Science.gov

Sample records for negatively charged molecules

  1. Astronomers Discover First Negatively-charged Molecule in Space

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Cambridge, MA - Astronomers have discovered the first negatively charged molecule in space, identifying it from radio signals that were a mystery until now. While about 130 neutral and 14 positively charged molecules are known to exist in interstellar space, this is the first negative molecule, or anion, to be found. "We've spotted a rare and exotic species, like the white tiger of space," said astronomer Michael McCarthy of the Harvard-Smithsonian Center for Astrophysics (CfA). By learning more about the rich broth of chemicals found in interstellar space, astronomers hope to explain how the young Earth converted these basic ingredients into the essential chemicals for life. This new finding helps to advance scientists' understanding of the chemistry of the interstellar medium, and hence the birthplaces of planets. McCarthy worked with CfA colleagues Carl Gottlieb, Harshal Gupta (also from the Univ. of Texas), and Patrick Thaddeus to identify the molecular anion known as C6H-: a linear chain of six carbon atoms with one hydrogen atom at the end and an "extra" electron. Such molecules were thought to be extremely rare because ultraviolet light that suffuses space easily knocks electrons off molecules. The large size of C6H-, larger than most neutral and all positive molecules known in space, may increase its stability in the harsh cosmic environment. "The discovery of C6H- resolves a long-standing enigma in astrochemistry: the apparent lack of negatively charged molecules in space," stated Thaddeus. The team first conducted laboratory experiments to determine exactly what radio frequencies to use in their search. Then, they used the National Science Foundation's Robert C. Byrd Green Bank Telescope to hunt for C6H- in celestial objects. In particular, they targeted locations in which previous searches had spotted unidentified radio signals at the appropriate frequencies. They found C6H- in two very different locations-a shell of gas surrounding the evolved red giant star IRC +10216 in the constellation Leo, and the cold molecular cloud TMC-1 in Taurus. The presence of the anion in both regions shows that the chemical processes that form C6H- are ubiquitous. It also suggests that other molecular anions are present and will be found in the near future. "This finding is dramatic evidence that our understanding of interstellar chemistry is still quite rudimentary. It also implies that more molecular anions, perhaps many, may now be found in the laboratory and in space," said McCarthy. This research will appear in the December 1 issue of The Astrophysical Journal Letters. Note to editors: High-resolution photographs of the Green Bank Telescope are available at http://www.nrao.edu/imagegallery/php/level2a.php?class=Telescopes&subclass=GBT. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

  2. Characterization of bonds formed between platelet factor 4 and negatively charged drugs using single molecule force spectroscopy.

    PubMed

    Block, Stephan; Greinacher, Andreas; Helm, Christiane A; Delcea, Mihaela

    2014-04-28

    Immunogenicity (i.e., the ability to initiate immune reactions) is one of the major challenges for the development of new drugs, as it may turn the developed drug therapeutically ineffective or cause severe immune-related effects. Using single molecule force spectroscopy, we study rupture forces between the positively charged, endogenous protein platelet factor 4 (PF4; also known as CXC chemokine ligand 4, CXCL4) and the antithrombotic drug heparin and other negatively charged glycosaminoglycans (GAGs), which are known to form immunogenic PF4/GAG-complexes (e.g., heparin and dextran sulfate) as well as non-immunogenic complexes (e.g., chondroitin sulfate A). Our measurements suggest that the average number of sulfate groups per monosaccharide unit (i.e., the degree of sulfation DS) does not affect the unbinding characteristics of single PF4/GAG-bonds (reaction coordinate x0 = 2.2 ± 0.2 Å, energy barrier ?G ? -1 kBT). However, the average number of GAG bonds formed to a single PF4 molecule increases with increasing DS as indicated by a rising frequency of unbinding events, suggesting a multivalent binding scheme between PF4 and GAGs. Our studies show that at least three GAG bonds have to be formed to each PF4 molecule to induce epitope formation on the PF4/GAG-complex to which PF4/GAG-complex specific antibodies bind. Hence, GAG-based drugs that form less than three bonds per PF4 molecule are unlikely to constitute PF4/drug-complexes that are of immunologic relevance. PMID:24667820

  3. Negative ions of polyatomic molecules.

    PubMed Central

    Christophorou, L G

    1980-01-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies. PMID:7428744

  4. Transport through anisotropic magnetic molecules with partially ferromagnetic leads: Spin-charge conversion and negative differential conductance

    E-print Network

    Timm, Carsten

    differential conductance is also present close to room temperature. Spin-blockade behavior is accompanied-charge converter, an effect potentially useful as a read-out mechanism for molecular spintronics. DOI: 10.1103/PhysRevB.73.235305 PACS number s : 73.63. b, 75.50.Xx, 85.65. h, 73.23.Hk I. INTRODUCTION The remarkable

  5. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  6. Laboratory infrared spectroscopy of gaseous negatively charged polyaromatic hydrocarbons

    SciTech Connect

    Gao, Juehan; Berden, Giel; Oomens, Jos

    2014-06-01

    Based largely on infrared spectroscopic evidence, polycyclic aromatic hydrocarbon (PAH) molecules are now widely accepted to occur abundantly in the interstellar medium. Laboratory infrared spectra have been obtained for a large variety of neutral and cationic PAHs, but data for anionic PAHs are scarce. Nonetheless, in regions with relatively high electron densities and low UV photon fluxes, PAHs have been suggested to occur predominantly as negatively charged ions (anions), having substantial influence on cloud chemistry. While some matrix spectra have been reported for radical anion PAHs, no data is available for even-electron anions, which are more stable against electron detachment. Here we present the first laboratory infrared spectra of deprotonated PAHs ([PAH-H]{sup –}) in the wavelength ranges between 6 and 16 ?m and around 3 ?m. Wavelength-dependent infrared multiple-photon electron detachment is employed to obtain spectra for deprotonated naphthalene, anthracene, and pyrene in the gas phase. Spectra are compared with theoretical spectra computed at the density functional theory level. We show that the relative band intensities in different ranges of the IR spectrum deviate significantly from those of neutral and positively charged PAHs, and moreover from those of radical anion PAHs. These relative band intensities are, however, well reproduced by theory. An analysis of the frontier molecular orbitals of the even- and odd-electron anions reveals a high degree of charge localization in the deprotonated systems, qualitatively explaining the observed differences and suggesting unusually high electric dipole moments for this class of PAH molecules.

  7. Negative differential resistance in transport through organic molecules on silicon.

    PubMed

    Quek, Su Ying; Neaton, J B; Hybertsen, Mark S; Kaxiras, Efthimios; Louie, Steven G

    2007-02-01

    Recent scanning tunneling microscopy studies of individual organic molecules on Si(001) reported negative differential resistance (NDR) above a critical applied field, observations explained by a resonant tunneling model proposed prior to the experiments. Here we use both density functional theory and a many-electron GW self-energy approach to quantitatively assess the viability of this mechanism in hybrid junctions with organic molecules on Si. For cyclopentene on p-type Si(001), the frontier energy levels are calculated to be independent of applied electric fields, ruling out the proposed mechanism for NDR. Guidelines for achieving NDR are developed and illustrated with two related molecules, aminocyclopentene and pyrroline. PMID:17358971

  8. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. PMID:26057987

  9. Positively Charged Polyethylenimines Enhance Nasal Absorption of the Negatively Charged Drug, Low Molecular Weight Heparin

    PubMed Central

    Yang, Tianzhi; Hussain, Alamdar; Bai, Shuhua; Khalil, Ikramy A.; Harashima, Hideyoshi; Ahsan, Fakhrul

    2007-01-01

    This study tests the hypothesis that positively charged polyethylenimines (PEIs) enhance nasal absorption of low molecular weight heparin (LMWH) by reducing the negative surface charge of the drug molecule. Physical interactions between PEIs and LMWH were studied by Fourier transform infrared (FTIR) spectroscopy, particle size analysis, conductivity measurements, zeta potential analysis, and azure A assay. The efficacy of PEIs in enhancing nasal absorption of LMWH was studied by administering LMWH formulated with PEI into the nose of anesthetized rats and monitoring drug absorption by measuring plasma anti-factor Xa activity. The metabolic stability of LMWH was evaluated by incubating the drug in rat nasal mucosal homogenates. FTIR spectra of the LMWH-PEI formulation showed a shift in peak position compared to LMWH or PEI alone. Decreases in conductivity, zeta potential and the amount of free LMWH in the PEI-LMWH formulation, as revealed by azure A assay, suggest that PEIs possibly neutralize the negative surface charge of LMWH. The efficacy of PEI in enhancing the bioavailability of nasally administered LMWH can be ranked as PEI-1000 KDa ? PEI-750 KDa > PEI-25 KDa. When PEI-1000 KDa was used at a concentration of 0.25%, there was a 4-fold increase in both the absolute and relative bioavailabilities of LMWH compared to the control formulation. Overall, these results indicate that polyethylenimines can be used as potential carriers for nasally administered LMWHs. PMID:17023085

  10. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes.

    PubMed

    Chen, Xiuwen; Zhao, Yiru; Moutinho, Jennifer; Shao, Jiahui; Zydney, Andrew L; He, Yiliang

    2015-03-01

    Recovery of reactive dyes from effluent streams is a growing environmental challenge. In this study, various charged regenerated cellulose (RC) ultrafiltration (UF) membranes were prepared and tested for removal of three model reactive dyes (reactive red ED-2B, reactive brilliant yellow K-6G, and reactive brilliant blue KN-R). Data were obtained with charged UF membranes having different spacer arm lengths between the base cellulose and the charge functionality. The effects of charge density of the dye molecules, ionic strength of the feed solution, spacer arm length of charged membranes and filtrate flux were studied. Results indicated that dye retention was greatest with the most negatively charged dye molecule. Higher rejection was also observed in low ionic strength solutions. Results were consistent with model calculations based on the partitioning of a charged sphere into a charged cylindrical pore. The membranes with longer spacer arm length had higher rejection coefficients, consistent with the greater negative charge on these membranes. This study confirms that charged UF membranes can effectively recover small reactive dye molecules at low pressures (below 100 kPa) under appropriate solution conditions due to the strong electrostatic repulsion from the membrane pores. PMID:25463218

  11. Micro injector sample delivery system for charged molecules

    DOEpatents

    Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1999-11-09

    A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.

  12. Charge density of positively charged vector boson may be negative.

    SciTech Connect

    Flambaum, V. V.; Kuchiev, M. Yu; Physics; Univ. of New South Wales

    2007-05-04

    The charge density of vector particles, for example W{sup {+-}}, may change sign. The effect manifests itself even for a free propagation, when the energy of the W-boson satisfies {var_epsilon} > {radical}2m and the standing wave is considered. The charge density of W also changes sign in a vicinity of a Coulomb center. For an arbitrary vector boson (e.g., for spin 1 mesons), this effect depends on the g-factor. An origin of this surprising effect is traced to the electric quadrupole moment and spin-orbit interaction of vector particles; their contributions to the current have a polarization nature. The corresponding charge density equals {rho}{sub Pol} = {del} {center_dot} P, where P is an effective polarization vector that depends on the quadrupole moment and spin-orbit interaction. This density oscillates in space, producing zero contribution to the total charge.

  13. On charge transfer in the adsorbed molecules-graphene monolayer-SiC substrate system

    SciTech Connect

    Davydov, S. Yu.

    2011-05-15

    A step-by-step consideration of charge transfer in the molecule-single-layer graphene-SiC substrate system is presented. At the first step, a simple model of the density of states of a single graphene monolayer adsorbed on silicon carbide (the graphene-SiC system) is suggested, which allows the calculation of the corresponding occupation numbers of graphene atoms. It is shown that the graphene monolayer accumulates a negative charge. At the second step, the graphene-SiC system is considered as a substrate that adsorbs molecules with a high electron affinity. The charge of these molecules as a function of their surface concentration is calculated. It is shown that, in the case of a monolayer coating, the negative surface charge density of molecules in the molecule-graphene monolayer-SiC substrate system is considerably higher than the surface charge density transferring from the SiC substrate to the graphene layer. This suggests that it is possible to neutralize the excess charge in the graphene layer via adsorption of proper particles on the layer.

  14. CCMV capsid formation induced by a functional negatively charged polymer.

    PubMed

    Minten, Inge J; Ma, Yujie; Hempenius, Mark A; Vancso, G Julius; Nolte, Roeland J M; Cornelissen, Jeroen J L M

    2009-11-21

    A functional negatively charged polyelectrolyte, polyferrocenylsilane (PFS) was encapsulated in cowpea chlorotic mottle virus (CCMV) capsid proteins, yielding monodisperse particles of 18 nm in size with altered redox properties compared to the parent materials. PMID:19865705

  15. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    PubMed Central

    Lesouhaitier, Olivier; Veron, Wilfried; Chapalain, Annelise; Madi, Amar; Blier, Anne-Sophie; Dagorn, Audrey; Connil, Nathalie; Chevalier, Sylvie; Orange, Nicole; Feuilloley, Marc

    2009-01-01

    Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-? and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction mechanism involved in virulence factors regulation. Finally, we will discuss the consequence of the impact of host signal molecules on commensally or opportunistic pathogens associated with different human tissue. PMID:22399982

  16. Electrostatic plasma lens for focusing negatively charged particle beams

    SciTech Connect

    Goncharov, A. A.; Dobrovolskiy, A. M.; Dunets, S. M.; Litovko, I. V.; Gushenets, V. I.; Oks, E. M.

    2012-02-15

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  17. Contactless measurements of charge migration within single molecules

    SciTech Connect

    Nagaya, Kiyonobu; Iwayama, Hiroshi; Sugishima, Akinori; Ohmasa, Yoshinori; Yao, Makoto

    2010-06-07

    Contactless measurements of charge migration were carried out for three pi-conjugated molecules in each of which a bromine atom and an oxygen atom are located on the opposite sides of the aromatic ring. A core hole was generated selectively in the Br atom by x-ray absorption, followed by the Auger cascade, and the subsequent charge migration within the molecule was examined by detecting an O{sup +} ion by means of the coincidence momentum imaging measurements.

  18. Mean field theory of charged dendrimer molecules.

    PubMed

    Lewis, Thomas; Pryamitsyn, Victor; Ganesan, Venkat

    2011-11-28

    Using self-consistent field theory (SCFT), we study the conformational properties of polyelectrolyte dendrimers. We compare results for three different models of charge distributions on the polyelectrolytes: (1) a smeared, quenched charge distribution characteristic of strong polyelectrolytes; (2) a smeared, annealed charge distribution characteristic of weak polyelectrolytes; and (3) an implicit counterion model with Debye-Huckel interactions between the charged groups. Our results indicate that an explicit treatment of counterions is crucial for the accurate characterization of the conformations of polyelectrolyte dendrimers. In comparing the quenched and annealed models of charge distributions, annealed dendrimers were observed to modulate their charges in response to the density of polymer monomers, counterions, and salt ions. Such phenomena is not accommodated within the quenched model of dendrimers and is shown to lead to significant differences between the predictions of quenched and annealed model of dendrimers. In this regard, our results indicate that the average dissociated charge ? inside the dendrimer serves as a useful parameter to map the effects of different parametric conditions and models onto each other. We also present comparisons to the scaling results proposed to explain the behavior of polyelectrolyte dendrimers. Inspired by the trends indicated by our results, we develop a strong segregation theory model whose predictions are shown to be in very good agreement with the numerical SCFT calculations. PMID:22128954

  19. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.

  20. Positive/negative ion velocity mapping apparatus for electron-molecule reactions

    SciTech Connect

    Wu Bin; Xia Lei; Li Hongkai; Zeng Xianjin; Tian Shanxi

    2012-01-15

    In molecular dissociative ionization by electron collisions and dissociative electron attachment to molecule, the respective positively and negatively charged fragments are the important products. A compact ion velocity mapping apparatus is developed for the angular distribution measurements of the positive or negative fragments produced in the electron-molecule reactions. This apparatus consists of a pulsed electron gun, a set of ion velocity mapping optic lenses, a two-dimensional position detector including two pieces of micro-channel plates, and a phosphor screen, and a charge-coupled-device camera for data acquisition. The positive and negative ion detections can be simply realized by changing the voltage polarity of ion optics and detector. Velocity sliced images can be directly recorded using a narrow voltage pulse applied on the rear micro-channel plate. The efficient performance of this system is evaluated by measuring the angular distribution of O{sup -} from the electron attachments to NO at 7.3 and 8.3 eV and O{sup +} from the electron collision with CO at 40.0 eV.

  1. Uptake of neutral polar vapor molecules by charged clusters//particles: Enhancement due to dipole-charge interaction

    E-print Network

    Yu, Fangqun

    Uptake of neutral polar vapor molecules by charged clusters//particles: Enhancement due to dipole that the enhanced uptake of neutral polar molecules by the charged clusters as a result of dipole-charge interaction: Nadykto, A. B., and F. Yu, Uptake of neutral polar vapor molecules by charged clusters

  2. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  3. Increased negatively charged nitrogen-vacancy centers in fluorinated diamond

    SciTech Connect

    Cui, Shanying; Hu, Evelyn L.

    2013-07-29

    We investigated the effect of fluorine-terminated diamond surface on the charged state of shallow nitrogen vacancy defect centers (NVs). Fluorination is achieved with CF{sub 4} plasma, and the surface chemistry is confirmed with x-ray photoemission spectroscopy. Photoluminescence of these ensemble NVs reveals that fluorine-treated surfaces lead to a higher and more stable negatively charged nitrogen vacancy (NV{sup ?}) population than oxygen-terminated surfaces. NV{sup ?} population is estimated by the ratio of negative to neutral charged NV zero-phonon lines. Surface chemistry control of NV{sup ?} density is an important step towards improving the optical and spin properties of NVs for quantum information processing and magnetic sensing.

  4. Study on space charge compensation in negative hydrogen ion beam

    NASA Astrophysics Data System (ADS)

    Zhang, A. L.; Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H- beam from a 2.45 GHz microwave driven H- ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  5. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  6. Attosecond snapshots: imaging charge transfer in molecules using EUV light

    NASA Astrophysics Data System (ADS)

    McCann, J. F.; McLaughlin, B. M.; Calvert, C. R.; King, R. B.; Bryan, W. A.; Newell, W. R.; Greenwood, J. B.; Williams, I. D.

    2012-11-01

    Electron dynamics underlie the charge and energy transfer processes in molecules. These processes, although extremely fast, can be resolved by sub-femtosecond light pulses and the electron motion can, to some extent, be controlled. A novel scheme for electron localization using intense IR lasers has recently been developed using phase-locked multiple pulses, in which the charge centre can be isolated. This process can be identified by the asymmetry in the dissociation products. We propose the use of an extreme ultraviolet probe of the molecular ion prior to dissociation to image the density and phase of the electron orbital. We hope this will provide rich insight into the charge transfer process in small molecules, which may be extended to larger systems.

  7. Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say. Molecule formation Formation Process of Large, Negatively-Charged Molecule in Interstellar Space CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and detailed information "This discovery continues to add to the diversity and complexity that is already seen in the chemistry of interstellar space," said Anthony J. Remijan of the National Radio Astronomy Observatory (NRAO). "It also adds to the number of paths available for making the complex organic molecules and other large molecular species that may be precursors to life in the giant clouds from which stars and planets are formed," he added. Two teams of scientists found negatively-charged octatetraynyl, a chain of eight carbon atoms and one hydrogen atom, in the envelope of gas around an old, evolved star and in a cold, dark cloud of molecular gas. In both cases, the molecule had an extra electron, giving it a negative charge. About 130 neutral and about a dozen positively-charged molecules have been discovered in space, but the first negatively-charged molecule was not discovered until late last year. The largest previously-discovered negative ion found in space has six carbon atoms and one hydrogen atom. "Until recently, many theoretical models of how chemical reactions evolve in interstellar space have largely neglected the presence of anions. This can no longer be the case, and this means that there are many more ways to build large organic molecules in cosmic environments than have been explored," said Jan M. Hollis of NASA's Goddard Space Flight Center (GSFC). Ultraviolet light from stars can knock an electron off a molecule, creating a positively-charged ion. Astronomers had thought that molecules would not be able to retain an extra electron, and thus a negative charge, in interstellar space for a significant time. "That obviously is not the case," said Mike McCarthy of the Harvard-Smithsonian Center for Astrophysics. "Anions are surprisingly abundant in these regions." Remijan and his colleagues found the octatetraynyl anions in the envelope of the evolved giant star IRC +10 216, about 550 light-years from Earth in the constellation Leo. They found radio waves emitted at specific frequencies characteristic of the charged molecule by searching archival data from the GBT, the largest fully-steerable radio telescope in the world. Another team from the Harvard-Smithsonian Center for Astrophysics (CfA) found the same characteristic emission when they observed a cold cloud of molecular gas called TMC-1 in the constellation Taurus. These observations also were done with the GBT. In both cases, preceding laboratory experiments by the CfA team showed which radio frequencies actually are emitted by the molecule, and thus told the astronomers what to look for. "It is essential that likely interstellar molecule candidates are first studied in laboratory experiments so that the radio frequencies they can emit are known in advance of an astronomical observation," said Frank Lovas of the National Institute of Standards and Technology (NIST). Both teams announced their results in the July 20 edition of the Astrophysical Journal Letters. "With three negatively-charged molecules now found in a short period of time, and in very different environments, it appears that many more probably exist. We believe that we can discover more new species using very sensitive and advanced radio telescopes such as the GBT, once they have been characterized in the laboratory," said Sandra Bruenken of the CfA. "Further detailed studies of anions, including astronomical observations, laboratory studies, and theo

  8. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids

    NASA Astrophysics Data System (ADS)

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J.

    2014-12-01

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05987e

  9. Electron-molecule chemistry and charging processes on organic ices and Titan's icy aerosol surrogates

    NASA Astrophysics Data System (ADS)

    Pirim, C.; Gann, R. D.; McLain, J. L.; Orlando, T. M.

    2015-09-01

    Electron-induced polymerization processes and charging events that can occur within Titan's atmosphere or on its surface were simulated using electron irradiation and dissociative electron attachment (DEA) studies of nitrogen-containing organic condensates. The DEA studies probe the desorption of H- from hydrogen cyanide (HCN), acetonitrile (CH3CN), and aminoacetonitrile (NH2CH2CN) ices, as well as from synthesized tholin materials condensed or deposited onto a graphite substrate maintained at low temperature (90-130 K). The peak cross sections for H- desorption during low-energy (3-15 eV) electron irradiation were measured and range from 3 × 10-21 to 2 × 10-18 cm2. Chemical and structural transformations of HCN ice upon 2 keV electron irradiation were investigated using X-ray photoelectron and Fourier-transform infrared spectroscopy techniques. The electron-beam processed materials displayed optical properties very similar to tholins produced by conventional discharge methods. Electron and negative ion trapping lead to 1011 charges cm-2 on a flat surface which, assuming a radius of 0.05 ?m for Titan aerosols, is ?628 charges/radius (in ?m). The facile charge trapping indicates that electron interactions with nitriles and complex tholin-like molecules could affect the conductivity of Titan's atmosphere due to the formation of large negative ion complexes. These negatively charged complexes can also precipitate onto Titan's surface and possibly contribute to surface reactions and the formation of dunes.

  10. Negative ion beam space charge compensation by residual gas

    NASA Astrophysics Data System (ADS)

    Valerio-Lizarraga, Cristhian A.; Leon-Monzon, Ildefonso; Scrivens, Richard

    2015-08-01

    The space charge of intense unbunched ion beams can be compensated by the ions created when the beam ionizes the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to expel the electrons to the beam pipe walls, while the positive ions are trapped and start to be accumulated. In this paper, we report on experiments to study this space charge compensation (SCC) in a 45 keV H- unbunched beam in the CERN Linac4 low-energy beam transport. Beam size and emittance were measured for different gases injected into the beam region to control the degree and speed of the SCC. These results are compared with beam simulations that include the generation and tracking of secondary ions leading to a unique understanding of the transport of the ion beam in some specific cases.

  11. Charge neutralization of dust particles in a plasma with negative ions

    SciTech Connect

    Merlino, Robert L.; Kim, Su-Hyun

    2006-08-28

    Charging of dust grains in a plasma with negative ions is studied experimentally. When the relatively mobile electrons are attached to heavy negative ions, their tendency to charge the grains negatively is reduced. In a plasma in which a substantial fraction of the electrons are eliminated (positive ion/negative ion plasma), the grain charge can be reduced in magnitude nearly to zero ('decharging' or charge neutralization). If the positive ions are lighter than the negative ions, dust grains having a small net positive charge can be produced.

  12. Experimental evidence on removing copper and light-induced degradation from silicon by negative charge

    SciTech Connect

    Boulfrad, Yacine Lindroos, Jeanette; Yli-Koski, Marko; Savin, Hele; Wagner, Matthias; Wolny, Franziska

    2014-11-03

    In addition to boron and oxygen, copper is also known to cause light-induced degradation (LID) in silicon. We have demonstrated previously that LID can be prevented by depositing negative corona charge onto the wafer surfaces. Positively charged interstitial copper ions are proposed to diffuse to the negatively charged surface and consequently empty the bulk of copper. In this study, copper out-diffusion was confirmed by chemical analysis of the near surface region of negatively/positively charged silicon wafer. Furthermore, LID was permanently removed by etching the copper-rich surface layer after negative charge deposition. These results demonstrate that (i) copper can be effectively removed from the bulk by negative charge, (ii) under illumination copper forms a recombination active defect in the bulk of the wafer causing severe light induced degradation.

  13. What happens to negatively charged lipid vesicles upon interacting with polycation species?

    PubMed

    Kabanov, V A; Yaroslavov, A A

    2002-01-17

    Complexation of synthetic polycations with negative lipid vesicles as cell-mimetic species was studied. It was found that such interaction could be accompanied by lateral lipid segregation, highly accelerated transmembrane migration of lipid molecules (polycation-induced flip-flop), incorporation of adsorbed polycations into vesicular membrane as well as aggregation and disruption of vesicles. A polycation adsorbed on the surface of liquid vesicles due to electrostatic attraction could be completely removed from the membrane by increase in simple salt concentration or by recomplexation with polyanions. In contrast, adsorption of a polycation carrying pendant hydrophobic groups was irreversible apparently due to incorporation of these groups into the hydrophobic part of the vesicular membrane. The above mentioned phenomena were examined depending on the polycation structure, fraction of charged lipids in the membrane, vesicle phase state and ionic strength of solution. PMID:11772467

  14. The meteorology of negative cloud-to-ground lightning strokes with large charge moment changes: Implications

    E-print Network

    Cummer, Steven A.

    The meteorology of negative cloud-to-ground lightning strokes with large charge moment changes. [1] This study examined the meteorological characteristics of precipitation systems that produced 38, and W. A. Lyons (2013), The meteorology of negative cloud-to- ground lightning strokes with large charge

  15. Lightning morphology and impulse charge moment change of high peak current negative strokes

    E-print Network

    Cummer, Steven A.

    Lightning morphology and impulse charge moment change of high peak current negative strokes Gaopeng analyzed very high frequency lightning mapping observations and remote magnetic field measurements to investigate connections between lightning morphology and impulse charge moment change (iCMC) of negative cloud

  16. The Controlled Introduction of Multiple Negative Charge at Single Amino Acid Sites in Subtilisin Bacillus lentus

    E-print Network

    Davis, Ben G.

    The Controlled Introduction of Multiple Negative Charge at Single Amino Acid Sites in Subtilisin determined at pH 8.6 under conditions which ensured complete ionization of the unnatural amino acid side have typically been limited to naturally occurring amino acids such as negatively charged aspartate4

  17. Mass Spectrometry Study of Multiply Negatively Charged, Gas-Phase NaAOT Micelles: How Does Charge State Affect Micellar Structure and Encapsulation?

    NASA Astrophysics Data System (ADS)

    Fang, Yigang; Liu, Fangwei; Liu, Jianbo

    2013-01-01

    We report the formation and characterization of multiply negatively charged sodium bis(2-ethylhexyl) sulfosuccinate (NaAOT) aggregates in the gas phase, by electrospray ionization of methanol/water solution of NaAOT followed by detection using a guided-ion-beam tandem mass spectrometer. Singly and doubly charged aggregates dominate the mass spectra with the compositions of [Nan-zAOTn]z- ( n = 1-18 and z = 1-2). Solvation by water was detected only for small aggregates [Nan-1AOTnH2O]- of n = 3-9. Incorporation of glycine and tryptophan into [Nan-zAOTn]z- aggregates was achieved, aimed at identifying effects of guest molecule hydrophobicity on micellar solubilization. Only one glycine molecule could be incorporated into each [Nan-zAOTn]z- of n ? 7, and at most two glycine molecules could be hosted in that of n ? 13. In contrast to glycine, up to four tryptophan molecules could be accommodated within single aggregates of n ? 6. However, deprotonation of tryptophan significantly decrease its affinity towards aggregates. Collision-induced dissociation (CID) was carried out for mass-selected aggregate ions, including measurements of product ion mass spectra for both empty and amino acid-containing aggregates. CID results provide a probe for aggregate structures, surfactant-solute interactions, and incorporation sites of amino acids. The present data was compared with mass spectrometry results of positively charged [Nan+zAOTn]z+ aggregates. Contrary to their positive analogues, which form reverse micelles, negatively charged aggregates may adopt a direct micelle-like structure with AOT polar heads exposed and amino acids being adsorbed near the micellar outer surface.

  18. Charge Transfer and Chemisorption of Fullerene Molecules on Metal Surfaces: Application to Dynamics of Nanocars

    E-print Network

    Charge Transfer and Chemisorption of Fullerene Molecules on Metal Surfaces: Application to Dynamics Information ABSTRACT: It is widely believed that the dynamics of surface-bound fullerene molecules theoretical approach to describe charge transfer and chemisorption processes for fullerenes on gold surfaces

  19. Maximizing ion current by space-charge neutralization using negative ions and dust particles

    E-print Network

    Maximizing ion current by space-charge neutralization using negative ions and dust particles A if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space-charge neutralization are introduced

  20. Positively and negatively surface-charged chondroitin sulfate-trimethylchitosan nanoparticles as protein carriers.

    PubMed

    Young, Jenn-Jong; Chen, Cheng-Cheung; Chen, Ying-Chuan; Cheng, Kuang-Ming; Yen, Hui-Ju; Huang, Yu-Chuan; Tsai, Tsung-Neng

    2016-02-10

    Positively and negatively surface-charged nanoparticles (NPs) were prepared with chondroitin sulfate (ChS) and trimethylchitosan (TMC). NP size, surface charge, formation yield, and water content were investigated as a function of weight ratio and concentration. Size and zeta potential were controlled by varying the ChS/TMC mass ratio. FTIR spectra revealed interactions among composite NP constituents. TEM images showed that the NPs were nearly spherical, with an average size of ?300nm. Encapsulation efficiency increased in positively charged NPs with increases in fluorescein isothiocyanate-bovine serum albumin concentration. Negatively charged NPs had only 10-20% encapsulation efficiency. The release profile, release kinetics and mechanism of positively charged ChS-TMC NPs were studied in vitro. NP cytocompatibility and uptake were verified ex vivo. Both types of NPs were taken up and retained in cells. A549 cells took up more positively charged (49.4%) than negatively charged (35.5%) NPs. PMID:26686160

  1. Vibrational States of Hydrogen Molecules in One Third LHD Negative Ion Source

    SciTech Connect

    Nishiura, M.; Tsumori, K.; Matsumoto, Y.; Wada, M.; Inoue, T.

    2011-09-26

    The effect of the cesium on hydrogen negative ions is discussed using the vacuum ultraviolet emissions (VUV) from vibrational states of hydrogen molecules. The VUV spectrum from 90 to 165 nm is related to the H{sup -} production from the dissociative attachment of electrons to hydrogen molecules. The VUV spectra in hydrogen plasmas are measured in the extraction region of a negative ion source for neutral beam injector. Under the pure hydrogen discharge, the cesium vapor is introduced into the ion source to enhance the hydrogen negative ion density. When the same arc power of {approx}99 kW is applied in both with and without cesium admixture cases, the ratio of the observed VUV spectrum without to with cesium is not changed clearly. Therefore the production process of H{sup -} related to the wall/electrode surface would be enhanced rather than the volume production process.

  2. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2005-01-25

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  3. Maximizing ion current by space-charge neutralization using negative ions and dust particles

    SciTech Connect

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-05-15

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space-charge neutralization are introduced. Space-charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space-charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  4. Negative ion mass spectrum of the resonance electron capture by molecules of p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Shchukin, P. V.; Tuimedov, G. M.; Muftakhov, M. V.; Tseplin, E. E.; Tseplina, S. N.; Mazunov, V. A.

    2008-06-01

    The negative ion mass spectrum of the resonant electron capture by molecules of p-benzoquinone has been recorded. It has been found that apart from the well-known earlier five types of negative fragmental and long-lived molecular ions, 17 more types of other fragmental ions are produced in this compound. The scheme of the molecular ion decay has been composed for each dissociation channel, where the choice has been given to the structures of the dissociation products which in accordance with MNDO calculations have the minimal total energies. The effective yield curves of the negative ions have been recorded as functions of the electron energy. It has been also assumed that the long-lived negative molecular ions of p-benzoquinone are formed, probably, in two resonant states close in energy and poorly resolved: at 1.36 and 1.56 eV.

  5. Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh C.; Sharma, Kavita; Walia, Ritu

    2012-07-01

    An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

  6. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    SciTech Connect

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-11-15

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  7. An electrochemical model of the transport of charged molecules through the capillary glycocalyx.

    PubMed

    Stace, T M; Damiano, E R

    2001-04-01

    An electrochemical theory of the glycocalyx surface layer on capillary endothelial cells is developed as a model to study the electrochemical dynamics of anionic molecular transport within capillaries. Combining a constitutive relationship for electrochemical transport, derived from Fick's and Ohm's laws, with the conservation of mass and Gauss's law from electrostatics, a system of three nonlinear, coupled, second-order, partial, integro-differential equations is obtained for the concentrations of the diffusing anionic molecules and the cations and anions in the blood. With the exception of small departures from electroneutrality that arise locally near the apical region of the glycocalyx, the model assumes that cations in the blood counterbalance the fixed negative charges bound to the macromolecular matrix of the glycocalyx in equilibrium. In the presence of anionic molecular tracers injected into the capillary lumen, the model predicts the size- and charge-dependent electrophoretic mobility of ions and tracers within the layer. In particular, the model predicts that anionic molecules are excluded from the glycocalyx at equilibrium and that the extent of this exclusion, which increases with increasing tracer and/or glycocalyx electronegativity, is a fundamental determinant of anionic molecular transport through the layer. The model equations were integrated numerically using a Crank-Nicolson finite-difference scheme and Newton-Raphson iteration. When the concentration of the anionic molecular tracer is small compared with the concentration of ions in the blood, a linearized version of the model can be obtained and solved as an eigenvalue problem. The results of the linear and nonlinear models were found to be in good agreement for this physiologically important case. Furthermore, if the fixed-charge density of the glycocalyx is of the order of the concentration of ions in the blood, or larger, or if the magnitude of the anionic molecular valence is large, a closed-form asymptotic solution for the diffusion time can be obtained from the eigenvalue problem that compares favorably with the numerical solution. In either case, if leakage of anionic molecules out of the capillary occurs, diffusion time is seen to vary exponentially with anionic valence and in inverse proportion to the steady-state anionic tracer concentration in the layer relative to the lumen. These findings suggest several methods for obtaining an estimate of the glycocalyx fixed-charge density in vivo. PMID:11259282

  8. The Resonance Scattering Phenomenon of Fast Negatively Charged Particles in a Single Crystal

    E-print Network

    Gennady V. Kovalev

    2014-12-12

    The energy spectrum of the extended attractive potential of a crystallographic row for negatively charged particles has quasi-bound states. It follows that a negatively charged particle with small transversal momentum component ($p_{\\bot} R crystal, when fast electrons move with a small glancing angle ($\\theta_0 << 1/pR$) to a crystallographic axis. The calculated results for the electrons and angular widths of resonance peaks are consistent with experimental data.

  9. Positively and Negatively Charged Residues Have Different Effects on the Position in the Membrane of a

    E-print Network

    Nielsen, Steven O.

    Positively and Negatively Charged Residues Have Different Effects on the Position in the Membrane of single charged residues on the position of a model transmembrane helix in the endoplasmic reticulum membrane using the glycosylation mapping technique. Asp and Glu residues cause a re-positioning of the C

  10. Calculating Henry’s Constants of Charged Molecules Using SPARC

    EPA Science Inventory

    SPARC Performs Automated Reasoning in Chemistry is a computer program designed to model physical and chemical properties of molecules solely based on thier chemical structure. SPARC uses a toolbox of mechanistic perturbation models to model intermolecular interactions. SPARC has ...

  11. Negative Electrospray Droplet Exposure to Gaseous Bases for the Manipulation of Protein Charge State Distributions

    PubMed Central

    Kharlamova, Anastasia; McLuckey, Scott A.

    2010-01-01

    The exposure of electrospray droplets to vapors of reagents of various base strengths affects protein negative charge state distributions independent of initial solution conditions. Volatile bases are introduced into the counter-current nitrogen drying gas of an electrospray interface to interact with charged droplets as they undergo desolvation/disintegration, shifting charge state distributions of proteins to higher, more negative, charge states. Alterations of charge state distributions can implicate protein folding/unfolding phenomena. Species bound by relatively weak interactions can be preserved, at least to some extent, allowing for the observation of high charge states of protein-ligand complexes, such as high negative charge states of holomyoglobin. The binding of carbonic anhydrase with its Zn2+ co-factor is apparently preserved when the holo-form of the protein is exposed to basic vapors (i.e., the Zn2+ ion remains associated with the protein), but this prevents the appearance of charge states higher than ?17. Charge state distributions of proteins containing disulfide bonds shift slightly with the leak-in of basic vapors, but when these disulfide bonds are reduced with dithiothreitol in solution, charge states higher than the number of acidic sites (Asp, Glu and C-terminus) are observed. Since there is no observed change in the distributions of buffered proteins exposed to these reagent vapors, the charge state changes are attributed largely to a pH affect. High pKa and highly volatile reagents have been found to be the most effective in terms of observing the maximum negative charge state of the biomolecule of interest. PMID:21141935

  12. Charge moment change and lightning-driven electric fields associated with negative sprites and halos

    E-print Network

    Cummer, Steven A.

    Charge moment change and lightning-driven electric fields associated with negative sprites optical emissions produced by lightning-driven electric fields. Both strong positive and negative cloud to detect lightning-driven transient luminous events (TLEs). At Duke University, two pairs of magnetic

  13. From structural to charge stability: Molecules on the insulating calcite (1014)

    E-print Network

    Ku?el, Petr

    1014-01-01

    From structural to charge stability: Molecules on the insulating calcite (1014) surface Seminá odd and to perform local manipulations. The calcite (1014) surface, a material itself highly relevant in biology molecules in an on-surface synthesis step [4]. Last, I will present results for a metallocene/calcite system

  14. Energy distribution extraction of negative charges responsible for positive bias temperature instability

    NASA Astrophysics Data System (ADS)

    Ren, Shang-Qing; Yang, Hong; Wang, Wen-Wu; Tang, Bo; Tang, Zhao-Yun; Wang, Xiao-Lei; Xu, Hao; Luo, Wei-Chun; Zhao, Chao; Yan, Jiang; Chen, Da-Peng; Ye, Tian-Chun

    2015-07-01

    A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage. Project supported by the National Science & Technology Major Projects of the Ministry of Science and Technology of China (Grant No. 2009ZX02035) and the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129).

  15. Polarized Protein-Specific Charges from Atoms-in-Molecule Electron Density Partitioning

    PubMed Central

    2013-01-01

    Atomic partial charges for use in traditional force fields for biomolecular simulation are often fit to the electrostatic potentials of small molecules and, hence, neglect large-scale electronic polarization. On the other hand, recent advances in atoms-in-molecule charge derivation schemes show promise for use in flexible force fields but are limited in size by the underlying quantum mechanical calculation of the electron density. Here, we implement the density derived electrostatic and chemical charges method in the linear-scaling density functional theory code ONETEP. Our implementation allows the straightforward derivation of partial atomic charges for systems comprising thousands of atoms, including entire proteins. We demonstrate that the derived charges are chemically intuitive, reproduce ab initio electrostatic potentials of proteins and are transferable between closely related systems. Simulated NMR data derived from molecular dynamics of three proteins using force fields based on the ONETEP charges are in good agreement with experiment. PMID:23894231

  16. Charge-induced spin polarization in non-magnetic organic molecule Alq$_{3}$

    E-print Network

    Tarafder, Kartick; Oppeneer, Peter

    2010-01-01

    Electrical injection in organic semiconductors is a key prerequisite for the realization of organic spintronics. Using density-functional theory calculations we report the effect of electron transfer into the organic molecule Alq$_3$. Our first-principles simulations show that electron injection spontaneously spin-polarizes non-magnetic Alq$_3$ with a magnetic moment linearly increasing with induced charge. An asymmetry of the Al--N bond lengths leads to an asymmetric distribution of injected charge over the molecule. The spin-polarization arises from a filling of dominantly the nitrogen $p_z$ orbitals in the molecule's LUMO together with ferromagnetic coupling of the spins on the quinoline rings.

  17. The Role of Negative Charge in the Delivery of Quantum Dots to Neurons

    PubMed Central

    Walters, Ryan; Medintz, Igor L.; Delehanty, James B.; Stewart, Michael H.; Susumu, Kimihiro; Huston, Alan L.; Dawson, Philip E.

    2015-01-01

    Despite our extensive knowledge of the structure of negatively charged cell surface proteoglycans and sialoglycoconjugates in the brain, we have little understanding of how their negative charge contributes to brain function. We have previously shown that intensely photoluminescent 9-nm diameter quantum dots (QDs) with a CdSe core, a ZnS shell, and a negatively charged compact molecular ligand coating (CL4) selectively target neurons rather than glia. We now provide an explanation for this selective neuronal delivery. In this study, we compared three zwitterionic QD coatings differing only in their regions of positive or negative charge, as well as a positively charged (NH2) polyethylene glycol (PEG) coat, for their ability to deliver the cell-membrane-penetrating chaperone lipopeptide JB577 (WG(Palmitoyl)VKIKKP9G2H6) to individual cells in neonatal rat hippocampal slices. We confirm both that preferential uptake in neurons, and the lack of uptake in glia, is strongly associated with having a region of greater negative charge on the QD coating. In addition, the role of negatively charged chondroitin sulfate of the extracellular matrix (ECM) in restricting uptake was further suggested by digesting neonatal rat hippocampal slices with chondroitinase ABC and showing increased uptake of QDs by oligodendrocytes. Treatment still did not affect uptake in astrocytes or microglia. Finally, the future potential of using QDs as vehicles for trafficking proteins into cells continues to show promise, as we show that by administering a histidine-tagged green fluorescent protein (eGFP-His6) to hippocampal slices, we can observe neuronal uptake of GFP. PMID:26243591

  18. Water freezes differently on positively and negatively charged surfaces of pyroelectric materials.

    PubMed

    Ehre, David; Lavert, Etay; Lahav, Meir; Lubomirsky, Igor

    2010-02-01

    Although ice melts and water freezes under equilibrium conditions at 0 degrees C, water can be supercooled under homogeneous conditions in a clean environment down to -40 degrees C without freezing. The influence of the electric field on the freezing temperature of supercooled water (electrofreezing) is of topical importance in the living and inanimate worlds. We report that positively charged surfaces of pyroelectric LiTaO3 crystals and SrTiO3 thin films promote ice nucleation, whereas the same surfaces when negatively charged reduce the freezing temperature. Accordingly, droplets of water cooled down on a negatively charged LiTaO3 surface and remaining liquid at -11 degrees C freeze immediately when this surface is heated to -8 degrees C, as a result of the replacement of the negative surface charge by a positive one. Furthermore, powder x-ray diffraction studies demonstrated that the freezing on the positively charged surface starts at the solid/water interface, whereas on a negatively charged surface, ice nucleation starts at the air/water interface. PMID:20133568

  19. Process for preparing negative plates for use in a dry charge battery

    SciTech Connect

    Wegner, P.C.

    1986-02-11

    This patent describes a process for the production of lead-containing negative plates for use in a dry charge battery. The process cnsists of drying wet negative plates while protecting them from oxidation. This improvement is accomplished by treating the wet negative plates prior to the drying operation with an aqueous soluton of an oxidation inhibiting agent selected from salicylic acid, and 2-naphtol. The plates are then protected against oxidation during drying; and dry negative plates are obtained which are resistant to the absorption of water from the atmosphere on storage but are wet immediately by battery acid in use.

  20. Cell proliferation and cell sheet detachment from the positively and negatively charged nanocomposite hydrogels.

    PubMed

    Liu, Dan; Wang, Tao; Liu, Xinxing; Tong, Zhen

    2014-01-01

    The charged nanocomposite hydrogels (NC gels) were synthesized by copolymerization of positively or negatively chargeable monomer with N-isopropylacrylamide (NIPAm) in the aqueous suspension of hectorite clay. The ionic NC gels preserved the thermo-responsibility with the phase-transition temperature below 37°C. The L929 cell proliferation was sensitive to charge polarity and charge density. As compared to the PNIPAm NC gel, the cationic NC gels with <5?mol % of 2-(dimethylamino)ethyl methacrylate (DMAEMA) showed improved cell proliferation, whereas the cells grew slowly on the gels with negatively charged 2-acrylamido-2-methylpropane sulfonic acid (AMPSNa). By lowering temperature, rapid cell sheet detachment was observed from the surface of ionic NC gels with 1?mol % of ionizable monomers. However, lager amount of AMPSNa or DMAEMA did not support rapid cell sheet detachment, probably owing to the adverse swelling effects and/or enhanced electrostatic attraction. PMID:23640767

  1. Negative correlation between charge carrier density and mobility fluctuations in graphene

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Lu, Jianming; Sheng, Ping; Institute of Physics and Department of Electrophysics, National Chiao Tung University, Taiwan Collaboration

    2014-03-01

    By carrying out simultaneous longitudinal and Hall measurements in graphene, we find that the 1/f noise for the charge carrier density is negatively correlated to that of mobility, with a governing behavior that differs significantly from the relation between their mean values. The correlation in the noise data can be quantitatively explained by a single parameter theory whose underlying physics is the trapping and de-trapping of the fluctuating charge carriers by the oppositely charged Coulomb scattering centers. This can alter the effective density of long-range scattering centers in a transient manner, with the consequent fluctuating effect on the mobility. The longitudinal noise turns out to be dominated by the remaining component of the mobility fluctuations, and display no correlation to the Hall noise. Due to the negative correlation between charge carrier density and mobility fluctuations, the normalized PSD is smaller than that of the Hall noise. Research Grants Council of Hong Kong Grant HKUST9/CRF/08.

  2. Charge Density of a Positively Charged Vector Boson May Be Negative

    SciTech Connect

    Flambaum, V. V.; Kuchiev, M. Yu.

    2007-05-04

    The charge density of vector particles, for example W{sup {+-}}, may change sign. The effect manifests itself even for a free propagation, when the energy of the W-boson satisfies {epsilon}>{radical}(2)m and the standing wave is considered. The charge density of W also changes sign in a vicinity of a Coulomb center. For an arbitrary vector boson (e.g., for spin 1 mesons), this effect depends on the g-factor. An origin of this surprising effect is traced to the electric quadrupole moment and spin-orbit interaction of vector particles; their contributions to the current have a polarization nature. The corresponding charge density equals {rho}{sub Pol}=-{nabla}{center_dot}P, where P is an effective polarization vector that depends on the quadrupole moment and spin-orbit interaction. This density oscillates in space, producing zero contribution to the total charge.

  3. Charge density of a positively charged vector boson may be negative

    E-print Network

    Victor Flambaum; Michael Kuchiev

    2006-12-29

    The charge density of vector particles, for example W, may change sign. The effect manifests itself even for a free propagation; when the energy of the W-boson is higher than sqrt{2}m and the standing-wave is considered the charge density oscillates in space. The charge density of W also changes sign in close vicinity of a Coulomb center. The dependence of this effect on the g-factor for an arbitrary vector boson, for example rho-meson, is discussed. An origin of this surprising effect is traced to the electric quadrupole moment and spin-orbit interaction of vector particles. Their contributions to the current have a polarization nature. The charge density of this current, rho = -\

  4. Ionization of water molecules by fast charged projectiles

    SciTech Connect

    Dubois, A.; Carniato, S.; Fainstein, P. D.; Hansen, J. P.

    2011-07-15

    Single-ionization cross sections of water molecules colliding with fast protons are calculated from lowest-order perturbation theory by taking all electrons and molecular orientations consistently into account. Explicit analytical formulas based on the peaking approximation are obtained for differential ionization cross sections with the partial contribution from the various electron orbitals accounted for. The results, which are in very good agreement with total and partial cross sections at high electron and projectile energies, display a strong variation on molecular orientation and molecular orbitals.

  5. Negative space charge effects in photon-enhanced thermionic emission solar converters

    NASA Astrophysics Data System (ADS)

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-07-01

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 ?m the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 ?m the maximum efficiency is 31% and optimal flux concentration is 163.

  6. Probing Dynamics from Within in Negative Ions, Neutral Molecules and van der Waals Clusters

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2006-05-01

    We have investigated with unprecedented levels of detail, processes and phenomena involving photodetachment of negative ions and photoionization of molecules and van der Waals clusters using the brightness, spectral resolution, tunability and polarization of the Advanced Light Source at Lawrence Berkeley National Laboratory. Photodetachment of negative ions exhibit structure and processes differing substantially from corresponding processes in neutral and positive ions, owing to the dominance of correlation in both the initial and final states. We will report on investigations carried out in inner-valence CN^- molecules giving rise to absolute double photodetachment cross sections as well as on fragmentation of negative ions clusters. We will also present absolute inner-shell photodetachment of atoms leading to multi-Auger decay [1] and discuss threshold laws [2] and PCI effects [3]. The measurements were conducted using collinear photon-ion spectroscopy. The evolution of inner-shell photoionization of clusters, as a function of photon energy, will be presented and compared to analogous measurements in atoms. The measurements were conducted using angle resolved two-dimensional photoelectron spectroscopy. Molecular fragmentation results using an ion imaging detector will briefly be presented. [1] R. C. Bilodeau, J. D. Bozek, G. D. Ackerman, N. D. Gibson, C. W.Walter, A. Aguilar, G. Turri, I. Dumitriu and N. Berrah, PRA 72, 050701(R), 2005. [2] R. C. Bilodeau, J. D. Bozek, N. D. Gibson, C. W. Walter, G. D. Ackerman, I. Dumitriu, and N. Berrah, Phys. Rev. Lett. 95, 083001 (2005). [3] R. C. Bilodeau, J. D. Bozek, A. Agular, G. D. Ackerman, and N. Berrah, (in press PRA brief report).

  7. Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions.

