi-mosaic effect along (1 1 1) planes. Prior to exposing the crystal to particle beams, a full set of characterizations were performed. Infrared interferometry was used to measure crystal thickness with high accuracy. White-light interferometry was employed to characterize surface deformational state and its torsion. High-resolution X-rays diffraction was used to precisely measure crystal bending angle along the beam. Manufactured crystals were installed and tested at the MAMI MAinz MIcrotron to steer sub-GeV electrons, and at SLAC to deflect an electron beam in the 1 to 10 GeV energy range.

  2. The association of defensin HNP-2 with negatively charged membranes: A combined fluorescence and linear dichroism study.

    PubMed

    Pridmore, Catherine J; Rodger, Alison; Sanderson, John M

    2016-04-01

    The association of defensin HNP-2 with negatively charged membranes has been studied using a new approach that combines fluorescence and linear dichroism (LD) spectroscopies with simulated LD spectra in order to characterise the binding kinetics and bound configurations of the peptide. Binding to membranes composed of mixtures of diacylglycerophosphocholines (PC) with either diacylglycerophosphoglycerol (PG) or diacylglycerophosphoserine (PS) was conducted at lipid:peptide ratios that yielded binding, but not membrane fusion. HNP-2 association with membranes under these conditions was a 2 stage-process, with both stages exhibiting first order kinetics. The fast initial step, with a half-life of <1min, was followed by a slower step with a half-life of >3min. Conversion between the states was estimated to have an enthalpy of activation of approximately 10kJmol(-1) and an entropy of activation of -0.2kJKmol(-1). LD spectra corresponding to each of the membrane bound states were generated by non-linear regression using a standard kinetic model. These spectra are interpreted in comparison with spectra calculated using the program Dichrocalc and reveal that the peptide associates with membranes in a small number of stable configurations. All of these configurations have a significant proportion of β-sheet structure residing in the plane of the membrane. Two configurations support structures previously proposed for defensins in membranes. PMID:26801370

  3. Orally Administered Nano-curcumin to Attenuate Morphine Tolerance: Comparison between Negatively Charged PLGA and Partially and Fully PEGylated Nanoparticles

    PubMed Central

    Shen, Hao; Hu, Xiaoyu; Szymusiak, Magdalena; Wang, Zaijie Jim; Liu, Ying

    2014-01-01

    We have formulated hydrophobic curcurmin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] into stable nanoparticle suspensions (nano-curcumin) to overcome its relatively low bioavailability, high rate of metabolism and rapid elimination and clearance from the body. Employing the curcumin nanoformulations as the platform, we discovered that curcumin has the potential to alleviate morphine tolerance. The two types of stable polymeric nanoparticles - poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA) - and the hybrid of the two were generated using flash nanoprecipitation integrated with spray drying. The optimized formulations have high drug loading (>45%), small particles size with narrow distribution, and controlled surface properties. Mice behavioral studies (tail-flick and hot-plate tests) were conducted to verify the effects of nano-curcumin on attenuating morphine tolerance. Significant analgesia was observed in mice during both tail-flick and hot-plate tests using orally administrated nano-curcumin following subcutaneous injections of morphine. However, unformulated curcumin at the same dose showed no effect. Compared with PEGylated nano-curcumin, negatively charged PLGA nanoparticles showed better functionality. PMID:24195658

  4. Theoretical study of the BeLi, BeNa, MgLi, MgNa, and AlBe molecules and their negative ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1992-01-01

    The alkaline earth-alkali diatomics are found to have weak bonds, because the diffuse alkali valence s orbitals cannot form a bond of sufficient strength to pay the promotion energy of the alkaline-earth atoms. This leads to van der Waals bonding in the neutrals as well as the negative ions. In fact, the negative ions have larger binding energies than the neutrals as a result of the much larger polarizability of the negative ion. The binding energy of AlBe is significantly larger than the Be-alkali molecules, due to a covalent contribution to the bonding. The binding energy in AlBe(-) is considerably larger than AlBe; the binding energy of the X 3Sigma(-) state of AlBe(-) is computed to be 1.36 eV, as compared with 0.57 eV for the X 2Pi state of AlBe.

  5. Apport de la microscopie a effet tunnel a la caracterisation d'interfaces molecule-metal a fort transfert de charge

    NASA Astrophysics Data System (ADS)

    Bedwani, Stephane

    To assess the importance of charge-transfer on the interface properties, we studied the interaction of the tetracyanoethylene (TCNE) molecule with various copper surfaces. TCNE, a highly electrophilic molecule, appears as an ideal candidate to study the influence of high charge-transfer on the electronic and structural properties of molecule-surface interfaces. Indeed, various TCNE-transition metal complexes exhibit magnetism at room temperature, which is in agreement with a very significant change of the residual charge on the TCNE molecule. The adsorption of TCNE molecules on Cu(100) and Cu(111) surfaces was studied by scanning tunneling microscopy (STM) and by density functional theory (DFT) calculations with a local density approximation (LDA). DFT-LDA calculations were performed to determine the geometric and electronic structure of the studied interfaces. Mulliken analysis was used to evaluate the partial net charge on the adsorbed species. The density of states (DOS) diagrams provided informations on the nature of the frontier orbitals involved in the charge-transfer at molecule-metal interfaces. To validate the theoretical observations, a comparative study was conducted between our simulated STM images and experimental STM images provided by our collaborators. The theoretical STM images were obtained with the SPAGS-STM software using the Landauer-Buttiker formalism with a semi-empirical Hamiltonian based on the extended Huckel theory (EHT) and parameterized using DFT calculations. During the development of the SPAGS-STM software, we have created a discretization module allowing rapid generation of STM images. This module is based on an adaptive Delaunay meshing scheme to minimize the amount of tunneling current to be computed. The general idea consists into refining the mesh, and therefore the calculations, near large contrast zones rather than over the entire image. The adapted mesh provides an STM image resolution equivalent to that obtained with a conventional Cartesian grid but with a significantly smaller number of calculated pixels. This module is independent of the solver used to compute the tunneling current and can be transposed to different imaging techniques. Our work on the adsorption of TCNE molecules on Cu(100) surfaces revealed that the molecules assemble into a 1D chain, thereby buckling excessively a few Cu atoms from the surface. The large deformations observed at the molecule-metal interface show that the Cu atoms close to the TCNE nitrile groups assist the molecular assembly and show a distinct behavior compared with other Cu atoms. A strong charge-transfer is observed at the interface leading to an almost complete occupation of the state ascribed to the lowest unoccupied molecular orbital (LUMO) of TCNE in gas phase. In addition, a back-donation of charge from the molecule to the metal via the states associated with the highest occupied molecular orbitals (HOMO) of TCNE in gas phase may be seen. The magnitude of the charge-transfer between a TCNE molecule and Cu atoms is of the same order on the Cu(111) surface but causes much less buckling than that on the Cu(100) surface. However, experimental STM images of single TCNE molecules adsorbed on Cu(111) surfaces reveal a surprising electronic multistability. In addition, scanning tunneling spectroscopy (STS) reveals that one of these states has a magnetic nature and shows a Kondo resonance. STM simulations identified the source of two non-magnetic states. DFT-LDA calculations were able to ascribe the magnetic state to the partial occupation of a state corresponding to the LUMO+2 of TCNE. Moreover, the calculations showed that additional molecular deformations to those of TCNE in adsorbed phase, such the elongation of the C=C central bond and the bend of nitrile groups toward the surface, favor this charge-transfer to the LUMO+2. This suggested the presence of a Kondo state through the vibrational excitation of the stretching mode of the C=C central bond. The main results of this thesis led to the conclusion that strong charge-transfer between adsorbed molecules on a metallic surface may induce significant buckling of the surface. This surface reconstruction mechanism that involves a bidirectional charge-transfer between the species results into a partial net charge over the molecule. This mechanism is involved in the supramolecular self-assembly process that appears similar to a coordination network. Moreover, the adsorbed molecule presents some important geometric distortions that alter its electronic structure. Additional distortions on the adsorbed molecule induced by some molecular vibration modes seem to explain a stable magnetic state that can be switch on or off by an electrical impulse. (Abstract shortened by UMI.)

  6. Tuning the opto-electronic properties of MoS2 layer using charge transfer interactions: effect of different donor molecules

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Arkamita; Pati, Swapan K.

    2015-08-01

    We have performed density functional theory calculations to study the effect of adsorption of a set of organic electron donor molecules on single layer MoS2 to find the optimum condition to tune the charge transfer, as well as to find how it changes the electronic properties of single layer MoS2. We have performed our calculations for three sets of organic Lewis bases. We have found that all the molecules are physisorbed on MoS2. Our calculations show that the charge transfer from the molecules to the MoS2 layer is highly dependent upon the inductive effect and HOMO-LUMO gap of the molecules. Furthermore, we show that the charge transfer interaction tunes the electronic and optical property of MoS2 to a significant amount: for example, the band-gap of the system can be changed from 1.8 eV to even a low value of 0.2 eV, making it interesting for different optoelectronic device applications.

  7. A 90-day study of subchronic oral toxicity of 20 nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats

    PubMed Central

    Park, Hark-Soo; Shin, Sung-Sup; Meang, Eun Ho; Hong, Jeong-sup; Park, Jong-Il; Kim, Su-Hyon; Koh, Sang-Bum; Lee, Seung-Young; Jang, Dong-Hyouk; Lee, Jong-Yun; Sun, Yle-Shik; Kang, Jin Seok; Kim, Yu-Ri; Kim, Meyoung-Kon; Jeong, Jayoung; Lee, Jong-Kwon; Son, Woo-Chan; Park, Jae-Hak

    2014-01-01

    Purpose The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnOSM20(−)) NPs in Sprague Dawley rats for 90 days. Methods The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. Results No rats died during the test period. However, ZnOSM20(−) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. Conclusion A ZnOSM20(−) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution. PMID:25565828

  8. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  9. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics.

    PubMed

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew

    2015-12-28

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595

  10. Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Lin, Guo; Tang, Zhi; Yang, Xueqing; Cai, Zongwei

    2015-08-01

    Ultrathin graphitic carbon nitride (g-C3N4) nanosheets served as a novel matrix for the detection of small molecules by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was described for the first time. In comparison with conventional organic matrices and graphene matrix, the use of g-C3N4 nanosheet matrix showed free matrix background interference and increased signal intensity in the analysis of amino acids, nucleobases, peptides, bisphenols (BPs), and nitropolycyclic aromatic hydrocarbons (nitro-PAHs). A systematic comparison of g-C3N4 nanosheets with positive and negative ion modes revealed that mass spectra produced by g-C3N4 nanosheets in negative ion mode were featured by singly deprotonated ion without matrix interference, which was rather different from the complicated alkali metal complexes in positive ion mode. Good salt tolerance and reproducibility allowed the determination of 1-nitropyrene (1-NP) in sewage, and its corresponding detection limit was lowered to 1 pmol. In addition, the ionization mechanism of the g-C3N4 nanosheets as matrix was also discussed. The work expands its application scope of g-C3N4 nanosheets and provides an alternative approach for small molecules. PMID:26171593

  11. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field (the observational value on the earth surface is about 120 V/m downward equivalent to 500000 Coulomb negative charges in the earth surface). All celestial bodies are gravitation sources and attract the molecules and ions in space to its circumference by the gravitation of own and other celestial bodies, e.g., all planets in the solar system have their own atmospheres. Therefore, the origin mechanism of geo-electric and geomagnetic fields caused by gravitation is very universal, at least it is appli-cable to all the planets in the solar system. For planets, the joint result of the gravitations of the planets and the sun makes the negative charges and dipolar charges distributed in the surfaces of the celestial bodies. The quicker the rotation is, the larger the angular momentum U is, then larger the accompanying current and magnetic moment P, it accord a experiential law found by subsistent observational data of all celestial bodies in solar system: P = -G 1/2 U cos θ / c (1), θ is the angle between the net ν 0 flux direction (mark by CMB) and the rotational axis of celestial body (Chen Shao-Guang, Chinese Science Bulletin, 26,233,1981). Uranian and Neptunian P predicted with Eq.(1) in 1981 are about -3.4•1028 Gs•cm3 and 1.9•1028 Gs•cm3 respectively (use new rotate speed measured by Voyager 2). The P measured by Voyager 2 in 1986 and 1989 are about -1.9 •1028 Gs•cm3 and 1.5•1028 Gs•cm3 respectively (the contribution of quadrupole P is converted into the contribution of dipole P alone). The neutron star pos-sesses much high density and rotational speed because of the conservation of the mass and the angular momentum during the course of the formation, then has strong gravity and largerU. From Eq.(1) there is a larger P and extremely strong surface magnetic field in neutron star. The origin mechanism of basal electric and magnetic fields of celestial bodies will affect directly all fields referring to the electromagnetic characteristics in space science, e.g., it predict that the spin speed of the sunspot is in direct proportion to its magnetic moment.

  12. Charge transfer dynamics of 3,4,9,10-perylene-tetracarboxylic-dianhydride molecules on Au(111) probed by resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Wang, Yu-Zhan; Chen, Tie-Xin; Zhang, Wen-Hua; Yu, Xiao-Jiang; Ibrahim, Kurash; Wang, Jia-Ou; Qian, Hai-Jie; Xu, Fa-Qiang; Qi, Dong-Chen; Wee, Andrew T. S.

    2011-11-01

    Charge transfer dynamics across the lying-down 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) organic semiconductor molecules on Au(111) interface has been investigated using the core-hole clock implementation of resonant photoemission spectroscopy. It is found that the charge transfer time scale at the PTCDA/Au(111) interface is much larger than the C 1s core-hole lifetime of 6 fs, indicating weak electronic coupling between PTCDA and the gold substrate due to the absence of chemical reaction and/or bonding.

  13. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

    SciTech Connect

    Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E.; Terrabuio, Luiz A.; Haiduke, Roberto L. A.

    2014-02-28

    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone explain 145, 237, and 574 km mol{sup −1} of the H-bond stretching intensity enhancements for the water and HF dimers and their heterodimer compared with total increments of 149, 321, and 592 km mol{sup −1}, respectively.

  14. Development of 4π detector to clarify fragmentation dynamics of molecule in collisions with highly charged ions in ultra low energy region

    NASA Astrophysics Data System (ADS)

    Okano, M.; Ishii, K.; Ogawa, H.

    2012-11-01

    We have developed a new detector to study collision dynamics between highly charged ion and molecule in ultra low energy region (<= 1 keV/u). The outline of this detector is a recoil momentum spectroscopy in semi-spherical energy analyzer. At the conference, we will present progress report of the developments of this detector including TOF spectra of recoil ions in coincidence with HCI after collisions.

  15. Ultrafast Bidirectional Charge Transport and Electron Decoherence at Molecule/Surface Interfaces: A Comparison of Gold, Graphene, and Graphene Nanoribbon Surfaces.

    PubMed

    Adak, Olgun; Kladnik, Gregor; Bavdek, Gregor; Cossaro, Albano; Morgante, Alberto; Cvetko, Dean; Venkataraman, Latha

    2015-12-01

    We investigate bidirectional femtosecond charge transfer dynamics using the core-hole clock implementation of resonant photoemission spectroscopy from 4,4'-bipyridine molecular layers on three different surfaces: Au(111), epitaxial graphene on Ni(111), and graphene nanoribbons. We show that the lowest unoccupied molecular orbital (LUMO) of the molecule drops partially below the Fermi level upon core-hole creation in all systems, opening an additional decay channel for the core-hole, involving electron donation from substrate to the molecule. Furthermore, using the core-hole clock method, we find that the bidirectional charge transfer time between the substrate and the molecule is fastest on Au(111), with a 2 fs time, then around 4 fs for epitaxial graphene and slowest with graphene nanoribbon surface, taking around 10 fs. Finally, we provide evidence for fast phase decoherence of the core-excited LUMO* electron through an interaction with the substrate providing the first observation of such a fast bidirectional charge transfer across an organic/graphene interface. PMID:26574713

  16. An Explicit Consideration of Desolvation is Critical to Binding Free Energy Calculations of Charged Molecules at Ionic Surfaces.

    PubMed

    Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang

    2013-11-12

    Identifying factors that control the strength and specificity of interactions between peptides and nanoparticles is essential for understanding the potential beneficial and deleterious effects of nanoparticles on biological systems. Computer simulations are valuable in this context, although the reliability of such calculations depends on the force field and sampling algorithm, as well as how the binding constant and binding free energy are defined; the latter must be carefully defined with a clear connection to microscopic models based on statistical mechanics. Using the example of formate binding to the rutile titanium dioxide (TiO2) (110) surface, we demonstrate that a reliable description of the binding process requires an explicit consideration of changes in the solvation state of the binding site. Specifically, we carry out metadynamics simulations in which the solvent coordination number of the binding site, s, is introduced as a collective variable in addition to the vertical distance of the adsorbate to the surface (z). The resulting two-dimensional potential of mean force (2D-PMF) clearly shows that explicitly including the local desolvation of the binding site on the TiO2 surface strongly impacts the convergence and result of the binding free energy calculations. Projecting the 2D-PMF into a one-dimensional PMF along either z or s leads to large errors in the free energy barriers. Results from metadynamics simulations are quantitatively supported by independent alchemical free energy simulations, in which the solvation state of the binding site is also carefully considered by explicitly introducing water molecules to the binding site as the adsorbate is decoupled from the system. On the other hand, preliminary committor analysis for the approximate transition state ensemble constructed based on the 2D-PMF suggests that to properly describe the binding/unbinding kinetics, variables beyond s and z, such as those describing the hydrogen bonding pattern of the adsorbate and surface water, need to be included. We expect that the insights and computational methodologies established in this work will be generally applicable to the analysis of binding interactions between highly charged adsorbates and ionic surfaces in solution, such as those implicated in peptide/nanoparticle binding and biomineralization processes. PMID:26583420

  17. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; ELI–Beamlines, Institute of Physics, Czech Academy of Science, 18221 Prague ; Andreev, A.; Vavilov State Optical Institute, 119034 St. Petersburg ; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-11-15

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

  18. Dependence of radiative stabilization on the projectile charge state after double-electron-transfer processes in slow, highly charged ion-molecule collisions

    SciTech Connect

    Krok, F.; Tolstikhina, I.Y.; Sakaue, H.A.; Yamada, I.; Hosaka, K.; Kimura, M.; Nakamura, N.; Ohtani, S.; Tawara, H.

    1997-12-01

    We have measured the radiative stabilization probabilities after double-electron-transfer processes in slow (1.5qkeV) I{sup q+}+CO collisions in the charge-state regime 8{le}q{le}26 by using the charge-selected-projectile{endash}recoil-ion-coincidence method. It was found that the radiative stabilization probabilities P{sub rad}, defined as P{sub rad}=T{sub DC}/(T{sub DC}+A{sub DC}) (T{sub DC} is true double capture, and A{sub DC} autoionizing double capture), increases from about 1{percent} at the lowest charge up to about 10{percent} at the highest charge as the charge state of the projectile increases. A model is proposed which can explain such a feature, by incorporating a slight modification of the initial population of the transferred levels in the projectile predicted in the extended classical over-barrier model. Based upon the present model, theoretical radiative and autoionization decay rates have been calculated, using the Cowan code. Fairly good agreement between the measured and calculated results has been obtained. {copyright} {ital 1997} {ital The American Physical Society}

  19. Incorporation of negatively charged iron oxide nanoparticles in the shell of anionic surfactant-stabilized microbubbles: The effect of NaCl concentration.