    PubMed

    Majeed, Hamid; Liu, Fei; Hategekimana, Joseph; Sharif, Hafiz Rizwan; Qi, Jing; Ali, Barkat; Bian, Yuan-Yuan; Ma, Jianguo; Yokoyama, Wallace; Zhong, Fang

    2016-04-15

    Clove oil (CO) anionic nanoemulsions were prepared with varying ratios of CO to canola oil (CA), emulsified and stabilized with purity gum ultra (PGU), a newly developed succinylated waxy maize starch. Interfacial tension measurements showed that CO acted as a co-surfactant and there was a gradual decrease in interfacial tension which favored the formation of small droplet sizes on homogenization until a critical limit (5:5% v/v CO:CA) was reached. Antimicrobial activity of the negatively charged CO nanoemulsion was determined against Gram positive GPB (Listeria monocytogenes and Staphylococcus aureus) and Gram negative GNB (Escherichia coli) bacterial strains using minimum inhibitory concentration (MIC) and a time kill dynamic method. Negatively charged PGU emulsified CO nanoemulsion showed prolonged antibacterial activities against Gram positive bacterial strains. We concluded that negatively charged CO nanoemulsion droplets self-assemble with GPB cell membrane, and facilitated interaction with cellular components of bacteria. Moreover, no electrostatic interaction existed between negatively charged droplets and the GPB membrane. PMID:26616926

  8. Resonant charge transfer at dielectric surfaces. Electron capture and release due to impacting metastable nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Marbach, J.; Bronold, F. X.; Fehske, H.

    2012-04-01

    We report on the theoretical description of secondary electron emission due to resonant charge transfer occurring during the collision of metastable N2(3?+ u ) molecules with dielectric surfaces. The emission is described as a two step process consisting of electron capture to form an intermediate shape resonance N2 -(2? g ) and subsequent electron emission by decay of this ion, either due to its natural life time or its interaction with the surface. The electron capture is modeled using the Keldysh Green's function technique and the negative ion decay is described by a combination of the Keldysh technique and a rate equation approach. We find the resonant capture of electrons to be very efficient and the natural decay to be clearly dominating over the surface-induced decay. Secondary electron emission coefficients are calculated for Al2O3, MgO, SiO2, and diamond at several kinetic energies of the projectile. With the exception of MgO the coefficients turn out to be of the order of 10-1 over the whole range of kinetic energies. This rather large value is a direct consequence of the shape resonance acting as a relay state for electron emission.

  9. A phenomenological negatively charged pion-proton scattering length from pionic hydrogen

    E-print Network

    T. E. O. Ericson; B. Loiseau; S. Wycech

    2004-05-05

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order ((alpha)**2)(log(alpha)) using an extended charge distribution. A hadronic negatively charged pion-proton scattering length of 0.0870(5), in units of inverse charged pion-mass, is deduced, leading to a pion-nucleon coupling constant from the GMO relation equals to 14.04(17).

  10. Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles

    NASA Astrophysics Data System (ADS)

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Zhao, Gongpu; Sun, Kai; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2014-05-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles and bionic combination of properties as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle.

  11. Terminal Supraparticle Assemblies from Similarly Charged Protein Molecules and Nanoparticles

    PubMed Central

    Park, Jai Il; Nguyen, Trung Dac; de Queirós Silveira, Gleiciani; Bahng, Joong Hwan; Srivastava, Sudhanshu; Sun, Kai; Zhao, Gongpu; Zhang, Peijun; Glotzer, Sharon C.; Kotov, Nicholas A.

    2015-01-01

    Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle. PMID:24845400

  12. Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent.

    PubMed

    Mobley, David L; Dumont, Elise; Chodera, John D; Dill, Ken A

    2007-03-01

    In molecular simulations with fixed-charge force fields, the choice of partial atomic charges influences numerous computed physical properties, including binding free energies. Many molecular mechanics force fields specify how nonbonded parameters should be determined, but various choices are often available for how these charges are to be determined for arbitrary small molecules. Here, we compute hydration free energies for a set of 44 small, neutral molecules in two different explicit water models (TIP3P and TIP4P-Ew) to examine the influence of charge model on agreement with experiment. Using the AMBER GAFF force field for nonbonded parameters, we test several different methods for obtaining partial atomic charges, including two fast methods exploiting semiempirical quantum calculations and methods deriving charges from the electrostatic potentials computed with several different levels of ab initio quantum calculations with and without a continuum reaction field treatment of solvent. We find that the best charge sets give a root-mean-square error from experiment of roughly 1 kcal/mol. Surprisingly, agreement with experimental hydration free energies does not increase substantially with increasing level of quantum theory, even when the quantum calculations are performed with a reaction field treatment to better model the aqueous phase. We also find that the semiempirical AM1-BCC method for computing charges works almost as well as any of the more computationally expensive ab initio methods and that the root-mean-square error reported here is similar to that for implicit solvent models reported in the literature. Further, we find that the discrepancy with experimental hydration free energies grows substantially with the polarity of the compound, as does its variation across theory levels. PMID:17291029

  13. Chemisorption of hydrogen molecules on carbon nanotubes: charging effect from first-principles calculations.

    PubMed

    Zhou, Bin; Guo, Wanlin; Tang, Chun

    2008-02-20

    We report a systematic investigation of the charging effect on hydrogen molecule chemisorption on (3, 3), (5, 5), (5, 0), and (8, 0) carbon nanotubes by first-principles calculations. The influence of injected charge on the chemisorption energy barriers is found to be sensitive to the nanotube diameter and chirality. The calculated results also indicate that electron injection is more effective in lowering the energy barrier for armchair carbon nanotubes while hole injection is more effective for zigzag nanotubes. The origin of these interesting trends and systematics can be understood by a close examination of the underlying electronic structure and the electron transfer between the hydrogen molecules and the nanotubes. PMID:21817655

  14. Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules.

    PubMed

    Zhong, Jian-Qiang; Wang, Zhunzhun; Zhang, Jia Lin; Wright, Christopher A; Yuan, Kaidi; Gu, Chengding; Tadich, Anton; Qi, Dongchen; Li, He Xing; Lai, Min; Wu, Kai; Xu, Guo Qin; Hu, Wenping; Li, Zhenyu; Chen, Wei

    2015-12-01

    The reversible selective hydrogenation and dehydrogenation of individual manganese phthalocyanine (MnPc) molecules has been investigated using photoelectron spectroscopy (PES), low-temperature scanning tunneling microscopy (LT-STM), synchrotron-based near edge X-ray absorption fine structure (NEXAFS) measurements, and supported by density functional theory (DFT) calculations. It is shown conclusively that interfacial and intramolecular charge transfer arises during the hydrogenation process. The electronic energetics upon hydrogenation is identified, enabling a greater understanding of interfacial and intramolecular charge transportation in the field of single-molecule electronics. PMID:26528623

  15. Molecular length dictates the nature of charge carriers in single-molecule junctions of oxidized oligothiophenes

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.; Capozzi, Brian; Xia, Jianlong; Venkataraman, Latha; Campos, Luis M.

    2015-03-01

    To develop advanced materials for electronic devices, it is of utmost importance to design organic building blocks with tunable functionality and to study their properties at the molecular level. For organic electronic and photovoltaic applications, the ability to vary the nature of charge carriers and so create either electron donors or acceptors is critical. Here we demonstrate that charge carriers in single-molecule junctions can be tuned within a family of molecules that contain electron-deficient thiophene-1,1-dioxide (TDO) building blocks. Oligomers of TDO were designed to increase electron affinity and maintain delocalized frontier orbitals while significantly decreasing the transport gap. Through thermopower measurements we show that the dominant charge carriers change from holes to electrons as the number of TDO units is increased. This results in a unique system in which the charge carrier depends on the backbone length, and provides a new means to tune p- and n-type transport in organic materials.

  16. Sensing organic molecules by charge transfer through aptamer-target complexes: theory and simulation.

    PubMed

    Schill, Maria; Koslowski, Thorsten

    2013-01-17

    Aptamers, i.e., short sequences of RNA and single-stranded DNA, are capable of specificilly binding objects ranging from small molecules over proteins to entire cells. Here, we focus on the structure, stability, dynamics, and electronic properties of oligonucleotides that interact with aromatic or heterocyclic targets. Large-scale molecular dynamics simulations indicate that aromatic rings such as dyes, metabolites, or alkaloides form stable adducts with their oligonucleotide host molecules at least on the simulation time scale. From molecular dynamics snapshots, the energy parameters relevant to Marcus' theory of charge transfer are computed using a modified Su-Schrieffer-Heeger Hamiltonian, permitting an estimate of the charge transfer rates. In many cases, aptamer binding seriously influences the charge transfer kinetics and the charge carrier mobility within the complex, with conductivities up to the nanoampere range for a single complex. We discuss the conductivity properties with reference to potential applications as biosensors. PMID:23227783

  17. Thermodynamic Evidence for Negative Charge Stabilization by a Catalytic Metal Ion within an RNA Active Site

    E-print Network

    Herschlag, Dan

    . Model of the transition state of the group I self-splicing reaction from functional and structural dataThermodynamic Evidence for Negative Charge Stabilization by a Catalytic Metal Ion within an RNA Supporting Information ABSTRACT: Protein and RNA enzymes that catalyze phos- phoryl transfer reactions

  18. Z .Chemical Physics 239 1998 475483 Neutral and negatively-charged formamide, N-methylformamide

    E-print Network

    Simons, Jack

    Z .Chemical Physics 239 1998 475­483 Neutral and negatively-charged formamide, N energy electron attachment properties of small clusters of formamide, N-methylformamide and Z-suited ionization technique which introduces a nearly negli- gible perturbation of the nuclear geometries in con

  19. Bound state properties and photodetachment of the negatively charged hydrogen ions

    NASA Astrophysics Data System (ADS)

    Frolov, Alexei M.

    2015-05-01

    Absorption of infrared and visible radiation from stellar emission spectra by the negatively charged hydrogen ions H- is considered. The explicit formula for the photodetachment cross-section of the negatively charged hydrogen ion(s) is derived. Photodetachemnt cross-sections of the {?}H-, {3}H- (or T-), {2}H- (or D-) and {1}H- ions are determined to high accuracy and for a large number of photo-electron momenta/energies. We introduce criteria which can be used to evaluate the overall quality of highly accurate wave functions of the hydrogen ion(s). One of these criteria is based on highly accurate calculations of the lowest order QED corrections in the negatively charged hydrogen ions, including {1}H- (protium), {2}H- (deuterium), {3}H- (tritium) and model ion with the infinitely heavy nucleus {?}H-. An effective approach has been developed to calculate three-body integrals with the Bessel functions of different orders. Some preliminary evaluations of the phototdetachment cross-sections of the negatively charged hydrogen ions are performed. Inverse bremsstrahlung in the field of the neutral hydrogen atom is briefly discussed.

  20. On highly accurate computations of some properties of the negatively charged positronium and hydrogen ions

    E-print Network

    Frolov, Alexei M

    2015-01-01

    Numerical values of some important electron-positron and electron-electron expectation values are reported for the ground (bound) $1^1S-$state of the negatively charged Ps$^{-}$ and H$^{-}$ ions. Convergence of these values upon the total number of basis functions $N$ used is briefly discussed.

  1. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    SciTech Connect

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  2. Selective charge asymmetric distribution in heteronuclear diatomic molecules in strong laser fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei; Guo, Chunlei

    2015-07-01

    In this paper we study double-ionization-induced charge asymmetric dissociation (CAD) in heteronuclear diatomic molecules. In CO we find a selective charge distribution in two CAD channels, i.e., C2 ++O is abundantly produced but C +O2 + is nearly nonexistent. This cannot be explained by the ionization energy difference between the two channels alone. Our study shows that the C2 ++O channel is sequentially formed through an intermediate state C++O and the selective charge distribution is the result of electron distribution in CO when exposed to intense laser fields.

  3. Gating of single molecule junction conductance by charge transfer complex formation.

    PubMed

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J; Xu, Bingqian; Nichols, Richard J; Higgins, Simon J

    2015-12-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. PMID:26510687

  4. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    DOEpatents

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  5. Spin-boson theory for charge photogeneration in organic molecules: Role of quantum coherence

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2015-01-01

    The charge photogeneration process in organic molecules is investigated by a quantum heat engine model, in which two molecules are modeled by a two-spin system sandwiched between two bosonic baths. The two baths represent the high-temperature photon emission source and the low-temperature phonon environment, respectively. We utilize the time-dependent density matrix renormalization group algorithm to investigate the quantum dynamics of the model. It is found that the transient energy current flowing through the two molecules exhibits two stages. In the first stage the energy current is of a coherent feature and represents the ultrafast delocalization of the charge-transfer state, and in the second stage a steady incoherent current is established. The power conversion efficiency is significantly high and may reach the maximum value of 93 % with optimized model parameters. The long-lived quantum entanglement between the two spins is found to be primarily responsible for the hyperefficiency.

  6. Single molecule detection using charge-coupled device array technology. Technical progress report

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  7. Influence of charge mode on the capacity and cycle life of lead-acid battery negative plates

    NASA Astrophysics Data System (ADS)

    Petkova, G.; Pavlov, D.

    The effect of fast and three-step charge mode on the capacity and cycle life of lead-acid battery negative plates was investigated using a model mini electrode (ME). It has been found that the charge algorithm exerts a strong effect on the charge acceptance of the negative electrode. In the two-step charging mode I1, ?2 with increase of the current at the first step of charge, the capacity of the negative electrode decreases and the cycle life shortens. This phenomenon is reversible as it is probably due to the incomplete reduction of PbSO 4 to Pb. The phenomenon is explained based on the mechanism of the process of reduction of PbSO 4. At high initial charge currents, the concentration of H 2SO 4 in the pores of NAM increases, which decreases the solubility of PbSO 4 crystals and limits the charge acceptance of the negative plate. The higher initial charge current influences markedly the formation of smaller Pb crystals that build up the energetic structure of the negative active material. It is essential that a third step with a small constant current, I3 is added to the charge algorithm. The third step of charge in the I1, ?2, I3 charge mode decreases the Ohmic resistance and ensures complete charge of the lead electrode.

  8. The neutron negative central charge density: an inclusive-exclusive connection

    E-print Network

    Gerald A. Miller; John Arrington

    2008-06-24

    Models of generalized parton distributions at zero skewness are used to relate the behavior of deep inelastic scattering quark distributions, evaluated at high x, to the transverse charge density evaluated at small distances. We obtain an interpretation of the recently obtained negative central charge density of the neutron. The d quarks dominate the neutron structure function for large values of Bjorken x, where the large momentum of the struck quark has a significant impact on determining the center of momentum, and thus the ``center'' of the nucleon in the transverse position plane.

  9. Poisson-Boltzmann theory for membranes with mobile charged lipids and the pH-dependent interaction of a DNA molecule with a membrane.

    PubMed Central

    Fleck, Christian; Netz, Roland R; von Grünberg, Hans Hennig

    2002-01-01

    We consider a planar stiff model membrane consisting of mobile surface groups whose state of charge depends on the pH and the ionic composition of the adjacent electrolyte solution. To calculate the mean-field interaction potential between a charged object and such a model membrane, one needs to solve a Poisson-Boltzmann boundary value problem. We here derive and discuss the boundary condition at the membrane surface, a condition that is generally appropriate for biological membranes where two charge-regulating mechanisms are present at the same time: the pH-dependent chemical charge regulation and a regulation through the in-plane mobility of the surface groups. As an application of this general formalism, we consider the specific example of a single DNA molecule, approximated by a cylinder with smeared-out surface charges, interacting with such a model membrane. We study the effect that the two competing charge-regulating mechanisms have on the DNA/membrane interaction and the distribution of surface ions in the plane of the membrane. We find that, at short DNA-membrane distances, membrane fluidity can have a considerable impact on the DNA adsorption behavior and can lead to such counterintuitive phenomena as the adsorption of a negatively charged DNA onto a (on average) negatively charged membrane. PMID:11751297

  10. Protecting-Group-Free Synthesis of Well-Defined Glycopolymers Featuring Negatively Charged Oligosaccharides.

    PubMed

    Albertin, Luca

    2016-01-01

    Control of the macromolecular architecture is essential to enable sophisticated functions for glycopolymers and to allow a precise correlation between these functions and the polymer structure. A number of biologically important ligands are negatively charged oligosaccharides that are difficult to manipulate in organic solvent and that are hardly amenable to protection/deprotection strategies. RAFT polymerization is a simple and robust technique that enables the synthesis of well-defined glycopolymers directly in aqueous solution and starting from unprotected vinyl glycomonomers. Here I describe how RAFT polymerization can be combined with reductive amination to transform negatively charged oligosaccharides having 5-20 monosaccharide units into well-defined glycopolymers directly in water and without the need to resort to protecting-group chemistry. PMID:26537461

  11. Optimizing charge neutralization for a magnetic sector SIMS instrument in negative mode

    SciTech Connect

    Pivovarov, Alexander L.; Guryanov, Georgiy M.

    2012-07-15

    Successful self-adjusted charge compensation was demonstrated for a CAMECA magnetic-sector secondary ion mass spectrometer applied in negative mode. Operation with the normal-incidence electron gun (NEG) potential positively biased relative to a sample potential enables substantial broadening of the Cs primary-ion-current density range available for analysis of insulators. The decrease of the negative NEG potential by 30 V allows the highest value of primary current density used for the analysis of a silica sample to increase by a factor of more than 6. By applying the improved charge neutralization technique, accurate Na depth profiles for SiO{sub 2} samples were obtained within detection limits of {approx}3 Multiplication-Sign 10{sup 15} atoms/cm{sup 3}.

  12. Annihilation, bound state properties and photodetachment of the positronium negatively charged ion

    NASA Astrophysics Data System (ADS)

    Frolov, Alexei M.

    2015-04-01

    Bound state properties of the negatively charged Ps- ion (or e-e+e-) are discussed. The expectation values of operators which correspond to these properties have been determined with the use of the highly accurate wave functions constructed for this ion. Our best variational energy obtained for the Ps- ion is E = -0.2620050 7023298 0107770 40051 a.u. Annihilation of the electron-positron pair(s) in the negatively charged Ps- ion (or e-e+e-) is considered in detail. By using accurate values for a number annihilation rates ?n?, where n = 1, 2, 3, 4 and 5, we evaluated the half-life ?a of the Ps- ion against positron annihilation (?a = 1/? ? 4.793584140 × 10-10 s). Photodetachment of the Ps- ion is considered in the long-range, asymptotic approximation. The overall accuracy of our photodetachment cross-section of the Ps- ion is very good for such a simple approximation.

  13. Ensemble density functional theory, the atom-in-molecule problem, and reactive charge transfer

    NASA Astrophysics Data System (ADS)

    Atlas, Susan; Valone, Steven

    2008-03-01

    A major challenge in large-scale simulations of complex biomolecular and materials systems is the ability to accurately describe reactive dynamics. We have previously described a new multiscale formalism, based on density functional theory and the embedded-atom method, that enables the rigorous encoding of quantum mechanical excitation effects such as charge polarization and charge transfer within a classical potential. Here we describe a new formulation of a key element of the theory: the deconstruction of molecular densities into subsystem atom-in-molecule components via ensemble constrained-search density functional theory. The method is implemented via the self-consistent solution of coupled sets of Kohn-Sham equations in conjunction with chemical potential equalization across subsystems. This leads to a natural interpretation of dynamical charge transfer and charge polarization in terms of an electronic entropy, thus extending the seminal work of Gross, Oliveira, and Kohn (1988).

  14. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  15. Anomalous charge and negative-charge-transfer insulating state in cuprate chain compound KCuO2

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Rivero, P.; Meyers, D.; Liu, X.; Cao, Y.; Middey, S.; Whitaker, M. J.; Barraza-Lopez, S.; Freeland, J. W.; Greenblatt, M.; Chakhalian, J.

    2015-11-01

    Using a combination of x-ray absorption spectroscopy (XAS) experiments and first-principles calculations, we demonstrate that insulating KCuO2 contains Cu in an unusually high formal 3+ valence state, and the ligand-to-metal (O-to-Cu) charge-transfer energy is intriguingly negative (? ˜-1.5 eV) and has a dominant (˜60 % ) ligand-hole character in the ground state akin to the high Tc cuprate Zhang-Rice state. Unlike most other formal Cu3 + compounds, the Cu 2 p XAS spectra of KCuO2 exhibit pronounced 3 d8 (Cu3 +) multiplet structures, which account for ˜40 % of its ground state wave function. Ab initio calculations elucidate the origin of the band gap in KCuO2 as arising primarily from strong intracluster Cu 3 d -O 2 p hybridizations (tpd); the value of the band gap decreases with a reduced value of tpd. Further, unlike conventional negative-charge-transfer insulators, the band gap in KCuO2 persists even for vanishing values of Coulomb repulsion U , underscoring the importance of single-particle band-structure effects connected to the one-dimensional nature of the compound.

  16. Solvent-tuned intramolecular charge-recombination rates in a conjugated donor-acceptor molecule

    NASA Technical Reports Server (NTRS)

    Khundkar, Lutfur R.; Stiegman, A. E.; Perry, Joseph W.

    1990-01-01

    The nonradiative charge-recombination rates from the charge-transfer state of a new conjugated donor-acceptor molecule (p-cyano-p-prime-methylthiodiphenylacetylene) can be tuned over almost an order of magnitude by varying the polarity of the solvent. These measurements of intramolecular recombination show a turnover of rates as a function of emission energy, consistent with the 'normal' and 'inverted' behavior of Marcus theory. Steady-state spectra and time-resolved measurements make it possible to quantitatively compare thermal and optical electron-transfer rates as a function of driving force and demonstrate their correspondence.

  17. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport.

    PubMed

    Muren, Natalie B; Olmon, Eric D; Barton, Jacqueline K

    2012-10-28

    The structural core of DNA, a continuous stack of aromatic heterocycles, the base pairs, which extends down the helical axis, gives rise to the fascinating electronic properties of this molecule that is so critical for life. Our laboratory and others have developed diverse experimental platforms to investigate the capacity of DNA to conduct charge, termed DNA-mediated charge transport (DNA CT). Here, we present an overview of DNA CT experiments in solution, on surfaces, and with single molecules that collectively provide a broad and consistent perspective on the essential characteristics of this chemistry. DNA CT can proceed over long molecular distances but is remarkably sensitive to perturbations in base pair stacking. We discuss how this foundation, built with data from diverse platforms, can be used both to inform a mechanistic description of DNA CT and to inspire the next platforms for its study: living organisms and molecular electronics. PMID:22850865

  18. Nanoscale charge transport in cytochrome c3/DNA network: Comparative studies between redox-active molecules

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harumasa; Che, Dock-Chil; Hirano, Yoshiaki; Suzuki, Masayuki; Higuchi, Yoshiki; Matsumoto, Takuya

    2015-09-01

    The redox-active molecule of a cytochrome c3/DNA network exhibits nonlinear current-voltage (I-V) characteristics with a threshold bias voltage at low temperature and zero-bias conductance at room temperature. I-V curves for the cytochrome c3/DNA network are well matched with the Coulomb blockade network model. Comparative studies of the Mn12 cluster, cytochrome c, and cytochrome c3, which have a wide variety of redox potentials, indicate no difference in charge transport, which suggests that the conduction mechanism is not directly related to the redox states. The charge transport mechanism has been discussed in terms of the newly-formed electronic energy states near the Fermi level, induced by the ionic interaction between redox-active molecules with the DNA network.

  19. Excited states and valley effects in a negatively charged impurity in a silicon FinFET.

    SciTech Connect

    Hollenberg, Lloyd; Klimeck, Gerhard; Carroll, Malcolm S.; Rahman, Rajib; Muller, Richard Partain; Rogge, Sven; Verduijn, Arjan; Lansbergen, Gabriel

    2010-07-01

    The observation and characterization of a single atom system in silicon is a significant landmark in half a century of device miniaturization, and presents an important new laboratory for fundamental quantum and atomic physics. We compare with multi-million atom tight binding (TB) calculations the measurements of the spectrum of a single two-electron (2e) atom system in silicon - a negatively charged (D-) gated Arsenic donor in a FinFET. The TB method captures accurate single electron eigenstates of the device taking into account device geometry, donor potentials, applied fields, interfaces, and the full host bandstructure. In a previous work, the depths and fields of As donors in six device samples were established through excited state spectroscopy of the D0 electron and comparison with TB calculations. Using self-consistent field (SCF) TB, we computed the charging energies of the D- electron for the same six device samples, and found good agreement with the measurements. Although a bulk donor has only a bound singlet ground state and a charging energy of about 40 meV, calculations show that a gated donor near an interface can have a reduced charging energy and bound excited states in the D- spectrum. Measurements indeed reveal reduced charging energies and bound 2e excited states, at least one of which is a triplet. The calculations also show the influence of the host valley physics in the two-electron spectrum of the donor.

  20. Gating of single molecule junction conductance by charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J.; Xu, Bingqian; Nichols, Richard J.; Higgins, Simon J.

    2015-11-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference.The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. Electronic supplementary information (ESI) available: Synthesis of 1c; experimental details of conductance measurements, formation of charge transfer complexes of 1c and 2 in solution; further details of theoretical methods. See DOI: 10.1039/c5nr04420k

  1. Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface.

    PubMed

    Rapp, Michael V; Donaldson, Stephen H; Gebbie, Matthew A; Gizaw, Yonas; Koenig, Peter; Roiter, Yuri; Israelachvili, Jacob N

    2015-07-28

    We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target surfaces. PMID:26135325

  2. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer

    PubMed Central

    Azuma, Masaki; Chen, Wei-tin; Seki, Hayato; Czapski, Michal; Olga, Smirnova; Oka, Kengo; Mizumaki, Masaichiro; Watanuki, Tetsu; Ishimatsu, Naoki; Kawamura, Naomi; Ishiwata, Shintaro; Tucker, Matthew G.; Shimakawa, Yuichi; Attfield, J. Paul

    2011-01-01

    The unusual property of negative thermal expansion is of fundamental interest and may be used to fabricate composites with zero or other controlled thermal expansion values. Here we report that colossal negative thermal expansion (defined as linear expansion charge-transfer transitions. BiNiO3 shows a 2.6% volume reduction under pressure due to a Bi/Ni charge transfer that is shifted to ambient pressure through lanthanum substitution for Bi. Changing proportions of coexisting low- and high-temperature phases leads to smooth volume shrinkage on heating. The crystallographic linear expansion coefficient for Bi0.95La0.05NiO3 is ?137×10?6 K?1 and a value of ?82×10?6 K?1 is observed between 320 and 380 K from a dilatometric measurement on a ceramic pellet. Colossal negative thermal expansion materials operating at ambient conditions may also be accessible through metal-insulator transitions driven by other phenomena such as ferroelectric orders. PMID:21673668

  3. Two-Dimensional Heterodyne-Detected VSFG Spectroscopy of Water Molecules at Charged Interfaces

    NASA Astrophysics Data System (ADS)

    Nihonyanagi, S.; Singh, P. C.; Yamaguchi, S.; Tahara, T.

    2013-03-01

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D-HD-VSFG) spectroscopy of water at interfaces has been realized for the first time. In the present study, 2D-HD-VSFG spectra were measured at a charged monolayer / isotopically diluted water interface. In contrast to the 2D-IR spectrum of bulk isotopically diluted water, the 2D-HD- VSFG of the charged interface shows a narrower bleach band in the higher frequency region immediately after the photoexcitation. The results clearly show that the dynamics of the water at the charged interface is different from that in the bulk, reflecting the different environment where water molecules are located.

  4. The Inclusive-Exclusive Connection and the Neutron Negative Central Charge Density

    E-print Network

    Gerald A. Miller; John Arrington

    2009-03-09

    We find an interpretation of the recent finding that the central charge density of the neutron is negative by using models of generalized parton distributions at zero skewness to relate the behavior of deep inelastic scattering quark distributions, evaluated at large values of Bjorken x, to the transverse charge density evaluated at small distances. The key physical input of these models is the Drell-Yan-West relation We find that the d quarks dominate the neutron structure function for large values of Bjorken x, where the large longitudinal momentum of the struck quark has a significant impact on determining the center-of-momentum of the system, and thus the "center" of the nucleon in the transverse position plane.

  5. High-throughput ion exchange purification of positively charged recombinant protein in the presence of negatively charged dextran sulfate.

    PubMed

    Markely, Lam Raga A; Kurt, Lutfiye; Lau, Janet; Mane, Sarthak; Guan, Bing; Ryll, Thomas; Estes, Scott; Prajapati, Shashi; Bakhshayeshi, Meisam; Pieracci, John

    2014-01-01

    Product quality analyses are critical for developing cell line and bioprocess producing therapeutic proteins with desired critical product quality attributes. To facilitate these analyses, a high-throughput small-scale protein purification (SSP) is required to quickly purify many samples in parallel. Here we develop an SSP using ion exchange resins to purify a positively charged recombinant growth factor P1 in the presence of negatively charged dextran sulfate supplemented to improve the cell culture performance. The major challenge in this work is that the strong ionic interaction between P1 and dextran sulfate disrupts interaction between P1 and chromatography resins. To solve this problem, we develop a two-step SSP using Q Sepharose Fast Flow (QFF) and SP Sepharose XL (SPXL) resins to purify P1. The overall yield of this two-step SSP is 78%. Moreover, the SSP does not affect the critical product quality attributes. The SSP was critical for developing the cell line and process producing P1. PMID:24449619

  6. Intermolecular interactions, charge-density distribution and the electrostatic properties of pyrazinamide anti-TB drug molecule: an experimental and theoretical charge-density study.

    PubMed

    Rajalakshmi, Gnanasekaran; Hathwar, Venkatesha R; Kumaradhas, Poomani

    2014-06-01

    An experimental charge-density analysis of pyrazinamide (a first line antitubercular drug) was performed using high-resolution X-ray diffraction data [(sin??/?)max = 1.1?Å(-1)] measured at 100?(2)?K. The structure was solved by direct methods using SHELXS97 and refined by SHELXL97. The total electron density of the pyrazinamide molecule was modeled using the Hansen-Coppens multipole formalism implemented in the XD software. The topological properties of electron density determined from the experiment were compared with the theoretical results obtained from CRYSTAL09 at the B3LYP/6-31G** level of theory. The crystal structure was stabilized by N-H...N and N-H...O hydrogen bonds, in which the N3-H3B...N1 and N3-H3A...O1 interactions form two types of dimers in the crystal. Hirshfeld surface analysis was carried out to analyze the intermolecular interactions. The fingerprint plot reveals that the N...H and O...H hydrogen-bonding interactions contribute 26.1 and 18.4%, respectively, of the total Hirshfeld surface. The lattice energy of the molecule was calculated using density functional theory (B3LYP) methods with the 6-31G** basis set. The molecular electrostatic potential of the pyrazinamide molecule exhibits extended electronegative regions around O1, N1 and N2. The existence of a negative electrostatic potential (ESP) region just above the upper and lower surfaces of the pyrazine ring confirm the ?-electron cloud. PMID:24892603

  7. Phagocytosis and transforming activity of crystalline metal sulfide particles are related to their negative surface charge

    SciTech Connect

    Abbracchio, M.P.; Heck, J.D.; Costa, M.

    1982-01-01

    Crystalline nickel sulfide (alpha NiS) and cobalt sulfide (CoS2) particles can cause greater cell transformation and cellular toxicity than the respective amorphous metal sulfide particles. Cultured mammalian cells phagocytose the crystalline metal sulfide particles more readily than the amorphous ones. In the case of the nickel sulfides, the crystalline metal sulfide particles had negatively charged surfaces (Zeta potential: -27.012 mV) in contrast to the amorphous particles, which were positively charge (Zeta potential: +9.174 mV). X-ray photoelectron spectroscopy analysis of amorphous and crystalline NiS particles revealed that the outermost surface (1-4 nm) of the two particles had striking differences in Ni/S ratios and in their sulfur oxidation states. Rendering particles' surfaces more negative by reduction with lithium aluminum hydride enhanced their phagocytosis, and in the case of amorphous NiS chemical reduction resulted in an incidence of morphological transformation of Syrian hamster embryo cells comparable to that observed with untreated crystalline alpha NiS.

  8. Charge localization on a redox-active single-molecule junction and its influence on coherent electron transport

    NASA Astrophysics Data System (ADS)

    Kastlunger, Georg; Stadler, Robert

    2013-07-01

    To adjust the charging state of a molecular metal complex in the context of a density functional theory description of coherent electron transport through single-molecule junctions, we correct for self-interaction effects by fixing the charge on a counterion, which in our calculations mimics the effect of the gate in an electrochemical scanning tunneling microscope setup, with two competing methods, namely, the generalized ?self consistent field (?SCF) technique and screening with solvation shells. One would expect a transmission peak to be pinned at the Fermi energy for a nominal charge of +1 on the molecule in the junction, but we find a more complex situation in this multicomponent system defined by the complex, the leads, the counterion, and the solvent. In particular the equilibrium charge transfer between the molecule and the leads plays an important role, which we investigate in relation to the total external charge in the context of electronegativity theory.

  9. A renormalization approach to describe charge transport in quasiperiodic dangling backbone ladder (DBL)-DNA molecules

    NASA Astrophysics Data System (ADS)

    Sarmento, R. G.; Fulco, U. L.; Albuquerque, E. L.; Caetano, E. W. S.; Freire, V. N.

    2011-10-01

    We study the charge transport properties of a dangling backbone ladder (DBL)-DNA molecule focusing on a quasiperiodic arrangement of its constituent nucleotides forming a Rudin-Shapiro (RS) and Fibonacci (FB) Poly (CG) sequences, as well as a natural DNA sequence (Ch22) for the sake of comparison. Making use of a one-step renormalization process, the DBL-DNA molecule is modeled in terms of a one-dimensional tight-binding Hamiltonian to investigate its transmissivity and current-voltage (I-V) profiles. Beyond the semiconductor I-V characteristics, a striking similarity between the electronic transport properties of the RS quasiperiodic structure and the natural DNA sequence was found.

  10. Ordering of Interfacial Water Molecules at the Charged Air/Water Interface Observed by Vibrational Sum Frequency

    E-print Network

    Richmond, Geraldine L.

    unanswered. For example, at the water surface, where it is well-known that the presence of a surfactantOrdering of Interfacial Water Molecules at the Charged Air/Water Interface Observed by Vibrational: The molecular structure and orientation of interfacial water molecules at the air/water interface

  11. Space Charge Neutralization of DEMO Relevant Negative Ion Beams at Low Gas Density

    SciTech Connect

    Surrey, Elizabeth; Porton, Michael

    2011-09-26

    The application of neutral beams to future power plant devices (DEMO) is dependent on achieving significantly improved electrical efficiency and the most promising route to achieving this is by implementing a photoneutralizer in place of the traditional gas neutralizer. A corollary of this innovation would be a significant reduction in the background gas density through which the beam is transported between the accelerator and the neutralizer. This background gas is responsible for the space charge neutralization of the beam, enabling distances of several metres to be traversed without significant beam expansion. This work investigates the sensitivity of a D{sup -} beam to reduced levels of space charge compensation for energies from 100 keV to 1.5 MeV, representative of a scaled prototype experiment, commissioning and full energy operation. A beam transport code, following the evolution of the phase space ellipse, is employed to investigate the effect of space charge on the beam optics. This shows that the higher energy beams are insensitive to large degrees of under compensation, unlike the lower energies. The probable degree of compensation at low gas density is then investigated through a simple, two component beam-plasma model that allows the potential to be negative. The degree of under-compensation is dependent on the positive plasma ion energy, one source of which is dissociation of the gas by the beam. The subsequent space charge state of the beam is shown to depend upon the relative times for equilibration of the dissociation energy and ionization by the beam ions.

  12. New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J.

    2014-05-02

    Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup ?}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup ?} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup ?} ({sup 7}Be{sub x}) is a possible {sup 7}Be destruction reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup ?}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup ?}. The effect of this new route is shown in a nuclear reaction network calculation.

  13. Linear free energy relationships for metal-ligand complexation: Bidentate binding to negatively-charged oxygen donor atoms

    NASA Astrophysics Data System (ADS)

    Carbonaro, Richard F.; Atalay, Yasemin B.; Di Toro, Dominic M.

    2011-05-01

    Stability constants for metal complexation to bidentate ligands containing negatively-charged oxygen donor atoms can be estimated from the following linear free energy relationship (LFER): log KML = ?OO( ?O log KHL,1 + ?O log KHL,2) where KML is the metal-ligand stability constant for a 1:1 complex, KHL,1 and KHL,2 are the proton-ligand stability constants (the ligand p Ka values), and ?O is the Irving-Rossotti slope. The parameter ?OO is metal specific and has slightly different values for five and six membered chelate rings. LFERs are presented for 21 different metal ions and are accurate to within approximately 0.30 log units in predictions of log KML values. Ligands selected for use in LFER development include dicarboxylic acids, carboxyphenols, and ortho-diphenols. For ortho-hydroxybenzaldehydes, ?-hydroxycarboxylic acids, and ?-ketocarboxylic acids, a modification of the LFER where log KHL,2 is set equal to zero is required. The chemical interpretation of ?OO is that it accounts for the extra stability afforded to metal complexes by the chelate effect. Cu-NOM binding constants calculated from the bidentate LFERs are similar in magnitude to those used in WHAM 6. This LFER can be used to make log KML predictions for small organic molecules. Since natural organic matter (NOM) contains many of the same functional groups (i.e. carboxylic acids, phenols, alcohols), the LFER log KML predictions shed light on the range of appropriate values for use in modeling metal partitioning in natural systems.

  14. Negatively Charged Carbon Nanohorn Supported Cationic Liposome Nanoparticles: A Novel Delivery Vehicle for Anti-Nicotine Vaccine.

    PubMed

    Zheng, Hong; Hu, Yun; Huang, Wei; de Villiers, Sabina; Pentel, Paul; Zhang, Jianfei; Dorn, Harry; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Tobacco addiction is the second-leading cause of death in the world. Due to the nature of nicotine (a small molecule), finding ways to combat nicotine's deleterious effects has been a constant challenge to the society and the medical field. In the present work, a novel anti-nicotine vaccine based on nanohorn supported liposome nanoparticles (NsL NPs) was developed. The nano-vaccine was constructed by using negatively charged carbon nanohorns as a scaffold for the assembly of cationic liposomes, which allow the conjugation of hapten conjugated carrier proteins. The assembled bio-nanoparticles are stable. Mice were immunized subcutaneously with the nano-vaccine, which induced high titer and high affinity of nicotine specific antibodies in mice. Furthermore, no evidence of clinical signs or systemic toxicity followed multiple administrations of NsL-based anti-nicotine vaccine. These results suggest that NsL-based anti-nicotine vaccine is a promising candidate in treating nicotine dependence and could have potential to significantly contribute to smoking cessation. PMID:26510313

  15. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.

    PubMed

    Saeki, Akinori; Koizumi, Yoshiko; Aida, Takuzo; Seki, Shu

    2012-08-21

    Si-based inorganic electronics have long dominated the semiconductor industry. However, in recent years conjugated polymers have attracted increasing attention because such systems are flexible and offer the potential for low-cost, large-area production via roll-to-roll processing. The state-of-the-art organic conjugated molecular crystals can exhibit charge carrier mobilities (?) that nearly match or even exceed that of amorphous silicon (1-10 cm(2) V(-1) s(-1)). The mean free path of the charge carriers estimated from these mobilities corresponds to the typical intersite (intermolecular) hopping distances in conjugated organic materials, which strongly suggests that the conduction model for the electronic band structure only applies to ? > 1 cm(2) V(-1) s(-1) for the translational motion of the charge carriers. However, to analyze the transport mechanism in organic electronics, researchers conventionally use a disorder formalism, where ? is usually less than 1 cm(2) V(-1) s(-1) and dominated by impurities, disorders, or defects that disturb the long-range translational motion. In this Account, we discuss the relationship between the alternating-current and direct-current mobilities of charge carriers, using time-resolved microwave conductivity (TRMC) and other techniques including field-effect transistor, time-of-flight, and space-charge limited current. TRMC measures the nanometer-scale mobility of charge carriers under an oscillating microwave electric field with no contact between the semiconductors and the metals. This separation allows us to evaluate the intrinsic charge carrier mobility with minimal trapping effects. We review a wide variety of organic electronics in terms of their charge carrier mobilities, and we describe recent studies of macromolecules, molecular crystals, and supramolecular architecture. For example, a rigid poly(phenylene-co-ethynylene) included in permethylated cyclodextrin shows a high intramolecular hole mobility of 0.5 cm(2) V(-1) s(-1), based on a combination of flash-photolysis TRMC and transient absorption spectroscopy (TAS) measurements. Single-crystal rubrene showed an ambipolarity with anisotropic charge carrier transport along each crystal axis on the nanometer scale. Finally, we describe the charge carrier mobility of a self-assembled nanotube consisting of a large ?-plane of hexabenzocoronene (HBC) partially appended with an electron acceptor. The local (intratubular) charge carrier mobility reached 3 cm(2) V(-1) s(-1) for the nanotubes that possessed well-ordered ?-stacking, but it dropped to 0.7 cm(2) V(-1) s(-1) in regions that contained greater amounts of the electron acceptor because those molecules reduced the structural integrity of ?-stacked HBC arrays. Interestingly, the long-range (intertubular) charge carrier mobility was on the order of 10(-4) cm(2) V(-1) s(-1) and monotonically decreased when the acceptor content was increased. These results suggest the importance of investigating charge carrier mobilities by frequency-dependent charge carrier motion for the development of more efficient organic electronic devices. PMID:22676381

  16. Transient negative photoconductance in a charge transfer double quantum well under optical intersubband excitation

    NASA Astrophysics Data System (ADS)

    Rüfenacht, M.; Tsujino, S.; Sakaki, H.

    1998-06-01

    Recently, it was shown that an electron-hole radiative recombination is induced by a mid-infrared light exciting an intersubband transition in a charge transfer double quantum well (CTDQW). This recombination was attributed to an upstream transfer of electrons from an electron-rich well to a hole-rich well. In this study, we investigated the electrical response of a CTDQW under intersubband optical excitation, and found that a positive photocurrent, opposite in sign and proportional to the applied electric field, accompanies the intersubband-transition-induced luminescence (ITIL) signal. A negative photocurrent component was also observed and attributed to heating processes. This work brings a further evidence of the ITIL process and shows that an important proportion of the carriers are consumed by the transfer of electrons.

  17. Dynamic Jahn-Teller Effect in Negatively Charged Nitrogen-Vacancy Center in Diamond

    NASA Astrophysics Data System (ADS)

    Abtew, Tesfaye; Zhang, Peihong

    2011-03-01

    The negatively charged nitrogen-vacancy (NV) center in diamond has attracted much research interest recently owing to its desirable optical properties and long spin coherent lifetime. The ground state of NV- center has a 3 A2 symmetry, which can be optically excited, to a 3 E state. The excited state is orbitally degenerate therefore should experience either static or dynamic Jahn-Teller (JT) effects. We use accurate first-principles methods to study structural and electronic properties of the NV- center in diamond both in the ground and excited states. Our results indicate that the excited state of the NV- center is indeed a dynamic JT system. We acknowledge the Center for Computational Research at the University at Buffalo, SUNY. This work is supported by the National Science Foundation under Grant No. DMR-0946404 and by the Department of Energy under GrantNo. DE-SC0002623.

  18. Polymerization on the rocks: negatively-charged alpha-amino acids

    NASA Technical Reports Server (NTRS)

    Hill, A. R. Jr; Bohler, C.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Oligomers of the negatively-charged amino acids, glutamic acid, aspartic acid, and O-phospho-L-serine are adsorbed by hydroxylapatite and illite with affinities that increase with oligomer length. In the case of oligo-glutamic acids adsorbed on hydroxylapatite, addition of an extra residue results in an approximately four-fold increase in the strength of adsorption. Oligomers much longer than the 7-mer are retained tenaciously by the mineral. Repeated incubation of short oligo-glutamic acids adsorbed on hydroxylapatite or illite with activated monomer leads to the accumulation of oligomers at least 45 units long. The corresponding reactions of aspartic acid and O-phospho-L-serine on hydroxylapatite are less effective in generating long oligomers, while illite fails to accumulate substantial amounts of long oligomers of aspartic acid or of O-phospho-L-serine.

  19. Mitigation of charged impurity effects in graphene field-effect transistors with polar organic molecules (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Worley, Barrett C.; Kim, Seohee; Akinwande, Deji; Rossky, Peter J.; Dodabalapur, Ananth

    2015-09-01

    Recent developments in monolayer graphene production allow its use as the active layer in field-effect transistor technology. Favorable electrical characteristics of monolayer graphene include high mobility, operating frequency, and good stability. These characteristics are governed by such key transport physical phenomena as electron-hole transport symmetry, Dirac point voltage, and charged impurity effects. Doping of graphene occurs during device fabrication, and is largely due to charged impurities located at or near the graphene/substrate interface. These impurities cause scattering of charge carriers, which lowers mobility. Such scattering is detrimental to graphene transistor performance, but our group has shown that coating with fluoropolymer thin films or exposure to polar organic vapors can restore favorable electrical characteristics to monolayer graphene. By partially neutralizing charged impurities and defects, we can improve the mobility by approximately a factor of 2, change the Dirac voltage by fairly large amounts, and reduce the residual carrier density significantly. We hypothesize that this phenomena results from screening of charged impurities by the polar molecules. To better understand such screening interactions, we performed computational chemistry experiments to observe interactions between polar organic molecules and monolayer graphene. The molecules interacted more strongly with defective graphene than with pristine graphene, and the electronic environment of graphene was altered. These computational observations correlate well with our experimental results to support our hypothesis that polar molecules can act to screen charged impurities on or near monolayer graphene. Such screening favorably mitigates charge scattering, improving graphene transistor performance.

  20. A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets.

    PubMed

    Mukherjee, Goutam; Patra, Niladri; Barua, Poranjyoti; Jayaram, B

    2011-04-15

    We report here a new and fast approach [Transferable Partial Atomic Charge Model (TPACM4)-upto four bonds] for deriving the partial atomic charges of small molecules for use in protein/DNA-ligand docking and scoring. We have created a look-up table of 5302 atom types to cover the chemical space of C, H, O, N, S, P, F, Cl, and Br atoms in small molecules together with their quantum mechanical RESP fit charges. The atom types defined span diverse plausible chemical environments of each atom in a molecule. The partial charge on any atom in a given molecule is then assigned by a reference to the look-up table. We tested the sensitivity of the TPACM4 partial charges in estimates of hydrogen bond dimers energies, solvation free energies and protein-ligand binding free energies. An average error ±1.11 kcal/mol and a correlation coefficient of 0.90 is obtained in the calculated protein-ligand binding free energies vis-à-vis an RMS error of ±1.02 kcal/mol and a correlation coefficient of 0.92 obtained with RESP fit charges in comparison to experiment. Similar accuracies are realized in predictions of hydrogen bond energies and solvation free energies of small molecules. For a molecule containing 50-55 atoms, the method takes on the order of milliseconds on a single processor machine to assign partial atomic charges. The TPACM4 programme has been web-enabled and made freely accessible at http://www.scfbio-iitd.res.in/software/drugdesign/charge.jsp. PMID:21341292

  1. Excitation of dust acoustic waves by an ion beam in a plasma cylinder with negatively charged dust grains

    SciTech Connect

    Sharma, Suresh C.; Kaur, Daljeet; Gahlot, Ajay; Sharma, Jyotsna

    2014-10-15

    An ion beam propagating through a plasma cylinder having negatively charged dust grains drives a low frequency electrostatic dust acoustic wave (DAW) to instability via Cerenkov interaction. The unstable wave frequencies and the growth rate increase with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales to the one-third power of the beam density. The real part of the frequency of the unstable mode increases with the beam energy and scales to almost one-half power of the beam energy. The phase velocity, frequency, and wavelength results of the unstable mode are in compliance with the experimental observations.

  2. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    SciTech Connect

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in ? = 3.1 ± 0.2 ps, with charge recombination in ? = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in ? < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, upon CH?Cl? vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 ?s. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.

  3. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    PubMed

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven-coordinate Ru(IV) species was isolated as a reaction intermediate, shedding light on the reaction mechanisms of Ru-catalyzed water oxidation chemistry. Auxiliary ligands have dramatic effects on the water oxidation catalysis in terms of the reactivity and the reaction mechanism. For instance, Ru-bda (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts catalyze Ce(IV)-driven water oxidation extremely fast via the radical coupling of two Ru(V)?O species, while Ru-pda (H2pda = 1,10-phenanthroline-2,9-dicarboxylic acid) water oxidation catalysts catalyze the same reaction slowly via water nucleophilic attack on a Ru(V)?O species. With a number of active Ru catalysts in hands, light driven water oxidation was accomplished using catalysts with low catalytic onset potentials. The structures of molecular catalysts could be readily tailored to introduce additional functional groups, which favors the fabrication of state-of-the-art Ru-based water oxidation devices, such as electrochemical water oxidation anodes and photo-electrochemical anodes. The development of efficient water oxidation catalysts has led to a step forward in the sustainable energy system. PMID:26131964

  4. Molecular-scale quantitative charge density measurement of biological molecule by frequency modulation atomic force microscopy in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Umeda, Kenichi; Kobayashi, Kei; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi

    2015-07-01

    Surface charge distributions on biological molecules in aqueous solutions are essential for the interactions between biomolecules, such as DNA condensation, antibody-antigen interactions, and enzyme reactions. There has been a significant demand for a molecular-scale charge density measurement technique for better understanding such interactions. In this paper, we present the local electric double layer (EDL) force measurements on DNA molecules in aqueous solutions using frequency modulation atomic force microscopy (FM-AFM) with a three-dimensional force mapping technique. The EDL forces measured in a 100 mM KCl solution well agreed with the theoretical EDL forces calculated using reasonable parameters, suggesting that FM-AFM can be used for molecular-scale quantitative charge density measurements on biological molecules especially in a highly concentrated electrolyte.

  5. Big-Bang Nucleosynthesis Reactions Catalyzed by a Long-Lived Negatively Charged Leptonic Particle

    E-print Network

    Masayasu Kamimura; Yasushi Kino; Emiko Hiyama

    2009-06-13

    An accurate quantum three-body calculation is performed for the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a long-lived negatively-charged, massive leptonic particle (called X^-) such as the supersymmetric (SUSY) particle stau. The reactions studied here includes, i) 4He-transfer reactions such as (4He X)+d --> 6Li+X, ii) radiative capture reactions such as (7Be X)+ p --> (8B X) + gamma, iii) three-body breakup reactions such as (7Li X)+ p --> 4He+4He+X, iv) charge-exchange reactions such as (p X)+4He -->(4He X) +p, and v) neutron induced reactions such as (8Be X)+ n -->9Be+X, where (A X) denotes a Coulombic bound state of a nucleus A and X^-. In recent papers it has been claimed that some of the catalyzed BBN reactions have significantly large cross sections so as to markedly change the abundances of some elements, not only giving a solution to the 6Li-7Li problem (calculated underproduction of 6Li by a factor of 1000 and overproduction of 7Li+7Be by a factor of nearly 3) but also imposing strong restrictions on the lifetime and the primordial abundance of X^-. However, most of the calculations of these reaction cross sections in the literature were performed assuming too naive models or approximations that are unsuitable for the complicated low-energy nuclear reactions. We use a high-accuracy few-body calculational method developed by the authors, and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  6. Mapping charge to function relationships of the DNA mimic protein Ocr 

    E-print Network

    Kanwar, Nisha

    2014-06-28

    This thesis investigates the functional consequences of neutralising the negative charges on the bacteriophage T7 antirestriction protein ocr. The ocr molecule is a small highly negatively charged, protein homodimer that ...

  7. Positively-charged, porous, polysaccharide nanoparticles loaded with anionic molecules behave as 'stealth' cationic nanocarriers

    PubMed Central

    Paillard, Archibald; Passirani, Catherine; Saulnier, Patrick; Kroubi, Maya; Garcion, Emmanuel; Benoît, Jean-Pierre; Betbeder, Didier

    2010-01-01

    PURPOSE Stealth nanoparticles are generally obtained after modifying their surface with hydrophilic polymers such as PEG. In this study we analysed the effect of a phospholipid (DG) or protein (BSA) inclusion in porous cationic polysaccharide (NP+) on their physico-chemical structure and the effect on complement activation. METHODS NP+s were characterised in terms of size, zeta potential (?) and static light-scattering (SLS). Complement consumption was assessed in normal human serum (NHS) by measuring the residual haemolytic capacity of the complement system. RESULTS DG-loading did not change their size or ? whereas progressive BSA loading decreased lightly their ?. An electrophoretic mobility analysis study showed the presence of 2 differently-charged sublayers at the NP+ surface which are not affected by DG-loading. Complement system activation, studied via a CH50 test, was suppressed by DG- or BSA-loading. We also demonstrated that NP+s could be loaded by a polyanionic molecule such as BSA, after their preliminary filling by a hydrophobic molecule such as DG. CONCLUSION These nanoparticles are able to absorb large amounts of phospholipids or proteins without change in their size or zeta potential. Complement studies showed that stealth behaviour is observed when they are loaded and saturated either with anionic phospholipid or proteins. PMID:19851846

  8. The relationship between the distribution of anode striations and negative and positive charge accumulation in a plasma display panel

    NASA Astrophysics Data System (ADS)

    Zhang, P. P.; Tu, Y.; Yang, L. L.

    2011-12-01

    Anode striations and wall charges, common phenomena in the plasma display panel (PDP) discharge process, are investigated by simulations in both alternating current coplanar and novel shadow mask PDPs. The formation process of striations is presented and the formation mechanism is investigated. The results reveal that in both structures there is an obvious correspondence between the striation distribution and both the negative and the positive charge accumulation on the dielectric layer above the anode. Each of the two contributions to the total wall charge reaches its peak at the positions where the striations emerge. The total wall charge distribution on the other hand, which is the sum of the wall charge collected from electrons and ions, does not show any striation effect at all.

  9. The charge transfer problem in density functional theory calculations of aqueously solvated molecules.

    PubMed

    Isborn, Christine M; Mar, Brendan D; Curchod, Basile F E; Tavernelli, Ivano; Martínez, Todd J

    2013-10-10

    Recent advances in algorithms and computational hardware have enabled the calculation of excited states with time-dependent density functional theory (TDDFT) for large systems of O(1000) atoms. Unfortunately, the aqueous charge transfer problem in TDDFT (whereby many spuriously low-lying charge transfer excited states are predicted) seems to become more severe as the system size is increased. In this work, we concentrate on the common case where a chromophore is embedded in aqueous solvent. We examine the role of exchange-correlation functionals, basis set effects, ground state geometries, and the treatment of the external environment in order to assess the root cause of this problem. We conclude that the problem rests largely on water molecules at the boundary of a finite cluster model, i.e., "edge waters." We also demonstrate how the TDDFT problem can be related directly to ground state problems. These findings demand caution in the commonly employed strategy that rests on "snapshot" cutout geometries taken from ground state dynamics with molecular mechanics. We also find that the problem is largely ameliorated when the range-separated hybrid functional LC-?PBEh is used. PMID:23964865

  10. Single-molecule conductance of a chemically modified, ?-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ

    PubMed Central

    García, Raúl; Herranz, M Ángeles; González, M Teresa; Bollinger, Gabino Rubio; Bürkle, Marius; Zotti, Linda A; Asai, Yoshihiro; Pauly, Fabian; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-01-01

    Summary We describe the synthesis and single-molecule electrical transport properties of a molecular wire containing a ?-extended tetrathiafulvalene (exTTF) group and its charge-transfer complex with F4TCNQ. We form single-molecule junctions using the in situ break junction technique using a homebuilt scanning tunneling microscope with a range of conductance between 10 G0 down to 10?7 G0. Within this range we do not observe a clear conductance signature of the neutral parent molecule, suggesting either that its conductance is too low or that it does not form a stable junction. Conversely, we do find a clear conductance signature in the experiments carried out on the charge-transfer complex. Due to the fact we expected this species to have a higher conductance than the neutral molecule, we believe this supports the idea that the conductance of the neutral molecule is very low, below our measurement sensitivity. This idea is further supported by theoretical calculations. To the best of our knowledge, these are the first reported single-molecule conductance measurements on a molecular charge-transfer species. PMID:26199662

  11. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    SciTech Connect

    Wan, Yimao Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2?nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0?cm/s and 3.2?cm/s are attained on p-type 0.8 ?·cm and n-type 1.0 ?·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150??/sq boron-diffused p{sup +} and 120??/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negative fixed insulator charge density of ?1.8?×?10{sup 12?}cm{sup ?2} for the Ta{sub 2}O{sub 5} film and ?1.0?×?10{sup 12?}cm{sup ?2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  12. Negatively charged nano-grains at 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Burch, J. L.; Horányi, M.

    2015-11-01

    Shortly after the Rosetta mission's rendezvous with 67P/Churyumov-Gerasimenko the RPC/IES instrument intermittently detected negative particles that were identified as singly charged nano-dust grains. These grains were recorded as a nearly mono-energetic beam of particles in the 200-500 eV range arriving from the direction of the comet. Occasionally, another population of particles in the energy range of 1-20 keV were also noticed arriving from the approximate direction of the Sun. In this paper we review the processes that can explain the energization and the directionality of the observed nano-dust populations. We show that the observations are consistent with gas-drag acceleration of the outflowing particles with radii of 3-4 nm, and with the returning fragments of bigger particles accelerated by radiation pressure with approximate radii of 30-80 nm. In addition to gas drag and radiation pressure, we also examine the role of the solar wind induced motional electric field, and its possible role in explaining the intermittency of the detection of a nano-grain population arriving from the solar direction.

  13. Room-Temperature Current Oscillation Based on Negative Differential Resistance in a One-Dimensional Organic Charge-Transfer Complex

    NASA Astrophysics Data System (ADS)

    Kishida, Hideo; Ito, Takafumi; Ito, Atsuya; Nakamura, Arao

    2011-03-01

    The one-dimensional organic charge-transfer complex potassium-tetracyanoquinodimethane shows negative differential resistance and a switching behavior between high- and low-resistance states. By controlling this switching behavior through the use of external circuit components, we achieved current oscillation at room temperature. Microscopic Raman measurements in the current oscillation indicate that the nonlinear conducting current flows throughout the crystal.

  14. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  15. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    PubMed Central

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  16. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    PubMed

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  17. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  18. Energetics of adsorption of neutral and charged molecules at the air/water interface by second harmonic generation

    E-print Network

    Eisenthal, Kenneth B.

    to balance the bulk ionic solvation and thereby bring the ion interface population to a level above the water free energies of adsorption, interface electric potential, and interface pH were obtained. IEnergetics of adsorption of neutral and charged molecules at the air/water interface by second

  19. Positive and negative ion formation in deep-core excited molecules: S 1s excitation in dimethyl sulfoxide

    SciTech Connect

    Coutinho, L. H.; Gardenghi, D. J.; Schlachter, A. S.; Souza, G. G. B. de; Stolte, W. C.; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2014-01-14

    The photo-fragmentation of the dimethyl sulfoxide (DMSO) molecule was studied using synchrotron radiation and a magnetic mass spectrometer. The total cationic yield spectrum was recorded in the photon energy region around the sulfur K edge. The sulfur composition of the highest occupied molecular orbital's and lowest unoccupied molecular orbital's in the DMSO molecule has been obtained using both ab initio and density functional theory methods. Partial cation and anion-yield measurements were obtained in the same energy range. An intense resonance is observed at 2475.4 eV. Sulfur atomic ions present a richer structure around this resonant feature, as compared to other fragment ions. The yield curves are similar for most of the other ionic species, which we interpret as due to cascade Auger processes leading to multiply charged species which then undergo Coulomb explosion. The anions S{sup ?}, C{sup ?}, and O{sup ?} are observed for the first time in deep-core-level excitation of DMSO.

  20. Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC

    PubMed Central

    Hrab?tová, Sabina; Masri, Daniel; Tao, Lian; Xiao, Fanrong; Nicholson, Charles

    2009-01-01

    The concentration of extracellular calcium plays a critical role in synaptic transmission and neuronal excitability as well as other physiological processes. The time course and extent of local fluctuations in the concentration of this ion largely depend on its effective diffusion coefficient (D*) and it has been speculated that fixed negative charges on chondroitin sulphate proteoglycans (CSPGs) and other components of the extracellular matrix may influence calcium diffusion because it is a divalent cation. In this study we used ion-selective microelectrodes combined with pressure ejection or iontophoresis of ions from a micropipette to quantify diffusion characteristics of neocortex and hippocampus in rat brain slices. We show that D* for calcium is less than the value predicted from the behaviour of the monovalent cation tetramethylammonium (TMA), a commonly used diffusion probe, but D* for calcium increases in both brain regions after the slices are treated with chondroitinase ABC, an enzyme that predominantly cleaves chondroitin sulphate glycans. These results suggest that CSPGs do play a role in determining the local diffusion properties of calcium in brain tissue, most likely through electrostatic interactions mediating rapid equilibrium binding. In contrast, chondroitinase ABC does not affect either the TMA diffusion or the extracellular volume fraction, indicating that the enzyme does not alter the structure of the extracellular space and that the diffusion of small monovalent cations is not affected by CSPGs in the normal brain ionic milieu. Both calcium and CSPGs are known to have many distinct roles in brain physiology, including brain repair, and our study suggests they may be functionally coupled through calcium diffusion properties. PMID:19546165

  1. Spectroscopic investigations on the binding of Methylene Blue and Nile Blue to negatively charged gold nanorods

    NASA Astrophysics Data System (ADS)

    Shrivastava, R.; Jain, B.; Das, K.

    2012-08-01

    The effect of longitudinal surface plasmon (l-SP) electric field of gold nanorods (AuNRs) on the optical (absorption and fluorescence) properties of two dyes Methylene Blue (MB) and Nile Blue (NB) has been studied by tuning and detuning the l-SP band with the absorption maxima of the dyes. Binding between dyes and nanorods were established by electrostatic interaction by making the nanorods negatively charged after coating them with polystyrene sulfonate (PSS). The absorption spectra of the dye-nanorod complex showed two prominent absorption bands in the 550-700 nm regions. For the detuned condition these changes are attributed to the nanorod induced aggregation of the dyes. However for the tuned condition, with increasing dye concentration the energy gap between the bands were observed to increase and then saturate. This is attributed to resonance coupling between the l-SP of the nanorod with the dye absorption. Although the fluorescence intensity of the dyes in the presence of increasing amount of AuNRs were observed to be quenched their lifetimes were observed to increase. Both the radiative (kr) and nonradiative (knr) rates of the dyes decreases in the presence of AuNRs. The magnitude of decrease for kr is much higher than knr, which is attributed to the formation of the non-fluorescent dimeric species. The increase in the fluorescence lifetime is attributed to the suppression of the excited state nonradiative pathways of these dyes adsorbed on the surface of the AuNRs. In addition, the changes of kr and knr were observed to be greater for the tuned condition.

  2. Fixed negative charge and the Donnan effect: a description of the driving forces associated with brain tissue swelling and oedema

    PubMed Central

    Elkin, Benjamin S.; Shaik, Mohammed A.; Morrison, Barclay

    2010-01-01

    Cerebral oedema or brain tissue swelling is a significant complication following traumatic brain injury or stroke that can increase the intracranial pressure (ICP) and impair blood flow. Here, we have identified a potential driver of oedema: the negatively charged molecules fixed within cells. This fixed charge density (FCD), once exposed, could increase ICP through the Donnan effect. We have shown that metabolic processes and membrane integrity are required for concealing this FCD as slices of rat cortex swelled immediately (within 30?min) following dissection if treated with 2 deoxyglucose + cyanide (2DG+CN) or Triton X-100. Slices given ample oxygen and glucose, however, did not swell significantly. We also found that dead brain tissue swells and shrinks in response to changes in ionic strength of the bathing medium, which suggests that the Donnan effect is capable of pressurizing and swelling brain tissue. As predicted, a non-ionic osmolyte, 1,2 propanediol, elicited no volume change at 2000×10?3?osmoles?l?1 (Osm). Swelling data were well described by triphasic mixture theory with the calculated reference state FCD similar to that measured with a 1,9 dimethylmethylene blue assay. Taken together, these data suggest that intracellular fixed charges may contribute to the driving forces responsible for brain swelling. PMID:20047940

  3. Negative-U carbon vacancy in 4H-SiC: Assessment of charge correction schemes and identification of the negative carbon vacancy at the quasicubic site

    NASA Astrophysics Data System (ADS)

    Trinh, X. T.; Szász, K.; Hornos, T.; Kawahara, K.; Suda, J.; Kimoto, T.; Gali, A.; Janzén, E.; Son, N. T.

    2013-12-01

    The carbon vacancy (VC) has been suggested by different studies to be involved in the Z1/Z2 defect-a carrier lifetime killer in SiC. However, the correlation between the Z1/Z2 deep level with VC is not possible since only the negative carbon vacancy (VC-) at the hexagonal site, VC-(h), with unclear negative-U behaviors was identified by electron paramagnetic resonance (EPR). Using freestanding n-type 4H-SiC epilayers irradiated with low energy (250 keV) electrons at room temperature to introduce mainly VC and defects in the C sublattice, we observed the strong EPR signals of VC-(h) and another S = 1/2 center. Electron paramagnetic resonance experiments show a negative-U behavior of the two centers and their similar symmetry lowering from C3v to C1h at low temperatures. Comparing the 29Si and 13C ligand hyperfine constants observed by EPR and first principles calculations, the new center is identified as VC-(k). The negative-U behavior is further confirmed by large scale density functional theory supercell calculations using different charge correction schemes. The results support the identification of the lifetime limiting Z1/Z2 defect to be related to acceptor states of the carbon vacancy.

  4. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    NASA Astrophysics Data System (ADS)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  5. Charge symmetric dissociation of doubly ionized N{sub 2} and CO molecules

    SciTech Connect

    Pandey, A. Bapat, B.; Shamasundar, K. R.

    2014-01-21

    We report a comparative study of the features in dissociative double ionization by high energy electron impact of N{sub 2} and CO molecules. The ratio of cross-section of charge symmetric dissociative ionization to non-dissociative ionization (CSD-to-ND ratio) and the kinetic energy release (KER) spectra of dissociation are experimentally measured and carefully corrected for various ion transmission losses and detector inefficiencies. Given that the double ionization cross sections of these iso-electronic diatomics are very similar, the large difference in the CSD-to-ND ratios must be attributable to the differences in the evolution dynamics of the dications. To understand these differences, potential energy curves (PECs) of dications have been computed using multi-reference configuration interaction method. The Franck-Condon factors and tunneling life times of vibrational levels of dications have also been computed. While the KER spectrum of N{sub 2}{sup ++} can be readily explained by considering dissociation via repulsive states and tunneling of meta-stable states, indirect dissociation processes such as predissociation and autoionization have to be taken into account to understand the major features of the KER spectrum of CO{sup ++}. Direct and indirect processes identified on the basis of the PECs and experimental KER spectra also provide insights into the differences in the CSD-to-ND ratios.

  6. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    DOE PAGESBeta

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; Shoer, Leah E.; Cook, Andrew W.; Eaton, Samuel W.; Marks, Tobin J.; Wasielewski, Michael R.

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in ? = 3.1 ± 0.2 ps, with charge recombination in ? = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in ? more »CH?Cl? vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 ?s. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less

  7. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    SciTech Connect

    Sodha, M. S.; Mishra, S. K.

    2011-04-15

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  8. Negligible "negative space-charge layer effects" at oxide-electrolyte/electrode interfaces of thin-film batteries.

    PubMed

    Haruta, Masakazu; Shiraki, Susumu; Suzuki, Tohru; Kumatani, Akichika; Ohsawa, Takeo; Takagi, Yoshitaka; Shimizu, Ryota; Hitosugi, Taro

    2015-03-11

    In this paper, we report the surprisingly low electrolyte/electrode interface resistance of 8.6 ? cm(2) observed in thin-film batteries. This value is an order of magnitude smaller than that presented in previous reports on all-solid-state lithium batteries. The value is also smaller than that found in a liquid electrolyte-based batteries. The low interface resistance indicates that the negative space-charge layer effects at the Li3PO(4-x)N(x)/LiCoO2 interface are negligible and demonstrates that it is possible to fabricate all-solid state batteries with faster charging/discharging properties. PMID:25710500

  9. Expansion dynamics of Pb-Pb collisions at 40 A GeV/c viewed by negatively charged hadrons

    E-print Network

    The NA57 Collaboration

    2007-01-11

    In this paper we present results on transverse mass spectra and Hanbury-Brown and Twiss correlation functions of negatively charged hadrons, which are expected to be mostly negative pions, measured in Pb-Pb collisions at 40 A GeV/c beam momentum. Based on these data, the collision dynamics and the space-time extent of the system at the thermal freeze-out are studied over a centrality range corresponding to the most central 53% of the Pb--Pb inelastic cross section. Comparisons with freeze-out conditions of strange particles and HBT results from other experiments are discussed.

  10. The role of multiparticle correlations and Cooper pairing in the formation of molecules in an ultracold gas of Fermi atoms with a negative scattering length

    SciTech Connect

    Babichenko, V. S. Kagan, Yu.

    2012-11-15

    The influence of multiparticle correlation effects and Cooper pairing in an ultracold Fermi gas with a negative scattering length on the formation rate of molecules is investigated. Cooper pairing is shown to cause the formation rate of molecules to increase, as distinct from the influence of Bose-Einstein condensation in a Bose gas on this rate. This trend is retained in the entire range of temperatures below the critical one.

  11. Characterization of a Novel Small Molecule That Potentiates ?-Lactam Activity against Gram-Positive and Gram-Negative Pathogens

    PubMed Central

    Nair, Dhanalakshmi R.; Monteiro, João M.; Memmi, Guido; Thanassi, Jane; Pucci, Michael; Schwartzman, Joseph; Pinho, Mariana G.

    2015-01-01

    In a loss-of-viability screen using small molecules against methicillin-resistant Staphylococcus aureus (MRSA) strain USA300 with a sub-MIC of a ?-lactam, we found a small molecule, designated DNAC-1, which potentiated the effect of oxacillin (i.e., the MIC of oxacillin decreased from 64 to 0.25 ?g/ml). Fluorescence microscopy indicated a disruption in the membrane structures within 15 min of exposure to DNAC-1 at 2× MIC. This permeabilization was accompanied by a rapid loss of membrane potential, as monitored by use of the DiOC2 (3,3?-diethyloxacarbocyanine iodide) dye. Macromolecular analysis showed the inhibition of staphylococcal cell wall synthesis by DNAC-1. Transmission electron microscopy of treated MRSA USA300 cells revealed a slightly thicker cell wall, together with mesosome-like projections into the cytosol. The exposure of USA300 cells to DNAC-1 was associated with the mislocalization of FtsZ accompanied by the localization of penicillin-binding protein 2 (PBP2) and PBP4 away from the septum, as well as mild activation of the vraRS-mediated cell wall stress response. However, DNAC-1 does not have any generalized toxicity toward mammalian host cells. DNAC-1 in combination with ceftriaxone is also effective against an assortment of Gram-negative pathogens. Using a murine subcutaneous coinjection model with 108 CFU of USA300 as a challenge inoculum, DNAC-1 alone or DNAC-1 with a sub-MIC of oxacillin resulted in a 6-log reduction in bacterial load and decreased abscess formation compared to the untreated control. We propose that DNAC-1, by exerting a bimodal effect on the cell membrane and cell wall, is a viable candidate in the development of combination therapy against many common bacterial pathogens. PMID:25583731

  12. Bias changing molecule-lead couple and inducing low bias negative differential resistance for electrons acceptor predicted by first-principles study

    NASA Astrophysics Data System (ADS)

    Min, Y.; Fang, J. H.; Zhong, C. G.; Dong, Z. C.; Zhao, Z. Y.; Zhou, P. X.; Yao, K. L.

    2015-10-01

    A first-principles study of the transport properties of 3,13-dimercaptononacene-6,21-dione molecule sandwiched between two gold leads is reported. The strong effect of negative differential resistance with large peak-to-valley ratio of 710% is present under low bias. We found that bias can change molecule-lead couple and induce low bias negative differential resistance for electrons acceptor, which may promise the potential applications in molecular devices with low-power dissipation in the future.

  13. Spatial distribution of the charged particles and potentials during beam extraction in a negative-ion source

    SciTech Connect

    Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Shibuya, M.; Asano, E.; Kondo, T.; Sato, M.; Komada, S.; Sekiguchi, H.; Kameyama, N.; Fukuyama, T.; Wada, S.; Hatayama, A.

    2012-02-15

    We report on the characteristics of the electronegative plasma in a large-scale hydrogen negative ion (H{sup -}) source. The measurement has been made with a time-resolved Langmuir probe installed in the beam extraction region. The H{sup -} density is monitored with a cavity ring-down system to identify the electrons in the negative charges. The electron-saturation current decreases rapidly after starting to seed Cs, and ion-ion plasma is observed in the extraction region. The H{sup -} density steps down during the beam extraction and the electron density jumps up correspondingly. The time integral of the decreasing H{sup -} charge density agrees well with the electron charge collected with the probe. The agreement of the charges is interpreted to indicate that the H{sup -} density decreasing at the beam extraction is compensated by the electrons diffusing from the driver region. In the plasmas with very low electron density, the pre-sheath of the extraction field penetrates deeply inside the plasmas. That is because the shielding length in those plasmas is longer than that in the usual electron-ion plasmas, and furthermore the electrons are suppressed to diffuse to the extraction region due to the strong magnetic field.

  14. Spatial distribution of the charged particles and potentials during beam extraction in a negative-ion source.

    PubMed

    Tsumori, K; Nakano, H; Kisaki, M; Ikeda, K; Nagaoka, K; Osakabe, M; Takeiri, Y; Kaneko, O; Shibuya, M; Asano, E; Kondo, T; Sato, M; Komada, S; Sekiguchi, H; Kameyama, N; Fukuyama, T; Wada, S; Hatayama, A

    2012-02-01

    We report on the characteristics of the electronegative plasma in a large-scale hydrogen negative ion (H(-)) source. The measurement has been made with a time-resolved Langmuir probe installed in the beam extraction region. The H(-) density is monitored with a cavity ring-down system to identify the electrons in the negative charges. The electron-saturation current decreases rapidly after starting to seed Cs, and ion-ion plasma is observed in the extraction region. The H(-) density steps down during the beam extraction and the electron density jumps up correspondingly. The time integral of the decreasing H(-) charge density agrees well with the electron charge collected with the probe. The agreement of the charges is interpreted to indicate that the H(-) density decreasing at the beam extraction is compensated by the electrons diffusing from the driver region. In the plasmas with very low electron density, the pre-sheath of the extraction field penetrates deeply inside the plasmas. That is because the shielding length in those plasmas is longer than that in the usual electron-ion plasmas, and furthermore the electrons are suppressed to diffuse to the extraction region due to the strong magnetic field. PMID:22380273

  15. Analysis of negatively charged dye-binding antibodies reactive with double-stranded DNA and heparan sulfate in serum from patients with rheumatic diseases.

    PubMed Central

    Aotsuka, S; Okawa-Takatsuji, M; Kinoshita, M; Yokohari, R

    1988-01-01

    Antibodies to double-stranded (ds) DNA are characteristically present in serum from patients with systemic lupus erythematosus (SLE). Recently, anti-dsDNA antibodies have been shown to have the capacity to react with a diversity of molecules with repeating negative charges. Using the anionic dye Cibacron blue F3GA, bound to crosslinked agarose, we analysed the nature of antibodies capable of reacting with this dye in serum samples from patients with various rheumatic diseases. The dye-antibody complex could easily be split by eluting with solutions of increasing ionic strength, suggesting that the interaction is ionic in nature. Pepsin-digested F(ab')2 antibodies retained the capacity to bind Cibacron blue, confirming that the binding occurred via antigen-binding sites on the antibody molecule. The eluates obtained from dye-ligand chromatography of active SLE sera contained antibodies to both dsDNA and heparan sulfate, while those of sera from patients with other non-SLE rheumatic diseases contained antibodies only against heparan sulfate. Furthermore, the dye-ligand eluates of sera from patients with active SLE and other non-SLE rheumatic diseases were found to contain increased amounts of IgG. In one patient with SLE, levels of antibodies to dsDNA and heparan sulfate, and the amounts of total IgG in dye-ligand eluates, were shown to be correlated with disease activity. PMID:2974766

  16. Role of negatively charged defects in the lattice contraction of Al-Si-N

    NASA Astrophysics Data System (ADS)

    Pignedoli, C. A.; Passerone, D.; Hug, H. J.; Pélisson-Schecker, A.; Patscheider, J.

    2010-02-01

    Experiments reveal that incorporation of substitutional Si in wurtzite AlN up to 6 at. % results in a lattice contraction in the [0001] direction. The contraction is linear and, for higher silicon contents, the lattice parameters remain constant. We investigate the geometric and electronic properties of Al-Si-N compounds with Si content varying from 0 to 9 at. % by means of ab initio simulations based on density functional theory. We demonstrate that charged defects are necessary to support the experimental evidence of a shrinking cell parameter: an ideal Al-Si-N wurtzite structure with delocalized charges would undergo lattice expansion due to Coulomb repulsion upon Si incorporation. Charged defects that act as acceptors and compensate the excess charge coming from Si overcompensate the lattice expansion and therefore promote a lattice contraction.

  17. CHARGE MEASUREMENTS ON INDIVIDUAL PARTICLES EXITING LABORATORY PRECIPITATORS WITH POSITIVE AND NEGATIVE CORONA AT VARIOUS TEMPERATURES

    EPA Science Inventory

    The paper reports measurements of charge values on individual particles exiting three different laboratory electrostatic precipitators (ESPs) in an experimental apparatus containing a Millikan cell. Dioctylphthalate (DOP) droplets and fly ash particles were measured at temperatur...

  18. Charge recombination in organic small-molecule solar cells by Jiye Lee.

    E-print Network

    Lee, Jiye

    2008-01-01

    To enhance the power conversion efficiency in organic solar cells, charge recombination loss needs to be minimized. First, we perform transient absorption spectroscopy to study the charge recombination dynamics of thin ...

  19. Influence of coulomb corrections in the self-consistent charge extended Hückel (SCCEH) procedure on hyperfine properties of biological molecules

    NASA Astrophysics Data System (ADS)

    Roy, J. N.; Mishra, S. K.; Mishra, K. C.; Das, T. P.

    1987-04-01

    For the sake of simplicity, the Coulomb interaction between electrons of an atom with the cores and valence electrons belonging to neighbouring atoms is not completely incorporated in the SCCEH procedure often used for the study of electronic structures and hyperfine properties of biological systems. In the present work, the influence of this neglected interaction on the charge distribution in both small molecules and the large biologically important system, hemin, as well as on the hyperfine properties of the latter is analysed.

  20. Light emission spectra of molecules in negative and positive back discharges in nitrogen with carbon dioxide mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Czech, Tadeusz; Sobczyk, Arkadiusz Tomasz; Jaworek, Anatol

    2015-10-01

    Results of spectroscopic investigations and current-voltage characteristics of back discharge generated in point-plane electrode geometry with plate covered fly ash layer in a mixture of N2 + CO2 at atmospheric pressure, for positive and negative polarity of the discharge electrode are presented in this paper. Point-plane electrode configuration was chosen in these studies in order to simulate the physical processes occurring in electrostatic precipitator. Three forms of back discharge for both polarities were investigated: glow, streamers and low-current back-arc. Diatomic reactions and dissociation products of N2 and CO2 (OH, NO, CN), atoms from fly ash layer (N, Ti, Na), free radicals, molecules or ions, which have unpaired valence electrons, and other active species, e.g., N2 (in C,B,A-state), N 2 + (B) were identified in the discharges by the method of optical emission spectroscopy (OES). The measurements shown that atomic and molecular optical emission spectral lines from back discharge depend on the forms of discharge and the discharge current. In normal electrical discharges, the emission spectra are dominated by gaseous components, but in the case of back discharge, atomic lines belonging to chemical compounds of fly ash were also recorded and identified.

  1. Load-collapse-release cascades of amphiphilic guest molecules in charged dendronized polymers through spatial separation of noncovalent forces.

    PubMed

    Kurzbach, Dennis; Zhang, Xiuqiang; Zhang, Baozhong; Arnold, Philipp; Hinderberger, Dariush

    2013-04-26

    The ability to pack guest molecules into charged dendronized polymers (denpols) and the possibility to release these guest molecules from subsequently densely aggregated denpols in a load-collapse-release cascade is described. Charged denpols, which constitute molecular objects with a persistent, well-defined envelope and interior, are capable of incorporating large amounts of amphiphilic guest molecules. Simultaneously, multivalent ions can coordinate to the surfaces of charged denpols, leading to counterion-induced aggregation of the already guest-loaded host structures. Thus, although the local guest concentration in denpol-based molecular transport might already be initially high due to the dense guest packing inside the dendritic denpol scaffolding, the "local" guest concentration can nonetheless be further increased by packing (through aggregation) of the host-guest complexes themselves. Subsequent release of guest compounds from densely aggregated dendronized polymers is then possible (e.g., through increasing the solution concentration of imidazolium-based ions). Augmented with this release possibility, the concept of twofold packing of guests, firstly through hosting itself and secondly through aggregation of the hosts, gives rise to a load-collapse-release cascade that strikingly displays the high potential of dendronized macromolecules for future molecular transport applications. PMID:23463391

  2. 7Be charge exchange between 7Be3+ ion and exotic long-lived negatively charged massive particle in big bang nucleosynthesis

    E-print Network

    Motohiko Kusakabe; K. S. Kim; Myung-Ki Cheoun; Toshitaka Kajino; Yasushi Kino

    2013-07-29

    The existence of an exotic long-lived negatively charged massive particle, i.e., X-, during big bang nucleosynthesis can affect primordial light element abundances. Especially, the final abundance of 7Li, mainly originating from the electron capture of 7Be, has been suggested to reduce by the 7Be destruction via the radiative X- capture of 7Be followed by the radiative proton capture of the bound state of 7Be and X- (7BeX). We suggest a new route of 7BeX formation, that is the 7Be charge exchange at the reaction of 7Be3+ ion and X-. The formation rate depends on the number fraction of 7Be3+ ion, the charge exchange cross section of 7Be3+, and the probability that produced excited states 7BeX* are converted to the ground state. We estimate respective quantities affecting the 7BeX formation rate, and find that this reaction pathway can be more important than ordinary radiative recombination of 7Be and X-. The effect of the charge exchange reaction is then shown in a latest nuclear reaction network calculation. Quantum physical model calculations for related reactions are needed to precisely estimate the efficiency of this pathway in future.

  3. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  4. Zwitterionic i-motif structures are preserved in DNA negatively charged ions produced by electrospray mass spectrometry.

    PubMed

    Rosu, Frederic; Gabelica, Valérie; Joly, Laure; Grégoire, Gilles; De Pauw, Edwin

    2010-11-01

    DNA cytosine-rich strands can fold into an intercalated motif (i-motif) structure. The i-motif is formed by mutually intercalated duplexes containing proton-mediated C-H(+)-C (cytosine-proton-cytosine) base pairs. Negatively charged ions of DNA i-motifs produced by electrospray mass spectrometry are therefore zwitterionic if the base pairing motif is preserved in the gas phase. Here we used IRMPD spectroscopy and ion mobility spectrometry to assess whether i-motif structures were preserved in the gas phase. We first investigated the IRMPD spectral signature of the tetramer [dC(6)](4), which can only be formed via C-H(+)-C base pairing, compared to the single strand dC(6). The IR signature of i-motif formation is an apparent broadening of the band at 1650 cm(-1). DFT calculations show this apparent broadening is actually due to blue-shifts of the NH(2) scissoring modes and red shifts of C[double bond, length as m-dash]O stretching modes. We then investigated the gas-phase conformations of the telomeric sequence d(CCCAAT)(3)CCC, that can form an intramolecular i-motif, by performing IRMPD spectroscopy and ion mobility spectrometry as a function of the charge state. We show that the negative ions of the lowest charge states correspond to a preserved i-motif structure. This is the first demonstration of the native extraction of solution-phase zwitterionic nucleic acids using negative electrospray ionization. PMID:20838693

  5. Short hydrogen bonds and negative charge in photoactive yellow protein promote fast isomerization but not high quantum yield.

    PubMed

    Zhu, Jingyi; Vreede, Jocelyne; Hospes, Marijke; Arents, Jos; Kennis, John T M; van Stokkum, Ivo H M; Hellingwerf, Klaas J; Groot, Marie Louise

    2015-02-12

    Biological signal transduction by photoactive yellow protein (PYP) in halophilic purple sulfur bacteria is initiated by trans-to-cis isomerization of the p-coumaric acid chromophore (pCa) of PYP. pCa is engaged in two short hydrogen bonds with protein residues E46 and Y42, and it is negatively charged at the phenolate oxygen. We investigated the role in the isomerization process of the E46 short hydrogen bond and that of the negative charge on the anionic phenolate moiety of the chromophore. We used wild-type PYP and the mutant E46A, in protonated and deprotonated states (referred to as pE46A and dpE46A, respectively), to reduce the number of hydrogen bond interactions between the pCa phenolate oxygen and the protein and to vary the negative charge density in the chromophore-binding pocket. Their effects on the yield and rate of chromophore isomerization were determined by ultrafast spectroscopy. Molecular dynamics simulations were used to relate these results to structural changes in the mutant protein. We found that deprotonated pCa in E46A has a slower isomerization rate as the main part of this reaction was associated with time constants of 1 and 6 ps, significantly slower than the 0.6 ps time constant in wild-type PYP. The quantum yield of isomerization in dpE46A was estimated to be 30 ± 2%, and that of pE46A was 32 ± 3%, very close to the value determined for wtPYP of 32 ± 2%. Relaxation of the isomerized product state I0 to I1 was faster in dpE46A. We conclude that the negative charge on pCa stabilized by the short hydrogen bonds with E46 and Y42 affects the rate of isomerization but not the quantum yield of isomerization. With this information, we propose a scheme for the potential energy surfaces involved in the isomerization and suggest protein motions near the pCa backbone as key events in successful isomerization. PMID:25144816

  6. Negatively-Charged Residues and Hydrogen Bonds Tune the Ligand Histidine pKa-Values of Rieske Iron-Sulfur Proteins

    E-print Network

    Ullmann, G. Matthias

    Negatively-Charged Residues and Hydrogen Bonds Tune the Ligand Histidine pKa-Values of Rieske Iron-Sulfur) and redH 141, 161 (reduced at the histidine-coordinated iron and doubly deprotonated). For the oxidized

  7. Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses.

    PubMed

    Motomura, Koji; Kukk, Edwin; Fukuzawa, Hironobu; Wada, Shin-ichi; Nagaya, Kiyonobu; Ohmura, Satoshi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Koga, Ryosuke; Sakai, Tsukasa; Matsunami, Kenji; Rudenko, Artem; Nicolas, Christophe; Liu, Xiao-Jing; Miron, Catalin; Zhang, Yizhu; Jiang, Yuhai; Chen, Jianhui; Anand, Mailam; Kim, Dong Eon; Tono, Kensuke; Yabashi, Makina; Yao, Makoto; Ueda, Kiyoshi

    2015-08-01

    In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed. PMID:26267186

  8. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules

    PubMed Central

    Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.

    2014-01-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059

  9. Photoemission from sodium on ice: a mechanism for positive and negative charge coexistence in the mesosphere.

    PubMed

    Vondrak, Tomas; Plane, John M C; Meech, Stephen R

    2006-03-01

    Photoemission from sodium deposited on ice films is described. Deposition of 0.02 ML of sodium is found to dramatically reduce the threshold for photoemission from the ice film to (2.3+/-0.2) eV. Thus, the cross-section for photoemission reaches >10(-18) cm2 in the visible region of the spectrum. It is proposed that the initial state is a solvated electron on the ice surface, which is supported by optical transmission spectroscopy. The potential significance of these results in understanding unexplained charging phenomena in the mesosphere is discussed. PMID:16509666

  10. Percolation, tie-molecules, and microstructural origins of charge transport in semicrystalline conjugated polymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Mollinger, Sonya A.; Krajina, Brad; Noriega-Manez, Rodrigo J.; Salleo, Alberto; Spakowitz, Andrew J.

    2015-10-01

    Semiconducting polymers play an important role in a wide range of optical and electronic material applications. Polymer thin films that result in the highest performance typically have a complex semicrystalline morphology, indicating that considerable device improvement can be achieved through optimization of microstructural properties. However, the connection between molecular ordering and device performance is difficult to predict due to the current need for a mathematical theory of the physics that dictates charge transport in semiconducting polymers. It is experimentally suggested that efficient transport in such films occurs via connected networks of crystallites. We present an analytical and computational description of semicrystalline conjugated polymer materials that captures the impact of polymer conformation on charge transport in heterogeneous thin films. We first develop an analytical theory for the statistical behavior of a polymer emanating from a crystallite and predict the average distance to the first kink in the chain that traps a charge. We use this analysis to define the conditions for percolation and the consequent efficient transport through a semicrystalline material. We then establish a charge transport model using Monte Carlo simulations that predicts the multi-scale charge transport and crystallite connections. We approximate the thin film as a two-dimensional grid of crystallites embedded in amorphous polymer. The chain conformations in the amorphous region are determined by the wormlike chain model, and the crystallites are assigned fixed mobilities. We use this model to identify limits of charge transport at various time scales for varying fraction of crystallinity.

  11. Monte Carlo Electromagnetic Cross Section Production Method for Low Energy Charged Particle Transport Through Single Molecules 

    E-print Network

    Madsen, Jonathan R

    2013-08-13

    for predicting molecule-specific ionization, excitation, and scattering cross sections in the very low energy regime that can be applied in a condensed history Monte Carlo track-structure code. The present methodology begins with the calculation of a solution...

  12. Controllable electrostatic surface guide for cold molecules with a single charged wire

    NASA Astrophysics Data System (ADS)

    Gu, Zhenxing; Guo, Chaoxiu; Hou, Shunyong; Li, Shengqiang; Deng, Lianzhong; Yin, Jianping

    2013-05-01

    We demonstrate a controllable highly efficient electrostatic surface guide for ND3 molecules in the weak-field-seeking states on a ceramic substrate over a distance of 840 mm, and study the dependences of the relative molecule number (or the overall transmission efficiency) of our single-wire guide and the guiding-center positions on the guiding voltages, both experimentally and theoretically. Our study shows that the guiding-center position and the number of the guided molecules can be easily controlled by adjusting the guiding voltages, and find that an overall transmission efficiency of higher than 50% in a single quantum state can be obtained. Our experimental results are consistent with ones of Monte Carlo simulations. Also, we discuss the transverse velocity filtering effect and the acceptance of the guided molecules in four-dimensional phase space. Both the transmission efficiency and the acceptance in two-dimensional position space are higher than that in our previous two-wire guide [Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, Phys. Rev. Lett.0031-900710.1103/PhysRevLett.100.043003 100, 043003 (2008)].

  13. N-doped graphene: an alternative carbon-based matrix for highly efficient detection of small molecules by negative ion MALDI-TOF MS.

    PubMed

    Min, Qianhao; Zhang, Xiaoxia; Chen, Xueqin; Li, Siyuan; Zhu, Jun-Jie

    2014-09-16

    Gas-phase N-doped graphene (gNG) was synthesized by a modified thermal annealing method using gaseous melamine as nitrogen source and then for the first time applied as a matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for small molecule analysis. Unlike the complicated adducts produced in positive ion mode, MS spectra obtained on gNG matrix in negative ion mode was only featured by deprotonated molecule ion peaks without matrix interference. By the gNG assisted desorption/ionization (D/I) process, some applications were carried out on a wide range of low-molecular weight (MW) analytes including amino acids, fatty acids, peptides, anabolic androgenic steroids as well as anticancer drugs, with an extraordinary laser desorption/ionization (LDI) efficiency over traditional ?-cyano-4-hydroxycinnamic acid (CHCA) and other carbon-based materials in the negative ion detection mode. By comparison of a series of graphene-based matrixes, two main factors of matrix gNG were unveiled to play a decisive role in assisting negative ion D/I process: a well-ordered ?-conjugated system for laser absorption and energy transfer; pyridinic-doped nitrogen species functioning as deprotonation sites for proton capture on negative ionization. The good salt tolerance and high sensitivity allowed further therapeutic monitoring of anticancer drug nilotinib in the spiked human serum, a real case of biology. Signal response was definitely obtained between 1 mM and 1 ?M, meeting the demand of assessing drug level in the patient serum. This work creates a new application branch for nitrogen-doped graphene and provides an alternative solution for small molecule analysis. PMID:25137626

  14. First-principles study of compensation mechanisms in negatively charged LaGaO3/MgAl2O4 interfaces

    NASA Astrophysics Data System (ADS)

    Rébola, Alejandro; Fong, Dillon D.; Eastman, Jeffrey A.; Ö?üt, Serdar; Zapol, Peter

    2013-06-01

    Thin film oxide heterostructures with a bound charge at the interface require electrical compensation, which can involve redistribution of mobile charge carriers. We explore a model LaGaO3(001)//MgAl2O4(001) heterostructure with nominally negatively charged interfaces using first-principles methods and a Poisson-Boltzmann equation. We find that charge compensation by oxygen vacancies with quadratically decaying concentration away from the interface is more favorable than electronic redistribution. These vacancies have a potential to enhance ionic conductivity along the interfaces.

  15. Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Rauch, Jens; Kolch, Walter; Mahmoudi, Morteza

    2012-11-01

    The interaction of nanoparticles (NPs) with living organisms has become a focus of public and scientific debate due to their potential wide applications in biomedicine, but also because of unwanted side effects. Here, we show that superparamagnetic iron oxide NPs (SPIONs) with different surface coatings can differentially affect signal transduction pathways. Using isogenic pairs of breast and colon derived cell lines we found that the stimulation of ERK and AKT signaling pathways by SPIONs is selectively dependent on the cell type and SPION type. In general, cells with Ras mutations respond better than their non-mutant counterparts. Small negatively charged SPIONs (snSPIONs) activated ERK to a similar extent as epidermal growth factor (EGF), and used the same upstream signaling components including activation of the EGF receptor. Importantly, snSPIONs stimulated the proliferation of Ras transformed breast epithelial cells as efficiently as EGF suggesting that NPs can mimic physiological growth factors.

  16. Targeted delivery of chemically modified anti-miR-221 to hepatocellular carcinoma with negatively charged liposomes

    PubMed Central

    Zhang, Wendian; Peng, Fangqi; Zhou, Taotao; Huang, Yifei; Zhang, Li; Ye, Peng; Lu, Miao; Yang, Guang; Gai, Yongkang; Yang, Tan; Ma, Xiang; Xiang, Guangya

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. Gene therapy was established as a new strategy for treating HCC. To explore the potential delivery system to support the gene therapy of HCC, negatively charged liposomal delivery system was used to deliver miR-221 antisense oligonucleotide (anti-miR-221) to the transferrin (Tf) receptor over expressed HepG2 cells. The liposome exhibited a mean particle size of 122.5 nm, zeta potential of ?15.74 mV, anti-miR-221 encapsulation efficiency of 70%, and excellent colloidal stability at 4°C. Anti-miR-221-encapsulated Tf-targeted liposome demonstrated a 15-fold higher delivery efficiency compared to nontargeted liposome in HepG2 cells in vitro. Anti-miR-221 Tf-targeted liposome effectively delivered anti-miR-221 to HepG2 cells, upregulated miR-221 target genes PTEN, P27kip1, and TIMP3, and exhibited greater silencing efficiency over nontargeted anti-miR-221 liposome. After intravenous injection into HepG2 tumor-bearing xenografted mice with Cy3-labeled anti-miR-221 Tf-targeted liposome, Cy3-anti-miR-221 was successfully delivered to the tumor site and increased the expressions of PTEN, P27kip1, and TIMP3. Our results demonstrate that the Tf-targeted negatively charged liposome could be a potential therapeutic modality in the gene therapy of human HCC. PMID:26251599

  17. Exposure to negatively charged-particle dominant air-conditions on human lymphocytes in vitro activates immunological responses.

    PubMed

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-12-01

    Indoor air-conditions may play an important role in human health. Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NAC) induced immune stimulation. NAC was established using fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during 2.5 h stay, and an increase of natural killer (NK) cell cytotoxicity, when examining human subjects after a two-week night stay under these conditions. In the present study, we investigated whether exposure to NAC in vitro affects immune conditions. Although the concentrations of particles were different, an incubator for cell culture with NAC was set and cellular compositions and functions of various freshly isolated human lymphocytes derived from healthy donors were assayed in the NAC incubator and compared with those of cultures in a standard (STD) incubator. Results showed that NAC cultivation caused an increase of CD25 and PD-1 expressing cells in the CD4 positive fraction, enhancement of NK cell cytotoxicity, production of interferon-y (IFN?), and slight enhancement of regulatory T cell function. In addition, the formula designated as the "immune-index" clearly differed between STD and NAC culture conditions. Thus, NAC conditions may promote human health through slight activation of the immune system against cancer cells and virus infection as shown by this in vitro study and our previously reported human studies. PMID:26213096

  18. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    PubMed

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40?/sq as compared to 510?/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. PMID:26076630

  19. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    SciTech Connect

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  20. Comparison of positively and negatively charged achiral co-monomers added to cyclodextrin monolith: improved chiral separations in capillary electrochromatography.

    PubMed

    Lu, Yang; Shamsi, Shahab A

    2014-10-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate ?-cyclodextrin (GMA/?-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/?-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/?-CD, GMA/?-CD-VBTA and GMA/?-CD-AMPS monolithic columns. PMID:24108813

  1. Comparison of Positively and Negatively Charged Achiral Co-Monomers Added to Cyclodextrin Monolith: Improved Chiral Separations in Capillary Electrochromatography

    PubMed Central

    Lu, Yang; Shamsi, Shahab A.

    2014-01-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate ?-cyclodextrin (GMA/?-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/?-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/?-CD, GMA/?-CD-VBTA and GMA/?-CD-AMPS monolithic columns. PMID:24108813

  2. Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery.

    PubMed

    Wang, Juan; Xu, Mengxue; Cheng, Xiaojie; Kong, Ming; Liu, Ya; Feng, Chao; Chen, Xiguang

    2016-01-20

    To develop insulin delivery system for the treatment of diabetes, two insulin-loaded nanogels with opposite zeta potential (-15.94±0.449mV for insulin:CMCS/CS-NGs(-) and +17.15±0.492mV for insulin:CMCS/CS-NGs(+)) were obtained. Ex vivo results showed that the nanogels with opposite surface charge exhibited different adhesion and permeation in specific intestinal segments. There was no significant differences in adhesion and permeation in rat duodenum, but in rat jejunum, insulin:CMCS/CS-NGs(-) exhibited enhanced adhesion and permeation, which were about 3 folds (adhesion) and 1.7 folds (permeation) higher than insulin:CMCS/CS-NGs(+). These results demonstrated that the surface charge property of nanogels determined the absorption sites of CMCS/CS-NGs in small intestine. In vivo study, the blood glucose level in insulin:CMCS/CS-NGs(-) group had 3mmol/L lower than insulin:CMCS/CS-NGs(+) group during 1h to 11h after the oral administration, which demonstrated that negative insulin:CMCS/CS-NGs had a better management of blood glucose than positive ones. PMID:26572423

  3. Exciton formation as a rate limiting step for charge recombination in disordered organic molecules or polymers

    SciTech Connect

    Preezant, Yevgeni; Tessler, Nir

    2011-01-01

    The exciton formation (direct charge recombination) is studied and quantified as a function of material physical-properties such as the exciton binding energy, the exciton lifetime, and the mechanism causing the electronic disorder. By using a model that is an extension of a charge transport model [Y. Preezant and N. Tessler, Phys. Rev. B 74, 235202 (2006)] we are able to compare the direct exciton formation rate with the one predicted by the Langevin model. Using reasonable material parameters we find that in many cases the overall balance between free charge carrier and excitons is significantly affected by the exciton formation rate with its values being significantly low compared to the Langevin rate. We also find that in order to describe the complete recombination process it is important to introduce an intermediate state which we term exciton-precursor. This is in contrast to the common practice of using the Langevin model which embeds the assumption that the exciton formation rate is negligibly fast. The relations found between the physical-properties and the recombination rate can explain why certain materials exhibit Langevin rate while others exhibit significantly suppressed rates. This would eventually lead to the design of new materials better suited for either photocells or light-emitting diodes.

  4. Structural influences on charge carrier dynamics for small-molecule organic photovoltaics

    SciTech Connect

    Wang, Zhiping Shibata, Yosei; Yamanari, Toshihiro; Matsubara, Koji; Yoshida, Yuji; Miyadera, Tetsuhiko; Saeki, Akinori; Seki, Shu; Zhou, Ying

    2014-07-07

    We investigated the structural influences on the charge carrier dynamics in zinc phthalocyanine/fullerene (ZnPc/C{sub 60}) photovoltaic cells by introducing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and 2,5-bis(4-biphenylyl)-bithiophene (BP2T) between indium tin oxide and ZnPc layers. ZnPc films can be tuned to be round, long fiber-like, and short fiber-like structure, respectively. Time-resolved microwave conductivity measurements reveal that charge carrier lifetime in ZnPc/C{sub 60} bilayer films is considerably affected by the intra-grain properties. Transient photocurrent of ZnPc single films indicated that the charge carriers can transport for a longer distance in the long fiber-like grains than that in the round grains, due to the greatly lessened grain boundaries. By carefully controlling the structure of ZnPc films, the short-circuit current and fill factor of a ZnPc/C{sub 60} heterojunction solar cell with BP2T are significantly improved and the power conversion efficiency is increased to 2.6%, which is 120% larger than the conventional cell without BP2T.

  5. Relation between Nonlinear Optical Properties of Push-Pull Molecules and Metric of Charge Transfer Excitations.

    PubMed

    List, Nanna Holmgaard; Zale?ny, Robert; Murugan, N Arul; Kongsted, Jacob; Bartkowiak, Wojciech; Ågren, Hans

    2015-09-01

    We establish the relationships between the metric of charge transfer excitation (?r) for the bright ??* state and the two-photon absorption probability as well as the first hyperpolarizability for two families of push-pull ?-conjugated systems. As previously demonstrated by Guido et al. (J. Chem. Theory Comput. 2013, 9, 3118-3126), ?r is a measure for the average hole-electron distance upon excitation and can be used to discriminate between short- and long-range electronic excitations. We indicate two new benefits from using this metric for the analyses of nonlinear optical properties of push-pull systems. First, the two-photon absorption probability and the first hyperpolarizability are found to be interrelated through ?r; if ? ? (?r)(k), then roughly, ?(TPA) ? (?r)(k+1). Second, a simple power relation between ?r and the molecular hyperpolarizabilities of push-pull systems offers the possibility of estimating properties for longer molecular chains without performing calculations of high-order response functions explicitly. We further demonstrate how to link the hyperpolarizabilities with the chain length of the push-pull ?-conjugated systems through the metric of charge transfer. PMID:26575913

  6. Adsorption and transport of charged vs. neutral hydrophobic molecules at the membrane of murine erythroleukemia (MEL) cells.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dai, Hai-Lung; Wilhelm, Michael J

    2015-03-01

    The adsorption and transport of hydrophobic molecules at the membrane surface of pre- and post-DMSO induced differentiated murine erythroleukemia (MEL) cells were examined by time- and wavelength-resolved second harmonic light scattering. Two medium (<600 Da) hydrophobic molecules, cationic malachite green (MG) and neutral bromocresol purple (BCP), were investigated. While it was observed that the MG cation adsorbs onto the surface of the MEL cell, neutral BCP does not. It is suggested that an electrostatic interaction between the opposite charges of the cation and the MEL cell surface is the primary driving force for adsorption. Comparisons of adsorption density and free energy, measured at different pH and cell morphology, indicate that the interaction is predominantly through sialic acid carboxyl groups. MG cation adsorption densities have been determined as (0.6±0.3)×10(6) ?m(-2) on the surface of undifferentiated MEL cells, and (1.8±0.5)×10(7) ?m(-2) on differentiated MEL cells, while the deduced adsorption free energies are effectively identical (ca. -10.9±0.1 and -10.8±0.1 kcal mol(-1), respectively). The measured MG densities indicate that the total number of surface carboxyl groups is largely conserved following differentiation, and therefore the density of carboxylic groups is much larger on the differentiated cell surface than the undifferentiated one. Finally, in contrast to synthetic liposomes and bacterial membranes, surface adsorbed MG cations are unable to traverse the MEL cell membrane. PMID:25660095

  7. Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells.