    PubMed

    Kovalenko, Artem; Jouhannaud, Julien; Polavarapu, Prasad; Krafft, Marie Pierre; Waton, Gilles; Pourroy, Geneviève

    2016-06-15

    We report on the key effect of NaCl for the stabilization of nanoparticle-decorated microbubbles coated by an anionic perfluoroalkylated phosphate C10F21(CH2)2OP(O)(OH)2 surfactant and negatively charged iron oxide nanoparticles. We show that hollow microspheres with shells of 100-200nm in thickness can be stabilized even at high pH when a strong ionic force is required to screen the negative charges. Due to the more drastic conditions required to stabilize the hollow microspheres, they appear to be stable enough to be deposited on a surface and dried. That can be a simple way to fabricate porous ceramics. PMID:27038281

  20. Comparative electron spin resonance and electron spin echo modulation studies of the photoionization of positively and negatively charged and neutral alkylphenothiazines in cationic dioctadecyldimethylammonium chloride, neutral dipalmitoylphosphatidylcholine, and anionic dihexadecyl phosphate vesicles at 77K

    SciTech Connect

    Kang, Young Soo; McManus, H.J.D.; Kevan, L. )

    1993-03-04

    Positively charged phenothiazine N-alkyltrimethylammonium bromides (PC[sub n]TAB) and negatively charged sodium phenothiazine-N-alkanesulfonates (PC[sub n]S) were synthesized and photoionized in cationic dioctadecyldimethylammonium chloride (DODAC), neutral dipalmitoylphosphatidylcholine (DPPC), and anionic dihexadecyl phosphate (DHP) vesicles. The photoproduced radicals were identified and quantitated with electron spin resonance. The microenvironments of the various photoproduced PC[sub n]S and PC[sub n]TAB cation radicals in frozen D[sub 2]O solutions were investigated with electron spin echo modulation (ESEM). These results are compared with those of neutral N-alkylphenolthiazines (PC[sub n]) in the same vesicles. The effects of the pendent alkyl chain length on the photoyields of PC[sub n]S and PC[sub n]TAB are similar. For short alkyl chains (n = 2 or 3), a large deuteron modulation depth is observed, which correlates with a high photoyield. Good correlation is shown between the photoyields of three series of alkylphenothiazines, PC[sub n]S, PC[sub n]TAB, and PC[sub n], in anionic DHP, neutral DPPC, and cationic DODAC vesicles with their relative positions relative to the vesicle interfaces measured by ESEM methods. The dependences on alkyl chain length of the photoionizable molecule seem well understood. The smaller differences between the PC[sub n]S, PC[sub n]TAB, and PC[sub n] compounds for the same alkyl chain length in a single vesicle system also show good correlation between photoyields and relative location measured by ESEM deuteron modulation depths. However, photoionization of a given alkylphenothiazine in the three different vesicles shows an anticorrelation between photoyield and deuteron modulation depth. This means that the photoionization yield is determined more by the vesicle interface charge than the distance of the photoionizable molecule from the interface. 43 refs., 11 figs.

  1. The axon guidance molecule semaphorin 3F is a negative regulator of tumor progression and proliferation in ileal neuroendocrine tumors

    PubMed Central

    Vercherat, Cécile; Blanc, Martine; Lepinasse, Florian; Gadot, Nicolas; Couderc, Christophe; Poncet, Gilles; Walter, Thomas; Joly, Marie-Odile; Hervieu, Valérie; Scoazec, Jean-Yves; Roche, Colette

    2015-01-01

    Gastro-intestinal neuroendocrine tumors (GI-NETs) are rare neoplasms, frequently metastatic, raising difficult clinical and therapeutic challenges due to a poor knowledge of their biology. As neuroendocrine cells express both epithelial and neural cell markers, we studied the possible involvement in GI-NETs of axon guidance molecules, which have been shown to decrease tumor cell proliferation and metastatic dissemination in several tumor types. We focused on the role of Semaphorin 3F (SEMA3F) in ileal NETs, one of the most frequent subtypes of GI-NETs. SEMA3F expression was detected in normal neuroendocrine cells but was lost in most of human primary tumors and all their metastases. SEMA3F loss of expression was associated with promoter gene methylation. After increasing endogenous SEMA3F levels through stable transfection, enteroendocrine cell lines STC-1 and GluTag showed a reduced proliferation rate in vitro. In two different xenograft mouse models, SEMA3F-overexpressing cells exhibited a reduced ability to form tumors and a hampered liver dissemination potential in vivo. This resulted, at least in part, from the inhibition of mTOR and MAPK signaling pathways. This study demonstrates an anti-tumoral role of SEMA3F in ileal NETs. We thus suggest that SEMA3F and/or its cellular signaling pathway could represent a target for ileal NET therapy. PMID:26447612

  2. Comparing Coulomb explosion dynamics of multiply charged triatomic molecules after ionization by highly charged ion impact and few cycle femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wales, B.; Karimi, R.; Bisson, E.; Beaulieu, S.; Giguère, M.; Motojima, T.; Anderson, R.; Matsumoto, J.; Kieffer, J.-C.; Légaré, F.; Shiromaru, H.; Sanderson, J.

    2013-09-01

    Recent experiments using highly charged ions (HCI) at Tokyo Metropolitan University and few cycle laser pulses at the advanced laser light source have centered on multiply ionizing carbonyl sulfide to form charge states from 3 + to 7 + . By measuring the kinetic energy release during subsequent break up and comparing with previous results from HCI impact on CO2 we can see a pattern emerging which implies that shorter laser pulses than the current sub 7 fs standard could lead to higher kinetic energy release than expected from Coulomb explosion.

  3. A New Class of Quorum Quenching Molecules from Staphylococcus Species Affects Communication and Growth of Gram-Negative Bacteria

    PubMed Central

    Chu, Ya-Yun; Nega, Mulugeta; Wölfle, Martina; Plener, Laure; Grond, Stephanie; Jung, Kirsten; Götz, Friedrich

    2013-01-01

    The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community. PMID:24098134

  4. Effective production of Xe2I excimer molecules by high-energy charged particles in Xe containing a small amount of C3F7I

    NASA Astrophysics Data System (ADS)

    Mis'kevich, A. I.

    2015-09-01

    An anomalously high efficiency of generating Xe2I* excimer molecules in dense Xe-C3F7I gaseous mixtures with a small amount of C3F7I that are excited by a pulsed beam of fast electrons is discovered. The electron energy is 150 keV, and the beam current amplitude and duration are, respectively, 5 A and 5 ns. The temporal-spectral characteristics of spontaneous radiation from XeI* and Xe2I* excimer molecules are measured. Also, the luminescence times of the upper level for the B- X transition in the XeI* molecule (λmax = 253 nm) and the upper level for the 42Γ-12Γ transition in the Xe2I* molecule (λ = 352 nm), as well as the rate constants of quenching these levels by the gaseous mixture components, are determined. Based on the characteristics of the track structure of a high-energy plasma produced by charged particles in the dense gaseous medium, a model of plasma-chemical processes leading to the formation of XeI* (λmax = 253 nm) and Xe2I* (λ = 352 nmnm) excimer molecules in a Xe-C3F7I mixture with a small amount of an iodine atom donor is suggested.

  5. Geoengineering with Charged Droplets

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2011-12-01

    Water molecules in a droplet are held together by intermolecular forces generated by hydrogen bonding which has a bonding energy of only about 0.2 eV. One can create a more rugged droplet by using an ion as a condensation nucleus. In that case, water molecules are held together by the interaction between the ion and the dipole moments of the water molecules surrounding the ion, in addition to any hydrogen bonding. In this research, properties of such charged droplets were investigated using first principle quantum mechanical calculations. A molecule which exhibits positive electron affinity is a good candidate to serve as the ionic condensation nucleus, because addition of an electron to such a molecule creates an energetically more stable state than the neutral molecule. A good example is the oxygen molecule (O2) where energy of O2 negative (O2-) ion is lower than that of the neutral O2 by about 0.5 eV. Examples of other molecules which have positive electron affinity include ozone (O3), nitrogen dioxide (NO2) and sulfur oxides (SOx, x=1-3). Atomic models used in the calculations consisted of a negative ion of one of the molecules mentioned above surrounded by water molecules. Calculations were performed using the DFT method with B3LYP hybrid functional and Pople type basis sets with polarization and diffuse functions. Energy of interaction between O2- ion and the water molecule was found to be ~0.7 eV. This energy is an order of magnitude greater than the thermal energy of even the highest temperatures encountered in the atmosphere. Once created, charged rugged droplets can survive in hot and dry climates where they can be utilized to create humidity and precipitation. The ion which serves as the nucleus of the droplet can attract not only water molecules but also other dipolar gases in the atmosphere. Such dipolar gases include industrial pollutants, for example nitrogen dioxide (NO2) or sulfur dioxide (SO2). Energy of interaction between O2- ion and pollutant molecules was calculated to be ~0.5 eV for NO2 and ~0.9 eV for SO2. These values are comparable to that of water, hence charged droplets have the potential to serve as scavengers of pollutants in the atmosphere. The charged droplet can also interact with quadrupolar gases depending on the charge distribution of the gas. A quadrupole of interest is carbon dioxide (CO2) where oxygens are slightly negative and carbon is slightly positive in a neutral molecule. When CO2 is in the vicinity of a negative ion, the carbon atom gets attracted to the ion, whereas oxygens are repelled from it. This interaction distorts the linear geometry of CO2, turning it into a small dipole. Energy of interaction between O2- ion and CO2 was calculated to be ~0.3 eV which is smaller than those of the above mentioned dipoles, but still significantly greater than the typical thermal energy at 25 C (~0.03 eV). One can expect the diffusion of atmospheric CO2 into the droplets to be enhanced due to the charge. Hence such droplets can help capture the CO2 in the atmosphere and sequester it simply as rain. Charged droplets can be created using electrical,optical, thermal or other means. A method which utilizes solar energy will be described in the presentation.

  6. Charge-transfer complexes of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with amino molecules in polar solvents

    NASA Astrophysics Data System (ADS)

    Berto, Silvia; Chiavazza, Enrico; Ribotta, Valentina; Daniele, Pier Giuseppe; Barolo, Claudia; Giacomino, Agnese; Vione, Davide; Malandrino, Mery

    2015-10-01

    The charge-transfer complexes have scientific relevance because this type of molecular interaction is at the basis of the activity of pharmacological compounds and because the absorption bands of the complexes can be used for the quantification of electron donor molecules. This work aims to assess the stability of the charge-transfer complexes between the electron acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and two drugs, procaine and atenolol, in acetonitrile and ethanol. The stability of DDQ in solution and the time required to obtain the maximum complex formation were evaluated. The stoichiometry and the stability of the complexes were determined, respectively, by Job's plot method and by the elaboration of UV-vis titrations data. The latter task was carried out by using the non-linear global analysis approach to determine the equilibrium constants. This approach to data elaboration allowed us to overcome the disadvantages of the classical linear-regression method, to obtain reliable values of the association constants and to calculate the entire spectra of the complexes. NMR spectra were recorded to identify the portion of the donor molecule that was involved in the interaction. The data support the participation of the aliphatic amino groups in complex formation and exclude the involvement of the aromatic amine present in the procaine molecule.

  7. Positively and Negatively Charged Ionic Modifications to Cellulose Assessed as Cotton-Based Protease-Lowering and Haemostatic Wound Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in cellulose wound dressings targeted to different stages of wound healing have been based on structural and charge modifications that function to modulate events in the complex inflammatory and hemostatic phases of wound healing. Hemostasis and inflammation comprise two overlapp...

  8. Effect of the electrostatic interaction on the redox reaction of positively charged cytochrome C adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode.

    PubMed

    Imabayashi, Shin-ichiro; Mita, Takahiro; Kakiuchi, Takashi

    2005-02-15

    The electrochemical properties of cytochrome c (cyt c) adsorbed on mixed self-assembled monolayers (SAMs) of 2-mercaptoethanesulfonate (MES)/2-mercaptoethanol (MEL) are compared with those on single-component SAMs of MES, MEL, and mercaptopropionic acid (MPA), using cyclic voltammetry and potential-modulated UV-vis reflectance spectroscopy. The rate constant of electron transfer (ET), k(et), of cyt c adsorbed on the SAM of MPA decreases from 1450 +/- 210 s(-1) at pH 7 to 890 +/- 100 s(-1) at pH 9. In contrast, the value of k(et) of cyt c on the SAM of MES is pH-independent at 100 +/- 15 s(-1). Those facts suggest that a large negative charge density on the SAM surface slows down the ET between cyt c and the electrode. The surface charge density of the SAM affects also the amount of electroactive cyt c, Gamma(e), which decreases from 10.0 +/- 1.0 to 5.3 +/- 1.1 pmol cm(-2) with increasing pH from 7 to 9 on the SAM of MPA. Similarly, the k(et) of cyt c adsorbed on the mixed SAMs of MES/MEL sharply decreases from 900 +/- 300 s(-1) to 110 s(-1) as the surface mole fraction of MES increases beyond 0.5, suggesting the presence of a negative surface charge threshold beyond which the rate of ET of cyt c is dramatically lowered. The decrease in the k(et) on the SAMs at high negative charge densities probably results from the confinement of adsorbed cyt c by the strong electrostatic force to an orientation that is not optimal for the ET reaction. PMID:15697296

  9. Negatively charged subnanometer-sized silicon clusters and their reversible migration into AFI zeolite pores studied with X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Choo, Cheow-keong; Sakamoto, Takashi; Tanaka, Katsumi; Nakata, Ryouhei; Asakawa, Tetsuo

    1999-02-01

    Subnanometer sized silicon clusters were deposited on AFI zeolite (AlPO 4-5: one-dimensional channel diameter <0.73 nm) by pulsed laser ablation of silicon wafer. Their electronic structures were elucidated in situ by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Core level Si 2p spectra were analyzed into five components, Si(I) to Si(V). Si(I) and Si(II) species selectively increased with a constant ratio during pulsed laser silicon ablation. Their binding energies (BEs) were below 99.5 eV implying negatively charged states. Charge transfer occurred between silicon clusters and framework oxygen and phosphor ions. It was interpreted that the stability of negative charge is due to large electron affinity of silicon clusters. The intensity of XPS signals decreased as a function of time and at the same time the channels were blocked. These results were interpreted due to migration of silicon clusters into zeolite pores. The estimated activation energy (57 kJ/mol) suggests that rate-determining step of the migration is reflected by a weak adsorbed state of silicon clusters similar to physisorbed state. The silicon clusters were partially oxidized at 573 K, which was interpreted as a driving force of backward migration from zeolite pores to the external surface. The composition of silicon cluster was discussed based on homogeneous dispersion of single species.

  10. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  11. Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Charge-Trapping in Organic Materials.

    PubMed

    Li, Yang; Li, Hua; He, Jinghui; Xu, Qingfeng; Li, Najun; Chen, Dongyun; Lu, Jianmei

    2016-03-18

    The practical application of organic memory devices requires low power consumption and reliable device quality. Herein, we report that inserting thienyl units into D-π-A molecules can improve these parameters by tuning the texture of the film. Theoretical calculations revealed that introducing thienyl π bridges increased the planarity of the molecular backbone and extended the D-A conjugation. Thus, molecules with more thienyl spacers showed improved stacking and orientation in the film state relative to the substrates. The corresponding sandwiched memory devices showed enhanced ternary memory behavior, with lower threshold voltages and better repeatability. The conductive switching and variation in the performance of the memory devices were interpreted by using an extended-charge-trapping mechanism. Our study suggests that judicious molecular engineering can facilitate control of the orientation of the crystallite in the solid state to achieve superior multilevel memory performance. PMID:26812155

  12. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    PubMed

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples. PMID:24492411

  13. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments.

    PubMed

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-07-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs. PMID:21609950

  14. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments

    PubMed Central

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-01-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs. PMID:21609950

  15. Redox-Active Star Molecules Incorporating the 4-Benzolypyridinium Cation: Implications for the Charge Transfer Efficiency Along Branches versus Across the Perimeter in Dendrimers

    NASA Technical Reports Server (NTRS)

    Yang, Jin-Hua; Rawashdeh, Abdel Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2003-01-01

    We report the redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches, but remains constant at fixed radii. Voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that only two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers of a branch are accessible electrochemically within the same time frame. These results are discussed in terms of slow through-space charge transfer and the globular 3-D folding of the molecules.

  16. Quasi-ohmic single molecule charge transport through highly conjugated meso-to-meso ethyne-bridged porphyrin wires.

    PubMed

    Li, Zhihai; Park, Tae-Hong; Rawson, Jeff; Therien, Michael J; Borguet, Eric

    2012-06-13

    Understanding and controlling electron transport through functional molecules are of primary importance to the development of molecular scale devices. In this work, the single molecule resistances of meso-to-meso ethyne-bridged (porphinato)zinc(II) structures (PZn(n) compounds), connected to gold electrodes via (4'-thiophenyl)ethynyl termini, are determined using scanning tunneling microscopy-based break junction methods. These experiments show that each α,ω-di[(4'-thiophenyl)ethynyl]-terminated PZn(n) compound (dithiol-PZn(n)) manifests a dual molecular conductance. In both the high and low conductance regimes, the measured resistance across these metal-dithiol-PZn(n)-metal junctions increases in a near linear fashion with molecule length. These results signal that meso-to-meso ethyne-bridged porphyrin wires afford the lowest β value (β = 0.034 Å(-1)) yet determined for thiol-terminated single molecules that manifest a quasi-ohmic resistance dependence across metal-dithiol-PZn(n)-metal junctions. PMID:22500812

  17. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    PubMed

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups. PMID:22895857

  18. Crystal structure of Jararacussin-I: the highly negatively charged catalytic interface contributes to macromolecular selectivity in snake venom thrombin-like enzymes.

    PubMed

    Ullah, A; Souza, T A C B; Zanphorlin, L M; Mariutti, R B; Santana, V S; Murakami, M T; Arni, R K

    2013-01-01

    Snake venom serine proteinases (SVSPs) are hemostatically active toxins that perturb the maintenance and regulation of both the blood coagulation cascade and fibrinolytic feedback system at specific points, and hence, are widely used as tools in pharmacological and clinical diagnosis. The crystal structure of a thrombin-like enzyme (TLE) from Bothrops jararacussu venom (Jararacussin-I) was determined at 2.48 resolution. This is the first crystal structure of a TLE and allows structural comparisons with both the Agkistrodon contortrix contortrix Protein C Activator and the Trimeresurus stejnegeri plasminogen activator. Despite the highly conserved overall fold, significant differences in the amino acid compositions and three-dimensional conformations of the loops surrounding the active site significantly alter the molecular topography and charge distribution profile of the catalytic interface. In contrast to other SVSPs, the catalytic interface of Jararacussin-I is highly negatively charged, which contributes to its unique macromolecular selectivity. PMID:23139169

  19. Is ionized oxygen negatively or positively charged more effective for carboxyhemoglobin reduction compare to medical oxygen at atmospheric pressure?

    PubMed

    Perečinský, S; Kron, I; Engler, I; Murínová, L; Donič, V; Varga, M; Marossy, A; Legáth, Ľ

    2015-12-29

    Carbon monoxide (CO) reversibly binds to hemoglobin forming carboxyhemoglobin (COHb). CO competes with O(2) for binding place in hemoglobin leading to tissue hypoxia. Already 30 % saturation of COHb can be deadly. Medical oxygen at atmospheric pressure as a therapy is not enough effective. Therefore hyperbaric oxygen O(2) inhalation is recommended. There was a question if partially ionized oxygen can be a better treatment at atmospheric pressure. In present study we evaluated effect of partially ionized oxygen produced by device Oxygen Ion 3000 by Dr. Engler in elimination of COHb in vitro experiments and in smokers. Diluted blood with different content of CO was purged with 5 l/min of either medicinal oxygen O(2), negatively ionized O(2) or positively ionized O(2) for 15 min, then the COHb content was checked. In vivo study, 15 smokers inhaled of either medicinal oxygen O(2) or negatively ionized O(2), than we compared CO levels in expired air before and after inhalation. In both studies we found the highest elimination of CO when we used negatively ionized O(2). These results confirmed the benefit of short inhalation of negatively ionized O(2), in frame of Ionized Oxygen Therapy (I O(2)Th/Engler) which could be used in smokers for decreasing of COHb in blood. PMID:26047377

  20. Impact of negative affectively charged stimuli and response style on cognitive-control-related neural activation: An ERP study

    PubMed Central

    Lamm, C.; Pine, D. S.; Fox, N. A.

    2013-01-01

    The canonical AX-CPT task measures two forms of cognitive control: sustained goal-oriented control (“proactive” control) and transient changes in cognitive control following unexpected events (“reactive” control). We modified this task by adding negative and neutral International Affective Picture System (IAPS) pictures to assess the effects of negative emotion on these two forms of cognitive control. Proactive and reactive control styles were assessed based on measures of behavior and electrophysiology, including the N2 event-related potential component and source space activation (Low Resolution Tomography [LORETA]). We found slower reaction-times and greater DLPFC activation for negative relative to neutral stimuli. Additionally, we found that a proactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during actively maintained previously cued information and that a reactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during just-in-time environmentally triggered information. This pattern of results was evident in relatively neutral contexts, but in the face of negative emotion, these associations were not found, suggesting potential response style-by-emotion interaction effects on prefrontal neural activation PMID:24021156

  1. Enhancement of NK Cell Cytotoxicity Induced by Long-Term Living in Negatively Charged-Particle Dominant Indoor Air-Conditions.