    PubMed

    Yin, Hongmei; Chen, Naifei; Guo, Rui; Wang, Hong; Li, Wei; Wang, Guanjun; Cui, Jiuwei; Jin, Haofan; Hu, Ji-Fan

    2015-01-01

    Pancreatic cancer is the most aggressive malignant disease, ranking as the fourth leading cause of cancer-related death among men and women in the United States. Interferon alpha (IFN?) has been used to treat pancreatic cancer, but its clinical application has been significantly hindered due to the low antitumor activity. We used a "cDNA in-frame fragment library" screening approach to identify short peptides that potentiate the antitumor activity of interferons. A short positively charged peptide derived from the C-terminus of placental growth factor-2 (PLGF-2) was selected to enhance the activity of IFN?. For this, we constructed a synthetic interferon hybrid molecule (SIF?) by fusing the positively charged PLGF-2 peptide to the C-terminus of the human IFN?. Using human pancreatic cell lines (ASPC and CFPAC1) as a model system, we found that SIF? exhibited a significantly higher activity than did the wild-type IFN? in inhibiting the tumor cell growth. The enhanced activity of the synthetic SIF? was associated with the activation of interferon pathway target genes and the increased binding of cell membrane receptor. This study demonstrates the potential of a synthetic SIF? as a novel antitumor agent. PMID:26584517

  8. Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells

    PubMed Central

    Yin, Hongmei; Chen, Naifei; Guo, Rui; Wang, Hong; Li, Wei; Wang, Guanjun; Cui, Jiuwei; Jin, Haofan; Hu, Ji-Fan

    2015-01-01

    Pancreatic cancer is the most aggressive malignant disease, ranking as the fourth leading cause of cancer-related death among men and women in the United States. Interferon alpha (IFN?) has been used to treat pancreatic cancer, but its clinical application has been significantly hindered due to the low antitumor activity. We used a “cDNA in-frame fragment library” screening approach to identify short peptides that potentiate the antitumor activity of interferons. A short positively charged peptide derived from the C-terminus of placental growth factor-2 (PLGF-2) was selected to enhance the activity of IFN?. For this, we constructed a synthetic interferon hybrid molecule (SIF?) by fusing the positively charged PLGF-2 peptide to the C-terminus of the human IFN?. Using human pancreatic cell lines (ASPC and CFPAC1) as a model system, we found that SIF? exhibited a significantly higher activity than did the wild-type IFN? in inhibiting the tumor cell growth. The enhanced activity of the synthetic SIF? was associated with the activation of interferon pathway target genes and the increased binding of cell membrane receptor. This study demonstrates the potential of a synthetic SIF? as a novel antitumor agent. PMID:26584517

  9. Using light-switching molecules to modulate charge mobility in a quantum dot array

    NASA Astrophysics Data System (ADS)

    Chu, Iek-Heng; Trinastic, Jonathan; Wang, Lin-Wang; Cheng, Hai-Ping

    2014-03-01

    We have studied the electron hopping in a two-CdSe quantum dot (QD) system linked by an azobenzene-derived light-switching molecule. This system can be considered as a prototype of a QD supercrystal. Following the computational strategies given in our recent work [I.-H. Chu et al., J. Phys. Chem. C 115, 21409 (2011), 10.1021/jp206526s], we have investigated the effects of molecular attachment, molecular isomer (trans and cis), and QD size on the electron hopping rate using Marcus theory. Our results indicate that molecular attachment has a large impact on the system for both isomers. In the most energetically favorable attachment, the cis isomer provides significantly greater coupling between the two QDs and hence the electron hopping rate is greater compared to the trans isomer. As a result, the carrier mobility of the QD array in the low carrier density, weak external electric-field regime is several orders of magnitude higher in the cis compared to the trans configuration. This demonstration of mobility modulation using QDs and azobenzene could lead to an alternative type of switching device.

  10. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles.

    PubMed

    Shen, Hao; Hu, Xiaoyu; Szymusiak, Magdalena; Wang, Zaijie Jim; Liu, Ying

    2013-12-01

    We have formulated hydrophobic curcurmin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] into stable nanoparticle suspensions (nanocurcumin) to overcome its relatively low bioavailability, high rate of metabolism, and rapid elimination and clearance from the body. Employing the curcumin nanoformulations as the platform, we discovered that curcumin has the potential to alleviate morphine tolerance. The two types of stable polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol)-b-poly(lactic acid) (PEG-b-PLA), and the hybrid of the two were generated using flash nanoprecipitation integrated with spray drying. The optimized formulations have high drug loading (>45%), small particles size with narrow distribution, and controlled surface properties. Mice behavioral studies (tail-flick and hot-plate tests) were conducted to verify the effects of nanocurcumin on attenuating morphine tolerance. Significant analgesia was observed in mice during both tail-flick and hot-plate tests using orally administered nanocurcumin following subcutaneous injections of morphine. However, unformulated curcumin at the same dose showed no effect. Compared with PEGylated nanocurcumin, negatively charged PLGA nanoparticles showed better functionality. PMID:24195658

  11. Manufacturing and characterization of bent silicon crystals for studies of coherent interactions with negatively charged particles beams

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Bandiera, L.; Bagli, E.; Guidi, V.

    2015-07-01

    Efficient steering of GeV-energy negatively charged particle beams was demonstrated to be possible with a new generation of thin bent silicon crystals. Suitable crystals were produced at the Sensor Semiconductor Laboratory of Ferrara starting from Silicon On Insulator wafers, adopting proper revisitation of silicon micromachining techniques such as Low Pressure Chemical Vapor Deposition, photolithography and anisotropic chemical etching. Mechanical holders, which allow to properly bend the crystal and to reduce unwanted torsions, were employed. Crystallographic directions and crystal holder design were optimized in order to excite quasi-mosaic effect along (1 1 1) planes. Prior to exposing the crystal to particle beams, a full set of characterizations were performed. Infrared interferometry was used to measure crystal thickness with high accuracy. White-light interferometry was employed to characterize surface deformational state and its torsion. High-resolution X-rays diffraction was used to precisely measure crystal bending angle along the beam. Manufactured crystals were installed and tested at the MAMI MAinz MIcrotron to steer sub-GeV electrons, and at SLAC to deflect an electron beam in the 1 to 10 GeV energy range.

  12. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.

    PubMed

    Park, Minsung; Lee, Dajung; Shin, Sungchul; Hyun, Jinho

    2015-06-01

    Nanofibrous 2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO)-oxidized bacterial cellulose (TOBC) was used as a dispersant of hydroxyapatite (HA) nanoparticles in aqueous solution. The surfaces of TOBC nanofibers were negatively charged after the reaction with the TEMPO/NaBr/NaClO system at pH 10 and room temperature. HA nanoparticles were simply adsorbed on the TOBC nanofibers (HA-TOBC) and dispersed well in DI water. The well-dispersed HA-TOBC colloidal solution formed a hydrogel after the addition of gelatin, followed by crosslinking with glutaraldehyde (HA-TOBC-Gel). The chemical modification of the fiber surfaces and the colloidal stability of the dispersion solution confirmed TOBC as a promising HA dispersant. Both the Young's modulus and maximum tensile stress increased as the amount of gelatin increased due to the increased crosslinking of gelatin. In addition, the well-dispersed HA produced a denser scaffold structure resulting in the increase of the Young's modulus and maximum tensile stress. The well-developed porous structures of the HA-TOBC-Gel composites were incubated with Calvarial osteoblasts. The HA-TOBC-Gel significantly improved cell proliferation as well as cell differentiation confirming the material as a potential candidate for use in bone tissue engineering scaffolds. PMID:25910635

  13. Unconventional charge distribution in the planar wheel-type M©B6H6(-/0/+) (M = Mn, Fe and Co): central M with negative charges and peripheral boron ring with positive charges.

    PubMed

    Hou, Jianhua; Duan, Qian; Qin, Jieming; Shen, Xiande; Zhao, Jianxun; Liang, Qingcheng; Jiang, Dayong; Gao, Shang

    2015-04-21

    Planar wheel-type D6h M©B6H6(-/0/+) (M = Mn, Fe and Co for anion, neutral and cation, respectively.) clusters with a planar hexacoordinate transition-metal at the center of the boron ring were designed and investigated by density functional theory. These planar clusters are chemically stable as a result of their large binding energy, vertical ionization potential, and vertical electron affinity. The detailed natural population and molecular orbital analyses suggest that not only does the M atom donate electrons to the boron ring for participation in the ?-delocalized bonding, but also the boron ring donates electrons back to the M atom for the formation of the ?-delocalized bonding, which leads to a strong aromaticity and unconventional charge distribution, i.e., the M atom is negatively charged, while the boron ring is positively charged. This study may open a new area in coordination chemistry for planar hexacoordinate transition metals and we expect further experimental exploration of their synthesis and potential applications. PMID:25830384

  14. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    PubMed

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan

    2016-01-15

    We have developed a novel and economical electrochemical sensor to measure Gram-negative bacterial quorum signaling molecules (AHLs) using magnetic nanoparticles and molecularly imprinted polymer (MIP) technology. Magnetic molecularly imprinted polymers (MMIPs) capable of selectively absorbing AHLs were successfully synthesized by surface polymerization. The particles were deposited onto a magnetic carbon paste electrode (MGCE) surface, and characterized by electrochemical measurements. Differential Pulse Voltammetry (DPV) was utilized to record the oxidative current signal that is characteristic of AHL. The detection limit of this assay was determined to be 8×10(-10)molL(-1) with a linear detection range of 2.5×10(-9)molL(-1) to 1.0×10(-7)molL(-1). This Fe3O4@SiO2-MIP-based electrochemical sensor is a valuable new tool that allows quantitative measurement of Gram-negative bacterial quorum signaling molecules. It has potential applications in the fields of clinical diagnosis or food analysis with real-time detection capability, high specificity, excellent reproducibility, and good stability. PMID:26344904

  15. Probing charge transport at the single-molecule level on silicon by using cryogenic ultra-high vacuum scanning tunneling microscopy

    PubMed Central

    Guisinger, Nathan P.; Yoder, Nathan L.; Hersam, Mark C.

    2005-01-01

    A cryogenic variable-temperature ultra-high vacuum scanning tunneling microscope is used for measuring the electrical properties of isolated cyclopentene molecules adsorbed to the degenerately p-type Si(100)-2×1 surface at a temperature of 80 K. Current–voltage curves taken under these conditions show negative differential resistance at positive sample bias, in agreement with previous observations at room temperature. Because of the enhanced stability of the scanning tunneling microscope at cryogenic temperatures, repeated measurements can be routinely taken over the same molecule. Taking advantage of this improved stability, we show that current–voltage curves on isolated cyclopentene molecules are reproducible and possess negligible hysteresis for a given tip–molecule distance. On the other hand, subsequent measurements with variable tip position show that the negative differential resistance voltage increases with increasing tip–molecule distance. By using a one-dimensional capacitive equivalent circuit and a resonant tunneling model, this behavior can be quantitatively explained, thus providing insight into the electrostatic potential distribution across a semiconductor-molecule-vacuum-metal tunnel junction. This model also provides a quantitative estimate for the alignment of the highest occupied molecular orbital of cyclopentene with respect to the Fermi level of the silicon substrate, thus suggesting that this experimental approach can be used for performing chemical spectroscopy at the single-molecule level on semiconductor surfaces. Overall, these results serve as the basis for a series of design rules that can be applied to silicon-based molecular electronic devices. PMID:15956214

  16. Binding of Short Cationic Peptides (KX)4K to Negatively Charged DPPG Monolayers: Competition between Electrostatic and Hydrophobic Interactions.

    PubMed

    Hädicke, André; Blume, Alfred

    2015-11-10

    The influence of the peptide sequence on the binding of short cationic peptides composed of five lysines alternating with uncharged amino acids within the series (KX)4K to negatively charged monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) was investigated by adsorption experiments in combination with epifluorescence microscopy. To evaluate the impact of electrostatic and hydrophobic contributions, different uncharged amino acids X with increasing hydrophobicity, where X = G (glycine), A (alanine), Abu (?-aminobutyric acid), V (valine), or L (leucine) were introduced into the peptide sequence to tune the peptide hydrophobicity. The adsorption kinetics of these peptides to a DPPG monolayer always showed two superimposed processes, one leading to an increase and another to a decrease of the surface pressure ?. Thus, the plots of the change in ? after peptide binding vs initial surface pressure of the monolayer showed an unusual behavior with maxima and negative changes in ? at high initial ? values. Epifluorescence microscopy confirmed that electrostatic binding of the peptides with a concomitant decrease in ? leads to a condensation of the lipid monolayer and the formation of liquid-condensed (LC) domains even at ? values where the monolayer is supposedly in the liquid-expanded (LE) state. An increase in hydrophobicity of the amino acid X was found to counteract the condensation and an increase in ? upon peptide binding is observed at low ? values, also concomitant with the formation of LC-domains. Compression of monolayers after peptide adsorption at low surface pressure for 4 h leads to a change of the isotherms compared to pure DPPG isotherms. The phase transition of DPPG from LE to LC state is smeared out or is shifted to higher surface pressure. Considerable changes in the shapes of LC-domains were observed after peptide binding. Growth of the LC-domains was hindered in most cases and regular domain patterns were formed. Binding of (KL)4K leads to a decrease in line tension and the formation of extended filaments protruding from initially circular domains. PMID:26479457

  17. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ? 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength ?) far less than nucleonic mass and the electric scattering section (in direct proportion to ?2 ) far large than that of nucleon, then the net ? 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ? 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further falling and till reach the equilibrium of stable spatial charge distribution, which is just the cause of the geomagnetic field and the geo-electric field (the observational value on the earth surface is about 120 V/m downward equivalent to 500000 Coulomb negative charges in the earth surface). All celestial bodies are gravitation sources and attract the molecules and ions in space to its circumference by the gravitation of own and other celestial bodies, e.g., all planets in the solar system have their own atmospheres. Therefore, the origin mechanism of geo-electric and geomagnetic fields caused by gravitation is very universal, at least it is appli-cable to all the planets in the solar system. For planets, the joint result of the gravitations of the planets and the sun makes the negative charges and dipolar charges distributed in the surfaces of the celestial bodies. The quicker the rotation is, the larger the angular momentum U is, then larger the accompanying current and magnetic moment P, it accord a experiential law found by subsistent observational data of all celestial bodies in solar system: P = -G 1/2 U cos ? / c (1), ? is the angle between the net ? 0 flux direction (mark by CMB) and the rotational axis of celestial body (Chen Shao-Guang, Chinese Science Bulletin, 26,233,1981). Uranian and Neptunian P predicted with Eq.(1) in 1981 are about -3.4•1028 Gs•cm3 and 1.9•1028 Gs•cm3 respectively (use new rotate speed measured by Voyager 2). The P measured by Voyager 2 in 1986 and 1989 are about -1.9 •1028 Gs•cm3 and 1.5•1028 Gs•cm3 respectively (the contribution of quadrupole P is converted into the contribution of dipole P alone). The neutron star pos-sesses much high density and rotational speed because of the conservation of the mass and the angular momentum during the course of the formation, then has strong gravity and largerU. From Eq.(1) there is a larger P and extremely strong surface magnetic field in neutron star. The origin mechanism of basal electric and magnetic fields of celestial bodies will affect directly all fields refer

  18. A 90-day study of subchronic oral toxicity of 20 nm, negatively charged zinc oxide nanoparticles in Sprague Dawley rats

    PubMed Central

    Park, Hark-Soo; Shin, Sung-Sup; Meang, Eun Ho; Hong, Jeong-sup; Park, Jong-Il; Kim, Su-Hyon; Koh, Sang-Bum; Lee, Seung-Young; Jang, Dong-Hyouk; Lee, Jong-Yun; Sun, Yle-Shik; Kang, Jin Seok; Kim, Yu-Ri; Kim, Meyoung-Kon; Jeong, Jayoung; Lee, Jong-Kwon; Son, Woo-Chan; Park, Jae-Hak

    2014-01-01

    Purpose The widespread use of nanoparticles (NPs) in industrial and biomedical applications has prompted growing concern regarding their potential toxicity and impact on human health. This study therefore investigated the subchronic, systemic oral toxicity and no-observed-adverse-effect level (NOAEL) of 20 nm, negatively charged zinc oxide (ZnOSM20(?)) NPs in Sprague Dawley rats for 90 days. Methods The high-dose NP level was set at 500 mg/kg of bodyweight, and the mid- and low-dose levels were set at 250 and 125 mg/kg, respectively. The rats were observed during a 14-day recovery period after the last NP administration for the persistence or reduction of any adverse effects. Toxicokinetic and distribution studies were also conducted to determine the systemic distribution of the NPs. Results No rats died during the test period. However, ZnOSM20(?) NPs (500 mg/kg) induced changes in the levels of anemia-related factors, prompted acinar cell apoptosis and ductular hyperplasia, stimulated periductular lymphoid cell infiltration and excessive salivation, and increased the numbers of regenerative acinar cells in the pancreas. In addition, stomach lesions were seen at 125, 250, and 500 mg/kg, and retinal atrophy was observed at 250 and 500 mg/kg. The Zn concentration was dose-dependently increased in the liver, kidney, intestines, and plasma, but not in other organs investigated. Conclusion A ZnOSM20(?) NP NOAEL could not be established from the current results, but the lowest-observed-adverse-effect level was 125 mg/kg. Furthermore, the NPs were associated with a number of undesirable systemic actions. Thus, their use in humans must be approached with caution. PMID:25565828

  19. Positronium ions and molecules

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.

    1990-01-01

    Recent theoretical studies on positronium ions and molecules are discussed. A positronium ion is a three particle system consisting of two electrons in singlet spin state, and a positron. Recent studies include calculations of its binding energy, positron annihilation rate, and investigations of its doubly excited resonant states. A positronium molecule is a four body system consisting of two positrons and two electrons in an overall singlet spin state. The recent calculations of its binding energy against the dissociation into two positronium atoms, and studies of auto-detaching states in positronium molecules are discussed. These auto-dissociating states, which are believed to be part of the Rydberg series as a result of a positron attaching to a negatively charged positronium ion, Ps-, would appear as resonances in Ps-Ps scattering.

  20. Excitation of atoms and molecules in collisions with highly charged ions. Progress report, January 1, 1990--December 1, 1992

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N{sup 7+} ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N{sub 2}, O{sub 2}, and CO molecular ions produced in collisions with 97-MeV Ar{sup 14+} ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO{sup 2+} and CO{sup 3+} from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO{sup 1+} and CO{sup 2+} molecular ions, and the branching ratios for the most prominent charge division channels of CO{sup 2+} through CO{sup 7+} were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  1. Excitation of atoms and molecules in collisions with highly charged ions. [Cyclotron Inst. , Texas A M Univ. , College Station, Texas

    SciTech Connect

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N[sup 7+] ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N[sub 2], O[sub 2], and CO molecular ions produced in collisions with 97-MeV Ar[sup 14+] ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO[sup 2+] and CO[sup 3+] from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO[sup 1+] and CO[sup 2+] molecular ions, and the branching ratios for the most prominent charge division channels of CO[sup 2+] through CO[sup 7+] were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  2. A New Class of Quorum Quenching Molecules from Staphylococcus Species Affects Communication and Growth of Gram-Negative Bacteria

    PubMed Central

    Chu, Ya-Yun; Nega, Mulugeta; Wölfle, Martina; Plener, Laure; Grond, Stephanie; Jung, Kirsten; Götz, Friedrich

    2013-01-01

    The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community. PMID:24098134

  3. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    SciTech Connect

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; ELI–Beamlines, Institute of Physics, Czech Academy of Science, 18221 Prague ; Andreev, A.; Vavilov State Optical Institute, 119034 St. Petersburg ; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-11-15

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.

  4. A self-consistent phase-field approach to implicit solvation of charged molecules with Poisson-Boltzmann electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew

    2015-12-01

    Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.

  5. Ultrafast Bidirectional Charge Transport and Electron Decoherence at Molecule/Surface Interfaces: A Comparison of Gold, Graphene, and Graphene Nanoribbon Surfaces.

    PubMed

    Adak, Olgun; Kladnik, Gregor; Bavdek, Gregor; Cossaro, Albano; Morgante, Alberto; Cvetko, Dean; Venkataraman, Latha

    2015-12-01

    We investigate bidirectional femtosecond charge transfer dynamics using the core-hole clock implementation of resonant photoemission spectroscopy from 4,4'-bipyridine molecular layers on three different surfaces: Au(111), epitaxial graphene on Ni(111), and graphene nanoribbons. We show that the lowest unoccupied molecular orbital (LUMO) of the molecule drops partially below the Fermi level upon core-hole creation in all systems, opening an additional decay channel for the core-hole, involving electron donation from substrate to the molecule. Furthermore, using the core-hole clock method, we find that the bidirectional charge transfer time between the substrate and the molecule is fastest on Au(111), with a 2 fs time, then around 4 fs for epitaxial graphene and slowest with graphene nanoribbon surface, taking around 10 fs. Finally, we provide evidence for fast phase decoherence of the core-excited LUMO* electron through an interaction with the substrate providing the first observation of such a fast bidirectional charge transfer across an organic/graphene interface. PMID:26574713

  6. Effective production of Xe2I excimer molecules by high-energy charged particles in Xe containing a small amount of C3F7I

    NASA Astrophysics Data System (ADS)

    Mis'kevich, A. I.

    2015-09-01

    An anomalously high efficiency of generating Xe2I* excimer molecules in dense Xe-C3F7I gaseous mixtures with a small amount of C3F7I that are excited by a pulsed beam of fast electrons is discovered. The electron energy is 150 keV, and the beam current amplitude and duration are, respectively, 5 A and 5 ns. The temporal-spectral characteristics of spontaneous radiation from XeI* and Xe2I* excimer molecules are measured. Also, the luminescence times of the upper level for the B- X transition in the XeI* molecule (?max = 253 nm) and the upper level for the 42?-12? transition in the Xe2I* molecule (? = 352 nm), as well as the rate constants of quenching these levels by the gaseous mixture components, are determined. Based on the characteristics of the track structure of a high-energy plasma produced by charged particles in the dense gaseous medium, a model of plasma-chemical processes leading to the formation of XeI* (?max = 253 nm) and Xe2I* (? = 352 nmnm) excimer molecules in a Xe-C3F7I mixture with a small amount of an iodine atom donor is suggested.

  7. Role of GCR positive and negative particles in charging the LISA-PF test masses in 2015

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Fabi, M.; Lobo, A. J.; Mateos, I.; Telloni, D.

    2015-05-01

    The LISA Pathfinder (LISA-PF) mission launch is scheduled during the second half of 2015. Galactic and solar ions with energies larger than 100 MeV/n and electrons above 10 MeV penetrate the spacecraft material and charge the gold-platinum test masses. This charging process generates spurious forces that, in some cases, may mimic the effects of genuine gravitational wave signals. A study of the test-mass charging due to galactic cosmic rays (GCRs) down to 1% in composition is reported here. The reliability of the results of this work is mainly limited by our capability to predict the energy spectra of GCRs in 2015. To this purpose, our model is applied to the expected PAMELA experiment proton data for the period January- March 2014 characterized by a positive polarity period and a level of solar modulation similar to those expected at the time of LISA-PF. The PAMELA observations will be available in the next few months. The comparison between our projections and measurements will provide valuable clues on the test-mass charging estimate uncertainty.

  8. Enhancement of NK Cell Cytotoxicity Induced by Long-Term Living in Negatively Charged-Particle Dominant Indoor Air-Conditions

    PubMed Central

    Nishimura, Yasumitsu; Takahashi, Kazuaki; Mase, Akinori; Kotani, Muneo; Ami, Kazuhisa; Maeda, Megumi; Shirahama, Takashi; Lee, Suni; Matsuzaki, Hidenori; Kumagai-Takei, Naoko; Yoshitome, Kei; Otsuki, Takemi

    2015-01-01

    Investigation of house conditions that promote health revealed that negatively charged-particle dominant indoor air-conditions (NCPDIAC) induced immune stimulation. Negatively charged air-conditions were established using a fine charcoal powder on walls and ceilings and utilizing forced negatively charged particles (approximate diameter: 20 nm) dominant in indoor air-conditions created by applying an electric voltage (72 V) between the backside of the walls and the ground. We reported previously that these conditions induced a slight and significant increase of interleukin-2 during a 2.5-h stay and an increase of NK cell cytotoxicity when examining human subjects after a two-week night stay under these conditions. In the present study, seven healthy volunteers had a device installed to create NCPDIAC in the living or sleeping rooms of their own homes. Every three months the volunteers then turned the NCPDIAC device on or off. A total of 16 ON and 13 OFF trials were conducted and their biological effects were analyzed. NK activity increased during ON trials and decreased during OFF trials, although no other adverse effects were found. In addition, there were slight increases of epidermal growth factor (EGF) during ON trials. Furthermore, a comparison of the cytokine status between ON and OFF trials showed that basic immune status was stimulated slightly during ON trials under NCPIADC. Our overall findings indicate that the NCPDIAC device caused activation of NK activity and stimulated immune status, particularly only on NK activity, and therefore could be set in the home or office buildings. PMID:26173062

  9. Is ionized oxygen negatively or positively charged more effective for carboxyhemoglobin reduction compare to medical oxygen at atmospheric pressure?

    PubMed

    Pere?inský, S; Kron, I; Engler, I; Murínová, L; Doni?, V; Varga, M; Marossy, A; Legáth, ?

    2015-12-29

    Carbon monoxide (CO) reversibly binds to hemoglobin forming carboxyhemoglobin (COHb). CO competes with O(2) for binding place in hemoglobin leading to tissue hypoxia. Already 30 % saturation of COHb can be deadly. Medical oxygen at atmospheric pressure as a therapy is not enough effective. Therefore hyperbaric oxygen O(2) inhalation is recommended. There was a question if partially ionized oxygen can be a better treatment at atmospheric pressure. In present study we evaluated effect of partially ionized oxygen produced by device Oxygen Ion 3000 by Dr. Engler in elimination of COHb in vitro experiments and in smokers. Diluted blood with different content of CO was purged with 5 l/min of either medicinal oxygen O(2), negatively ionized O(2) or positively ionized O(2) for 15 min, then the COHb content was checked. In vivo study, 15 smokers inhaled of either medicinal oxygen O(2) or negatively ionized O(2), than we compared CO levels in expired air before and after inhalation. In both studies we found the highest elimination of CO when we used negatively ionized O(2). These results confirmed the benefit of short inhalation of negatively ionized O(2), in frame of Ionized Oxygen Therapy (I O(2)Th/Engler) which could be used in smokers for decreasing of COHb in blood. PMID:26047377

  10. Charge-transfer complexes of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone with amino molecules in polar solvents

    NASA Astrophysics Data System (ADS)

    Berto, Silvia; Chiavazza, Enrico; Ribotta, Valentina; Daniele, Pier Giuseppe; Barolo, Claudia; Giacomino, Agnese; Vione, Davide; Malandrino, Mery

    2015-10-01

    The charge-transfer complexes have scientific relevance because this type of molecular interaction is at the basis of the activity of pharmacological compounds and because the absorption bands of the complexes can be used for the quantification of electron donor molecules. This work aims to assess the stability of the charge-transfer complexes between the electron acceptor 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and two drugs, procaine and atenolol, in acetonitrile and ethanol. The stability of DDQ in solution and the time required to obtain the maximum complex formation were evaluated. The stoichiometry and the stability of the complexes were determined, respectively, by Job's plot method and by the elaboration of UV-vis titrations data. The latter task was carried out by using the non-linear global analysis approach to determine the equilibrium constants. This approach to data elaboration allowed us to overcome the disadvantages of the classical linear-regression method, to obtain reliable values of the association constants and to calculate the entire spectra of the complexes. NMR spectra were recorded to identify the portion of the donor molecule that was involved in the interaction. The data support the participation of the aliphatic amino groups in complex formation and exclude the involvement of the aromatic amine present in the procaine molecule.

  11. Structure/function analysis of human factor XII using recombinant deletion mutants. Evidence for an additional region involved in the binding to negatively charged surfaces.

    PubMed

    Citarella, F; Ravon, D M; Pascucci, B; Felici, A; Fantoni, A; Hack, C E

    1996-05-15

    The binding site of human factor XII (FXII) for negatively charged surfaces has been proposed to be localized in the N-terminal region of factor XII. We have generated two recombinant factor XII proteins that lack this region: one protein consisting of the second growth-factor-like domain, the kringle domain, the proline-rich region and the catalytic domain of FXII (rFXII-U-like), and another consisting of only 16 amino acids of the proline-rich region of the heavy-chain region and the catalytic domain (rFXII-1pc). Each recombinant truncated protein, as well as recombinant full-length FXII (rFXII), were produced in HepG2 cells and purified by immunoaffinity chromatography. The capability of these recombinant proteins to bind to negatively charged surfaces and to initiate contact activation was studied. Radiolabeled rFXII-U-like and, to a lesser extent, rFXII-lpc bound to glass in a concentration-dependent manner, yet with lower efficiency than rFXII. The binding of the recombinant proteins was inhibited by a 100-fold molar excess of non-labeled native factor XII. On native polyacrylamide gel electrophoresis, both truncated proteins appeared to bind also to dextran sulfate, a soluble negatively charged compound. Glass-bound rFXII-U-like was able to activate prekallikrein in FXII-deficient plasma (assessed by measuring the generation of kallikrein-C1-inhibitor complexes), but less efficiently than rFXII, rFXII-U-like and rFXII-lpc exhibited coagulant activity, but this activity was significantly lower than that of rFXII. These data confirm that the N-terminal part of the heavy-chain region of factor XII contains a binding site for negatively charged activating surfaces, and indicate that other sequences, possibly located on the second epidermal-growth-factor-like domain and/or the kringle domain, contribute to the binding of factor XII to these surfaces. PMID:8665943

  12. Charge-sensitive fluorescent nanosensors created from nanodiamonds.

    PubMed

    Petrakova, V; Rehor, I; Stursa, J; Ledvina, M; Nesladek, M; Cigler, P

    2015-08-01

    We show that fluorescent nanodiamonds (FNDs) are among the few types of nanosensors that enable direct optical reading of noncovalent molecular events. The unique sensing mechanism is based on switching between the negatively charged and neutral states of NV centers which is induced by the interaction of the FND surface with charged molecules. PMID:26138745

  13. Identification of the SLAM Adapter Molecule EAT-2 as a Lupus-Susceptibility Gene That Acts through Impaired Negative Regulation of Dendritic Cell Signaling.

    PubMed

    Talaei, Nafiseh; Yu, Tao; Manion, Kieran; Bremner, Rod; Wither, Joan E

    2015-11-15

    We showed previously that C57BL/6 congenic mice with an introgressed homozygous 70 cM (125.6 Mb) to 100 cM (179.8 Mb) interval on c1 from the lupus-prone New Zealand Black (NZB) mouse develop high titers of antinuclear Abs and severe glomerulonephritis. Using subcongenic mice, we found that a genetic locus in the 88-96 cM region was associated with altered dendritic cell (DC) function and synergized with T cell functional defects to promote expansion of pathogenic proinflammatory T cell subsets. In this article, we show that the promoter region of the NZB gene encoding the SLAM signaling pathway adapter molecule EWS-activated transcript 2 (EAT-2) is polymorphic, which results in an ?70% reduction in EAT-2 in DC. Silencing of the EAT-2 gene in DC that lacked this polymorphism led to increased production of IL-12 and enhanced differentiation of T cells to a Th1 phenotype in T cell-DC cocultures, reproducing the phenotype observed for DC from congenic mice with the NZB c1 70-100 cM interval. SLAM signaling was shown to inhibit production of IL-12 by CD40L-activated DCs. Consistent with a role for EAT-2 in this inhibition, knockdown of EAT-2 resulted in increased production of IL-12 by CD40-stimulated DC. Assessment of downstream signaling following CD40 cross-linking in the presence or absence of SLAM cross-linking revealed that SLAM coengagement blocked activation of p38 MAPK and JNK signaling pathways in DC, which was reversed in DC with the NZB EAT-2 allele. We conclude that EAT-2 negatively regulates cytokine production in DC downstream of SLAM engagement and that a genetic polymorphism that disturbs this process promotes the development of lupus. PMID:26432891

  14. Cationic hydrous thorium dioxide colloids – a useful tool for staining negatively charged surface matrices of bacteria for use in energy-filtered transmission electron microscopy

    PubMed Central

    Lünsdorf, Heinrich; Kristen, Ingeborg; Barth, Elke

    2006-01-01

    Background Synthesis of cationic hydrous thorium dioxide colloids (ca. 1.0 to 1.7 nm) has been originally described by Müller [22] and Groot [11] and these have been used by Groot to stain acidic glucosaminoglycans for ultrastructure research of different tissues by conventional transmission electron microscopy. Results Synthesis of colloidal thorium dioxide has been modified and its use as a suitable stain of acidic mucopolysaccharides and other anionic biopolymers from bacteria, either as whole mount preparations or as preembedment labels, is described. The differences in stain behavior relative to commonly used rutheniumred-lysine and Alcian Blue™ electron dense acidic stains has been investigated and its use is exemplified for Pseudomonas aeruginosa adjacent cell wall biopolymers. For the first time thorificated biopolymers, i.e. bacterial outer cell wall layers, have been analysed at the ultrastructural level with electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI), leading to excellent contrast and signal strength for these extracellular biopolymers. Conclusion Application of cationic hydrous ThO2 colloids for tracing acidic groups of the bacterial surface and/or EPS has been shown to be rather effective by transmission electron microscopy. Because of its high electron density and its good diffusibility it stains and outlines electro-negative charges within these biopolymers. In combination with ESI, based on integrated energy-filtered electron microscopy (EFTEM) Th-densities and thus negative charge densities can be discriminated from other elemental densities, especially in environmental samples, such as biofilms. PMID:16803626

  15. Neutral and negatively charged Al12X (X=Si, Ge, Sn, Pb) clusters studied from first principles S. F. Li1,2 and X. G. Gong1

    E-print Network

    Gong, Xingao

    Neutral and negatively charged Al12X (X=Si, Ge, Sn, Pb) clusters studied from first principles S. F neutral and anionic Al12X X=Si, Ge, Sn, Pb clusters. We find that both neutral and charged Al12Si cluster, Pb , either neutral or anionic clusters, shows symmetry of C5v with atom X located on the cluster

  16. Predictive DFT-based approaches to charge and spin transport in single-molecule junctions and two-dimensional materials: successes and challenges.

    PubMed

    Quek, Su Ying; Khoo, Khoong Hong

    2014-11-18

    CONSPECTUS: The emerging field of flexible electronics based on organics and two-dimensional (2D) materials relies on a fundamental understanding of charge and spin transport at the molecular and nanoscale. It is desirable to make predictions and shine light on unexplained experimental phenomena independently of experimentally derived parameters. Indeed, density functional theory (DFT), the workhorse of first-principles approaches, has been used extensively to model charge/spin transport at the nanoscale. However, DFT is essentially a ground state theory that simply guarantees correct total energies given the correct charge density, while charge/spin transport is a nonequilibrium phenomenon involving the scattering of quasiparticles. In this Account, we critically assess the validity and applicability of DFT to predict charge/spin transport at the nanoscale. We also describe a DFT-based approach, DFT+?, which incorporates corrections to Kohn-Sham energy levels based on many-electron calculations. We focus on single-molecule junctions and then discuss how the important considerations for DFT descriptions of transport can differ in 2D materials. We conclude that when used appropriately, DFT and DFT-based approaches can play an important role in making predictions and gaining insight into transport in these materials. Specifically, we shall focus on the low-bias quasi-equilibrium regime, which is also experimentally most relevant for single-molecule junctions. The next question is how well can the scattering of DFT Kohn-Sham particles approximate the scattering of true quasiparticles in the junction? Quasiparticles are electrons (holes) that are surrounded by a constantly changing cloud of holes (electrons), but Kohn-Sham particles have no physical significance. However, Kohn-Sham particles can often be used as a qualitative approximation to quasiparticles. The errors in standard DFT descriptions of transport arise primarily from errors in the Kohn-Sham energy levels (self-energy errors). These errors are small in the strong-coupling regime where the molecular levels are significantly broadened at the Fermi level but are large in the coherent off-resonant tunneling regime where DFT overestimates conductance by orders of magnitude. The DFT+? approach uses a physically motivated, parameter free estimate of the self-energy corrections to correct the energy levels in DFT, giving conductance in quantitative agreement with experiment for a large but nonexhaustive class of single-molecule junctions. In 2D materials, the self-energy error is relatively small, and critical issues stem instead from the large length scales in experiments, which make it necessary to consider band-bending within the 2D material, as well as scattering due to electron-phonon interactions, spin-flip interactions, defects, etc. PMID:24933289

  17. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments.

    PubMed

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-07-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs. PMID:21609950

  18. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments

    PubMed Central

    Vanquelef, Enguerran; Simon, Sabrina; Marquant, Gaelle; Garcia, Elodie; Klimerak, Geoffroy; Delepine, Jean Charles; Cieplak, Piotr; Dupradeau, François-Yves

    2011-01-01

    R.E.D. Server is a unique, open web service, designed to derive non-polarizable RESP and ESP charges and to build force field libraries for new molecules/molecular fragments. It provides to computational biologists the means to derive rigorously molecular electrostatic potential-based charges embedded in force field libraries that are ready to be used in force field development, charge validation and molecular dynamics simulations. R.E.D. Server interfaces quantum mechanics programs, the RESP program and the latest version of the R.E.D. tools. A two step approach has been developed. The first one consists of preparing P2N file(s) to rigorously define key elements such as atom names, topology and chemical equivalencing needed when building a force field library. Then, P2N files are used to derive RESP or ESP charges embedded in force field libraries in the Tripos mol2 format. In complex cases an entire set of force field libraries or force field topology database is generated. Other features developed in R.E.D. Server include help services, a demonstration, tutorials, frequently asked questions, Jmol-based tools useful to construct PDB input files and parse R.E.D. Server outputs as well as a graphical queuing system allowing any user to check the status of R.E.D. Server jobs. PMID:21609950

  19. a Two-Form Description of Push-Pull Molecules:. Correlations Between Structure, Intramolecular Charge Transfer and (hyper) Polarizabilities

    NASA Astrophysics Data System (ADS)

    Barzoukas, M.; Fort, A.; Blanchard-Desce, M.

    We present a quantum two-form two-state description of donor-acceptor molecules. We single out relevant factors that are characteristic of the molecule and its environment. In addition, we define a parameter which rules the geometry of both ground and excited states. Also, this parameter is proportional to the change in dipole between excited and ground states. We show that correlations between (hyper)polarizabilities and this parameter reproduce remarkably well semi-empirical predictions. We extend this model in order to account for the solvent reaction field. This model helps in the understanding of the dependencies of (hyper)polarizabilities on solvent polarity.

  20. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    SciTech Connect

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-08-15

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  1. REVISED BIG BANG NUCLEOSYNTHESIS WITH LONG-LIVED, NEGATIVELY CHARGED MASSIVE PARTICLES: UPDATED RECOMBINATION RATES, PRIMORDIAL {sup 9}Be NUCLEOSYNTHESIS, AND IMPACT OF NEW {sup 6}Li LIMITS

    SciTech Connect

    Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kino, Yasushi; Mathews, Grant J. E-mail: kyungsik@kau.ac.kr E-mail: kajino@nao.ac.jp E-mail: gmathews@nd.edu

    2014-09-01

    We extensively reanalyze the effects of a long-lived, negatively charged massive particle, X {sup –}, on big bang nucleosynthesis (BBN). The BBN model with an X {sup –} particle was originally motivated by the discrepancy between the {sup 6,} {sup 7}Li abundances predicted in the standard BBN model and those inferred from observations of metal-poor stars. In this model, {sup 7}Be is destroyed via the recombination with an X {sup –} particle followed by radiative proton capture. We calculate precise rates for the radiative recombinations of {sup 7}Be, {sup 7}Li, {sup 9}Be, and {sup 4}He with X {sup –}. In nonresonant rates, we take into account respective partial waves of scattering states and respective bound states. The finite sizes of nuclear charge distributions cause deviations in wave functions from those of point-charge nuclei. For a heavy X {sup –} mass, m{sub X} ? 100 GeV, the d-wave ? 2P transition is most important for {sup 7}Li and {sup 7,} {sup 9}Be, unlike recombination with electrons. Our new nonresonant rate of the {sup 7}Be recombination for m{sub X} = 1000 GeV is more than six times larger than the existing rate. Moreover, we suggest a new important reaction for {sup 9}Be production: the recombination of {sup 7}Li and X {sup –} followed by deuteron capture. We derive binding energies of X nuclei along with reaction rates and Q values. We then calculate BBN and find that the amount of {sup 7}Be destruction depends significantly on the charge distribution of {sup 7}Be. Finally, updated constraints on the initial abundance and the lifetime of the X {sup –} are derived in the context of revised upper limits to the primordial {sup 6}Li abundance. Parameter regions for the solution to the {sup 7}Li problem and the primordial {sup 9}Be abundances are revised.

  2. Charge state distribution studies of SrF 3, MnF 3 and CaF 3 molecules using single and double stripping in a Tandem accelerator

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Korschinek, G.; Chopra, S.; Faestermann, T.; Ludwig, P.; Rugel, G.; Seiler, D.; Wallner, A.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2011-09-01

    High energy beams of high ion currents from a Tandem accelerator are a common requirement in nuclear physics, materials science and Accelerator Mass Spectrometry (AMS) research. In many cases, molecular beams are chosen from the ion source to achieve a high ion source yield for the negative ions, or, as for AMS, to suppress isobaric interference. For this reason we have studied the use of consecutive stripper foils, double stripping, to increase the ion yield in conjunction with increased energy of injected molecular beams through a Tandem accelerator. By this method we could achieve a shift in the yield towards higher charge states.

  3. Identification of a putative binding site for negatively charged surfaces in the fibronectin type II domain of human factor XII--an immunochemical and homology modeling approach.

    PubMed

    Citarella, F; te Velthuis, H; Helmer-Citterich, M; Hack, C E

    2000-12-01

    Monoclonal antibodies directed against functional sites of proteins provide useful tools for structure-function studies. Here we describe a mAb, KOK5, directed against the heavy chain region of human coagulation factor XII (FXII), which inhibits kaolin-induced clotting activity by preventing the binding of FXII to kaolin. Furthermore, mAb KOK5 enhances FXII susceptibility for cleavage by kallikrein and supports FXII autoactivation. Hence, mAb KOK5 likely is directed against the binding site of FXII for negatively charged surfaces. Screening of two phage-displayed random peptide libraries with mAb KOK5 selected phages that could be grouped on the basis of two amino acid consensus sequences: A) FXFQTPXW and B) HQ/LCTHR/KKC. Sequence A contains two motifs: one shares homology with FXII amino acid residues 30-33 (FPFQ), the second one with residues 57-60 (TPNF); both amino acid stretches belonging to the fibronectin type II domain of FXII. Sequence B also reveals homology with part of the fibronectin type II domain, i.e. the stretch 40-47 (HKCTHKGR). A three-dimensional model of FXII residues 28-65, obtained by homology modeling, indicated that the three amino acid stretches 30-33, 40-47 and 57-60 are close to each other and accessible for the solvent, i.e. in a form available for interaction with the monoclonal antibody, suggesting that mAb KOK5 recognizes a discontinuous epitope on the fibronectin type III domain of FXII. Peptides corresponding to FXII sequences 29-37 (FXII29-37) or 39-47 (FXII39-47), were synthesized and tested for the capability to inhibit FXII binding to negatively charged surfaces. Peptide FXII39-47 inhibited the binding of labeled FXII to kaolin and effectively prevented both dextran sulfate- and kaolin-induced activation of the contact system in plasma. Hence, we suggest that the fibronectin type II domain of FXII, in particular residues 39 to 47, contribute to the binding site of FXII for negatively charged surfaces. PMID:11154114

  4. Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation - Implications for the Charge Transfer Along Branches vs. Across the Perimeter in Dendrimer

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Yang, Jinua; Fabrizio,Even F.; Rawashdeh, Abdel-Monem M.; Oh, Woon Su; Sotiriou-Leventis, Chariklia

    2004-01-01

    Dendrimers are self-repeating globular branched star molecules, whose fractal structure continues to fascinate, challenge, and inspire. Functional dendrimers may incorporate redox centers, and potential applications include antennae molecules for light harvesting, sensors, mediators, and artificial biomolecules. We report the synthesis and redox properties of four star systems incorporating the 4-benzoyl-N-alkylpyridinium cation; the redox potential varies along the branches but remains constant at fixed radii. Bulk electrolysis shows that at a semi-infinite time scale all redox centers are electrochemically accessible. However, voltammetric analysis (cyclic voltammetry and differential pulse voltammetry) shows that on1y two of the three redox-active centers in the perimeter are electrochemically accessible during potential sweeps as slow as 20 mV/s and as fast as 10 V/s. On the contrary, both redox centers along branches are accessible electrochemically within the same time frame. These results are explained in terms of slow through-space charge transfer and the globular 3-D folding of the molecules and are discussed in terms of their implications on the design of efficient redox functional dendrimers.

  5. Dynamics of ion-molecule reactions from beam experiments: A historical survey

    SciTech Connect

    Herman, Z.; Futrell, Jean H.

    2015-02-01

    A historical survey of beam scattering studies of ion-molecule reactions from the sixties up to the present time is presented. The centers of research that developed key instrumentation for these studies and early achievements in characterizing basic collisional mechanisms in scattering experiments are reviewed. Important classes of cation-molecule reaction dynamics, impulsive atom-transfer, reaction complexes, electron transfer (charge transfer) dynamics and the dynamics of negative ion-molecule reactions are described. Selected specific examples of ion-molecule reaction dynamics, including multiply-charged and ion-surface collisions, are briefly presented. (C) 2014 Elsevier B.V. All rights reserved.

  6. Effect of donor-acceptor orientation on ultrafast photoinduced electron transfer and dark charge recombination in porphyrin-quinone molecules

    SciTech Connect

    Sakata, Yoshiteru; Tsue, Hirohito ); O'Neil, M.P.; Wiederrecht, G.P.; Wasielewski, M.R. )

    1994-07-27

    A series of four zinc porphyrin-spacer-benzoquinone molecules were studied in which the spacer is either spiro[4,4]nonane or trans-decalin. The benzoquinone is attached to the porphyrin at two fixed distances each possessing two fixed orientations of the porphyrin relative to the quinone. The rate constants for photoinduced electron transfer from the lowest excited singlet state of the porphyrin to the quinone to form the Zn porphyrin[sup +]-quinone[sup [minus

  7. A Simultaneous Solution to the ^6Li and ^7Li Big Bang Nucleosynthesis Problems from a Long-Lived Negatively-Charged Leptonic Particle

    E-print Network

    Motohiko Kusakabe; Toshitaka Kajino; Richard N. Boyd; Takashi Yoshida; Grant J. Mathews

    2007-11-24

    The $^6$Li abundance observed in metal poor halo stars exhibits a plateau similar to that for $^7$Li suggesting a primordial origin. However, the observed abundance of $^6$Li is a factor of $10^3$ larger and that of $^7$Li is a factor of 3 lower than the abundances predicted in the standard big bang when the baryon-to-photon ratio is fixed by WMAP. Here we show that both of these abundance anomalies can be explained by the existence of a long-lived massive, negatively-charged leptonic particle during nucleosynthesis. Such particles would capture onto the synthesized nuclei thereby reducing the reaction Coulomb barriers and opening new transfer reaction possibilities, and catalyzing a second round of big bang nucleosynthesis. This novel solution to both of the Li problems can be achieved with or without the additional effects of stellar destruction.

  8. Optical study of a doubly negatively charged exciton in a CdTe/ZnTe quantum dot containing a single Mn+2 ion

    NASA Astrophysics Data System (ADS)

    Smole?ski, T.; Koperski, M.; Goryca, M.; Wojnar, P.; Kossacki, P.; Kazimierczuk, T.

    2015-08-01

    We present a magnetospectroscopic study of a doubly negatively charged exciton X2 - in a CdTe quantum dot doped with a single Mn+2 ion. The X2 - emission leading to the singlet final state of an excited electron pair is demonstrated to consist of six distinct lines corresponding to different projections of the Mn+2 spin, similarly as for the neutral exciton X . We show that the fine structure of X2 - energy levels, as well as the effects of the longitudinal magnetic field, are well reproduced by a simple spin Hamiltonian model featuring both carrier-ion and intershell electron-hole exchange interactions. We also point out two important effects distinguishing the X2 - from the X , which result from different symmetries of the electron wave function: the field-induced decrease of the anisotropic part of intershell electron-hole exchange, and the negligible value of the Mn+2 exchange integral with the p -shell electron.

  9. Calculation of total cross sections for ionization and charge transfer in collisions of multicharged ions with water molecules

    NASA Astrophysics Data System (ADS)

    Méndez, L.; Errea, L. F.; Illescas, Clara; Rabadán, I.; Pons, B.; Riera, A.

    2008-12-01

    Classical (CTMC) calculations of single electron capture and single ionization cross sections are carried out for collisions of H+ and C6+ collisions with H2O molecules in the impact energy range 25

  10. Ab initio treatment of charge transfer in ion-molecule collisions based on one-electron wave functions

    NASA Astrophysics Data System (ADS)

    Gabás, P. M. M.; Errea, L. F.; Méndez, L.; Rabadán, I.

    2012-01-01

    Two simple ab initio methods based on one-electron wave functions are employed to calculate the single-electron capture and single ionization of H2O and CO molecules by ion impact. The anisotropy of the molecular targets is taken into account by using multicenter pseudopotentials to represent the interaction of the active electron with the ionic molecular core. These two methods are applied to the study of three collisional systems: H++H2O, He2++H2O, and C2++CO. Comparison with experiments and other theoretical works is presented when available.

  11. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    NASA Astrophysics Data System (ADS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-10-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  12. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation.