    PubMed

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-01-01

    Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NCPDIAC) induced immune stimulation. Negatively charged air-conditions were established using a fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during a 2.5-h stay and an increase of NK cell cytotoxicity when examining human subjects after a two-week night stay under these conditions. In the present study, seven healthy volunteers had a device installed to create NCPDIAC in the living or sleeping rooms of their own homes. Every three months the volunteers then turned the NCPDIAC device on or off. A total of 16 ON and 13 OFF trials were conducted and their biological effects were analyzed. NK activity increased during ON trials and decreased during OFF trials, although no other adverse effects were found. In addition, there were slight increases of epidermal growth factor (EGF) during ON trials. Furthermore, a comparison of the cytokine status between ON and OFF trials showed that basic immune status was stimulated slightly during ON trials under NCPIADC. Our overall findings indicate that the NCPDIAC device caused activation of NK activity and stimulated immune status, particularly only on NK activity, and therefore could be set in the home or office buildings. PMID:26173062

  2. Enhancement of NK Cell Cytotoxicity Induced by Long-Term Living in Negatively Charged-Particle Dominant Indoor Air-Conditions

    PubMed Central

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-01-01

    Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NCPDIAC) induced immune stimulation. Negatively charged air-conditions were established using a fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during a 2.5-h stay and an increase of NK cell cytotoxicity when examining human subjects after a two-week night stay under these conditions. In the present study, seven healthy volunteers had a device installed to create NCPDIAC in the living or sleeping rooms of their own homes. Every three months the volunteers then turned the NCPDIAC device on or off. A total of 16 ON and 13 OFF trials were conducted and their biological effects were analyzed. NK activity increased during ON trials and decreased during OFF trials, although no other adverse effects were found. In addition, there were slight increases of epidermal growth factor (EGF) during ON trials. Furthermore, a comparison of the cytokine status between ON and OFF trials showed that basic immune status was stimulated slightly during ON trials under NCPIADC. Our overall findings indicate that the NCPDIAC device caused activation of NK activity and stimulated immune status, particularly only on NK activity, and therefore could be set in the home or office buildings. PMID:26173062

  3. Time-resolved EPR studies of charge recombination and triplet-state formation within donor-bridge-acceptor molecules having wire-like oligofluorene bridges.

    PubMed

    Miura, Tomoaki; Carmieli, Raanan; Wasielewski, Michael R

    2010-05-13

    Spin-selective charge recombination of photogenerated radical ion pairs within a series of donor-bridge-acceptor (D-B-A) molecules, where D = phenothiazine (PTZ), B = oligo(2,7-fluorenyl), and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), PTZ-FL(n)-PDI, where n = 1-4 (compounds 1-4), is studied using time-resolved electron paramagnetic resonance (TREPR) spectroscopy in which the microwave source is either continuous-wave or pulsed. Radical ion pair TREPR spectra are observed for 3 and 4 at 90-294 K, while the neutral triplet state of PDI ((3)*PDI) is observed at 90-294 K for 2-4 and at 90 K for 1. (3)*PDI is produced by three mechanisms, as elucidated by its zero-field splitting parameters and spin polarization pattern. The mechanisms are spin-orbit-induced intersystem crossing (SO-ISC) in PDI aggregates, direct spin-orbit charge-transfer intersystem crossing (SOCT) from the singlet radical pair within 1, and radical pair intersystem crossing (RP-ISC) as a result of S-T(0) mixing of the radical ion pair states in 2-4. The temperature dependence of the spin-spin exchange interaction (2J) shows a dramatic decrease at low temperatures, indicating that the electronic coupling between the radical ions decreases due to an increase in the average fluorene-fluorene dihedral angle at low temperatures. The charge recombination rates for 3 and 4 decrease at low temperature, but that for 2 is almost temperature-independent. These results strongly suggest that the dominant mechanism of charge recombination for n >or= 3 is incoherent thermal hopping, which results in wire-like charge transfer. PMID:20392075

  4. Characterization of a Novel Small Molecule That Potentiates β-Lactam Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Nair, Dhanalakshmi R.; Monteiro, João M.; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G.

    2015-01-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a β-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 μg/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3′-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 108 CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens. PMID:25583731

  5. Formation of the negative muonium ion and charge-exchange processes for positive muons passing through thin metal foils

    SciTech Connect

    Kuang, Y.; Arnold, K.; Chmely, F.; Eckhause, M.; Hughes, V. W.; Kane, J. R.; Kettell, S.; Kim, D.; Kumar, K.; Lu, D. C.; and others

    1989-06-15

    The negative muonium ion,Mu/sup /minus///equivalent to/..mu../sup +/e/sup /minus//e/sup /minus//, has been produced bydouble electron pickup as a beam of positive muons passes through thin foils ofvarious materials. The Mu/sup /minus// ions were detected byelectrostatically accelerating and analyzing the ions in a magnetictime-of-flight spectrometer. Yields of Mu/sup /minus//, Mu and..mu../sup +/ as well are reported when ..mu../sup +/ with kineticenergies from 380 to 800 keV impinge on thin Be, Al, and Au foils. A MonteCarlo simulation provides good agreement with the experimental results.

  6. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  7. Charge density of the biologically active molecule (2-oxo-1,3-benzoxazol-3(2H)-yl)acetic acid.

    PubMed

    Wang, Ai; Ashurov, Jamshid; Ibragimov, Aziz; Wang, Ruimin; Mouhib, Halima; Mukhamedov, Nasir; Englert, Ulli

    2016-02-01

    (2-Oxo-1,3-benzoxazol-3(2H)-yl)acetic acid is a member of a biologically active class of compounds. Its molecular structure in the crystal has been determined by X-ray diffraction, and its gas phase structure was obtained by quantum chemical calculations at the B3LYP/6-311++G(d,p) level of theory. In order to understand the dynamics of the molecule, two presumably soft degrees of freedom associated with the relative orientation of the planar benzoxazolone system and its substituent at the N atom were varied systematically. Five conformers have been identified as local minima on the resulting two-dimensional potential energy surface within an energy window of 27 kJ mol(-1). The energetically most favourable minimum closely matches the conformation observed in the crystal. Based on high-resolution diffraction data collected at low temperature, the experimental electron density of the compound was determined. Comparison with the electron density established by theory for the isolated molecule allowed the effect of intermolecular interactions to be addressed, in particular a moderately strong O-H...O hydrogen bond with a donor...acceptor distance of 2.6177 (9) Å: the oxygen acceptor is clearly polarized in the extended solid. The hydrogen bond connects consecutive molecules to chains, and the pronounced charge separation leads to stacking between neighburs with antiparallel dipole moments perpendicular to the chain direction. PMID:26830806

  8. Double-ionization energies of some n-alkyl isocyanate molecules; studies with double-charge-transfer spectrometry and ab initio propagator theory

    NASA Astrophysics Data System (ADS)

    Bayliss, M. A.; Griffiths, I. W.; Harris, F. M.; Parry, D. E.

    2003-12-01

    Double-charge-transfer (DCT) collisions of H+, OH+ and F+ 3 keV beam ions with a series of alkyl isocyanate molecules were studied using mass spectrometric techniques. Measurement of the kinetic energies of H- ions so produced enabled the determination of double-ionization energies (DIE) for transitions to singlet doubly ionized states of the target molecules; those for triplet doubly ionized states were obtained similarly from measurements of the kinetic energies of OH- and F- ions. Values up to approximately 40 eV were obtained in most cases and were found to be in close agreement with the predictions of ab initio calculations using propagator theory, also presented here. For n-butyl isocyanate (and by implication heavier molecules in the series) the density of doubly ionized states above 30 eV was both observed and predicted to be too large and featureless for meaningful analysis, so establishing an effective upper limit on molecular size for the current application of these techniques. Significant configuration interaction was predicted for the final doubly ionized states, which justified theoretical analysis with a relatively complex method that accounts well for correlation effects.

  9. Femtochemistry of mass-selected negative-ion clusters of dioxygen: Charge-transfer and solvation dynamics

    NASA Astrophysics Data System (ADS)

    Paik, D. Hern; Bernhardt, Thorsten M.; Kim, Nam Joon; Zewail, Ahmed H.

    2001-07-01

    Femtosecond, time-resolved photoelectron spectroscopy is used to investigate the dissociation dynamics of mass-selected anionic molecular-oxygen clusters. The observed transient photoelectron signal for the clusters (O2)n- (n=3-5) shows the O2- production; for n=1 and 2, we observe no time-dependence at this wavelength of 800 nm. The observed transients are bi-exponential in form with two distinct time constants, but with clear trends, for all investigated cluster sizes. These striking observations describe the reaction pathways of the solvated core and we elucidate two primary processes: Charge transfer with concomitant nuclear motion, and direct dissociation of the O4- core-ion via electron recombination; the former takes 700-2700 fs, while the latter is on a shorter time scale, 110-420 fs. Both rates decrease differently upon increasing cluster size, indicating the critical role of step-wise solvation.

  10. Reprint of: Second-harmonic generation from non-dipolar non-centrosymmetric aromatic charge-transfer molecules

    NASA Astrophysics Data System (ADS)

    Ledoux, I.; Zyss, J.; Siegel, J. S.; Brienne, J.; Lehn, J.-M.

    2013-12-01

    Second-harmonic generation from powders of a series of three aromatic intramolecular charge-transfer moieties of D3h symmetry is reported. One compound is shown to be active while its symmetric structure. precludes any molecular non-linear contribution of a vectorial nature such as usually prevails in polar paranitroaniline-like systems. Similar non-dipolar non-centrosymmetric molecular moieties could serve as building blocks in new types of optically non-linear materials where the packing is not influenced by dipole-dipole interactions and the statistical occurrence of non-centrosymmetry would consequently increase.

  11. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    SciTech Connect

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-08-15

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  12. Charge localization and charge transfer in the Bebq2 monomer and dimer.

    PubMed

    Safonov, Andrei A; Bagaturyants, Alexander A

    2014-08-01

    The geometrical structure and electronic properties of bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2) molecule and its dimer both in the neutral and in the positively and negatively charged states were studied using quantum-chemical calculations. It is found that the excess charge in the charged systems is localized on one of the hydroxybenzoquinoline ligands. Structural changes in charged Bebq2 are pronounced in the charged ligand and nearly negligible in the neutral ligand. Charge transfer from the charged ligand to a neutral one can proceed either within a single Bebq2 monomer molecule or between the different monomers in the Bebq2 dimer. The corresponding hopping integrals were estimated as half the excitation energy from the ground to the first excited state of either the monomer or the dimer calculated at the avoided crossing point. PMID:25107360

  13. Coexistence of solvated electron and benzene-centered valence anion in the negatively charged benzene-water clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Zhao, Jing; Liu, Jinxiang; Zhou, Lianwen; Bu, Yuxiang

    2013-01-01

    We present a combined M06 functional calculation and ab initio molecular dynamics simulation study of an excess electron (EE) in a microhydrated aromatic complex (modeled by benzene (Bz)-water binary clusters, Bz(H2O)n). Calculated results illustrate that Bz ring and water clusters are indeed linked through the π⋯HO interactions in the neutral Bz(H2O)n (n = 1-8) clusters, and the size of the water cluster does not influence the nature of its interaction with the π system for the oligo-hydrated complexes. The states and the dynamics of an EE trapped in such Bz-water clusters were also determined. All of possible localized states for the EE can be roughly classified into two types: (i) single, ring-localized states (the Bz-centered valence anions) in which an EE occupies the LUMO of the complexes originating from the LUMO (π*) of the Bz ring, and the π⋯HO interactions are enhanced for increase of electron density of the Bz ring. In this mode, the carbon skeleton of the Bz part is significantly deformed due to increase of electron density and nonsymmetric distribution of electron density induced by the interacting H-O bonds; (ii) solvated states, in which an EE is trapped directly as a surface state by the dangling hydrogen atoms of water molecules or as a solvated state in a mixed cavity formed by Bz and water cluster. In the latter case, Bz may also participate in capturing an EE using its C-H bonds in the side edge of the aromatic ring as a part of the cavity. In general, a small water cluster is favorable to the Bz-centered valence anion state, while a large one prefers a solvated electron state. Fluctuations and rearrangement of water molecules can sufficiently modify the relative energies of the EE states to permit facile conversion from the Bz-centered to the water cluster-centered state. This indicates that aromatic Bz can be identified as a stepping stone in electron transfer and the weak π⋯HO interaction plays an important role as the driving force in conversion of the two states.

  14. Revised Big Bang Nucleosynthesis with Long-lived, Negatively Charged Massive Particles: Updated Recombination Rates, Primordial 9Be Nucleosynthesis, and Impact of New 6Li Limits

    NASA Astrophysics Data System (ADS)

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant. J.

    2014-09-01

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X -, on big bang nucleosynthesis (BBN). The BBN model with an X - particle was originally motivated by the discrepancy between the 6, 7Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, 7Be is destroyed via the recombination with an X - particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of 7Be, 7Li, 9Be, and 4He with X -. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X - mass, mX >~ 100 GeV, the d-wave → 2P transition is most important for 7Li and 7, 9Be, unlike recombination with electrons. Our new nonresonant rate of the 7Be recombination for mX = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for 9Be production: the recombination of 7Li and X - followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of 7Be destruction depends significantly on the charge distribution of 7Be. Finally, updated constraints on the initial abundance and the lifetime of the X - are derived in the context of revised upper limits to the primordial 6Li abundance. Parameter regions for the solution to the 7Li problem and the primordial 9Be abundances are revised.

  15. REVISED BIG BANG NUCLEOSYNTHESIS WITH LONG-LIVED, NEGATIVELY CHARGED MASSIVE PARTICLES: UPDATED RECOMBINATION RATES, PRIMORDIAL {sup 9}Be NUCLEOSYNTHESIS, AND IMPACT OF NEW {sup 6}Li LIMITS

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J. E-mail: kyungsik@kau.ac.kr E-mail: kajino@nao.ac.jp E-mail: gmathews@nd.edu

    2014-09-01

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X {sup –}, on big bang nucleosynthesis (BBN). The BBN model with an X {sup –} particle was originally motivated by the discrepancy between the {sup 6,} {sup 7}Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, {sup 7}Be is destroyed via the recombination with an X {sup –} particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of {sup 7}Be, {sup 7}Li, {sup 9}Be, and {sup 4}He with X {sup –}. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X {sup –} mass, m{sub X} ≳ 100 GeV, the d-wave → 2P transition is most important for {sup 7}Li and {sup 7,} {sup 9}Be, unlike recombination with electrons. Our new nonresonant rate of the {sup 7}Be recombination for m{sub X} = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for {sup 9}Be production: the recombination of {sup 7}Li and X {sup –} followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of {sup 7}Be destruction depends significantly on the charge distribution of {sup 7}Be. Finally, updated constraints on the initial abundance and the lifetime of the X {sup –} are derived in the context of revised upper limits to the primordial {sup 6}Li abundance. Parameter regions for the solution to the {sup 7}Li problem and the primordial {sup 9}Be abundances are revised.

  16. Negatively Charged Metal Oxide Nanoparticles Interact with the 20S Proteasome and Differentially Modulate Its Biologic Functional Effects

    PubMed Central

    Falaschetti, Christine A.; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S.; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P.; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E.

    2013-01-01

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, e.g. carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, e.g. neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding “hotspots” possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected. PMID:23930940

  17. Extension of the spectral responsivity of the photocurrent in solution-processed small molecule composite via a charge transfer excitation

    NASA Astrophysics Data System (ADS)

    Hernandez-Sosa, Gerardo; Tong, Minghong; Coates, Nelson E.; Valouch, Sebastian; Moses, Daniel

    2011-10-01

    Incorporating [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in solution-processed composites comprising the two small molecular semiconductors 9,10-Diphenylanthracene (DPA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene) extends significantly the onset wavelength of the steady-state photoconductivity from 610 nm in the pristine DPA:Rubrene composite to 900 nm in the DPA:Rubrene:PCBM composite. The experimental data indicate carrier generation in the near IR spectral region arising from inter-molecular charge transfer (IMCT) excitation that potentially could be useful for extending solar radiation light harvesting. Pump/probe photoinduced absorption (PIA) measurements indicate instantaneous carrier generation at sub-band-gap photon energies, confirming the viability of IMCT excitations as the underlying carrier generation mechanism at the near IR spectral region.

  18. Solvent control of spin-dependent charge recombination mechanisms within donor-conjugated bridge-acceptor molecules.

    PubMed

    Weiss, Emily A; Ahrens, Michael J; Sinks, Louise E; Ratner, Mark A; Wasielewski, Michael R

    2004-08-11

    We have shown recently that the oligomeric p-phenylene bridge within the PTZ-(Ph)n-PDI (PTZ = phenothiazine, Ph = phenyl, and PDI = perylenediimide) donor-bridge-acceptor system acts as a molecular wire in toluene, as shown by a change in the rate of radical ion pair (RP) recombination within PTZ+*-(Ph)n-PDI-* from an exponential distance dependence to a linear distance dependence as the bridge becomes longer. The population of the RP and its spin-selective recombination products are sensitive to the application of an external magnetic field, which can be used to directly measure the singlet-triplet splitting, 2J, within the RP. The value of 2J is a weighted sum of electronic coupling matrix elements that are to a good approximation directly proportional to VDA2, the effective coupling between the orbitals on the donor and acceptor sites. The dependence of RP population on magnetic field reveals the relative contributions of the singlet and triplet charge recombination (CR) pathways to overall RP decay. We have now observed an "inversion" of the MFE on the RP population within PTZ+*-(Ph)4-PDI-* and PTZ+*-(Ph)5-PDI-* upon a switch in solvent from toluene to 2-methyltetrahydrofuran (MTHF). We interpret the inversion of the MFE as a switch in the relative importance of the singlet and triplet charge recombination (CRS, CRT) pathways due to a stabilization of the RP state by more polar MTHF, making CRS more energetically favorable. This change in mechanism illustrates the sensitivity of molecular wire behavior to the surrounding environment. PMID:15291533

  19. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin.

    PubMed

    Deng, Hongzhang; Liu, Jinjian; Zhao, Xuefei; Zhang, Yuming; Liu, Jianfeng; Xu, Shuxin; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2014-11-10

    The application of PEG-b-PCL micelles was dampened by their inherent low drug-loading capability and relatively poor cell uptake efficiency. In this study, a series of novel PEG-b-PCL copolymers methoxy poly(ethylene glycol)-b-poly(ε-caprolactone-co-γ-dimethyl maleamidic acid -ε-caprolactone) (mPEG-b-P(CL-co-DCL)) bearing different amounts of acid-labile β-carboxylic amides on the polyester moiety were synthesized. The chain structure and chemical composition of copolymers were characterized by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC). mPEG-b-P(CL-co-DCL) with critical micellar concentrations (CMCs) of 3.2-6.3 μg/mL could self-assemble into stable micelles in water with diameters of 100 to 150 nm. Doxorubicin (DOX), a cationic hydrophobic drug, was successfully encapsulated into the polymer micelles, achieving a very high loading content due to electrostatic interaction. Then the stability, charge-conversional behavior, loading and release profiles, cellular uptake and in vitro cytotoxicity of free drug and drug-loaded micelles were evaluated. The β-carboxylic amides functionalized polymer micelles are negatively charged and stable in neutral solution but quickly become positively charged at pH 6.0, due to the hydrolysis of β-carboxylic amides in acidic conditions. The pH-triggered negative-to-positive charge reversal not only resulted in a very fast drug release in acidic conditions, but also effectively enhanced the cellular uptake by electrostatic absorptive endocytosis. The MTT assay demonstrated that mPEG-b-P(CL-co-DCL) micelles were biocompatible to HepG2 cells while DOX-loaded micelles showed significant cytotoxicity. In sum, the introduction of acid-labile β-carboxylic amides on the polyester block in mPEG-b-P(CL-co-DCL) exhibited great potentials for the modifications in the stability in blood circulation, drug solubilization, and release properties, as well as cell internalization and intracellular drug release. PMID:25325531

  20. Strong anisotropy in the proton emission following fragmentation of H2O molecules by impact with slow, highly charged Xenon ions

    NASA Astrophysics Data System (ADS)

    Pei?, Z. D.; Hellhammer, R.; Sulik, B.; Stolterfoht, N.

    2009-12-01

    We measured the energy and angular distribution of ionic fragments produced by the interaction of 1-220 keV Xe22+ ions with water molecules. The measured distributions strongly depend on the projectile charge state and energy, as seen from the comparison of the results with previously published data for 5 keV He2+, and 2 and 90 keV Ne(3-9)+ ions. A significant forward-backward asymmetry of the energy and intensity of the H+ fragments is observed. The interpretation of the experimental results is guided by means of classical trajectory simulations based on a Coulomb explosion model. The experimental finding of a strong enhancement of the H+ yield at 90 is attributed to an alignment of the molecular axis during the collision and the momentum transfer from the slow projectile.

  1. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    NASA Astrophysics Data System (ADS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-10-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  2. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    NASA Astrophysics Data System (ADS)

    Ornelas-Lizcano, J. C.; Guirado-López, R. A.

    2015-03-01

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy± clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy± clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy+ clusters are more reactive than the anionic species and the final Al2O+ + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy+ clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  3. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule.

    PubMed

    Ornelas-Lizcano, J C; Guirado-López, R A

    2015-03-28

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy (±) clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy (±) clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy (+) clusters are more reactive than the anionic species and the final Al2O(+) + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy (+) clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred. PMID:25833583

  4. Theoretical investigation of the stability of highly charged C60 molecules produced with intense near-infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Sahnoun, Riadh; Nakai, Katsunori; Sato, Yukio; Kono, Hirohiko; Fujimura, Yuichi; Tanaka, Motohiko

    2006-11-01

    We theoretically investigated the stability of highly charged C60z + cations produced from C60 with an ultrashort intense laser pulse of λ ˜1800nm. We first calculated the equilibrium structures and vibrational frequencies of C60z + as well as C60. We then calculated key energies relevant to dissociation of C60z +, such as the excess vibrational energy acquired upon sudden tunnel ionization from C60. By comparing the magnitudes of the calculated energies, we found that C60z + cations up to z ˜12 can be produced as a stable or quasistable (microsecond-order lifetime) intact parent cation, in agreement with the recent experimental report by V. R. Bhardwaj et al. [Phys. Rev. Lett. 93, 043001 (2004)] that almost only intact parent C60z + cations up to z =12 are detected by a mass spectrometer. The results of Rice-Ramsperger-Kassel-Marcus calculation suggest that the lifetime of C60z + drastically decreases by ten orders of magnitude as z increases from z =11 to z =13. Using the time-dependent adiabatic state approach, we also investigated the vibrational excitation of C60 and C60z + by an intense near-infrared pulse. The results indicate that large-amplitude vibration with energy of >10eV is induced in the delocalized hg(1)-like mode of C60z +.

  5. Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems

    SciTech Connect

    King, Andrew W.; Herlihy, Patrick E.; Cox, Hazel

    2014-07-28

    Non-relativistic quantum chemical calculations of the particle mass, m{sub 2}{sup ±}, corresponding to the dissociation threshold in a range of Coulomb three-particle systems of the form (m{sub 1}{sup ±}m{sub 2}{sup ±}m{sub 3}{sup ∓}), are performed variationally using a series solution method with a Laguerre-based wavefunction. These masses are used to calculate an accurate stability boundary, i.e., the line that separates the stability domain from the instability domains, in a reciprocal mass fraction ternary diagram. This result is compared to a lower bound to the stability domain derived from symmetric systems and reveals the importance of the asymmetric (mass-symmetry breaking) terms in the Hamiltonian at dissociation. A functional fit to the stability boundary data provides a simple analytical expression for calculating the minimum mass of a third particle required for stable binding to a two-particle system, i.e., for predicting the bound state stability of any unit-charge three-particle system.

  6. Ground state initialization in a doubly-charged, vertically-stacked InAs quantum dot molecule

    NASA Astrophysics Data System (ADS)

    Ross, Aaron; Chow, Colin; Sham, Lu; Bracker, Allan; Gammon, Daniel; Steel, Duncan

    2015-03-01

    We report on the rapid optical initialization of a subset of the two-electron ground states of a self-assembled, vertically stacked InAs quantum dot molecule, where the states of the electron are approximately localized to separate quantum dots with very little spatial overlap. Four eigenstates, a singlet and three triplets (S,T0,T+, T-) , arise from the exchange coupling and are identified via bias-dependent photoluminescence measurements. The degeneracy of the triplet states is lifted using an in-plane magnetic field (Voigt geometry). This allows for the determination of the in-plane electron and hole g-factors using differential transmission measurements in the co-tunneling regime (to avoid optical pumping). Three of the four eigenstates (S,T+, T-) can then be initialized with high fidelity using continuous wave (CW) optical pumping. Optical transition degeneracies prohibit simple CW initialization of the T0 state. Efforts towards near-unity initialization of the T0 state via two-photon Raman transitions will be presented. This work represents the first step in demonstrating a two-qubit quantum register based on electron spins in self-assembled quantum dots. This work is supported by NSF, ARO, AFSOR, DARPA, and ONR.

  7. Bias tuning charge-releasing leading to negative differential resistance in amorphous gallium oxide/Nb:SrTiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, P. C.; Li, P. G.; Zhi, Y. S.; Guo, D. Y.; Pan, A. Q.; Zhan, J. M.; Liu, H.; Shen, J. Q.; Tang, W. H.

    2015-12-01

    Negative differential resistance (NDR) and bipolar resistive switching (RS) phenomena were observed in Au/Ga2O3-x/Nb:SrTiO3/Au heterostructures fabricated by growing amorphous gallium oxide thin films on 0.7%Nb-doped SrTiO3 substrates using pulsed laser deposition technique. The RS behavior is reproducible and stable without the forming process. The NDR phenomenon happened during the course of RS from low resistance state to high resistance state and was dependent much on the applied forward bias. The bias dependent charge releasing from oxygen vacancies was considered to contribute to the NDR behavior. The results show that there is a very close relationship between NDR and RS.

  8. In-111 chimeric negative-charged-Z2D3 PL-F(ab`){sub 2} imaging of proliferating smooth muscle cell in atherosclerotic lesions

    SciTech Connect

    Carrio, I.; Pieri, P.L.; Narula, J.

    1996-05-01

    Metabolically active plaques have proliferating smooth muscle cells. In-111-labeled negative-charged modified Z2-D3 PL-F(ab`){sub 2} (NC-Z2D3) specific for an antigen in proliferating smooth muscle cells has been shown to accumulate in rabbit atherosclerotic plaques. The safety, biodistribution and accumulation of NC-Z2D3 were assessed in 11 patients with angiographically confirmed carotid atheromas eligible for endarterectomy. NC-Z2D3 (250 mcg) labeled with 5 mCi of In-11 was administered by slow i.v. inj.. Planar and SPECT images were obtained 4, 24, 48 and 72 hrs later. Endarterectomy was then performed and the specimens were analyzed. Focal uptake of In-111-NCZ2D3 at the site of the carotid plaques was seen at 4 hrs. Target to control ratio at 4 hrs was 2.20 {plus_minus} 0.3, 1.98 {plus_minus} 0.03 at 24 hrs, 1.60 {plus_minus} 0.2 at 48 hrs and 1.45 {plus_minus} 0.2 at 72 hrs. The pattern of uptake was frequently more extended than the stenotic regions as delineated by the angiograms. Avidin-Biotin-Peroxidase immunostaining of the specimens revealed staining of proliferating smooth muscle cells at the site of the plaque. Percent of the injected dose per gram localization in the specimens was 0.0475 {plus_minus} 0.007. Blood clearance followed a biexponential curve with a mean t{1/2} of 920 minutes. Nonspecific localization of the antibody was observed in the liver, bone-marrow and kidneys. Adverse reactions were not seen. This study demonstrates the feasibility of targeting active atherosclerotic lesions with negatively charge-modified antibody.

  9. Conformation-related exciton localization and charge-pair formation in polythiophenes: ensemble and single-molecule study.

    PubMed

    Sugimoto, Toshikazu; Habuchi, Satoshi; Ogino, Kenji; Vacha, Martin

    2009-09-10

    We study conformation-dependent photophysical properties of polythiophene (PT) by molecular dynamics simulations and by ensemble and single-molecule optical experiments. We use a graft copolymer consisting of a polythiophene backbone and long polystyrene branches and compare its properties with those obtained on the same polythiophene derivative without the side chains. Coarse-grain molecular dynamics simulations show that in a poor solvent, the PT without the side chains (PT-R) forms a globulelike conformation in which distances between any two conjugated segments on the chain are within the Forster radius for efficient energy transfer. In the PT with the polystyrene branches (PT-PS), the polymer main PT chain retains an extended coillike conformation, even in a poor solvent, and the calculated distances between conjugated segments favor energy transfer only between a few neighboring chromophores. The theoretical predictions are confirmed by measurements of fluorescence anisotropy and fluorescence blinking of the polymers' single chains. High anisotropy ratios and two-state blinking in PT-R are due to localization of the exciton on a single conjugated segment. These signatures of exciton localization are absent in single chains of PT-PS. Electric-field-induced quenching measured as a function of concentration of PT dispersed in an inert matrix showed that in well-isolated chains of PT-PS, the exciton dissociation is an intrachain process and that aggregation of the PT-R chains causes an increase in quenching due to the onset of interchain interactions. Measurements of the field-induced quenching on single chains indicate that in PT-R, the exciton dissociation is a slower process that takes place only after the exciton is localized on one conjugated segment. PMID:19691332

  10. ZRBA1, a Mixed EGFR/DNA Targeting Molecule, Potentiates Radiation Response Through Delayed DNA Damage Repair Process in a Triple Negative Breast Cancer Model

    SciTech Connect

    Heravi, Mitra; Kumala, Slawomir; Rachid, Zakaria; Jean-Claude, Bertrand J.; Radzioch, Danuta; Muanza, Thierry M.

    2015-06-01

    Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Western blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.

  11. Identification of the SLAM Adapter Molecule EAT-2 as a Lupus-Susceptibility Gene That Acts through Impaired Negative Regulation of Dendritic Cell Signaling.

    PubMed

    Talaei, Nafiseh; Yu, Tao; Manion, Kieran; Bremner, Rod; Wither, Joan E

    2015-11-15

    We showed previously that C57BL/6 congenic mice with an introgressed homozygous 70 cM (125.6 Mb) to 100 cM (179.8 Mb) interval on c1 from the lupus-prone New Zealand Black (NZB) mouse develop high titers of antinuclear Abs and severe glomerulonephritis. Using subcongenic mice, we found that a genetic locus in the 88-96 cM region was associated with altered dendritic cell (DC) function and synergized with T cell functional defects to promote expansion of pathogenic proinflammatory T cell subsets. In this article, we show that the promoter region of the NZB gene encoding the SLAM signaling pathway adapter molecule EWS-activated transcript 2 (EAT-2) is polymorphic, which results in an ? 70% reduction in EAT-2 in DC. Silencing of the EAT-2 gene in DC that lacked this polymorphism led to increased production of IL-12 and enhanced differentiation of T cells to a Th1 phenotype in T cell-DC cocultures, reproducing the phenotype observed for DC from congenic mice with the NZB c1 70-100 cM interval. SLAM signaling was shown to inhibit production of IL-12 by CD40L-activated DCs. Consistent with a role for EAT-2 in this inhibition, knockdown of EAT-2 resulted in increased production of IL-12 by CD40-stimulated DC. Assessment of downstream signaling following CD40 cross-linking in the presence or absence of SLAM cross-linking revealed that SLAM coengagement blocked activation of p38 MAPK and JNK signaling pathways in DC, which was reversed in DC with the NZB EAT-2 allele. We conclude that EAT-2 negatively regulates cytokine production in DC downstream of SLAM engagement and that a genetic polymorphism that disturbs this process promotes the development of lupus. PMID:26432891

  12. Sry HMG Box Protein 9-positive (Sox9+) Epithelial Cell Adhesion Molecule-negative (EpCAM−) Biphenotypic Cells Derived from Hepatocytes Are Involved in Mouse Liver Regeneration*

    PubMed Central

    Tanimizu, Naoki; Nishikawa, Yuji; Ichinohe, Norihisa; Akiyama, Haruhiko; Mitaka, Toshihiro

    2014-01-01

    It has been shown that mature hepatocytes compensate tissue damages not only by proliferation and/or hypertrophy but also by conversion into cholangiocyte-like cells. We found that Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM−) hepatocyte nuclear factor 4α-positive (HNF4α+) biphenotypic cells showing hepatocytic morphology appeared near EpCAM+ ductular structures in the livers of mice fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. When Mx1-Cre:ROSA mice, which were injected with poly(I:C) to label mature hepatocytes, were fed with the DDC diet, we found LacZ+Sox9+ cells near ductular structures. Although Sox9+EpCAM− cells adjacent to expanding ducts likely further converted into ductular cells, the incidence was rare. To know the cellular characteristics of Sox9+EpCAM− cells, we isolated them as GFP+EpCAM− cells from DDC-injured livers of Sox9-EGFP mice. Sox9+EpCAM− cells proliferated and could differentiate to functional hepatocytes in vitro. In addition, Sox9+EpCAM− cells formed cysts with a small central lumen in collagen gels containing Matrigel® without expressing EpCAM. These results suggest that Sox9+EpCAM− cells maintaining biphenotypic status can establish cholangiocyte-type polarity. Interestingly, we found that some of the Sox9+ cells surrounded luminal spaces in DDC-injured liver while they expressed HNF4α. Taken together, we consider that in addition to converting to cholangiocyte-like cells, Sox9+EpCAM− cells provide luminal space near expanded ductular structures to prevent deterioration of the injuries and potentially supply new hepatocytes to repair damaged tissues. PMID:24482234

  13. A disparate subset of double-negative T cells contributes to the outcome of murine fulminant viral hepatitis via effector molecule fibrinogen-like protein 2.

    PubMed

    Wu, Di; Wang, Hongwu; Yan, Weiming; Chen, Tao; Wang, Ming; Han, Meifang; Wu, Zeguang; Wang, Xiaojing; Ai, Guo; Xi, Dong; Shen, Guanxin; Luo, Xiaoping; Ning, Qin

    2016-04-01

    The underlying immune-mediated mechanisms involved in virus-induced severe hepatitis have not been well elucidated. In this study, we investigated the role of CD3(+)CD4(-)CD8(-) double-negative T (DN T) cells in the pathogenesis of fulminant viral hepatitis (FVH) induced by murine hepatitis virus strain 3 (MHV-3). After MHV-3 infection, the proportions of DN T cells increased significantly in BALB/cJ mice, and splenic DN T cells expressing high levels of CD69 were recruited by MHV-3-infected hepatocytes to the liver. Serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin increased, accompanied by massive hepatocyte necrosis. These DN T cells were predominantly consisted of a TCRαβ(+) subset expressing high levels of CD44 and did not produce cytokine except IL-2. Adoptive transfer of this subset of DN T cells to the MHV-3-infected mice resulted in an increase in murine fibrinogen-like protein 2 (mfgl2) expressions in association with massive fibrin deposition in the liver. Following MHV-3 infection, membrane mfgl2 expression and functional procoagulant activity increased remarkably in the DN T cells. Introduction of a recombinant adenovirus which encoded a microRNA specifically targeting mfgl2 gene (Ad-mfgl2-miRNA) in vivo significantly inhibited the hepatic expression of mfgl2 and improved survival in mice. However, under this condition, adoptive transfer of the DN T cells accelerated the disease progression and reversed the benefit from mfgl2 gene silence, leading to a 100 % death rate. Our results demonstrate that DN T cells contribute to the outcome of MHV-3-induced FVH via an important effector molecule mfgl2. PMID:26482053

  14. Magnetic metal-organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Bian, Wei; Zheng, Jiangnan; Cai, Zongwei

    2015-05-25

    Zeolitic imidazolate framework-8 coated magnetic nanocomposites (Fe3O4@ZIF-8 MNCs) served as an absorbent and a matrix for negative-ion MALDI-TOF MS. The host-guest property and interference-free background made them an ideal dual platform for the sensitive analysis of small molecules. PMID:25915018

  15. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Ding, Ping; Zhang, Hao; Wu, Xianzhang; Chen, Jian; Yang, Yusheng

    2013-11-01

    Experiments are made with negative electrode of 2 V cell and 12 V lead-acid battery doped with typical activated carbon additives. It turns out that the negative electrode containing tens-of-micron-sized carbon particles in NAM exhibits markedly increased HRPSoC cycle life than the one containing carbon particles with much smaller size of several microns or the one containing no activated carbon. The improved performance is mainly attributed to the optimized NAM microstructure and the enhanced electrode reaction kinetics by introducing appropriate activated carbon. The beneficial effects can be briefly summarized from three aspects. First, activated carbon acts as new porous-skeleton builder to increase the porosity and active surface of NAM, and thus facilitates the electrolyte diffusion from surface to inner and provides more sites for crystallization/dissolution of lead sulfate; second, activated carbon plays the role of electrolyte supplier to provide sufficient H2SO4 in the inner of plate when the diffusion of H2SO4 from plate surface cannot keep pace of the electrode reaction; Third, activated carbon acts as capacitive buffer to absorb excess charge current which would otherwise lead to insufficient NAM conversion and hydrogen evolution.

  16. Charge transfer in TATB and HMX under extreme conditions.

    PubMed

    Zhang, Chaoyang; Ma, Yu; Jiang, Daojian

    2012-11-01

    Charge transfer is usually accompanied by structural changes in materials under different conditions. However, the charge transfer in energetic materials that are subjected to extreme conditions has seldom been explored by researchers. In the work described here, the charge transfer in single molecules and unit cells of the explosives TATB and HMX under high temperatures and high pressures was investigated by performing static and dynamic calculations using three DFT methods, including the PWC functional of LDA, and the BLYP and PBE functionals of GGA. The results showed that negative charge is transferred from the nitro groups of molecular or crystalline TATB and HMX when they are heated. All DFT calculations for the compressed TATB unit cell indicate that, generally, negative charge transfer occurs to its nitro groups as the compression increases. PWC and PBE calculations for crystalline HMX show that negative charge is first transferred to the nitro groups but, as the compression increases, the negative charge is transferred from the nitro groups. However, the BLYP calculations indicated that there was gradual negative charge transfer to the nitro groups of HMX, similar to the case for TATB. The unrelaxed state of the uniformly compressed TATB causes negative charge to be transferred from its nitro groups, in contrast to what is seen in the relaxed state. Charge transfer in TATB is predicted to occur much more easily than in HMX. PMID:22707279

  17. Nonlocal desorption of chlorobenzene molecules from the Si(111)-(7×7) surface by charge injection from the tip of a scanning tunneling microscope: remote control of atomic manipulation.

    PubMed

    Sloan, P A; Sakulsermsuk, S; Palmer, R E

    2010-07-23

    We report the nonlocal desorption of chlorobenzene molecules from the Si(111)-(7×7) surface by charge injection from the laterally distant tip of a scanning tunneling microscope and demonstrate remote control of the manipulation process by precise selection of the atomic site for injection. Nonlocal desorption decays exponentially as a function of radial distance (decay length ∼100  A) from the injection site. Electron injection at corner-hole and faulted middle adatoms sites couples preferentially to the desorption of distant adsorbate molecules. Molecules on the faulted half of the unit cell desorb with higher probability than those on the unfaulted half. PMID:20867889

  18. Adsorption of carbon monoxide on small aluminum oxide clusters: Role of the local atomic environment and charge state on the oxidation of the CO molecule

    SciTech Connect

    Ornelas-Lizcano, J. C.; Guirado-López, R. A.

    2015-03-28

    We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small Al{sub x}O{sub y}{sup ±} clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al{sub 2}O{sub 3}, as well as smaller Al{sub 2}O{sub 2} and Al{sub 2}O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged Al{sub x}O{sub y}{sup ±} clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO{sub 2} in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO{sub 2} subunit. The vibrational spectra of Al{sub x}O{sub y} + CO{sub 2} provides well defined finger prints that may allow the identification of specific isomers. The Al{sub x}O{sub y}{sup +} clusters are more reactive than the anionic species and the final Al{sub 2}O{sup +} + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on Al{sub x}O{sub y}{sup +} clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.

  19. Impact of multiple negative charges on blood clearance and biodistribution characteristics of 99mTc-labeled dimeric cyclic RGD peptides.