    PubMed

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT. PMID:26493895

  13. Charge transfer excitations in water-soluble sulfonated zinc-phthalocyanine (ZnPcS) donor molecules coupled to C60

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra; Basurto, Luis; Olguin, Marco; Baruah, Tunna

    2013-03-01

    We present a study of charge transfer (CT) excited states for a recently synthesized group of water-soluble sulfonated zinc-phthalocyanine (ZnPcS) donor molecules coupled to C60. The ZnPcS donors (ZnPcS2, ZnPcS3, and ZnPcS4) are promising materials for achieving solar cell device production with the photoactive area prepared from aqueous solution. Experimentally, decreasing the number of sulfonate substituent groups for ZnPc increased the photocurrent and lowered the open circuit voltage VOC. Measurements show that the VOC is largest for ZnPc-S4/C60 and lowest for ZnPc-S3/C60. The degree of sulfonation and the measured device VOC does not result in the expected pattern of values based on donor-acceptor HOMO/LUMO energy differences. Variations in film morphology may account for the unexpected pattern of VOC values. Our charge transfer excited state calculations show that the lowest CT excitation energy among the group of ZnPcS/C60 donor-acceptor pairs corresponds to the disulfonated ZnPc/C60 system. The largest CT excited state energies belong to the tetrasulfonated ZnPc/C60 complex. We also examine the effect of geometrical orientation on the CT energies for the ZnPcS donor-acceptor pairs.

  14. Molecule-Like {CdSe} Nanoclusters Passivated with Strongly Interacting Ligands: Energy Level Alignment and Photoinduced Ultrafast Charge Transfer Processes

    NASA Astrophysics Data System (ADS)

    Xie, Yizhou; Teunis, Meghan B.; Pandit, Bill; Sardar, Rajesh; Liu, Jinjun

    2015-06-01

    Semiconductor nanoclusters (SCNCs) are promising electronic materials for use in solid-state device fabrication, where device efficiency is strongly controlled by charge generation and transfer from SCNCs to their surroundings. In this paper we report the excited-state dynamics of molecule-like 1.6 nm diameter CdSe SCNCs, which are passivated with the highly conjugated ligand phenyldithiocarbamate (PDTC) or para-substituted PDTCs. Femtosecond transient absorption studies reveal sub-picosecond hole transfer (? ? 0.9 ps) from a SCNC to its ligand shell based on strong electronic interaction and hole delocalization, and hot electron transfer (? ? 0.2 ps) to interfacial states created by charge separation. A series of control experiments were performed by varying SCNC size (1.6 nm v.s. 2.9 nm) and photon energy of the pump laser (388 nm v.s. 490 nm), as well as addition of electron quencher (benzoquinone) and hole quencher (pyridine), which rules out alternative mechanisms and confirms the critical role of energy level alignment between the SCNC and its passivating ligands.

  15. Impact of Multiple Negative Charges on Blood Clearance and Biodistribution Characteristics of 99mTc-Labeled Dimeric Cyclic RGD Peptides

    PubMed Central

    2015-01-01

    This study sought to evaluate the impact of multiple negative charges on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu in the presence of diisopropylethylamine. Their IC50 values were determined to be 31 ± 5 and 41 ± 6 nM, respectively, against 125I-echistatin bound to U87MG glioma cells in a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2) and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)] (99mTc-P6D-RGD2) were prepared in high radiochemical purity (RCP > 95%) and specific activity (37–110 GBq/?mol). They were evaluated in athymic nude mice bearing U87MG glioma xenografts for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ?5× higher than that of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2 h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin ?v?3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference in their blood activity and tumor uptake is most likely related to the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the tumor uptake of 99mTc-P6D-RGD2 was integrin ?v?3-specific. SPECT/CT studies were performed using 99mTc-P6G-RGD2 in athymic nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts. The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on the integrin ?v?3 expression levels on tumor cells and neovasculature. It was concluded that the multiple negative charges have a significant impact on the blood clearance kinetics and tumor uptake of 99mTc-labeled dimeric cyclic RGD peptides. PMID:25144854

  16. A Fixed-Charge Model for Alcohol Polarization in the Condensed Phase, and Its Role in Small Molecule Hydration

    PubMed Central

    2015-01-01

    We present a simple optimization strategy for incorporating experimental dielectric response information on neat liquids in classical molecular models of alcohol. Using this strategy, we determine simple and transferable hydroxyl modulation rules that, when applied to an existing molecular parameter set, result in a newly dielectric corrected (DC) parameter set. We applied these rules to the general Amber force field (GAFF) to form an initial set of GAFF-DC parameters, and we found this to lead to significant improvement in the calculated dielectric constant and hydration free energy values for a wide variety of small molecule alcohol models. Tests of the GAFF-DC parameters in the SAMPL4 blind prediction event for hydration show these changes improve agreement with experiment. Surprisingly, these simple modifications also outperform detailed quantum mechanical electric field calculations using a self-consistent reaction field environment coupling term. This work provides a potential benchmark for future developments in methods for representing condensed-phase environments in electronic structure calculations. PMID:24702668

  17. Phase-transfer energetics of small-molecule alcohols across the water-hexane interface: molecular dynamics simulations using charge equilibration models.

    PubMed

    Bauer, Brad A; Zhong, Yang; Meninger, David J; Davis, Joseph E; Patel, Sandeep

    2011-04-01

    We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 and 0.6378±0.0001 g/cm(3), demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (?(||)) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ?(||) for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13 and 198.7±0.01 mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than for fixed-charge force fields. The implications of such behavior pertain to the modeling of polar and charged solutes in lipidic environments. PMID:21414823

  18. Phase-Transfer Energetics of Small-Molecule Alcohols Across the Water-Hexane Interface: Molecular Dynamics Simulation Using Charge Equilibration Models

    PubMed Central

    Bauer, Brad A.; Zhong, Yang; Meninger, David J.; Davis, Joseph E.; Patel, Sandeep

    2010-01-01

    We study the water-hexane interface using molecular dynamics (MD) and polarizable charge equilibration (CHEQ) force fields. Bulk densities for TIP4P-FQ water and hexane, 1.0086±0.0002 g/cm3 and 0.6378±0.0001 g/cm3, demonstrate excellent agreement with experiment. Interfacial width and interfacial tension are consistent with previously reported values. The in-plane component of the dielectric permittivity (??) for water is shown to decrease from 81.7±0.04 to unity, transitioning longitudinally from bulk water to bulk hexane. ?? for hexane reaches a maximum in the interface, but this term represents only a small contribution to the total dielectric constant (as expected for a non-polar species). Structurally, net orientations of the molecules arise in the interfacial region such that hexane lies slightly parallel to the interface and water reorients to maximize hydrogen bonding. Interfacial potentials due to contributions of the water and hexane are calculated to be -567.9±0.13mV and 198.7±0.01mV, respectively, giving rise to a total potential in agreement with the range of values reported from previous simulations of similar systems. Potentials of mean force (PMF) calculated for methanol, ethanol, and 1-propanol for the transfer from water to hexane indicate an interfacial free energy minimum, corresponding to the amphiphilic nature of the molecules. The magnitudes of transfer free energies were further characterized from the solvation free energies of alcohols in water and hexane using thermodynamic integration. This analysis shows that solvation free energies for alcohols in hexane are 0.2-0.3 kcal/mol too unfavorable, whereas solvation of alcohols in water is approximately 1 kcal/mol too favorable. For the pure hexane-water interfacial simulations, we observe a monotonic decrease of the water dipole moment to near-vacuum values. This suggests that the electrostatic component of the desolvation free energy is not as severe for polarizable models than for fixed-charge force fields. The implications of such behavior pertain to the modeling of polar and charged solutes in lipidic environments. PMID:21414823

  19. Predicting the stability of atom-like and molecule-like unit-charge Coulomb three-particle systems

    SciTech Connect

    King, Andrew W.; Herlihy, Patrick E.; Cox, Hazel

    2014-07-28

    Non-relativistic quantum chemical calculations of the particle mass, m{sub 2}{sup ±}, corresponding to the dissociation threshold in a range of Coulomb three-particle systems of the form (m{sub 1}{sup ±}m{sub 2}{sup ±}m{sub 3}{sup ?}), are performed variationally using a series solution method with a Laguerre-based wavefunction. These masses are used to calculate an accurate stability boundary, i.e., the line that separates the stability domain from the instability domains, in a reciprocal mass fraction ternary diagram. This result is compared to a lower bound to the stability domain derived from symmetric systems and reveals the importance of the asymmetric (mass-symmetry breaking) terms in the Hamiltonian at dissociation. A functional fit to the stability boundary data provides a simple analytical expression for calculating the minimum mass of a third particle required for stable binding to a two-particle system, i.e., for predicting the bound state stability of any unit-charge three-particle system.

  20. Measurement of negatively charged pion spectra in inelastic p+p interactions at 20, 31, 40, 80 and 158 GeV/c

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Luise, S. Di; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Ga?dzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovi?, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kie?czewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kovesarki, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; László, A.; Lyubushkin, V. V.; Ma?kowiak-Paw?owska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Mani?, D.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Mrówczy?ski, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Pistillo, C.; Peryt, W.; Petukhov, O.; P?aneta, R.; Pluta, J.; Popov, B. A.; Posiada?a, M.; Pu?awski, S.; Puzovi?, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczy?ski, M.; Sadovsky, A.; Sakashita, K.; Savi?, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; S?odkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberi?, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; W?odarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszy?ski, O.; Zambelli, L.; Zipper, W.

    2014-03-01

    We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/ c ( 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions.

  1. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Bian, Wei; Cai, Zongwei

    2015-08-01

    CuFe2O4 magnetic nanocrystal clusters (CuFe2O4 MNCs) were proposed as a new matrix for small molecule analysis by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the first time. We demonstrated its advantages over conventional organic matrices in the detection of small molecules such as amino acids, peptides, nucleobases, fatty acids, and steroid hormones. A systematic comparison of CuFe2O4 MNCs with different ionization modes revealed that MS spectra obtained for the CuFe2O4 MNC matrix in the negative ion mode was only featured by deprotonated ion peaks with a free matrix background, which was different from the complicated alkali metal adducts produced in the positive ion mode. The developed method was found relatively tolerant to salt contamination and exhibited good reproducibility. A detection limit down to the subpicomolar level was achieved when testosterone was analyzed. In addition, by comparison of the MS spectra obtained from bare Fe3O4 and MFe2O4 MNC (M = Co, Ni, Cu, Zn) matrices, two main factors of MFe2O4 MNC matrices were revealed to play a vital role in assisting the negative ion desorption/ionization (D/I) process: doping transition metals into ferrite nanocrystals favoring laser absorption and energy transfer and a good match between the UV absorption of MFe2O4 MNCs and the excitation of nitrogen laser source facilitating LDI efficiency. This work creates a new branch of application for MFe2O4 MNCs and provides an alternative solution for small molecule analysis. PMID:26086699

  2. Charge Transfer Reactions Induce Born-Oppenheimer Breakdown in Surface Chemistry: Applications of Double Resonance Spectroscopy in Molecule-Surface Scattering

    NASA Astrophysics Data System (ADS)

    Wodtke, Alec M.

    2013-06-01

    Atomic and molecular interactions constitute a many-body quantum problem governed fundamentally only by the Coulomb forces between many electrons and nuclei. While simple to state, computers are simply not fast enough to solve this problem by brute force, except for the simplest examples. Combining the Born-Oppenheimer Approximation (BOA) with Density Functional Theory (DFT), however, allows theoretical simulations of extraordinarily complex chemical systems including molecular interactions at solid metal surfaces, the physical basis of surface chemistry. This lecture describes experiments demonstrating the limits of the BOA/DFT approximation as it relates to molecules interacting with solid metal surfaces. One of the most powerful experimental tools at our disposal is a form of double resonance spectroscopy, which allows us to define the quantum state of the molecule both before and after the collision with the surface, providing a complete picture of the resulting energy conversion processes. With such data, we are able to emphasize quantitative measurements that can be directly compared to first principles theories that go beyond the Born-Oppenheimer approximation. One important outcome of this work is the realization that Born-Oppenheimer breakdown can be induced by simple charge transfer reactions that are common in surface chemistry. J. D. White, J. Chen, D. Matsiev, D. J. Auerbach and A. M. Wodtke Nature {433}(7025), 503-505 (2005) Y. H. Huang, C. T. Rettner, D. J. Auerbach and A. M. Wodtke Science {290}(5489), 111-114 (2000) R. Cooper, I. Rahinov, Z. S. Li, D. Matsiev, D. J. Auerbach and A. M. Wodtke Chemical Science {1}(1), 55-61 (2010) J. Larue, T. Schäfer, D. Matsiev, L. Velarde, N. H. Nahler, D. J. Auerbach and A. M. Wodtke PCCP {13}(1), 97-99 (2011).

  3. ATP molecule ATP molecule

    E-print Network

    ATP molecule 9 ATP molecule 8 Autumn 2003 · Vol. 1 No. 2 · inSiDE inSiDE · Vol. 1 No. 2 · Autumn with adenosine 5`-triphosphate (ATP). ATP is the most important energy carrier in cellular metabolism, and each human being produces its own weight in ATP every day. The ATP molecule is shown in Figure 1, where

  4. Ion-Molecule Interactions and Reactions in the Gas Phase Summary for INSTRUCTORS

    E-print Network

    Dibble, Theodore

    to the chlorine atom [one extra electron above the number possessed by neutral chlorine]? Follow-up questions the electron clouds of the Cl anion and the partial negative charge on the Br; but even two neutral atoms repel strong; much stronger than the interaction of two dipolar (neutral) molecules, or an ion with a non

  5. Analytical modeling and simulation of electrochemical charge/discharge behavior of Si thin film negative electrodes in Li-ion cells

    NASA Astrophysics Data System (ADS)

    Jagannathan, M.; Chandran, K. S. Ravi

    2014-02-01

    Physically-based analytical models that provide insights into the diffusion and/or interface charge transfer effects in bulk (lithiating/delithiating) electrodes are needed to truly assess the performance/limitations of electrode materials for Li-ion batteries. In this context, an analytical modeling framework is constructed here to predict the electrochemical charge-discharge characteristics during lithiation and delithiation of solid amorphous Si (a-Si) thin film electrodes. The framework includes analytical expressions that satisfy Fick's second law for Li transport and the requisite flux boundary conditions of lithiation and delithiation steps. The expressions are derived here by the method of separation of variables. They enable the determination of transient Li concentration profiles in the thin film electrode as a function of state of charge/discharge. The time-dependent electrode surface concentrations (at the electrode-electrolyte interface) obtained from these profiles were used to determine the activation overpotentials and thus, the non-equilibrium cell potentials, as a function of state of charge/discharge using Butler-Volmer kinetics. The simulated charge/discharge characteristics agreed well with the experimental data of a-Si thin film electrodes obtained at different C-rates. The model offers insights into how the charge-discharge behavior is controlled by diffusion limitation within electrode and/or the activation overpotentials at the interface. The analytical framework is also shown to predict successfully the hysteretic behavior of lithiation/delithiation voltage curves.

  6. Models for Cometary Comae Containing Negative Ions

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.

  7. Visualizing the Positive-Negative Interface of Molecular Electrostatic Potentials as an Educational Tool for Assigning Chemical Polarity

    ERIC Educational Resources Information Center

    Schonborn, Konrad; Host, Gunnar; Palmerius, Karljohan

    2010-01-01

    To help in interpreting the polarity of a molecule, charge separation can be visualized by mapping the electrostatic potential at the van der Waals surface using a color gradient or by indicating positive and negative regions of the electrostatic potential using different colored isosurfaces. Although these visualizations capture the molecular…

  8. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    SciTech Connect

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-21

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F{sup -} and a Na{sup +} ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na{sup +} and F{sup -} ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity {Delta}C{sub p} stays positive and even increases slightly upon charging the Na{sup +} ion, it decreases upon charging the F{sup -} ion and becomes negative beyond an ion charge of q=-0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  9. Measurement of the Charge Number Per Adsorbed Molecule and Packing Densities of Self-Assembled Long-Chain Monolayers of Thiols

    E-print Network

    Dutcher, John

    the Faraday Law: where F is Faraday's constant. It is widely believed that the value of charge, Q, measured determination of the composition, quality, and coverage of self-assembled monolayers (SAMs) is tremendously

  10. Negative mass

    NASA Astrophysics Data System (ADS)

    Hammond, Richard T.

    2015-03-01

    Some physical aspects of negative mass are examined. Several unusual properties, such as the ability of negative mass to penetrate any armor, are analysed. Other surprising effects include the bizarre system of negative mass chasing positive mass, naked singularities and the violation of cosmic censorship, wormholes, and quantum mechanical results as well. In addition, a brief look into the implications for strings is given.

  11. Negative ions at Titan and Enceladus: recent results.

    PubMed

    Coates, Andrew J; Wellbrock, Anne; Lewis, Gethyn R; Jones, Geraint H; Young, David T; Crary, Frank J; Waite, J Hunter; Johnson, Robert E; Hille, Thomas W; Sittler, Edward C

    2010-01-01

    The detection of heavy negative ions (up to 13 800 amu) in Titan's ionosphere is one of the tantalizing new results from the Cassini mission. These heavy ions indicate for the first time the existence of heavy hydrocarbon and nitrile molecules in this primitive Earth-like atmosphere. These ions were suggested to be precursors of aerosols in Titan's atmosphere and may precipitate to the surface as tholins. We present the evidence for and the analysis of these heavy negative ions at Titan. In addition we examine the variation of the maximum mass of the Titan negative ions with altitude and latitude for the relevant encounters so far, and we discuss the implications for the negative ion formation process. We present data from a recent set of encounters where the latitude was varied between encounters, with other parameters fixed. Models are beginning to explain the low mass negative ions, but the formation process for the higher mass ions is still not understood. It is possible that the structures may be chains, rings or even fullerenes. Negative ions, mainly water clusters in this case, were seen during Cassini's recent close flybys of Enceladus. We present mass spectra from the Enceladus plume, showing water clusters and additional species. As at Titan, the negative ions indicate chemical complexities which were unknown before the Cassini encounters, and are indicative of a complex balance between neutrals and positively and negatively charged ions. PMID:21302552

  12. Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2-T1R3 sweet receptors.

    PubMed

    Ohta, Keisuke; Masuda, Tetsuya; Tani, Fumito; Kitabatake, Naofumi

    2011-09-16

    Thaumatin, an intensely sweet-tasting protein, elicits a sweet-taste sensation at a level as low as 50 nM. Although previous sensory analyses have suggested that Lys67 and Arg82 are important to the sweetness of thaumatin, the exact effects of each residue on sweet receptors are still unknown. In the present study, various mutants of thaumatin altered at Arg82 as well as Lys67 were prepared and their sweetness levels were quantitatively evaluated by cell-based assays using HEK293 cells expressing human sweet receptors. Mutations at Arg82 had a more deteriorative effect on sweetness than mutations at Lys67. Particularly, a charge inversion at Arg82 (R82E) resulted in an abolishment of the response to sweet receptors even at a concentration as high as 1mM. These results indicate that Arg82 plays a central role in determining the sweetness of thaumatin. A strict spatial charge location at residue 82 appears to be required for interaction with sweet receptors. PMID:21867681

  13. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations.

    PubMed

    Han, Gyeo-Re; Jang, Chang-Hyun

    2014-10-01

    Herein, we demonstrated a simple, sensitive, and rapid label-free detection method for heavy-metal (HM) ions using liquid crystal (LC) droplet patterns on a solid surface. Stearic-acid-doped LC droplet patterns were spontaneously generated on an n-octyltrichlorosilane (OTS)-treated glass substrate by evaporating a solution of the nematic LC, 4-cyano-4'-pentylbiphenyl (5CB), dissolved in heptane. The optical appearance of the droplet patterns was a dark crossed texture when in contact with air, which represents the homeotropic orientation of the LC. This was caused by the steric interaction between the LC molecules and the alkyl chains of the OTS-treated surface. The dark crossed appearance of the acid-doped LC patterns was maintained after the addition of phosphate buffered saline (PBS) solution (pH 8.1 at 25°C). The deprotonated stearic-acid molecules self-assembled through the LC/aqueous interface, thereby supporting the homeotropic anchoring of 5CB. However, the optical image of the acid-doped LC droplet patterns incubated with PBS containing HM ions appeared bright, indicating a planar orientation of 5CB at the aqueous/LC droplet interface. This dark to bright transition of the LC patterns was caused by HM ions attached to the deprotonated carboxylate moiety, followed by the sequential interruption of the self-assembly of the stearic acid at the LC/aqueous interface. The results showed that the acid-doped LC pattern system not only enabled the highly sensitive detection of HM ions at a sub-nanomolar concentration but it also facilitated rapid detection (<10 min) with simple procedures. PMID:25059128

  14. The empirical dependence of radiation-induced charge neutralization on negative bias in dosimeters based on the metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Benson, Chris; Albadri, Abdulrahman; Joyce, Malcolm J.; Price, Robert A.

    2006-08-15

    The dependence of radiation-induced charge neutralization (RICN) has been studied in metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. These devices were first exposed to x rays under positive bias and then to further dose increments at a selection of reverse bias levels. A nonlinear empirical trend has been established that is consistent with that identified in the data obtained in this work. Estimates for the reverse bias level corresponding to the maximum rate of RICN have been extracted from the data. These optimum bias levels appear to be independent of the level of initial absorbed dose under positive bias. The established models for threshold voltage change have been considered and indicate a related nonlinear trend for neutralization cross section {sigma}{sub N} as a function of oxide field. These data are discussed in the context of dose measurement with MOSFETs and within the framework of statistical mechanics associated with neutral traps and their field dependence.

  15. Negative-ion source applications.

    PubMed

    Ishikawa, J

    2008-02-01

    In this paper heavy negative-ion sources which we developed and their applications for materials science are reviewed. Heavy negative ions can be effectively produced by the ejection of a sputtered atom through the optimally cesiated surface of target with a low work function. Then, enough continuous negative-ion currents for materials-science applications can be obtained. We developed several kinds of sputter-type heavy negative-ion sources such as neutral- and ionized-alkaline metal bombardment-type heavy negative-ion source and rf-plasma sputter type. In the case where a negative ion is irradiated on a material surface, surface charging seldom takes place because incoming negative charge of the negative ion is well balanced with outgoing negative charge of the released secondary electron. In the negative-ion implantation into an insulator or insulated conductive material, high precision implantation processing with charge-up free properties can be achieved. Negative-ion implantation technique, therefore, can be applied to the following novel material processing systems: the surface modification of micrometer-sized powders, the nanoparticle formation in an insulator for the quantum devices, and the nerve cell growth manipulation by precise control of the biocompatibility of polymer surface. When a negative ion with low kinetic energy approaches the solid surface, the kinetic energy causes the interatomic bonding (kinetic bonding), and formation of a metastable material is promoted. Carbon films with high constituent of sp(3) bonding, therefore, can be formed by carbon negative-ion beam deposition. PMID:18315249

  16. Contributions from dipolar electronically excited molecules and mobile charge carriers to photoinduced transient dielectric loss of solutions of some aniline derivatives

    NASA Astrophysics Data System (ADS)

    Weisenborn, P. C. M.; Varma, C. A. G. O.; De Haas, M. P.; Warman, J. M.

    1988-05-01

    UV laser excitation of a solution of N,N-dimethylaniline (DMA) in cyclohexane may cause a transient dielectric loss due to the dipoles of the lowest excited singlet (S 1) and triplet (T 0) state molecules and due to free electrons produced via two-photon absorption. In the case of N,N,N',N' -tetramethyl-para-phenylenediamine (TMPD) the yield of free electrons is four times larger, under the same conditions, than in the case of DMA. The consequences of photoionization for the evaluation of dipole moments of excited solutes is discussed. The contribution of free electrons to the transient dielectric loss can be eliminated efficiently by scavenging the electrons with CO 2. From the remaining contribution the dipole moments of the molecules in S 1 and T 0 are determined. In the case of DMA the values 5.0 D for S 1 and 3.2 D for T 0 are obtained.

  17. Positivity, negativity, and entanglement

    E-print Network

    Perlmutter, Eric; Rota, Massimiliano

    2015-01-01

    We explore properties of the universal terms in the entanglement entropy and logarithmic negativity in 4d CFTs, aiming to clarify the ways in which they behave like the analogous entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular, if and only if the central charges obey $a>c$, the entanglement across certain classes of entangling surfaces can become arbitrarily negative, depending on the geometry and topology of the surface. The negative contribution is proportional to the product of $a-c$ and the genus of the surface. Similarly, we show that in $a>c$ theories, the logarithmic negativity does not always exceed the entanglement entropy.

  18. Positivity, negativity, and entanglement

    E-print Network

    Eric Perlmutter; Mukund Rangamani; Massimiliano Rota

    2015-09-22

    We explore properties of the universal terms in the entanglement entropy and logarithmic negativity in 4d CFTs, aiming to clarify the ways in which they behave like the analogous entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular, if and only if the central charges obey $a>c$, the entanglement across certain classes of entangling surfaces can become arbitrarily negative, depending on the geometry and topology of the surface. The negative contribution is proportional to the product of $a-c$ and the genus of the surface. Similarly, we show that in $a>c$ theories, the logarithmic negativity does not always exceed the entanglement entropy.

  19. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction.

    PubMed

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J; Hirjibehedin, Cyrus F

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications. PMID:25622229

  20. Single-molecule DNA detection with an engineered MspA protein nanopore

    PubMed Central

    Butler, Tom Z.; Pavlenok, Mikhail; Derrington, Ian M.; Niederweis, Michael; Gundlach, Jens H.

    2008-01-01

    Nanopores hold great promise as single-molecule analytical devices and biophysical model systems because the ionic current blockades they produce contain information about the identity, concentration, structure, and dynamics of target molecules. The porin MspA of Mycobacterium smegmatis has remarkable stability against environmental stresses and can be rationally modified based on its crystal structure. Further, MspA has a short and narrow channel constriction that is promising for DNA sequencing because it may enable improved characterization of short segments of a ssDNA molecule that is threaded through the pore. By eliminating the negative charge in the channel constriction, we designed and constructed an MspA mutant capable of electronically detecting and characterizing single molecules of ssDNA as they are electrophoretically driven through the pore. A second mutant with additional exchanges of negatively-charged residues for positively-charged residues in the vestibule region exhibited a factor of ?20 higher interaction rates, required only half as much voltage to observe interaction, and allowed ssDNA to reside in the vestibule ?100 times longer than the first mutant. Our results introduce MspA as a nanopore for nucleic acid analysis and highlight its potential as an engineerable platform for single-molecule detection and characterization applications. PMID:19098105

  1. Metallic behavior and negative differential resistance properties of (InAs){sub n} (n?=?2???4) molecule cluster junctions via a combined non–equilibrium Green's function and density functional theory study

    SciTech Connect

    Wang, Qi; Li, Rong; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui; Zhang, Daoli

    2014-06-21

    In this present work, the geometric structures and electronic transport properties of (InAs){sub n} (n?=?2, 3, 4) molecule cluster junctions are comparatively investigated using NEGF combined with DFT. Results indicate that all (InAs){sub n} molecule cluster junctions present metallic behavior at the low applied biases ([?2V, 2V]), while NDR appears at a certain high bias range. Our calculation shows that the current of (InAs){sub 4} molecule cluster–based junction is almost the largest at any bias. The mechanisms of the current–voltage characteristics of all the three molecule cluster junctions are proposed.

  2. Organization and intramolecular charge-transfer enhancement in tripodal tris[(pyridine-4-yl)phenyl]amine push-pull molecules by intercalation into layered materials bearing acidic functionalities.

    PubMed

    Melánová, Klára; Cvejn, Daniel; Bureš, Filip; Zima, Vít?zslav; Svoboda, Jan; Beneš, Ludvík; Mikysek, Tomáš; Pytela, Old?ich; Knotek, Petr

    2014-07-21

    Two new intercalates of tris[4-(pyridin-4-yl)phenyl]amine (TPPA) with zirconium hydrogen phosphate and zirconium 4-sulfophenylphosphonate having formulae Zr(HPO4)2·0.21(C33H24N4)·2.5H2O and Zr(HO3SC6H4PO3)(1.3)(C6H5PO3)(0.7)·0.35(C33H24N4)·2.5H2O were prepared and characterized by thermogravimetry, IR spectroscopy, and powder X-ray diffraction. The TPPA molecule has been selected as a model tripodal push-pull system with three peripheral basic centers that may undergo protonation. Their protonation/quaternization afforded HTPPA/MeTPPA molecules with enhanced intramolecular charge-transfer (ICT), which has been documented by electrochemical measurements, UV-Vis spectra and calculated properties such as the HOMO/LUMO levels and the first and second hyperpolarizabilities. Intercalation of TPPA into layered zirconium hydrogen phosphate and zirconium 4-sulfophenylphosphonate led to its significant organization and protonation as shown by the IR spectra. From the powder X-ray data we can deduce that the TPPA molecules are placed in the interlayer space of both hosts by anchoring two peripheral nitrogen atoms to one host layer and the opposite pyridine-4-yl terminus to the other neighboring host layer. In zirconium 4-sulfophenylphosphonate, the TPPA molecules are oriented perpendicularly, while in zirconium phosphate these molecules are slanted with respect to the layers of the host. On dehydration by heating, the interlayer distance of the intercalate decreases, which indicates a further slanting of the TPPA molecules. It follows from the UV-Vis spectra that TPPA is present in both intercalates in an equilibrium of protonated and non-protonated forms. The described materials represent the first case when a tripodal push-pull system was incorporated into a system with restricted geometry with the aim to influence its optical properties. PMID:24626407

  3. Influence of membrane components on the stability and drug release properties of reverse phase evaporation vesicles (REVs): light sensitive all-trans retinal, negatively charged phospholipid dicetylphosphate and cholesterol.

    PubMed

    Gürsel, M; Hasirci, V

    1995-01-01

    Incorporation of a negatively charged phospholipid, dicetylphosphate, initially increased encapsulation efficiency (from 12 to 24%) but beyond 5% (molar) a detrimental effect was observed. Rate of drug release from REVs was, for most cases, found to be bi-phasic implying partitioning between the lipid bilayer and the aqueous compartment. It was not possible to prepare liposomes with more than 1% (molar) all-trans retinal (ATR) as a membrane component. When ATR was reduced to 0.5% (molar), encapsulation efficiency increased to 7.76%. Upon exposure to long wave UV (365 nm), release from ATR containing REVs was increased and this was attributed to the formation of 13-cis isomer as indicated by HPLC and UV spectroscopy data. PMID:8558388

  4. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  5. Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation†

    PubMed Central

    Lassalle-Kaiser, Benedikt; Hureau, Christelle; Pantazis, Dimitrios A.; Pushkar, Yulia; Guillot, Régis; Yachandra, Vittal K.; Yano, Junko; Neese, Frank; Anxolabéhère-Mallart, Elodie

    2014-01-01

    Activation of a water molecule by the electrochemical oxidation of a Mn-aquo complex accompanied by the loss of protons is reported. The sequential (2 × 1 electron/1 proton) and direct (2 electron/2 proton) proton-coupled electrochemical oxidation of a non-porphyrinic six-coordinated Mn(II)OH2 complex into a mononuclear Mn(O) complex is described. The intermediate Mn(III)OH2 and Mn(III)OH complexes are electrochemically prepared and analysed. Complete deprotonation of the coordinated water molecule in the Mn(O) complex is confirmed by electrochemical data while the analysis of EXAFS data reveals a gradual shortening of an Mn–O bond upon oxidation from Mn(II)OH2 to Mn(III)OH and Mn(O). Reactivity experiments, DFT calculations and XANES pre-edge features provide strong evidence that the bonding in Mn(O) is best characterized by a Mn(III)-oxyl description. Such oxyl species could play a crucial role in natural and artificial water splitting reactions. We provide here a synthetic example for such species, obtained by electrochemical activation of a water ligand. PMID:24772190

  6. Aromatic molecules in anion recognition: electrostatics versus H-bonding.

    PubMed

    Schneider, Holger; Vogelhuber, Kristen M; Schinle, Florian; Weber, J Mathias

    2007-10-31

    Mass-selected complexes A-.C6FnH(6-n) (A = Cl, I, SF6; n = 0-5) were studied by infrared photodissociation spectroscopy and computational chemistry methods to investigate the interaction of negative ions and aromatic molecules, in which the charge distribution can be tuned by fluorination. Surprisingly, we find that, despite positive partial charges on the carbon atoms at high levels of fluorination, all anions under study prefer hydrogen bonding to the remaining H atoms in the ligand rather than binding to the positively charged ring. Moreover, bifurcated hydrogen bonds to two neighboring CH groups are energetically favored over linear hydrogen bonds to a single CH group. PMID:17918835

  7. Permeability of cartilage to neutral and charged polysaccharides

    SciTech Connect

    Haselton, F.R.; Fishman, A.P.; Sampson, P.M.

    1986-05-01

    The authors investigated macromolecular transport through a negatively charged membrane made from articular cartilage. Sections (150-1000 ..mu..) of cartilage obtained at autopsy from a horse fetlock were clamped between two 15 ml chambers containing .15 M sodium chloride in pH 7.4, .004 M phosphate. Tracers were introduced into chamber A and transport was determined by radiolabel transferred to chamber B over time. Structural integrity was preserved as shown by histological staining. In three experiments, size selectivity was measured using polydisperse uncharged /sup 3/H-dextran. The authors determined the elution patterns from a calibrated Sephadex S300 column of samples from each chamber. The relative transport of molecules over the size range of 1.0 to 10.0 nm was determined by comparing the two elution patterns. They found a sharp cutoff at an effective molecular radius of 2.5 nm. In an additional three experiments, charge selectivity was investigated by comparing the simultaneous transport of /sup 3/H-inulin and /sup 14/C-carboxy inulin. Both tracers have an effective molecular radius of 1.1 nm. The negatively charged carboxy inulin was transferred 15% faster than the uncharged inulin. They conclude: a) there is a maximum effective radius for uncharged dextrans that can be transferred across this membrane which is smaller than that reported for proteins and b) negatively charged cartilagenous membranes do not retard the transport of negatively charged inulin.

  8. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA); Hiskes, John R. (Livermore, CA)

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  9. Fragmentation of doubly charged HDO, H2O, and D2O molecules induced by proton and monocharged fluorine beam impact at 3 keV.

    PubMed

    Martin, S; Chen, L; Brédy, R; Bernard, J; Cassimi, A

    2015-03-01

    Doubly charged ions HDO(2+), H2O(2+), and D2O(2+) were prepared selectively to triplet or singlet excited states in collisions with F(+) or H(+) projectiles at 3 keV. Excitation energies of dications following two-body or three-body dissociation channels were measured and compared with recent calculations using ab initio multi-reference configuration interaction method [Gervais et al., J. Chem. Phys. 131, 024302 (2009)]. For HDO(2+), preferential cleavage of O-H rather than O-D bond has been observed and the ratio between the populations of the fragmentation channels OD(+)_H(+) and OH(+)_D(+) were measured. The kinetic energy release has been measured and compared with previous experiments. PMID:25747080

  10. Negative hydrogen ion production mechanisms

    SciTech Connect

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  11. Negative hydrogen ion production mechanisms

    NASA Astrophysics Data System (ADS)

    Bacal, M.; Wada, M.

    2015-06-01

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  12. Charged particles in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Tripathi, Sachchida

    2010-05-01

    Charged particles in Titan's ionosphere Marykutty Michael1, Sachchida Nand Tripathi1,2,3, Pratima Arya1 1Indian Institute of Technology Kanpur 2Oak Ridge Associated Universities 3NASA Goddard Space Flight Center Observations by two instruments onboard the Cassini spacecraft, Ion Neutral Mass Spectrometer (INMS) and CAssini Plasma Spectrometer (CAPS), revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units at altitudes of 950 - 1400 km in the atmosphere of Titan (Waite et al., 2007; Crary et al., 2009). Though these particles were believed to be molecules, they are most likely aerosols formed by the clumping of smaller molecules (Waite et al., 2009). These particles were estimated to have a density of 10-3 kg m-3 and a size of up to 256 nm. The existence of very heavy ions has also been observed by the CAPS components with a mass by charge ratio of up to 10000 (Coates et al., 2007, 2009; Sittler et al., 2009). The goal of this paper is to find out whether the so called heavy ions (or charged particles) are generated by the charge transfer of ions and electrons to the particles. The charging of these particles has been studied by using the charge balance equations that include positive ions, negative ions, electrons, neutral and charged particles. Information on the most abundant ion clusters are obtained from Vuitton et al., (2009) and Wilson and Atreya, (2004). Mass by charge ratio thus calculated will be compared with those observed by Coates et al. (2007). References: Coates AJ, et al., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34:L22103, 2007. Coates AJ, et al., Heavy negative ions in titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., doi:10.1016/j.pss.2009.05.009, 2009. Crary F.J., et al., Heavy ions, temperatures and winds in titan's ionosphere: Combined cassini caps and inms observations. Planet. Space Sci., doi:10.1016/j.pss.2009.09.006, 2009. Sittler,E.C. et al., Heavy ion formation in Titan's ionosphere: Magnetospheric introduction of free oxygen and a source of Titan's aerosols? Planet. Space Sci., doi:10.1016/j.pss.2009.07.017, 2009. Vuitton, V., Negative ion chemistry in Titan's upper atmosphere, Planet. Space Sci., doi:10.1016/j.pss.2009.04.004, 2009. Waite J.H, et al., The process of tholin formation in Titan's upper atmosphere. Science, doi: 10.1126/science.1139727, 316, 870, 2007. Waite JH, et al., High altitude production of Titan's aerosols, In Titan from Cassini-Huygens, edited by RH. Brown, J.P Lebreton, JH Waite, Springer, 2009. Wilson, E.H. and S. Atreya, Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere, J. Geophys. Res., 109, E06002, doi:10.1029/2003JE002181, 2004.

  13. Fragmentation of biomolecules using slow highly charged ions

    SciTech Connect

    Ruehlicke, C.; Schneider, D.; Balhorn, R.; DuBois, R.

    1996-11-01

    We present first results of biomolecular fragmentation studies with slow highly charged ions (HCI). A layer of the tripeptide RVA was deposited on gold targets and irradiated with slow (few 100 keV) ions, e.g. Xe{sup 50+} and Xe{sup 15+}, extracted from the LLNL EBIT (electron beam ion trap). The secondary ions released upon ion impact were mass analyzed via Time-Of-Flight Secondary-Ion-Mass-Spectrometry (TOF-SIMS). The results show a strong dependence of the positive and negative ion yields on the charge state of the incident ion. We also found that incident ions with high charge states cause the ejection of fragments with a wide mass range as well as the intact molecule (345 amu). The underlying mechanisms are not yet understood but electron depletion of the target due to the high incident charge is likely to cause a variety of fragmentation processes. 6 refs., 2 figs.

  14. Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation

    SciTech Connect

    Railsback, Justin; Singh, Abhishek; Pearce, Ryan; McKnight, Timothy E; Collazo, Ramon; Sitar, Zlatko; Yingling, Yaroslava; Melechko, Anatoli Vasilievich

    2012-01-01

    The understanding of interactions between double stranded (ds) DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery [ 1 4 ] to DNAtemplated metallization. [ 5 , 6 ] Cationic nanoparticles (NPs) can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature, DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm) [ 7 ] with an 220 positive charge, [ 8 ] creating the complex known as chromatin. Wrapping and bending of DNA has also been achieved in the laboratory through the binding of highly charged species such as molecular assemblies, [ 9 , 10 ] cationic dendrimers, [ 11 , 12 ] and nanoparticles. [ 13 15 ] The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle [ 13 ] (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. [ 9 , 10 , 15 ] Consequently, there is a transition zone from extended to compact DNA conformations which depends on the chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. [ 9 ] While the interactions between highly charged NPs and DNA have been extensively studied, the processes that occur within the transition zone are less explored.

  15. Negative probability

    E-print Network

    Andreas Blass; Yuri Gurevich

    2015-02-02

    This article was written for the Logic in Computer Science column in the February 2015 issue of the Bulletin of the European Association for Theoretical Computer Science. The intended audience is general computer science audience. The uncertainty principle asserts a limit to the precision with which position x and momentum p of a particle can be known simultaneously. You may know the probability distributions of x and p individually but the joint distribution makes no physical sense. Yet Wigner exhibited such a joint distribution f(x,p). There was, however, a little trouble with it: some of its values were negative. Nevertheless Wigner's discovery attracted attention and found applications. There are other joint distribution, all with negative values, which produce the correct marginal distributions of x and p. But only Wigner's distribution produces the correct marginal distributions for all linear combinations of position and momentum. We offer a simple proof of the uniqueness and discuss related issues.

  16. SOI nanowires as sensors for charge detection

    NASA Astrophysics Data System (ADS)

    Naumova, O. V.; Fomin, B. I.; Nasimov, D. A.; Dudchenko, N. V.; Devyatova, S. F.; Zhanaev, E. D.; Popov, V. P.; Latyshev, A. V.; Aseev, A. L.; Ivanov, Yu D.; Archakov, A. I.

    2010-05-01

    The properties of silicon-on-insulator nanowires (SOI NWs) fabricated by means of electron lithography and gas etching of SOI in XeF2 or SF6:CFCl3 have been investigated. The method used to fabricate the nanowires was found to require no additional anneal to be given to the final structure for defect removal after nanostructuring. The sensitivity of SOI NWs to negative protein BSA molecules in the pH 7.4 buffer solution was shown to be as high as 1 femtomoles. The gate characteristics of SOI NWs were used to determine the charge density of particles adsorbed on the NW surface. A charge density of 4.6 × 1011 cm-2 was estimated for a 1 femtomole protein concentration. The combined use of open-channel structures with top gates was employed for determining the charge state of structure surfaces after different chemical treatments. Chemical treatments giving rise to a density of the negative charges on the surface of NWs ranging in the interval (7-23) × 1011 cm-2 were examined. Treatments in methanol (after removal of the native oxide) were found to provide stabilization of the SOI surface over a 3-h interval after the treatments.

  17. Molecule-hugging graphene nanopores

    PubMed Central

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A.; Branton, Daniel

    2013-01-01

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule’s outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ?0.6 nm along the length of the molecule. PMID:23836648

  18. A comparative study on the effect of Curcumin and Chlorin-p6 on the diffusion of two organic cations across a negatively charged lipid bilayer probed by second harmonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Saini, R. K.; Varshney, G. K.; Dube, A.; Gupta, P. K.; Das, K.

    2014-09-01

    The influence of Curcumin and Chlorin-p6 (Cp6) on the real time diffusion kinetics of two organic cations, LDS (LDS-698) and Malachite Green (MG) across a negatively charged phospholipid bilayer is investigated by Second Harmonic (SH) spectroscopy. The diffusion time constant of LDS at neutral pH in liposomes containing either Curcumin or Cp6 is significantly reduced, the effect being more pronounced with Curcumin. At acidic pH, the quantum of reduction in the diffusion time constant of MG by both the drugs was observed to be similar. The relative changes in the average diffusion time constants of the cations with increasing drug concentration at pH 5.0 and 7.4 shows a substantial pH effect for Curcumin induced membrane permeability, while a modest pH effect was observed for Cp6 induced membrane permeability. Based on available evidence this can be attributed to the increased interaction between the drug and the polar head groups of the lipid at pH 7.4 where the drug resides closer to the lipid-water interface.

  19. Charged particles interacting with a mixed supported lipid bilayer as a biomimetic pulmonary surfactant.

    PubMed

    Munteanu, B; Harb, F; Rieu, J P; Berthier, Y; Tinland, B; Trunfio-Sfarghiu, A-M

    2014-08-01

    This study shows the interactions of charged particles with mixed supported lipid bilayers (SLB) as biomimetic pulmonary surfactants. We tested two types of charged particles: positively charged and negatively charged particles. Two parameters were measured: adsorption density of particles on the SLB and the diffusion coefficient of lipids by FRAPP techniques as a measure of interaction strength between particles and lipids. We found that positively charged particles do not adsorb on the bilayer, probably due to the electrostatic repulsion between positively charged parts of the lipid head and the positive groups on the particle surface, therefore no variation in diffusion coefficient of lipid molecules was observed. On the contrary, the negatively charged particles, driven by electrostatic interactions are adsorbed onto the supported bilayer. The adsorption of negatively charged particles increases with the zeta-potential of the particle. Consecutively, the diffusion coefficient of lipids is reduced probably due to binding onto the lipid heads which slows down their Brownian motion. The results are directly relevant for understanding the interactions of particulate matter with pulmonary structures which could lead to pulmonary surfactant inhibition or deficiency causing severe respiratory distress or pathologies. PMID:25149067

  20. Charge Density of the Neutron

    E-print Network

    Gerald A. Miller

    2007-11-19

    A model-independent analysis of the infinite-momentum-frame charge density of partons in the transverse plane is presented for the nucleon. We find that the neutron parton charge density is negative at the center, so that the square of the transverse charge radius is positive, in contrast with many expectations. Additionally, the proton's central u quark charge density is larger than that of the d quark by about 70 %. The proton (neutron) charge density has a long range positively (negatively) charged component.

  1. Walking Molecules 

    E-print Network

    Symes, Mark D

    2009-01-01

    Inspired by the motor protein kinesin, an ambitious and unprecedented mimic is proposed – a synthetic molecular motor that can walk. This thesis aims to explain the basic principles which define such walking molecules, ...

  2. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  3. Charmonium molecules?

    SciTech Connect

    Valcarce, A.; Fernandez-Carames, T.; Vijande, J.

    2010-08-05

    In this talk we present some recent studies of multiquark components in the charmonium sector. We study the possible existence of compact four quark-states and meson-meson molecules in the charmonium spectroscopy.

  4. Return flux of neutral and charged particles in geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Thomas, P. D.; Fong, Michael C.; Neier, Karen L.

    1998-10-01

    This paper describes a model for the return flux of neutral and charged particles to a satellite in geosynchronous earth orbit. For neutral particles, the main return flux mechanisms is back-scattering via self-collisions among molecules outgassed or vented from the satellite; whereas for charged particles, the main mechanism is electrostatic re-attraction of ionized outgassed or vented molecules to a negatively charged satellite. Computer codes that simulate spacecraft charging typically contain a 3D charged particle trajectory-tracking procedure that, in principle, could be used for contamination studies. In practice, however, it is difficult to obtain quantitative results on the return flux distribution by this method. This makes such a code impractical to use as an engineering tool for identifying contamination problems reliably and evaluating corrective measures through simulation. To achieve a practical engineering tool, we prose an alternative to the particle tracking technique. We treat the problem for both neutral and charged particles in a unified manner by direct numerical solution to the Boltzmann equation in the BGK approximation. The feasibility of this approach is demonstrated by favorable numerical results presented for the simplified geometry of a spherical spacecraft.

  5. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  6. Negative Refraction and Superconductivity

    E-print Network

    Antonio Amariti; Davide Forcella; Alberto Mariotti; Massimo Siani

    2011-07-06

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  7. The second exon-encoded factor XII region is involved in the interaction of factor XII with factor XI and does not contribute to the binding site for negatively charged surfaces.

    PubMed

    Citarella, F; Fedele, G; Roem, D; Fantoni, A; Hack, C E

    1998-12-01

    Contact system activation, in vitro, is triggered by activation of factor XII (FXII) on binding to an activator, such as negatively charged surfaces. A putative surface-binding site of FXII has been located within the amino acid residues 1-28 by identifying the epitope recognized by a monoclonal antibody (MoAb), B7C9, which inhibits kaolin-induced clotting activity. To further elucidate the role of the amino terminal binding site in the regulation of FXII activation, we have characterized a FXII recombinant protein (rFXII-triangle up19) deleted of the amino acid residues 3-19, which are encoded by the second exon of FXII gene. A plasmid encoding for rFXII-triangle up19 was constructed and expressed in HepG2 cells by using vaccinia virus. Purified rFXII-triangle up19 migrated as a single band of Mr 77,000 on sodium dodecyl sulfate (SDS)-polyacrylamide gel, did not bind to MoAb B7C9 immobilized on Protein A-Sepharose, thus confirming that it lacked the epitope for this MoAb, and had no amidolytic activity towards the chromogenic substrate S-2302 in the absence of activator. rFXII-triangle up19 specific clotting activity was lower (44%) than that of native FXII. The activation rate of rFXII-triangle up19 by kallikrein in the absence of dextran sulfate was about four times higher than that of full-length FXII and was increased in the presence of dextran sulfate. However, rFXII-triangle up19 underwent autoactivation in the presence of dextran sulfate. Labeled rFXII-triangle up19 bound to kaolin, which binding was equally well inhibited by either, rFXII-triangle up19 or full-length FXII (IC50 = 7.2 +/- 2.2 nmol/L for both proteins). Accordingly, a synthetic peptide corresponding to FXII amino acid residues 3-19 did not inhibit the binding of labeled full-length FXII to kaolin. rFXII-triangle up19 generated a similar amount of FXIIa- and kallikrein-C1-inhibitor complexes in FXII-deficient plasma in the presence of kaolin, as did full-length FXII; but generated less factor XIa-C1-inhibitor complexes (50%) than full-length FXII. This impaired factor XI activation by rFXII-triangle up19a was also observed in a purified system and was independent of the presence of high molecular weight kininogen. Furthermore, the synthetic peptide 3-19, preincubated with factor XI, inhibited up to 30% activation of factor XI both in the purified system as well as in plasma. These results together indicate that amino acid residues 3-19 of FXII are involved in the activation of factor XI and do not contribute to the binding of FXII to negatively charged surfaces. PMID:9834224

  8. Aligned deposition and electrical measurements on single DNA molecules

    NASA Astrophysics Data System (ADS)

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin; Gurevich, Leonid

    2015-11-01

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)–poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg2+ ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin–DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin–DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity.

  9. Aligned deposition and electrical measurements on single DNA molecules.

    PubMed

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin; Gurevich, Leonid

    2015-11-27

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)-poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg(2+) ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin-DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin-DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity. PMID:26538384

  10. Relativistic calculations of the ground state energies and the critical distances for one-electron homonuclear quasi-molecules

    NASA Astrophysics Data System (ADS)

    Mironova, D. V.; Tupitsyn, I. I.; Shabaev, V. M.; Plunien, G.

    2015-03-01

    The ground-state energies of one-electron homonuclear quasi-molecules for the nuclear charge number in the range Z = 1 - 100 at the "chemical" distances R = 2 / Z (in a.u.) are calculated. The calculations are performed for both point- and extended-charge nucleus cases using the Dirac-Fock-Sturm approach with the basis functions constructed from the one-center Dirac-Sturm orbitals. The critical distances Rcr , at which the ground-state level reaches the edge of the negative-energy Dirac continuum, are calculated for homonuclear quasi-molecules in the range: 85 ? Z ? 100 . It is found that in case of U2183+ the critical distance Rcr = 38.42 fm for the point-charge nuclei and Rcr = 34.72 fm for extended nuclei.

  11. Towards single molecule switches.

    PubMed

    Zhang, Jia Lin; Zhong, Jian Qiang; Lin, Jia Dan; Hu, Wen Ping; Wu, Kai; Xu, Guo Qin; Wee, Andrew T S; Chen, Wei

    2015-05-21

    The concept of using single molecules as key building blocks for logic gates, diodes and transistors to perform basic functions of digital electronic devices at the molecular scale has been explored over the past decades. However, in addition to mimicking the basic functions of current silicon devices, molecules often possess unique properties that have no parallel in conventional materials and promise new hybrid devices with novel functions that cannot be achieved with equivalent solid-state devices. The most appealing example is the molecular switch. Over the past decade, molecular switches on surfaces have been intensely investigated. A variety of external stimuli such as light, electric field, temperature, tunneling electrons and even chemical stimulus have been used to activate these molecular switches between bistable or even multiple states by manipulating molecular conformations, dipole orientations, spin states, charge states and even chemical bond formation. The switching event can occur either on surfaces or in break junctions. The aim of this review is to highlight recent advances in molecular switches triggered by various external stimuli, as investigated by low-temperature scanning tunneling microscopy (LT-STM) and the break junction technique. We begin by presenting the molecular switches triggered by various external stimuli that do not provide single molecule selectivity, referred to as non-selective switching. Special focus is then given to selective single molecule switching realized using the LT-STM tip on surfaces. Single molecule switches operated by different mechanisms are reviewed and discussed. Finally, molecular switches embedded in self-assembled monolayers (SAMs) and single molecule junctions are addressed. PMID:25757483

  12. Conformational Transitions and Stop-and-Go Nanopore Transport of Single Stranded DNA on Charged Graphene

    PubMed Central

    Shankla, Manish; Aksimentiev, Aleksei

    2014-01-01

    Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here, we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing. PMID:25296960

  13. Sulfide as a signaling molecule in autophagy

    PubMed Central

    Gotor, Cecilia; García, Irene; Crespo, José L.; Romero, Luis C.