    PubMed

    Yang, Yong; Ji, Shundong; Liu, Shuang

    2014-09-17

    This study sought to evaluate the impact of multiple negative charges on blood clearance kinetics and biodistribution properties of (99m)Tc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu in the presence of diisopropylethylamine. Their IC50 values were determined to be 31 ± 5 and 41 ± 6 nM, respectively, against (125)I-echistatin bound to U87MG glioma cells in a whole-cell displacement assay. Complexes [(99m)Tc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] ((99m)Tc-P6G-RGD2) and [(99m)Tc(HYNIC-P6D-RGD2)(tricine)(TPPTS)] ((99m)Tc-P6D-RGD2) were prepared in high radiochemical purity (RCP > 95%) and specific activity (37-110 GBq/μmol). They were evaluated in athymic nude mice bearing U87MG glioma xenografts for their biodistribution. The most significant difference between (99m)Tc-P6D-RGD2 and (99m)Tc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The initial blood radioactivity level for (99m)Tc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that of (99m)Tc-P6G-RGD2 (0.88 ± 0.05%ID/g), but this difference disappeared at 60 min p.i. (99m)Tc-P6D-RGD2 had much lower tumor uptake (2.20-3.11%ID/g) than (99m)Tc-P6G-RGD2 (7.82-9.27%ID/g) over a 2 h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference in their blood activity and tumor uptake is most likely related to the nine negative charges and high protein binding of (99m)Tc-P6D-RGD2. Despite its low uptake in U87MG tumors, the tumor uptake of (99m)Tc-P6D-RGD2 was integrin αvβ3-specific. SPECT/CT studies were performed using (99m)Tc-P6G-RGD2 in athymic nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts. The SPECT/CT data demonstrated the tumor-targeting capability of (99m)Tc-P6G-RGD2, and its tumor uptake depends on the integrin αvβ3 expression levels on tumor cells and neovasculature. It was concluded that the multiple negative charges have a significant impact on the blood clearance kinetics and tumor uptake of (99m)Tc-labeled dimeric cyclic RGD peptides. PMID:25144854

  20. Impact of Multiple Negative Charges on Blood Clearance and Biodistribution Characteristics of 99mTc-Labeled Dimeric Cyclic RGD Peptides

    PubMed Central

    2015-01-01

    This study sought to evaluate the impact of multiple negative charges on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu in the presence of diisopropylethylamine. Their IC50 values were determined to be 31 ± 5 and 41 ± 6 nM, respectively, against 125I-echistatin bound to U87MG glioma cells in a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2) and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)] (99mTc-P6D-RGD2) were prepared in high radiochemical purity (RCP > 95%) and specific activity (37–110 GBq/μmol). They were evaluated in athymic nude mice bearing U87MG glioma xenografts for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2 h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference in their blood activity and tumor uptake is most likely related to the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the tumor uptake of 99mTc-P6D-RGD2 was integrin αvβ3-specific. SPECT/CT studies were performed using 99mTc-P6G-RGD2 in athymic nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts. The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on the integrin αvβ3 expression levels on tumor cells and neovasculature. It was concluded that the multiple negative charges have a significant impact on the blood clearance kinetics and tumor uptake of 99mTc-labeled dimeric cyclic RGD peptides. PMID:25144854

  1. Charge Transfer Reactions Induce Born-Oppenheimer Breakdown in Surface Chemistry: Applications of Double Resonance Spectroscopy in Molecule-Surface Scattering

    NASA Astrophysics Data System (ADS)

    Wodtke, Alec M.

    2013-06-01

    Atomic and molecular interactions constitute a many-body quantum problem governed fundamentally only by the Coulomb forces between many electrons and nuclei. While simple to state, computers are simply not fast enough to solve this problem by brute force, except for the simplest examples. Combining the Born-Oppenheimer Approximation (BOA) with Density Functional Theory (DFT), however, allows theoretical simulations of extraordinarily complex chemical systems including molecular interactions at solid metal surfaces, the physical basis of surface chemistry. This lecture describes experiments demonstrating the limits of the BOA/DFT approximation as it relates to molecules interacting with solid metal surfaces. One of the most powerful experimental tools at our disposal is a form of double resonance spectroscopy, which allows us to define the quantum state of the molecule both before and after the collision with the surface, providing a complete picture of the resulting energy conversion processes. With such data, we are able to emphasize quantitative measurements that can be directly compared to first principles theories that go beyond the Born-Oppenheimer approximation. One important outcome of this work is the realization that Born-Oppenheimer breakdown can be induced by simple charge transfer reactions that are common in surface chemistry. J. D. White, J. Chen, D. Matsiev, D. J. Auerbach and A. M. Wodtke Nature {433}(7025), 503-505 (2005) Y. H. Huang, C. T. Rettner, D. J. Auerbach and A. M. Wodtke Science {290}(5489), 111-114 (2000) R. Cooper, I. Rahinov, Z. S. Li, D. Matsiev, D. J. Auerbach and A. M. Wodtke Chemical Science {1}(1), 55-61 (2010) J. Larue, T. Schäfer, D. Matsiev, L. Velarde, N. H. Nahler, D. J. Auerbach and A. M. Wodtke PCCP {13}(1), 97-99 (2011).

  2. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. III. Molecules with partial charges at bulk phases, confined geometries and interfaces

    NASA Astrophysics Data System (ADS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-09-01

    In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks-Chandler-Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.

  3. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. III. Molecules with partial charges at bulk phases, confined geometries and interfaces

    SciTech Connect

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-09-07

    In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks–Chandler–Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.

  4. Charge-controlled permeability of polyelectrolyte microcapsules.

    PubMed

    Tong, Weijun; Dong, Wenfei; Gao, Changyou; Möhwald, Helmuth

    2005-07-14

    Multilayer microcapsules showing unique charge-controlled permeability have been successfully fabricated by employing poly(styrene sulfonate) (PSS)-doped CaCO3 particles as templates. Encapsulation of the PSS molecules is thus achieved after core removal. Scanning force microscopy (SFM), UV-vis, Raman spectroscopy, and zeta-potential confirm the existence of the PSS molecules in the CaCO3 particles and the resultant microcapsules, which are initially incorporated during the core fabrication process. A part of these additionally introduced PSS molecules interacts with PAH molecules residing on the inner surface of the multilayer wall to form a stable complex, while the other part is intertwined in the capsule wall or in a free state. Capsules with this structure possess many special features, such as highly sensitive permeability tuned by probe charge and environmentally controlled gating. They can completely reject negatively charged probes, but attract positively charged species to form a higher concentration in the capsule interior, as evidenced by confocal microscopy. For example, the capsules completely exclude dextran labeled with fluorescein isothiocyanate (FITC-dextran), but are permeable for dextran labeled with tetramethylrhodamine isothiocyanate (TRITC-dextran) having similar molecular mass (from 4 to 70 kDa), although there are only few charged dyes in a dextran chain. By reversing the charge of the probes through pH change, or by suppressing charge repulsion through salt addition, the permeation can be readily switched for proteins such as albumin or small dyes such as fluorescein sodium salt. PMID:16852639

  5. Theoretical study of stability and charge-transport properties of coronene molecule and some of its halogenated derivatives: A path to ambipolar organic-based materials?

    NASA Astrophysics Data System (ADS)

    Sancho-García, J. C.; Pérez-Jiménez, A. J.

    2014-10-01

    We have carefully investigated the structural and electronic properties of coronene and some of its fluorinated and chlorinated derivatives, including full periphery substitution, as well as the preferred orientation of the non-covalent dimer structures subsequently formed. We have paid particular attention to a set of methodological details, to first obtain single-molecule magnitudes as accurately as possible, including next the use of modern dispersion-corrected methods to tackle the corresponding non-covalently bound dimers. Generally speaking, this class of compounds is expected to self-assembly in neighboring π-stacks with dimer stabilization energies ranging from -20 to -30 kcal mol-1 at close distances around 3.0-3.3 Å. Then, in a further step, we have also calculated hole and electron transfer rates of some suitable candidates for ambipolar materials, and corresponding charge mobility values, which are known to critically depend on the supramolecular organization of the samples. For coronene and per-fluorinated coronene, we have found high values for their hopping rates, although slightly smaller for the latter due to an increase (decrease) of the reorganization energies (electronic couplings).

  6. Imaging ion-molecule reactions: Charge transfer and C-N bond formation in the C{sup +}+ NH{sub 3} system

    SciTech Connect

    Pei, Linsen; Farrar, James M.

    2012-05-28

    The velocity mapping ion imaging method is applied to the ion-molecule reactions occurring between C{sup +} and NH{sub 3}. The velocity space images are collected over the relative collision energy range from 1.5 to 3.3 eV, allowing both product kinetic energy distributions and angular distributions to be obtained from the data. The charge transfer process appears to be direct, dominated by long-range electron transfer that results in minimal deflection of the products. The product kinetic energy distributions are consistent with a process dominated by energy resonance. The kinetic energy distributions for C-N bond formation appear to scale with the total available energy, providing strong evidence that energy in the [CNH{sub 3}]{sup +} precursor to products is distributed statistically. The angular distributions for C-N bond formation show pronounced forward-backward symmetry, as expected for a complex that resembles a prolate symmetric top decaying along its symmetry axis.

  7. Interfacial Engineering for Enhanced Light Absorption and Charge Transfer of a Solution-Processed Bulk Heterojunction Based on Heptazole as a Small Molecule Type of Donor.

    PubMed

    Lim, Iseul; Bui, Hoa Thi; Shrestha, Nabeen K; Lee, Joong Kee; Han, Sung-Hwan

    2016-04-01

    In the present study, a solution-processed organic semiconductor based on indolocarbazole derivative (heptazole) is introduced as a p-type donor material for a bulk-heterojunction photovoltaic device. The heptazole has an optical band gap of 2.97 eV, and its highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels are compactable with the PC60BM to construct a donor-acceptor heterojuction for energy harvesting and transfer. When the bulk-heterojunction photovoltaic devices consisting of ITO/PEDOT:PSS/heptazole:PC60BM/Al with different blending ratio of heptazole:PC60BM were constructed, the cell with 1:1 blending ratio exhibited the best power conversion efficiency. Further, when an indoline organic dye (D149) was introduced as an interfacial modifier to the above donor/acceptor bulk heterojunction, the device demonstrated an enhanced overall power conversion efficiency from 1.26% to 2.51% hence demonstrating enhancement by the factor of 100%. The device was further characterized using electronic absorption spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, and the photovoltage decay kinetics. These studies reveal that the enhanced power conversion efficiency of the device is due to the enhanced charge transfer with the complementary light absorption feature of the interfacial D149 dye molecules. PMID:26999287

  8. Disinfection of Escherichia coli Gram negative bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism.

    PubMed

    Gomathi Devi, LakshmipathiNaik; Nagaraj, Basavalingaiah

    2014-01-01

    The antibacterial activity of silver deposited TiO2 (Ag-TiO2 ) against Gram negative Escherichia coli bacteria was investigated by varying the Ag metal content from 0.10 to 0.50% on the surface of TiO2 . Ag depositions by the photoreduction method were found to be stable. Surface silver metallization was confirmed by EDAX and XPS studies. Photoluminescence studies show that the charge carrier recombination is less for 0.1% Ag-TiO2 and this catalyst shows superior bactericidal activity under solar light irradiation compared to Sol gel TiO2 (SG-TiO2 ) due to the surface plasmon effect. The energy levels of deposited Ag are dependent on the Ag content and it varies from -4.64 eV to -1.30 eV with respect to the vacuum energy level based on atomic silver to bulk silver deposits. The ability of electron transfer from Ag deposit to O2 depends on the position of the energy levels. The 0.25% and 0.50% Ag depositions showed detrimental effect on bactericidal activity due to the mismatch of energy levels. The effect of the EROS (External generation of the Reactive Oxygen Species by 0.1% Ag-TiO2 ) and IROS (Interior generation of Reactive Oxygen Species within the bacteria) on the bactericidal inactivation is discussed in detail. PMID:24995499

  9. Dynamics of ion-molecule reactions from beam experiments: A historical survey

    SciTech Connect

    Herman, Z.; Futrell, Jean H.

    2015-02-01

    A historical survey of beam scattering studies of ion-molecule reactions from the sixties up to the present time is presented. The centers of research that developed key instrumentation for these studies and early achievements in characterizing basic collisional mechanisms in scattering experiments are reviewed. Important classes of cation-molecule reaction dynamics, impulsive atom-transfer, reaction complexes, electron transfer (charge transfer) dynamics and the dynamics of negative ion-molecule reactions are described. Selected specific examples of ion-molecule reaction dynamics, including multiply-charged and ion-surface collisions, are briefly presented. (C) 2014 Elsevier B.V. All rights reserved.

  10. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N. (Oak Ridge, TN)

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  11. Nonlinear Optical Properties of X(C6H5)4 (X = B(-), C, N(+), P(+)): A New Class of Molecules with a Negative Third-Order Polarizability.

    PubMed

    Gieseking, Rebecca L; Ensley, Trenton R; Hu, Honghua; Hagan, David J; Risko, Chad; Van Stryland, Eric W; Brédas, Jean-Luc

    2015-08-01

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B(-), C, N(+), and P(+), that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: These systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications. PMID:26098179

  12. Study of electrochemically active carbon, Ga2O3 and Bi2O3 as negative additives for valve-regulated lead-acid batteries working under high-rate, partial-state-of-charge conditions

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Chen, Baishuang; Wu, Jinzhu; Wang, Dianlong

    2014-02-01

    Electrochemically active carbon (EAC), Gallium (III) oxide (Ga2O3) and Bismuth (III) oxide (Bi2O3) are used as the negative additives of valve-regulated lead-acid (VRLA) batteries to prolong the cycle life of VRLA batteries under high-rate partial-state-of-charge (HRPSoC) conditions, and their effects on the cycle life of VRLA batteries are investigated. It is found that the addition of EAC in negative active material can restrain the sulfation of the negative plates and prolong the cycle performance of VRLA batteries under HRPSoC conditions. It is also observed that the addition of Ga2O3 or Bi2O3 in EAC can effectively increase the overpotential of hydrogen evolution on EAC electrodes, and decrease the evolution rate of hydrogen. An appropriate addition amount of Ga2O3 or Bi2O3 in the negative plates of VRLA batteries can decrease the cut-off charging voltage, increase the cut-off discharging voltage, and prolong the cycle life of VRLA batteries under HRPSoC conditions. The battery added with 0.5% EAC and 0.01% Ga2O3 in negative active material shows a lowest cut-off charging voltage and a highest cut-off discharging voltage under HRPSoC conditions, and its' cycle life reaches about 8100 cycles which is at least three times longer than that without Ga2O3.

  13. Investigations of correlation between nitro group charges and C-nitro bond strength, and amino group effects on C-nitro bonds in planar conjugated molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoyang

    2006-05-01

    The correlation between the nitro group charges ( QNitro) and the C-Nitro bond length ( RC-Nitro), and the positional effects of amino groups on C-nitro bond strength in planar conjugated molecules such as the amino-nitro derivatives of benzene, naphthalene, anthracene, phenanthrene, alkene, and minor heterocyclic nitrogen compounds are computationally investigated. All calculations are performed using density functional theory (DFT) and the general gradient approximation (GGA) method with the Beck-LYP hybrid functional and the DNP basis set in Acceryls' code Dmol 3. The results are: (1) QNitro can be used as a structural parameter to estimate the strength of the C-Nitro bond, and further the stability of the nitro compound for 15 fitted lines show there is a good linear QNitro- RC-Nitro relationship in any group of derivatives. In addition, QNitro is more sensitive to structural changes and more effective to assess the C-Nitro bond strength than RC-Nitro; (2) the nitrating reaction of aromatic hydrocarbon can be qualitatively predicted and compared by QNitro: the more QNitro, the easier the nitrating condition, and the higher occurrence ratio of the corresponding nitrating product and (3) the amino groups on even positions can significantly strengthen C-Nitro bonds, other than those on odd positions. Therefore, in synthesizing insensitive explosives, it should be recommendable to introduce amino groups on even positions, particularly on 2-position due to the combination of the hydrogen bond, the induction effect and the mesomeric effect, which can obviously increase the molecular stability.

  14. Negatively Charged Amino Acids Near and in Transient Receptor Potential (TRP) Domain of TRPM4 Channel Are One Determinant of Its Ca2+ Sensitivity*

    PubMed Central

    Yamaguchi, Soichiro; Tanimoto, Akira; Otsuguro, Ken-ichi; Hibino, Hiroshi; Ito, Shigeo

    2014-01-01

    Transient receptor potential (TRP) channel melastatin subfamily member 4 (TRPM4) is a broadly expressed nonselective monovalent cation channel. TRPM4 is activated by membrane depolarization and intracellular Ca2+, which is essential for the activation. The Ca2+ sensitivity is known to be regulated by calmodulin and membrane phosphoinositides, such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Although these regulators must play important roles in controlling TRPM4 activity, mutation analyses of the calmodulin-binding sites have suggested that Ca2+ binds to TRPM4 directly. However, the intrinsic binding sites in TRPM4 remain to be elucidated. Here, by using patch clamp and molecular biological techniques, we show that there are at least two functionally different divalent cation-binding sites, and the negatively charged amino acids near and in the TRP domain in the C-terminal tail of TRPM4 (Asp-1049 and Glu-1062 of rat TRPM4) are required for maintaining the normal Ca2+ sensitivity of one of the binding sites. Applications of Co2+, Mn2+, or Ni2+ to the cytosolic side potentiated TRPM4 currents, increased the Ca2+ sensitivity, but were unable to evoke TRPM4 currents without Ca2+. Mutations of the acidic amino acids near and in the TRP domain, which are conserved in TRPM2, TRPM5, and TRPM8, deteriorated the Ca2+ sensitivity in the presence of Co2+ or PI(4,5)P2 but hardly affected the sensitivity to Co2+ and PI(4,5)P2. These results suggest a novel role of the TRP domain in TRPM4 as a site responsible for maintaining the normal Ca2+ sensitivity. These findings provide more insights into the molecular mechanisms of the regulation of TRPM4 by Ca2+. PMID:25378404

  15. Alteration of negatively charged residues in the 89 to 99 domain of apoA-I affects lipid homeostasis and maturation of HDL[S

    PubMed Central

    Kateifides, Andreas K.; Gorshkova, Irina N.; Duka, Adelina; Chroni, Angeliki; Kardassis, Dimitris; Zannis, Vassilis I.

    2011-01-01

    Abstract?In this study, we investigated the role of positively and negatively charged amino acids within the 89-99 region of apolipoprotein A-I (apoA-I), which are highly conserved in mammals, on plasma lipid homeostasis and the biogenesis of HDL. We previously showed that deletion of the 89-99 region of apoA-I increased plasma cholesterol and phospholipids, but it did not affect plasma triglycerides. Functional studies using adenovirus-mediated gene transfer of two apoA-I mutants in apoA-I-deficient mice showed that apoA-I[D89A/E91A/E92A] increased plasma cholesterol and caused severe hypertriglyceridemia. HDL levels were reduced, and approximately 40% of the apoA-I was distributed in VLDL/IDL. The HDL consisted of mostly spherical and a few discoidal particles and contained pre?1 and ?4-HDL subpopulations. The lipid, lipoprotein, and HDL profiles generated by the apoA-I[K94A/K96A] mutant were similar to those of wild-type (WT) apoA-I. Coexpression of apoA-I[D89A/E91A/E92A] and human lipoprotein lipase abolished hypertriglyceridemia, restored in part the ?1,2,3,4 HDL subpopulations, and redistributed apoA-I in the HDL2/HDL3 regions, but it did not prevent the formation of discoidal HDL particles. Physicochemical studies showed that the apoA-I[D89A/E91A/E92A] mutant had reduced ?-helical content and effective enthalpy of thermal denaturation, increased exposure of hydrophobic surfaces, and increased affinity for triglyceride-rich emulsions. We conclude that residues D89, E91, and E92 of apoA-I are important for plasma cholesterol and triglyceride homeostasis as well as for the maturation of HDL. PMID:21504968

  16. IR spectroscopic studies of charge transfer in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Beck, Sebastian; Gerbert, David; Krekeler, Christian; Glaser, Tobias; Pucci, Annemarie

    2014-05-01

    Charge transfer (CT) mechanisms are crucial for device performance in organic electronics, but they are still not understood on a fundamental level. Here we want to show that in situ IR spectroscopy is very well suited to investigate CT effects in organic semiconductors in a qualitative and quantitative way. We study the ambipolar transport material 4,4´-bis(N-carbazolyl)-1,1´-biphenyl (CBP) as matrix and cesium carbonate (Cs2CO3) as n-dopant. To achieve doped layers, both materials were evaporated simultaneously. The system is one of the rare ones for n-doping of organic layers. In the spectra of the doped layers, additional absorption bands appear in the mid IR range. These can be assigned to the negatively charged matrix molecules that indicate electron transfer. The charged molecules exhibit these different absorption bands, as the charge transfer leads to a change in bond length and bond strength of the molecules. Our results very well agree with density functional theory calculations of the vibrational spectra of both, charged and non-charged molecules. By fitting the spectra of the doped layers as a superposition of the vibrational oscillators of neutral and charged species, we were able to quantify the amount of charged matrix molecules and to determine the doping efficiency of the investigated systems. For CBP n-doped with Cs2CO3 a hindrance of the CT due to air exposure could be observed.

  17. Dissociative electron attachment to molecules and unstable species relevant in plasma processing

    NASA Astrophysics Data System (ADS)

    Graupner, Karola; Field, Thomas

    2007-10-01

    Collisions between low energy electrons (0 to 10 eV) and molecules can lead to formation of negatively charged fragment ions by dissociative electron attachment. Electron attachment to plasma species, such as unstable molecules, formed in 2.45 GHz microwave discharges of CS2/He [1], C3F6/He, SF6/He, CH4/He and CCl4/He has been investigated with ERIC (Electron Radical Interaction Chamber), which includes a trochoidal electron monochromator and time-of-flight mass spectrometer. Knowledge of the spectra of negative ions formed as a function of electron energy for unstable molecules may be useful for understanding chemical processes and negative ion formation in plasmas. It may also be possible to identify unstable molecules in gas sampled from plasmas with these characteristic negative ion spectra. [1] Dissociative electron attachment to the unstable carbon monosulfide molecule CS, K. Graupner, T. A. Field and L. Feketeova, New J. Phys, 8 (2006) 314.

  18. Charge-exchange processes in collisions of H+,H2+,H3+,He+ , and He2+ ions with CO and CO2 molecules at energies below 1000 eV

    NASA Astrophysics Data System (ADS)

    Werbowy, S.; Pranszke, B.

    2016-02-01

    Absolute measurements of charge-exchange cross sections of H+,H2+,H3+,He+, and He2+ ions in CO and CO2 have been made for energies below 1000 eV, an equivalent of the energy of ionized particles at typical solar-wind conditions. An attenuation method for the case of complex ions of a molecule, taking into account the influence on the ion beam composition of the processes of disintegration of the primary ions into secondary ones with different charge-exchange cross sections, is described. Also the secondary effects, like three-body collisions and re-ionization processes that could emerge at higher pressures of the gas layer, are discussed. Dependence of the cross sections on the number of atomic centers in the projectile have been explained on the basis of the energy defect of the reactions and asymmetric near-resonant charge-exchange process between the ion and target molecule including the Doppler broadening in the interaction of the monoenergetic ion beam and target molecules having an isotropic Maxwellian velocity distribution corresponding to room temperature. Using the semiempirical approach based on the parametrized numerical coupled-channel two-state calculations, we have extrapolated the cross sections to a broader range of velocities.

  19. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Bian, Wei; Cai, Zongwei

    2015-08-01

    CuFe2O4 magnetic nanocrystal clusters (CuFe2O4 MNCs) were proposed as a new matrix for small molecule analysis by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the first time. We demonstrated its advantages over conventional organic matrices in the detection of small molecules such as amino acids, peptides, nucleobases, fatty acids, and steroid hormones. A systematic comparison of CuFe2O4 MNCs with different ionization modes revealed that MS spectra obtained for the CuFe2O4 MNC matrix in the negative ion mode was only featured by deprotonated ion peaks with a free matrix background, which was different from the complicated alkali metal adducts produced in the positive ion mode. The developed method was found relatively tolerant to salt contamination and exhibited good reproducibility. A detection limit down to the subpicomolar level was achieved when testosterone was analyzed. In addition, by comparison of the MS spectra obtained from bare Fe3O4 and MFe2O4 MNC (M = Co, Ni, Cu, Zn) matrices, two main factors of MFe2O4 MNC matrices were revealed to play a vital role in assisting the negative ion desorption/ionization (D/I) process: doping transition metals into ferrite nanocrystals favoring laser absorption and energy transfer and a good match between the UV absorption of MFe2O4 MNCs and the excitation of nitrogen laser source facilitating LDI efficiency. This work creates a new branch of application for MFe2O4 MNCs and provides an alternative solution for small molecule analysis. PMID:26086699

  20. Fluorescent H-Aggregates Hosted by a Charged Cyclodextrin Cavity.

    PubMed

    Mudliar, Niyati H; Singh, Prabhat K

    2016-05-23

    Most macrocyclic host molecules, including cyclodextrins, usually prevent self-aggregation of the guest organic molecules, by exploiting inclusion complexation of the guest with the host. In this work, it was found that a negatively charged β-cylcodextrin derivative induces aggregation of a well-known amyloid sensing dye, Thioflavin-T, and leads to an unprecedented formation of the rarely observed emissive H-type aggregates of the dye. PMID:27028039

  1. Fragmentation of multiply charged hydrocarbon molecules C{sub n}H{sup q+} (n{<=} 4, q{<=} 9) produced in high-velocity collisions: Branching ratios and kinetic energy release of the H{sup +} fragment

    SciTech Connect

    Beroff, K.; Pino, T.; Carpentier, Y.; Van-Oanh, N. T.; Chabot, M.; Tuna, T.; Martinet, G.; Le Padellec, A.; Lavergne, L.

    2011-09-15

    Fragmentation branching ratios for channels involving H{sup +} emission and associated kinetic energy release of the H{sup +} fragment [KER(H{sup +})] have been measured for multicharged C{sub n}H{sup q+} molecules produced in high velocity (3.6 a.u.) collisions between C{sub n}H{sup +} projectiles and helium atoms. For CH{sup q+} (q{<=} 4) molecules, measured KER(H{sup +}) were found well below predictions of the simple point charge Coulomb model (PCCM) for all q values. Multireference configuration interaction (MRCI) calculations for ground as well as electronic excited states were performed which allowed a perfect interpretation of the CH{sup q+} experimental results for low charges (q = 2-3) as well as for the highest charge (q = 4). In this last case we could show, on the basis of ionization cross sections calculations and experimental measurements performed on the same systems at slightly higher velocity (4.5 a.u.), the prominent role played by inner-shell ionization followed by Auger relaxation and could extract the lifetime of this Auger relaxation giving rise to the best agreement between the experiment and the calculations. For dissociation of C{sub 2}H{sup q+} and C{sub 3}H{sup q+} with the highest charges (q{>=} 5), inner-shell ionization contributed in a prominent way to the ion production. In these two cases it was shown that measured KER(H{sup +}) were in good agreement with PCCM predictions when those were corrected for Auger relaxation with the same Auger lifetime value as in CH{sup 3+}.

  2. Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force

    NASA Astrophysics Data System (ADS)

    van der Lit, Joost; Di Cicco, Francesca; Hapala, Prokop; Jelinek, Pavel; Swart, Ingmar

    2016-03-01

    The forces governing the contrast in submolecular resolution imaging of molecules with atomic force microscopy (AFM) have recently become a topic of intense debate. Here, we show that the electrostatic force is essential to understand the contrast in atomically resolved AFM images of polar molecules. Specifically, we image strongly polarized molecules with negatively and positively charged tips. A contrast inversion is observed above the polar groups. By taking into account the electrostatic forces between tip and molecule, the observed contrast differences can be reproduced using a molecular mechanics model. In addition, we analyze the height dependence of the various force components contributing to the high-resolution AFM contrast.

  3. Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force.

    PubMed

    van der Lit, Joost; Di Cicco, Francesca; Hapala, Prokop; Jelinek, Pavel; Swart, Ingmar

    2016-03-01

    The forces governing the contrast in submolecular resolution imaging of molecules with atomic force microscopy (AFM) have recently become a topic of intense debate. Here, we show that the electrostatic force is essential to understand the contrast in atomically resolved AFM images of polar molecules. Specifically, we image strongly polarized molecules with negatively and positively charged tips. A contrast inversion is observed above the polar groups. By taking into account the electrostatic forces between tip and molecule, the observed contrast differences can be reproduced using a molecular mechanics model. In addition, we analyze the height dependence of the various force components contributing to the high-resolution AFM contrast. PMID:26991186

  4. Polymer flocculation mechanism in animal slurry established by charge neutralization.

    PubMed

    Hjorth, Maibritt; Jørgensen, Bodil Ulbjerg

    2012-03-15

    Flocculation and filtration of animal manure is practically and environmentally beneficial. However, the flocculation mechanism in manure need to be clarified to use the technique efficiently rather than relying on trial-and-error. Manures were flocculated with polyacrylamides. Floc size, dewaterability, dry matter and turbidity were measured. At optimal polymer volume, the charge neutralization was determined, i.e. amount of negative manure particle charge neutralized by positive polymer charge. The optimal cationic polymer properties were linear and very high molecular weight, which caused efficient particle catching. And it had medium charge density, which caused efficient particle attachment. The required charge neutralization was 5-23% (15% for the optimal polymer). Polymer bridging proved the dominant flocculation mechanism; patch flocculation may be slightly significant for some polymers, while coagulation proved insignificant. Manure's high ionic strength, high dry matter content and highly charged small molecules caused bridging to be more dominant in manure than in other typically flocculated media. PMID:22196952

  5. Crucial roles of charged saccharide moieties in survival of gram negative bacteria against protamine revealed by combination of grazing incidence x-ray structural characterizations and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael G.; Schneck, Emanuel; Quinn, Bonnie E.; Konovalov, Oleg V.; Brandenburg, Klaus; Gutsmann, Thomas; Gill, Tom; Hanna, Charles B.; Pink, David A.; Tanaka, Motomu

    2010-04-01

    Grazing incidence x-ray scattering techniques and Monte Carlo (MC) simulations are combined to reveal the influence of molecular structure (genetic mutation) and divalent cations on the survival of gram negative bacteria against cationic peptides such as protamine. The former yields detailed structures of bacterial lipopolysaccharide (LPS) membranes with minimized radiation damages, while the minimal computer model based on the linearized Poisson-Boltzmann theory allows for the simulation of conformational changes of macromolecules (LPSs and peptides) that occur in the time scale of ms. The complementary combination of the structural characterizations and MC simulation demonstrates that the condensations of divalent ions ( Ca2+ or Mg2+ ) in the negatively charged core saccharides are crucial for bacterial survival.

  6. S-wave resonances of the negative positronium ion and stability of a system of two electrons and an arbitrary positive charge

    SciTech Connect

    Li Tieniu; Shakeshaft, Robin

    2005-05-15

    We have used a Pekeris-type wave function, expressed on a Sturmian basis in terms of perimetric coordinates, in conjunction with the complex coordinate rotation method, to obtain well-converged estimates of the positions and widths of various {sup 1}S{sup e} and {sup 3}S{sup e} resonances of Ps. Calculations employing bases with one and two length scales were performed. We compare our results to earlier estimates. We also discuss the minimum positive charge that a particle of arbitrary mass must possess in order to bind two electrons.

  7. Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters.

    PubMed

    Dirix, G; Monsieurs, P; Dombrecht, B; Daniels, R; Marchal, K; Vanderleyden, J; Michiels, J

    2004-09-01

    Quorum sensing (QS) in Gram-negative bacteria is generally assumed to be mediated by N-acyl-homoserine lactone molecules while Gram-positive bacteria make use of signaling peptides. We analyzed the occurrence in Gram-negative bacteria of peptides and transporters that are involved in quorum sensing in Gram-positive bacteria. Many class II bacteriocins and inducing factors produced by lactic acid bacteria (LAB) and competence stimulating peptides (CSPs) synthesized by streptococci are processed by their cognate ABC-transporters during their secretion. During transport, a conserved leader sequence, termed the double-glycine motif (GG-motif), is cleaved off by the N-terminal domain of the transporter, which belongs to the Peptidase C39 protein family. Several peptides containing a GG-motif were recently described in Gram-negative bacteria (Trends Microbiol 2001;9:164-8). To screen for additional putative GG-motif containing peptides, an in silico strategy based on MEME, HMMER2.2 and Wise2 was designed. Using a curated training set, a motif model of the leader peptide was built and used to screen over 120 fully sequenced bacterial genomes. The screening methodology was applied at the nucleotide level as probably many small peptide genes have not been annotated and may be absent from the non-redundant databases. It was found that 33% of the screened genomes of Gram-negative bacteria contained one or more transporters carrying a Peptidase C39 domain, compared to 44% of the genomes of Gram-positive bacteria. The transporters can be subdivided into four classes on the basis of their domain organization. Genes coding for putative peptides containing 23-142 amino acids and a GG-motif were found in close association with genes coding for Peptidase C39 domain containing proteins. These peptides show structural similarity to bacteriocins and peptide pheromones of Gram-positive bacteria. The possibility of signal transduction based on peptide signaling in Gram-negative bacteria is discussed. PMID:15374646

  8. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    SciTech Connect

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-21

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F{sup -} and a Na{sup +} ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na{sup +} and F{sup -} ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity {Delta}C{sub p} stays positive and even increases slightly upon charging the Na{sup +} ion, it decreases upon charging the F{sup -} ion and becomes negative beyond an ion charge of q=-0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  9. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  10. Molecular charge transfer by adsorbing TCNQ/TTF molecules via π-π interaction: a simple and effective strategy to modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.

    PubMed

    Liu, Dan; Yu, Guangtao; Sun, Yuanhui; Huang, Xuri; Guan, Jia; Zhang, Hui; Li, Hui; Chen, Wei

    2015-01-14

    By means of first-principles computations, we first propose a simple and effective strategy through the molecular charge transfer via noncovalent π-π interaction to modulate the electronic and magnetic properties of zigzag SiC nanoribbons (zSiCNRs). This charge transfer is induced by adsorbing the electron-withdrawing/donating tetracyanoquinodimethane (TCNQ) or tetrathiafulvalene (TTF) molecules on the surface of the pristine zSiCNR. It is revealed that all the TCNQ- and TTF-modified zSiCNR-systems can exhibit considerable adsorption energies in the range from -137.2 to -184.0 kJ mol(-1) and from -71.3 to -76.9 kJ mol(-1), respectively, indicating that these zSiCNR-complexes possess high structure stabilities. This kind of a molecular charge transfer via π-π interaction can break the magnetic degeneracy of zSiCNRs, and the sole ferromagnetic (FM) metallicity and even antiferromagnetic (AFM) half-metallicity can be achieved. These intriguing findings will be advantageous for promoting SiC-based nanomaterials in the application of spintronics and multifunctional nanodevices in the near future. PMID:25407886

  11. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster–configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    SciTech Connect

    Fukuda, Ryoichi Ehara, Masahiro

    2014-10-21

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2{sup ′}-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  12. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster-configuration interaction method: the accuracy of excitation energies and intuitive charge-transfer indices.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro

    2014-10-21

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2'-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy. PMID:25338878

  13. An efficient computational scheme for electronic excitation spectra of molecules in solution using the symmetry-adapted cluster-configuration interaction method: The accuracy of excitation energies and intuitive charge-transfer indices

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryoichi; Ehara, Masahiro

    2014-10-01

    Solvent effects on electronic excitation spectra are considerable in many situations; therefore, we propose an efficient and reliable computational scheme that is based on the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the polarizable continuum model (PCM) for describing electronic excitations in solution. The new scheme combines the recently proposed first-order PCM SAC-CI method with the PTE (perturbation theory at the energy level) PCM SAC scheme. This is essentially equivalent to the usual SAC and SAC-CI computations with using the PCM Hartree-Fock orbital and integrals, except for the additional correction terms that represent solute-solvent interactions. The test calculations demonstrate that the present method is a very good approximation of the more costly iterative PCM SAC-CI method for excitation energies of closed-shell molecules in their equilibrium geometry. This method provides very accurate values of electric dipole moments but is insufficient for describing the charge-transfer (CT) indices in polar solvent. The present method accurately reproduces the absorption spectra and their solvatochromism of push-pull type 2,2'-bithiophene molecules. Significant solvent and substituent effects on these molecules are intuitively visualized using the CT indices. The present method is the simplest and theoretically consistent extension of SAC-CI method for including PCM environment, and therefore, it is useful for theoretical and computational spectroscopy.

  14. All-electron relativistic Dirac-Fock-Slater self-consistent-field calculations of the singly charged diatomic transition-metal- (Fe, Co, Ni, Cu, Zn) argon molecules

    NASA Astrophysics Data System (ADS)

    Baştuğ, T.; Sepp, W.-D.; Fricke, B.; Johnson, E.; Barshick, C. M.

    1995-10-01

    The spectroscopic constants of the singly charged diatomic transition-metal-(Fe, Co, Ni, Cu, Zn) argon adduct ions are calculated within the relativistic Dirac-Fock-Slater (DFS) self-consistent-field method. Numerical solutions of the atomic Dirac-Fock-Slater equations are taken as basis functions. A variationally consistent potential approximation has been used to obtain potential-energy curves. The comparison of our results and other theoretical results with experimental values shows that the DFS method is quite suitable for calculations on such systems.

  15. The empirical dependence of radiation-induced charge neutralization on negative bias in dosimeters based on the metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Benson, Chris; Albadri, Abdulrahman; Joyce, Malcolm J.; Price, Robert A.

    2006-08-15

    The dependence of radiation-induced charge neutralization (RICN) has been studied in metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. These devices were first exposed to x rays under positive bias and then to further dose increments at a selection of reverse bias levels. A nonlinear empirical trend has been established that is consistent with that identified in the data obtained in this work. Estimates for the reverse bias level corresponding to the maximum rate of RICN have been extracted from the data. These optimum bias levels appear to be independent of the level of initial absorbed dose under positive bias. The established models for threshold voltage change have been considered and indicate a related nonlinear trend for neutralization cross section {sigma}{sub N} as a function of oxide field. These data are discussed in the context of dose measurement with MOSFETs and within the framework of statistical mechanics associated with neutral traps and their field dependence.

  16. Oxidation of NO˙ by small oxygen species HO2(-) and O2˙(-): the role of negative charge, electronic spin and water solvation.

    PubMed

    Ryding, Mauritz Johan; Fernández, Israel; Uggerud, Einar

    2016-03-30

    The reactions of HO2(-)(H2O)n and O2˙(-)(H2O)n clusters (n = 0-4) with NO˙ were studied experimentally using mass spectrometry; the experimental work was supported by quantum chemical computations for the case n = 0, 1. It was found that HO2(-)(H2O)n clusters were efficient in oxidizing NO˙ into NO2(-), although the reaction rate decreases rapidly with hydration above n = 1. Superoxide-water clusters did not oxidize NO˙ into NO2(-) under the present experimental conditions (low pressure): instead a reaction occurred in which peroxynitrite, ONOO(-), was formed as a new cluster core ion. The latter reaction was found to need at least one water molecule present on the reactant cluster in order to enable the product to stabilize itself by evaporation of H2O. PMID:26984300

  17. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. PMID:25059128

  18. Dynamics of low-energy electrons in liquid water with consideration of Coulomb interaction with positively charged water molecules induced by electron collision

    NASA Astrophysics Data System (ADS)

    Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi; Fujii, Kentaro; Higuchi, Mariko; Watanabe, Ritsuko

    2014-09-01

    To explain the electron energy relaxation process in water, we performed dynamical calculations of electrons in water using a simulation code developed in this study to calculate mean diffusion distances and mean energies of incident and secondary electrons released by the impact of the incident electron, as well as spatial probability-distribution of the secondary electrons. In addition to the following molecular processes of water: ionization: electronic, vibrational, and rotational excitation by electron impact; dissociative electron attachment; and elastic electron scattering, which were basic parameters used by Monte Carlo simulation, we newly took into account Coulomb interactions between electrons and positively ionized water molecules to calculate classical electron trajectories. We found that the Coulomb interactions enhance the number of collisions for the vibrational and rotational excitation processes at the incident 500 eV electron energy. The secondary electrons diffuse to an average of 3 nm from their original position, resulting much different spatial probability-distribution of those electrons in comparison to those previously reported. We also found that approximately 20% of the secondary electrons were returned to the parent ions within 100 fs. By the electron re-capturing to either bonding or antibionding orbital, the molecules might be converted to some electronic excitation states. We suggest that the spatial probability-distribution of electrons, taken into account the re-capturing process, should be essential for detailed analysis of following chemical process arising in nanometer scales, such as biomolecular damage caused by radiation.

  19. Models for Cometary Comae Containing Negative Ions

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.