    2013-01-01

    Hydrogen sulfide is already recognized as an important signaling molecule in mammalian systems, and emerging data suggest that H2S is a signaling molecule just as important as nitric oxide (NO) and H2O2 in plants. Although sulfide is generated in chloroplasts and mitochondria, it is present predominantly in the charged HS- form due to the basic pH inside both organelles, thus requiring an active transporter, which is yet to be identified, to be released. In Arabidopsis, we found that the cytosolic L-cysteine desulfhydrase DES1 is involved in the degradation of cysteine, and therefore responsible for the generation of H2S in this cellular compartment. DES1 deficiency leads to the induction of autophagy. Moreover, we have demonstrated that sulfide in particular exerts a general effect on autophagy through negative regulation, in a way unrelated to nutrient deficiency. The mechanisms of H2S action and its molecular targets are largely unknown, although in animal systems, protein S-sulfhydration has been proposed as a mechanism for sulfide-mediated signaling. PMID:23328265

  14. The experimental charge density in crystals

    NASA Astrophysics Data System (ADS)

    Yang, Huan-Wang

    1997-12-01

    The experimental charge density distribution in single crystals has been determined through the analysis of X- ray and neutron diffraction data. The crystal structure of 2-pyridone (C5H5NO) has been redetermined from high resolution X-ray data collected at 123K. The molecule is in the lactam form. Bond lengths and bond angles have been determined with e.s.d.'s of 0.001A and 0.1A. The hydrogen-bonded cyclic dimers that occur in vapor and in solution are absent in the crystal where molecules are linked by H-H ... O interaction (H ..., 2.57A) and weak C-H ... ? or van der Waals interactions occurring on both sides of the pyridone ring. The electronic charge density distribution in the crystal and its Laplacian have been calculated for atoms at rest. The total electrostatic potential has been mapped for an isolated molecule and the molecular dipole moment has been determined (8.8(19) Debyes). Critical points in the electron density have been located for the bonds within the molecule and for the molecular interactions cited above. For the C-H ... ? interactions, only the spherical components of the valence density for the pryridone ring atoms contribute effectively at the critical points. Hence these interactions may be described better as van der Waals. New X-ray diffraction data for adenosine (C10H13N5O4) have been collected at high resolution (sin/theta //lambda /le 1.38A-1) at 123K. The multipole model refinement, based on F2 and including 10,083 reflections, give R(F2) = 0.046 and Rw(F2) = 0.077 with goodness of fit gof = 1.64. The electrostatic potential, the total charge density and the Laplacian of the total charge density have been mapped for pseudoatoms at rest in crystal. The topological properties have been analyzed at the (3, - 1) bond critical points. The deformation charge density determines the trajectory of the bonding path. The charge density in the L-shell of an atom shows significant local maxima on the covalent bonding direction and non-bonding direction. At the bond critical points, ?b is consistently greater in the adenine base than in the ribose sugar. The Laplacian at all H-bond critical points is positive, indication a lack of covalent bonding. A weak H-bond C2-H2 ... O2' is observed at the critical point. High resolution X-ray data (sin?/lambda/le 1.22A-1) have been collected at 123K for the structure of dimethyl oxalate. The crystal packing involves 10 short intermolecular interactions including at least one weak H bond. The critical points of the intramolecular and intermolecular have been located and analyzed. The negative Laplacian and charge density at the C2-O2 bonding critical point are surprisingly small. This is caused by the extensive negative deformation charge density near the methyl group on the bonding direction. The thermal vibrations of the molecule have been analyzed from the neutron diffraction data collected at 123K, 70K and 15K. The internal vibrations of the H atoms have been calculated and translated into the local coordinate. The value of U3 of H1 atom is much smaller than these of H2 and H3 at each temperature, indicating a non-rigid rotor for the methyl group. (Abstract shortened by UMI.)

  15. Evaluation of Different Virtual Screening Programs for Docking in a Charged Binding Pocket

    PubMed Central

    Deng, Wei; Verlinde, Christophe L. M. J.

    2009-01-01

    Virtual screening of small molecules against a protein target often identifies the correct pose, but the ranking in terms of binding energy remains a difficult problem, resulting in unacceptable numbers of false positives and negatives. To investigate this problem, the performance of three docking programs, FRED, QXP/FLO, and GLIDE, along with their five different scoring functions, was evaluated with the engineered cavity in cyctochrome c peroxidase (CCP). This small cavity is negatively charged and completely buried from solvent. A test set of 60 molecules, experimentally identified as 43 “binders” and 17 “non-binders”, were tested with the CCP binding site. The docking methods’ performance is quantified by the ROC curve and their reproduction of crystal poses. The effects from generation of different ligand tautomers and inclusion of water molecule in the cavity are also discussed. PMID:18821750

  16. Evaluation of different virtual screening programs for docking in a charged binding pocket.

    PubMed

    Deng, Wei; Verlinde, Christophe L M J

    2008-10-01

    Virtual screening of small molecules against a protein target often identifies the correct pose, but the ranking in terms of binding energy remains a difficult problem, resulting in unacceptable numbers of false positives and negatives. To investigate this problem, the performance of three docking programs, FRED, QXP/FLO, and GLIDE, along with their five different scoring functions, was evaluated with the engineered cavity in cytochrome c peroxidase (CCP). This small cavity is negatively charged and completely buried from solvent. A test set of 60 molecules, experimentally identified as 43 "binders" and 17 "non-binders", were tested with the CCP binding site. The docking methods' performance is quantified by the ROC curve and their reproduction of crystal poses. The effects from generation of different ligand tautomers and inclusion of water molecule in the cavity are also discussed. PMID:18821750

  17. Negative-ion source applications (invited)

    SciTech Connect

    Ishikawa, J.

    2008-02-15

    In this paper heavy negative-ion sources which we developed and their applications for materials science are reviewed. Heavy negative ions can be effectively produced by the ejection of a sputtered atom through the optimally cesiated surface of target with a low work function. Then, enough continuous negative-ion currents for materials-science applications can be obtained. We developed several kinds of sputter-type heavy negative-ion sources such as neutral- and ionized-alkaline metal bombardment-type heavy negative-ion source and rf-plasma sputter type. In the case where a negative ion is irradiated on a material surface, surface charging seldom takes place because incoming negative charge of the negative ion is well balanced with outgoing negative charge of the released secondary electron. In the negative-ion implantation into an insulator or insulated conductive material, high precision implantation processing with charge-up free properties can be achieved. Negative-ion implantation technique, therefore, can be applied to the following novel material processing systems: the surface modification of micrometer-sized powders, the nanoparticle formation in an insulator for the quantum devices, and the nerve cell growth manipulation by precise control of the biocompatibility of polymer surface. When a negative ion with low kinetic energy approaches the solid surface, the kinetic energy causes the interatomic bonding (kinetic bonding), and formation of a metastable material is promoted. Carbon films with high constituent of sp{sup 3} bonding, therefore, can be formed by carbon negative-ion beam deposition.

  18. Structure of water at charged interfaces: a molecular dynamics study.

    PubMed

    Dewan, Shalaka; Carnevale, Vincenzo; Bankura, Arindam; Eftekhari-Bafrooei, Ali; Fiorin, Giacomo; Klein, Michael L; Borguet, Eric

    2014-07-15

    The properties of water molecules located close to an interface deviate significantly from those observed in the homogeneous bulk liquid. The length scale over which this structural perturbation persists (the so-called interfacial depth) is the object of extensive investigations. The situation is particularly complicated in the presence of surface charges that can induce long-range orientational ordering of water molecules, which in turn dictate diverse processes, such as mineral dissolution, heterogeneous catalysis, and membrane chemistry. To characterize the fundamental properties of interfacial water, we performed molecular dynamics (MD) simulations on alkali chloride solutions in the presence of two types of idealized charged surfaces: one with the charge density localized at discrete sites and the other with a homogeneously distributed charge density. We find that, in addition to a diffuse region where water orientation shows no layering, the interface region consists of a "compact layer" of solvent next to the surface that is not described in classical electric double layer theories. The depth of the diffuse solvent layer is sensitive to the type of charge distributions on the surface and the ionic strength. Simulations of the aqueous interface of a realistic model of negatively charged amorphous silica show that the water orientation and the distribution of ions strongly depend on the identity of the cations (Na(+) vs Cs(+)) and are not well represented by a simplistic homogeneous charge distribution model. While the compact layer shows different solvent net orientation and depth for Na(+) vs Cs(+), the depth (~1 nm) of the diffuse layer of oriented waters is independent of the identity of the cation screening the charge. The details of interfacial water orientation revealed here go beyond the traditionally used double and triple layer models and provide a microscopic picture of the aqueous/mineral interface that complements recent surface specific experimental studies. PMID:24979659

  19. Critical Points of the Electric Field from a Collection of Point Charges

    SciTech Connect

    Max, N; Weinkauf, T

    2007-02-16

    The electric field around a molecule is generated by the charge distribution of its constituents: positively charged atomic nuclei, which are well approximated by point charges, and negatively charged electrons, whose probability density distribution can be computed from quantum mechanics. For the purposes of molecular mechanics or dynamics, the charge distribution is often approximated by a collection of point charges, with either a single partial charge at each atomic nucleus position, representing both the nucleus and the electrons near it, or as several different point charges per atom. The critical points in the electric field are useful in visualizing its geometrical and topological structure, and can help in understanding the forces and motion it induces on a charged ion or neutral dipole. Most visualization tools for vector fields use only samples of the field on the vertices of a regular grid, and some sort of interpolation, for example, trilinear, on the grid cells. There is less risk of missing or misinterpreting topological features if they can be derived directly from the analytic formula for the field, rather than from its samples. This work presents a method which is guaranteed to find all the critical points of the electric field from a finite set of point charges. To visualize the field topology, we have modified the saddle connector method to use the analytic formula for the field.

  20. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  1. Charge-transfer-based Gas Sensing Using Atomic-layer MoS2

    PubMed Central

    Cho, Byungjin; Hahm, Myung Gwan; Choi, Minseok; Yoon, Jongwon; Kim, Ah Ra; Lee, Young-Joo; Park, Sung-Gyu; Kwon, Jung-Dae; Kim, Chang Su; Song, Myungkwan; Jeong, Yongsoo; Nam, Kee-Seok; Lee, Sangchul; Yoo, Tae Jin; Kang, Chang Goo; Lee, Byoung Hun; Ko, Heung Cho; Ajayan, Pulickel M.; Kim, Dong-Ho

    2015-01-01

    Two-dimensional (2D) molybdenum disulphide (MoS2) atomic layers have a strong potential to be used as 2D electronic sensor components. However, intrinsic synthesis challenges have made this task difficult. In addition, the detection mechanisms for gas molecules are not fully understood. Here, we report a high-performance gas sensor constructed using atomic-layered MoS2 synthesised by chemical vapour deposition (CVD). A highly sensitive and selective gas sensor based on the CVD-synthesised MoS2 was developed. In situ photoluminescence characterisation revealed the charge transfer mechanism between the gas molecules and MoS2, which was validated by theoretical calculations. First-principles density functional theory calculations indicated that NO2 and NH3 molecules have negative adsorption energies (i.e., the adsorption processes are exothermic). Thus, NO2 and NH3 molecules are likely to adsorb onto the surface of the MoS2. The in situ PL characterisation of the changes in the peaks corresponding to charged trions and neutral excitons via gas adsorption processes was used to elucidate the mechanisms of charge transfer between the MoS2 and the gas molecules. PMID:25623472

  2. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N2+(X 2?g+; v+ = 0-2; N+ = 0-9) + Ar

    NASA Astrophysics Data System (ADS)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C. Y.

    2012-09-01

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N2+(v+, N+) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N2+(X 2?g+, v+ = 0-2, N+ = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N2+ PFI-PI beam can be formed with a laboratory kinetic energy resolution of ?Elab = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (Ecm's) down to thermal energies. Absolute total rovibrationally selected cross sections ?(v+ = 0-2, N+ = 0-9) for the N2+(X 2?g+; v+ = 0-2, N+ = 0-9) + Ar CT reaction have been measured in the Ecm range of 0.04-10.0 eV, revealing strong vibrational enhancements and Ecm-dependencies of ?(v+ = 0-2, N+ = 0-9). The thermochemical threshold at Ecm = 0.179 eV for the formation of Ar+ from N2+(X; v+ = 0, N+) + Ar was observed by the measured ?(v+ = 0), confirming the narrow ?Ecm spread achieved in the present study. The ?(v+ = 0-2; N+) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions calculated based on the Landau-Zener-Stückelberg formulism are found to be in fair agreement with the present measured ?(v+ = 1 or 2; N+). Taking into account of the experimental uncertainties, the measured ?(v+ = 1 or 2, N+) for N+ = 0-9 at Ecm = 0.04-10.0 eV are found to be independent of N+.

  3. Electrical conduction through DNA molecule.

    PubMed

    Abdalla, S

    2011-09-01

    Several disorder parameters, inside the DNA molecule, lead to localization of charge carriers inside potential wells in the lowest unoccupied and highest occupied molecular orbits (LUMO and HOMO) which affects drastically the electrical conduction through the molecule, and demonstrates that the band carriers play an essential role in the conduction mechanism. So, a model is presented to shed light on the role of electrons of the LUMO in the electrical conduction through the DNA molecule. DC-, AC-conductivity and dielectric permittivity experimental data are well fitted with the presented model giving evidence that the free carriers in the LUMO and HOMO are responsible to make the DNA molecule conductor, insulator or semiconductor. The obtained results show that the localized charge carriers in the DNA molecule are characterized by four different types of relaxation phenomena which are thermally activated by corresponding four activation energies at 0.56 eV, 0.33 eV, 0.24 eV, and 0.05 eV respectively. Moreover, the calculations after the model, at room temperature, show that the time of the relaxation times of the current carriers are in the order of 5 × 10(-2)s, 1.74 × 10(-4)s, 5 × 10(-7)s, and 1.6 × 10(-10)s, respectively. PMID:21396395

  4. Preface: Charge transport in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of many particle excitations, new surface states in semiconductor electrodes, various mechanisms for

  5. Microsolvation of anions by molecules forming CH··X- hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Nepal, Binod; Scheiner, Steve

    2015-12-01

    Various anions were surrounded by n molecules of CF3H, which was used as a prototype CH donor solvent, and the structures and energies studied by M06-2X calculations with a 6-31+G?? basis set. Anions considered included the halides F-, Cl-, Br- and I-, as well as those with multiple proton acceptor sites: CN-, NO3-, HCOO-, CH3COO-, HSO4-, H2PO4-, and anions with higher charges SO42-, HPO42- and PO43-. Well structured cages were formed and the average H-bond energy decreases steadily as the number of surrounding solvent molecules rises, even when n exceeds 6 and the CF3H molecules begin to interact with one another rather than with the central anion. Total binding energies are very nearly proportional to the magnitude of the negative charge on the anion. The free energy of complexation becomes more negative for larger n initially, but then reaches a minimum and begins to rise for larger values of n.

  6. Charge density-dependent strength of hydration and biological structure.

    PubMed Central

    Collins, K D

    1997-01-01

    Small ions of high charge density (kosmotropes) bind water molecules strongly, whereas large monovalent ions of low charge density (chaotropes) bind water molecules weakly relative to the strength of water-water interactions in bulk solution. The standard heat of solution of a crystalline alkali halide is shown here to be negative (exothermic) only when one ion is a kosmotrope and the ion of opposite charge is a chaotrope; this standard heat of solution is known to become proportionally more positive as the difference between the absolute heats of hydration of the corresponding gaseous anion and cation decreases. This suggests that inner sphere ion pairs are preferentially formed between oppositely charged ions with matching absolute enthalpies of hydration, and that biological organization arises from the noncovalent association of moieties with matching absolute free energies of solution, except where free energy is expended to keep them apart. The major intracellular anions (phosphates and carboxylates) are kosmotropes, whereas the major intracellular monovalent cations (K+; arg, his, and lys side chains) are chaotropes; together they form highly soluble, solvent-separated ion pairs that keep the contents of the cell in solution. PMID:8994593

  7. Soluble expression of proteins correlates with a lack of positively-charged surface

    NASA Astrophysics Data System (ADS)

    Chan, Pedro; Curtis, Robin A.; Warwicker, Jim

    2013-11-01

    Prediction of protein solubility is gaining importance with the growing use of protein molecules as therapeutics, and ongoing requirements for high level expression. We have investigated protein surface features that correlate with insolubility. Non-polar surface patches associate to some degree with insolubility, but this is far exceeded by the association with positively-charged patches. Negatively-charged patches do not separate insoluble/soluble subsets. The separation of soluble and insoluble subsets by positive charge clustering (area under the curve for a ROC plot is 0.85) has a striking parallel with the separation that delineates nucleic acid-binding proteins, although most of the insoluble dataset are not known to bind nucleic acid. Additionally, these basic patches are enriched for arginine, relative to lysine. The results are discussed in the context of expression systems and downstream processing, contributing to a view of protein solubility in which the molecular interactions of charged groups are far from equivalent.

  8. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants.

    PubMed

    Nakamura, Yuki; Okachi, Manami; Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2015-12-15

    We report on the controlled clustering of oppositely charged colloidal particles by the adsorption of ionic surfactants, which tunes charge numbers Z of particles. In particular, we studied the heteroclustering of submicron-sized polystyrene (PS) and silica particles, both of which are negatively charged, in the presence of cetylpyridinium chloride (CPC), a cationic surfactant. The surfactant concentration Csurf was selected below the critical micelle concentration. As CPC molecules were adsorbed, Z values of the PS and silica particles decreased, inverting to positive when Csurf exceeded the isoelectric point Ciep. Hydrophobic PS particles exhibited much lower Ciep than hydrophilic silica particles. At Csurf valuess between their Ciep values, the particles were oppositely charged, and clustering was enabled. To explain the clustering behavior, we investigated adsorption isotherms of the CPC and screened-Coulomb-type pair potential. Expected applications of the present findings are the control of colloidal associations and construction of various particle types into heterogeneous colloidal clusters. PMID:26583431

  9. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  10. Single-Molecule Electronic Measurements with Metal Electrodes

    ERIC Educational Resources Information Center

    Lindsay, Stuart

    2005-01-01

    A review of concepts like tunneling through a metal-molecule-metal-junction, contrast with electrochemical and optical-charge injection, strong-coupling limit, calculations of tunnel transport, electron transfer through Redox-active molecules is presented. This is followed by a discussion of experimental approaches for single-molecule measurements.

  11. Flight evidence of spacecraft surface contamination rate enhancement by spacecraft charging obtained with a quartz crystal microbalance

    NASA Technical Reports Server (NTRS)

    Clark, D. M.; Hall, D. F.

    1980-01-01

    The significance of the fraction of the mass outgassed by a negatively charged space vehicle which is ionized within the vehicle plasma sheath and electrostatically reattracted to the space vehicle was determined. The ML-12 retarding potential analyzer/temperature controlled quartz crystal microbalances (RPA/TQCMs) distinguishes between charged and neutral molecules and investigates contamination mass transport mechanism. Two long term, quick look flight data sets indicate that on the average a significant fraction of mass arriving at one RPA/TQCM is ionized. It is assumed that vehicle frame charging during these periods was approximately uniformly distributed in degree and frequency. It is shown that electrostatic reattraction of ionized molecules is an important contamination mechanism at and near geosynchronous altitudes.

  12. Mind Molecules

    PubMed Central

    Snyder, Solomon H.

    2011-01-01

    Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius “Julie” Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the “high” that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes. PMID:21543333

  13. Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy.

    PubMed

    Dumitru, Andra C; Herruzo, Elena T; Rausell, Estrella; Ceña, Valentin; Garcia, Ricardo

    2015-12-21

    We have measured the intermolecular forces between small interference RNA (siRNA) and polyamidoamine dendrimers at the single molecular level. A single molecule force spectroscopy approach has been developed to measure the unbinding forces and energies between a siRNA molecule and polyamidoamine dendrimers deposited on a mica surface in a buffer solution. We report three types of unbinding events which are characterized by forces and free unbinding energies, respectively, of 28 pN, 0.709 eV; 38 pN, 0.722 eV; and 50 pN, 0.724 eV. These events reflect different possible electrostatic interactions between the positive charges of one or two dendrimers and the negatively charged phosphate groups of a single siRNA. We have evidence of a high binding affinity of siRNA towards polyamidoamine dendrimers that leads to a 45% probability of measuring specific unbinding events. PMID:26580848

  14. Negative photoconductivity of InAs nanowires.

    PubMed

    Han, Yuxiang; Zheng, Xiao; Fu, Mengqi; Pan, Dong; Li, Xing; Guo, Yao; Zhao, Jianhua; Chen, Qing

    2015-12-23

    Negative photoconductivity is observed in InAs nanowires (NWs) without a surface defective layer. The negative photoconductivity is strongly dependent on the wavelength and intensity of the light, and is also sensitive to the environmental atmosphere. Two kinds of mechanisms are discerned to work together. One is related to gas adsorption, which is photodesorption of water molecules and photo-assisted chemisorption of O2 molecules. The other one can be attributed to the photogating effect introduced by the native oxide layer outside the NWs. PMID:26631367

  15. Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

    PubMed

    Bianchi, Federico; Praplan, Arnaud P; Sarnela, Nina; Dommen, Josef; Kürten, Andreas; Ortega, Ismael K; Schobesberger, Siegfried; Junninen, Heikki; Simon, Mario; Tröstl, Jasmin; Jokinen, Tuija; Sipilä, Mikko; Adamov, Alexey; Amorim, Antonio; Almeida, Joao; Breitenlechner, Martin; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Laaksonen, Ari; Lawler, Michael J; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Tomé, António; Virtanen, Annele; Viisanen, Yrjö; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Curtius, Joachim; Kulmala, Markku; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2014-12-01

    We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision. PMID:25406110

  16. Bipolar Conductance Switching of Single Anthradithiophene Molecules.

    PubMed

    Borca, Bogdana; Schendel, Verena; Pétuya, Rémi; Pentegov, Ivan; Michnowicz, Tomasz; Kraft, Ulrike; Klauk, Hagen; Arnau, Andrés; Wahl, Peter; Schlickum, Uta; Kern, Klaus

    2015-12-22

    Single molecular switches are basic device elements in organic electronics. The pentacene analogue anthradithiophene (ADT) shows a fully reversible binary switching between different adsorption conformations on a metallic surface accompanied by a charge transfer. These transitions are activated locally in single molecules in a low-temperature scanning tunneling microscope . The switching induces changes between bistable orbital structures and energy level alignment at the interface. The most stable geometry, the "off" state, which all molecules adopt upon evaporation, corresponds to a short adsorption distance at which the electronic interactions of the acene rings bend the central part of the molecule toward the surface accompanied by a significant charge transfer from the metallic surface to the ADT molecules. This leads to a shift of the lowest unoccupied molecular orbital down to the Fermi level (EF). In the "on" state the molecule has a flat geometry at a larger distance from the surface; consequently the interaction is weaker, resulting in a negligible charge transfer with an orbital structure resembling the highest occupied molecular orbital when imaged close to EF. The potential barrier between these two states can be overcome reversibly by injecting charge carriers locally into individual molecules. Voltage-controlled current traces show a hysteresis characteristic of a bipolar switching behavior. The interpretation is supported by first-principles calculations. PMID:26580569

  17. Human fibrinogen adsorption on positively charged latex particles.

    PubMed

    Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cie?la, Micha?

    2014-09-23

    Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and confirmed the decisive role of electrostatic interactions in this process. PMID:25157934

  18. Water organization between oppositely charged surfaces: Implications for protein sliding along DNA a)

    NASA Astrophysics Data System (ADS)

    Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov

    2015-02-01

    Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.

  19. Modulation of emulsion rheology through electrostatic heteroaggregation of oppositely charged lipid droplets: influence of particle size and emulsifier content.

    PubMed

    Mao, Yingyi; McClements, David Julian

    2012-08-15

    The influence of electrostatically-induced heteroaggregation of oppositely charged lipid droplets on the rheology and stability of emulsions has been studied. 20 wt.% oil-in-water emulsions (pH 6) containing oppositely charged droplets were fabricated by mixing cationic lactoferrin-coated lipid droplets with anionic ?-lactoglobulin-coated lipid droplets. Emulsions containing mixtures of droplets with different charges (positive or negative) and sizes (large or small) were prepared, and then their overall particle characteristics (?-potential and size) and rheology were measured. Emulsions formed by mixing positive droplets and negative droplets that were both relatively small (d(43) ? 0.3 ?m) exhibited extensive flocculation and had paste-like properties at intermediate positive-to-negative particle ratios. On the other hand, emulsions formed by mixing positive droplets and negative droplets that were both relatively large (d(43) ? 3 ?m) exhibited little aggregation and had relatively low viscosities at all particle ratios. Emulsions with small negative droplets and large positive droplets (or vice versa), exhibited some aggregation and viscosity enhancement at intermediate particle ratios. The presence of relatively high levels of protein in the aqueous phase of mixed emulsions reduced the level of droplet aggregation and viscosity enhancement observed, which was attributed to the ability of protein molecules to bind to droplet surfaces and neutralize their charges. Electrostatically-induced heteroaggregation of lipid droplets may be a useful means of controlling the physicochemical properties of emulsion-based products in the food, personal care, pharmaceutical and cosmetic industries. PMID:22683214

  20. Formation mechanism for interstellar molecules

    NASA Technical Reports Server (NTRS)

    Harteck, P.; Beaudoin, A.; Reeves, R.

    1973-01-01

    The major ions in the region of the interstellar clouds include H(+) and H2(+). The ions may be formed by photo ionization, cosmic rays, or other processes. The chemistry of H2(+) is considered and reactions involving carbon atoms are described. The formation of nitrogen-containing molecules may occur mainly on interstellar grains. Reactions involving negative ions may also contribute to the production of certain species.

  1. The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Lombardi, John R.; Birke, Ronald L.; Sanchez, Luis A.; Bernard, Irene; Sun, Song Cheng

    1984-02-01

    The Raman intensity versus electrode voltage behavior of a series of substituted pyridines and saturated nitrogen heterocyclic compounds was studied at two laser excitation energies. The voltage (resonance) maximum shifts to more positive potential with increasing excitation energy for the substituted pyridines (case I) and to more negative potential with increasing excitation energy for the saturated nitrogen heterocyclic compounds (case II). The voltage maxima can be correlated with the Hammett sigma function for substituted pyridines and withpKa for the saturated nitrogen heterocycles. The results are consistent with charge transfer from the metal to molecule (adcluster-molecule complex) in the case I system and from the molecule (adcluster-molecule complex) to the metal in the case II system.

  2. Photoelectric Charging of Dust Particles

    NASA Technical Reports Server (NTRS)

    Sickafoose, A.; Colwell, J.; Horanyi, M.; Robertson, S.; Walch, B.

    1999-01-01

    Laboratory experiments have been performed on the photoelectric charging of dust particles which are either isolated or adjacent to a surface that is also a photoemitter. We find that zinc dust charges to a positive potential of a few volts when isolated in vacuum and that it charges to a negative potential of a few volts when passed by a photoemitting surface. The illumination is an arc lamp emitting wavelengths longer than 200 nm and the emitting surface is a zirconium foil.

  3. Charge Distribution in Mesospheric Clouds

    SciTech Connect

    Misra, Shikha; Mishra, S. K.; Sodha, M. S.

    2011-11-29

    This work presents an analytical model for the physical understanding of the charge distribution on pure (with high work function) and dirty (with low work function) ice dust particles in polar mesospheric clouds PMCs (NLCs and PMSEs). The analysis is based on number and energy balance of constituents and allows the charge to be only an integral multiple (positive or negative) of the electronic charge.

  4. Improved negative ion source

    DOEpatents

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  5. Negative ion source

    DOEpatents

    Delmore, James E. (Idaho Falls, ID)

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  6. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  7. Environment Assisted Quantum Transport in Organic Molecules

    E-print Network

    Gabor Vattay; Istvan Csabai

    2015-02-28

    One of the new discoveries in quantum biology is the role of Environment Assisted Quantum Transport (ENAQT) in excitonic transport processes. In disordered quantum systems transport is most efficient when the environment just destroys quantum interferences responsible for localization, but the coupling does not drive the system to fully classical thermal diffusion yet. This poised realm between the pure quantum and the semi-classical domains has not been considered in other biological transport processes, such as charge transport through organic molecules. Binding in receptor-ligand complexes is assumed to be static as electrons are assumed to be not able to cross the ligand molecule. We show that ENAQT makes cross ligand transport possible and efficient between certain atoms opening the way for the reorganization of the charge distribution on the receptor when the ligand molecule docks. This new effect can potentially change our understanding how receptors work. We demonstrate room temperature ENAQT on the caffeine molecule.

  8. Recovery of tritium from tritiated molecules

    DOEpatents

    Swansiger, W.A.

    1984-10-17

    This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

  9. Electron-impact-induced tryptophan molecule fragmentation

    NASA Astrophysics Data System (ADS)

    Tamuliene, Jelena; Romanova, Liudmila G.; Vukstich, Vasyl S.; Papp, Alexander V.; Snegursky, Alexander V.

    2015-01-01

    The fragmentation of a gas-phase tryptophan molecule by a low-energy (<70 eV) electron impact was studied both experimentally and theoretically. Various positively charged fragments were observed and analyzed. A special attention was paid to the energy characteristics of the ionic fragment yield. The geometrical parameters of the initial molecule rearrangement were also analyzed. The fragmentation observed was due to either a simple bond cleavage or more complex reactions involving molecular rearrangements. Contribution to the Topical Issue "Elementary Processes with Atoms and Molecules in Isolated and Aggregated States", edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis and Kurt H. Becker.

  10. Negative and positive cesium ion studies

    NASA Technical Reports Server (NTRS)

    Kuehn, D. G.; Sutliff, D. E.; Chanin, L. M.

    1978-01-01

    Mass spectrometric analyses have been performed on the positive and negative species from discharges in Cs, He-Cs, and He-H2-Cs mixtures. Sampling was conducted through the electrodes of normal glow discharges and from close-spaced heated-cathode conditions, which approximate a cesium thermionic converter. No negative Cs ions were observed for Cs pressures less than .01 torr. Identified species included Cs(+), Cs2(+), Cs(-), and what appeared to be multiply charged ions. Low-mass negative and positive ions attributed to H2 were observed when an He-H2 mixture was also present in the discharge region.

  11. Charged particle formation by the ionization of air containing sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Nagato, Kenkichi

    2009-08-01

    Experimental investigation of charged particle formation by the ionization of air containing sulfur dioxide (SO2) was performed using a nano-DMA (differential mobility analyzer) and an atmospheric pressure ionization mass spectrometer. A radioactive ion source of 241Am and a negative dc corona discharge were used to ionize SO2/H2O/air mixtures. The results showed that the number of charged particles that formed had increased as H2O concentration increased (ca. 20-3 × 103 ppm) for both ion sources, but also that the number of charged particles produced when using the negative corona discharge was more than two orders of magnitude greater than what was produced using 241Am. During ionization by [alpha]-ray irradiation, SO4-(H2O)n ions predominated coincident with the formation of charged particles. The negative corona discharge produced a more complicated ion mass spectrum, which included ion groups of NO3-, SOx- (x = 2-5) and HSOx- (x = 3-5). The relative abundance of the ion groups varied depending on H2O concentration and ion reaction time. The ions with an HSO4- core surpassed the ions of other groups as H2O concentration increased. The formations of NO3- ions and cluster ions containing HNO3 also were enhanced at higher H2O concentrations. Possible ion-molecule reactions responsible for the observed mass spectra are discussed in detail.

  12. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica

    PubMed Central

    Kim, Kyoung-Min; Kim, Hye Min; Lee, Won-Jae; Lee, Chang-Woo; Kim, Tae-il; Lee, Jong-Kwon; Jeong, Jayoung; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    An attempt was made to control the surface charge of colloidal silica nanoparticles with 20 nm and 100 nm diameters. Untreated silica nanoparticles were determined to be highly negatively charged and have stable hydrodynamic sizes in a wide pH range. To change the surface to a positively charged form, various coating agents, such as amine containing molecules, multivalent metal cation, or amino acids, were used to treat the colloidal silica nanoparticles. Molecules with chelating amine sites were determined to have high affinity with the silica surface to make agglomerations or gel-like networks. Amino acid coatings resulted in relatively stable silica colloids with a modified surface charge. Three amino acid moiety coatings (L-serine, L-histidine, and L-arginine) exhibited surface charge modifying efficacy of L-histidine > L-arginine > L-serine and hydrodynamic size preservation efficacy of L-serine > L-arginine > L-histidine. The time dependent change in L-arginine coated colloidal silica was investigated by measuring the pattern of the backscattered light in a Turbiscan™. The results indicated that both the 20 nm and 100 nm L-arginine coated silica samples were fairly stable in terms of colloidal homogeneity, showing only slight coalescence and sedimentation. PMID:25565824

  13. A study of the role played by the Hartree-Fock orbital exchange in the formation of the energy of the first singlet charge-transfer excited state by the example of JK-62 and JK-201 sensitizing dye molecules

    NASA Astrophysics Data System (ADS)

    Baryshnikov, G. V.; Minaev, B. F.; Slepets, A. A.; Minaeva, V. A.

    2014-03-01

    Based on the time-dependent density functional theory with the use of the functionals B3LYP, B97-2, BHandHLYP, BMK, MPWB1K, PBE1W, PBE1PBE, ?-HCTHh, and TPSS in the 6-31G(d) basis set of atomic orbitals, we have performed a quantum-chemical investigation of electronic and spectral properties of JK-62 and JK-201 bis-dimethylfluorenyl dye sensitizers for Grätzel photoelectric converters. In terms of the Bader theory, we have done a complete analysis of the electron-density distribution function in the dye molecules under study, which proves the occurrence of intramolecular nonvalent interactions, which, in turn, stabilize a planar mutual arrangement of structural fragments of dye molecules. The role that the Hartree-Fock orbital exchange plays in the energy formation of the first and most intense electronic transition, which is responsible for the primary current generation in a solar cell, has been elucidated.

  14. A combined molecular docking and charge density analysis is a new approach for medicinal research to understand drug-receptor interaction: curcumin-AChE model.

    PubMed

    Renuga Parameswari, A; Rajalakshmi, G; Kumaradhas, P

    2015-01-01

    In the present study, a molecular docking analysis has been performed on diketone form of curcumin molecule with acetylcholinesterase (AChE). The calculated lowest docked energy of curcumin molecule in the active site of AChE is -11.21 kcal/mol; this high negative value indicates that the molecule exhibits large binding affinity towards AChE. When the curcumin molecule present in the active site of AChE, subsequently, its conformation has altered significantly and the molecule adopts a U-shape geometry as it is linear in gas phase (before entering into the active site). This conformational transition facilitates curcumin to form strong interaction with Phe330 of acyl-binding pocket and the choline binding site with indole ring of Trp84 and Asp72. The gas phase and the active site analysis of curcumin allows to understand the conformational geometry, nature of molecular flexibility, charge density redistribution and the variation of electrostatic properties of curcumin in the active site. To obtain the gas phase structure, the curcumin molecule was optimized using Hartree-Fock and density functional methods (B3LYP) with the basis set 6-311G(??). A charge density analysis on both gas phase as well as the molecule lifted from the active site was carried out using Bader's theory of atoms in molecules (AIM). The difference in molecular electrostatic potential between the two forms of curcumin displays the difference in charge distribution. The large dipole moment of curcumin (7.54 D) in the active site reflects the charge redistribution as it is much less in the gas phase (4.34 D). PMID:25446495

  15. Measurement of a linear free energy relationship one molecule at a time

    PubMed Central

    Rao, B. V.; Kwon, K.-Y.; Liu, A.; Bartels, L.

    2004-01-01

    A systematic study of the dehydrogenation of substituted thiophenols by controlled charge injection from the tip of a scanning tunneling microscope (STM) reveals a pronounced dependence of the reaction yield on the position and the chemical nature of the substituent. We evaluate the dehydrogenation rate of para-halo-substituted species within a linear free energy relationship, namely the Hammett equation. The resultant ? value of 1.4 can faithfully predict the reaction rates of molecules that are meta-halo-substituted or para-methyl-substituted. The positive sign of ? suggests a negatively charged transition state at the core of the STM-induced process, and the magnitude of the ? value indicates that the presence of the substrate does not preclude substantial substituent effects. The applicability of the Hammett equation to single-molecule chemistry offers facile prediction of the rate of STM-based single-molecule chemistry in a field, which so far has been addressed by focusing on involved quantum-mechanical modeling of its underlying processes. PMID:15601774

  16. Charged colloidal heteroaggregation kinetics

    NASA Astrophysics Data System (ADS)

    Puertas, A. M.; Fernández-Barbero, A.; De Las Nieves, F. J.

    2001-01-01

    A model for describing heteroaggregation kinetics has been developed and tested with experiments in a colloidal system composed of positively and negatively charged particles. At first order, the model reduces to the classical Hogg, Healy, and Fuerstenau approximation. Static light scattering was used to monitor the aggregations. The dependence of the initial aggregation rate on the relative particle fraction and on the surface charges was studied and compared with the theoretical predictions. The experimental results indicated that first-order approximation cannot be used to describe the kinetics. However, good agreement was found when second order was introduced in the theoretical model.

  17. Critical analysis and extension of the Hirshfeld atoms in molecules

    NASA Astrophysics Data System (ADS)

    Bultinck, Patrick; Van Alsenoy, Christian; Ayers, Paul W.; Carbó-Dorca, Ramon

    2007-04-01

    The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The resulting "Hirshfeld-I charges" correlate well with electrostatic potential derived atomic charges.

  18. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  19. Negative-ion states

    SciTech Connect

    Compton, R.N.

    1982-01-01

    In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures.

  20. Effect of net surface charge on physical properties of the cellulose nanoparticles and their efficacy for oral protein delivery.

    PubMed

    Song, Yongbo; Chen, Lingyun

    2015-05-01

    Both net positively and negatively charged cellulose-based nanoparticles were prepared from oppositely charged carboxymethylcellulose (CMC) and quaternized cellulose (QC). Effect of surface charge on efficacy of cellulose nanoparticles for delivering both positively and negatively charged proteins was investigated. Lysozyme (LYS) and bovine serum albumin (BSA), which possess positive and negative charge at physiological pH respectively, were used as models. The results revealed that high encapsulation efficiency (67.7% and 85.1%) could be achieved when negatively charged protein was encapsulated in positively charged nanoparticles, or positively charged protein was encapsulated in negatively charged nanoparticles. Proteins encapsulated in optimal cellulose nanoparticles could be sustainably released and no obvious protein denaturation was detected. Both net positively and negatively charged nanoparticles exhibited low cytotoxicity due to cellulose's good biocompatibility. Not only net positively charged nanoparticles demonstrated high cellular uptake efficiency, but also net negatively charged nanoparticles showed somewhat efficient cellular uptake. PMID:25659666

  1. Ion-Molecule Reactions and Ion Kinetics in DC Townsend Discharges in Dielectric Gases

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    In gas discharges the identify, transport, relative intensities, and kinetic energy distributions (KEDs) of ions may be dominated by ion-molecule reactions. In order to understand these discharges, there is a need for cross section data for various ion-molecule reactions, including symmetric and asymmetric charge-transfer, collisional detachment, and ion conversion reactions, especially for low to intermediate ion-impact energies. In view of the importance of dielectric gases, we have recently measured the KEDs of various positive and negative ions produced in DC Townsend discharges in SF6, CF4, CHF3, O2, and CO2. The relative abundance and mean energies of ions are obtained from the measured KEDs. The effective cross sections (Qeff) describing the KEDs of various ions can be derived by using the mean ion energies and the electric field-to-gas density ratios (E/N). In the case of SF6 and O2 discharges, the determined cross sections (Qeff) for the negative-ion molecule reactions are consistent with previously measured cross section data obtained by crossed-beam experiment. The availability of these cross section values enabled us to understand the ion data reasonably well. However, the lack of adequate cross section data for positive ions in all of the above gases is a major obstacle in understanding ion transport in these gas discharges.

  2. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  3. Drug-induced ion channel opening tuned by the voltage sensor charge profile

    PubMed Central

    Ottosson, Nina E.; Liin, Sara I.

    2014-01-01

    Polyunsaturated fatty acids modulate the voltage dependence of several voltage-gated ion channels, thereby being potent modifiers of cellular excitability. Detailed knowledge of this molecular mechanism can be used in designing a new class of small-molecule compounds against hyperexcitability diseases. Here, we show that arginines on one side of the helical K-channel voltage sensor S4 increased the sensitivity to docosahexaenoic acid (DHA), whereas arginines on the opposing side decreased this sensitivity. Glutamates had opposite effects. In addition, a positively charged DHA-like molecule, arachidonyl amine, had opposite effects to the negatively charged DHA. This suggests that S4 rotates to open the channel and that DHA electrostatically affects this rotation. A channel with arginines in positions 356, 359, and 362 was extremely sensitive to DHA: 70 µM DHA at pH 9.0 increased the current >500 times at negative voltages compared with wild type (WT). The small-molecule compound pimaric acid, a novel Shaker channel opener, opened the WT channel. The 356R/359R/362R channel drastically increased this effect, suggesting it to be instrumental in future drug screening. PMID:24420769

  4. Small Molecule Sensing by Local pH Modulation 

    E-print Network

    Huang, Da

    2013-11-14

    . Firstly, as a potential application of this sensing technique, we utilized this sensing platform to detect the interactions between tetracaine, a positively charged small molecule used as a local anesthetic drug, and planar supported lipid bilayers (SLBs...

  5. Multimonth controlled small molecule release from biodegradable thin films

    E-print Network

    Hammond, Paula T.

    Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

  6. Enhancement of IR and VCD intensities due to charge transfer.

    PubMed

    Nicu, Valentin Paul; Autschbach, Jochen; Baerends, Evert Jan

    2009-03-14

    Donor-acceptor interactions such as the one between the Cl(-) base and the N-H sigma* acceptor orbitals encountered in the complexation of Cl(-) counterions to the [Co(en)(3)](3+) transition metal complex, have been shown to cause huge enhancement (between 1 and 2 orders of magnitude) of the VCD intensities of N-H stretching modes. This effect has been fully analyzed, and could be attributed to increased charge flow from the Cl(-) donors when the N-H bonds become stretched. The transfer of charge counteracts the movement of negative electronic charge that happens along with the motion of the H nuclei, effectively reversing the electronic part of the electric dipole transition moment (EDTM) in the direction of the charge flow (z, say), and of the magnetic transition dipole moment (MDTM) in the perpendicular direction. The consequences for the IR and VCD intensity follow: IR intensity is strongly increased if the EDTM is polarized in the z direction, e.g. in A(2) modes, but not so much if it is polarized in the xy plane (E modes), the VCD is strongly enhanced if the EDTM and MTDM are polarized in the xy plane (in E modes), but less so when they are polarized in the z direction (in A(2) modes). The explanation holds generally for complexation phenomena of this sort, including the donor-acceptor part of hydrogen bonding interactions, e.g. with solvent molecules. PMID:19240930

  7. Elasticity, internal excitation, fragmentation, and charge transfer during grazing scattering of fast fullerenes from a KCl(001) surface

    NASA Astrophysics Data System (ADS)

    Wethekam, S.; Merck, J.; Busch, M.; Winter, H.

    2011-02-01

    C60+ and C70+ fullerenes with keV energies are scattered under grazing polar angles of incidence from an atomically clean and flat KCl(001) surface. For this model system of molecule surface interactions, the elastic properties of the fullerenes in front of the surface are studied by polar angular distributions. From the analysis of fragment spectra, the internal excitations of scattered molecules are deduced and excitation mechanisms are identified. Charge fractions indicate a kinematically induced neutralization of the fullerenes. Via an analysis of negatively charged fragments, the transition from a “soft” scattering event with intact outgoing fullerenes to postcollision multifragmentation is analyzed. The data are compared to three-dimensional molecular dynamics simulations based on empirical bond-order potentials.

  8. Metal-organic and supramolecular architectures based on mechanically interlocked molecules

    NASA Astrophysics Data System (ADS)

    Fernando, Isurika Rosini

    The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials. Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible. With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X6 2-- complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized, by attaching anionic substituents (carboxylates, sulfonates) to either the wheel or the axle component. It was found that pseudorotaxane formation also enabled resolution of two sulfonated crown ether isomers, which were inseparable by conventional methods. Organic ligands for MWM precursors were designed and synthesized according to multi-step schemes. Helical metal-complexes based on these ligands were prepared and characterized. Chromatography, Nuclear Magnetic Resonance and UV-Visible spectroscopy, Mass spectrometry, Electrochemistry, Thermogravimetric Analysis and X-ray crystallography were used in identification, purification and characterization of the compounds involved.

  9. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    PubMed

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event. PMID:26327272

  10. Negative-ion formation in the explosives RDX, PETN, and TNT using the Reversal Electron Attachment Detection (READ) technique

    NASA Technical Reports Server (NTRS)

    Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.

    1992-01-01

    In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by reversing their direction with electrostatic fields. At this turning point the electrons have zero or near-zero energy. A beam of target molecules is introduced, and the resultant negative ions extracted. This basic idea has been recently improved to allow for better reversal geometry, higher electron currents, lower backgrounds, and increased negative-ion extraction efficiency. We present herein application of the so-called reversal electron attachment detector (READ) to the study of negative-ion formation in the explosives molecules RDX, PETN, and TNT under single-collision conditions.

  11. CHARGE IMBALANCE

    SciTech Connect

    Clarke, John

    1980-09-01

    The purpose of this article is to review the theory of charge imbalance, and to discuss its relevance to a number of experimental situations. We introduce the concepts of quasiparticle charge and charge imbalance, and discuss the generation and detection of charge imbalance by tunneling. We describe the relaxation of the injected charge imbalance by inelastic scattering processes, and show how the Boltzmann equation can be solved to obtain the steady state quasiparticle distribution and the charge relaxation rate. Details are given of experiments to measure charge imbalance and the charge relaxation rate when inelastic scattering is the predominant relaxation mechanism. Experiments on and theories of other charge relaxation mechanisms are discussed, namely relaxation via elastic scattering in the presence of energy gap anisotropy, or in the presence of a pair breaking mechanism such as magnetic impurities or an applied supercurrent or magnetic field. We describe three other situations in which charge imbalance occurs, namely the resistance of the NS interface, phase slip centers, and the flow of a supercurrent in the presence of a temperature gradient.

  12. Osmosis at constant volume. Negative pressure

    E-print Network

    Zupanovic, Pasko; Brumen, Milan; Fajmut, Ales; Juretic, Davor

    2009-01-01

    A thermodynamic state of solvent and solution separated with an elastic semipermeable membrane, in the box with a fixed volume, is considered. It is shown that the minimum of the free energy is accompanied by the compression of the solution and tension of the solvent caused by the transfer of solvent molecules into compartment with solution. The tensile state of the solvent is described in terms of negative pressure. It is found that the negative pressure as well as compression pressure is of the order of osmotic pressure given by van't Hoff equation. It is proposed that this mechanism could be responsible for the water uptake in tall trees.

  13. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  14. Internal Charging

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  15. A statistical-mechanical analysis on the hypermobile water around a large solute with high surface charge density.

    PubMed

    Kinoshita, Masahiro; Suzuki, Makoto

    2009-01-01

    In connection with the experimental observation that the hypermobile water is induced around F-actin, we calculate physically insightful components of the rotational entropy of hydration of a solute using the angle-dependent integral equation theory combined with the multipolar model for water. It is shown that when a sufficiently large nonpolar solute is inserted into water, the rotational freedom (RF) of water molecules near the solute is significantly restricted due to the water structuring. When the solute has a moderate surface charge density (SCD), in the region adjacent to the solute and in the region within which the solute-water surface separations are close to the molecular diameter of water, the RF of water molecules becomes considerably higher than in the bulk. As the SCD increases, these regions shift slightly more outside with further enhancement of the RF. For sufficiently high SCD, the water molecules in contact with the solute turn largely restrained. It is shown that the appearance of water molecules with anomalously high RF is the most remarkable for a very large solute with high SCD. We argue that the theoretical results are in qualitatively good accord with the experimental observations for the rotational mobility of water molecules near nonpolar side chains of amino acids and F-actin with the domains which are rich in negative charges. PMID:19140631

  16. A statistical-mechanical analysis on the hypermobile water around a large solute with high surface charge density

    NASA Astrophysics Data System (ADS)

    Kinoshita, Masahiro; Suzuki, Makoto

    2009-01-01

    In connection with the experimental observation that the hypermobile water is induced around F-actin, we calculate physically insightful components of the rotational entropy of hydration of a solute using the angle-dependent integral equation theory combined with the multipolar model for water. It is shown that when a sufficiently large nonpolar solute is inserted into water, the rotational freedom (RF) of water molecules near the solute is significantly restricted due to the water structuring. When the solute has a moderate surface charge density (SCD), in the region adjacent to the solute and in the region within which the solute-water surface separations are close to the molecular diameter of water, the RF of water molecules becomes considerably higher than in the bulk. As the SCD increases, these regions shift slightly more outside with further enhancement of the RF. For sufficiently high SCD, the water molecules in contact with the solute turn largely restrained. It is shown that the appearance of water molecules with anomalously high RF is the most remarkable for a very large solute with high SCD. We argue that the theoretical results are in qualitatively good accord with the experimental observations for the rotational mobility of water molecules near nonpolar side chains of amino acids and F-actin with the domains which are rich in negative charges.

  17. Novel electromagnetic radiation in a semi-infinite space filled with a double-negative metamaterial

    E-print Network

    Duan, Zhaoyun

    We have theoretically investigated the electromagnetic radiation excited by a charged particle moving along a semi-infinite space filled with a double-negative metamaterial (DNM). Cherenkov radiation in the double-negative ...

  18. Surface Potential of Charged Liposomes Determined by Second Harmonic Generation

    E-print Network

    Eisenthal, Kenneth B.

    Articles Surface Potential of Charged Liposomes Determined by Second Harmonic Generation Yan Liu that the surface potential of charged liposomes can be determined by second harmonic generation. The Gouy charge density and the surface potential of liposomes consisting of the negatively charged phospholipid

  19. Demystified ... adhesion molecules.

    PubMed Central

    Freemont, A J

    1998-01-01

    The cell adhesion molecules are ubiquitous recognition molecules that allow cells to communicate with one another and their environment. Through these molecules, complex alterations in the cytoplasmic messenger pathways and the microfilamentous cytoskeleton can lead to profound alterations in cell division, differentiation, behaviour, and function (fig 9). It is difficult to conceive of a group of molecules that could be more important to pathologists and to their understanding of disease processes. PMID:9893742

  20. Solvation effects on like-charge attraction.

    PubMed

    Ghanbarian, Shahzad; Rottler, Jörg

    2013-02-28

    We present results of molecular dynamics simulations of the electrostatic interaction between two parallel charged rods in the presence of divalent counterions. Such polyelectrolytes have been considered as a simple model for understanding electrostatic interactions in highly charged biomolecules such as DNA. Since there are correlations between the free charge carriers, the phenomenon of like charge attraction appears for specific parameters. We explore the role of solvation effects and the resulting deviations from Coulomb's law on the nanoscale on this peculiar phenomenon. The behavior of the force between the charged rods in a simulation with atomistic representation of water molecules is completely different from a model in which water is modeled as a continuum dielectric. By calculating counterion-rodion pair correlation functions, we find that the presence of water molecules changes the structure of the counterion cloud and results in both qualitative and quantitative changes of the force between highly charged polyelectrolytes. PMID:23464175

  1. Structure of the Dominant Negative S17N Mutant of Ras

    SciTech Connect

    Nassar, N.; Singh, K; Garcia-Diaz, M

    2010-01-01

    The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17N in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg{sup 2+} ion that normally coordinates the {beta}-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca{sup 2+} ion is coordinating the {alpha}-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide's guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg{sup 2+} ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg{sup 2+} should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways.

  2. Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings.

    PubMed

    Venault, Antoine; Yang, Hui-Shan; Chiang, Yen-Che; Lee, Bor-Shuinn; Ruaan, Ruoh-Chyu; Chang, Yung

    2014-03-12

    This works reports a set of new functionalized polyethyleneimine (PEI) polymers, including a neutral PEGylated polymer PEI-g-PEGMA, a negatively charged polymer PEI-g-SA, and a zwitterionic polymer PEI-g-SBMA, and their use as antibiofouling coating agent for human teeth protection. Polymers were synthesized by Michael addition, XPS analysis revealed that each polymer could be efficiently coated onto hydroxyapatite, ceramic material used as a model tooth. Polymers carrying a negative net charge were more efficiently adsorbed, because of the establishment of electrostatic interactions with calcium ions. Protein adsorption tests revealed that two factors were important in the reduction of protein adsorption. Both the surface charge and the surface ability to bind and entrap water molecules had to be considered. PEI-g-SBMA, which zeta potential in PBS solution was negative, was efficient to inhibit the adsorption of BSA, a negative protein. On the other hand, it also resisted the adsorption of lysozyme, a positive protein, because zwitterionic molecules can easily entrap water and provide a very hydrophilic environment. Streptococcus mutans attachment tests performed unveiled that all modified polymers were efficient to resist this type of bacteria responsible for dental carries. Best results were also obtained with PEI-g-SBMA coating. This polymer was also shown to efficiently resist the adsorption of positively charged bacteria (Stenotrophomonas maltophilia). Tests performed on real human tooth showed that PEI-g-SBMA could inhibit up to 70% of bacteria adhesion, which constitutes a major result considering that surface of teeth is very rough, therefore physically promoting the attachment of proteins and bacteria. PMID:24513459

  3. Electron Attachment to Molecules at Low Electron Energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Garscadden, A.; Wadehra, J. M.

    1994-01-01

    One of the most efficient ways of producing negative ions is by the process of dissociative electron attachment to molecules. Here, a diatomic or polyatomic molecule dissociates, by the impact of a low energy electron, into component atoms (or smaller molecular species) while the incident electron attaches itself to one of the dissociating fragments.

  4. A rocket-borne mass analyzer for charged aerosol particles in the mesosphere

    SciTech Connect

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Friedrich, Martin

    2008-10-15

    An electrostatic mass spectrometer for nanometer-sized charged aerosol particles in the mesosphere has been developed and tested. The analyzer is mounted on the forward end of a rocket and has a slit opening for admitting a continuous sample of air that is exhausted through ports at the sides. Within the instrument housing are two sets of four collection plates that are biased with positive and negative voltages for the collection of negative and positive aerosol particles, respectively. Each collection plate spans about an order of magnitude in mass which corresponds to a factor of 2 in radius. The number density of the charge is calculated from the current collected by the plates. The mean free path for molecular collisions in the mesosphere is comparable to the size of the instrument opening; thus, the analyzer performance is modeled by a Monte Carlo computer code that finds the aerosol particles trajectories within the instrument including both the electrostatic force and the forces from collisions of the aerosol particles with air molecules. Mass sensitivity curves obtained using the computer models are near to those obtained in the laboratory using an ion source. The first two flights of the instrument returned data showing the charge number densities of both positive and negative aerosol particles in four mass ranges.

  5. A rocket-borne mass analyzer for charged aerosol particles in the mesosphere.

    PubMed

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Friedrich, Martin

    2008-10-01

    An electrostatic mass spectrometer for nanometer-sized charged aerosol particles in the mesosphere has been developed and tested. The analyzer is mounted on the forward end of a rocket and has a slit opening for admitting a continuous sample of air that is exhausted through ports at the sides. Within the instrument housing are two sets of four collection plates that are biased with positive and negative voltages for the collection of negative and positive aerosol particles, respectively. Each collection plate spans about an order of magnitude in mass which corresponds to a factor of 2 in radius. The number density of the charge is calculated from the current collected by the plates. The mean free path for molecular collisions in the mesosphere is comparable to the size of the instrument opening; thus, the analyzer performance is modeled by a Monte Carlo computer code that finds the aerosol particles trajectories within the instrument including both the electrostatic force and the forces from collisions of the aerosol particles with air molecules. Mass sensitivity curves obtained using the computer models are near to those obtained in the laboratory using an ion source. The first two flights of the instrument returned data showing the charge number densities of both positive and negative aerosol particles in four mass ranges. PMID:19044737

  6. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, H.

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  7. Coalescence and Breakup of Oppositely Charged Droplets

    PubMed Central

    Wang, Junfeng; Wang, Bin; Qiu, Huihe

    2014-01-01

    The coalescence process of oppositely charged drops for different electrical conductivities of liquids is presented. When the electrical conductivity was relatively low, oppositely charged drops failed to coalesce under sufficiently high electrical fields and capillary ripples were formed on the surfaces of droplets after rebound. For a high electrically conductive liquid, it was found that a crown profile of drop fission always appeared on the top surface of negatively charged drops after the two charged drops contacted and bounced off. Furthermore, we report here, for the first time, the newly found phenomenon and argue that the break up might be caused by Rayleigh instability, a form of Coulomb fission. The different mobility of positive and negative ions is the underlying mechanism that explains why the break up always happened on the negative side of charged drops. PMID:25410022

  8. Coalescence and Breakup of Oppositely Charged Droplets

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Wang, Bin; Qiu, Huihe

    2014-11-01

    The coalescence process of oppositely charged drops for different electrical conductivities of liquids is presented. When the electrical conductivity was relatively low, oppositely charged drops failed to coalesce under sufficiently high electrical fields and capillary ripples were formed on the surfaces of droplets after rebound. For a high electrically conductive liquid, it was found that a crown profile of drop fission always appeared on the top surface of negatively charged drops after the two charged drops contacted and bounced off. Furthermore, we report here, for the first time, the newly found phenomenon and argue that the break up might be caused by Rayleigh instability, a form of Coulomb fission. The different mobility of positive and negative ions is the underlying mechanism that explains why the break up always happened on the negative side of charged drops.

  9. Negative birefringent polyimide films

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)

    1994-01-01

    A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.

  10. Magnetic negative stiffness dampers

    NASA Astrophysics Data System (ADS)

    Shi, Xiang; Zhu, Songye

    2015-07-01

    This communication presents the design principle and experimental validation of two novel configurations of magnetic negative stiffness dampers (MNSDs), both of which are composed of several permanent magnets arranged in a conductive pipe. The MNSD, as a passive device, efficiently integrates negative stiffness and eddy-current damping in a simple and compact design, in which the negative stiffness behavior depends on the different arrangements of the permanent magnets. When applied to structural vibration control, passive MNSD may achieve a performance comparable with semi-active or active control in some applications. Laboratory experiments of small-scale prototypes successfully verified the proposed MNSD design concept.

  11. Electrical Conduction in Pure Water - Trapping and Scattering of Positive Protons and Negative Proton Holes

    NASA Astrophysics Data System (ADS)

    Jie, Binbin; Sah, Chihtang

    2015-03-01

    Water has been characterized by hydronium (H3O)1+ and hydroxide (HO)1- ions, which fail to explain the electrical conductivity of even pure water. Experimental formulas of pure water versus temperature (0-100C) have employed 39 empirical parameters to fit 3 measured properties: ion concentration, and electrical conductance of pure water and (H3O)1+ ion. We have shown (4 invited talks, 3 articles in 14 months) that electrical conduction in pure water can be represented by 5 quasi-particles in the many-body water lattice: the mobile positively charged protons p+ and negatively charged proton holes p-, and the 3 charge states of the immobile water molecule as amphoteric protonic trap, V+ = (H3O)1+, V0+/- = (H2O)0+/-, and V- = (HO)1-; and as few as 6 physics parameters: 3 binding energies, 1 protonic density of state, and 2 Coulombic scattering strengths. Protons in water are strongly coupled to the protonic-phonons, oxygen-phonons and protonic-local modes. Impuritons and affinitons may be present in the hexagonal tunnels of the water lattices.

  12. Charge Independence and Charge Symmetry

    E-print Network

    Gerald A. Miller; Willem T. H. van Oers

    1994-09-14

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed.

  13. Molecules with a High Electron Affinity

    NASA Astrophysics Data System (ADS)

    Sidorov, Lev N.

    1982-04-01

    Experimental values of the electron affinity of inorganic compounds reported between 1975 and 1980 are systematically examined. The following methods of measuring electron affinity are briefly reviewed: photo-extraction and photo-electron spectroscopy, electron impact, ion-molecule reactions, ionisation by alkali metal atoms, ion-molecule equilibria, and methods based on measuring the frequency for intramolecular charge transfer in the absorption spectra of complexes and on calculations using a thermochemical cycle. Classes of compounds having an electron affinity greater than that of halogen atoms are identified by analysing published data. 166 references.

  14. Cavity sideband cooling of trapped molecules

    SciTech Connect

    Kowalewski, Markus; Vivie-Riedle, Regina de; Morigi, Giovanna; Pinkse, Pepijn W. H.

    2011-09-15

    The efficiency of cavity sideband cooling of trapped molecules is theoretically investigated for the case in which the infrared transition between two rovibrational states is used as a cycling transition. The molecules are assumed to be trapped either by a radiofrequency or optical trapping potential, depending on whether they are charged or neutral, and confined inside a high-finesse optical resonator that enhances radiative emission into the cavity mode. Using realistic experimental parameters and COS as a representative molecular example, we show that in this setup, cooling to the trap ground state is feasible.

  15. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the ? electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large ? electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  16. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.

  17. Logo and Negative Numbers.

    ERIC Educational Resources Information Center

    Strawn, Candace A.

    1998-01-01

    Describes LOGO's turtle graphics capabilities based on a sixth-grade classroom's activities with negative numbers and Logo programming. A sidebar explains LOGO and offers suggestions to teachers for using LOGO effectively. (LRW)

  18. Controlled and triggered small molecule release from a confined polymer film.

    PubMed

    Gao, Yongfeng; Zago, Gustavo P; Jia, Zhanghu; Serpe, Michael J

    2013-10-01

    A device composed of a poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel layer sandwiched between two thin Au layers (all on a glass support) was used as a novel platform for controlled and triggered small molecule delivery. Tris (4-(dimethylamino)phenyl)methylium chloride (Crystal Violet, CV), which is positively charged, was loaded into the microgel layer of the device and released in a pH dependent fashion, at a rate that could be controlled by the thickness of the Au layer coating the microgels. Specifically, at pH 6.5 (above the pKa for AAc) the microgels were negatively charged, promoting the strong interaction between the CV and the microgels, hindering its release from the layer. At pH 3.0 the microgel's AAc groups are protonated making the microgel mostly neutral, allowing CV to be released from the microgel layer at a rate that depends on the thickness of the Au covering the microgels. Specifically, devices with thin Au overlayers on the microgel layer allow CV to be released from the device faster than devices with thick Au overlayers. The ability to tune the release rate with pH and Au layer thickness is advantageous for developing implantable devices that are capable of releasing small molecule drugs in a triggered and controlled fashion. PMID:24063561

  19. Probe-based measurement of lateral single-electron transfer between individual molecules

    PubMed Central

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-01-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533

  20. [CHARGE association].

    PubMed

    Costeira, M J; Ruivo, I; Miguel, C; Ferreira, P; Almeida, A; Azevedo, I; Silva, G; Aguiar, A

    1998-11-01

    Posterior choanal atresia is a congenital malformation which can occur isolated or in combination to additional malformations. In CHARGE association the other anomalies are: coloboma, heart disease, retarded development/growth or central nervous system abnormalities, genital hypoplasia or hypogonadism and ear abnormalities or deafness. The authors present three cases of CHARGE association and they also review the clinical findings required for the diagnosis. PMID:10021803

  1. Introduction to Single-Molecule Transistor

    NASA Astrophysics Data System (ADS)

    Nishijima, Mitsuaki

    Experimental and theoretical studies on the 2-terminal systems, which are related with a (3-terminal) single-molecule transistor, are reviewed. The measured current- bias-voltage (I-V) characteristics for the representative molecules are compared with the ab initio calculations. Molecular-vibration-induced loss of coherence and the change of the electron-transport mechanism are discussed. Mechanisms for rectification, negative differential resistance and switching of the 2-terminal systems are described. Shot-noise and thermopower studies are briefly mentioned.

  2. Single Molecule Conductance of Oligothiophene Derivatives

    NASA Astrophysics Data System (ADS)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction to sample similar conformers. This work demonstrates that the conductance of bithiophene displays a strong dependence on the conformational fluctuations accessible within a given junction configuration, and that the symmetry of such small molecules can significantly influence their conductance behavior. Next, the single-molecule conductance of a family of oligothiophenes comprising one to six thiophene units was measured. An anomalous behavior was found: the peak of the conductance histogram distribution did not follow a clear exponential decay with increasing number of thiophene units in the chain. The electronic properties of the materials were characterized by optical spectroscopy and electrochemistry to gain an understanding of the factors affecting the conductance of these molecules. Different conformers in the junction were postulated to be a contributing factor to the anomalous trend in the observed conductance as a function of molecule length. Then, the electronic properties of the thiophene-1,1-dioxide unit were investigated. These motifs have become synthetically accessible in the last decade, due to Rozen's unprecedentedly potent oxidizing reagent - HOF?CH 3CN - which has been shown to be powerful yet selective enough to oxidize thiophenes in various environments. The resulting thiophene-1,1-dioxides show great promise for electronic devices. The oxidation chemistry of thiophenes was expanded and tuning of the frontier energy levels was demonstrated through combining electron poor and electron rich units. Finally, charge carriers in single-molecule junctions were shown to be tunable within a family of molecules containing these thiophene-1,1-dioxide (TDO) building blocks. Oligomers of TDO were designed in order to increase electron affinity, maintain delocalized frontier orbitals, while significantly decreasing the transport gap. Through thermopower measurements, the dominant charge carriers were shown to change from holes to electrons as the number of TDO units was increased. This resulted in a unique system in which the charge carrier depends on ba

  3. Bacterial Spores Survive Electrospray Charging and Desolvation

    NASA Astrophysics Data System (ADS)

    Pratt, Sara N.; Austin, Daniel E.

    2014-05-01

    The survivability of Bacillus subtilis spores and vegetative Escherichia coli cells after electrospray from aqueous suspension was tested using mobility experiments at atmospheric pressure. E. coli did not survive electrospray charging and desolvation, but B. subtilis did. Experimental conditions ensured that any surviving bacteria were de-agglomerated, desolvated, and electrically charged. Based on mobility measurements, B. subtilis spores survived even with 2,000-20,000 positive charges. B. subtilis was also found to survive introduction into vacuum after either positive or negative electrospray. Attempts to measure the charge distribution of viable B. subtilis spores using electrostatic deflection in vacuum were inconclusive; however, viable spores with low charge states (less than 42 positive or less than 26 negative charges) were observed.

  4. Trapping molecules on chips

    E-print Network

    Santambrogio, Gabriele

    2015-01-01

    In the last years, it was demonstrated that neutral molecules can be loaded on a microchip directly from a supersonic beam. The molecules are confined in microscopic traps that can be moved smoothly over the surface of the chip. Once the molecules are trapped, they can be decelerated to a standstill, for instance, or pumped into selected quantum states by laser light or microwaves. Molecules are detected on the chip by time-resolved spatial imaging, which allows for the study of the distribution in the phase space of the molecular ensemble.

  5. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier.

    PubMed

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based "rocking chair" type battery. PMID:26043147

  6. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    NASA Astrophysics Data System (ADS)

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-06-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery.

  7. The Interaction of Positively-charged Ions with Nucleic Acid Systems

    NASA Technical Reports Server (NTRS)

    Pollack, Lois

    2003-01-01

    The successful development of extremely low background sample cells for x-ray scattering studies has enabled experiments designed to elucidate some of the fundamental physical interactions involved in macromolecular folding. Microfabrication techniques were used to fabricate low volume (50 micro-liter) sample cells with silicon nitride membranes (sub micron in thickness) as x-ray windows. Scientifically, these studies focus on the interaction of negatively charged nucleic acid systems, RNA and DNA, with their surrounding (positively charged) ion atmospheres. Understanding the structure of the ion atmosphere and its influence on the shape/conformation of the macromolecule will help reveal the underlying physical forces employed by nature in the self-assembly of these important molecules.

  8. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    PubMed Central

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147

  9. Synchronous charge-constrained electroquasistatic generator

    NASA Technical Reports Server (NTRS)

    Melcher, J. R.

    1969-01-01

    Electroquasistatic generator depends on electroquasistatic interactions to provide synchronous operation. The generator employs a moving insulating belt, with an ac electric potential source to establish positively and negatively charged regions on the belt. The field effect of the charges on the belt creates an ac output voltage.

  10. September 28, 2011 Leptons charge determination.

    E-print Network

    .): . Ntuple electrons ­ Et>20 GeV (Fig. 1). . Standard Tight central electron, conversions removed, both at least one tight central electron (tce). Start by looking at the distribution of detector variables charges (Fig. 2). . Tight central electron, negative charge (Fig. 3). . Tight central electron, positive

  11. Electrostatic interactions play an essential role in the binding of oleic acid with ?-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications.

    PubMed

    Xie, Yongjing; Min, Soyoung; Harte, Níal P; Kirk, Hannah; O'Brien, John E; Voorheis, H Paul; Svanborg, Catharina; Hun Mok, K

    2013-01-01

    Human ?-lactalbumin made lethal to tumor cells (HAMLET) and its analogs are partially unfolded protein-oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge-specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively-charged lysine residues to negatively-charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild-type ?-lactalbumin-oleic acid complex. With the addition of OA, the wild-type and guanidinated ?-lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated ?-lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively-charged basic groups on ?-lactalbumin and the negatively-charged carboxylate groups on OA molecules play an essential role in the binding of OA to ?-lactalbumin and that these interactions appear to be as important as hydrophobic interactions. PMID:22777854

  12. Negative refraction without negative index in metallic photonic crystals

    E-print Network

    Negative refraction without negative index in metallic photonic crystals Chiyan Luo, Steven G: It is shown that certain metallic photonic crystals can enable negative refraction and subwavelength imaging negative values of and µ," Sov. Phys. Usp. 10, 509-514 (1968). 5. J. B. Pendry, "Negative refraction makes

  13. Image effects in transport at metal-molecule interfaces.

    PubMed

    Verzijl, C J O; Celis Gil, J A; Perrin, M L; Duli?, D; van der Zant, H S J; Thijssen, J M

    2015-11-01

    We present a method for incorporating image-charge effects into the description of charge transport through molecular devices. A simple model allows us to calculate the adjustment of the transport levels, due to the polarization of the electrodes as charge is added to and removed from the molecule. For this, we use the charge distributions of the molecule between two metal electrodes in several charge states, rather than in gas phase, as obtained from a density-functional theory-based transport code. This enables us to efficiently model level shifts and gap renormalization caused by image-charge effects, which are essential for understanding molecular transport experiments. We apply the method to benzene di-amine molecules and compare our results with the standard approach based on gas phase charges. Finally, we give a detailed account of the application of our approach to porphyrin-derivative devices recently studied experimentally by Perrin et al. [Nat. Nanotechnol. 8, 282 (2013)], which demonstrates the importance of accounting for image-charge effects when modeling transport through molecular junctions. PMID:26547157

  14. Image effects in transport at metal-molecule interfaces

    NASA Astrophysics Data System (ADS)

    Verzijl, C. J. O.; Celis Gil, J. A.; Perrin, M. L.; Duli?, D.; van der Zant, H. S. J.; Thijssen, J. M.

    2015-11-01

    We present a method for incorporating image-charge effects into the description of charge transport through molecular devices. A simple model allows us to calculate the adjustment of the transport levels, due to the polarization of the electrodes as charge is added to and removed from the molecule. For this, we use the charge distributions of the molecule between two metal electrodes in several charge states, rather than in gas phase, as obtained from a density-functional theory-based transport code. This enables us to efficiently model level shifts and gap renormalization caused by image-charge effects, which are essential for understanding molecular transport experiments. We apply the method to benzene di-amine molecules and compare our results with the standard approach based on gas phase charges. Finally, we give a detailed account of the application of our approach to porphyrin-derivative devices recently studied experimentally by Perrin et al. [Nat. Nanotechnol. 8, 282 (2013)], which demonstrates the importance of accounting for image-charge effects when modeling transport through molecular junctions.

  15. An Ion-Exchange Nanomembrane Sensor for Detection of Nucleic Acids using a Surface Charge Inversion Phenomenon

    PubMed Central

    Senapati, Satyajyoti; Slouka, Zdenek; Shah, Sunny S.; Behura, Susanta K.; Shi, Zonggao; Stack, M. Sharon; Severson, David W.; Chang, Hsueh-Chia

    2015-01-01

    We present a novel low-cost biosensor for rapid, sensitive and selective detection of nucleic acids based on an ionic diode feature of an anion exchange nanoporous membrane under DC bias. The ionic diode feature is associated with external surface charge inversion on the positively charged anion exchange nanomembrane upon hybridization of negatively charged nucleic acid molecules to single-stranded oligoprobes functionalized on the membrane surface resulting in the formation of a cation selective monolayer. The resulting bipolar membrane causes a transition from electroconvection-controlled to water-splitting controlled ion conductance, with a large ion current signature that can be used to accurately quantify the hybridized nucleic acids. The platform is capable of distinguishing two base-pair mismatches in a 22-base pairing segment of microRNAs associated with oral cancer, as well as serotype-specific detection of dengue virus. We also show the sensor’s capability to selectively capture target nucleic acids from a heterogeneous mixture. The limit of detection is 1 pM for short 27 base target molecules in a 15-minute assay. Similar hybridization results are shown for short DNA molecules as well as RNAs from Brucella and E.coli. The versatility and simplicity of this low-cost biosensor should enable point-of-care diagnostics in food, medical and environmental safety markets. PMID:24787123

  16. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon.

    PubMed

    Senapati, Satyajyoti; Slouka, Zdenek; Shah, Sunny S; Behura, Susanta K; Shi, Zonggao; Stack, M Sharon; Severson, David W; Chang, Hsueh-Chia

    2014-10-15

    We present a novel low-cost biosensor for rapid, sensitive and selective detection of nucleic acids based on an ionic diode feature of an anion exchange nanoporous membrane under DC bias. The ionic diode feature is associated with external surface charge inversion on the positively charged anion exchange nanomembrane upon hybridization of negatively charged nucleic acid molecules to single-stranded oligoprobes functionalized on the membrane surface resulting in the formation of a cation selective monolayer. The resulting bipolar membrane causes a transition from electroconvection-controlled to water-splitting controlled ion conductance, with a large ion current signature that can be used to accurately quantify the hybridized nucleic acids. The platform is capable of distinguishing two base-pair mismatches in a 22-base pairing segment of microRNAs associated with oral cancer, as well as serotype-specific detection of dengue virus. We also show the sensor' capability to selectively capture target nucleic acids from a heterogeneous mixture. The limit of detection is 1 pM for short 27 base target molecules in a 15-min assay. Similar hybridization results are shown for short DNA molecules as well as RNAs from Brucella and Escherichia coli. The versatility and simplicity of this low-cost biosensor should enable point-of-care diagnostics in food, medical and environmental safety markets. PMID:24787123

  17. Oligomerization of Negatively-Charged Amino Acids by Carbonyldiimidazole

    NASA Technical Reports Server (NTRS)

    Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    The carbonyldiimidazole-induced oligomerizations of aspartic acid, glutamic acid and 0-phospho-serine are amongst the most efficient reported syntheses of biopolymers in aqueous solution. The dependence of the yields of products on the concentrations of reagents, the temperature and the enantiomeric composition of the substrate amino acids are reported. Catalysis by metal ions, particularly by Mg(2+), is described. These reactions do not generate significant amounts of material in the size-range of several tens of residues that are thought to be needed for a polymer to function as a genetic material.

  18. Direct observation of particle interactions and clustering in charged granular streams

    NASA Astrophysics Data System (ADS)

    Lee, Victor; Waitukaitis, Scott R.; Miskin, Marc Z.; Jaeger, Heinrich M.

    2015-09-01

    Clustering of fine particles is of crucial importance in settings ranging from the early stages of planet formation to the coagulation of industrial powders and airborne pollutants. Models of such clustering typically focus on inelastic deformation and cohesion. However, even in charge-neutral particle systems comprising grains of the same dielectric material, tribocharging can generate large amounts of net positive or negative charge on individual particles, resulting in long-range electrostatic forces. The effects of such forces on cluster formation are not well understood and have so far not been studied in situ. Here we report the first observations of individual collide-and-capture events between charged submillimetre particles, including Kepler-like orbits. Charged particles can become trapped in their mutual electrostatic energy well and aggregate via multiple bounces. This enables the initiation of clustering at relative velocities much larger than the upper limit for sticking after a head-on collision, a long-standing issue known from pre-planetary dust aggregation. Moreover, Coulomb interactions together with dielectric polarization are found to stabilize characteristic molecule-like configurations, providing new insights for the modelling of clustering dynamics in a wide range of microscopic dielectric systems, such as charged polarizable ions, biomolecules and colloids.

  19. Charge without charge in quarks

    E-print Network

    Harry Schiff

    2013-08-06

    With appropriate gauge transformations, field can replace electric charge in quarks. Classical quarks, in a necessary non-gauge invariant formulation, are used for illustration, bringing to the fore the limitations of the usual electric charge densities for single particles in Coulomb equations. The results are encouraging; the solutions for the Coulomb potentials apply individually to each quark in a shell structure. A remarkably simple relation emerges between the Coulomb and weak potentials.

  20. Electrical Charging of the Clouds of Titan

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Whitten, R. C.; Bakes, E. L. O.

    2003-01-01

    We have used recent data on graphitic cloud particles in the atmosphere or Titan to compute the electrical charging of the particles (radii ranging from 0.01 microns to 0.26 microns). The charging on the nightside was rather similar to that obtained earlier (Borucki et al, Icarus, 72, 604-622, 1987) except that charge distributions on the particles are now computed and recently obtained cloud particle sizes and density distributions were employed. The negative charge on particles of 0.26 microns peaked at 9 at 150 km altitude. The computations were repeated for the dayside with the addition of photoelectron emission by the particles as a result of the absorption of solar UV radiation. Particles (except the very smallest) now became positively charged with particles of radius 0.26 microns being charged up to +47. Next, very small particles (radii approximately 3 x 10^-4 microns) of polycyclic aromatic hydrocarbons (PAHs) were introduced and treated as sources of negative ions since they could be either neutral or carry one negative charge. Moreover, they are mobile so that they had to be treated like molecular size negative ions although much more massive. They had the effect of substantially reducing the electron densities in the altitude range 190 to 310 km to values less than the negative PAH densities and increasing the peak electron charge on the larger particles. Particles of radius 0.26 microns bore peak charges of plus or minus 47 at altitudes of approximately 250 km. The simulated effect of PAHs on the nightside proved to be much less pronounced; at the peak negative PAH density, it was less than the electron density. The physics governing these results will be discussed.

  1. Induction Charge Detector with Multiple Sensing Stages

    NASA Technical Reports Server (NTRS)

    Gamero-Castano, Manuel

    2008-01-01

    An induction charge detector with multiple sensing stages has been conceived for use in characterizing sprayed droplets, dust particles, large ionized molecules, and the like. Like related prior single-stage devices, each stage yields a measurement of the electric charge and the time of flight of the particle. In effect, an n-stage sensor yields n independent sets of such measurements from the same particle. The benefit of doing this is to increase the effective signal-to-noise ratio and thereby lower the charge-detection limit and the standard error of the charge measurement.

  2. Equilibrium configurations of tripolar charges

    E-print Network

    V. N. Yershov

    2006-09-21

    It is shown that an ensemble of particles with tripolar (colour) charges will necessarily cohere in a hierarchy of structures, from simple clusters and strings to complex aggregates and cyclic molecule-like structures. The basic combinatoric rule remains essentially the same on different levels of the hierarchy, thus leading to a pattern of resemblance between different levels. The number of primitive charges in each structure is determined by the symmetry of the combined effective potential of this structure. The outlined scheme can serve as a framework for building a model of composite fundamental fermions.

  3. Spatial Configuration and Composition of Charge Modulates Transport into a Mucin Hydrogel Barrier

    PubMed Central

    Li, Leon D.; Crouzier, Thomas; Sarkar, Aniruddh; Dunphy, Laura; Han, Jongyoon; Ribbeck, Katharina

    2013-01-01

    The mucus barrier is selectively permeable to a wide variety of molecules, proteins, and cells, and establishes gradients of these particulates to influence the uptake of nutrients, the defense against pathogens, and the delivery of drugs. Despite its importance for health and disease, the criteria that govern transport through the mucus barrier are largely unknown. Studies with uniformly functionalized nanoparticles have provided critical information about the relevance of particle size and net charge for mucus transport. However, these particles lack the detailed spatial arrangements of charge found in natural mucus-interacting substrates, such as certain viruses, which may have important consequences for transport through the mucus barrier. Using a novel, to our knowledge, microfluidic design that enables us to measure real-time transport gradients inside a hydrogel of mucins, the gel-forming glycoprotein component of mucus, we show that two peptides with the same net charge, but different charge arrangements, exhibit fundamentally different transport behaviors. Specifically, we show that certain configurations of positive and negative charges result in enhanced uptake into a mucin barrier, a remarkable effect that is not observed with either charge alone. Moreover, we show that the ionic strength within the mucin barrier strongly influences transport specificity, and that this effect depends on the detailed spatial arrangement of charge. These findings suggest that spatial charge distribution is a critical parameter to modulate transport through mucin-based barriers, and have concrete implications for the prediction of mucosal passage, and the design of drug delivery vehicles with tunable transport properties. PMID:24047986

  4. Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters

    NASA Astrophysics Data System (ADS)

    Demirörs, Ahmet Faik; Stiefelhagen, Johan C. P.; Vissers, Teun; Smallenburg, Frank; Dijkstra, Marjolein; Imhof, Arnout; van Blaaderen, Alfons

    2015-04-01

    Getting control over the valency of colloids is not trivial and has been a long-desired goal for the colloidal domain. Typically, tuning the preferred number of neighbors for colloidal particles requires directional bonding, as in the case of patchy particles, which is difficult to realize experimentally. Here, we demonstrate a general method for creating the colloidal analogs of molecules and other new regular colloidal clusters without using patchiness or complex bonding schemes (e.g., DNA coating) by using a combination of long-ranged attractive and repulsive interactions between oppositely charged particles that also enable regular clusters of particles not all in close contact. We show that, due to the interplay between their attractions and repulsions, oppositely charged particles dispersed in an intermediate dielectric constant (4 negatively charged large and positively charged small satellite particles, for which the electrostatic properties and interactions can be changed with an electric field. It appears that for sufficiently strong fields the satellite particles can move over the surface of the host particles and polarize the clusters. For even stronger fields, the satellite particles can be completely pulled off, reversing the net charge on the cluster. With computer simulations, we investigate how charged particles distribute on an oppositely charged sphere to minimize their energy and compare the results with the solutions to the well-known Thomson problem. We also use the simulations to explore the dependence of such clusters on Debye screening length ?-1 and the ratio of charges on the particles, showing good agreement with experimental observations.

  5. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  6. Molecules between the Stars.

    ERIC Educational Resources Information Center

    Verschuur, Gerrit L.

    1987-01-01

    Provides a listing of molecules discovered to date in the vast interstellar clouds of dust and gas. Emphasizes the recent discoveries of organic molecules. Discusses molecular spectral lines, MASERs (microwave amplification by stimulated emission of radiation), molecular clouds, and star birth. (TW)

  7. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  8. Ghosts as Negative Spinors

    E-print Network

    Andre van Tonder

    2002-07-11

    We study the the properties of a BRST ghost degree of freedom complementary to a two-state spinor. We show that the ghost may be regarded as a unit carrier of negative entropy. We construct an irreducible representation of the su(2) Lie algebra with negative spin, equal to -1/2, on the ghost state space and discuss the representation of finite SU(2) group elements. The Casimir operator J^2 of the combined spinor-ghost system is nilpotent and coincides with the BRST operator Q. Using this, we discuss the sense in which the positive and negative spin representations cancel in the product to give an effectively trivial representation. We compute an effective dimension, equal to 1/2, and character for the ghost representation and argue that these are consistent with this cancellation.

  9. Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models.

    PubMed

    Clifton, Luke A; Skoda, Maximilian W A; Le Brun, Anton P; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A; Lakey, Jeremy H

    2015-01-13

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg(2+) and Ca(2+)) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca(2+) binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959

  10. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGESBeta

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore »reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  11. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    SciTech Connect

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.

  12. Single-molecule studies of the effect of spermidine on DNA mechanics and viral DNA packaging

    NASA Astrophysics Data System (ADS)

    Keller, Nicholas; Smith, Douglas E.

    2012-10-01

    Polyamine ions such as spermidine3+, along with monovalent and divalent salt ions, screen the negatively charged backbone of dsDNA and thereby facilitate processes in which DNA is confined in small spaces, such as viral DNA packaging. We use optical tweezers to directly manipulate single DNA molecules and have made preliminary measurements of the effect of spermidine on DNA elasticity, condensation, and viral packaging. We determine the concentration of spermidine3+ at which dsDNA condenses in the presence of Mg2+ and Na+ and report a monotonic increase in stretch modulus and decrease in persistence length at incremental spermidine concentrations up to the concentration at which dsDNA condenses. We also discuss the effect of spermidine on DNA packaging in bacteriophage phi29.

  13. Negative Numbers and Antimatter Particles

    NASA Astrophysics Data System (ADS)

    Tsan, Ung Chan

    Dirac's equation states that an electron implies the existence of an antielectron with the same mass (more generally same arithmetic properties) and opposite charge (more generally opposite algebraic properties). Subsequent observation of antielectron validated this concept. This statement can be extended to all matter particles; observation of antiproton, antineutron, antideuton … is in complete agreement with this view. Recently antihypertriton was observed and 38 atoms of antihydrogen were trapped. This opens the path for use in precise testing of nature's fundamental symmetries. The symmetric properties of a matter particle and its mirror antimatter particle seem to be well established. Interactions operate on matter particles and antimatter particles as well. Conservation of matter parallels addition operating on positive and negative numbers. Without antimatter particles, interactions of the Standard Model (electromagnetism, strong interaction and weak interaction) cannot have the structure of group. Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions), explaining why from pure energy (A = 0, L = 0) one can only obtain a pair of matter particle antimatter particle — electron antielectron, proton and antiproton — via materialization where the mass of a pair of particle antiparticle gives back to pure energy with annihilation. These two mechanisms cannot change the difference in the number of matter particles and antimatter particles. Thus from pure energy only a perfectly symmetric (in number) universe could be generated as proposed by Dirac but observation showed that our universe is not symmetric, it is a matter universe which is nevertheless neutral. Fall of reflection symmetries shattered the prejudice that there is no way to define in an absolute way right and left or matter and antimatter. Experimental observation of CP violation aroused a great hope for explaining why our universe is not exactly matter antimatter symmetric. Sakharov stated that without the violation of baryonic number, it is not possible to obtain from pure energy a universe made of only matter. The fact that our universe is asymmetric (in number) but perfectly neutral, points toward the existence of a hypothetic interaction violating A and L but conserving all charges. This Matter Creation (MC) interaction creating either a pair of matter particles or antimatter particles (instead of a pair of particle antiparticle) would have a charge BAL = (A-L) and a neutral messenger Z*. Even if CP is conserved, MC would allow the creation of a number of matter particles not exactly equal to the number of antimatter particles. Our universe would then correspond to the remaining excess when all matter antimatter pairs have disappeared. Observation of matter nonconservation processes would be of great interest to falsify this speculation. In a plan with A and L as axes, pure energy is represented by the origin (A = 0, L = 0). A symmetric universe is also represented by (A = 0, L = 0) meaning that there are exactly the same number of baryons and antibaryons, and the same number of leptons and antileptons. Our present matter universe is instead represented by a point of the diagonal with A = L = present A value. This value is tiny relative to the number of gammas resulting from the annihilation of matter-antimatter particles.

  14. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  15. Real-time monitoring and manipulation of single bio-molecules in free solution

    SciTech Connect

    Li, Hung-Wing

    2005-08-01

    The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored with TIWM. FAD bound loosely in the proteins changed from the stacked conformation to the unstacked conformation upon laser excitation. FAD in free solution not only underwent conformational changes but also reacted with each other to form a dimer. Direct measurement of the single-molecule enzymatic cleavage rates of ApaI-DNA complex in the presence of various concentrations of MgCl{sub 2} solution is reported. Results suggest that there exists a distribution of ApaI conformations around the restriction site.

  16. Electronic Transport through Self Assembled Thiol Molecules: Effect of Monolayer Order, Dynamics and Temperature

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha; Fan, Wendy; Meyyappan, M.

    2005-01-01

    We present the charge transport and tunneling conductance of self assembled organic thiol molecules and discuss the influence of order and dynamics in the monolayer on the transport behavior and the effect of temperature. Conjugated thiol molecular wires and organometals such as terpyridine metal complexes provide a new platform for molecular electronic devices and we study their self assembly on Au(111) substrates by the scanning tunneling microscope. Determining the organization of the molecule and the ability to control the nature of its interface with the substrate is important for reliable performance of the molecular electronic devices. By concurrent scanning tunneling microscopy and spectroscopy studies on SAMs formed from oligo (phenelyne ethynelyne) monolayers with and without molecular order, we show that packing and order determine the response of a self assembled monolayer (SAM) to competing interactions. Molecular resolution STM imaging in vacuum shows that the OPES adopt an imcommensurate SAM structure on Au(111) with a rectangular unit cell. Tunneling spectroscopic measurements were performed on the SAM as a function of junction resistance. STS results show that the I-Vs are non linear and asymmetric due to the inherent asymmetry in the molecular structure, with larger currents at negative sample biases. The asymmetry increases with increasing junction resistance due to the asymmetry in the coupling to the leads. This is brought out clearly in the differential conductance, which also shows a gap at the Fermi level. We also studied the effect of order and dynamics in the monolayer on the charge transport and found that competing forces between the electric field, intermolecular interactions, tip-molecule physisorption and substrate-molecule chemisorption impact the transport measurements and its reliability and that the presence of molecular order is very important for reproducible transport measurements. Thus while developing new electronic platforms based on molecules, it is important to have a good control of the molecule-substrate interface, for the devices to perform reliably. While such a control would minimize fluctuations and dynamics in the ensemble, the real challenge is to develop device architectures that are tolerant to fluctuations, since they cannot be totally eliminated in these low dimensional soft systems. Results of temperature dependent STS measurements will also be discussed.

  17. Charge oscillation controlled molecular excitation.

    PubMed

    Bayer, Tim; Braun, Hendrike; Sarpe, Cristian; Siemering, Robert; von den Hoff, Philipp; de Vivie-Riedle, Regina; Baumert, Thomas; Wollenhaupt, Matthias

    2013-03-22

    The direct manipulation of charge oscillations has emerged as a new perspective in chemical reaction control. Here, we demonstrate, in a joint experimental and theoretical study, that the electron dynamics of a molecule is efficiently steered by controlling the interplay of a driving femtosecond laser pulse with the photoinduced charge oscillation. These oscillations have a typical Bohr period of around 1 fs for valence electrons; therefore, control has to be exerted on a shorter time scale. Specifically, we show how precision pulse shaping is used to manipulate the coupled electron and nuclear dynamics in order to address different bound electronic target states in a molecule. We present a strong-field coherent control mechanism which is understood in terms of a simple classical picture and at the same time verified by solving the time-dependent Schrödinger equation. This mechanism is universally applicable and opens a wide spectrum of applications in the reaction control of complex systems. PMID:25166802

  18. CD molecules 2005: human cell differentiation molecules.

    PubMed

    Zola, Heddy; Swart, Bernadette; Nicholson, Ian; Aasted, Bent; Bensussan, Armand; Boumsell, Laurence; Buckley, Chris; Clark, Georgina; Drbal, Karel; Engel, Pablo; Hart, Derek; Horejsí, Václav; Isacke, Clare; Macardle, Peter; Malavasi, Fabio; Mason, David; Olive, Daniel; Saalmueller, Armin; Schlossman, Stuart F; Schwartz-Albiez, Reinhard; Simmons, Paul; Tedder, Thomas F; Uguccioni, Mariagrazia; Warren, Hilary

    2005-11-01

    The immune system works through leukocytes interacting with each other, with other cells, with tissue matrices, with infectious agents, and with other antigens. These interactions are mediated by cell-surface glycoproteins and glycolipids. Antibodies against these leukocyte molecules have provided powerful tools for analysis of their structure, function, and distribution. Antibodies have been used widely in hematology, immunology, and pathology, and in research, diagnosis, and therapy. The associated CD nomenclature is commonly used when referring to leukocyte surface molecules and antibodies against them. It provides an essential classification for diagnostic and therapeutic purposes. The most recent (8th) Workshop and Conference on Human Leukocyte Differentiation Antigens (HLDA), held in Adelaide, Australia, in December 2004, allocated 95 new CD designations and made radical changes to its aims and future operational strategy in order to maintain its relevance to modern human biology and clinical practice. PMID:16020511

  19. Characteristics of Extreme Auroral Charging Events

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergard

    2014-01-01

    The highest level spacecraft charging observed in low Earth orbit (LEO) occurs when spacecraft are exposed to energetic auroral electrons. Since auroral charging has been identified as a mechanism responsible for on-orbit anomalies and even possible satellite failures it is important to consider extreme auroral charging events as design and test environments for spacecraft to be used in high inclination LEO orbits. This paper will report on studies of extreme auroral charging events using data from the SSJ/4 and SSJ/5 precipitating electron and ion sensors on the Defense Meteorology Satellite Program (DMSP) satellites. Early studies of DMSP charging to negative potentials =100 V focused on statistics of the electron environment responsible for charging. Later statistical studies of auroral charging have generally focused on solar cycle dependence of charging behavior and magnitude of the maximum potential and duration of the charging events. We extend these studies to focus on more detailed investigations of extreme charging event characteristics that are required to evaluate potential threats to spacecraft systems. A collection of example auroral charging events is assembled from the DMSP data set using the criteria that "extreme auroral charging" is defined as periods with spacecraft negative potentials =400 V. Specific characteristics to be treated include (but are not limited to) maximum and mean potentials, time history of spacecraft potentials through the events, total charging duration and the time potentials exceed voltage thresholds, frame charging/discharging rates, and information on geographic and geomagnetic latitudes at which the events are observed. Finally, we will comment on the implications of these studies for potential auroral charging risks to the International Space Station.

  20. Optically induced 'negative forces'

    NASA Astrophysics Data System (ADS)

    Dogariu, Aristide; Sukhov, Sergey; Sáenz, José

    2013-01-01

    Attracting objects with optical beams may seem like science fiction, but various schemes already do this, albeit with some caveats and limitations. The most recent progress in this emerging field is reviewed, with particular emphasis on manipulation of small objects by optically induced 'negative forces'.

  1. [Chemotherapies of negative schizophrenia].

    PubMed

    Petit, M; Dollfus, S

    1991-01-01

    Five years ago, Goldberg claimed that negative symptoms of schizophrenia do respond to neuroleptics. This apparent discovery is, in fact, a very common way of thinking for European schools of psychiatry, specially the French one guided by Delay and Deniker. Initially focused on reserpine and some alerting phenothiazines such as thioproperazine, this opinion has been extended to benzamides in the 1970s. The analysis of the publications devoted to this point indicates that several drugs are actually considered as potent disinhibitors (i.e. active on negative symptoms of schizophrenia): Phenothiazines: As shown in the controlled studies by Itil (1971), Poirier-Littré (1988), fluphenazine and pipotiazine improve the BPRS anergia factor and the SANS score. Butyrophenones: The first description of the "imipramine like" effect of trifluperidol by Janssen (1959) initiated the studies by Gallant (1960), Fox (1963). They compared trifluperidol at low doses versus haloperidol and chlorpromazine at medium and high doses, BPRS anergia factor improved only at low doses. Diphenylbutylpiperidines (DPBP): Meltzer's review (1986) concluded to the efficacy of such drugs on negative symptoms appearing as a specific biochemical relationship effect. A definite analysis about doses leads to a very different interpretation: DPBP low doses and only low doses improved negative symptoms as much as some low doses of phenothiazines. On the opposite, DPBP, phenothiazines and butyrophenones high doses are inefficient.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1683624

  2. The Negative Repetition Effect

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  3. Dissociation of hydrophobic and charged nano particles in aqueous guanidinium chloride and urea solutions: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Mu, Yuguang

    2012-02-01

    It has been a long history that urea and guanidinium chloride (GdmCl) are used as agents for denaturing proteins. The underlying mechanism has been extensively studied in the past several decades. However, the question regarding why GdmCl is much stronger than urea has seldom been touched. Here, through molecular dynamics simulations, we show that a 4 M GdmCl solution is more able than 7 M urea solution to dissociate both hydrophobic and charged nano-particles (NP). Both urea and GdmCl affect the NPs' aggregation through direct binding to the NP surface. The advantages of GdmCl originate from the net charge of bound guanidinium ions which can generate a local positively charged environment around hydrophobic and negatively charged NPs. This effective coating can introduce Coulombic repulsion between all the NPs. Urea shows certain ability to dissociate hydrophobic NPs. However, in the case of charged NPs, urea molecules located between two opposite-charged NPs will form ordered hydrogen bonds, acting like ``glue'' which prevents separation of the NPs. Although urea can form hydrogen bonds with either hydrophilic amino acids or the protein backbone, which are believed to contribute to protein denaturation, our findings strongly suggest that this property does not always contribute positively to urea's denaturation power.

  4. Negative ion chemistry in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Lavvas, P.; Yelle, R. V.; Wellbrock, A.; Lewis, G. R.; Coates, A.; Thissen, R.; Dutuit, O.

    2008-09-01

    In the upper part of atmospheres lies the ionosphere, a region of particular interest for planetary science, because it provides the link between the neutral atmosphere, and the ionizing processes from outer space. On Titan, it is created by the interaction of solar ultraviolet radiation and magnetospheric electrons with the main atmospheric constituents, N2 and CH4. Cassini has revealed that an extremely complex chemistry occurs in Titan's ionosphere. The INMS mass spectrometer detected positively charged hydrocarbons and nitrogen-bearing species with a charge-to-mass ratio (m/z) up to 100 amu [1]. In 2007, the Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere [2]. The data showed evidence for negatively charged ions with m/z up to 10,000 amu and at lower m/z for two distinct peaks below 50 amu, corresponding to a total density of ~200 cm-3, giving an anion to cation ratio of ~0.1. This detection happened almost simultaneously with the surprising discovery of four negative ions in the interstellar medium: C4H-, C6H-, C8H- and C3N- [3; 4; 5; 6; 7]. The possible presence of negative ions in Titan's upper atmosphere had only been briefly discussed before the Cassini-Huygens mission. Three-body electron attachment to radicals or collisional charging of aerosols had been suggested as a source of negatively charged species. Because the first process is negligible at high altitude (neutral densities lower than 1015 cm-3) and because aerosols were not expected above ~500 km, ionospheric models considered the presence of negatively charged species to be highly unlikely. However, the observations clearly show that Titan has the most complex ionosphere of the Solar System with an intense chemistry, leading to an increase of molecular size. By analyzing the optical properties of the detached haze layer observed at 520 km in Titan's mesosphere, Lavvas et al. provided the first quantitative evidence that thermospheric chemistry is the main source of haze on Titan [8]. The negative ions observed by ELS are very likely hydrocarbon and nitrogen-bearing species but their stoichiometry and structure are largely unknown because of the poor mass resolution of the spectrometer. In order to interpret the data, it is therefore necessary to develop kinetic models of the ionosphere of Titan and confront them with repeated measurements. In order to determine the processes controlling the formation of negative ions in Titan's atmosphere we use the photochemical model developed by Vuitton et al. [9; 10]. This model was used to successfully explain the processes controlling the positive ion formation in Titan's ionosphere. Furthermore, it was used for the investigation of the ion-neutral chemical processes controlling the formation of the observed thermospheric benzene abundance [11]. In order to properly describe the negative ion chemistry, eleven negative ions and about a hundred reactions involving negatively charged species have been added to the original model. The model solves the continuity equation in onedimension at altitudes between 700 and 1500 km, assuming local chemical equilibrium. It takes into account production and loss processes that include photoionization, photodetachement, energetic electron impact, and chemical reactions between ions and neutrals and between positively and negatively charged species. Due to the small chemical lifetime of ions compared with the characteristic time for diffusion, the latter is not included in the calculations. The photoelectron flux that leads to the production of negative ions is calculated by solving the Boltzmann transfer equation that provides a stationary solution for the intensity (cm-2 s-1 eV-1 sr-1) of electrons at different energies, angles and altitudes within the atmosphere ([12] and references therein). The ion densities depend closely upon the composition of the neutral atmosphere. The density of the main atmospheric constituents, N2, CH4 and H2 are well establi

  5. Single Molecule Transistor based Nanopore for the detection of Nicotine

    E-print Network

    Ray, S J

    2015-01-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor (SMT) working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain(D) and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the p...

  6. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    PubMed Central

    Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ?30 nm and ?70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about ?40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825

  7. Synthesis of Pure and N-substituted Cyclic Hydrocarbons (e.g. Pyrimidine) via Gas-Phase Ion-Molecule Reactions

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Peverati, Roberto; Head-Gordon, Martin; Lee, Timothy J.