  20. Multiplicity Distribution and Spectra of Negatively Charged Hadrons in Au+Au Collisions at (sNN) = 130 GeV

    NASA Astrophysics Data System (ADS)

    Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B. D.; Anderson, M.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bichsel, H.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Bossingham, R.; Boucham, A.; Brandin, A.; Caines, H.; Calderón de La Barca Sánchez, M.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chattopadhyay, S.; Chen, M. L.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J. P.; Conin, L.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Demello, M.; Deng, W. S.; Derevschikov, A. A.; Didenko, L.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K. J.; Fu, J.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Grabski, J.; Grachov, O.; Greiner, D.; Grigoriev, V.; Guedon, M.; Gushin, E.; Hallman, T. J.; Hardtke, D.; Harris, J. W.; Heffner, M.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Igo, G.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Johnson, I.; Jones, P. G.; Judd, E.; Kaneta, M.; Kaplan, M.; Keane, D.; Kisiel, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Konstantinov, A. S.; Kotchenda, L.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamas-Valverde, J.; Lamont, M. A.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lecompte, T.; Lednický, R.; Leontiev, V. M.; Leszczynski, P.; Levine, M. J.; Li, Q.; Li, Q.; Lindenbaum, S. J.; Lisa, M. A.; Ljubicic, T.; Llope, W. J.; Locurto, G.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lynn, D.; Majka, R.; Maliszewski, A.; Margetis, S.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meissner, F.; Melnick, Yu.; Meschanin, A.; Messer, M.; Miller, M. L.; Milosevich, Z.; Minaev, N. G.; Mitchell, J.; Moiseenko, V. A.; Moltz, D.; Moore, C. F.; Morozov, V.; de Moura, M. M.; Munhoz, M. G.; Mutchler, G. S.; Nelson, J. M.; Nevski, P.; Nikitin, V. A.; Nogach, L. V.; Norman, B.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Perevoztchikov, V.; Peryt, W.; Petrov, V. A.; Pinganaud, W.; Platner, E.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Radomski, S.; Rai, G.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J. G.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Russ, D.; Rykov, V.; Sakrejda, I.; Sandweiss, J.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Schweda, K.; Schmitz, N.; Schroeder, L. S.; Schüttauf, A.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shahaliev, E.; Shestermanov, K. E.; Shimanskii, S. S.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Snellings, R.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Stroebele, H.; Struck, C.; Suaide, A. A.; Sugarbaker, E.; Suire, C.; Šumbera, M.; Symons, T. J.; Szanto de Toledo, A.; Szarwas, P.; Takahashi, J.; Tang, A. H.; Thomas, J. H.; Tikhomirov, V.; Trainor, T. A.; Trentalange, S.; Tokarev, M.; Tonjes, M. B.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; van Buren, G.; Vandermolen, A. M.; Vanyashin, A.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Voloshin, S. A.; Wang, F.; Ward, H.; Watson, J. W.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitten, C.; Wieman, H.; Willson, R.; Wissink, S. W.; Witt, R.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yokosawa, A.; Yurevich, V. I.; Zanevski, Y. V.; Zborovský, I.; Zhang, W. M.; Zoulkarneev, R.; Zubarev, A. N.

    2001-09-01

    The minimum-bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons ( h-) in Au+Au interactions at (sNN) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/dη\\|η = 0 = 280+/-1(stat)+/-20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508+/-0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of p⊥. The pseudorapidity distribution is almost constant within \\|η\\|<1.

  1. Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at square root of (sNN) = 130 GeV.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Bossingham, R; Boucham, A; Brandin, A; Caines, H; Calderón De La Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Conin, L; Cormier, T M; Cramer, J G; Crawford, H J; DeMello, M; Deng, W S; Derevschikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grabski, J; Grachov, O; Greiner, D; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Lednický, R; Leontiev, V M; Leszczynski, P; LeVine, M J; Li, Q; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lynn, D; Majka, R; Maliszewski, A; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; McShane, T S; Meissner, F; Melnick, Y; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Pinganaud, W; Platner, E; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schweda, K; Schmitz, N; Schroeder, L S; Schüttauf, A; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Stroebele, H; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Sumbera, M; Symons, T J; Szanto De Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T A; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Wenaus, T; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-09-10

    The minimum-bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons ( h(-)) in Au+Au interactions at square root of ([s(NN)]) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dN(h(-))/d(eta)/(eta = 0) = 280+/-1(stat)+/-20(syst), an increase per participant of 38% relative to pp collisions at the same energy. The mean transverse momentum is 0.508+/-0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h(-) yield per participant is a strong function of p( perpendicular). The pseudorapidity distribution is almost constant within /eta/<1. PMID:11531517

  2. Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria.

    PubMed

    Michel, J P; Wang, Y X; Dé, E; Fontaine, P; Goldmann, M; Rosilio, V

    2015-11-01

    Bacterial resistance to antibiotics has become today a major public health issue. In the development of new anti-infectious therapies, antimicrobial peptides appear as promising candidates. However, their mechanisms of action against bacterial membranes are still poorly understood. We describe for the first time the interaction and penetration of plasticins into lipid monolayers and bilayers modeling the two leaflets of the asymmetrical outer membrane of Gram-negative bacteria. The lipid composition of these monolayers mimics that of each leaflet: mixtures of LPS Re 595 mutant and wild type S-form from Salmonella enterica for the external leaflet, and SOPE/SOPG/cardiolipin (80/15/5) for the inner one. The analysis of the interfacial behavior of native (PTCDA1) and modified (PTCDA1-KF) antimicrobial plasticins showed that PTCDA1-KF exhibited better surface properties than its unmodified counterpart. Both peptides could penetrate into the model monolayers at concentrations higher than 0.1 μM. The penetration was particularly enhanced for PTCDA1-KF into the mixed LPS monolayer, due to attractive electrostatic interactions. Grazing X-ray diffraction and atomic force microscopy studies revealed the changes in LPS monolayers organization upon peptide insertion. The interaction of plasticins with liposomes was also monitored by light scattering and circular dichroism techniques. Only the cationic plasticin achieved full disaggregation and structuration in α helices, whereas the native one remained aggregated and unstructured. The main steps of the penetration mechanism of the two plasticins into lipid models of the external leaflet of the outer membrane of Gram-negative bacteria have been established. PMID:26343162

  3. Organization and intramolecular charge-transfer enhancement in tripodal tris[(pyridine-4-yl)phenyl]amine push-pull molecules by intercalation into layered materials bearing acidic functionalities.

    PubMed

    Melánová, Klára; Cvejn, Daniel; Bureš, Filip; Zima, Vítězslav; Svoboda, Jan; Beneš, Ludvík; Mikysek, Tomáš; Pytela, Oldřich; Knotek, Petr

    2014-07-21

    Two new intercalates of tris[4-(pyridin-4-yl)phenyl]amine (TPPA) with zirconium hydrogen phosphate and zirconium 4-sulfophenylphosphonate having formulae Zr(HPO4)2·0.21(C33H24N4)·2.5H2O and Zr(HO3SC6H4PO3)(1.3)(C6H5PO3)(0.7)·0.35(C33H24N4)·2.5H2O were prepared and characterized by thermogravimetry, IR spectroscopy, and powder X-ray diffraction. The TPPA molecule has been selected as a model tripodal push-pull system with three peripheral basic centers that may undergo protonation. Their protonation/quaternization afforded HTPPA/MeTPPA molecules with enhanced intramolecular charge-transfer (ICT), which has been documented by electrochemical measurements, UV-Vis spectra and calculated properties such as the HOMO/LUMO levels and the first and second hyperpolarizabilities. Intercalation of TPPA into layered zirconium hydrogen phosphate and zirconium 4-sulfophenylphosphonate led to its significant organization and protonation as shown by the IR spectra. From the powder X-ray data we can deduce that the TPPA molecules are placed in the interlayer space of both hosts by anchoring two peripheral nitrogen atoms to one host layer and the opposite pyridine-4-yl terminus to the other neighboring host layer. In zirconium 4-sulfophenylphosphonate, the TPPA molecules are oriented perpendicularly, while in zirconium phosphate these molecules are slanted with respect to the layers of the host. On dehydration by heating, the interlayer distance of the intercalate decreases, which indicates a further slanting of the TPPA molecules. It follows from the UV-Vis spectra that TPPA is present in both intercalates in an equilibrium of protonated and non-protonated forms. The described materials represent the first case when a tripodal push-pull system was incorporated into a system with restricted geometry with the aim to influence its optical properties. PMID:24626407

  4. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular

  5. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…

  6. High-pressure luminescence studies on the twisted intramolecular charge transfer molecule 4-(N,N-dimethylamino)benzonitrile in polymer matrices

    SciTech Connect

    Lang, J.M.; Dreger, Z.A.; Drickamer, H.G. )

    1994-11-03

    We present steady state and time dependent luminescence data from 4-(N,N-dimethylamino)benzonitrile (DMSBN) in solid (PMMA) and poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA) and steady state data for poly(n-butyl methacrylate) (PBMA) to 100 kbar pressure. The results for PMMA and PEMA were essentially identical. At 1 atm the spectra consist of a strong peak at approximately 27,000 cm[sup [minus]1] and a much weaker one at approximately 24,000 cm[sup [minus]1] assigned to emission from the planar and twisted (twisted intramolecular charge transfer, TICT) singlet states, respectively. A new (phosphorescent) peak grew in rapidly with increasing pressure at approximately 22,500 cm[sup [minus]1] (lower energy peak, LEP). By approximately 20 kbar it was 1.5-2.0 times as intense as the higher energy peak (HEP). Thereafter it decreased in relative intensity by a factor of 2 by 100 kbar. Time dependence measurements gave a rate constant for the HEP of approximately 0.35 ns[sup [minus]1], which increased by a factor of 2 at 100 kbar. In the 22,700 cm[sup [minus]1] region two decays were obtained, one in the inverse nanosecond range and one on the order of inverse seconds. The data could be explained in terms of a model in which the slow steps involved transfer via the TICT triplet to the planar triplet, from which state the phosphorescent emission occurred. 29 refs., 12 figs.

  7. Why molecules move along a temperature gradient.

    PubMed

    Duhr, Stefan; Braun, Dieter

    2006-12-26

    Molecules drift along temperature gradients, an effect called thermophoresis, the Soret effect, or thermodiffusion. In liquids, its theoretical foundation is the subject of a long-standing debate. By using an all-optical microfluidic fluorescence method, we present experimental results for DNA and polystyrene beads over a large range of particle sizes, salt concentrations, and temperatures. The data support a unifying theory based on solvation entropy. Stated in simple terms, the Soret coefficient is given by the negative solvation entropy, divided by kT. The theory predicts the thermodiffusion of polystyrene beads and DNA without any free parameters. We assume a local thermodynamic equilibrium of the solvent molecules around the molecule. This assumption is fulfilled for moderate temperature gradients below a fluctuation criterion. For both DNA and polystyrene beads, thermophoretic motion changes sign at lower temperatures. This thermophilicity toward lower temperatures is attributed to an increasing positive entropy of hydration, whereas the generally dominating thermophobicity is explained by the negative entropy of ionic shielding. The understanding of thermodiffusion sets the stage for detailed probing of solvation properties of colloids and biomolecules. For example, we successfully determine the effective charge of DNA and beads over a size range that is not accessible with electrophoresis. PMID:17164337

  8. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  9. Thai Negation.

    ERIC Educational Resources Information Center

    Alam, Samsul

    A study analyzed the structure of negative sentences in the Thai language, based on data gathered from two native speakers. It is shown that the Thai negative marker generally occurs between the noun phrase (subject) and the verb phrase in simple active sentences and in passive sentences. Negation of noun phrases is also allowed in Thai, with a

  10. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  11. Metallic behavior and negative differential resistance properties of (InAs){sub n} (n = 2 − 4) molecule cluster junctions via a combined non–equilibrium Green's function and density functional theory study

    SciTech Connect

    Wang, Qi; Li, Rong; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui; Zhang, Daoli

    2014-06-21

    In this present work, the geometric structures and electronic transport properties of (InAs){sub n} (n = 2, 3, 4) molecule cluster junctions are comparatively investigated using NEGF combined with DFT. Results indicate that all (InAs){sub n} molecule cluster junctions present metallic behavior at the low applied biases ([−2V, 2V]), while NDR appears at a certain high bias range. Our calculation shows that the current of (InAs){sub 4} molecule cluster–based junction is almost the largest at any bias. The mechanisms of the current–voltage characteristics of all the three molecule cluster junctions are proposed.

  12. Contact de-electrification of electrostatically charged polymers.

    PubMed

    Soh, Siowling; Kwok, Sen Wai; Liu, Helena; Whitesides, George M

    2012-12-12

    The contact electrification of insulating organic polymers is still incompletely understood, in part because multiple fundamental mechanisms may contribute to the movement of charge. This study describes a mechanism previously unreported in the context of contact electrification: that is, "contact de-electrification", a process in which polymers charged to the same polarity discharge on contact. Both positively charged polymeric beads, e.g., polyamide 6/6 (Nylon) and polyoxymethylene (Delrin), and negatively charged polymeric beads, e.g., polytetrafluoroethylene (Teflon) and polyamide-imide (Torlon), discharge when the like-charged beads are brought into contact. The beads (both with charges of ?20 ?C/m(2), or ?100 charges/?m(2)) discharge on contact regardless of whether they are made of the same material, or of different materials. Discharge is rapid: discharge of flat slabs of like-charged Nylon and Teflon pieces is completed on a single contact (?3 s). The charge lost from the polymers during contact de-electrification transfers onto molecules of gas in the atmosphere. When like-charged polymers are brought into contact, the increase in electric field at the point of contact exceeds the dielectric breakdown strength of the atmosphere and ionizes molecules of the gas; this ionization thus leads to discharge of the polymers. The detection (using a Faraday cup) of charges transferred to the cup by the ionized gas is compatible with the mechanism. Contact de-electrification occurs for different polymers and in atmospheres with different values of dielectric breakdown strength (helium, argon, oxygen, carbon dioxide, nitrogen, and sulfur hexafluoride): the mechanism thus appears to be general. PMID:23153329

  13. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  14. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  15. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction.

    PubMed

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J; Hirjibehedin, Cyrus F

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications. PMID:25622229

  16. Rational Design of ?-Helical Antimicrobial Peptides to Target Gram-negative Pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of Charge, Specificity Determinants, Total Hydrophobicity, Hydrophobe Type and Location as Design Parameters to Improve the Therapeutic Ratio

    PubMed Central

    Jiang, Ziqing; Vasil, Adriana I.; Gera, Lajos; Vasil, Michael L.; Hodges, Robert S.

    2011-01-01

    The rapidly growing problem of increased resistance to classical antibiotics makes the development of new classes of antimicrobial agents with lower rates of resistance urgent. Amphipathic cationic ?-helical antimicrobial peptides have been proposed as a potential new class of antimicrobial agents. The goal of this study was to take a broad-spectrum, 26-residue, antimicrobial peptide in the all-D conformation, peptide D1 (K13) with excellent biologic properties and address the question of whether a rational design approach could be used to enhance the biologic properties if the focus was on Gram-negative pathogens only. To test this hypothesis, we used 11 and 6 diverse strains of Acinetobacter baumannii and Pseudo-monas aeruginosa, respectively. We optimized the number and location of positively charged residues on the polar face, the number, location, and type of hydrophobe on the non-polar face and varied the number of specificity determinants in the center of the non-polar face from 1 to 2 to develop four new antimicrobial peptides. We demonstrated not only improvements in antimicrobial activity, but also dramatic reductions in hemolytic activity and unprecedented improvements in therapeutic indices. Compared to our original starting peptide D1 (V13), peptide D16 had a 746-fold improvement in hemolytic activity (i.e. decrease), maintained antimicrobial activity, and improved the therapeutic indices by 1305-fold and 895-fold against A. baumannii and P. aeruginosa, respectively. The resulting therapeutic indices for D16 were 3355 and 895 for A. baumannii and P. aeruginosa, respectively. D16 is an ideal candidate for commercialization as a clinical therapeutic to treat Gram-negative bacterial infections. PMID:21219588

  17. First-Principle Framework for Total Charging Energies in Electrocatalytic Materials and Charge-Responsive Molecular Binding at Gas-Surface Interfaces.

    PubMed

    Tan, Xin; Tahini, Hassan A; Seal, Prasenjit; Smith, Sean C

    2016-05-01

    Heterogeneous charge-responsive molecular binding to electrocatalytic materials has been predicted in several recent works. This phenomenon offers the possibility of using voltage to manipulate the strength of the binding interaction with the target gas molecule and thereby circumvent thermochemistry constraints, which inhibit achieving both efficient binding and facile release of important targets such as CO2 and H2. Stability analysis of such charge-induced molecular adsorption has been beyond the reach of existing first-principle approaches. Here, we draw on concepts from semiconductor physics and density functional theory to develop a first principle theoretical approach that allows calculation of the change in total energy of the supercell due to charging. Coupled with the calculated adsorption energy of gas molecules at any given charge, this allows a complete description of the energetics of the charge-induced molecular adsorption process. Using CO2 molecular adsorption onto negatively charged h-BN (wide-gap semiconductor) and g-C4N3 (half metal) as example cases, our analysis reveals that - while adsorption is exothermic after charge is introduced - the overall adsorption processes are not intrinsically spontaneous due to the energetic cost of charging the materials. The energies needed to overcome the barriers of these processes are 2.10 and 0.43 eV for h-BN and g-C4N3, respectively. This first principle approach opens up new pathways for a more complete description of charge-induced and electrocatalytic processes. PMID:27067063

  18. Modeling the electromobility of type-I collagen molecules in the electrochemical fabrication of dense and aligned tissue constructs.

    PubMed

    Uquillas, Jorge Alfredo; Akkus, Ozan

    2012-08-01

    Isoelectric focusing (IEF) of type-I collagen molecules is a technology with proven efficacy to produce dense and aligned collagen-based biomaterials. The forces and mechanisms during IEF of collagen molecules in carrier ampholyte-free environments remain unknown. This study presents theoretical framework describing the congregation of collagen molecules along the isoelectric point (pI). A single molecule was modeled as a rod-like particle, distributed homogeneously between parallel electrodes. Upon application of electrical current, molecules migrated to the pI. The results showed that self-aggregation of collagen molecules along the pI occurred due to formation of a non-linear pH gradient that rendered the anodic side acidic, and the cathodic side basic. This pH profile and the amphoteric nature of collagen resulted in positively charged molecules at the anode and negatively charged molecules at the cathode. Therefore, repulsive electrostatic forces aided self-aggregation of molecules along the pI. The model could effectively validate the pI of collagen, the pI location, and predict that the instantaneous velocity acting on a molecule at the anode was higher than those velocities at the cathode. This fundamental information represents the baseline theory upon which we can expand our knowledge to the production of biomaterials to engineer soft tissues. PMID:22314838

  19. A comparative study on the effect of Curcumin and Chlorin-p6 on the diffusion of two organic cations across a negatively charged lipid bilayer probed by second harmonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Saini, R. K.; Varshney, G. K.; Dube, A.; Gupta, P. K.; Das, K.

    2014-09-01

    The influence of Curcumin and Chlorin-p6 (Cp6) on the real time diffusion kinetics of two organic cations, LDS (LDS-698) and Malachite Green (MG) across a negatively charged phospholipid bilayer is investigated by Second Harmonic (SH) spectroscopy. The diffusion time constant of LDS at neutral pH in liposomes containing either Curcumin or Cp6 is significantly reduced, the effect being more pronounced with Curcumin. At acidic pH, the quantum of reduction in the diffusion time constant of MG by both the drugs was observed to be similar. The relative changes in the average diffusion time constants of the cations with increasing drug concentration at pH 5.0 and 7.4 shows a substantial pH effect for Curcumin induced membrane permeability, while a modest pH effect was observed for Cp6 induced membrane permeability. Based on available evidence this can be attributed to the increased interaction between the drug and the polar head groups of the lipid at pH 7.4 where the drug resides closer to the lipid-water interface.

  20. Interface trap and oxide charge generation under negative bias temperature instability of p-channel metal-oxide-semiconductor field-effect transistors with ultrathin plasma-nitrided SiON gate dielectrics

    SciTech Connect

    Zhu Shiyang; Nakajima, Anri; Ohashi, Takuo; Miyake, Hideharu

    2005-12-01

    The interface trap generation ({delta}N{sub it}) and fixed oxide charge buildup ({delta}N{sub ot}) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for {delta}N{sub it} and {delta}N{sub ot}. At the earlier stress times, {delta}N{sub it} dominates the threshold voltage shift ({delta}V{sub th}) and {delta}N{sub ot} is negligible. With increasing stress time, the rate of increase of {delta}N{sub it} decreases continuously, showing a saturating trend for longer stress times, while {delta}N{sub ot} still has a power-law dependence on stress time so that the relative contribution of {delta}N{sub ot} increases. The thermal activation energy of {delta}N{sub it} and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.

  1. Interface trap and oxide charge generation under negative bias temperature instability of p-channel metal-oxide-semiconductor field-effect transistors with ultrathin plasma-nitrided SiON gate dielectrics

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyang; Nakajima, Anri; Ohashi, Takuo; Miyake, Hideharu

    2005-12-01

    The interface trap generation (ΔNit) and fixed oxide charge buildup (ΔNot) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for ΔNit and ΔNot. At the earlier stress times, ΔNit dominates the threshold voltage shift (ΔVth) and ΔNot is negligible. With increasing stress time, the rate of increase of ΔNit decreases continuously, showing a saturating trend for longer stress times, while ΔNot still has a power-law dependence on stress time so that the relative contribution of ΔNot increases. The thermal activation energy of ΔNit and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.

  2. Process for increasing ionic charge in mass spectrometry

    SciTech Connect

    McLuckey, Scott A; He, Min

    2009-06-23

    Processes and apparatus are described for the analysis of molecules or fragments thereof, which are capable of carrying multiple charges, by reacting the multiply charged molecules or fragments thereof with other ions using mass spectrometry.

  3. Controlled synthesis and inclusion ability of a hyaluronic acid derivative bearing beta-cyclodextrin molecules.

    PubMed

    Charlot, Aurélia; Heyraud, Alain; Guenot, Pierre; Rinaudo, Marguerite; Auzély-Velty, Rachel

    2006-03-01

    A new synthetic route to beta-cyclodextrin-linked hyaluronic acid (HA-CD) was developed. This was based on the preparation of a HA derivative selectively modified with adipic dihydrazide (HA-ADH) and a beta-cyclodextrin derivative possessing an aldehyde function on the primary face, followed by their coupling by a reductive amination-type reaction. The CD-polysaccharide was fully characterized in terms of chemical integrity and purity by high-resolution NMR spectroscopy. The complexation ability of the grafted CD was further demonstrated by isothermal titration calorimetry using sodium adamantane acetate (ADAc) and Ibuprofen as model guest molecules. The thermodynamic parameters for the complexation of these negatively charged guest molecules by the beta-CD grafted on negatively charged HA were shown to be largely influenced by the ionic strength of the aqueous medium. PMID:16529430

  4. Interstellar molecules

    NASA Astrophysics Data System (ADS)

    Smith, D.

    1987-09-01

    Some 70 different molecular species have so far been detected variously in diffuse interstellar clouds, dense interstellar clouds, and circumstellar shells. Only simple (diatomic and triatomic) species exist in diffuse clouds because of the penetration of destructive UV radiations, whereas more complex (polyatomic) molecules survive in dense clouds as a result of the shielding against this UV radiation provided by dust grains. A current list of interstellar molecules is given together with a few other molecular species that have so far been detected only in circumstellar shells. Also listed are those interstellar species that contain rare isotopes of several elements. The gas phase ion chemistry is outlined via which the observed molecules are synthesized, and the process by which enrichment of the rare isotopes occurs in some interstellar molecules is described.

  5. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  6. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  7. Auger stimulated ion desorption of negative ions via K-capture radioactive decay.

    PubMed

    Verkhoturov, S V; Schweikert, E A; Chechik, V; Sabapathy, R C; Crooks, R M; Parilis, E S

    2001-07-16

    We report on Auger stimulated ion desorption via Coulomb explosion from surface self-assembled alkylthiol and fluorocarbon molecular layers, triggered by K-capture decay of an imbedded radioactive 55Fe atom. The charge state of the ejecta is determined by charge exchange in binary atomic collisions in bulk and electron tunneling outside the solid, as well as by fragmentation of electronically excited molecules or molecular fragments. We describe the first nonbeam experiments documenting positive and abundant negative ion desorption due solely to core electron excitation after radioactive decay. PMID:11461591

  8. Auger Stimulated Ion Desorption of Negative Ions via K -Capture Radioactive Decay

    SciTech Connect

    Verkhoturov, S. V.; Schweikert, E. A.; Chechik, Victor; Sabapathy, Rajaram C.; Crooks, Richard M.; Parilis, E. S.

    2001-07-16

    We report on Auger stimulated ion desorption via Coulomb explosion from surface self-assembled alkylthiol and fluorocarbon molecular layers, triggered by K -capture decay of an imbedded radioactive {sup 55}Fe atom. The charge state of the ejecta is determined by charge exchange in binary atomic collisions in bulk and electron tunneling outside the solid, as well as by fragmentation of electronically excited molecules or molecular fragments. We describe the first nonbeam experiments documenting positive and abundant negative ion desorption due solely to core electron excitation after radioactive decay.

  9. Infrared spectra of monosubstituted toluene derivatives in cyclodextrin: Orientation of guest molecules in included complexes

    NASA Astrophysics Data System (ADS)

    Nagao, Akemi; Kan-no, Akira; Takayanagi, Masao

    2009-07-01

    Infrared spectroscopy was applied to determine the orientations of guest molecules ( m- and p-chlorotoluene, m- and p-tolunitrile, and m- and p-toluidine) in cyclodextrin (?-, ?-, or ?-cyclodextrin (CD)). Some bands of the guest molecules were found to shift by several wavenumbers upon formation of inclusion complexes or upon variation of the diameters of CD. The shifts could be explained by the steric hindrance imparted on the guest molecules in the CD cavities. Moreover, the bands were thought to be due to the vibrations of the moieties of guest molecules in the cavity of CD. The bands were assigned with the aid of quantum chemical calculations, which revealed that chlorotoluene, tolunitrile, and p-toluidine were able to enter the CD cavity, respectively, from the Cl, CN, and CH 3 sides. On the other hand, both the CH 3 and NH 2 groups of m-toluidine direct to the outside of the CD ring. The orientation of a guest molecule in a CD cavity was found to be determined by the charge distribution in the guest molecule; the negatively charged moiety of a guest molecule is attracted to the inside of CD.

  10. Effect of charges on the interaction of water with hematite

    NASA Astrophysics Data System (ADS)

    Negreiros Ribeiro, Fabio; Pedroza, Luana; Dalpian, Gustavo

    Hematite is one of the many types of iron oxide that is easily found in nature. It is most commonly used in catalysis and it is rarely present in its pristine form. The influence of charged defects in its properties is very important for the correct geometrical/electronic characterization in more realistic operative conditions, but very few studies focus explicitly on these defects in this system. In this work we perform first principles DFT+U calculations to determine the properties of a hematite slab when both dopant and electrons/holes are added. We focus on the differences between the geometrical/electronic properties between the neutral/charged surfaces and also study their interaction with water (molecule and liquid) by performing molecular dynamics simulations at room temperature. Our results indicate that electric charges strongly influence the properties of these surfaces, changing the binding energies and the molecular arrangement of the water molecules adsorbed on hematite. Negative charges induce a larger binding and favor the partial water dissociation, whereas positive charges weaken the binding energy. We will provide comparative results for different configurations of this system. FAPESP.

  11. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  12. Superhard Coatings Synthesis Assisted by Pulsed Beams of High-Energy Gas Molecules

    NASA Astrophysics Data System (ADS)

    Metel, Alexander; Bolbukov, Vasily; Volosova, Marina; Grigoriev, Sergei; Melnik, Yury; Department of high-efficiency machining technologies Team

    2015-09-01

    For production of nanocomposite superhard (HV 5000) and fracture-tough coatings on dielectric substrates a source of metal atoms accompanied by pulsed beams of 30-keV neutral molecules was used. The source is equipped with two parallel equipotential grids placed between a magnetron target and a substrate. Negative high-voltage pulses applied to the high-transparency grids accelerate from the magnetron plasma ions, which are transformed into high-energy neutral molecules due to charge-exchange collisions with gas molecules between the grids. Mixing of the substrate and coating materials through bombardment by high-energy gas molecules results in an adequate compressive stress of the coating and interface width exceeding 1 μm, which allows deposition of 100- μm-thick coatings with a perfect adhesion. The work was supported by the Grant No. 14-29-00297 of the Russian Science Foundation.

  13. Vibrationally dependent electron-electron interactions in resonant electron transport through single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Erpenbeck, A.; Härtle, R.; Bockstedte, M.; Thoss, M.

    2016-03-01

    We investigate the role of electronic-vibrational coupling in resonant electron transport through single-molecule junctions, taking into account that the corresponding coupling strengths may depend on the charge and excitation state of the molecular bridge. Within an effective-model Hamiltonian approach for a molecule with multiple electronic states, this requires to extend the commonly used model and include vibrationally dependent electron-electron interaction. We use Born-Markov master equation methods and consider selected models to exemplify the effect of the additional interaction on the transport characteristics of a single-molecule junction. In particular, we show that it has a significant influence on local cooling and heating mechanisms, it may result in negative differential resistance, and it may cause pronounced asymmetries in the conductance map of a single-molecule junction.

  14. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  15. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N2+(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar

    NASA Astrophysics Data System (ADS)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C. Y.

    2012-09-01

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N2+(v+, N+) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N2+(X 2Σg+, v+ = 0-2, N+ = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N2+ PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔElab = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (Ecm's) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v+ = 0-2, N+ = 0-9) for the N2+(X 2Σg+; v+ = 0-2, N+ = 0-9) + Ar CT reaction have been measured in the Ecm range of 0.04-10.0 eV, revealing strong vibrational enhancements and Ecm-dependencies of σ(v+ = 0-2, N+ = 0-9). The thermochemical threshold at Ecm = 0.179 eV for the formation of Ar+ from N2+(X; v+ = 0, N+) + Ar was observed by the measured σ(v+ = 0), confirming the narrow ΔEcm spread achieved in the present study. The σ(v+ = 0-2; N+) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions calculated based on the Landau-Zener-Stückelberg formulism are found to be in fair agreement with the present measured σ(v+ = 1 or 2; N+). Taking into account of the experimental uncertainties, the measured σ(v+ = 1 or 2, N+) for N+ = 0-9 at Ecm = 0.04-10.0 eV are found to be independent of N+.

  16. Surface charge modulated aptasensor in a single glass conical nanopore.

    PubMed

    Cai, Sheng-Lin; Cao, Shuo-Hui; Zheng, Yu-Bin; Zhao, Shuang; Yang, Jin-Lei; Li, Yao-Qun

    2015-09-15

    In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.4. With the occurring of recognition event, the negatively charged wall was partially neutralized by the positively charged lysozyme molecules, leading to a sensitive change of the surface charge-dependent current-voltage (I-V) characteristics. Our results not only demonstrate excellent selectivity and sensitivity towards the target protein, but also suggest a route to extend this nanopore-based sensing strategy to the biosensing platform designs of a wide range of proteins based on a charge modulation. PMID:25884732

  17. Negative hydrogen ion production mechanisms

    SciTech Connect

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  18. Aligned deposition and electrical measurements on single DNA molecules.

    PubMed

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin; Gurevich, Leonid

    2015-11-27

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)-poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg(2+) ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin-DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin-DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity. PMID:26538384

  19. Aligned deposition and electrical measurements on single DNA molecules

    NASA Astrophysics Data System (ADS)

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin; Gurevich, Leonid

    2015-11-01

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)-poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg2+ ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin-DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin-DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity.

  20. Sulfide as a signaling molecule in autophagy

    PubMed Central

    Gotor, Cecilia; García, Irene; Crespo, José L.; Romero, Luis C.

    2013-01-01

    Hydrogen sulfide is already recognized as an important signaling molecule in mammalian systems, and emerging data suggest that H2S is a signaling molecule just as important as nitric oxide (NO) and H2O2 in plants. Although sulfide is generated in chloroplasts and mitochondria, it is present predominantly in the charged HS- form due to the basic pH inside both organelles, thus requiring an active transporter, which is yet to be identified, to be released. In Arabidopsis, we found that the cytosolic L-cysteine desulfhydrase DES1 is involved in the degradation of cysteine, and therefore responsible for the generation of H2S in this cellular compartment. DES1 deficiency leads to the induction of autophagy. Moreover, we have demonstrated that sulfide in particular exerts a general effect on autophagy through negative regulation, in a way unrelated to nutrient deficiency. The mechanisms of H2S action and its molecular targets are largely unknown, although in animal systems, protein S-sulfhydration has been proposed as a mechanism for sulfide-mediated signaling. PMID:23328265

  1. Internal water molecules of pharaonis phoborhodopsin studied by low-temperature infrared spectroscopy.

    PubMed

    Kandori, H; Furutani, Y; Shimono, K; Shichida, Y; Kamo, N

    2001-12-25

    In the Schiff base region of bacteriorhodopsin (BR), a light-driven proton-pump protein, three internal water molecules are involved in a pentagonal cluster structure. These water molecules constitute a hydrogen-bonding network consisting of two positively charged groups, the Schiff base and Arg82, and two negatively charged groups, Asp85 and Asp212. Previous infrared spectroscopy of BR revealed stretching vibrations of such water molecules under strong hydrogen-bonding conditions using spectral differences in D2O and D2(18O) [Kandori and Shichida (2000) J. Am. Chem. Soc. 122, 11745-11746]. The present study extends the infrared analysis to another archaeal rhodopsin, pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin-II, psR-II), involved in the negative phototaxis of Natronobacterium pharaonis. Despite functional differences between ppR and BR, similar spectral features of water bands were observed before and after photoisomerization of the retinal chromophore at 77 K. This implies that the structure and the structural changes of internal water molecules are similar between ppR and BR. Higher stretching frequencies of the bridged water in ppR suggest that the water-containing pentagonal cluster structure is considerably distorted in ppR. These observations are consistent with the crystallographic structures of ppR and BR. The water structure and structural changes upon photoisomerization of ppR are discussed here on the basis of their infrared spectra. PMID:11747445

  2. Detecting and identifying small molecules in a nanopore flux capacitor

    NASA Astrophysics Data System (ADS)

    Bearden, Samuel; McClure, Ethan; Zhang, Guigen

    2016-02-01

    A new method of molecular detection in a metallic-semiconductor nanopore was developed and evaluated with experimental and computational methods. Measurements were made of the charging potential of the electrical double layer (EDL) capacitance as charge-carrying small molecules translocated the nanopore. Signals in the charging potential were found to be correlated to the physical properties of analyte molecules. From the measured signals, we were able to distinguish molecules with different valence charge or similar valence charge but different size. The relative magnitude of the signals from different analytes was consistent over a wide range of experimental conditions, suggesting that the detected signals are likely due to single molecules. Computational modeling of the nanopore system indicated that the double layer potential signal may be described in terms of disruption of the EDL structure due to the size and charge of the analyte molecule, in agreement with Huckel and Debye’s analysis of the electrical atmosphere of electrolyte solutions.

  3. Detecting and identifying small molecules in a nanopore flux capacitor.

    PubMed

    Bearden, Samuel; McClure, Ethan; Zhang, Guigen

    2016-02-19

    A new method of molecular detection in a metallic-semiconductor nanopore was developed and evaluated with experimental and computational methods. Measurements were made of the charging potential of the electrical double layer (EDL) capacitance as charge-carrying small molecules translocated the nanopore. Signals in the charging potential were found to be correlated to the physical properties of analyte molecules. From the measured signals, we were able to distinguish molecules with different valence charge or similar valence charge but different size. The relative magnitude of the signals from different analytes was consistent over a wide range of experimental conditions, suggesting that the detected signals are likely due to single molecules. Computational modeling of the nanopore system indicated that the double layer potential signal may be described in terms of disruption of the EDL structure due to the size and charge of the analyte molecule, in agreement with Huckel and Debye's analysis of the electrical atmosphere of electrolyte solutions. PMID:26789241

  4. Charge density-dependent strength of hydration and biological structure.

    PubMed Central

    Collins, K D

    1997-01-01

    Small ions of high charge density (kosmotropes) bind water molecules strongly, whereas large monovalent ions of low charge density (chaotropes) bind water molecules weakly relative to the strength of water-water interactions in bulk solution. The standard heat of solution of a crystalline alkali halide is shown here to be negative (exothermic) only when one ion is a kosmotrope and the ion of opposite charge is a chaotrope; this standard heat of solution is known to become proportionally more positive as the difference between the absolute heats of hydration of the corresponding gaseous anion and cation decreases. This suggests that inner sphere ion pairs are preferentially formed between oppositely charged ions with matching absolute enthalpies of hydration, and that biological organization arises from the noncovalent association of moieties with matching absolute free energies of solution, except where free energy is expended to keep them apart. The major intracellular anions (phosphates and carboxylates) are kosmotropes, whereas the major intracellular monovalent cations (K+; arg, his, and lys side chains) are chaotropes; together they form highly soluble, solvent-separated ion pairs that keep the contents of the cell in solution. PMID:8994593

  5. Negative ion chemistry in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Lavvas, P.; Yelle, R. V.; Wellbrock, A.; Lewis, G. R.; Coates, A.; Thissen, R.; Dutuit, O.

    2008-09-01

    In the upper part of atmospheres lies the ionosphere, a region of particular interest for planetary science, because it provides the link between the neutral atmosphere, and the ionizing processes from outer space. On Titan, it is created by the interaction of solar ultraviolet radiation and magnetospheric electrons with the main atmospheric constituents, N2 and CH4. Cassini has revealed that an extremely complex chemistry occurs in Titan's ionosphere. The INMS mass spectrometer detected positively charged hydrocarbons and nitrogen-bearing species with a charge-to-mass ratio (m/z) up to 100 amu [1]. In 2007, the Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere [2]. The data showed evidence for negatively charged ions with m/z up to 10,000 amu and at lower m/z for two distinct peaks below 50 amu, corresponding to a total density of ~200 cm-3, giving an anion to cation ratio of ~0.1. This detection happened almost simultaneously with the surprising discovery of four negative ions in the interstellar medium: C4H-, C6H-, C8H- and C3N- [3; 4; 5; 6; 7]. The possible presence of negative ions in Titan's upper atmosphere had only been briefly discussed before the Cassini-Huygens mission. Three-body electron attachment to radicals or collisional charging of aerosols had been suggested as a source of negatively charged species. Because the first process is negligible at high altitude (neutral densities lower than 1015 cm-3) and because aerosols were not expected above ~500 km, ionospheric models considered the presence of negatively charged species to be highly unlikely. However, the observations clearly show that Titan has the most complex ionosphere of the Solar System with an intense chemistry, leading to an increase of molecular size. By analyzing the optical properties of the detached haze layer observed at 520 km in Titan's mesosphere, Lavvas et al. provided the first quantitative evidence that thermospheric chemistry is the main source of haze on Titan [8]. The negative ions observed by ELS are very likely hydrocarbon and nitrogen-bearing species but their stoichiometry and structure are largely unknown because of the poor mass resolution of the spectrometer. In order to interpret the data, it is therefore necessary to develop kinetic models of the ionosphere of Titan and confront them with repeated measurements. In order to determine the processes controlling the formation of negative ions in Titan's atmosphere we use the photochemical model developed by Vuitton et al. [9; 10]. This model was used to successfully explain the processes controlling the positive ion formation in Titan's ionosphere. Furthermore, it was used for the investigation of the ion-neutral chemical processes controlling the formation of the observed thermospheric benzene abundance [11]. In order to properly describe the negative ion chemistry, eleven negative ions and about a hundred reactions involving negatively charged species have been added to the original model. The model solves the continuity equation in onedimension at altitudes between 700 and 1500 km, assuming local chemical equilibrium. It takes into account production and loss processes that include photoionization, photodetachement, energetic electron impact, and chemical reactions between ions and neutrals and between positively and negatively charged species. Due to the small chemical lifetime of ions compared with the characteristic time for diffusion, the latter is not included in the calculations. The photoelectron flux that leads to the production of negative ions is calculated by solving the Boltzmann transfer equation that provides a stationary solution for the intensity (cm-2 s-1 eV-1 sr-1) of electrons at different energies, angles and altitudes within the atmosphere ([12] and references therein). The ion densities depend closely upon the composition of the neutral atmosphere. The density of the main atmospheric constituents, N2, CH4 and H2 are well established by the INMS neutral measurements [13; 14], but minor neutral species can still have a strong, even controlling, effect on the ion composition and few of these have been measured accurately. The density vertical profiles for the neutral species are then based on the predictions of photochemical models [11; 15; 16] scaled to the densities inferred at 1100 km from the INMS ion measurements [10] when available. The model results indicate that CN- and C3N- are most probably responsible for the two features seen at low mass in the CAPS spectra. Throughout