    2015-08-01

    Large polyatomic carbonaceous molecules, known as polycyclic aromatic hydrocarbons, are known to exist in the outflows of carbon stars. How these large polyatomic molecules are synthesized in such exotic conditions is, thus far, unknown. Molecular ions, including positive and negative ions, are in relative abundance in the high radiation fields present under such conditions. Hence, barrierless ion-molecule interactions may play a major role in guiding molecules towards each other and initiating reactions. We study these condensation pathways to determine whether they are a viable means of forming large pure hydrocarbon molecules, and nitrogen-containing carbonaceous chains, stacks, and even cyclic compounds. By employing accurate quantum chemical methods we have investigated the processes of growth, structures, nature of bonding, mechanisms, and spectroscopic properties of the ensuing ionic products after pairing small carbon, hydrogen, and nitrogen-containing molecules. We have also studied the ion-neutral association pathways involving pure-carbon molecules e.g. acetylene, ethylene and other hydrocarbons, and their dissociation fragments in a plasma discharge as well as how nitrogen atoms are incorporated into the carbon ring during growth. Specifically, we explored the mechanisms by which the synthesis of pyrimidine will be feasible in the gas phase in conjunction with ion-mobility experiments. We have used accurate ab initio coupled cluster theory, Møller-Plesset and Z-averaged perturbation theories, density functional theory, and coupled cluster theory quantum chemical methods together with large correlation consistent basis sets in these investigations. We found that a series of hydrocarbons with a specific stoichiometric composition prefers cyclic molecule formation rather than chains. Some of the association products we investigated have large oscillator strengths for charge-transfer type electronic excitations in the near infrared and visible regions of the electromagnetic spectrum.P. P. Bera, Roberto Peverati, M. Head-Gordon, and Timothy J. Lee, Phys. Chem. Chem. Phys. 17, 1859-1869 (2015)

  8. Single-molecule surface studies of fibrinogen and DNA on semiconductors

    NASA Astrophysics Data System (ADS)

    Kong, Xianhua

    Understanding of protein adsorption onto non-biological substrates is of fundamental interest in science, but also has great potential technological applications in medical devices and biosensors. This study explores the non-specific interaction, at the single molecule level, of a blood protein and DNA with semiconductor surfaces through the use of a custom built, non rastering electron emission microscope and a scanning probe microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The protein examined in this study is human plasma fibrinogen, which plays an important role in haemostatis and thrombosis, and deoxyribonucleic acid (DNA) is also studied. A novel technique for determining the photothreshold of biomolecules on single molecule level is developed and applied to fibrinogen molecules adsorbed on oxidized silicon surfaces, using photo-electron emission microscopy (PEEM). Three theoretical models are employed and compared to analyze the experimental photothreshold data. The non-specific adsorption of human plasma fibrinogen on oxidized p- and n- type silicon (100) surfaces is investigated to characterize both hydrophobic interactions and electrostatic forces. The experimental results indicate that hydrophobic interactions are one of the driving forces for protein adsorption and the electrostatic interactions also play a role in the height of the fibrinogen molecules adsorbed on the surface. PEEM images establish a photo threshold of 5.0 +/- 0.2 eV for fibrinogen on both n-type and p-type Si (100) surfaces. We suggest that the photothreshold results from surface state associated Fermi level (EF) pinning and there exists negative charge transfer from the adsorbed fibrinogen onto the p-type silicon substrates, while on n-type silicon substrates negative charge is transferred in the opposite direction. The adsorption of deoxyribonucleic acid (DNA) on mica and silicon is studied in liquid and ambient environments with atomic force microscopy (AFM). Its interactions with fibrinogen proteins co-adsorbed on surfaces exhibit an interesting desorption effect. The photoelectric imaging of DNA adsorbed on silicon is studied in ultra-high vacuum. A contrast reversal is observed on Si (111) depending on different surface pretreatments, which we suggest is due to the surface states induced photoemission. Several semiconductor materials, including Si(100), Si (111), diamond-like carbon (DLC) films, single crystal diamond (SCD) (100), nano-crystalline diamond (NCD) films, silicon carbide (SiC) (0001), and graphene, are examined for biocompatibility in applications such as medical implants and biosensors. In conjunction with other studies in the literature, we suggest that DLC, NCD, and SiC are suitable for biosensor applications.

  9. Simulations of ionic liquids near charged walls

    E-print Network

    Lynden-Bell, Ruth

    2011-09-09

    temperatures and moving molecules. Why: To understand molecular scale properties and processes. In the method of Molecular Dynamics we follow the motion of molecules using Newton’s Laws of motion with interatomic forces. The temperature is determined from... direction these infinite slabs were separated by 7.5nm of vacuum and periodically repeated. 44. Ionic Liquids near charged walls -simulations Long simulations are needed as the motion of the liquid is sluggish. We also studied systems with additional probe...

  10. Probing single molecule dynamics

    SciTech Connect

    Xie, X.S.; Dunn, R.C. )

    1994-07-15

    The room temperature dynamics of single sulforhodamine 101 molecules dispersed on a glass surface are investigated on two different time scales with near-field optics. On the 10[sup [minus]2] - to 10[sup 2]-second time scale, intensity fluctuations in the emission from single molecules are examined with polarization measurements, providing insight into their spectroscopic properties. On the nanosecond time scale, the fluorescence lifetimes of single molecules are measured, and their excited-state energy transfer to the aluminum coating of the near-field probe is characterized. A movie of the time-resolved emission demonstrates the feasibility of fluorescence lifetime imaging with single molecule sensitivity, picosecond temporal resolution, and a spatial resolving power beyond the diffraction limit.

  11. Single-Molecule Enzymology

    SciTech Connect

    Xie, Xiaoliang; Lu, H PETER.

    1999-06-04

    Viewing a movie of an enzyme molecule made from molecular dynamics (MD) simulation, we see incredible details of molecular motions, be it a change of the conformation or the action of a chemical reaction.

  12. Of Molecules and Models.

    ERIC Educational Resources Information Center

    Brinner, Bonnie

    1992-01-01

    Presents an activity in which models help students visualize both the DNA process and transcription. After constructing DNA, RNA messenger, and RNA transfer molecules; students model cells, protein synthesis, codons, and RNA movement. (MDH)

  13. Negative Emissions Technology

    NASA Astrophysics Data System (ADS)

    Day, Danny

    2006-04-01

    Although `negative emissions' of carbon dioxide need not, in principle, involve use of biological processes to draw carbon out of the atmosphere, such `agricultural' sequestration' is the only known way to remove carbon from the atmosphere on time scales comparable to the time scale for anthropogenic increases in carbon emissions. In order to maintain the `negative emissions' the biomass must be used in such a way that the resulting carbon dioxide is separated and permanently sequestered. Two options for sequestration are in the topsoil and via geologic carbon sequestration. The former has multiple benefits, but the latter also is needed. Thus, although geologic carbon sequestration is viewed skeptically by some environmentalists as simply a way to keep using fossil fuels---it may be a key part of reversing accelerating climate forcing if rapid climate change is beginning to occur. I will first review the general approach of agricultural sequestration combined with use of resulting biofuels in a way that permits carbon separation and then geologic sequestration as a negative emissions technology. Then I discuss the process that is the focus of my company---the EPRIDA cycle. If deployed at a sufficiently large scale, it could reverse the increase in CO2 concentrations. I also estimate of benefits --carbon and other---of large scale deployment of negative emissions technologies. For example, using the EPRIDA cycle by planting and soil sequestering carbon in an area abut In 3X the size of Texas would remove the amount of carbon that is being accumulated worldwide each year. In addition to the atmospheric carbon removal, the EPRIDA approach also counters the depletion of carbon in the soil---increasing topsoil and its fertility; reduces the excess nitrogen in the water by eliminating the need for ammonium nitrate fertilizer and reduces fossil fuel reliance by providing biofuel and avoiding natural gas based fertilizer production.

  14. Modular Battery Charge Controller

    NASA Technical Reports Server (NTRS)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell-balancing calculations. The cell-balancing algorithm is based on the error between the cell s voltage and the other cells and is categorized into four zones of operation. The algorithm is executed every second and, if cell balancing is activated, the error variable is set to a negative low value. The largest error between the cell and the other cells is found and the zone of operation determined. If the error is zero or negative, then the cell is at the lowest voltage and no balancing action is needed. If the error is less than a predetermined negative value, a Cell Bad Flag is set. If the error is positive, then cell balancing is needed, but a hysteretic zone is added to prevent the bypass circuit from triggering repeatedly near zero error. This approach keeps the cells within a predetermined voltage range.

  15. Polyatomic molecule vibrations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Polyatomic molecule vibrations are analyzed as harmonic vibrations along normal coordinates. The energy eigenvalues are found for linear and nonlinear symmetric triatomic molecules for valence bond models of the potential function with arbitrary coupling coefficients; such models can usually be fitted to observed energy levels with reasonably good accuracy. Approximate normal coordinates for the H2O molecule are discussed. Degenerate vibrational modes such as occur in CO2 are analyzed and expressions for Fermi resonance between close-lying states of the same symmetry are developed. The bending modes of linear triatomic molecules are expressed in terms of Laguerre polynomials in cylindrical coordinates as well as in terms of Hermite polynomials in Cartesian coordinates. The effects of large-amplitude bending such as occur in the C3 molecule are analyzed, along with anharmonic effects, which split the usually degenerate bending mode energy levels. Finally, the vibrational frequencies, degeneracies, and symmetry properties of XY3, X2Y2, and XY4 type molecules are discussed.

  16. Electronic transport in benzodifuran single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single-molecule transistors (Fig. S1); the temperature dependence of I-V characteristics of a BDF single-molecule device (Fig. S2); assignment of peaks of IET spectra to specific vibration modes (Fig. S3); the broadening of the ?(C-H) peak (~390 mV, C-H stretch of the phenyl ring) in IET spectra due to the AC modulation (Fig. S4); the I-V curves of pristine gold vacuum junctions (without BDF molecules) measured at different gate voltages (Fig. S5); gate leakage in BDF single-molecule transistors (Fig. S6); the histogram of the transition voltages at two bias polarities for BDF single-molecule devices (Fig. S7). See DOI: 10.1039/c5nr00402k

  17. Randomly charged polymers in porous environment

    E-print Network

    V. Blavatska; C. von Ferber

    2013-11-22

    We study the conformational properties of charged polymers in a solvent in the presence of structural obstacles correlated according to a power law $\\sim x^{-a}$. We work within the continuous representation of a model of linear chain considered as a random sequence of charges $q_i=\\pm q_0$. Such a model captures the properties of polyampholytes -- heteropolymers comprising both positively and negatively charged monomers. We apply the direct polymer renormalization scheme and analyze the scaling behavior of charged polymers up to the first order of an $\\epsilon=6-d$, $\\delta=4-a$-expansion.

  18. Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms

    E-print Network

    Philippe Gravejat; Mathieu Lewin; Eric Sere

    2007-12-18

    We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant $\\alpha$. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an $L^1$ function and compute the effective charge of the system, recovering the usual renormalization of charge: the physical coupling constant is related to $\\alpha$ by the formula $\\alpha_{\\rm phys}\\simeq \\alpha(1+2\\alpha/(3\\pi)\\log\\Lambda)^{-1}$, where $\\Lambda$ is the ultraviolet cut-off. We eventually prove an estimate on the highest number of electrons which can be bound by a nucleus of charge $Z$. In the nonrelativistic limit, we obtain that this number is $\\leq 2Z$, recovering a result of Lieb. This work is based on a series of papers by Hainzl, Lewin, Sere and Solovej on the mean-field approximation of no-photon QED.

  19. Jellium model potentials for the C60 molecule and the photoionization of endohedral atoms, A@C60

    NASA Astrophysics Data System (ADS)

    Baltenkov, A. S.; Manson, S. T.; Msezane, A. Z.

    2015-09-01

    Approximating the C60 shell as a collection of carbon atoms, the potential experienced by a confined atom has been calculated within the framework of the self-consistent spherical jellium model. It has been found that the potential well in this model has a cusp-shaped Lorentz-like profile. The parameters of the model Lorentz-bubble potential (depth and thickness) have been selected so that in the potential well there would be an electronic level corresponding to the experimental electron affinity of the C60 molecule. The spatial distribution of the positive charge of the C-atomic nuclei and the negative charge of the electron clouds forming the electrostatic potential of C60, as a whole, has been analyzed using the Poisson equation. It is demonstrated that the often used radial square-well potential to approximate the C60 corresponds to a non-physical charge density for the C60 molecule. This analysis demonstrates that the phenomenological potentials simulating the C60 shell potential should belong to a family of potentials with a non-flat bottom and non-parallel potential walls similar to the Lorentz-bubble potential. The photoionization cross-sections of a hydrogen atom localized at the center of the C60 shell have been calculated as well. It is found that confinement oscillations in the cross-sections are exhibited within the framework of the cusp-shaped potential model and these oscillations are essentially the same as those in the case of the potential wells with well-defined borders (parallel walls), thereby demonstrating that the inherent characteristic distances of the potential, e.g., radii of the potential walls, or the distances between potential walls, are not necessary to produce confinement resonances; this should be a general result for atoms or molecules confined in near-spherical fullerenes.

  20. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, Stephen (Montrose, CA); Benner, W. Henry (Danville, CA); Madden, Norman (Livermore, CA); Searles, William (Fremont, CA)

    1998-01-01

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

  1. Apparatus and method of determining molecular weight of large molecules

    DOEpatents

    Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.

    1998-06-23

    A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.

  2. Electron attachment to the SF6 molecule

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.; Kosarim, A. V.

    2015-09-01

    Various models for transition between electron and nuclear subsystems are compared in the case of electron attachment to the SF6 molecule. Experimental data, including the cross section of electron attachment to this molecule as a function of the electron energy and vibrational temperature, the rate constants of this process in swarm experiments, and the rates of the chemionization process involving Rydberg atoms and the SF6 molecule, are collected and treated. Based on the data and on the resonant character of electron capture into an autodetachment ion state in accordance with the Breit-Wigner formula, we find that intersection of the molecule and negative ion electron terms proceeds above the potential well bottom of the molecule with the barrier height 0.05-0.1 eV, and the transition between these electron terms has both the tunnel and abovebarrier character. The limit of small electron energies e for the electron attachment cross section at room vibrational temperature takes place at ? ? 2 meV, while in the range 2 meV ? ? ? 80 meV, the cross section is inversely proportional to ?. In considering the attachment process as a result of the interaction between the electron and vibrational degrees of freedom, we find the coupling factor f between them to be f = aT at low vibrational temperatures T with a ? 3 × 10-4 K-1. The coupling factor is independent of the temperature at T > 400 K.

  3. On the possibility of negative activation energies in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1978-01-01

    The temperature dependence of the rate constants for model reacting systems was studied to understand some recent experimental measurements which imply the existence of negative activation energies. A collision theory model and classical trajectory calculations are used to demonstrate that the reaction probability can vary inversely with collision energy for bimolecular reactions occurring on attractive potential energy surfaces. However, this is not a sufficient condition to ensure that the rate constant has a negative temperature dependence. On the basis of these calculations, it seems unlikely that a true bimolecular reaction between neutral molecules will have a negative activation energy.

  4. The diabetogenic mouse MHC class II molecule I-A[subscript g7] is endowed with a switch that modulates TCR affinity

    SciTech Connect

    Yoshida, Kenji; Corper, Adam L.; Herro, Rana; Jabri, Bana; Wilson, Ian A.; Teyton, Luc

    2011-11-16

    Genetic susceptibility to autoimmunity is frequently associated with specific MHC alleles. Diabetogenic MHC class II molecules, such as human HLA-DQ8 and mouse I-A{sub g7}, typically have a small, uncharged amino acid residue at position 57 of their {beta} chain ({beta}57); this results in the absence of a salt bridge between {beta}57 and Arg{alpha}76, which is adjacent to the P9 pocket of the peptide-binding groove. However, the influence of Arg{alpha}76 on the selection of the TCR repertoire remains unknown, particularly when the MHC molecule binds a peptide with a neutral amino acid residue at position P9. Here, we have shown that diabetogenic MHC class II molecules bound to a peptide with a neutral P9 residue primarily selected and expanded cells expressing TCRs bearing a negatively charged residue in the first segment of their complementarity determining region 3{beta}. The crystal structure of one such TCR in complex with I-A{sub g7} bound to a peptide containing a neutral P9 residue revealed that a network of favorable long-range (greater than 4 {angstrom}) electrostatic interactions existed among Arg{alpha}76, the neutral P9 residue, and TCR, which supported the substantially increased TCR/peptide-MHC affinity. This network could be modulated or switched to a lower affinity interaction by the introduction of a negative charge at position P9 of the peptide. Our results support the existence of a switch at residue {beta}57 of the I-Ag7 and HLA-DQ8 class II molecules and potentially link normal thymic TCR selection with abnormal peripheral behavior.

  5. The diabetogenic mouse MHC class II molecule I-A[superscript g7] is endowed with a switch that modulates TCR affinity

    SciTech Connect

    Yoshida, Kenji; Corper, Adam L.; Herro, Rana; Jabri, Bana; Wilson, Ian A.; Teyton, Luc

    2010-07-22

    Genetic susceptibility to autoimmunity is frequently associated with specific MHC alleles. Diabetogenic MHC class II molecules, such as human HLA-DQ8 and mouse I-A{sup g7}, typically have a small, uncharged amino acid residue at position 57 of their {beta} chain ({beta}57); this results in the absence of a salt bridge between {beta}57 and Arg{alpha}76, which is adjacent to the P9 pocket of the peptide-binding groove. However, the influence of Arg{alpha}76 on the selection of the TCR repertoire remains unknown, particularly when the MHC molecule binds a peptide with a neutral amino acid residue at position P9. Here, we have shown that diabetogenic MHC class II molecules bound to a peptide with a neutral P9 residue primarily selected and expanded cells expressing TCRs bearing a negatively charged residue in the first segment of their complementarity determining region 3{beta}. The crystal structure of one such TCR in complex with I-Ag7 bound to a peptide containing a neutral P9 residue revealed that a network of favorable long-range (greater than 4 {angstrom}) electrostatic interactions existed among Arg{alpha}76, the neutral P9 residue, and TCR, which supported the substantially increased TCR/peptide-MHC affinity. This network could be modulated or switched to a lower affinity interaction by the introduction of a negative charge at position P9 of the peptide. Our results support the existence of a switch at residue {beta}57 of the I-A{sup g7} and HLA-DQ8 class II molecules and potentially link normal thymic TCR selection with abnormal peripheral behavior.

  6. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  7. Single discharge of the matrix source of negative hydrogen ions: Influence of the neutral particle dynamics

    SciTech Connect

    Paunska, Ts.; Todorov, D. Shivarova, A.; Tarnev, Kh.

    2015-04-08

    The study presents two-dimensional (2D) fluid-plasma-model description of a planar-coil inductively-driven discharge, considered as a single element of a matrix source of volume-produced negative hydrogen ions. Whereas the models developed up to now have been directed towards description of the charged particle behavior in the discharge, including that of the negative ions, this model stresses on the role of the neutral particle dynamics and of the surface processes in the formation of the discharge structure. The latter is discussed based on comparison of results obtained for discharges in a flowing gas and at a constant gas pressure as well as for different values of the coefficient of atom recombination on the walls. The conclusions are that the main plasma parameters – electron density and temperature and plasma potential – determining the gas discharge regime stay stable, regardless of changes in the redistribution of the densities of the neutral particles and of the positive ions. With regards to the volume production of the ions, which requires high density of (vibrationally excited) molecules, the impact on the degree of dissociation of the coefficient of atom recombination on the wall is discussed.

  8. Current-induced forces: a new mechanism to induce negative differential resistance and current-switching effect in molecular junctions.

    PubMed

    Gu, Lei; Fu, Hua-Hua

    2015-12-01

    Current-induced forces can excite molecules, polymers and other low-dimensional materials, which in turn leads to an effective gate voltage through Holstein interaction. Here, by taking a short asymmetric DNA junction as an example, and using the Langevin approach, we find that when suppression of charge transport by the effective gate voltage surpasses the current increase from an elevated voltage bias, the current-voltage (I-V) curves display strong negative differential resistance (NDR) and perfect current-switching characteristics. The asymmetric DNA chain differs in mechanical stability under inverse voltages and the I-V curve is asymmetric about inverse biases, which can be used to understand recent transport experiments on DNA chains, and meanwhile provides a new strategy to realize NDR in molecular junctions and other low-dimensional quantum systems. PMID:26559504

  9. Current-induced forces: a new mechanism to induce negative differential resistance and current-switching effect in molecular junctions

    NASA Astrophysics Data System (ADS)

    Gu, Lei; Fu, Hua-Hua

    2015-12-01

    Current-induced forces can excite molecules, polymers and other low-dimensional materials, which in turn leads to an effective gate voltage through Holstein interaction. Here, by taking a short asymmetric DNA junction as an example, and using the Langevin approach, we find that when suppression of charge transport by the effective gate voltage surpasses the current increase from an elevated voltage bias, the current-voltage (I–V) curves display strong negative differential resistance (NDR) and perfect current-switching characteristics. The asymmetric DNA chain differs in mechanical stability under inverse voltages and the I–V curve is asymmetric about inverse biases, which can be used to understand recent transport experiments on DNA chains, and meanwhile provides a new strategy to realize NDR in molecular junctions and other low-dimensional quantum systems.

  10. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  11. Intriguing Electrostatic Potential of CO: Negative Bond-ends and Positive Bond-cylindrical-surface

    PubMed Central

    Kim, Hahn; Doan, Van Dung; Cho, Woo Jong; Valero, Rosendo; Aliakbar Tehrani, Zahra; Madridejos, Jenica Marie L.; Kim, Kwang S.

    2015-01-01

    The strong electronegativity of O dictates that the ground state of singlet CO has positively charged C and negatively charged O, in agreement with ab initio charge analysis, but in disagreement with the dipole direction. Though this unusual phenomenon has been fairly studied, the study of electrostatic potential (EP) for noncovalent interactions of CO is essential for better understanding. Here we illustrate that both C and O atom-ends show negative EP (where the C end gives more negative EP), favoring positively charged species, whereas the cylindrical surface of the CO bond shows positive EP, favoring negatively charged ones. This is demonstrated from the interactions of CO with Na+, Cl–, H2O, CO and benzene. It can be explained by the quadrupole driven electrostatic nature of CO (like N2) with very weak dipole moment. The EP is properly described by the tripole model taking into account the electrostatic multipole moments, which has a large negative charge at a certain distance protruded from C, a large positive charge on C, and a small negative charge on O. We also discuss the EP of the first excited triplet CO. PMID:26542890

  12. Intriguing Electrostatic Potential of CO: Negative Bond-ends and Positive Bond-cylindrical-surface

    NASA Astrophysics Data System (ADS)

    Kim, Hahn; Doan, Van Dung; Cho, Woo Jong; Valero, Rosendo; Aliakbar Tehrani, Zahra; Madridejos, Jenica Marie L.; Kim, Kwang S.

    2015-11-01

    The strong electronegativity of O dictates that the ground state of singlet CO has positively charged C and negatively charged O, in agreement with ab initio charge analysis, but in disagreement with the dipole direction. Though this unusual phenomenon has been fairly studied, the study of electrostatic potential (EP) for noncovalent interactions of CO is essential for better understanding. Here we illustrate that both C and O atom-ends show negative EP (where the C end gives more negative EP), favoring positively charged species, whereas the cylindrical surface of the CO bond shows positive EP, favoring negatively charged ones. This is demonstrated from the interactions of CO with Na+, Cl–, H2O, CO and benzene. It can be explained by the quadrupole driven electrostatic nature of CO (like N2) with very weak dipole moment. The EP is properly described by the tripole model taking into account the electrostatic multipole moments, which has a large negative charge at a certain distance protruded from C, a large positive charge on C, and a small negative charge on O. We also discuss the EP of the first excited triplet CO.

  13. Radiation quality of beams of negative pions

    SciTech Connect

    Dicello, J.F.; Brenner, D.J.

    1981-01-01

    As a negative pion stops in tissue, it attaches itself to an adjacent atom to form a mesonic atom. Subsequently, the wave function of the pion interacts with that of the nucleus and the pion is absorbed. Because the energy associated with the rest mass of the pion is greater than the separation energy of the nuclear particles, the nucleus disintegrates (pion star). In tissue, approximately 40 MeV goes into overcoming the binding energies; 20 MeV goes into kinetic energy of charged particles; 80 MeV goes into kinetic energy of neutrons. In cases where biological studies are performed with beams of negative pions, as much as 20% of the total absorbed dose in the treatment volume and about 50% of the high-LET dose (> 100 keV/..mu..m) can result from neutrons. The degree of biological response and the variation of that response throughout the treatment volume can be altered by the neutron dose.

  14. Negative magnetoresistivity in chiral fluids and holography

    E-print Network

    Landsteiner, Karl; Sun, Ya-Wen

    2014-01-01

    In four dimensions Weyl fermions possess a chiral anomaly which leads to several special features in the transport phenomena, such as the negative longitudinal magnetoresistivity. In this paper, we study its inverse, the longitudinal magnetoconductivity, in the case of a chiral anomalous system with a background magnetic field B using the linear response method in the hydrodynamic limit and from holography. Our hydrodynamic results show that in general we need to have energy, momentum and charge dissipations to get a finite DC longitudinal magnetoconductivity due to the existence of the chiral anomaly. Applying the formula that we get from hydrodynamics to the holographic system in the probe limit, we find that the result in the hydrodynamic regime matches that calculated from holography via Kubo formula. The holographic result shows that in an intermediate regime of B there is naturally a negative magnetoresistivity which decreases as 1/B. At small B direct calculations in the holographic system suggest that...

  15. Negative Transconductance in Apertured Electron Guns

    SciTech Connect

    Harris, J R; O'Shea, P G

    2007-09-21

    Passing an electron beam through an aperture can serve to reduce the beam current or change the transverse beam profile. For a sufficiently intense beam, space charge will drive a radial expansion of the beam, which may cause the current passing through the aperture to increase even though the current arriving at the aperture is decreasing. When a gridded electron gun is used, this may be expressed by stating that the transconductance of the apertured gun is negative. Here we explain this effect, and explore some of the key factors governing when it can occur and influencing its strength.

  16. Entropy and charge in molecular evolution--the case of phosphate

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.

  17. Reconfigurable Quantum-Dot Molecules Created by Atom Manipulation

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Yang, Jianshu; Erwin, Steven C.; Kanisawa, Kiyoshi; Fölsch, Stefan

    2015-08-01

    Quantum-dot molecules were constructed on a semiconductor surface using atom manipulation by scanning tunneling microscopy (STM) at 5 K. The molecules consist of several coupled quantum dots, each of which comprises a chain of charged adatoms that electrostatically confines intrinsic surface-state electrons. The coupling takes place across tunnel barriers created reversibly using the STM tip. These barriers have an invariant, reproducible atomic structure and can be positioned—and repeatedly repositioned—to create a series of reconfigurable quantum-dot molecules with atomic precision.

  18. Reconfigurable Quantum-Dot Molecules Created by Atom Manipulation.

    PubMed

    Pan, Yi; Yang, Jianshu; Erwin, Steven C; Kanisawa, Kiyoshi; Fölsch, Stefan

    2015-08-14

    Quantum-dot molecules were constructed on a semiconductor surface using atom manipulation by scanning tunneling microscopy (STM) at 5 K. The molecules consist of several coupled quantum dots, each of which comprises a chain of charged adatoms that electrostatically confines intrinsic surface-state electrons. The coupling takes place across tunnel barriers created reversibly using the STM tip. These barriers have an invariant, reproducible atomic structure and can be positioned-and repeatedly repositioned-to create a series of reconfigurable quantum-dot molecules with atomic precision. PMID:26317740

  19. Proof that the hydrogen-antihydrogen molecule is unstable.

    PubMed

    Gridnev, D K; Greiner, Carsten

    2005-06-10

    In the framework of nonrelativistic quantum mechanics we derive a necessary condition for four Coulomb charges (m1(+), m2(-), m3(+), m4(-)), where all masses are assumed finite, to form the stable system. The obtained stability condition is physical and is expressed through the required minimal ratio of Jacobi masses. In particular, this provides the rigorous proof that hydrogen-antihydrogen and muonium-antimuonium molecules and hydrogen-positron-muon systems are unstable. It also proves that replacing hydrogen in the hydrogen-antihydrogen molecule with its heavier isotopes does not make the molecule stable. These are the first rigorous results on the instability of these systems. PMID:16090392

  20. Periodic negative differential conductance in a single metallic nanocage

    NASA Astrophysics Data System (ADS)

    Bekenstein, Yehonadav; Vinokurov, Kathy; Levy, Tal J.; Rabani, Eran; Banin, Uri; Millo, Oded

    2012-08-01

    We report a bipolar multiple periodic negative differential conductance (NDC) effect on a single cage-shaped Ru nanoparticle measured using scanning tunneling spectroscopy. This phenomenon is assigned to the unique multiply connected cage architecture providing two (or more) defined routes for charge flow through the cage. This, in turn, promotes a self-gating effect, where electron charging of one route affects charge transport along a neighboring channel, yielding a series of periodic NDC peaks. This picture is established and analyzed here by a theoretical model.

  1. Charge exchange in low-energy proton-surface scattering studied by discrete variational [ital X][alpha] cluster calculations

    SciTech Connect

    Souda, R.; Yamamoto, K.; Tilley, B.; Hayami, W.; Aizawa, T.; Ishizawa, Y. )

    1994-12-15

    Neutralization and electronic excitation during low-energy proton-surface scattering have been investigated from a combination of experiments and discrete variational [ital X][alpha] calculations of the adiabatic molecular-orbital-energy diagram. The charge exchange in D[sup +] scattering seems to have a more local character than expected from the conventional band picture of resonance neutralization, especially for the ionic-compound surfaces or surfaces with positively or negatively charged adatoms. Some of these local features are shown to arise from the formation of the surface molecule or the promotion of the H 1[ital s] orbital during the violent collision, which results in electronic excitation, such as reionization or electron-hole pair formation, and suppression of ion neutralization to some extent. The experimentally observed target-element dependencies of these processes are elucidated qualitatively in line with this scheme.

  2. On charging of snow particles in blizzard

    NASA Technical Reports Server (NTRS)

    Shio, Hisashi

    1991-01-01

    The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.

  3. Molecules on ice

    SciTech Connect

    Clary, D.C.

    1996-03-15

    The ozone hole that forms in the spring months over the Antarctic is thought to be produced through a network of chemical reactions catalyzed by the surfaces of ice crystals in polar stratospheric clouds (PSCs). A reaction between chlorine reservoir molecules, such as HCl + ClONO{sub 2} > HNO{sub 3} + Cl{sub 2}, is kinetically forbidden in the gas phase but proceeds quickly on the surface of ice and produces Cl{sub 2} molecules that are photodissociated by sunlight to yield the Cl atoms that destroy ozone. This destructive chain of events begins when HCl molecules stick to the ice crystals, and the mechanism for this crucial sticking process has been the subject of much debate. Recent work describes a mechanism that explains how HCl sticks to ice. This article goes on to detail research focusing surface reactions in stratospheric chemistry. 9 refs., 1 fig.

  4. Sympathetic cooling of molecules with laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Hudson, Eric

    2014-05-01

    Cooling molecules through collisions with laser-cooled atoms is an attractive route to ultracold, ground state molecules. The technique is simple, applicable to a wide class of molecules, and does not require molecule specific laser systems. Particularly suited to this technique are charged molecules, which can be trapped indefinitely, even at room temperature, and undergo strong, short-ranged collisions with ultracold atoms. In this talk, I will focus on recent efforts to use the combination of a magneto-optical trap (MOT) and an ion trap, dubbed the MOTion trap, to produce cold, ground state diatomic charged molecules. The low-energy internal structure of these diatomic molecules, e.g. the electric dipole moment and vibrational, rotational, and ?-doublet levels, presents a host of opportunities for advances in quantum simulation, precision measurement, cold chemistry, and quantum information. Excitingly, recent proof-of-principle experiments have demonstrated that the MOTion trap is extremely efficient at cooling the vibrational motion of molecular ions. Supported by the ARO and NSF.

  5. Superexciplex of Coumarin Molecules using Tunable Ti-Sapphire Laser

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Attieh Ali; Al-Dwayyan, Abdullah S.; Masilamani, Vadivel; Al-Saud, Turki Saud M.; Al-Salhi, Mohammed Saleh

    2003-10-01

    Certain highly polar dye molecules exhibit an additional optical gain band under pulsed laser excitation, while there is no such band under steady-state continuous wave (CW) lamp excitation. This new band is not due to an excimer, an exciplex or a two-photon fluorescence band but stems from the formation of a new molecular complex in which two excited molecules remain associated with a solvent molecule acting as a bridge. In this paper, the characteristics of superexciplexes of four related coumarin molecules are presented. All molecules were excited using a tunable Ti-sapphire laser pulse 10 ns in width. The distinct difference between the amplified spontaneous emission (ASE) spectra obtained with tunable laser and tunable lamp excitation demonstrated that twisted intramolecular charge transfer (TICT) conformations might also assist in the formation of these superexciplexes.

  6. Radiation damage in biomimetic dye molecules for solar cells Peter L. Cook, Phillip S. Johnson, Xiaosong Liu, An-Li Chin, and F. J. Himpsela

    E-print Network

    Himpsel, Franz J.

    Radiation damage in biomimetic dye molecules for solar cells Peter L. Cook, Phillip S. Johnson for biomimetic dye molecules for solar cells phthalocyanines and for a biological analog the charge transfer molecular orbitals in biomimetic dye molecules for solar cells.3­8 A class of molecules was chosen where

  7. Multicolor Bound Soliton Molecule

    E-print Network

    Luo, Rui; Lin, Qiang

    2015-01-01

    We show a new class of bound soliton molecule that exists in a parametrically driven nonlinear optical cavity with appropriate dispersion characteristics. The composed solitons exhibit distinctive colors but coincide in time and share a common phase, bound together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor bound soliton molecule shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which may open up a great avenue towards versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.

  8. Single Molecule Manipulation

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2011-10-01

    Single-molecule manipulation studies open a door for a close-up investigation of complex biological interactions at the molecular level. In these studies, single biomolecules are pulled while their force response is being monitored. The process is often nonequilibrium, and interpretation of the results has been challenging. We used the atomic force microscope to pull proteins and DNA, and determined the equilibrium properties of the molecules using the recently derived nonequilibrium work theorem. I will present applications of the technique in areas ranging from fundamental biological problems such as DNA mechanics, to complex medical processes such as the mechanical activation of von Willebrand Factor, a key protein in blood coagulation.

  9. Identification of Biologically Active, HIV TAR RNA-Binding Small Molecules Using Small Molecule Microarrays

    PubMed Central

    2015-01-01

    Identifying small molecules that selectively bind to structured RNA motifs remains an important challenge in developing potent and specific therapeutics. Most strategies to find RNA-binding molecules have identified highly charged compounds or aminoglycosides that commonly have modest selectivity. Here we demonstrate a strategy to screen a large unbiased library of druglike small molecules in a microarray format against an RNA target. This approach has enabled the identification of a novel chemotype that selectively targets the HIV transactivation response (TAR) RNA hairpin in a manner not dependent on cationic charge. Thienopyridine 4 binds to and stabilizes the TAR hairpin with a Kd of 2.4 ?M. Structure–activity relationships demonstrate that this compound achieves activity through hydrophobic and aromatic substituents on a heterocyclic core, rather than cationic groups typically required. Selective 2?-hydroxyl acylation analyzed by primer extension (SHAPE) analysis was performed on a 365-nucleotide sequence derived from the 5? untranslated region (UTR) of the HIV-1 genome to determine global structural changes in the presence of the molecule. Importantly, the interaction of compound 4 can be mapped to the TAR hairpin without broadly disrupting any other structured elements of the 5? UTR. Cell-based anti-HIV assays indicated that 4 inhibits HIV-induced cytopathicity in T lymphocytes with an EC50 of 28 ?M, while cytotoxicity was not observed at concentrations approaching 1 mM. PMID:24820959

  10. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis

    E-print Network

    Bajpayee, Ambika G.

    Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage ...

  11. Medium effects on charged pion ratio in heavy ion collisions

    E-print Network

    Che Ming Ko; Yongseok Oh; Jun Xu

    2010-02-01

    We have recently studied in the delta-resonance--nucleon-hole model the dependence of the pion spectral function in hot dense asymmetric nuclear matter on the charge of the pion due to the pion p-wave interaction in nuclear medium. In a thermal model, this isospin-dependent effect enhances the ratio of negatively charged to positively charged pions in neutron-rich nuclear matter, and the effect is comparable to that due to the uncertainties in the theoretically predicted stiffness of nuclear symmetry energy at high densities. This effect is, however, reversed if we also take into account the s-wave interaction of the pion in nuclear medium as given by chiral perturbation theory, resulting instead in a slightly reduced ratio of negatively charged to positively charged pions. Relevance of our results to the determination of the nuclear symmetry energy from the ratio of negatively to positively charged pions produced in heavy ion collisions is discussed.

  12. Space Charge and Electrical Conduction Properties of Polypropylene Copolymer Films

    NASA Astrophysics Data System (ADS)

    Nakane, Emi; Kaneko, Kazue; Mori, Tatsuo; Mizutani, Teruyoshi; Takino, Hiroshi; Ishioka, Mitsugu

    We investigated the space charge and charging current characteristics in polypropylene copolymer films polymerized with metallocene and Ziegler-Natta catalysts, respectively. Positive and negative homo space charges were observed and their amounts showed maxima at 40 °C. Charge carriers injected from the semiconducting (SC) electrode were dominant at 60 °C. The copolymerization of ethylene enhanced the apparent carrier mobility and the charging current. Evaporated Al electrode showed much less carrier injection than Al plate or SC electrode (mechanically-contacted electrode). Carrier injection from SC electrode was dominant than that from Al plate. These suggest that the space charge formation depends on not only electrode materials but also contact conditions.

  13. Reversible charge storage in a single silicon atom

    NASA Astrophysics Data System (ADS)

    Bellec, Amandine; Chaput, Laurent; Dujardin, Gérald; Riedel, Damien; Stauffer, Louise; Sonnet, Philippe

    2013-12-01

    The ultimate miniaturization of electronic devices at the atomic scale with single electrons requires controlling the reversible charge storage in a single atom. However, reversible charge storage is difficult to control as usually only one charge state can be stabilized. Here, combining scanning tunneling microscopy (STM) and density functional theory (DFT), we demonstrate that a single silicon dangling bond of a hydrogenated p-type doped Si(100) surface has two stable charge states (neutral and negatively charged) at low temperature (5 K). Reversible charge storage is achieved using a gate electric field between the STM tip and the surface.

  14. Negative Expertise: Comparing Differently Tenured Elder Care Nurses' Negative Knowledge

    ERIC Educational Resources Information Center

    Gartmeier, Martin; Lehtinen, Erno; Gruber, Hans; Heid, Helmut

    2011-01-01

    Negative expertise is conceptualised as the professional's ability to avoid errors during practice due to certain cognitive agencies. In this study, negative knowledge (i.e. knowledge about what is wrong in a certain context and situation) is conceptualised as one such agency. This study compares and investigates the negative knowledge of elder…

  15. Negative ion source

    DOEpatents

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  16. [Negative pressure therapy: NPT].

    PubMed

    Maillard, H

    2015-01-01

    Negative pressure therapy or treatment (NPT) is used very frequently in hospitals in both surgical and medical departments. NPT consists of maintaining the wound surface at a pressure below ambient atmospheric pressure by means of a specially designed dressing attached to a depressurisation device as well as a system to drain exudate. NPT has been shown to be beneficial in increasing blood flow, thanks to feedback resulting from the decreased oxygen pressure, angiogenesis and reduction of the wound surface area. The French Health Authority (HAS) has issued recommendations for good use in a specific and limited series of applications. NPT may be used in post-traumatic or post-surgical wounds, burns, and in chronic wounds, such as bedsores and ulcers. It is also effective as an adjuvant treatment for infected wounds. In recent years, various different NPT devices have become commercially available. PMID:26249531

  17. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  18. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  19. Extraction of negative ions from pulsed electronegative capacitively coupled plasmas

    SciTech Connect

    Agarwal, Ankur; Rauf, Shahid; Collins, Ken

    2012-08-01

    Charge buildup during plasma etching of dielectric features can lead to undesirable effects, such as notching, bowing, and twisting. Pulsed plasmas have been suggested as a method to achieve charge-free plasma etching. In particular, electronegative plasmas are attractive as the collapse of the plasma potential during the after-glow period of pulsed capacitively coupled plasmas (CCPs) can allow for extraction of negative ions into the feature. The extraction of negative ions in the after-glow of pulsed CCPs sustained in CF{sub 4} containing gas mixtures is computationally investigated. In this paper, the consequences of pulse frequency and gas chemistry on negative ion flux to the wafer are discussed. A low negative ion flux to the wafer was observed only in the late after-glow period of low pulse frequencies. The negative ion flux was found to significantly increase with the addition of highly electronegative gases (such as thermally attaching Cl{sub 2}) even at a high pulse frequency of 10 kHz. As the production of negative ions during the after-glow diminishes, alternative strategies to enhance the flux were also pursued. The flux of negative ions was found to increase by the addition of a pulsed dc voltage on the top electrode that is 180 Degree-Sign out-of-phase with the rf pulse.

  20. Ultrafast Energy Transfer between Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Sturm, F. P.; Gaire, B.; Bocharova, I.; Braun, P.; Belkacem, A.; Weber, Th.; Cao, W.; Ben-Itzhak, I.; Honig, M.; Williams, J. B.; Landers, A.; Dörner, R.

    2012-06-01

    Photo ionization of atoms or molecules just above the double ionization threshold often leaves the cation in an excited state. The excess energy is mainly released by autoionization or radiative decay. For dimers Cederbaum et al. have predicted a third process for relaxation. Here, the excited atomic or molecular target transfers the energy in form of a virtual photon to its neighboring partner, which emits an electron subsequently. The remaining doubly charged dimer then undergoes a Coulomb explosion. The effect is known as Interatomic Coulombic Decay (ICD) and has been observed for a variety of atoms so far. Only recently it was found to take place in water molecules as well. We report on the experimental study of this ultrafast energy transfer process in oxygen dimers.

  1. Unveiling charmonium molecules

    SciTech Connect

    Vijande, J.; Valcarce, A.

    2010-11-12

    We present a systematic and self-consistent analysis of four-quark charmonium states and applied it to study compact four-quark systems and meson-meson molecules. Our results are robust and should serve to clarify the situation of charmonium spectroscopy above the threshold production of charmed mesons.

  2. Mighty Molecule Models

    ERIC Educational Resources Information Center

    Brown, Tom; Rushton, Greg; Bencomo, Marie

    2008-01-01

    As part of the SMATHematics Project: The Wonder of Science, The Power of Mathematics--a collaborative partnership between Kennesaw State University and two local school districts, fifth graders had the opportunity to puzzle out chemical formulas of propane, methanol, and other important molecules. In addition, they explored properties that…

  3. Complex Organic Interstellar Molecules

    E-print Network

    van Dishoeck, Ewine F.

    Complex Organic Interstellar Molecules Eric Herbst1 and Ewine F. van Dishoeck2 1 Departments complex by astronomers if not by chemists, all contain the element carbon and so can be called organic and a solid phase of tiny dust particles. The dense interstellar matter can be found in small individual

  4. The Science of Molecules

    ERIC Educational Resources Information Center

    Flory, Paul J.

    1974-01-01

    The author maintains that chemistry has a key role as the science of molecules and rejects the concept of chemistry as a branch of physics. The scope of chemistry, the philosophies underlying its practice, and the teaching of the subject also are discussed. (DT)

  5. Diversity in Biological Molecules

    ERIC Educational Resources Information Center

    Newbury, H. John

    2010-01-01

    One of the striking characteristics of fundamental biological processes, such as genetic inheritance, development and primary metabolism, is the limited amount of variation in the molecules involved. Natural selective pressures act strongly on these core processes and individuals carrying mutations and producing slightly sub-optimal versions of…

  6. Electric Charge 2 Conservation of Charge 4

    E-print Network

    and attraction of particles in the atom using the same laws that apply to the leaves of an electroscope, although of Charge 4 Quantization of Charge 5 Coulomb's Law 7 Energy of a System of Charges 11 Electrical Energy in a Crystal Lattice 14 The Electric Field 15 Charge Distributions 20 Flux 21 Gauss's Law 22 Field

  7. PULSE ENERGIZATION IN THE TUFT CORONA REGIME OF NEGATIVE CORONA

    EPA Science Inventory

    The paper discusses pulse energization in the tuft corona regime of negative corona. Fabric filtration, with integral particle charging and collection in a combined electric and flow field, is sensitive to maldistribution of current among bags energized by one power source, espec...

  8. Negation, Polarity, and Deontic Modals

    E-print Network

    Iatridou, Sabine

    Universal deontic modals may vary with respect to whether they scope over or under negation. For instance, English modals like must and should take wide scope with respect to negation; modals like have to and need to take ...

  9. Meaning of the negative impedance

    SciTech Connect

    Conciauro, G.; Puglisi, M.

    1981-06-01

    It is shown that the negative real part of an input impedance does not mean instability of the related circuit. A negative real part of the input impedance means only that the concerned circuit is active.

  10. Condensed Matters Under Negative Pressure

    NASA Astrophysics Data System (ADS)

    Imre, Attila R.

    2011-07-01

    Condensed matters can be expanded into negative pressure states. Although these states are metastable, their long life-time makes them appropriate for experimental investigations. Some relevant behaviour of liquids and solids under negative pressure will be reviewed.

  11. Quantum crystallographic charge density of urea

    E-print Network

    Wall, Michael E

    2015-01-01

    Standard X-ray crystallography methods use free-atom models to calculate total charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and refined against publicly available ultra high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared to models obtained using atomic monopole or multipole methods. Despite using only the same number of free parameters as the monopole model, the agreement of the quantum model with the data is comparable to the multipole model. The monopole and multipole charge densities are more similar to each other than they are to the quantum charge density, indicating the quantum model provides substantially new information. In particular, the quantum model is smoother away from the atom centers and lacks peaks betw...

  12. Slowing-down and Coulomb capture of negative muons in the hydrogen-helium isotope mixtures

    NASA Astrophysics Data System (ADS)

    Balashov, V. V.; Dolinov, V. K.; Korenman, G. Ya.; Leonova, S. V.; Moskalenko, I. V.; Popov, V. P.

    This paper reports the results of the theoretical study of ionization and Coulomb capture in collisions of slow negative muons with atoms of H, He and molecules of hydrogen isotopes. The cross sections and the kinetic characteristics of these processes in the mixture of molecules of hydrogen isotopes and helium atoms are calculated.

  13. Study on metal nanoparticles synthesis and orientation of gemini surfactant molecules used as stabilizer.

    PubMed

    Tiwari, Amit Kumar; Gangopadhyay, Subhashis; Chang, Chien-Hsiang; Pande, Surojit; Saha, Subit Kumar

    2015-05-01

    In the present study, we report the synthesis of gold (Au), silver (Ag), and gold-silver alloy (Au-Ag) nanoparticles (NPs) by seed-mediated method using gemini surfactant, containing diethyl ether spacer group as a stabilizer. As-synthesized NPs are found very much stable and have been characterized using UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and zeta potential techniques. The orientation of gemini surfactant molecules surrounding the metal NPs has been investigated exploiting twisted intramolecular charge transfer (TICT) fluorescence properties of a probe 4-(N,N-dimethylamino) cinnamaldehyde (DMACA). The quenching efficiencies of different NPs have been performed in the fluorescence of DMACA and are found to be different. This effect can be related to the location of DMACA as well as the electro-negativity of the metals as the extent of orientation of the surfactant molecules around NPs controls the location of DMACA in a bilayer. To support the location of DMACA, fluorescence quenching studies with cetylpyridinium chloride (CPC) as an external quencher have also been carried out. PMID:25596371

  14. X-ray absorption spectroscopy of biomimetic dye molecules for solar cells Peter L. Cook,1

    E-print Network

    Himpsel, Franz J.

    X-ray absorption spectroscopy of biomimetic dye molecules for solar cells Peter L. Cook,1 Xiaosong the heme group in cytochrome c which plays a role in biological charge transfer processes. X-ray absorption

  15. Ion-Molecule Reactions in Gas Phase Radiation Chemistry.

    ERIC Educational Resources Information Center

    Willis, Clive

    1981-01-01

    Discusses some aspects of the radiation chemistry of gases, focusing on the ion-molecule and charge neutralization reactions which set study of the gas phase apart. Uses three examples that illustrate radiolysis, describing the radiolysis of (1) oxygen, (2) carbon dioxide, and (3) acetylene. (CS)

  16. Formation of Catalytic Metal-Molecule Contacts

    NASA Astrophysics Data System (ADS)

    Tulevski, George S.; Myers, Matt B.; Hybertsen, Mark S.; Steigerwald, Michael L.; Nuckolls, Colin

    2005-07-01

    We describe a new strategy for the in situ growth of molecular wires predicated on the synthesis of a trifunctional ``primed'' contact formed from metal-carbon multiple bonds. The ruthenium-carbon ? bond provides structural stability to the molecular linkages under ambient conditions, and density functional calculations indicate the formation of an efficient conduit for charge carriers to pass between the metal and the molecule. Moreover, the metal-carbon ? bond provides a chemically reactive site from which a conjugated molecular wire can be grown in situ through an olefin metathesis reaction.

  17. Limits to differences in active and passive charges

    SciTech Connect

    Laemmerzahl, C.; Macias, A.; Mueller, H.

    2007-05-15

    We explore consequences of a hypothetical difference between active charges, which generate electric fields, and passive charges, which respond to them. A confrontation with experiments using atoms, molecules, or macroscopic matter yields limits on their fractional difference at levels down to 10{sup -21}, which at the same time corresponds to an experimental confirmation of Newton's third law.

  18. Electronic States of C60 and C70 Molecules on Si(111)-(7×7) Surface

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Fujima, N.

    Electronic states are calculated by the DV-X?-LCAO method for two model clusters C60Si101H60 and C70Si101H60 of the C60/Si(111) and C70/Si(111) surfaces where fullerene molecules reside at the center of the unfaulted half of the 7×7 unit cell. For the C60 molecule, occupied (unocupied) orbitals near the Fermi level have high charge density around double bonds between two hexagons (around single bonds on pentagons). For the C70 molecule, both occupied and unoccupied orbitals have high charge density around single bonds. The charge density of an individual occupied (unoccupied) orbital has a shape like a trigonal doughnut (clover leaves) over the C60 molecule, and it is high in three (four) regions over the C70 molecule which is nearly Cs(D2) symmetry. These should be compared with the scanning tunneling microscopy images.

  19. Spontaneous electrical charging of droplets by conventional pipetting

    PubMed Central

    Choi, Dongwhi; Lee, Horim; Im, Do Jin; Kang, In Seok; Lim, Geunbae; Kim, Dong Sung; Kang, Kwan Hyoung

    2013-01-01

    We report that a droplet dispensed from a micropipette almost always has a considerable electrical charge of a magnitude dependent on the constituents of the droplet, on atmospheric humidity and on the coating material of pipette tip. We show that this natural electrification of a droplet originates from the charge separation between a droplet and pipette tip surface by contact with water due to the ionization of surface chemical groups. Charge on a droplet can make it difficult to detach the droplet from the pipette tip, can decrease its surface tension, can affect the chemical characteristics of solutions due to interactions with charged molecules, and can influence the combination and localization of charged bio-molecules; in all cases, the charge may affect results of experiments in which any of these factors is important. Thus, these findings reveal experimental parameters that should be controlled in experiments that use micropipettes. PMID:23784001

  20. Study of charges transferability for use in force fields

    NASA Astrophysics Data System (ADS)

    Maciel, Glauciete S.; Garcia, Edgardo

    2006-03-01

    This Letter examines the topological neighborhood effects on atomic partial charges and their transferability. To determine neighborhood effects, we used Breneman and Wiberg's CHELPG charges calculated at B3LYP/6-31G* theory level and AM1 geometries for a test set of 324 molecules of insecticides, ferroelectric liquid crystals (FLC) and antiinflammatories. The Qcode atomic descriptor was applied to represent topological neighborhood. Calculated molecular dipole moments using averaged charges with various neighbor numbers indicate that partial charges have a strong dependence with the molecular topology. Five or more neighbors are demonstrated to be typically needed for accurate partial charges transferability.